Line | Count | Source |
1 | | /* Copyright (c) 2007-2008 CSIRO |
2 | | Copyright (c) 2007-2009 Xiph.Org Foundation |
3 | | Copyright (c) 2008-2009 Gregory Maxwell |
4 | | Written by Jean-Marc Valin and Gregory Maxwell */ |
5 | | /* |
6 | | Redistribution and use in source and binary forms, with or without |
7 | | modification, are permitted provided that the following conditions |
8 | | are met: |
9 | | |
10 | | - Redistributions of source code must retain the above copyright |
11 | | notice, this list of conditions and the following disclaimer. |
12 | | |
13 | | - Redistributions in binary form must reproduce the above copyright |
14 | | notice, this list of conditions and the following disclaimer in the |
15 | | documentation and/or other materials provided with the distribution. |
16 | | |
17 | | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
18 | | ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
19 | | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
20 | | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER |
21 | | OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
22 | | EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
23 | | PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
24 | | PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
25 | | LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
26 | | NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
27 | | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
28 | | */ |
29 | | |
30 | | #ifdef HAVE_CONFIG_H |
31 | | #include "config.h" |
32 | | #endif |
33 | | |
34 | | #include <math.h> |
35 | | #include "bands.h" |
36 | | #include "modes.h" |
37 | | #include "vq.h" |
38 | | #include "cwrs.h" |
39 | | #include "stack_alloc.h" |
40 | | #include "os_support.h" |
41 | | #include "mathops.h" |
42 | | #include "rate.h" |
43 | | #include "quant_bands.h" |
44 | | #include "pitch.h" |
45 | | |
46 | | int hysteresis_decision(opus_val16 val, const opus_val16 *thresholds, const opus_val16 *hysteresis, int N, int prev) |
47 | 25.3M | { |
48 | 25.3M | int i; |
49 | 326M | for (i=0;i<N;i++) |
50 | 325M | { |
51 | 325M | if (val < thresholds[i]) |
52 | 25.0M | break; |
53 | 325M | } |
54 | 25.3M | if (i>prev && val < thresholds[prev]+hysteresis[prev]) |
55 | 69.1k | i=prev; |
56 | 25.3M | if (i<prev && val > thresholds[prev-1]-hysteresis[prev-1]) |
57 | 2.46k | i=prev; |
58 | 25.3M | return i; |
59 | 25.3M | } |
60 | | |
61 | | opus_uint32 celt_lcg_rand(opus_uint32 seed) |
62 | 1.23G | { |
63 | 1.23G | return 1664525 * seed + 1013904223; |
64 | 1.23G | } |
65 | | |
66 | | /* This is a cos() approximation designed to be bit-exact on any platform. Bit exactness |
67 | | with this approximation is important because it has an impact on the bit allocation */ |
68 | | opus_int16 bitexact_cos(opus_int16 x) |
69 | 71.4M | { |
70 | 71.4M | opus_int32 tmp; |
71 | 71.4M | opus_int16 x2; |
72 | 71.4M | tmp = (4096+((opus_int32)(x)*(x)))>>13; |
73 | 71.4M | celt_sig_assert(tmp<=32767); |
74 | 71.4M | x2 = tmp; |
75 | 71.4M | x2 = (32767-x2) + FRAC_MUL16(x2, (-7651 + FRAC_MUL16(x2, (8277 + FRAC_MUL16(-626, x2))))); |
76 | 71.4M | celt_sig_assert(x2<=32766); |
77 | 71.4M | return 1+x2; |
78 | 71.4M | } |
79 | | |
80 | | int bitexact_log2tan(int isin,int icos) |
81 | 35.7M | { |
82 | 35.7M | int lc; |
83 | 35.7M | int ls; |
84 | 35.7M | lc=EC_ILOG(icos); |
85 | 35.7M | ls=EC_ILOG(isin); |
86 | 35.7M | icos<<=15-lc; |
87 | 35.7M | isin<<=15-ls; |
88 | 35.7M | return (ls-lc)*(1<<11) |
89 | 35.7M | +FRAC_MUL16(isin, FRAC_MUL16(isin, -2597) + 7932) |
90 | 35.7M | -FRAC_MUL16(icos, FRAC_MUL16(icos, -2597) + 7932); |
91 | 35.7M | } |
92 | | |
93 | | #ifdef FIXED_POINT |
94 | | /* Compute the amplitude (sqrt energy) in each of the bands */ |
95 | | void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int LM, int arch) |
96 | 49.3M | { |
97 | 49.3M | int i, c, N; |
98 | 49.3M | const opus_int16 *eBands = m->eBands; |
99 | 49.3M | (void)arch; |
100 | 49.3M | N = m->shortMdctSize<<LM; |
101 | 57.1M | c=0; do { |
102 | 901M | for (i=0;i<end;i++) |
103 | 844M | { |
104 | 844M | int j; |
105 | 844M | opus_val32 maxval=0; |
106 | 844M | opus_val32 sum = 0; |
107 | | |
108 | 844M | maxval = celt_maxabs32(&X[c*N+(eBands[i]<<LM)], (eBands[i+1]-eBands[i])<<LM); |
109 | 844M | if (maxval > 0) |
110 | 100M | { |
111 | 100M | int shift = IMAX(0, 30 - celt_ilog2(maxval+(maxval>>14)+1) - ((((m->logN[i]+7)>>BITRES)+LM+1)>>1)); |
112 | 543M | j=eBands[i]<<LM; do { |
113 | 543M | opus_val32 x = SHL32(X[j+c*N],shift); |
114 | 543M | sum = ADD32(sum, MULT32_32_Q31(x, x)); |
115 | 543M | } while (++j<eBands[i+1]<<LM); |
116 | 100M | bandE[i+c*m->nbEBands] = MAX32(maxval, PSHR32(celt_sqrt32(SHR32(sum,1)), shift)); |
117 | 743M | } else { |
118 | 743M | bandE[i+c*m->nbEBands] = EPSILON; |
119 | 743M | } |
120 | 844M | } |
121 | 57.1M | } while (++c<C); |
122 | 49.3M | } |
123 | | |
124 | | /* Normalise each band such that the energy is one. */ |
125 | | void normalise_bands(const CELTMode *m, const celt_sig * OPUS_RESTRICT freq, celt_norm * OPUS_RESTRICT X, const celt_ener *bandE, int end, int C, int M) |
126 | 49.1M | { |
127 | 49.1M | int i, c, N; |
128 | 49.1M | const opus_int16 *eBands = m->eBands; |
129 | 49.1M | N = M*m->shortMdctSize; |
130 | 56.8M | c=0; do { |
131 | 839M | i=0; do { |
132 | 839M | int j,shift; |
133 | 839M | opus_val32 E; |
134 | 839M | opus_val32 g; |
135 | 839M | E = bandE[i+c*m->nbEBands]; |
136 | | /* For very low energies, we need this to make sure not to prevent energy rounding from |
137 | | blowing up the normalized signal. */ |
138 | 839M | if (E < 10) E += EPSILON; |
139 | 839M | shift = 30-celt_zlog2(E); |
140 | 839M | E = SHL32(E, shift); |
141 | 839M | g = celt_rcp_norm32(E); |
142 | 6.30G | j=M*eBands[i]; do { |
143 | 6.30G | X[j+c*N] = PSHR32(MULT32_32_Q31(g, SHL32(freq[j+c*N], shift)), 30-NORM_SHIFT); |
144 | 6.30G | } while (++j<M*eBands[i+1]); |
145 | 839M | } while (++i<end); |
146 | 56.8M | } while (++c<C); |
147 | 49.1M | } |
148 | | |
149 | | #else /* FIXED_POINT */ |
150 | | /* Compute the amplitude (sqrt energy) in each of the bands */ |
151 | | void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int LM, int arch) |
152 | 77.1M | { |
153 | 77.1M | int i, c, N; |
154 | 77.1M | const opus_int16 *eBands = m->eBands; |
155 | 77.1M | N = m->shortMdctSize<<LM; |
156 | 94.8M | c=0; do { |
157 | 1.51G | for (i=0;i<end;i++) |
158 | 1.42G | { |
159 | 1.42G | opus_val32 sum; |
160 | 1.42G | sum = 1e-27f + celt_inner_prod(&X[c*N+(eBands[i]<<LM)], &X[c*N+(eBands[i]<<LM)], (eBands[i+1]-eBands[i])<<LM, arch); |
161 | 1.42G | bandE[i+c*m->nbEBands] = celt_sqrt(sum); |
162 | | /*printf ("%f ", bandE[i+c*m->nbEBands]);*/ |
163 | 1.42G | } |
164 | 94.8M | } while (++c<C); |
165 | | /*printf ("\n");*/ |
166 | 77.1M | } |
167 | | |
168 | | /* Normalise each band such that the energy is one. */ |
169 | | void normalise_bands(const CELTMode *m, const celt_sig * OPUS_RESTRICT freq, celt_norm * OPUS_RESTRICT X, const celt_ener *bandE, int end, int C, int M) |
170 | 76.9M | { |
171 | 76.9M | int i, c, N; |
172 | 76.9M | const opus_int16 *eBands = m->eBands; |
173 | 76.9M | N = M*m->shortMdctSize; |
174 | 94.4M | c=0; do { |
175 | 1.51G | for (i=0;i<end;i++) |
176 | 1.41G | { |
177 | 1.41G | int j; |
178 | 1.41G | opus_val16 g = 1.f/(1e-27f+bandE[i+c*m->nbEBands]); |
179 | 13.1G | for (j=M*eBands[i];j<M*eBands[i+1];j++) |
180 | 11.7G | X[j+c*N] = freq[j+c*N]*g; |
181 | 1.41G | } |
182 | 94.4M | } while (++c<C); |
183 | 76.9M | } |
184 | | |
185 | | #endif /* FIXED_POINT */ |
186 | | |
187 | | /* De-normalise the energy to produce the synthesis from the unit-energy bands */ |
188 | | void denormalise_bands(const CELTMode *m, const celt_norm * OPUS_RESTRICT X, |
189 | | celt_sig * OPUS_RESTRICT freq, const celt_glog *bandLogE, int start, |
190 | | int end, int M, int downsample, int silence) |
191 | 477k | { |
192 | 477k | int i, N; |
193 | 477k | int bound; |
194 | 477k | celt_sig * OPUS_RESTRICT f; |
195 | 477k | const celt_norm * OPUS_RESTRICT x; |
196 | 477k | const opus_int16 *eBands = m->eBands; |
197 | 477k | N = M*m->shortMdctSize; |
198 | 477k | bound = M*eBands[end]; |
199 | 477k | if (downsample!=1) |
200 | 308k | bound = IMIN(bound, N/downsample); |
201 | 477k | if (silence) |
202 | 61.5k | { |
203 | 61.5k | bound = 0; |
204 | 61.5k | start = end = 0; |
205 | 61.5k | } |
206 | 477k | f = freq; |
207 | 477k | x = X+M*eBands[start]; |
208 | 477k | if (start != 0) |
209 | 66.0k | { |
210 | 12.0M | for (i=0;i<M*eBands[start];i++) |
211 | 12.0M | *f++ = 0; |
212 | 411k | } else { |
213 | 411k | f += M*eBands[start]; |
214 | 411k | } |
215 | 6.79M | for (i=start;i<end;i++) |
216 | 6.31M | { |
217 | 6.31M | int j, band_end; |
218 | 6.31M | opus_val32 g; |
219 | 6.31M | celt_glog lg; |
220 | | #ifdef FIXED_POINT |
221 | | int shift; |
222 | | #endif |
223 | 6.31M | j=M*eBands[i]; |
224 | 6.31M | band_end = M*eBands[i+1]; |
225 | 6.31M | lg = ADD32(bandLogE[i], SHL32((opus_val32)eMeans[i],DB_SHIFT-4)); |
226 | | #ifndef FIXED_POINT |
227 | 2.76M | g = celt_exp2_db(MIN32(32.f, lg)); |
228 | | #else |
229 | | /* Handle the integer part of the log energy */ |
230 | 3.54M | shift = 17-(lg>>DB_SHIFT); |
231 | 3.54M | if (shift>=31) |
232 | 62.3k | { |
233 | 62.3k | shift=0; |
234 | 62.3k | g=0; |
235 | 3.48M | } else { |
236 | | /* Handle the fractional part. */ |
237 | 3.48M | g = SHL32(celt_exp2_db_frac((lg&((1<<DB_SHIFT)-1))), 2); |
238 | 3.48M | } |
239 | | /* Handle extreme gains with negative shift. */ |
240 | 3.54M | if (shift<0) |
241 | 42.6k | { |
242 | | /* To avoid overflow, we're |
243 | | capping the gain here, which is equivalent to a cap of 18 on lg. |
244 | | This shouldn't trigger unless the bitstream is already corrupted. */ |
245 | 42.6k | g = 2147483647; |
246 | 42.6k | shift = 0; |
247 | 42.6k | } |
248 | | #endif |
249 | 62.0M | do { |
250 | 62.0M | *f++ = PSHR32(MULT32_32_Q31(SHL32(*x, 30-NORM_SHIFT), g), shift); |
251 | 62.0M | x++; |
252 | 62.0M | } while (++j<band_end); |
253 | 6.31M | } |
254 | 477k | celt_assert(start <= end); |
255 | 477k | OPUS_CLEAR(&freq[bound], N-bound); |
256 | 477k | } Line | Count | Source | 191 | 255k | { | 192 | 255k | int i, N; | 193 | 255k | int bound; | 194 | 255k | celt_sig * OPUS_RESTRICT f; | 195 | 255k | const celt_norm * OPUS_RESTRICT x; | 196 | 255k | const opus_int16 *eBands = m->eBands; | 197 | 255k | N = M*m->shortMdctSize; | 198 | 255k | bound = M*eBands[end]; | 199 | 255k | if (downsample!=1) | 200 | 159k | bound = IMIN(bound, N/downsample); | 201 | 255k | if (silence) | 202 | 28.9k | { | 203 | 28.9k | bound = 0; | 204 | 28.9k | start = end = 0; | 205 | 28.9k | } | 206 | 255k | f = freq; | 207 | 255k | x = X+M*eBands[start]; | 208 | 255k | if (start != 0) | 209 | 31.3k | { | 210 | 5.64M | for (i=0;i<M*eBands[start];i++) | 211 | 5.61M | *f++ = 0; | 212 | 224k | } else { | 213 | 224k | f += M*eBands[start]; | 214 | 224k | } | 215 | 3.80M | for (i=start;i<end;i++) | 216 | 3.54M | { | 217 | 3.54M | int j, band_end; | 218 | 3.54M | opus_val32 g; | 219 | 3.54M | celt_glog lg; | 220 | 3.54M | #ifdef FIXED_POINT | 221 | 3.54M | int shift; | 222 | 3.54M | #endif | 223 | 3.54M | j=M*eBands[i]; | 224 | 3.54M | band_end = M*eBands[i+1]; | 225 | 3.54M | lg = ADD32(bandLogE[i], SHL32((opus_val32)eMeans[i],DB_SHIFT-4)); | 226 | | #ifndef FIXED_POINT | 227 | | g = celt_exp2_db(MIN32(32.f, lg)); | 228 | | #else | 229 | | /* Handle the integer part of the log energy */ | 230 | 3.54M | shift = 17-(lg>>DB_SHIFT); | 231 | 3.54M | if (shift>=31) | 232 | 62.3k | { | 233 | 62.3k | shift=0; | 234 | 62.3k | g=0; | 235 | 3.48M | } else { | 236 | | /* Handle the fractional part. */ | 237 | 3.48M | g = SHL32(celt_exp2_db_frac((lg&((1<<DB_SHIFT)-1))), 2); | 238 | 3.48M | } | 239 | | /* Handle extreme gains with negative shift. */ | 240 | 3.54M | if (shift<0) | 241 | 42.6k | { | 242 | | /* To avoid overflow, we're | 243 | | capping the gain here, which is equivalent to a cap of 18 on lg. | 244 | | This shouldn't trigger unless the bitstream is already corrupted. */ | 245 | 42.6k | g = 2147483647; | 246 | 42.6k | shift = 0; | 247 | 42.6k | } | 248 | 3.54M | #endif | 249 | 33.0M | do { | 250 | 33.0M | *f++ = PSHR32(MULT32_32_Q31(SHL32(*x, 30-NORM_SHIFT), g), shift); | 251 | 33.0M | x++; | 252 | 33.0M | } while (++j<band_end); | 253 | 3.54M | } | 254 | 255k | celt_assert(start <= end); | 255 | 255k | OPUS_CLEAR(&freq[bound], N-bound); | 256 | 255k | } |
Line | Count | Source | 191 | 222k | { | 192 | 222k | int i, N; | 193 | 222k | int bound; | 194 | 222k | celt_sig * OPUS_RESTRICT f; | 195 | 222k | const celt_norm * OPUS_RESTRICT x; | 196 | 222k | const opus_int16 *eBands = m->eBands; | 197 | 222k | N = M*m->shortMdctSize; | 198 | 222k | bound = M*eBands[end]; | 199 | 222k | if (downsample!=1) | 200 | 149k | bound = IMIN(bound, N/downsample); | 201 | 222k | if (silence) | 202 | 32.6k | { | 203 | 32.6k | bound = 0; | 204 | 32.6k | start = end = 0; | 205 | 32.6k | } | 206 | 222k | f = freq; | 207 | 222k | x = X+M*eBands[start]; | 208 | 222k | if (start != 0) | 209 | 34.6k | { | 210 | 6.45M | for (i=0;i<M*eBands[start];i++) | 211 | 6.42M | *f++ = 0; | 212 | 187k | } else { | 213 | 187k | f += M*eBands[start]; | 214 | 187k | } | 215 | 2.99M | for (i=start;i<end;i++) | 216 | 2.76M | { | 217 | 2.76M | int j, band_end; | 218 | 2.76M | opus_val32 g; | 219 | 2.76M | celt_glog lg; | 220 | | #ifdef FIXED_POINT | 221 | | int shift; | 222 | | #endif | 223 | 2.76M | j=M*eBands[i]; | 224 | 2.76M | band_end = M*eBands[i+1]; | 225 | 2.76M | lg = ADD32(bandLogE[i], SHL32((opus_val32)eMeans[i],DB_SHIFT-4)); | 226 | 2.76M | #ifndef FIXED_POINT | 227 | 2.76M | g = celt_exp2_db(MIN32(32.f, lg)); | 228 | | #else | 229 | | /* Handle the integer part of the log energy */ | 230 | | shift = 17-(lg>>DB_SHIFT); | 231 | | if (shift>=31) | 232 | | { | 233 | | shift=0; | 234 | | g=0; | 235 | | } else { | 236 | | /* Handle the fractional part. */ | 237 | | g = SHL32(celt_exp2_db_frac((lg&((1<<DB_SHIFT)-1))), 2); | 238 | | } | 239 | | /* Handle extreme gains with negative shift. */ | 240 | | if (shift<0) | 241 | | { | 242 | | /* To avoid overflow, we're | 243 | | capping the gain here, which is equivalent to a cap of 18 on lg. | 244 | | This shouldn't trigger unless the bitstream is already corrupted. */ | 245 | | g = 2147483647; | 246 | | shift = 0; | 247 | | } | 248 | | #endif | 249 | 29.0M | do { | 250 | 29.0M | *f++ = PSHR32(MULT32_32_Q31(SHL32(*x, 30-NORM_SHIFT), g), shift); | 251 | 29.0M | x++; | 252 | 29.0M | } while (++j<band_end); | 253 | 2.76M | } | 254 | 222k | celt_assert(start <= end); | 255 | 222k | OPUS_CLEAR(&freq[bound], N-bound); | 256 | 222k | } |
|
257 | | |
258 | | /* This prevents energy collapse for transients with multiple short MDCTs */ |
259 | | void anti_collapse(const CELTMode *m, celt_norm *X_, unsigned char *collapse_masks, int LM, int C, int size, |
260 | | int start, int end, const celt_glog *logE, const celt_glog *prev1logE, |
261 | | const celt_glog *prev2logE, const int *pulses, opus_uint32 seed, int encode, int arch) |
262 | 6.59k | { |
263 | 6.59k | int c, i, j, k; |
264 | 112k | for (i=start;i<end;i++) |
265 | 105k | { |
266 | 105k | int N0; |
267 | 105k | opus_val16 thresh, sqrt_1; |
268 | 105k | int depth; |
269 | | #ifdef FIXED_POINT |
270 | | int shift; |
271 | | opus_val32 thresh32; |
272 | | #endif |
273 | | |
274 | 105k | N0 = m->eBands[i+1]-m->eBands[i]; |
275 | | /* depth in 1/8 bits */ |
276 | 105k | celt_sig_assert(pulses[i]>=0); |
277 | 105k | depth = celt_udiv(1+pulses[i], (m->eBands[i+1]-m->eBands[i]))>>LM; |
278 | | |
279 | | #ifdef FIXED_POINT |
280 | 55.4k | thresh32 = SHR32(celt_exp2(-SHL16(depth, 10-BITRES)),1); |
281 | 55.4k | thresh = MULT16_32_Q15(QCONST16(0.5f, 15), MIN32(32767,thresh32)); |
282 | | { |
283 | | opus_val32 t; |
284 | | t = N0<<LM; |
285 | | shift = celt_ilog2(t)>>1; |
286 | 55.4k | t = SHL32(t, (7-shift)<<1); |
287 | | sqrt_1 = celt_rsqrt_norm(t); |
288 | | } |
289 | | #else |
290 | | thresh = .5f*celt_exp2(-.125f*depth); |
291 | 50.2k | sqrt_1 = celt_rsqrt(N0<<LM); |
292 | | #endif |
293 | | |
294 | 105k | c=0; do |
295 | 185k | { |
296 | 185k | celt_norm *X; |
297 | 185k | celt_glog prev1; |
298 | 185k | celt_glog prev2; |
299 | 185k | opus_val32 Ediff; |
300 | 185k | celt_norm r; |
301 | 185k | int renormalize=0; |
302 | 185k | prev1 = prev1logE[c*m->nbEBands+i]; |
303 | 185k | prev2 = prev2logE[c*m->nbEBands+i]; |
304 | 185k | if (!encode && C==1) |
305 | 26.4k | { |
306 | 26.4k | prev1 = MAXG(prev1,prev1logE[m->nbEBands+i]); |
307 | 26.4k | prev2 = MAXG(prev2,prev2logE[m->nbEBands+i]); |
308 | 26.4k | } |
309 | 185k | Ediff = logE[c*m->nbEBands+i]-MING(prev1,prev2); |
310 | 185k | Ediff = MAX32(0, Ediff); |
311 | | |
312 | | #ifdef FIXED_POINT |
313 | 95.2k | if (Ediff < GCONST(16.f)) |
314 | 15.0k | { |
315 | 15.0k | opus_val32 r32 = SHR32(celt_exp2_db(-Ediff),1); |
316 | 15.0k | r = 2*MIN16(16383,r32); |
317 | 80.1k | } else { |
318 | 80.1k | r = 0; |
319 | 80.1k | } |
320 | 95.2k | if (LM==3) |
321 | 15.5k | r = MULT16_16_Q14(23170, MIN32(23169, r)); |
322 | 95.2k | r = SHR16(MIN16(thresh, r),1); |
323 | 95.2k | r = VSHR32(MULT16_16_Q15(sqrt_1, r),shift+14-NORM_SHIFT); |
324 | | #else |
325 | | /* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because |
326 | | short blocks don't have the same energy as long */ |
327 | 89.8k | r = 2.f*celt_exp2_db(-Ediff); |
328 | 89.8k | if (LM==3) |
329 | 14.9k | r *= 1.41421356f; |
330 | 89.8k | r = MIN16(thresh, r); |
331 | | r = r*sqrt_1; |
332 | | #endif |
333 | 185k | X = X_+c*size+(m->eBands[i]<<LM); |
334 | 1.04M | for (k=0;k<1<<LM;k++) |
335 | 862k | { |
336 | | /* Detect collapse */ |
337 | 862k | if (!(collapse_masks[i*C+c]&1<<k)) |
338 | 87.3k | { |
339 | | /* Fill with noise */ |
340 | 333k | for (j=0;j<N0;j++) |
341 | 246k | { |
342 | 246k | seed = celt_lcg_rand(seed); |
343 | 246k | X[(j<<LM)+k] = (seed&0x8000 ? r : -r); |
344 | 246k | } |
345 | 87.3k | renormalize = 1; |
346 | 87.3k | } |
347 | 862k | } |
348 | | /* We just added some energy, so we need to renormalise */ |
349 | 185k | if (renormalize) |
350 | 33.5k | renormalise_vector(X, N0<<LM, Q31ONE, arch); |
351 | 185k | } while (++c<C); |
352 | 105k | } |
353 | 6.59k | } Line | Count | Source | 262 | 3.49k | { | 263 | 3.49k | int c, i, j, k; | 264 | 58.9k | for (i=start;i<end;i++) | 265 | 55.4k | { | 266 | 55.4k | int N0; | 267 | 55.4k | opus_val16 thresh, sqrt_1; | 268 | 55.4k | int depth; | 269 | 55.4k | #ifdef FIXED_POINT | 270 | 55.4k | int shift; | 271 | 55.4k | opus_val32 thresh32; | 272 | 55.4k | #endif | 273 | | | 274 | 55.4k | N0 = m->eBands[i+1]-m->eBands[i]; | 275 | | /* depth in 1/8 bits */ | 276 | 55.4k | celt_sig_assert(pulses[i]>=0); | 277 | 55.4k | depth = celt_udiv(1+pulses[i], (m->eBands[i+1]-m->eBands[i]))>>LM; | 278 | | | 279 | 55.4k | #ifdef FIXED_POINT | 280 | 55.4k | thresh32 = SHR32(celt_exp2(-SHL16(depth, 10-BITRES)),1); | 281 | 55.4k | thresh = MULT16_32_Q15(QCONST16(0.5f, 15), MIN32(32767,thresh32)); | 282 | 55.4k | { | 283 | 55.4k | opus_val32 t; | 284 | 55.4k | t = N0<<LM; | 285 | 55.4k | shift = celt_ilog2(t)>>1; | 286 | 55.4k | t = SHL32(t, (7-shift)<<1); | 287 | 55.4k | sqrt_1 = celt_rsqrt_norm(t); | 288 | 55.4k | } | 289 | | #else | 290 | | thresh = .5f*celt_exp2(-.125f*depth); | 291 | | sqrt_1 = celt_rsqrt(N0<<LM); | 292 | | #endif | 293 | | | 294 | 55.4k | c=0; do | 295 | 95.2k | { | 296 | 95.2k | celt_norm *X; | 297 | 95.2k | celt_glog prev1; | 298 | 95.2k | celt_glog prev2; | 299 | 95.2k | opus_val32 Ediff; | 300 | 95.2k | celt_norm r; | 301 | 95.2k | int renormalize=0; | 302 | 95.2k | prev1 = prev1logE[c*m->nbEBands+i]; | 303 | 95.2k | prev2 = prev2logE[c*m->nbEBands+i]; | 304 | 95.2k | if (!encode && C==1) | 305 | 15.7k | { | 306 | 15.7k | prev1 = MAXG(prev1,prev1logE[m->nbEBands+i]); | 307 | 15.7k | prev2 = MAXG(prev2,prev2logE[m->nbEBands+i]); | 308 | 15.7k | } | 309 | 95.2k | Ediff = logE[c*m->nbEBands+i]-MING(prev1,prev2); | 310 | 95.2k | Ediff = MAX32(0, Ediff); | 311 | | | 312 | 95.2k | #ifdef FIXED_POINT | 313 | 95.2k | if (Ediff < GCONST(16.f)) | 314 | 15.0k | { | 315 | 15.0k | opus_val32 r32 = SHR32(celt_exp2_db(-Ediff),1); | 316 | 15.0k | r = 2*MIN16(16383,r32); | 317 | 80.1k | } else { | 318 | 80.1k | r = 0; | 319 | 80.1k | } | 320 | 95.2k | if (LM==3) | 321 | 15.5k | r = MULT16_16_Q14(23170, MIN32(23169, r)); | 322 | 95.2k | r = SHR16(MIN16(thresh, r),1); | 323 | 95.2k | r = VSHR32(MULT16_16_Q15(sqrt_1, r),shift+14-NORM_SHIFT); | 324 | | #else | 325 | | /* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because | 326 | | short blocks don't have the same energy as long */ | 327 | | r = 2.f*celt_exp2_db(-Ediff); | 328 | | if (LM==3) | 329 | | r *= 1.41421356f; | 330 | | r = MIN16(thresh, r); | 331 | | r = r*sqrt_1; | 332 | | #endif | 333 | 95.2k | X = X_+c*size+(m->eBands[i]<<LM); | 334 | 538k | for (k=0;k<1<<LM;k++) | 335 | 443k | { | 336 | | /* Detect collapse */ | 337 | 443k | if (!(collapse_masks[i*C+c]&1<<k)) | 338 | 49.2k | { | 339 | | /* Fill with noise */ | 340 | 186k | for (j=0;j<N0;j++) | 341 | 136k | { | 342 | 136k | seed = celt_lcg_rand(seed); | 343 | 136k | X[(j<<LM)+k] = (seed&0x8000 ? r : -r); | 344 | 136k | } | 345 | 49.2k | renormalize = 1; | 346 | 49.2k | } | 347 | 443k | } | 348 | | /* We just added some energy, so we need to renormalise */ | 349 | 95.2k | if (renormalize) | 350 | 17.9k | renormalise_vector(X, N0<<LM, Q31ONE, arch); | 351 | 95.2k | } while (++c<C); | 352 | 55.4k | } | 353 | 3.49k | } |
Line | Count | Source | 262 | 3.09k | { | 263 | 3.09k | int c, i, j, k; | 264 | 53.3k | for (i=start;i<end;i++) | 265 | 50.2k | { | 266 | 50.2k | int N0; | 267 | 50.2k | opus_val16 thresh, sqrt_1; | 268 | 50.2k | int depth; | 269 | | #ifdef FIXED_POINT | 270 | | int shift; | 271 | | opus_val32 thresh32; | 272 | | #endif | 273 | | | 274 | 50.2k | N0 = m->eBands[i+1]-m->eBands[i]; | 275 | | /* depth in 1/8 bits */ | 276 | 50.2k | celt_sig_assert(pulses[i]>=0); | 277 | 50.2k | depth = celt_udiv(1+pulses[i], (m->eBands[i+1]-m->eBands[i]))>>LM; | 278 | | | 279 | | #ifdef FIXED_POINT | 280 | | thresh32 = SHR32(celt_exp2(-SHL16(depth, 10-BITRES)),1); | 281 | | thresh = MULT16_32_Q15(QCONST16(0.5f, 15), MIN32(32767,thresh32)); | 282 | | { | 283 | | opus_val32 t; | 284 | | t = N0<<LM; | 285 | | shift = celt_ilog2(t)>>1; | 286 | | t = SHL32(t, (7-shift)<<1); | 287 | | sqrt_1 = celt_rsqrt_norm(t); | 288 | | } | 289 | | #else | 290 | 50.2k | thresh = .5f*celt_exp2(-.125f*depth); | 291 | 50.2k | sqrt_1 = celt_rsqrt(N0<<LM); | 292 | 50.2k | #endif | 293 | | | 294 | 50.2k | c=0; do | 295 | 89.8k | { | 296 | 89.8k | celt_norm *X; | 297 | 89.8k | celt_glog prev1; | 298 | 89.8k | celt_glog prev2; | 299 | 89.8k | opus_val32 Ediff; | 300 | 89.8k | celt_norm r; | 301 | 89.8k | int renormalize=0; | 302 | 89.8k | prev1 = prev1logE[c*m->nbEBands+i]; | 303 | 89.8k | prev2 = prev2logE[c*m->nbEBands+i]; | 304 | 89.8k | if (!encode && C==1) | 305 | 10.7k | { | 306 | 10.7k | prev1 = MAXG(prev1,prev1logE[m->nbEBands+i]); | 307 | 10.7k | prev2 = MAXG(prev2,prev2logE[m->nbEBands+i]); | 308 | 10.7k | } | 309 | 89.8k | Ediff = logE[c*m->nbEBands+i]-MING(prev1,prev2); | 310 | 89.8k | Ediff = MAX32(0, Ediff); | 311 | | | 312 | | #ifdef FIXED_POINT | 313 | | if (Ediff < GCONST(16.f)) | 314 | | { | 315 | | opus_val32 r32 = SHR32(celt_exp2_db(-Ediff),1); | 316 | | r = 2*MIN16(16383,r32); | 317 | | } else { | 318 | | r = 0; | 319 | | } | 320 | | if (LM==3) | 321 | | r = MULT16_16_Q14(23170, MIN32(23169, r)); | 322 | | r = SHR16(MIN16(thresh, r),1); | 323 | | r = VSHR32(MULT16_16_Q15(sqrt_1, r),shift+14-NORM_SHIFT); | 324 | | #else | 325 | | /* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because | 326 | | short blocks don't have the same energy as long */ | 327 | 89.8k | r = 2.f*celt_exp2_db(-Ediff); | 328 | 89.8k | if (LM==3) | 329 | 14.9k | r *= 1.41421356f; | 330 | 89.8k | r = MIN16(thresh, r); | 331 | 89.8k | r = r*sqrt_1; | 332 | 89.8k | #endif | 333 | 89.8k | X = X_+c*size+(m->eBands[i]<<LM); | 334 | 508k | for (k=0;k<1<<LM;k++) | 335 | 419k | { | 336 | | /* Detect collapse */ | 337 | 419k | if (!(collapse_masks[i*C+c]&1<<k)) | 338 | 38.0k | { | 339 | | /* Fill with noise */ | 340 | 147k | for (j=0;j<N0;j++) | 341 | 109k | { | 342 | 109k | seed = celt_lcg_rand(seed); | 343 | 109k | X[(j<<LM)+k] = (seed&0x8000 ? r : -r); | 344 | 109k | } | 345 | 38.0k | renormalize = 1; | 346 | 38.0k | } | 347 | 419k | } | 348 | | /* We just added some energy, so we need to renormalise */ | 349 | 89.8k | if (renormalize) | 350 | 15.6k | renormalise_vector(X, N0<<LM, Q31ONE, arch); | 351 | 89.8k | } while (++c<C); | 352 | 50.2k | } | 353 | 3.09k | } |
|
354 | | |
355 | | /* Compute the weights to use for optimizing normalized distortion across |
356 | | channels. We use the amplitude to weight square distortion, which means |
357 | | that we use the square root of the value we would have been using if we |
358 | | wanted to minimize the MSE in the non-normalized domain. This roughly |
359 | | corresponds to some quick-and-dirty perceptual experiments I ran to |
360 | | measure inter-aural masking (there doesn't seem to be any published data |
361 | | on the topic). */ |
362 | | static void compute_channel_weights(celt_ener Ex, celt_ener Ey, opus_val16 w[2]) |
363 | 7.17M | { |
364 | 7.17M | celt_ener minE; |
365 | | #ifdef FIXED_POINT |
366 | | int shift; |
367 | | #endif |
368 | 7.17M | minE = MIN32(Ex, Ey); |
369 | | /* Adjustment to make the weights a bit more conservative. */ |
370 | 7.17M | Ex = ADD32(Ex, minE/3); |
371 | 7.17M | Ey = ADD32(Ey, minE/3); |
372 | | #ifdef FIXED_POINT |
373 | 5.77M | shift = celt_ilog2(EPSILON+MAX32(Ex, Ey))-14; |
374 | | #endif |
375 | 7.17M | w[0] = VSHR32(Ex, shift); |
376 | 7.17M | w[1] = VSHR32(Ey, shift); |
377 | 7.17M | } bands.c:compute_channel_weights Line | Count | Source | 363 | 5.77M | { | 364 | 5.77M | celt_ener minE; | 365 | 5.77M | #ifdef FIXED_POINT | 366 | 5.77M | int shift; | 367 | 5.77M | #endif | 368 | 5.77M | minE = MIN32(Ex, Ey); | 369 | | /* Adjustment to make the weights a bit more conservative. */ | 370 | 5.77M | Ex = ADD32(Ex, minE/3); | 371 | 5.77M | Ey = ADD32(Ey, minE/3); | 372 | 5.77M | #ifdef FIXED_POINT | 373 | 5.77M | shift = celt_ilog2(EPSILON+MAX32(Ex, Ey))-14; | 374 | 5.77M | #endif | 375 | 5.77M | w[0] = VSHR32(Ex, shift); | 376 | 5.77M | w[1] = VSHR32(Ey, shift); | 377 | 5.77M | } |
bands.c:compute_channel_weights Line | Count | Source | 363 | 1.40M | { | 364 | 1.40M | celt_ener minE; | 365 | | #ifdef FIXED_POINT | 366 | | int shift; | 367 | | #endif | 368 | 1.40M | minE = MIN32(Ex, Ey); | 369 | | /* Adjustment to make the weights a bit more conservative. */ | 370 | 1.40M | Ex = ADD32(Ex, minE/3); | 371 | 1.40M | Ey = ADD32(Ey, minE/3); | 372 | | #ifdef FIXED_POINT | 373 | | shift = celt_ilog2(EPSILON+MAX32(Ex, Ey))-14; | 374 | | #endif | 375 | 1.40M | w[0] = VSHR32(Ex, shift); | 376 | 1.40M | w[1] = VSHR32(Ey, shift); | 377 | 1.40M | } |
|
378 | | |
379 | | static void intensity_stereo(const CELTMode *m, celt_norm * OPUS_RESTRICT X, const celt_norm * OPUS_RESTRICT Y, const celt_ener *bandE, int bandID, int N) |
380 | 314M | { |
381 | 314M | int i = bandID; |
382 | 314M | int j; |
383 | 314M | opus_val16 a1, a2; |
384 | 314M | opus_val16 left, right; |
385 | 314M | opus_val16 norm; |
386 | | #ifdef FIXED_POINT |
387 | 87.5M | int shift = celt_zlog2(MAX32(bandE[i], bandE[i+m->nbEBands]))-13; |
388 | | #endif |
389 | 314M | left = VSHR32(bandE[i],shift); |
390 | 314M | right = VSHR32(bandE[i+m->nbEBands],shift); |
391 | 314M | norm = EPSILON + celt_sqrt(EPSILON+MULT16_16(left,left)+MULT16_16(right,right)); |
392 | | #ifdef FIXED_POINT |
393 | 87.5M | left = MIN32(left, norm-1); |
394 | 87.5M | right = MIN32(right, norm-1); |
395 | | #endif |
396 | 314M | a1 = DIV32_16(SHL32(EXTEND32(left),15),norm); |
397 | 314M | a2 = DIV32_16(SHL32(EXTEND32(right),15),norm); |
398 | 3.74G | for (j=0;j<N;j++) |
399 | 3.43G | { |
400 | 3.43G | X[j] = ADD32(MULT16_32_Q15(a1, X[j]), MULT16_32_Q15(a2, Y[j])); |
401 | | /* Side is not encoded, no need to calculate */ |
402 | 3.43G | } |
403 | 314M | } Line | Count | Source | 380 | 87.5M | { | 381 | 87.5M | int i = bandID; | 382 | 87.5M | int j; | 383 | 87.5M | opus_val16 a1, a2; | 384 | 87.5M | opus_val16 left, right; | 385 | 87.5M | opus_val16 norm; | 386 | 87.5M | #ifdef FIXED_POINT | 387 | 87.5M | int shift = celt_zlog2(MAX32(bandE[i], bandE[i+m->nbEBands]))-13; | 388 | 87.5M | #endif | 389 | 87.5M | left = VSHR32(bandE[i],shift); | 390 | 87.5M | right = VSHR32(bandE[i+m->nbEBands],shift); | 391 | 87.5M | norm = EPSILON + celt_sqrt(EPSILON+MULT16_16(left,left)+MULT16_16(right,right)); | 392 | 87.5M | #ifdef FIXED_POINT | 393 | 87.5M | left = MIN32(left, norm-1); | 394 | 87.5M | right = MIN32(right, norm-1); | 395 | 87.5M | #endif | 396 | 87.5M | a1 = DIV32_16(SHL32(EXTEND32(left),15),norm); | 397 | 87.5M | a2 = DIV32_16(SHL32(EXTEND32(right),15),norm); | 398 | 1.00G | for (j=0;j<N;j++) | 399 | 922M | { | 400 | 922M | X[j] = ADD32(MULT16_32_Q15(a1, X[j]), MULT16_32_Q15(a2, Y[j])); | 401 | | /* Side is not encoded, no need to calculate */ | 402 | 922M | } | 403 | 87.5M | } |
Line | Count | Source | 380 | 227M | { | 381 | 227M | int i = bandID; | 382 | 227M | int j; | 383 | 227M | opus_val16 a1, a2; | 384 | 227M | opus_val16 left, right; | 385 | 227M | opus_val16 norm; | 386 | | #ifdef FIXED_POINT | 387 | | int shift = celt_zlog2(MAX32(bandE[i], bandE[i+m->nbEBands]))-13; | 388 | | #endif | 389 | 227M | left = VSHR32(bandE[i],shift); | 390 | 227M | right = VSHR32(bandE[i+m->nbEBands],shift); | 391 | 227M | norm = EPSILON + celt_sqrt(EPSILON+MULT16_16(left,left)+MULT16_16(right,right)); | 392 | | #ifdef FIXED_POINT | 393 | | left = MIN32(left, norm-1); | 394 | | right = MIN32(right, norm-1); | 395 | | #endif | 396 | 227M | a1 = DIV32_16(SHL32(EXTEND32(left),15),norm); | 397 | 227M | a2 = DIV32_16(SHL32(EXTEND32(right),15),norm); | 398 | 2.73G | for (j=0;j<N;j++) | 399 | 2.50G | { | 400 | 2.50G | X[j] = ADD32(MULT16_32_Q15(a1, X[j]), MULT16_32_Q15(a2, Y[j])); | 401 | | /* Side is not encoded, no need to calculate */ | 402 | 2.50G | } | 403 | 227M | } |
|
404 | | |
405 | | static void stereo_split(celt_norm * OPUS_RESTRICT X, celt_norm * OPUS_RESTRICT Y, int N) |
406 | 16.5M | { |
407 | 16.5M | int j; |
408 | 172M | for (j=0;j<N;j++) |
409 | 155M | { |
410 | 155M | opus_val32 r, l; |
411 | 155M | l = MULT32_32_Q31(QCONST32(.70710678f,31), X[j]); |
412 | 155M | r = MULT32_32_Q31(QCONST32(.70710678f,31), Y[j]); |
413 | 155M | X[j] = ADD32(l, r); |
414 | 155M | Y[j] = SUB32(r, l); |
415 | 155M | } |
416 | 16.5M | } Line | Count | Source | 406 | 8.29M | { | 407 | 8.29M | int j; | 408 | 86.1M | for (j=0;j<N;j++) | 409 | 77.9M | { | 410 | 77.9M | opus_val32 r, l; | 411 | 77.9M | l = MULT32_32_Q31(QCONST32(.70710678f,31), X[j]); | 412 | 77.9M | r = MULT32_32_Q31(QCONST32(.70710678f,31), Y[j]); | 413 | 77.9M | X[j] = ADD32(l, r); | 414 | 77.9M | Y[j] = SUB32(r, l); | 415 | 77.9M | } | 416 | 8.29M | } |
Line | Count | Source | 406 | 8.29M | { | 407 | 8.29M | int j; | 408 | 86.1M | for (j=0;j<N;j++) | 409 | 77.9M | { | 410 | 77.9M | opus_val32 r, l; | 411 | 77.9M | l = MULT32_32_Q31(QCONST32(.70710678f,31), X[j]); | 412 | 77.9M | r = MULT32_32_Q31(QCONST32(.70710678f,31), Y[j]); | 413 | 77.9M | X[j] = ADD32(l, r); | 414 | 77.9M | Y[j] = SUB32(r, l); | 415 | 77.9M | } | 416 | 8.29M | } |
|
417 | | |
418 | | static void stereo_merge(celt_norm * OPUS_RESTRICT X, celt_norm * OPUS_RESTRICT Y, opus_val32 mid, int N, int arch) |
419 | 95.6M | { |
420 | 95.6M | int j; |
421 | 95.6M | opus_val32 xp=0, side=0; |
422 | 95.6M | opus_val32 El, Er; |
423 | | #ifdef FIXED_POINT |
424 | | int kl, kr; |
425 | | #endif |
426 | 95.6M | opus_val32 t, lgain, rgain; |
427 | | |
428 | | /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */ |
429 | 95.6M | xp = celt_inner_prod_norm_shift(Y, X, N, arch); |
430 | 95.6M | side = celt_inner_prod_norm_shift(Y, Y, N, arch); |
431 | | /* Compensating for the mid normalization */ |
432 | 95.6M | xp = MULT32_32_Q31(mid, xp); |
433 | | /* mid and side are in Q15, not Q14 like X and Y */ |
434 | 95.6M | El = SHR32(MULT32_32_Q31(mid, mid),3) + side - 2*xp; |
435 | 95.6M | Er = SHR32(MULT32_32_Q31(mid, mid),3) + side + 2*xp; |
436 | 95.6M | if (Er < QCONST32(6e-4f, 28) || El < QCONST32(6e-4f, 28)) |
437 | 211k | { |
438 | 211k | OPUS_COPY(Y, X, N); |
439 | 211k | return; |
440 | 211k | } |
441 | | |
442 | | #ifdef FIXED_POINT |
443 | 23.1M | kl = celt_ilog2(El)>>1; |
444 | 23.1M | kr = celt_ilog2(Er)>>1; |
445 | 23.1M | #endif |
446 | 95.4M | t = VSHR32(El, (kl<<1)-29); |
447 | 72.3M | lgain = celt_rsqrt_norm32(t); |
448 | 95.4M | t = VSHR32(Er, (kr<<1)-29); |
449 | 72.3M | rgain = celt_rsqrt_norm32(t); |
450 | | |
451 | | #ifdef FIXED_POINT |
452 | 23.1M | if (kl < 7) |
453 | 0 | kl = 7; |
454 | 23.1M | if (kr < 7) |
455 | 0 | kr = 7; |
456 | | #endif |
457 | | |
458 | 1.43G | for (j=0;j<N;j++) |
459 | 1.33G | { |
460 | 1.33G | celt_norm r, l; |
461 | | /* Apply mid scaling (side is already scaled) */ |
462 | 1.33G | l = MULT32_32_Q31(mid, X[j]); |
463 | 1.33G | r = Y[j]; |
464 | 1.33G | X[j] = VSHR32(MULT32_32_Q31(lgain, SUB32(l,r)), kl-15); |
465 | 1.33G | Y[j] = VSHR32(MULT32_32_Q31(rgain, ADD32(l,r)), kr-15); |
466 | 1.33G | } |
467 | 72.3M | } Line | Count | Source | 419 | 23.3M | { | 420 | 23.3M | int j; | 421 | 23.3M | opus_val32 xp=0, side=0; | 422 | 23.3M | opus_val32 El, Er; | 423 | 23.3M | #ifdef FIXED_POINT | 424 | 23.3M | int kl, kr; | 425 | 23.3M | #endif | 426 | 23.3M | opus_val32 t, lgain, rgain; | 427 | | | 428 | | /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */ | 429 | 23.3M | xp = celt_inner_prod_norm_shift(Y, X, N, arch); | 430 | 23.3M | side = celt_inner_prod_norm_shift(Y, Y, N, arch); | 431 | | /* Compensating for the mid normalization */ | 432 | 23.3M | xp = MULT32_32_Q31(mid, xp); | 433 | | /* mid and side are in Q15, not Q14 like X and Y */ | 434 | 23.3M | El = SHR32(MULT32_32_Q31(mid, mid),3) + side - 2*xp; | 435 | 23.3M | Er = SHR32(MULT32_32_Q31(mid, mid),3) + side + 2*xp; | 436 | 23.3M | if (Er < QCONST32(6e-4f, 28) || El < QCONST32(6e-4f, 28)) | 437 | 209k | { | 438 | 209k | OPUS_COPY(Y, X, N); | 439 | 209k | return; | 440 | 209k | } | 441 | | | 442 | 23.1M | #ifdef FIXED_POINT | 443 | 23.1M | kl = celt_ilog2(El)>>1; | 444 | 23.1M | kr = celt_ilog2(Er)>>1; | 445 | 23.1M | #endif | 446 | 23.1M | t = VSHR32(El, (kl<<1)-29); | 447 | 23.1M | lgain = celt_rsqrt_norm32(t); | 448 | 23.1M | t = VSHR32(Er, (kr<<1)-29); | 449 | 23.1M | rgain = celt_rsqrt_norm32(t); | 450 | | | 451 | 23.1M | #ifdef FIXED_POINT | 452 | 23.1M | if (kl < 7) | 453 | 0 | kl = 7; | 454 | 23.1M | if (kr < 7) | 455 | 0 | kr = 7; | 456 | 23.1M | #endif | 457 | | | 458 | 303M | for (j=0;j<N;j++) | 459 | 280M | { | 460 | 280M | celt_norm r, l; | 461 | | /* Apply mid scaling (side is already scaled) */ | 462 | 280M | l = MULT32_32_Q31(mid, X[j]); | 463 | 280M | r = Y[j]; | 464 | 280M | X[j] = VSHR32(MULT32_32_Q31(lgain, SUB32(l,r)), kl-15); | 465 | 280M | Y[j] = VSHR32(MULT32_32_Q31(rgain, ADD32(l,r)), kr-15); | 466 | 280M | } | 467 | 23.1M | } |
Line | Count | Source | 419 | 72.3M | { | 420 | 72.3M | int j; | 421 | 72.3M | opus_val32 xp=0, side=0; | 422 | 72.3M | opus_val32 El, Er; | 423 | | #ifdef FIXED_POINT | 424 | | int kl, kr; | 425 | | #endif | 426 | 72.3M | opus_val32 t, lgain, rgain; | 427 | | | 428 | | /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */ | 429 | 72.3M | xp = celt_inner_prod_norm_shift(Y, X, N, arch); | 430 | 72.3M | side = celt_inner_prod_norm_shift(Y, Y, N, arch); | 431 | | /* Compensating for the mid normalization */ | 432 | 72.3M | xp = MULT32_32_Q31(mid, xp); | 433 | | /* mid and side are in Q15, not Q14 like X and Y */ | 434 | 72.3M | El = SHR32(MULT32_32_Q31(mid, mid),3) + side - 2*xp; | 435 | 72.3M | Er = SHR32(MULT32_32_Q31(mid, mid),3) + side + 2*xp; | 436 | 72.3M | if (Er < QCONST32(6e-4f, 28) || El < QCONST32(6e-4f, 28)) | 437 | 2.04k | { | 438 | 2.04k | OPUS_COPY(Y, X, N); | 439 | 2.04k | return; | 440 | 2.04k | } | 441 | | | 442 | | #ifdef FIXED_POINT | 443 | | kl = celt_ilog2(El)>>1; | 444 | | kr = celt_ilog2(Er)>>1; | 445 | | #endif | 446 | 72.3M | t = VSHR32(El, (kl<<1)-29); | 447 | 72.3M | lgain = celt_rsqrt_norm32(t); | 448 | 72.3M | t = VSHR32(Er, (kr<<1)-29); | 449 | 72.3M | rgain = celt_rsqrt_norm32(t); | 450 | | | 451 | | #ifdef FIXED_POINT | 452 | | if (kl < 7) | 453 | | kl = 7; | 454 | | if (kr < 7) | 455 | | kr = 7; | 456 | | #endif | 457 | | | 458 | 1.12G | for (j=0;j<N;j++) | 459 | 1.05G | { | 460 | 1.05G | celt_norm r, l; | 461 | | /* Apply mid scaling (side is already scaled) */ | 462 | 1.05G | l = MULT32_32_Q31(mid, X[j]); | 463 | 1.05G | r = Y[j]; | 464 | 1.05G | X[j] = VSHR32(MULT32_32_Q31(lgain, SUB32(l,r)), kl-15); | 465 | 1.05G | Y[j] = VSHR32(MULT32_32_Q31(rgain, ADD32(l,r)), kr-15); | 466 | 1.05G | } | 467 | 72.3M | } |
|
468 | | |
469 | | /* Decide whether we should spread the pulses in the current frame */ |
470 | | int spreading_decision(const CELTMode *m, const celt_norm *X, int *average, |
471 | | int last_decision, int *hf_average, int *tapset_decision, int update_hf, |
472 | | int end, int C, int M, const int *spread_weight) |
473 | 19.2M | { |
474 | 19.2M | int i, c, N0; |
475 | 19.2M | int sum = 0, nbBands=0; |
476 | 19.2M | const opus_int16 * OPUS_RESTRICT eBands = m->eBands; |
477 | 19.2M | int decision; |
478 | 19.2M | int hf_sum=0; |
479 | | |
480 | 19.2M | celt_assert(end>0); |
481 | | |
482 | 19.2M | N0 = M*m->shortMdctSize; |
483 | | |
484 | 19.2M | if (M*(eBands[end]-eBands[end-1]) <= 8) |
485 | 7.01M | return SPREAD_NONE; |
486 | 14.6M | c=0; do { |
487 | 251M | for (i=0;i<end;i++) |
488 | 237M | { |
489 | 237M | int j, N, tmp=0; |
490 | 237M | int tcount[3] = {0,0,0}; |
491 | 237M | const celt_norm * OPUS_RESTRICT x = X+M*eBands[i]+c*N0; |
492 | 237M | N = M*(eBands[i+1]-eBands[i]); |
493 | 237M | if (N<=8) |
494 | 147M | continue; |
495 | | /* Compute rough CDF of |x[j]| */ |
496 | 2.57G | for (j=0;j<N;j++) |
497 | 2.48G | { |
498 | 2.48G | opus_val32 x2N; /* Q13 */ |
499 | | |
500 | 2.48G | x2N = MULT16_16(MULT16_16_Q15(SHR32(x[j], NORM_SHIFT-14), SHR32(x[j], NORM_SHIFT-14)), N); |
501 | 2.48G | if (x2N < QCONST16(0.25f,13)) |
502 | 2.26G | tcount[0]++; |
503 | 2.48G | if (x2N < QCONST16(0.0625f,13)) |
504 | 2.19G | tcount[1]++; |
505 | 2.48G | if (x2N < QCONST16(0.015625f,13)) |
506 | 2.14G | tcount[2]++; |
507 | 2.48G | } |
508 | | |
509 | | /* Only include four last bands (8 kHz and up) */ |
510 | 89.6M | if (i>m->nbEBands-4) |
511 | 5.05M | hf_sum += celt_udiv(32*(tcount[1]+tcount[0]), N); |
512 | 89.6M | tmp = (2*tcount[2] >= N) + (2*tcount[1] >= N) + (2*tcount[0] >= N); |
513 | 89.6M | sum += tmp*spread_weight[i]; |
514 | 89.6M | nbBands+=spread_weight[i]; |
515 | 89.6M | } |
516 | 14.6M | } while (++c<C); |
517 | | |
518 | 12.2M | if (update_hf) |
519 | 328k | { |
520 | 328k | if (hf_sum) |
521 | 91.4k | hf_sum = celt_udiv(hf_sum, C*(4-m->nbEBands+end)); |
522 | 328k | *hf_average = (*hf_average+hf_sum)>>1; |
523 | 328k | hf_sum = *hf_average; |
524 | 328k | if (*tapset_decision==2) |
525 | 45.9k | hf_sum += 4; |
526 | 282k | else if (*tapset_decision==0) |
527 | 277k | hf_sum -= 4; |
528 | 328k | if (hf_sum > 22) |
529 | 46.2k | *tapset_decision=2; |
530 | 282k | else if (hf_sum > 18) |
531 | 5.32k | *tapset_decision=1; |
532 | 277k | else |
533 | 277k | *tapset_decision=0; |
534 | 328k | } |
535 | | /*printf("%d %d %d\n", hf_sum, *hf_average, *tapset_decision);*/ |
536 | 12.2M | celt_assert(nbBands>0); /* end has to be non-zero */ |
537 | 12.2M | celt_assert(sum>=0); |
538 | 12.2M | sum = celt_udiv((opus_int32)sum<<8, nbBands); |
539 | | /* Recursive averaging */ |
540 | 12.2M | sum = (sum+*average)>>1; |
541 | 12.2M | *average = sum; |
542 | | /* Hysteresis */ |
543 | 12.2M | sum = (3*sum + (((3-last_decision)<<7) + 64) + 2)>>2; |
544 | 12.2M | if (sum < 80) |
545 | 1.18M | { |
546 | 1.18M | decision = SPREAD_AGGRESSIVE; |
547 | 11.0M | } else if (sum < 256) |
548 | 705k | { |
549 | 705k | decision = SPREAD_NORMAL; |
550 | 10.3M | } else if (sum < 384) |
551 | 137k | { |
552 | 137k | decision = SPREAD_LIGHT; |
553 | 10.1M | } else { |
554 | 10.1M | decision = SPREAD_NONE; |
555 | 10.1M | } |
556 | | #ifdef FUZZING |
557 | | decision = rand()&0x3; |
558 | | *tapset_decision=rand()%3; |
559 | | #endif |
560 | 12.2M | return decision; |
561 | 12.2M | } Line | Count | Source | 473 | 9.61M | { | 474 | 9.61M | int i, c, N0; | 475 | 9.61M | int sum = 0, nbBands=0; | 476 | 9.61M | const opus_int16 * OPUS_RESTRICT eBands = m->eBands; | 477 | 9.61M | int decision; | 478 | 9.61M | int hf_sum=0; | 479 | | | 480 | 9.61M | celt_assert(end>0); | 481 | | | 482 | 9.61M | N0 = M*m->shortMdctSize; | 483 | | | 484 | 9.61M | if (M*(eBands[end]-eBands[end-1]) <= 8) | 485 | 3.50M | return SPREAD_NONE; | 486 | 7.33M | c=0; do { | 487 | 125M | for (i=0;i<end;i++) | 488 | 118M | { | 489 | 118M | int j, N, tmp=0; | 490 | 118M | int tcount[3] = {0,0,0}; | 491 | 118M | const celt_norm * OPUS_RESTRICT x = X+M*eBands[i]+c*N0; | 492 | 118M | N = M*(eBands[i+1]-eBands[i]); | 493 | 118M | if (N<=8) | 494 | 73.8M | continue; | 495 | | /* Compute rough CDF of |x[j]| */ | 496 | 1.28G | for (j=0;j<N;j++) | 497 | 1.24G | { | 498 | 1.24G | opus_val32 x2N; /* Q13 */ | 499 | | | 500 | 1.24G | x2N = MULT16_16(MULT16_16_Q15(SHR32(x[j], NORM_SHIFT-14), SHR32(x[j], NORM_SHIFT-14)), N); | 501 | 1.24G | if (x2N < QCONST16(0.25f,13)) | 502 | 1.13G | tcount[0]++; | 503 | 1.24G | if (x2N < QCONST16(0.0625f,13)) | 504 | 1.09G | tcount[1]++; | 505 | 1.24G | if (x2N < QCONST16(0.015625f,13)) | 506 | 1.07G | tcount[2]++; | 507 | 1.24G | } | 508 | | | 509 | | /* Only include four last bands (8 kHz and up) */ | 510 | 44.8M | if (i>m->nbEBands-4) | 511 | 2.52M | hf_sum += celt_udiv(32*(tcount[1]+tcount[0]), N); | 512 | 44.8M | tmp = (2*tcount[2] >= N) + (2*tcount[1] >= N) + (2*tcount[0] >= N); | 513 | 44.8M | sum += tmp*spread_weight[i]; | 514 | 44.8M | nbBands+=spread_weight[i]; | 515 | 44.8M | } | 516 | 7.33M | } while (++c<C); | 517 | | | 518 | 6.10M | if (update_hf) | 519 | 164k | { | 520 | 164k | if (hf_sum) | 521 | 45.7k | hf_sum = celt_udiv(hf_sum, C*(4-m->nbEBands+end)); | 522 | 164k | *hf_average = (*hf_average+hf_sum)>>1; | 523 | 164k | hf_sum = *hf_average; | 524 | 164k | if (*tapset_decision==2) | 525 | 22.9k | hf_sum += 4; | 526 | 141k | else if (*tapset_decision==0) | 527 | 138k | hf_sum -= 4; | 528 | 164k | if (hf_sum > 22) | 529 | 23.1k | *tapset_decision=2; | 530 | 141k | else if (hf_sum > 18) | 531 | 2.66k | *tapset_decision=1; | 532 | 138k | else | 533 | 138k | *tapset_decision=0; | 534 | 164k | } | 535 | | /*printf("%d %d %d\n", hf_sum, *hf_average, *tapset_decision);*/ | 536 | 6.10M | celt_assert(nbBands>0); /* end has to be non-zero */ | 537 | 6.10M | celt_assert(sum>=0); | 538 | 6.10M | sum = celt_udiv((opus_int32)sum<<8, nbBands); | 539 | | /* Recursive averaging */ | 540 | 6.10M | sum = (sum+*average)>>1; | 541 | 6.10M | *average = sum; | 542 | | /* Hysteresis */ | 543 | 6.10M | sum = (3*sum + (((3-last_decision)<<7) + 64) + 2)>>2; | 544 | 6.10M | if (sum < 80) | 545 | 590k | { | 546 | 590k | decision = SPREAD_AGGRESSIVE; | 547 | 5.51M | } else if (sum < 256) | 548 | 352k | { | 549 | 352k | decision = SPREAD_NORMAL; | 550 | 5.16M | } else if (sum < 384) | 551 | 68.9k | { | 552 | 68.9k | decision = SPREAD_LIGHT; | 553 | 5.09M | } else { | 554 | 5.09M | decision = SPREAD_NONE; | 555 | 5.09M | } | 556 | | #ifdef FUZZING | 557 | | decision = rand()&0x3; | 558 | | *tapset_decision=rand()%3; | 559 | | #endif | 560 | 6.10M | return decision; | 561 | 6.10M | } |
Line | Count | Source | 473 | 9.61M | { | 474 | 9.61M | int i, c, N0; | 475 | 9.61M | int sum = 0, nbBands=0; | 476 | 9.61M | const opus_int16 * OPUS_RESTRICT eBands = m->eBands; | 477 | 9.61M | int decision; | 478 | 9.61M | int hf_sum=0; | 479 | | | 480 | 9.61M | celt_assert(end>0); | 481 | | | 482 | 9.61M | N0 = M*m->shortMdctSize; | 483 | | | 484 | 9.61M | if (M*(eBands[end]-eBands[end-1]) <= 8) | 485 | 3.50M | return SPREAD_NONE; | 486 | 7.33M | c=0; do { | 487 | 125M | for (i=0;i<end;i++) | 488 | 118M | { | 489 | 118M | int j, N, tmp=0; | 490 | 118M | int tcount[3] = {0,0,0}; | 491 | 118M | const celt_norm * OPUS_RESTRICT x = X+M*eBands[i]+c*N0; | 492 | 118M | N = M*(eBands[i+1]-eBands[i]); | 493 | 118M | if (N<=8) | 494 | 73.8M | continue; | 495 | | /* Compute rough CDF of |x[j]| */ | 496 | 1.28G | for (j=0;j<N;j++) | 497 | 1.24G | { | 498 | 1.24G | opus_val32 x2N; /* Q13 */ | 499 | | | 500 | 1.24G | x2N = MULT16_16(MULT16_16_Q15(SHR32(x[j], NORM_SHIFT-14), SHR32(x[j], NORM_SHIFT-14)), N); | 501 | 1.24G | if (x2N < QCONST16(0.25f,13)) | 502 | 1.13G | tcount[0]++; | 503 | 1.24G | if (x2N < QCONST16(0.0625f,13)) | 504 | 1.09G | tcount[1]++; | 505 | 1.24G | if (x2N < QCONST16(0.015625f,13)) | 506 | 1.07G | tcount[2]++; | 507 | 1.24G | } | 508 | | | 509 | | /* Only include four last bands (8 kHz and up) */ | 510 | 44.8M | if (i>m->nbEBands-4) | 511 | 2.52M | hf_sum += celt_udiv(32*(tcount[1]+tcount[0]), N); | 512 | 44.8M | tmp = (2*tcount[2] >= N) + (2*tcount[1] >= N) + (2*tcount[0] >= N); | 513 | 44.8M | sum += tmp*spread_weight[i]; | 514 | 44.8M | nbBands+=spread_weight[i]; | 515 | 44.8M | } | 516 | 7.33M | } while (++c<C); | 517 | | | 518 | 6.10M | if (update_hf) | 519 | 164k | { | 520 | 164k | if (hf_sum) | 521 | 45.7k | hf_sum = celt_udiv(hf_sum, C*(4-m->nbEBands+end)); | 522 | 164k | *hf_average = (*hf_average+hf_sum)>>1; | 523 | 164k | hf_sum = *hf_average; | 524 | 164k | if (*tapset_decision==2) | 525 | 22.9k | hf_sum += 4; | 526 | 141k | else if (*tapset_decision==0) | 527 | 138k | hf_sum -= 4; | 528 | 164k | if (hf_sum > 22) | 529 | 23.1k | *tapset_decision=2; | 530 | 141k | else if (hf_sum > 18) | 531 | 2.66k | *tapset_decision=1; | 532 | 138k | else | 533 | 138k | *tapset_decision=0; | 534 | 164k | } | 535 | | /*printf("%d %d %d\n", hf_sum, *hf_average, *tapset_decision);*/ | 536 | 6.10M | celt_assert(nbBands>0); /* end has to be non-zero */ | 537 | 6.10M | celt_assert(sum>=0); | 538 | 6.10M | sum = celt_udiv((opus_int32)sum<<8, nbBands); | 539 | | /* Recursive averaging */ | 540 | 6.10M | sum = (sum+*average)>>1; | 541 | 6.10M | *average = sum; | 542 | | /* Hysteresis */ | 543 | 6.10M | sum = (3*sum + (((3-last_decision)<<7) + 64) + 2)>>2; | 544 | 6.10M | if (sum < 80) | 545 | 590k | { | 546 | 590k | decision = SPREAD_AGGRESSIVE; | 547 | 5.51M | } else if (sum < 256) | 548 | 352k | { | 549 | 352k | decision = SPREAD_NORMAL; | 550 | 5.16M | } else if (sum < 384) | 551 | 68.9k | { | 552 | 68.9k | decision = SPREAD_LIGHT; | 553 | 5.09M | } else { | 554 | 5.09M | decision = SPREAD_NONE; | 555 | 5.09M | } | 556 | | #ifdef FUZZING | 557 | | decision = rand()&0x3; | 558 | | *tapset_decision=rand()%3; | 559 | | #endif | 560 | 6.10M | return decision; | 561 | 6.10M | } |
|
562 | | |
563 | | /* Indexing table for converting from natural Hadamard to ordery Hadamard |
564 | | This is essentially a bit-reversed Gray, on top of which we've added |
565 | | an inversion of the order because we want the DC at the end rather than |
566 | | the beginning. The lines are for N=2, 4, 8, 16 */ |
567 | | static const int ordery_table[] = { |
568 | | 1, 0, |
569 | | 3, 0, 2, 1, |
570 | | 7, 0, 4, 3, 6, 1, 5, 2, |
571 | | 15, 0, 8, 7, 12, 3, 11, 4, 14, 1, 9, 6, 13, 2, 10, 5, |
572 | | }; |
573 | | |
574 | | static void deinterleave_hadamard(celt_norm *X, int N0, int stride, int hadamard) |
575 | 20.0M | { |
576 | 20.0M | int i,j; |
577 | 20.0M | VARDECL(celt_norm, tmp); |
578 | 20.0M | int N; |
579 | 20.0M | SAVE_STACK; |
580 | 20.0M | N = N0*stride; |
581 | 20.0M | ALLOC(tmp, N, celt_norm); |
582 | 20.0M | celt_assert(stride>0); |
583 | 20.0M | if (hadamard) |
584 | 4.27M | { |
585 | 4.27M | const int *ordery = ordery_table+stride-2; |
586 | 21.0M | for (i=0;i<stride;i++) |
587 | 16.7M | { |
588 | 88.7M | for (j=0;j<N0;j++) |
589 | 71.9M | tmp[ordery[i]*N0+j] = X[j*stride+i]; |
590 | 16.7M | } |
591 | 15.7M | } else { |
592 | 126M | for (i=0;i<stride;i++) |
593 | 370M | for (j=0;j<N0;j++) |
594 | 260M | tmp[i*N0+j] = X[j*stride+i]; |
595 | 15.7M | } |
596 | 20.0M | OPUS_COPY(X, tmp, N); |
597 | 20.0M | RESTORE_STACK; |
598 | 20.0M | } |
599 | | |
600 | | static void interleave_hadamard(celt_norm *X, int N0, int stride, int hadamard) |
601 | 3.52M | { |
602 | 3.52M | int i,j; |
603 | 3.52M | VARDECL(celt_norm, tmp); |
604 | 3.52M | int N; |
605 | 3.52M | SAVE_STACK; |
606 | 3.52M | N = N0*stride; |
607 | 3.52M | ALLOC(tmp, N, celt_norm); |
608 | 3.52M | if (hadamard) |
609 | 1.35M | { |
610 | 1.35M | const int *ordery = ordery_table+stride-2; |
611 | 6.49M | for (i=0;i<stride;i++) |
612 | 25.7M | for (j=0;j<N0;j++) |
613 | 20.5M | tmp[j*stride+i] = X[ordery[i]*N0+j]; |
614 | 2.17M | } else { |
615 | 19.2M | for (i=0;i<stride;i++) |
616 | 47.8M | for (j=0;j<N0;j++) |
617 | 30.8M | tmp[j*stride+i] = X[i*N0+j]; |
618 | 2.17M | } |
619 | 3.52M | OPUS_COPY(X, tmp, N); |
620 | 3.52M | RESTORE_STACK; |
621 | 3.52M | } |
622 | | |
623 | | void haar1(celt_norm *X, int N0, int stride) |
624 | 2.44G | { |
625 | 2.44G | int i, j; |
626 | 2.44G | N0 >>= 1; |
627 | 8.76G | for (i=0;i<stride;i++) |
628 | 26.5G | for (j=0;j<N0;j++) |
629 | 20.2G | { |
630 | 20.2G | opus_val32 tmp1, tmp2; |
631 | 20.2G | tmp1 = MULT32_32_Q31(QCONST32(.70710678f,31), X[stride*2*j+i]); |
632 | 20.2G | tmp2 = MULT32_32_Q31(QCONST32(.70710678f,31), X[stride*(2*j+1)+i]); |
633 | 20.2G | X[stride*2*j+i] = ADD32(tmp1, tmp2); |
634 | 20.2G | X[stride*(2*j+1)+i] = SUB32(tmp1, tmp2); |
635 | 20.2G | } |
636 | 2.44G | } Line | Count | Source | 624 | 1.22G | { | 625 | 1.22G | int i, j; | 626 | 1.22G | N0 >>= 1; | 627 | 4.38G | for (i=0;i<stride;i++) | 628 | 13.2G | for (j=0;j<N0;j++) | 629 | 10.1G | { | 630 | 10.1G | opus_val32 tmp1, tmp2; | 631 | 10.1G | tmp1 = MULT32_32_Q31(QCONST32(.70710678f,31), X[stride*2*j+i]); | 632 | 10.1G | tmp2 = MULT32_32_Q31(QCONST32(.70710678f,31), X[stride*(2*j+1)+i]); | 633 | 10.1G | X[stride*2*j+i] = ADD32(tmp1, tmp2); | 634 | 10.1G | X[stride*(2*j+1)+i] = SUB32(tmp1, tmp2); | 635 | 10.1G | } | 636 | 1.22G | } |
Line | Count | Source | 624 | 1.22G | { | 625 | 1.22G | int i, j; | 626 | 1.22G | N0 >>= 1; | 627 | 4.38G | for (i=0;i<stride;i++) | 628 | 13.2G | for (j=0;j<N0;j++) | 629 | 10.1G | { | 630 | 10.1G | opus_val32 tmp1, tmp2; | 631 | 10.1G | tmp1 = MULT32_32_Q31(QCONST32(.70710678f,31), X[stride*2*j+i]); | 632 | 10.1G | tmp2 = MULT32_32_Q31(QCONST32(.70710678f,31), X[stride*(2*j+1)+i]); | 633 | 10.1G | X[stride*2*j+i] = ADD32(tmp1, tmp2); | 634 | 10.1G | X[stride*(2*j+1)+i] = SUB32(tmp1, tmp2); | 635 | 10.1G | } | 636 | 1.22G | } |
|
637 | | |
638 | | static int compute_qn(int N, int b, int offset, int pulse_cap, int stereo) |
639 | 420M | { |
640 | 420M | static const opus_int16 exp2_table8[8] = |
641 | 420M | {16384, 17866, 19483, 21247, 23170, 25267, 27554, 30048}; |
642 | 420M | int qn, qb; |
643 | 420M | int N2 = 2*N-1; |
644 | 420M | if (stereo && N==2) |
645 | 80.5M | N2--; |
646 | | /* The upper limit ensures that in a stereo split with itheta==16384, we'll |
647 | | always have enough bits left over to code at least one pulse in the |
648 | | side; otherwise it would collapse, since it doesn't get folded. */ |
649 | 420M | qb = celt_sudiv(b+N2*offset, N2); |
650 | 420M | qb = IMIN(b-pulse_cap-(4<<BITRES), qb); |
651 | | |
652 | 420M | qb = IMIN(8<<BITRES, qb); |
653 | | |
654 | 420M | if (qb<(1<<BITRES>>1)) { |
655 | 287M | qn = 1; |
656 | 287M | } else { |
657 | 133M | qn = exp2_table8[qb&0x7]>>(14-(qb>>BITRES)); |
658 | 133M | qn = (qn+1)>>1<<1; |
659 | 133M | } |
660 | 420M | celt_assert(qn <= 256); |
661 | 420M | return qn; |
662 | 420M | } |
663 | | |
664 | | struct band_ctx { |
665 | | int encode; |
666 | | int resynth; |
667 | | const CELTMode *m; |
668 | | int i; |
669 | | int intensity; |
670 | | int spread; |
671 | | int tf_change; |
672 | | ec_ctx *ec; |
673 | | opus_int32 remaining_bits; |
674 | | const celt_ener *bandE; |
675 | | opus_uint32 seed; |
676 | | int arch; |
677 | | int theta_round; |
678 | | int disable_inv; |
679 | | int avoid_split_noise; |
680 | | #ifdef ENABLE_QEXT |
681 | | ec_ctx *ext_ec; |
682 | | int extra_bits; |
683 | | opus_int32 ext_total_bits; |
684 | | int extra_bands; |
685 | | #endif |
686 | | }; |
687 | | |
688 | | struct split_ctx { |
689 | | int inv; |
690 | | int imid; |
691 | | int iside; |
692 | | int delta; |
693 | | int itheta; |
694 | | #ifdef ENABLE_QEXT |
695 | | int itheta_q30; |
696 | | #endif |
697 | | int qalloc; |
698 | | }; |
699 | | |
700 | | static void compute_theta(struct band_ctx *ctx, struct split_ctx *sctx, |
701 | | celt_norm *X, celt_norm *Y, int N, int *b, int B, int B0, |
702 | | int LM, |
703 | | int stereo, int *fill ARG_QEXT(int *ext_b)) |
704 | 420M | { |
705 | 420M | int qn; |
706 | 420M | int itheta=0; |
707 | 420M | int itheta_q30=0; |
708 | 420M | int delta; |
709 | 420M | int imid, iside; |
710 | 420M | int qalloc; |
711 | 420M | int pulse_cap; |
712 | 420M | int offset; |
713 | 420M | opus_int32 tell; |
714 | 420M | int inv=0; |
715 | 420M | int encode; |
716 | 420M | const CELTMode *m; |
717 | 420M | int i; |
718 | 420M | int intensity; |
719 | 420M | ec_ctx *ec; |
720 | 420M | const celt_ener *bandE; |
721 | | |
722 | 420M | encode = ctx->encode; |
723 | 420M | m = ctx->m; |
724 | 420M | i = ctx->i; |
725 | 420M | intensity = ctx->intensity; |
726 | 420M | ec = ctx->ec; |
727 | 420M | bandE = ctx->bandE; |
728 | | |
729 | | /* Decide on the resolution to give to the split parameter theta */ |
730 | 420M | pulse_cap = m->logN[i]+LM*(1<<BITRES); |
731 | 420M | offset = (pulse_cap>>1) - (stereo&&N==2 ? QTHETA_OFFSET_TWOPHASE : QTHETA_OFFSET); |
732 | 420M | qn = compute_qn(N, *b, offset, pulse_cap, stereo); |
733 | 420M | if (stereo && i>=intensity) |
734 | 289M | qn = 1; |
735 | 420M | if (encode) |
736 | 418M | { |
737 | | /* theta is the atan() of the ratio between the (normalized) |
738 | | side and mid. With just that parameter, we can re-scale both |
739 | | mid and side because we know that 1) they have unit norm and |
740 | | 2) they are orthogonal. */ |
741 | 418M | itheta_q30 = stereo_itheta(X, Y, stereo, N, ctx->arch); |
742 | 418M | itheta = itheta_q30>>16; |
743 | 418M | } |
744 | 420M | tell = ec_tell_frac(ec); |
745 | 420M | if (qn!=1) |
746 | 126M | { |
747 | 126M | if (encode) |
748 | 126M | { |
749 | 126M | if (!stereo || ctx->theta_round == 0) |
750 | 114M | { |
751 | 114M | itheta = (itheta*(opus_int32)qn+8192)>>14; |
752 | 114M | if (!stereo && ctx->avoid_split_noise && itheta > 0 && itheta < qn) |
753 | 440k | { |
754 | | /* Check if the selected value of theta will cause the bit allocation |
755 | | to inject noise on one side. If so, make sure the energy of that side |
756 | | is zero. */ |
757 | 440k | int unquantized = celt_udiv((opus_int32)itheta*16384, qn); |
758 | 440k | imid = bitexact_cos((opus_int16)unquantized); |
759 | 440k | iside = bitexact_cos((opus_int16)(16384-unquantized)); |
760 | 440k | delta = FRAC_MUL16((N-1)<<7,bitexact_log2tan(iside,imid)); |
761 | 440k | if (delta > *b) |
762 | 806 | itheta = qn; |
763 | 439k | else if (delta < -*b) |
764 | 824 | itheta = 0; |
765 | 440k | } |
766 | 114M | } else { |
767 | 11.6M | int down; |
768 | | /* Bias quantization towards itheta=0 and itheta=16384. */ |
769 | 11.6M | int bias = itheta > 8192 ? 32767/qn : -32767/qn; |
770 | 11.6M | down = IMIN(qn-1, IMAX(0, (itheta*(opus_int32)qn + bias)>>14)); |
771 | 11.6M | if (ctx->theta_round < 0) |
772 | 5.84M | itheta = down; |
773 | 5.84M | else |
774 | 5.84M | itheta = down+1; |
775 | 11.6M | } |
776 | 126M | } |
777 | | /* Entropy coding of the angle. We use a uniform pdf for the |
778 | | time split, a step for stereo, and a triangular one for the rest. */ |
779 | 126M | if (stereo && N>2) |
780 | 26.5M | { |
781 | 26.5M | int p0 = 3; |
782 | 26.5M | int x = itheta; |
783 | 26.5M | int x0 = qn/2; |
784 | 26.5M | int ft = p0*(x0+1) + x0; |
785 | | /* Use a probability of p0 up to itheta=8192 and then use 1 after */ |
786 | 26.5M | if (encode) |
787 | 26.4M | { |
788 | 26.4M | ec_encode(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft); |
789 | 26.4M | } else { |
790 | 67.8k | int fs; |
791 | 67.8k | fs=ec_decode(ec,ft); |
792 | 67.8k | if (fs<(x0+1)*p0) |
793 | 47.0k | x=fs/p0; |
794 | 20.8k | else |
795 | 20.8k | x=x0+1+(fs-(x0+1)*p0); |
796 | 67.8k | ec_dec_update(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft); |
797 | 67.8k | itheta = x; |
798 | 67.8k | } |
799 | 100M | } else if (B0>1 || stereo) { |
800 | | /* Uniform pdf */ |
801 | 16.1M | if (encode) |
802 | 15.8M | ec_enc_uint(ec, itheta, qn+1); |
803 | 342k | else |
804 | 342k | itheta = ec_dec_uint(ec, qn+1); |
805 | 84.2M | } else { |
806 | 84.2M | int fs=1, ft; |
807 | 84.2M | ft = ((qn>>1)+1)*((qn>>1)+1); |
808 | 84.2M | if (encode) |
809 | 83.7M | { |
810 | 83.7M | int fl; |
811 | | |
812 | 83.7M | fs = itheta <= (qn>>1) ? itheta + 1 : qn + 1 - itheta; |
813 | 83.7M | fl = itheta <= (qn>>1) ? itheta*(itheta + 1)>>1 : |
814 | 83.7M | ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1); |
815 | | |
816 | 83.7M | ec_encode(ec, fl, fl+fs, ft); |
817 | 83.7M | } else { |
818 | | /* Triangular pdf */ |
819 | 438k | int fl=0; |
820 | 438k | int fm; |
821 | 438k | fm = ec_decode(ec, ft); |
822 | | |
823 | 438k | if (fm < ((qn>>1)*((qn>>1) + 1)>>1)) |
824 | 222k | { |
825 | 222k | itheta = (isqrt32(8*(opus_uint32)fm + 1) - 1)>>1; |
826 | 222k | fs = itheta + 1; |
827 | 222k | fl = itheta*(itheta + 1)>>1; |
828 | 222k | } |
829 | 216k | else |
830 | 216k | { |
831 | 216k | itheta = (2*(qn + 1) |
832 | 216k | - isqrt32(8*(opus_uint32)(ft - fm - 1) + 1))>>1; |
833 | 216k | fs = qn + 1 - itheta; |
834 | 216k | fl = ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1); |
835 | 216k | } |
836 | | |
837 | 438k | ec_dec_update(ec, fl, fl+fs, ft); |
838 | 438k | } |
839 | 84.2M | } |
840 | 126M | celt_assert(itheta>=0); |
841 | 126M | itheta = celt_udiv((opus_int32)itheta*16384, qn); |
842 | | #ifdef ENABLE_QEXT |
843 | 25.3M | *ext_b = IMIN(*ext_b, ctx->ext_total_bits - (opus_int32)ec_tell_frac(ctx->ext_ec)); |
844 | 25.3M | if (*ext_b >= 2*N<<BITRES && ctx->ext_total_bits-ec_tell_frac(ctx->ext_ec)-1 > 2<<BITRES) { |
845 | 170k | int extra_bits; |
846 | 170k | int ext_tell = ec_tell_frac(ctx->ext_ec); |
847 | 170k | extra_bits = IMIN(12, IMAX(2, celt_sudiv(*ext_b, (2*N-1)<<BITRES))); |
848 | 170k | if (encode) { |
849 | 138k | itheta_q30 = itheta_q30 - (itheta<<16); |
850 | 138k | itheta_q30 = (itheta_q30*(opus_int64)qn*((1<<extra_bits)-1)+(1<<29))>>30; |
851 | 138k | itheta_q30 += (1<<(extra_bits-1))-1; |
852 | 138k | itheta_q30 = IMAX(0, IMIN((1<<extra_bits)-2, itheta_q30)); |
853 | 138k | ec_enc_uint(ctx->ext_ec, itheta_q30, (1<<extra_bits)-1); |
854 | 138k | } else { |
855 | 31.6k | itheta_q30 = ec_dec_uint(ctx->ext_ec, (1<<extra_bits)-1); |
856 | 31.6k | } |
857 | 170k | itheta_q30 -= (1<<(extra_bits-1))-1; |
858 | 170k | itheta_q30 = (itheta<<16) + itheta_q30*(opus_int64)(1<<30)/(qn*((1<<extra_bits)-1)); |
859 | | /* Hard bounds on itheta (can only trigger on corrupted bitstreams). */ |
860 | 170k | itheta_q30 = IMAX(0, IMIN(itheta_q30, 1073741824)); |
861 | 170k | *ext_b -= ec_tell_frac(ctx->ext_ec) - ext_tell; |
862 | 25.1M | } else { |
863 | 25.1M | itheta_q30 = (opus_int32)itheta<<16; |
864 | 25.1M | } |
865 | | #endif |
866 | 126M | if (encode && stereo) |
867 | 30.2M | { |
868 | 30.2M | if (itheta==0) |
869 | 21.9M | intensity_stereo(m, X, Y, bandE, i, N); |
870 | 8.29M | else |
871 | 8.29M | stereo_split(X, Y, N); |
872 | 30.2M | } |
873 | | /* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate. |
874 | | Let's do that at higher complexity */ |
875 | 294M | } else if (stereo) { |
876 | 294M | if (encode) |
877 | 292M | { |
878 | 292M | inv = itheta > 8192 && !ctx->disable_inv; |
879 | 292M | if (inv) |
880 | 367k | { |
881 | 367k | int j; |
882 | 8.97M | for (j=0;j<N;j++) |
883 | 8.60M | Y[j] = -Y[j]; |
884 | 367k | } |
885 | 292M | intensity_stereo(m, X, Y, bandE, i, N); |
886 | 292M | } |
887 | 294M | if (*b>2<<BITRES && ctx->remaining_bits > 2<<BITRES) |
888 | 13.4M | { |
889 | 13.4M | if (encode) |
890 | 13.3M | ec_enc_bit_logp(ec, inv, 2); |
891 | 156k | else |
892 | 156k | inv = ec_dec_bit_logp(ec, 2); |
893 | 13.4M | } else |
894 | 280M | inv = 0; |
895 | | /* inv flag override to avoid problems with downmixing. */ |
896 | 294M | if (ctx->disable_inv) |
897 | 131M | inv = 0; |
898 | 294M | itheta = 0; |
899 | 294M | itheta_q30 = 0; |
900 | 294M | } |
901 | 420M | qalloc = ec_tell_frac(ec) - tell; |
902 | 420M | *b -= qalloc; |
903 | | |
904 | 420M | if (itheta == 0) |
905 | 384M | { |
906 | 384M | imid = 32767; |
907 | 384M | iside = 0; |
908 | 384M | *fill &= (1<<B)-1; |
909 | 384M | delta = -16384; |
910 | 384M | } else if (itheta == 16384) |
911 | 1.62M | { |
912 | 1.62M | imid = 0; |
913 | 1.62M | iside = 32767; |
914 | 1.62M | *fill &= ((1<<B)-1)<<B; |
915 | 1.62M | delta = 16384; |
916 | 35.2M | } else { |
917 | 35.2M | imid = bitexact_cos((opus_int16)itheta); |
918 | 35.2M | iside = bitexact_cos((opus_int16)(16384-itheta)); |
919 | | /* This is the mid vs side allocation that minimizes squared error |
920 | | in that band. */ |
921 | 35.2M | delta = FRAC_MUL16((N-1)<<7,bitexact_log2tan(iside,imid)); |
922 | 35.2M | } |
923 | | |
924 | 420M | sctx->inv = inv; |
925 | 420M | sctx->imid = imid; |
926 | 420M | sctx->iside = iside; |
927 | 420M | sctx->delta = delta; |
928 | 420M | sctx->itheta = itheta; |
929 | | #ifdef ENABLE_QEXT |
930 | | sctx->itheta_q30 = itheta_q30; |
931 | | #endif |
932 | 420M | sctx->qalloc = qalloc; |
933 | 420M | } Line | Count | Source | 704 | 266M | { | 705 | 266M | int qn; | 706 | 266M | int itheta=0; | 707 | 266M | int itheta_q30=0; | 708 | 266M | int delta; | 709 | 266M | int imid, iside; | 710 | 266M | int qalloc; | 711 | 266M | int pulse_cap; | 712 | 266M | int offset; | 713 | 266M | opus_int32 tell; | 714 | 266M | int inv=0; | 715 | 266M | int encode; | 716 | 266M | const CELTMode *m; | 717 | 266M | int i; | 718 | 266M | int intensity; | 719 | 266M | ec_ctx *ec; | 720 | 266M | const celt_ener *bandE; | 721 | | | 722 | 266M | encode = ctx->encode; | 723 | 266M | m = ctx->m; | 724 | 266M | i = ctx->i; | 725 | 266M | intensity = ctx->intensity; | 726 | 266M | ec = ctx->ec; | 727 | 266M | bandE = ctx->bandE; | 728 | | | 729 | | /* Decide on the resolution to give to the split parameter theta */ | 730 | 266M | pulse_cap = m->logN[i]+LM*(1<<BITRES); | 731 | 266M | offset = (pulse_cap>>1) - (stereo&&N==2 ? QTHETA_OFFSET_TWOPHASE : QTHETA_OFFSET); | 732 | 266M | qn = compute_qn(N, *b, offset, pulse_cap, stereo); | 733 | 266M | if (stereo && i>=intensity) | 734 | 160M | qn = 1; | 735 | 266M | if (encode) | 736 | 265M | { | 737 | | /* theta is the atan() of the ratio between the (normalized) | 738 | | side and mid. With just that parameter, we can re-scale both | 739 | | mid and side because we know that 1) they have unit norm and | 740 | | 2) they are orthogonal. */ | 741 | 265M | itheta_q30 = stereo_itheta(X, Y, stereo, N, ctx->arch); | 742 | 265M | itheta = itheta_q30>>16; | 743 | 265M | } | 744 | 266M | tell = ec_tell_frac(ec); | 745 | 266M | if (qn!=1) | 746 | 101M | { | 747 | 101M | if (encode) | 748 | 101M | { | 749 | 101M | if (!stereo || ctx->theta_round == 0) | 750 | 90.1M | { | 751 | 90.1M | itheta = (itheta*(opus_int32)qn+8192)>>14; | 752 | 90.1M | if (!stereo && ctx->avoid_split_noise && itheta > 0 && itheta < qn) | 753 | 345k | { | 754 | | /* Check if the selected value of theta will cause the bit allocation | 755 | | to inject noise on one side. If so, make sure the energy of that side | 756 | | is zero. */ | 757 | 345k | int unquantized = celt_udiv((opus_int32)itheta*16384, qn); | 758 | 345k | imid = bitexact_cos((opus_int16)unquantized); | 759 | 345k | iside = bitexact_cos((opus_int16)(16384-unquantized)); | 760 | 345k | delta = FRAC_MUL16((N-1)<<7,bitexact_log2tan(iside,imid)); | 761 | 345k | if (delta > *b) | 762 | 378 | itheta = qn; | 763 | 345k | else if (delta < -*b) | 764 | 355 | itheta = 0; | 765 | 345k | } | 766 | 90.1M | } else { | 767 | 11.0M | int down; | 768 | | /* Bias quantization towards itheta=0 and itheta=16384. */ | 769 | 11.0M | int bias = itheta > 8192 ? 32767/qn : -32767/qn; | 770 | 11.0M | down = IMIN(qn-1, IMAX(0, (itheta*(opus_int32)qn + bias)>>14)); | 771 | 11.0M | if (ctx->theta_round < 0) | 772 | 5.53M | itheta = down; | 773 | 5.53M | else | 774 | 5.53M | itheta = down+1; | 775 | 11.0M | } | 776 | 101M | } | 777 | | /* Entropy coding of the angle. We use a uniform pdf for the | 778 | | time split, a step for stereo, and a triangular one for the rest. */ | 779 | 101M | if (stereo && N>2) | 780 | 22.1M | { | 781 | 22.1M | int p0 = 3; | 782 | 22.1M | int x = itheta; | 783 | 22.1M | int x0 = qn/2; | 784 | 22.1M | int ft = p0*(x0+1) + x0; | 785 | | /* Use a probability of p0 up to itheta=8192 and then use 1 after */ | 786 | 22.1M | if (encode) | 787 | 22.1M | { | 788 | 22.1M | ec_encode(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft); | 789 | 22.1M | } else { | 790 | 26.4k | int fs; | 791 | 26.4k | fs=ec_decode(ec,ft); | 792 | 26.4k | if (fs<(x0+1)*p0) | 793 | 18.4k | x=fs/p0; | 794 | 8.00k | else | 795 | 8.00k | x=x0+1+(fs-(x0+1)*p0); | 796 | 26.4k | ec_dec_update(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft); | 797 | 26.4k | itheta = x; | 798 | 26.4k | } | 799 | 79.3M | } else if (B0>1 || stereo) { | 800 | | /* Uniform pdf */ | 801 | 11.6M | if (encode) | 802 | 11.5M | ec_enc_uint(ec, itheta, qn+1); | 803 | 163k | else | 804 | 163k | itheta = ec_dec_uint(ec, qn+1); | 805 | 67.6M | } else { | 806 | 67.6M | int fs=1, ft; | 807 | 67.6M | ft = ((qn>>1)+1)*((qn>>1)+1); | 808 | 67.6M | if (encode) | 809 | 67.4M | { | 810 | 67.4M | int fl; | 811 | | | 812 | 67.4M | fs = itheta <= (qn>>1) ? itheta + 1 : qn + 1 - itheta; | 813 | 67.4M | fl = itheta <= (qn>>1) ? itheta*(itheta + 1)>>1 : | 814 | 67.4M | ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1); | 815 | | | 816 | 67.4M | ec_encode(ec, fl, fl+fs, ft); | 817 | 67.4M | } else { | 818 | | /* Triangular pdf */ | 819 | 167k | int fl=0; | 820 | 167k | int fm; | 821 | 167k | fm = ec_decode(ec, ft); | 822 | | | 823 | 167k | if (fm < ((qn>>1)*((qn>>1) + 1)>>1)) | 824 | 84.3k | { | 825 | 84.3k | itheta = (isqrt32(8*(opus_uint32)fm + 1) - 1)>>1; | 826 | 84.3k | fs = itheta + 1; | 827 | 84.3k | fl = itheta*(itheta + 1)>>1; | 828 | 84.3k | } | 829 | 83.5k | else | 830 | 83.5k | { | 831 | 83.5k | itheta = (2*(qn + 1) | 832 | 83.5k | - isqrt32(8*(opus_uint32)(ft - fm - 1) + 1))>>1; | 833 | 83.5k | fs = qn + 1 - itheta; | 834 | 83.5k | fl = ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1); | 835 | 83.5k | } | 836 | | | 837 | 167k | ec_dec_update(ec, fl, fl+fs, ft); | 838 | 167k | } | 839 | 67.6M | } | 840 | 101M | celt_assert(itheta>=0); | 841 | 101M | itheta = celt_udiv((opus_int32)itheta*16384, qn); | 842 | | #ifdef ENABLE_QEXT | 843 | | *ext_b = IMIN(*ext_b, ctx->ext_total_bits - (opus_int32)ec_tell_frac(ctx->ext_ec)); | 844 | | if (*ext_b >= 2*N<<BITRES && ctx->ext_total_bits-ec_tell_frac(ctx->ext_ec)-1 > 2<<BITRES) { | 845 | | int extra_bits; | 846 | | int ext_tell = ec_tell_frac(ctx->ext_ec); | 847 | | extra_bits = IMIN(12, IMAX(2, celt_sudiv(*ext_b, (2*N-1)<<BITRES))); | 848 | | if (encode) { | 849 | | itheta_q30 = itheta_q30 - (itheta<<16); | 850 | | itheta_q30 = (itheta_q30*(opus_int64)qn*((1<<extra_bits)-1)+(1<<29))>>30; | 851 | | itheta_q30 += (1<<(extra_bits-1))-1; | 852 | | itheta_q30 = IMAX(0, IMIN((1<<extra_bits)-2, itheta_q30)); | 853 | | ec_enc_uint(ctx->ext_ec, itheta_q30, (1<<extra_bits)-1); | 854 | | } else { | 855 | | itheta_q30 = ec_dec_uint(ctx->ext_ec, (1<<extra_bits)-1); | 856 | | } | 857 | | itheta_q30 -= (1<<(extra_bits-1))-1; | 858 | | itheta_q30 = (itheta<<16) + itheta_q30*(opus_int64)(1<<30)/(qn*((1<<extra_bits)-1)); | 859 | | /* Hard bounds on itheta (can only trigger on corrupted bitstreams). */ | 860 | | itheta_q30 = IMAX(0, IMIN(itheta_q30, 1073741824)); | 861 | | *ext_b -= ec_tell_frac(ctx->ext_ec) - ext_tell; | 862 | | } else { | 863 | | itheta_q30 = (opus_int32)itheta<<16; | 864 | | } | 865 | | #endif | 866 | 101M | if (encode && stereo) | 867 | 25.5M | { | 868 | 25.5M | if (itheta==0) | 869 | 18.1M | intensity_stereo(m, X, Y, bandE, i, N); | 870 | 7.38M | else | 871 | 7.38M | stereo_split(X, Y, N); | 872 | 25.5M | } | 873 | | /* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate. | 874 | | Let's do that at higher complexity */ | 875 | 165M | } else if (stereo) { | 876 | 165M | if (encode) | 877 | 164M | { | 878 | 164M | inv = itheta > 8192 && !ctx->disable_inv; | 879 | 164M | if (inv) | 880 | 286k | { | 881 | 286k | int j; | 882 | 7.24M | for (j=0;j<N;j++) | 883 | 6.95M | Y[j] = -Y[j]; | 884 | 286k | } | 885 | 164M | intensity_stereo(m, X, Y, bandE, i, N); | 886 | 164M | } | 887 | 165M | if (*b>2<<BITRES && ctx->remaining_bits > 2<<BITRES) | 888 | 11.0M | { | 889 | 11.0M | if (encode) | 890 | 11.0M | ec_enc_bit_logp(ec, inv, 2); | 891 | 66.6k | else | 892 | 66.6k | inv = ec_dec_bit_logp(ec, 2); | 893 | 11.0M | } else | 894 | 153M | inv = 0; | 895 | | /* inv flag override to avoid problems with downmixing. */ | 896 | 165M | if (ctx->disable_inv) | 897 | 71.8M | inv = 0; | 898 | 165M | itheta = 0; | 899 | 165M | itheta_q30 = 0; | 900 | 165M | } | 901 | 266M | qalloc = ec_tell_frac(ec) - tell; | 902 | 266M | *b -= qalloc; | 903 | | | 904 | 266M | if (itheta == 0) | 905 | 239M | { | 906 | 239M | imid = 32767; | 907 | 239M | iside = 0; | 908 | 239M | *fill &= (1<<B)-1; | 909 | 239M | delta = -16384; | 910 | 239M | } else if (itheta == 16384) | 911 | 1.07M | { | 912 | 1.07M | imid = 0; | 913 | 1.07M | iside = 32767; | 914 | 1.07M | *fill &= ((1<<B)-1)<<B; | 915 | 1.07M | delta = 16384; | 916 | 26.0M | } else { | 917 | 26.0M | imid = bitexact_cos((opus_int16)itheta); | 918 | 26.0M | iside = bitexact_cos((opus_int16)(16384-itheta)); | 919 | | /* This is the mid vs side allocation that minimizes squared error | 920 | | in that band. */ | 921 | 26.0M | delta = FRAC_MUL16((N-1)<<7,bitexact_log2tan(iside,imid)); | 922 | 26.0M | } | 923 | | | 924 | 266M | sctx->inv = inv; | 925 | 266M | sctx->imid = imid; | 926 | 266M | sctx->iside = iside; | 927 | 266M | sctx->delta = delta; | 928 | 266M | sctx->itheta = itheta; | 929 | | #ifdef ENABLE_QEXT | 930 | | sctx->itheta_q30 = itheta_q30; | 931 | | #endif | 932 | 266M | sctx->qalloc = qalloc; | 933 | 266M | } |
Line | Count | Source | 704 | 154M | { | 705 | 154M | int qn; | 706 | 154M | int itheta=0; | 707 | 154M | int itheta_q30=0; | 708 | 154M | int delta; | 709 | 154M | int imid, iside; | 710 | 154M | int qalloc; | 711 | 154M | int pulse_cap; | 712 | 154M | int offset; | 713 | 154M | opus_int32 tell; | 714 | 154M | int inv=0; | 715 | 154M | int encode; | 716 | 154M | const CELTMode *m; | 717 | 154M | int i; | 718 | 154M | int intensity; | 719 | 154M | ec_ctx *ec; | 720 | 154M | const celt_ener *bandE; | 721 | | | 722 | 154M | encode = ctx->encode; | 723 | 154M | m = ctx->m; | 724 | 154M | i = ctx->i; | 725 | 154M | intensity = ctx->intensity; | 726 | 154M | ec = ctx->ec; | 727 | 154M | bandE = ctx->bandE; | 728 | | | 729 | | /* Decide on the resolution to give to the split parameter theta */ | 730 | 154M | pulse_cap = m->logN[i]+LM*(1<<BITRES); | 731 | 154M | offset = (pulse_cap>>1) - (stereo&&N==2 ? QTHETA_OFFSET_TWOPHASE : QTHETA_OFFSET); | 732 | 154M | qn = compute_qn(N, *b, offset, pulse_cap, stereo); | 733 | 154M | if (stereo && i>=intensity) | 734 | 128M | qn = 1; | 735 | 154M | if (encode) | 736 | 153M | { | 737 | | /* theta is the atan() of the ratio between the (normalized) | 738 | | side and mid. With just that parameter, we can re-scale both | 739 | | mid and side because we know that 1) they have unit norm and | 740 | | 2) they are orthogonal. */ | 741 | 153M | itheta_q30 = stereo_itheta(X, Y, stereo, N, ctx->arch); | 742 | 153M | itheta = itheta_q30>>16; | 743 | 153M | } | 744 | 154M | tell = ec_tell_frac(ec); | 745 | 154M | if (qn!=1) | 746 | 25.3M | { | 747 | 25.3M | if (encode) | 748 | 24.8M | { | 749 | 24.8M | if (!stereo || ctx->theta_round == 0) | 750 | 24.2M | { | 751 | 24.2M | itheta = (itheta*(opus_int32)qn+8192)>>14; | 752 | 24.2M | if (!stereo && ctx->avoid_split_noise && itheta > 0 && itheta < qn) | 753 | 94.3k | { | 754 | | /* Check if the selected value of theta will cause the bit allocation | 755 | | to inject noise on one side. If so, make sure the energy of that side | 756 | | is zero. */ | 757 | 94.3k | int unquantized = celt_udiv((opus_int32)itheta*16384, qn); | 758 | 94.3k | imid = bitexact_cos((opus_int16)unquantized); | 759 | 94.3k | iside = bitexact_cos((opus_int16)(16384-unquantized)); | 760 | 94.3k | delta = FRAC_MUL16((N-1)<<7,bitexact_log2tan(iside,imid)); | 761 | 94.3k | if (delta > *b) | 762 | 428 | itheta = qn; | 763 | 93.8k | else if (delta < -*b) | 764 | 469 | itheta = 0; | 765 | 94.3k | } | 766 | 24.2M | } else { | 767 | 626k | int down; | 768 | | /* Bias quantization towards itheta=0 and itheta=16384. */ | 769 | 626k | int bias = itheta > 8192 ? 32767/qn : -32767/qn; | 770 | 626k | down = IMIN(qn-1, IMAX(0, (itheta*(opus_int32)qn + bias)>>14)); | 771 | 626k | if (ctx->theta_round < 0) | 772 | 313k | itheta = down; | 773 | 313k | else | 774 | 313k | itheta = down+1; | 775 | 626k | } | 776 | 24.8M | } | 777 | | /* Entropy coding of the angle. We use a uniform pdf for the | 778 | | time split, a step for stereo, and a triangular one for the rest. */ | 779 | 25.3M | if (stereo && N>2) | 780 | 4.32M | { | 781 | 4.32M | int p0 = 3; | 782 | 4.32M | int x = itheta; | 783 | 4.32M | int x0 = qn/2; | 784 | 4.32M | int ft = p0*(x0+1) + x0; | 785 | | /* Use a probability of p0 up to itheta=8192 and then use 1 after */ | 786 | 4.32M | if (encode) | 787 | 4.28M | { | 788 | 4.28M | ec_encode(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft); | 789 | 4.28M | } else { | 790 | 41.3k | int fs; | 791 | 41.3k | fs=ec_decode(ec,ft); | 792 | 41.3k | if (fs<(x0+1)*p0) | 793 | 28.5k | x=fs/p0; | 794 | 12.7k | else | 795 | 12.7k | x=x0+1+(fs-(x0+1)*p0); | 796 | 41.3k | ec_dec_update(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft); | 797 | 41.3k | itheta = x; | 798 | 41.3k | } | 799 | 21.0M | } else if (B0>1 || stereo) { | 800 | | /* Uniform pdf */ | 801 | 4.49M | if (encode) | 802 | 4.31M | ec_enc_uint(ec, itheta, qn+1); | 803 | 178k | else | 804 | 178k | itheta = ec_dec_uint(ec, qn+1); | 805 | 16.5M | } else { | 806 | 16.5M | int fs=1, ft; | 807 | 16.5M | ft = ((qn>>1)+1)*((qn>>1)+1); | 808 | 16.5M | if (encode) | 809 | 16.2M | { | 810 | 16.2M | int fl; | 811 | | | 812 | 16.2M | fs = itheta <= (qn>>1) ? itheta + 1 : qn + 1 - itheta; | 813 | 16.2M | fl = itheta <= (qn>>1) ? itheta*(itheta + 1)>>1 : | 814 | 16.2M | ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1); | 815 | | | 816 | 16.2M | ec_encode(ec, fl, fl+fs, ft); | 817 | 16.2M | } else { | 818 | | /* Triangular pdf */ | 819 | 270k | int fl=0; | 820 | 270k | int fm; | 821 | 270k | fm = ec_decode(ec, ft); | 822 | | | 823 | 270k | if (fm < ((qn>>1)*((qn>>1) + 1)>>1)) | 824 | 138k | { | 825 | 138k | itheta = (isqrt32(8*(opus_uint32)fm + 1) - 1)>>1; | 826 | 138k | fs = itheta + 1; | 827 | 138k | fl = itheta*(itheta + 1)>>1; | 828 | 138k | } | 829 | 132k | else | 830 | 132k | { | 831 | 132k | itheta = (2*(qn + 1) | 832 | 132k | - isqrt32(8*(opus_uint32)(ft - fm - 1) + 1))>>1; | 833 | 132k | fs = qn + 1 - itheta; | 834 | 132k | fl = ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1); | 835 | 132k | } | 836 | | | 837 | 270k | ec_dec_update(ec, fl, fl+fs, ft); | 838 | 270k | } | 839 | 16.5M | } | 840 | 25.3M | celt_assert(itheta>=0); | 841 | 25.3M | itheta = celt_udiv((opus_int32)itheta*16384, qn); | 842 | 25.3M | #ifdef ENABLE_QEXT | 843 | 25.3M | *ext_b = IMIN(*ext_b, ctx->ext_total_bits - (opus_int32)ec_tell_frac(ctx->ext_ec)); | 844 | 25.3M | if (*ext_b >= 2*N<<BITRES && ctx->ext_total_bits-ec_tell_frac(ctx->ext_ec)-1 > 2<<BITRES) { | 845 | 170k | int extra_bits; | 846 | 170k | int ext_tell = ec_tell_frac(ctx->ext_ec); | 847 | 170k | extra_bits = IMIN(12, IMAX(2, celt_sudiv(*ext_b, (2*N-1)<<BITRES))); | 848 | 170k | if (encode) { | 849 | 138k | itheta_q30 = itheta_q30 - (itheta<<16); | 850 | 138k | itheta_q30 = (itheta_q30*(opus_int64)qn*((1<<extra_bits)-1)+(1<<29))>>30; | 851 | 138k | itheta_q30 += (1<<(extra_bits-1))-1; | 852 | 138k | itheta_q30 = IMAX(0, IMIN((1<<extra_bits)-2, itheta_q30)); | 853 | 138k | ec_enc_uint(ctx->ext_ec, itheta_q30, (1<<extra_bits)-1); | 854 | 138k | } else { | 855 | 31.6k | itheta_q30 = ec_dec_uint(ctx->ext_ec, (1<<extra_bits)-1); | 856 | 31.6k | } | 857 | 170k | itheta_q30 -= (1<<(extra_bits-1))-1; | 858 | 170k | itheta_q30 = (itheta<<16) + itheta_q30*(opus_int64)(1<<30)/(qn*((1<<extra_bits)-1)); | 859 | | /* Hard bounds on itheta (can only trigger on corrupted bitstreams). */ | 860 | 170k | itheta_q30 = IMAX(0, IMIN(itheta_q30, 1073741824)); | 861 | 170k | *ext_b -= ec_tell_frac(ctx->ext_ec) - ext_tell; | 862 | 25.1M | } else { | 863 | 25.1M | itheta_q30 = (opus_int32)itheta<<16; | 864 | 25.1M | } | 865 | 25.3M | #endif | 866 | 25.3M | if (encode && stereo) | 867 | 4.70M | { | 868 | 4.70M | if (itheta==0) | 869 | 3.79M | intensity_stereo(m, X, Y, bandE, i, N); | 870 | 912k | else | 871 | 912k | stereo_split(X, Y, N); | 872 | 4.70M | } | 873 | | /* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate. | 874 | | Let's do that at higher complexity */ | 875 | 128M | } else if (stereo) { | 876 | 128M | if (encode) | 877 | 128M | { | 878 | 128M | inv = itheta > 8192 && !ctx->disable_inv; | 879 | 128M | if (inv) | 880 | 80.5k | { | 881 | 80.5k | int j; | 882 | 1.72M | for (j=0;j<N;j++) | 883 | 1.64M | Y[j] = -Y[j]; | 884 | 80.5k | } | 885 | 128M | intensity_stereo(m, X, Y, bandE, i, N); | 886 | 128M | } | 887 | 128M | if (*b>2<<BITRES && ctx->remaining_bits > 2<<BITRES) | 888 | 2.41M | { | 889 | 2.41M | if (encode) | 890 | 2.32M | ec_enc_bit_logp(ec, inv, 2); | 891 | 89.6k | else | 892 | 89.6k | inv = ec_dec_bit_logp(ec, 2); | 893 | 2.41M | } else | 894 | 126M | inv = 0; | 895 | | /* inv flag override to avoid problems with downmixing. */ | 896 | 128M | if (ctx->disable_inv) | 897 | 59.2M | inv = 0; | 898 | 128M | itheta = 0; | 899 | 128M | itheta_q30 = 0; | 900 | 128M | } | 901 | 154M | qalloc = ec_tell_frac(ec) - tell; | 902 | 154M | *b -= qalloc; | 903 | | | 904 | 154M | if (itheta == 0) | 905 | 144M | { | 906 | 144M | imid = 32767; | 907 | 144M | iside = 0; | 908 | 144M | *fill &= (1<<B)-1; | 909 | 144M | delta = -16384; | 910 | 144M | } else if (itheta == 16384) | 911 | 547k | { | 912 | 547k | imid = 0; | 913 | 547k | iside = 32767; | 914 | 547k | *fill &= ((1<<B)-1)<<B; | 915 | 547k | delta = 16384; | 916 | 9.22M | } else { | 917 | 9.22M | imid = bitexact_cos((opus_int16)itheta); | 918 | 9.22M | iside = bitexact_cos((opus_int16)(16384-itheta)); | 919 | | /* This is the mid vs side allocation that minimizes squared error | 920 | | in that band. */ | 921 | 9.22M | delta = FRAC_MUL16((N-1)<<7,bitexact_log2tan(iside,imid)); | 922 | 9.22M | } | 923 | | | 924 | 154M | sctx->inv = inv; | 925 | 154M | sctx->imid = imid; | 926 | 154M | sctx->iside = iside; | 927 | 154M | sctx->delta = delta; | 928 | 154M | sctx->itheta = itheta; | 929 | 154M | #ifdef ENABLE_QEXT | 930 | 154M | sctx->itheta_q30 = itheta_q30; | 931 | 154M | #endif | 932 | 154M | sctx->qalloc = qalloc; | 933 | 154M | } |
|
934 | | static unsigned quant_band_n1(struct band_ctx *ctx, celt_norm *X, celt_norm *Y, |
935 | | celt_norm *lowband_out) |
936 | 917M | { |
937 | 917M | int c; |
938 | 917M | int stereo; |
939 | 917M | celt_norm *x = X; |
940 | 917M | int encode; |
941 | 917M | ec_ctx *ec; |
942 | | |
943 | 917M | encode = ctx->encode; |
944 | 917M | ec = ctx->ec; |
945 | | |
946 | 917M | stereo = Y != NULL; |
947 | 1.02G | c=0; do { |
948 | 1.02G | int sign=0; |
949 | 1.02G | if (ctx->remaining_bits>=1<<BITRES) |
950 | 155M | { |
951 | 155M | if (encode) |
952 | 155M | { |
953 | 155M | sign = x[0]<0; |
954 | 155M | ec_enc_bits(ec, sign, 1); |
955 | 155M | } else { |
956 | 552k | sign = ec_dec_bits(ec, 1); |
957 | 552k | } |
958 | 155M | ctx->remaining_bits -= 1<<BITRES; |
959 | 155M | } |
960 | 1.02G | if (ctx->resynth) |
961 | 27.9M | x[0] = sign ? -NORM_SCALING : NORM_SCALING; |
962 | 1.02G | x = Y; |
963 | 1.02G | } while (++c<1+stereo); |
964 | 917M | if (lowband_out) |
965 | 917M | lowband_out[0] = SHR32(X[0],4); |
966 | 917M | return 1; |
967 | 917M | } Line | Count | Source | 936 | 458M | { | 937 | 458M | int c; | 938 | 458M | int stereo; | 939 | 458M | celt_norm *x = X; | 940 | 458M | int encode; | 941 | 458M | ec_ctx *ec; | 942 | | | 943 | 458M | encode = ctx->encode; | 944 | 458M | ec = ctx->ec; | 945 | | | 946 | 458M | stereo = Y != NULL; | 947 | 510M | c=0; do { | 948 | 510M | int sign=0; | 949 | 510M | if (ctx->remaining_bits>=1<<BITRES) | 950 | 77.8M | { | 951 | 77.8M | if (encode) | 952 | 77.5M | { | 953 | 77.5M | sign = x[0]<0; | 954 | 77.5M | ec_enc_bits(ec, sign, 1); | 955 | 77.5M | } else { | 956 | 276k | sign = ec_dec_bits(ec, 1); | 957 | 276k | } | 958 | 77.8M | ctx->remaining_bits -= 1<<BITRES; | 959 | 77.8M | } | 960 | 510M | if (ctx->resynth) | 961 | 13.9M | x[0] = sign ? -NORM_SCALING : NORM_SCALING; | 962 | 510M | x = Y; | 963 | 510M | } while (++c<1+stereo); | 964 | 458M | if (lowband_out) | 965 | 458M | lowband_out[0] = SHR32(X[0],4); | 966 | 458M | return 1; | 967 | 458M | } |
Line | Count | Source | 936 | 458M | { | 937 | 458M | int c; | 938 | 458M | int stereo; | 939 | 458M | celt_norm *x = X; | 940 | 458M | int encode; | 941 | 458M | ec_ctx *ec; | 942 | | | 943 | 458M | encode = ctx->encode; | 944 | 458M | ec = ctx->ec; | 945 | | | 946 | 458M | stereo = Y != NULL; | 947 | 510M | c=0; do { | 948 | 510M | int sign=0; | 949 | 510M | if (ctx->remaining_bits>=1<<BITRES) | 950 | 77.8M | { | 951 | 77.8M | if (encode) | 952 | 77.5M | { | 953 | 77.5M | sign = x[0]<0; | 954 | 77.5M | ec_enc_bits(ec, sign, 1); | 955 | 77.5M | } else { | 956 | 276k | sign = ec_dec_bits(ec, 1); | 957 | 276k | } | 958 | 77.8M | ctx->remaining_bits -= 1<<BITRES; | 959 | 77.8M | } | 960 | 510M | if (ctx->resynth) | 961 | 13.9M | x[0] = sign ? -NORM_SCALING : NORM_SCALING; | 962 | 510M | x = Y; | 963 | 510M | } while (++c<1+stereo); | 964 | 458M | if (lowband_out) | 965 | 458M | lowband_out[0] = SHR32(X[0],4); | 966 | 458M | return 1; | 967 | 458M | } |
|
968 | | |
969 | | /* This function is responsible for encoding and decoding a mono partition. |
970 | | It can split the band in two and transmit the energy difference with |
971 | | the two half-bands. It can be called recursively so bands can end up being |
972 | | split in 8 parts. */ |
973 | | static unsigned quant_partition(struct band_ctx *ctx, celt_norm *X, |
974 | | int N, int b, int B, celt_norm *lowband, |
975 | | int LM, |
976 | | opus_val32 gain, int fill |
977 | | ARG_QEXT(int ext_b)) |
978 | 3.72G | { |
979 | 3.72G | const unsigned char *cache; |
980 | 3.72G | int q; |
981 | 3.72G | int curr_bits; |
982 | 3.72G | int imid=0, iside=0; |
983 | 3.72G | int B0=B; |
984 | 3.72G | opus_val32 mid=0, side=0; |
985 | 3.72G | unsigned cm=0; |
986 | 3.72G | celt_norm *Y=NULL; |
987 | 3.72G | int encode; |
988 | 3.72G | const CELTMode *m; |
989 | 3.72G | int i; |
990 | 3.72G | int spread; |
991 | 3.72G | ec_ctx *ec; |
992 | | |
993 | 3.72G | encode = ctx->encode; |
994 | 3.72G | m = ctx->m; |
995 | 3.72G | i = ctx->i; |
996 | 3.72G | spread = ctx->spread; |
997 | 3.72G | ec = ctx->ec; |
998 | | |
999 | | /* If we need 1.5 more bit than we can produce, split the band in two. */ |
1000 | 3.72G | cache = m->cache.bits + m->cache.index[(LM+1)*m->nbEBands+i]; |
1001 | 3.72G | if (LM != -1 && b > cache[cache[0]]+12 && N>2) |
1002 | 193M | { |
1003 | 193M | int mbits, sbits, delta; |
1004 | 193M | int itheta; |
1005 | 193M | int qalloc; |
1006 | 193M | struct split_ctx sctx; |
1007 | 193M | celt_norm *next_lowband2=NULL; |
1008 | 193M | opus_int32 rebalance; |
1009 | | |
1010 | 193M | N >>= 1; |
1011 | 193M | Y = X+N; |
1012 | 193M | LM -= 1; |
1013 | 193M | if (B==1) |
1014 | 168M | fill = (fill&1)|(fill<<1); |
1015 | 193M | B = (B+1)>>1; |
1016 | | |
1017 | 193M | compute_theta(ctx, &sctx, X, Y, N, &b, B, B0, LM, 0, &fill ARG_QEXT(&ext_b)); |
1018 | 193M | imid = sctx.imid; |
1019 | 193M | iside = sctx.iside; |
1020 | 193M | delta = sctx.delta; |
1021 | 193M | itheta = sctx.itheta; |
1022 | 193M | qalloc = sctx.qalloc; |
1023 | | #ifdef FIXED_POINT |
1024 | | # ifdef ENABLE_QEXT |
1025 | | (void)imid; |
1026 | | (void)iside; |
1027 | | mid = celt_cos_norm32(sctx.itheta_q30); |
1028 | | side = celt_cos_norm32((1<<30)-sctx.itheta_q30); |
1029 | | # else |
1030 | 75.9M | mid = SHL32(EXTEND32(imid), 16); |
1031 | 75.9M | side = SHL32(EXTEND32(iside), 16); |
1032 | | # endif |
1033 | | #else |
1034 | | # ifdef ENABLE_QEXT |
1035 | | (void)imid; |
1036 | | (void)iside; |
1037 | | mid = celt_cos_norm2(sctx.itheta_q30*(1.f/(1<<30))); |
1038 | | side = celt_cos_norm2(1.f-sctx.itheta_q30*(1.f/(1<<30))); |
1039 | | # else |
1040 | | mid = (1.f/32768)*imid; |
1041 | | side = (1.f/32768)*iside; |
1042 | | # endif |
1043 | | #endif |
1044 | | |
1045 | | /* Give more bits to low-energy MDCTs than they would otherwise deserve */ |
1046 | 193M | if (B0>1 && (itheta&0x3fff)) |
1047 | 17.5M | { |
1048 | 17.5M | if (itheta > 8192) |
1049 | | /* Rough approximation for pre-echo masking */ |
1050 | 7.06M | delta -= delta>>(4-LM); |
1051 | 10.4M | else |
1052 | | /* Corresponds to a forward-masking slope of 1.5 dB per 10 ms */ |
1053 | 10.4M | delta = IMIN(0, delta + (N<<BITRES>>(5-LM))); |
1054 | 17.5M | } |
1055 | 193M | mbits = IMAX(0, IMIN(b, (b-delta)/2)); |
1056 | 193M | sbits = b-mbits; |
1057 | 193M | ctx->remaining_bits -= qalloc; |
1058 | | |
1059 | 193M | if (lowband) |
1060 | 12.7M | next_lowband2 = lowband+N; /* >32-bit split case */ |
1061 | | |
1062 | 193M | rebalance = ctx->remaining_bits; |
1063 | 193M | if (mbits >= sbits) |
1064 | 166M | { |
1065 | 166M | cm = quant_partition(ctx, X, N, mbits, B, lowband, LM, |
1066 | 166M | MULT32_32_Q31(gain,mid), fill ARG_QEXT(ext_b/2)); |
1067 | 166M | rebalance = mbits - (rebalance-ctx->remaining_bits); |
1068 | 166M | if (rebalance > 3<<BITRES && itheta!=0) |
1069 | 7.93M | sbits += rebalance - (3<<BITRES); |
1070 | 166M | cm |= quant_partition(ctx, Y, N, sbits, B, next_lowband2, LM, |
1071 | 166M | MULT32_32_Q31(gain,side), fill>>B ARG_QEXT(ext_b/2))<<(B0>>1); |
1072 | 166M | } else { |
1073 | 26.1M | cm = quant_partition(ctx, Y, N, sbits, B, next_lowband2, LM, |
1074 | 26.1M | MULT32_32_Q31(gain,side), fill>>B ARG_QEXT(ext_b/2))<<(B0>>1); |
1075 | 26.1M | rebalance = sbits - (rebalance-ctx->remaining_bits); |
1076 | 26.1M | if (rebalance > 3<<BITRES && itheta!=16384) |
1077 | 5.63M | mbits += rebalance - (3<<BITRES); |
1078 | 26.1M | cm |= quant_partition(ctx, X, N, mbits, B, lowband, LM, |
1079 | 26.1M | MULT32_32_Q31(gain,mid), fill ARG_QEXT(ext_b/2)); |
1080 | 26.1M | } |
1081 | 3.53G | } else { |
1082 | | #ifdef ENABLE_QEXT |
1083 | | int extra_bits; |
1084 | | int ext_remaining_bits; |
1085 | 1.53G | extra_bits = ext_b/(N-1)>>BITRES; |
1086 | | ext_remaining_bits = ctx->ext_total_bits-(opus_int32)ec_tell_frac(ctx->ext_ec); |
1087 | 1.53G | if (ext_remaining_bits < ((extra_bits+1)*(N-1)+N)<<BITRES) { |
1088 | 1.53G | extra_bits = (ext_remaining_bits-(N<<BITRES))/(N-1)>>BITRES; |
1089 | 1.53G | extra_bits = IMAX(extra_bits-1, 0); |
1090 | 1.53G | } |
1091 | 1.53G | extra_bits = IMIN(12, extra_bits); |
1092 | | #endif |
1093 | | /* This is the basic no-split case */ |
1094 | 3.53G | q = bits2pulses(m, i, LM, b); |
1095 | 3.53G | curr_bits = pulses2bits(m, i, LM, q); |
1096 | 3.53G | ctx->remaining_bits -= curr_bits; |
1097 | | |
1098 | | /* Ensures we can never bust the budget */ |
1099 | 3.55G | while (ctx->remaining_bits < 0 && q > 0) |
1100 | 20.0M | { |
1101 | 20.0M | ctx->remaining_bits += curr_bits; |
1102 | 20.0M | q--; |
1103 | 20.0M | curr_bits = pulses2bits(m, i, LM, q); |
1104 | 20.0M | ctx->remaining_bits -= curr_bits; |
1105 | 20.0M | } |
1106 | | |
1107 | 3.53G | if (q!=0) |
1108 | 557M | { |
1109 | 151M | int K = get_pulses(q); |
1110 | | |
1111 | | /* Finally do the actual quantization */ |
1112 | 557M | if (encode) |
1113 | 554M | { |
1114 | 554M | cm = alg_quant(X, N, K, spread, B, ec, gain, ctx->resynth |
1115 | 554M | ARG_QEXT(ctx->ext_ec) ARG_QEXT(extra_bits), |
1116 | 554M | ctx->arch); |
1117 | 554M | } else { |
1118 | 3.50M | cm = alg_unquant(X, N, K, spread, B, ec, gain |
1119 | 3.50M | ARG_QEXT(ctx->ext_ec) ARG_QEXT(extra_bits)); |
1120 | 3.50M | } |
1121 | | #ifdef ENABLE_QEXT |
1122 | 1.38G | } else if (ext_b > 2*N<<BITRES) |
1123 | 60.4k | { |
1124 | 60.4k | extra_bits = ext_b/(N-1)>>BITRES; |
1125 | 60.4k | ext_remaining_bits = ctx->ext_total_bits-ec_tell_frac(ctx->ext_ec); |
1126 | 60.4k | if (ext_remaining_bits < ((extra_bits+1)*(N-1)+N)<<BITRES) { |
1127 | 2.66k | extra_bits = (ext_remaining_bits-(N<<BITRES))/(N-1)>>BITRES; |
1128 | 2.66k | extra_bits = IMAX(extra_bits-1, 0); |
1129 | 2.66k | } |
1130 | 60.4k | extra_bits = IMIN(14, extra_bits); |
1131 | 60.4k | if (encode) cm = cubic_quant(X, N, extra_bits, B, ctx->ext_ec, gain, ctx->resynth); |
1132 | 17.6k | else cm = cubic_unquant(X, N, extra_bits, B, ctx->ext_ec, gain); |
1133 | | #endif |
1134 | 2.97G | } else { |
1135 | | /* If there's no pulse, fill the band anyway */ |
1136 | 2.97G | int j; |
1137 | 2.97G | if (ctx->resynth) |
1138 | 388M | { |
1139 | 388M | unsigned cm_mask; |
1140 | | /* B can be as large as 16, so this shift might overflow an int on a |
1141 | | 16-bit platform; use a long to get defined behavior.*/ |
1142 | 388M | cm_mask = (unsigned)(1UL<<B)-1; |
1143 | 388M | fill &= cm_mask; |
1144 | 388M | if (!fill) |
1145 | 191M | { |
1146 | 191M | OPUS_CLEAR(X, N); |
1147 | 197M | } else { |
1148 | 197M | if (lowband == NULL) |
1149 | 12.1M | { |
1150 | | /* Noise */ |
1151 | 80.3M | for (j=0;j<N;j++) |
1152 | 68.1M | { |
1153 | 68.1M | ctx->seed = celt_lcg_rand(ctx->seed); |
1154 | 68.1M | X[j] = SHL32((celt_norm)((opus_int32)ctx->seed>>20), NORM_SHIFT-14); |
1155 | 68.1M | } |
1156 | 12.1M | cm = cm_mask; |
1157 | 185M | } else { |
1158 | | /* Folded spectrum */ |
1159 | 2.57G | for (j=0;j<N;j++) |
1160 | 2.39G | { |
1161 | 2.39G | opus_val16 tmp; |
1162 | 2.39G | ctx->seed = celt_lcg_rand(ctx->seed); |
1163 | | /* About 48 dB below the "normal" folding level */ |
1164 | 2.39G | tmp = QCONST16(1.0f/256, NORM_SHIFT-4); |
1165 | 2.39G | tmp = (ctx->seed)&0x8000 ? tmp : -tmp; |
1166 | 2.39G | X[j] = lowband[j]+tmp; |
1167 | 2.39G | } |
1168 | 185M | cm = fill; |
1169 | 185M | } |
1170 | 197M | renormalise_vector(X, N, gain, ctx->arch); |
1171 | 197M | } |
1172 | 388M | } |
1173 | 2.97G | } |
1174 | 3.53G | } |
1175 | | |
1176 | 3.72G | return cm; |
1177 | 3.72G | } Line | Count | Source | 978 | 1.07G | { | 979 | 1.07G | const unsigned char *cache; | 980 | 1.07G | int q; | 981 | 1.07G | int curr_bits; | 982 | 1.07G | int imid=0, iside=0; | 983 | 1.07G | int B0=B; | 984 | 1.07G | opus_val32 mid=0, side=0; | 985 | 1.07G | unsigned cm=0; | 986 | 1.07G | celt_norm *Y=NULL; | 987 | 1.07G | int encode; | 988 | 1.07G | const CELTMode *m; | 989 | 1.07G | int i; | 990 | 1.07G | int spread; | 991 | 1.07G | ec_ctx *ec; | 992 | | | 993 | 1.07G | encode = ctx->encode; | 994 | 1.07G | m = ctx->m; | 995 | 1.07G | i = ctx->i; | 996 | 1.07G | spread = ctx->spread; | 997 | 1.07G | ec = ctx->ec; | 998 | | | 999 | | /* If we need 1.5 more bit than we can produce, split the band in two. */ | 1000 | 1.07G | cache = m->cache.bits + m->cache.index[(LM+1)*m->nbEBands+i]; | 1001 | 1.07G | if (LM != -1 && b > cache[cache[0]]+12 && N>2) | 1002 | 75.9M | { | 1003 | 75.9M | int mbits, sbits, delta; | 1004 | 75.9M | int itheta; | 1005 | 75.9M | int qalloc; | 1006 | 75.9M | struct split_ctx sctx; | 1007 | 75.9M | celt_norm *next_lowband2=NULL; | 1008 | 75.9M | opus_int32 rebalance; | 1009 | | | 1010 | 75.9M | N >>= 1; | 1011 | 75.9M | Y = X+N; | 1012 | 75.9M | LM -= 1; | 1013 | 75.9M | if (B==1) | 1014 | 67.6M | fill = (fill&1)|(fill<<1); | 1015 | 75.9M | B = (B+1)>>1; | 1016 | | | 1017 | 75.9M | compute_theta(ctx, &sctx, X, Y, N, &b, B, B0, LM, 0, &fill ARG_QEXT(&ext_b)); | 1018 | 75.9M | imid = sctx.imid; | 1019 | 75.9M | iside = sctx.iside; | 1020 | 75.9M | delta = sctx.delta; | 1021 | 75.9M | itheta = sctx.itheta; | 1022 | 75.9M | qalloc = sctx.qalloc; | 1023 | 75.9M | #ifdef FIXED_POINT | 1024 | | # ifdef ENABLE_QEXT | 1025 | | (void)imid; | 1026 | | (void)iside; | 1027 | | mid = celt_cos_norm32(sctx.itheta_q30); | 1028 | | side = celt_cos_norm32((1<<30)-sctx.itheta_q30); | 1029 | | # else | 1030 | 75.9M | mid = SHL32(EXTEND32(imid), 16); | 1031 | 75.9M | side = SHL32(EXTEND32(iside), 16); | 1032 | 75.9M | # endif | 1033 | | #else | 1034 | | # ifdef ENABLE_QEXT | 1035 | | (void)imid; | 1036 | | (void)iside; | 1037 | | mid = celt_cos_norm2(sctx.itheta_q30*(1.f/(1<<30))); | 1038 | | side = celt_cos_norm2(1.f-sctx.itheta_q30*(1.f/(1<<30))); | 1039 | | # else | 1040 | | mid = (1.f/32768)*imid; | 1041 | | side = (1.f/32768)*iside; | 1042 | | # endif | 1043 | | #endif | 1044 | | | 1045 | | /* Give more bits to low-energy MDCTs than they would otherwise deserve */ | 1046 | 75.9M | if (B0>1 && (itheta&0x3fff)) | 1047 | 5.60M | { | 1048 | 5.60M | if (itheta > 8192) | 1049 | | /* Rough approximation for pre-echo masking */ | 1050 | 2.12M | delta -= delta>>(4-LM); | 1051 | 3.48M | else | 1052 | | /* Corresponds to a forward-masking slope of 1.5 dB per 10 ms */ | 1053 | 3.48M | delta = IMIN(0, delta + (N<<BITRES>>(5-LM))); | 1054 | 5.60M | } | 1055 | 75.9M | mbits = IMAX(0, IMIN(b, (b-delta)/2)); | 1056 | 75.9M | sbits = b-mbits; | 1057 | 75.9M | ctx->remaining_bits -= qalloc; | 1058 | | | 1059 | 75.9M | if (lowband) | 1060 | 5.71M | next_lowband2 = lowband+N; /* >32-bit split case */ | 1061 | | | 1062 | 75.9M | rebalance = ctx->remaining_bits; | 1063 | 75.9M | if (mbits >= sbits) | 1064 | 67.1M | { | 1065 | 67.1M | cm = quant_partition(ctx, X, N, mbits, B, lowband, LM, | 1066 | 67.1M | MULT32_32_Q31(gain,mid), fill ARG_QEXT(ext_b/2)); | 1067 | 67.1M | rebalance = mbits - (rebalance-ctx->remaining_bits); | 1068 | 67.1M | if (rebalance > 3<<BITRES && itheta!=0) | 1069 | 3.06M | sbits += rebalance - (3<<BITRES); | 1070 | 67.1M | cm |= quant_partition(ctx, Y, N, sbits, B, next_lowband2, LM, | 1071 | 67.1M | MULT32_32_Q31(gain,side), fill>>B ARG_QEXT(ext_b/2))<<(B0>>1); | 1072 | 67.1M | } else { | 1073 | 8.77M | cm = quant_partition(ctx, Y, N, sbits, B, next_lowband2, LM, | 1074 | 8.77M | MULT32_32_Q31(gain,side), fill>>B ARG_QEXT(ext_b/2))<<(B0>>1); | 1075 | 8.77M | rebalance = sbits - (rebalance-ctx->remaining_bits); | 1076 | 8.77M | if (rebalance > 3<<BITRES && itheta!=16384) | 1077 | 1.94M | mbits += rebalance - (3<<BITRES); | 1078 | 8.77M | cm |= quant_partition(ctx, X, N, mbits, B, lowband, LM, | 1079 | 8.77M | MULT32_32_Q31(gain,mid), fill ARG_QEXT(ext_b/2)); | 1080 | 8.77M | } | 1081 | 996M | } else { | 1082 | | #ifdef ENABLE_QEXT | 1083 | | int extra_bits; | 1084 | | int ext_remaining_bits; | 1085 | | extra_bits = ext_b/(N-1)>>BITRES; | 1086 | | ext_remaining_bits = ctx->ext_total_bits-(opus_int32)ec_tell_frac(ctx->ext_ec); | 1087 | | if (ext_remaining_bits < ((extra_bits+1)*(N-1)+N)<<BITRES) { | 1088 | | extra_bits = (ext_remaining_bits-(N<<BITRES))/(N-1)>>BITRES; | 1089 | | extra_bits = IMAX(extra_bits-1, 0); | 1090 | | } | 1091 | | extra_bits = IMIN(12, extra_bits); | 1092 | | #endif | 1093 | | /* This is the basic no-split case */ | 1094 | 996M | q = bits2pulses(m, i, LM, b); | 1095 | 996M | curr_bits = pulses2bits(m, i, LM, q); | 1096 | 996M | ctx->remaining_bits -= curr_bits; | 1097 | | | 1098 | | /* Ensures we can never bust the budget */ | 1099 | 1.00G | while (ctx->remaining_bits < 0 && q > 0) | 1100 | 7.44M | { | 1101 | 7.44M | ctx->remaining_bits += curr_bits; | 1102 | 7.44M | q--; | 1103 | 7.44M | curr_bits = pulses2bits(m, i, LM, q); | 1104 | 7.44M | ctx->remaining_bits -= curr_bits; | 1105 | 7.44M | } | 1106 | | | 1107 | 996M | if (q!=0) | 1108 | 203M | { | 1109 | 203M | int K = get_pulses(q); | 1110 | | | 1111 | | /* Finally do the actual quantization */ | 1112 | 203M | if (encode) | 1113 | 202M | { | 1114 | 202M | cm = alg_quant(X, N, K, spread, B, ec, gain, ctx->resynth | 1115 | 202M | ARG_QEXT(ctx->ext_ec) ARG_QEXT(extra_bits), | 1116 | 202M | ctx->arch); | 1117 | 202M | } else { | 1118 | 729k | cm = alg_unquant(X, N, K, spread, B, ec, gain | 1119 | 729k | ARG_QEXT(ctx->ext_ec) ARG_QEXT(extra_bits)); | 1120 | 729k | } | 1121 | | #ifdef ENABLE_QEXT | 1122 | | } else if (ext_b > 2*N<<BITRES) | 1123 | | { | 1124 | | extra_bits = ext_b/(N-1)>>BITRES; | 1125 | | ext_remaining_bits = ctx->ext_total_bits-ec_tell_frac(ctx->ext_ec); | 1126 | | if (ext_remaining_bits < ((extra_bits+1)*(N-1)+N)<<BITRES) { | 1127 | | extra_bits = (ext_remaining_bits-(N<<BITRES))/(N-1)>>BITRES; | 1128 | | extra_bits = IMAX(extra_bits-1, 0); | 1129 | | } | 1130 | | extra_bits = IMIN(14, extra_bits); | 1131 | | if (encode) cm = cubic_quant(X, N, extra_bits, B, ctx->ext_ec, gain, ctx->resynth); | 1132 | | else cm = cubic_unquant(X, N, extra_bits, B, ctx->ext_ec, gain); | 1133 | | #endif | 1134 | 793M | } else { | 1135 | | /* If there's no pulse, fill the band anyway */ | 1136 | 793M | int j; | 1137 | 793M | if (ctx->resynth) | 1138 | 122M | { | 1139 | 122M | unsigned cm_mask; | 1140 | | /* B can be as large as 16, so this shift might overflow an int on a | 1141 | | 16-bit platform; use a long to get defined behavior.*/ | 1142 | 122M | cm_mask = (unsigned)(1UL<<B)-1; | 1143 | 122M | fill &= cm_mask; | 1144 | 122M | if (!fill) | 1145 | 63.3M | { | 1146 | 63.3M | OPUS_CLEAR(X, N); | 1147 | 63.3M | } else { | 1148 | 59.4M | if (lowband == NULL) | 1149 | 3.51M | { | 1150 | | /* Noise */ | 1151 | 23.1M | for (j=0;j<N;j++) | 1152 | 19.6M | { | 1153 | 19.6M | ctx->seed = celt_lcg_rand(ctx->seed); | 1154 | 19.6M | X[j] = SHL32((celt_norm)((opus_int32)ctx->seed>>20), NORM_SHIFT-14); | 1155 | 19.6M | } | 1156 | 3.51M | cm = cm_mask; | 1157 | 55.9M | } else { | 1158 | | /* Folded spectrum */ | 1159 | 805M | for (j=0;j<N;j++) | 1160 | 749M | { | 1161 | 749M | opus_val16 tmp; | 1162 | 749M | ctx->seed = celt_lcg_rand(ctx->seed); | 1163 | | /* About 48 dB below the "normal" folding level */ | 1164 | 749M | tmp = QCONST16(1.0f/256, NORM_SHIFT-4); | 1165 | 749M | tmp = (ctx->seed)&0x8000 ? tmp : -tmp; | 1166 | 749M | X[j] = lowband[j]+tmp; | 1167 | 749M | } | 1168 | 55.9M | cm = fill; | 1169 | 55.9M | } | 1170 | 59.4M | renormalise_vector(X, N, gain, ctx->arch); | 1171 | 59.4M | } | 1172 | 122M | } | 1173 | 793M | } | 1174 | 996M | } | 1175 | | | 1176 | 1.07G | return cm; | 1177 | 1.07G | } |
Line | Count | Source | 978 | 789M | { | 979 | 789M | const unsigned char *cache; | 980 | 789M | int q; | 981 | 789M | int curr_bits; | 982 | 789M | int imid=0, iside=0; | 983 | 789M | int B0=B; | 984 | 789M | opus_val32 mid=0, side=0; | 985 | 789M | unsigned cm=0; | 986 | 789M | celt_norm *Y=NULL; | 987 | 789M | int encode; | 988 | 789M | const CELTMode *m; | 989 | 789M | int i; | 990 | 789M | int spread; | 991 | 789M | ec_ctx *ec; | 992 | | | 993 | 789M | encode = ctx->encode; | 994 | 789M | m = ctx->m; | 995 | 789M | i = ctx->i; | 996 | 789M | spread = ctx->spread; | 997 | 789M | ec = ctx->ec; | 998 | | | 999 | | /* If we need 1.5 more bit than we can produce, split the band in two. */ | 1000 | 789M | cache = m->cache.bits + m->cache.index[(LM+1)*m->nbEBands+i]; | 1001 | 789M | if (LM != -1 && b > cache[cache[0]]+12 && N>2) | 1002 | 20.5M | { | 1003 | 20.5M | int mbits, sbits, delta; | 1004 | 20.5M | int itheta; | 1005 | 20.5M | int qalloc; | 1006 | 20.5M | struct split_ctx sctx; | 1007 | 20.5M | celt_norm *next_lowband2=NULL; | 1008 | 20.5M | opus_int32 rebalance; | 1009 | | | 1010 | 20.5M | N >>= 1; | 1011 | 20.5M | Y = X+N; | 1012 | 20.5M | LM -= 1; | 1013 | 20.5M | if (B==1) | 1014 | 16.5M | fill = (fill&1)|(fill<<1); | 1015 | 20.5M | B = (B+1)>>1; | 1016 | | | 1017 | 20.5M | compute_theta(ctx, &sctx, X, Y, N, &b, B, B0, LM, 0, &fill ARG_QEXT(&ext_b)); | 1018 | 20.5M | imid = sctx.imid; | 1019 | 20.5M | iside = sctx.iside; | 1020 | 20.5M | delta = sctx.delta; | 1021 | 20.5M | itheta = sctx.itheta; | 1022 | 20.5M | qalloc = sctx.qalloc; | 1023 | 20.5M | #ifdef FIXED_POINT | 1024 | 20.5M | # ifdef ENABLE_QEXT | 1025 | 20.5M | (void)imid; | 1026 | 20.5M | (void)iside; | 1027 | 20.5M | mid = celt_cos_norm32(sctx.itheta_q30); | 1028 | 20.5M | side = celt_cos_norm32((1<<30)-sctx.itheta_q30); | 1029 | | # else | 1030 | | mid = SHL32(EXTEND32(imid), 16); | 1031 | | side = SHL32(EXTEND32(iside), 16); | 1032 | | # endif | 1033 | | #else | 1034 | | # ifdef ENABLE_QEXT | 1035 | | (void)imid; | 1036 | | (void)iside; | 1037 | | mid = celt_cos_norm2(sctx.itheta_q30*(1.f/(1<<30))); | 1038 | | side = celt_cos_norm2(1.f-sctx.itheta_q30*(1.f/(1<<30))); | 1039 | | # else | 1040 | | mid = (1.f/32768)*imid; | 1041 | | side = (1.f/32768)*iside; | 1042 | | # endif | 1043 | | #endif | 1044 | | | 1045 | | /* Give more bits to low-energy MDCTs than they would otherwise deserve */ | 1046 | 20.5M | if (B0>1 && (itheta&0x3fff)) | 1047 | 3.15M | { | 1048 | 3.15M | if (itheta > 8192) | 1049 | | /* Rough approximation for pre-echo masking */ | 1050 | 1.40M | delta -= delta>>(4-LM); | 1051 | 1.74M | else | 1052 | | /* Corresponds to a forward-masking slope of 1.5 dB per 10 ms */ | 1053 | 1.74M | delta = IMIN(0, delta + (N<<BITRES>>(5-LM))); | 1054 | 3.15M | } | 1055 | 20.5M | mbits = IMAX(0, IMIN(b, (b-delta)/2)); | 1056 | 20.5M | sbits = b-mbits; | 1057 | 20.5M | ctx->remaining_bits -= qalloc; | 1058 | | | 1059 | 20.5M | if (lowband) | 1060 | 632k | next_lowband2 = lowband+N; /* >32-bit split case */ | 1061 | | | 1062 | 20.5M | rebalance = ctx->remaining_bits; | 1063 | 20.5M | if (mbits >= sbits) | 1064 | 16.3M | { | 1065 | 16.3M | cm = quant_partition(ctx, X, N, mbits, B, lowband, LM, | 1066 | 16.3M | MULT32_32_Q31(gain,mid), fill ARG_QEXT(ext_b/2)); | 1067 | 16.3M | rebalance = mbits - (rebalance-ctx->remaining_bits); | 1068 | 16.3M | if (rebalance > 3<<BITRES && itheta!=0) | 1069 | 899k | sbits += rebalance - (3<<BITRES); | 1070 | 16.3M | cm |= quant_partition(ctx, Y, N, sbits, B, next_lowband2, LM, | 1071 | 16.3M | MULT32_32_Q31(gain,side), fill>>B ARG_QEXT(ext_b/2))<<(B0>>1); | 1072 | 16.3M | } else { | 1073 | 4.28M | cm = quant_partition(ctx, Y, N, sbits, B, next_lowband2, LM, | 1074 | 4.28M | MULT32_32_Q31(gain,side), fill>>B ARG_QEXT(ext_b/2))<<(B0>>1); | 1075 | 4.28M | rebalance = sbits - (rebalance-ctx->remaining_bits); | 1076 | 4.28M | if (rebalance > 3<<BITRES && itheta!=16384) | 1077 | 867k | mbits += rebalance - (3<<BITRES); | 1078 | 4.28M | cm |= quant_partition(ctx, X, N, mbits, B, lowband, LM, | 1079 | 4.28M | MULT32_32_Q31(gain,mid), fill ARG_QEXT(ext_b/2)); | 1080 | 4.28M | } | 1081 | 768M | } else { | 1082 | 768M | #ifdef ENABLE_QEXT | 1083 | 768M | int extra_bits; | 1084 | 768M | int ext_remaining_bits; | 1085 | 768M | extra_bits = ext_b/(N-1)>>BITRES; | 1086 | 768M | ext_remaining_bits = ctx->ext_total_bits-(opus_int32)ec_tell_frac(ctx->ext_ec); | 1087 | 768M | if (ext_remaining_bits < ((extra_bits+1)*(N-1)+N)<<BITRES) { | 1088 | 766M | extra_bits = (ext_remaining_bits-(N<<BITRES))/(N-1)>>BITRES; | 1089 | 766M | extra_bits = IMAX(extra_bits-1, 0); | 1090 | 766M | } | 1091 | 768M | extra_bits = IMIN(12, extra_bits); | 1092 | 768M | #endif | 1093 | | /* This is the basic no-split case */ | 1094 | 768M | q = bits2pulses(m, i, LM, b); | 1095 | 768M | curr_bits = pulses2bits(m, i, LM, q); | 1096 | 768M | ctx->remaining_bits -= curr_bits; | 1097 | | | 1098 | | /* Ensures we can never bust the budget */ | 1099 | 771M | while (ctx->remaining_bits < 0 && q > 0) | 1100 | 2.56M | { | 1101 | 2.56M | ctx->remaining_bits += curr_bits; | 1102 | 2.56M | q--; | 1103 | 2.56M | curr_bits = pulses2bits(m, i, LM, q); | 1104 | 2.56M | ctx->remaining_bits -= curr_bits; | 1105 | 2.56M | } | 1106 | | | 1107 | 768M | if (q!=0) | 1108 | 75.5M | { | 1109 | 75.5M | int K = get_pulses(q); | 1110 | | | 1111 | | /* Finally do the actual quantization */ | 1112 | 75.5M | if (encode) | 1113 | 74.5M | { | 1114 | 74.5M | cm = alg_quant(X, N, K, spread, B, ec, gain, ctx->resynth | 1115 | 74.5M | ARG_QEXT(ctx->ext_ec) ARG_QEXT(extra_bits), | 1116 | 74.5M | ctx->arch); | 1117 | 74.5M | } else { | 1118 | 1.02M | cm = alg_unquant(X, N, K, spread, B, ec, gain | 1119 | 1.02M | ARG_QEXT(ctx->ext_ec) ARG_QEXT(extra_bits)); | 1120 | 1.02M | } | 1121 | 75.5M | #ifdef ENABLE_QEXT | 1122 | 693M | } else if (ext_b > 2*N<<BITRES) | 1123 | 30.2k | { | 1124 | 30.2k | extra_bits = ext_b/(N-1)>>BITRES; | 1125 | 30.2k | ext_remaining_bits = ctx->ext_total_bits-ec_tell_frac(ctx->ext_ec); | 1126 | 30.2k | if (ext_remaining_bits < ((extra_bits+1)*(N-1)+N)<<BITRES) { | 1127 | 1.33k | extra_bits = (ext_remaining_bits-(N<<BITRES))/(N-1)>>BITRES; | 1128 | 1.33k | extra_bits = IMAX(extra_bits-1, 0); | 1129 | 1.33k | } | 1130 | 30.2k | extra_bits = IMIN(14, extra_bits); | 1131 | 30.2k | if (encode) cm = cubic_quant(X, N, extra_bits, B, ctx->ext_ec, gain, ctx->resynth); | 1132 | 8.81k | else cm = cubic_unquant(X, N, extra_bits, B, ctx->ext_ec, gain); | 1133 | 30.2k | #endif | 1134 | 693M | } else { | 1135 | | /* If there's no pulse, fill the band anyway */ | 1136 | 693M | int j; | 1137 | 693M | if (ctx->resynth) | 1138 | 71.5M | { | 1139 | 71.5M | unsigned cm_mask; | 1140 | | /* B can be as large as 16, so this shift might overflow an int on a | 1141 | | 16-bit platform; use a long to get defined behavior.*/ | 1142 | 71.5M | cm_mask = (unsigned)(1UL<<B)-1; | 1143 | 71.5M | fill &= cm_mask; | 1144 | 71.5M | if (!fill) | 1145 | 32.3M | { | 1146 | 32.3M | OPUS_CLEAR(X, N); | 1147 | 39.1M | } else { | 1148 | 39.1M | if (lowband == NULL) | 1149 | 2.57M | { | 1150 | | /* Noise */ | 1151 | 17.0M | for (j=0;j<N;j++) | 1152 | 14.4M | { | 1153 | 14.4M | ctx->seed = celt_lcg_rand(ctx->seed); | 1154 | 14.4M | X[j] = SHL32((celt_norm)((opus_int32)ctx->seed>>20), NORM_SHIFT-14); | 1155 | 14.4M | } | 1156 | 2.57M | cm = cm_mask; | 1157 | 36.5M | } else { | 1158 | | /* Folded spectrum */ | 1159 | 482M | for (j=0;j<N;j++) | 1160 | 446M | { | 1161 | 446M | opus_val16 tmp; | 1162 | 446M | ctx->seed = celt_lcg_rand(ctx->seed); | 1163 | | /* About 48 dB below the "normal" folding level */ | 1164 | 446M | tmp = QCONST16(1.0f/256, NORM_SHIFT-4); | 1165 | 446M | tmp = (ctx->seed)&0x8000 ? tmp : -tmp; | 1166 | 446M | X[j] = lowband[j]+tmp; | 1167 | 446M | } | 1168 | 36.5M | cm = fill; | 1169 | 36.5M | } | 1170 | 39.1M | renormalise_vector(X, N, gain, ctx->arch); | 1171 | 39.1M | } | 1172 | 71.5M | } | 1173 | 693M | } | 1174 | 768M | } | 1175 | | | 1176 | 789M | return cm; | 1177 | 789M | } |
Line | Count | Source | 978 | 789M | { | 979 | 789M | const unsigned char *cache; | 980 | 789M | int q; | 981 | 789M | int curr_bits; | 982 | 789M | int imid=0, iside=0; | 983 | 789M | int B0=B; | 984 | 789M | opus_val32 mid=0, side=0; | 985 | 789M | unsigned cm=0; | 986 | 789M | celt_norm *Y=NULL; | 987 | 789M | int encode; | 988 | 789M | const CELTMode *m; | 989 | 789M | int i; | 990 | 789M | int spread; | 991 | 789M | ec_ctx *ec; | 992 | | | 993 | 789M | encode = ctx->encode; | 994 | 789M | m = ctx->m; | 995 | 789M | i = ctx->i; | 996 | 789M | spread = ctx->spread; | 997 | 789M | ec = ctx->ec; | 998 | | | 999 | | /* If we need 1.5 more bit than we can produce, split the band in two. */ | 1000 | 789M | cache = m->cache.bits + m->cache.index[(LM+1)*m->nbEBands+i]; | 1001 | 789M | if (LM != -1 && b > cache[cache[0]]+12 && N>2) | 1002 | 20.5M | { | 1003 | 20.5M | int mbits, sbits, delta; | 1004 | 20.5M | int itheta; | 1005 | 20.5M | int qalloc; | 1006 | 20.5M | struct split_ctx sctx; | 1007 | 20.5M | celt_norm *next_lowband2=NULL; | 1008 | 20.5M | opus_int32 rebalance; | 1009 | | | 1010 | 20.5M | N >>= 1; | 1011 | 20.5M | Y = X+N; | 1012 | 20.5M | LM -= 1; | 1013 | 20.5M | if (B==1) | 1014 | 16.5M | fill = (fill&1)|(fill<<1); | 1015 | 20.5M | B = (B+1)>>1; | 1016 | | | 1017 | 20.5M | compute_theta(ctx, &sctx, X, Y, N, &b, B, B0, LM, 0, &fill ARG_QEXT(&ext_b)); | 1018 | 20.5M | imid = sctx.imid; | 1019 | 20.5M | iside = sctx.iside; | 1020 | 20.5M | delta = sctx.delta; | 1021 | 20.5M | itheta = sctx.itheta; | 1022 | 20.5M | qalloc = sctx.qalloc; | 1023 | | #ifdef FIXED_POINT | 1024 | | # ifdef ENABLE_QEXT | 1025 | | (void)imid; | 1026 | | (void)iside; | 1027 | | mid = celt_cos_norm32(sctx.itheta_q30); | 1028 | | side = celt_cos_norm32((1<<30)-sctx.itheta_q30); | 1029 | | # else | 1030 | | mid = SHL32(EXTEND32(imid), 16); | 1031 | | side = SHL32(EXTEND32(iside), 16); | 1032 | | # endif | 1033 | | #else | 1034 | 20.5M | # ifdef ENABLE_QEXT | 1035 | 20.5M | (void)imid; | 1036 | 20.5M | (void)iside; | 1037 | 20.5M | mid = celt_cos_norm2(sctx.itheta_q30*(1.f/(1<<30))); | 1038 | 20.5M | side = celt_cos_norm2(1.f-sctx.itheta_q30*(1.f/(1<<30))); | 1039 | | # else | 1040 | | mid = (1.f/32768)*imid; | 1041 | | side = (1.f/32768)*iside; | 1042 | | # endif | 1043 | 20.5M | #endif | 1044 | | | 1045 | | /* Give more bits to low-energy MDCTs than they would otherwise deserve */ | 1046 | 20.5M | if (B0>1 && (itheta&0x3fff)) | 1047 | 3.15M | { | 1048 | 3.15M | if (itheta > 8192) | 1049 | | /* Rough approximation for pre-echo masking */ | 1050 | 1.40M | delta -= delta>>(4-LM); | 1051 | 1.74M | else | 1052 | | /* Corresponds to a forward-masking slope of 1.5 dB per 10 ms */ | 1053 | 1.74M | delta = IMIN(0, delta + (N<<BITRES>>(5-LM))); | 1054 | 3.15M | } | 1055 | 20.5M | mbits = IMAX(0, IMIN(b, (b-delta)/2)); | 1056 | 20.5M | sbits = b-mbits; | 1057 | 20.5M | ctx->remaining_bits -= qalloc; | 1058 | | | 1059 | 20.5M | if (lowband) | 1060 | 632k | next_lowband2 = lowband+N; /* >32-bit split case */ | 1061 | | | 1062 | 20.5M | rebalance = ctx->remaining_bits; | 1063 | 20.5M | if (mbits >= sbits) | 1064 | 16.3M | { | 1065 | 16.3M | cm = quant_partition(ctx, X, N, mbits, B, lowband, LM, | 1066 | 16.3M | MULT32_32_Q31(gain,mid), fill ARG_QEXT(ext_b/2)); | 1067 | 16.3M | rebalance = mbits - (rebalance-ctx->remaining_bits); | 1068 | 16.3M | if (rebalance > 3<<BITRES && itheta!=0) | 1069 | 899k | sbits += rebalance - (3<<BITRES); | 1070 | 16.3M | cm |= quant_partition(ctx, Y, N, sbits, B, next_lowband2, LM, | 1071 | 16.3M | MULT32_32_Q31(gain,side), fill>>B ARG_QEXT(ext_b/2))<<(B0>>1); | 1072 | 16.3M | } else { | 1073 | 4.28M | cm = quant_partition(ctx, Y, N, sbits, B, next_lowband2, LM, | 1074 | 4.28M | MULT32_32_Q31(gain,side), fill>>B ARG_QEXT(ext_b/2))<<(B0>>1); | 1075 | 4.28M | rebalance = sbits - (rebalance-ctx->remaining_bits); | 1076 | 4.28M | if (rebalance > 3<<BITRES && itheta!=16384) | 1077 | 867k | mbits += rebalance - (3<<BITRES); | 1078 | 4.28M | cm |= quant_partition(ctx, X, N, mbits, B, lowband, LM, | 1079 | 4.28M | MULT32_32_Q31(gain,mid), fill ARG_QEXT(ext_b/2)); | 1080 | 4.28M | } | 1081 | 768M | } else { | 1082 | 768M | #ifdef ENABLE_QEXT | 1083 | 768M | int extra_bits; | 1084 | 768M | int ext_remaining_bits; | 1085 | 768M | extra_bits = ext_b/(N-1)>>BITRES; | 1086 | 768M | ext_remaining_bits = ctx->ext_total_bits-(opus_int32)ec_tell_frac(ctx->ext_ec); | 1087 | 768M | if (ext_remaining_bits < ((extra_bits+1)*(N-1)+N)<<BITRES) { | 1088 | 766M | extra_bits = (ext_remaining_bits-(N<<BITRES))/(N-1)>>BITRES; | 1089 | 766M | extra_bits = IMAX(extra_bits-1, 0); | 1090 | 766M | } | 1091 | 768M | extra_bits = IMIN(12, extra_bits); | 1092 | 768M | #endif | 1093 | | /* This is the basic no-split case */ | 1094 | 768M | q = bits2pulses(m, i, LM, b); | 1095 | 768M | curr_bits = pulses2bits(m, i, LM, q); | 1096 | 768M | ctx->remaining_bits -= curr_bits; | 1097 | | | 1098 | | /* Ensures we can never bust the budget */ | 1099 | 771M | while (ctx->remaining_bits < 0 && q > 0) | 1100 | 2.56M | { | 1101 | 2.56M | ctx->remaining_bits += curr_bits; | 1102 | 2.56M | q--; | 1103 | 2.56M | curr_bits = pulses2bits(m, i, LM, q); | 1104 | 2.56M | ctx->remaining_bits -= curr_bits; | 1105 | 2.56M | } | 1106 | | | 1107 | 768M | if (q!=0) | 1108 | 75.5M | { | 1109 | 75.5M | int K = get_pulses(q); | 1110 | | | 1111 | | /* Finally do the actual quantization */ | 1112 | 75.5M | if (encode) | 1113 | 74.5M | { | 1114 | 74.5M | cm = alg_quant(X, N, K, spread, B, ec, gain, ctx->resynth | 1115 | 74.5M | ARG_QEXT(ctx->ext_ec) ARG_QEXT(extra_bits), | 1116 | 74.5M | ctx->arch); | 1117 | 74.5M | } else { | 1118 | 1.02M | cm = alg_unquant(X, N, K, spread, B, ec, gain | 1119 | 1.02M | ARG_QEXT(ctx->ext_ec) ARG_QEXT(extra_bits)); | 1120 | 1.02M | } | 1121 | 75.5M | #ifdef ENABLE_QEXT | 1122 | 693M | } else if (ext_b > 2*N<<BITRES) | 1123 | 30.2k | { | 1124 | 30.2k | extra_bits = ext_b/(N-1)>>BITRES; | 1125 | 30.2k | ext_remaining_bits = ctx->ext_total_bits-ec_tell_frac(ctx->ext_ec); | 1126 | 30.2k | if (ext_remaining_bits < ((extra_bits+1)*(N-1)+N)<<BITRES) { | 1127 | 1.33k | extra_bits = (ext_remaining_bits-(N<<BITRES))/(N-1)>>BITRES; | 1128 | 1.33k | extra_bits = IMAX(extra_bits-1, 0); | 1129 | 1.33k | } | 1130 | 30.2k | extra_bits = IMIN(14, extra_bits); | 1131 | 30.2k | if (encode) cm = cubic_quant(X, N, extra_bits, B, ctx->ext_ec, gain, ctx->resynth); | 1132 | 8.81k | else cm = cubic_unquant(X, N, extra_bits, B, ctx->ext_ec, gain); | 1133 | 30.2k | #endif | 1134 | 693M | } else { | 1135 | | /* If there's no pulse, fill the band anyway */ | 1136 | 693M | int j; | 1137 | 693M | if (ctx->resynth) | 1138 | 71.5M | { | 1139 | 71.5M | unsigned cm_mask; | 1140 | | /* B can be as large as 16, so this shift might overflow an int on a | 1141 | | 16-bit platform; use a long to get defined behavior.*/ | 1142 | 71.5M | cm_mask = (unsigned)(1UL<<B)-1; | 1143 | 71.5M | fill &= cm_mask; | 1144 | 71.5M | if (!fill) | 1145 | 32.3M | { | 1146 | 32.3M | OPUS_CLEAR(X, N); | 1147 | 39.1M | } else { | 1148 | 39.1M | if (lowband == NULL) | 1149 | 2.57M | { | 1150 | | /* Noise */ | 1151 | 17.0M | for (j=0;j<N;j++) | 1152 | 14.4M | { | 1153 | 14.4M | ctx->seed = celt_lcg_rand(ctx->seed); | 1154 | 14.4M | X[j] = SHL32((celt_norm)((opus_int32)ctx->seed>>20), NORM_SHIFT-14); | 1155 | 14.4M | } | 1156 | 2.57M | cm = cm_mask; | 1157 | 36.5M | } else { | 1158 | | /* Folded spectrum */ | 1159 | 482M | for (j=0;j<N;j++) | 1160 | 446M | { | 1161 | 446M | opus_val16 tmp; | 1162 | 446M | ctx->seed = celt_lcg_rand(ctx->seed); | 1163 | | /* About 48 dB below the "normal" folding level */ | 1164 | 446M | tmp = QCONST16(1.0f/256, NORM_SHIFT-4); | 1165 | 446M | tmp = (ctx->seed)&0x8000 ? tmp : -tmp; | 1166 | 446M | X[j] = lowband[j]+tmp; | 1167 | 446M | } | 1168 | 36.5M | cm = fill; | 1169 | 36.5M | } | 1170 | 39.1M | renormalise_vector(X, N, gain, ctx->arch); | 1171 | 39.1M | } | 1172 | 71.5M | } | 1173 | 693M | } | 1174 | 768M | } | 1175 | | | 1176 | 789M | return cm; | 1177 | 789M | } |
Line | Count | Source | 978 | 1.07G | { | 979 | 1.07G | const unsigned char *cache; | 980 | 1.07G | int q; | 981 | 1.07G | int curr_bits; | 982 | 1.07G | int imid=0, iside=0; | 983 | 1.07G | int B0=B; | 984 | 1.07G | opus_val32 mid=0, side=0; | 985 | 1.07G | unsigned cm=0; | 986 | 1.07G | celt_norm *Y=NULL; | 987 | 1.07G | int encode; | 988 | 1.07G | const CELTMode *m; | 989 | 1.07G | int i; | 990 | 1.07G | int spread; | 991 | 1.07G | ec_ctx *ec; | 992 | | | 993 | 1.07G | encode = ctx->encode; | 994 | 1.07G | m = ctx->m; | 995 | 1.07G | i = ctx->i; | 996 | 1.07G | spread = ctx->spread; | 997 | 1.07G | ec = ctx->ec; | 998 | | | 999 | | /* If we need 1.5 more bit than we can produce, split the band in two. */ | 1000 | 1.07G | cache = m->cache.bits + m->cache.index[(LM+1)*m->nbEBands+i]; | 1001 | 1.07G | if (LM != -1 && b > cache[cache[0]]+12 && N>2) | 1002 | 75.9M | { | 1003 | 75.9M | int mbits, sbits, delta; | 1004 | 75.9M | int itheta; | 1005 | 75.9M | int qalloc; | 1006 | 75.9M | struct split_ctx sctx; | 1007 | 75.9M | celt_norm *next_lowband2=NULL; | 1008 | 75.9M | opus_int32 rebalance; | 1009 | | | 1010 | 75.9M | N >>= 1; | 1011 | 75.9M | Y = X+N; | 1012 | 75.9M | LM -= 1; | 1013 | 75.9M | if (B==1) | 1014 | 67.6M | fill = (fill&1)|(fill<<1); | 1015 | 75.9M | B = (B+1)>>1; | 1016 | | | 1017 | 75.9M | compute_theta(ctx, &sctx, X, Y, N, &b, B, B0, LM, 0, &fill ARG_QEXT(&ext_b)); | 1018 | 75.9M | imid = sctx.imid; | 1019 | 75.9M | iside = sctx.iside; | 1020 | 75.9M | delta = sctx.delta; | 1021 | 75.9M | itheta = sctx.itheta; | 1022 | 75.9M | qalloc = sctx.qalloc; | 1023 | | #ifdef FIXED_POINT | 1024 | | # ifdef ENABLE_QEXT | 1025 | | (void)imid; | 1026 | | (void)iside; | 1027 | | mid = celt_cos_norm32(sctx.itheta_q30); | 1028 | | side = celt_cos_norm32((1<<30)-sctx.itheta_q30); | 1029 | | # else | 1030 | | mid = SHL32(EXTEND32(imid), 16); | 1031 | | side = SHL32(EXTEND32(iside), 16); | 1032 | | # endif | 1033 | | #else | 1034 | | # ifdef ENABLE_QEXT | 1035 | | (void)imid; | 1036 | | (void)iside; | 1037 | | mid = celt_cos_norm2(sctx.itheta_q30*(1.f/(1<<30))); | 1038 | | side = celt_cos_norm2(1.f-sctx.itheta_q30*(1.f/(1<<30))); | 1039 | | # else | 1040 | 75.9M | mid = (1.f/32768)*imid; | 1041 | 75.9M | side = (1.f/32768)*iside; | 1042 | 75.9M | # endif | 1043 | 75.9M | #endif | 1044 | | | 1045 | | /* Give more bits to low-energy MDCTs than they would otherwise deserve */ | 1046 | 75.9M | if (B0>1 && (itheta&0x3fff)) | 1047 | 5.60M | { | 1048 | 5.60M | if (itheta > 8192) | 1049 | | /* Rough approximation for pre-echo masking */ | 1050 | 2.12M | delta -= delta>>(4-LM); | 1051 | 3.48M | else | 1052 | | /* Corresponds to a forward-masking slope of 1.5 dB per 10 ms */ | 1053 | 3.48M | delta = IMIN(0, delta + (N<<BITRES>>(5-LM))); | 1054 | 5.60M | } | 1055 | 75.9M | mbits = IMAX(0, IMIN(b, (b-delta)/2)); | 1056 | 75.9M | sbits = b-mbits; | 1057 | 75.9M | ctx->remaining_bits -= qalloc; | 1058 | | | 1059 | 75.9M | if (lowband) | 1060 | 5.71M | next_lowband2 = lowband+N; /* >32-bit split case */ | 1061 | | | 1062 | 75.9M | rebalance = ctx->remaining_bits; | 1063 | 75.9M | if (mbits >= sbits) | 1064 | 67.1M | { | 1065 | 67.1M | cm = quant_partition(ctx, X, N, mbits, B, lowband, LM, | 1066 | 67.1M | MULT32_32_Q31(gain,mid), fill ARG_QEXT(ext_b/2)); | 1067 | 67.1M | rebalance = mbits - (rebalance-ctx->remaining_bits); | 1068 | 67.1M | if (rebalance > 3<<BITRES && itheta!=0) | 1069 | 3.06M | sbits += rebalance - (3<<BITRES); | 1070 | 67.1M | cm |= quant_partition(ctx, Y, N, sbits, B, next_lowband2, LM, | 1071 | 67.1M | MULT32_32_Q31(gain,side), fill>>B ARG_QEXT(ext_b/2))<<(B0>>1); | 1072 | 67.1M | } else { | 1073 | 8.77M | cm = quant_partition(ctx, Y, N, sbits, B, next_lowband2, LM, | 1074 | 8.77M | MULT32_32_Q31(gain,side), fill>>B ARG_QEXT(ext_b/2))<<(B0>>1); | 1075 | 8.77M | rebalance = sbits - (rebalance-ctx->remaining_bits); | 1076 | 8.77M | if (rebalance > 3<<BITRES && itheta!=16384) | 1077 | 1.94M | mbits += rebalance - (3<<BITRES); | 1078 | 8.77M | cm |= quant_partition(ctx, X, N, mbits, B, lowband, LM, | 1079 | 8.77M | MULT32_32_Q31(gain,mid), fill ARG_QEXT(ext_b/2)); | 1080 | 8.77M | } | 1081 | 996M | } else { | 1082 | | #ifdef ENABLE_QEXT | 1083 | | int extra_bits; | 1084 | | int ext_remaining_bits; | 1085 | | extra_bits = ext_b/(N-1)>>BITRES; | 1086 | | ext_remaining_bits = ctx->ext_total_bits-(opus_int32)ec_tell_frac(ctx->ext_ec); | 1087 | | if (ext_remaining_bits < ((extra_bits+1)*(N-1)+N)<<BITRES) { | 1088 | | extra_bits = (ext_remaining_bits-(N<<BITRES))/(N-1)>>BITRES; | 1089 | | extra_bits = IMAX(extra_bits-1, 0); | 1090 | | } | 1091 | | extra_bits = IMIN(12, extra_bits); | 1092 | | #endif | 1093 | | /* This is the basic no-split case */ | 1094 | 996M | q = bits2pulses(m, i, LM, b); | 1095 | 996M | curr_bits = pulses2bits(m, i, LM, q); | 1096 | 996M | ctx->remaining_bits -= curr_bits; | 1097 | | | 1098 | | /* Ensures we can never bust the budget */ | 1099 | 1.00G | while (ctx->remaining_bits < 0 && q > 0) | 1100 | 7.44M | { | 1101 | 7.44M | ctx->remaining_bits += curr_bits; | 1102 | 7.44M | q--; | 1103 | 7.44M | curr_bits = pulses2bits(m, i, LM, q); | 1104 | 7.44M | ctx->remaining_bits -= curr_bits; | 1105 | 7.44M | } | 1106 | | | 1107 | 996M | if (q!=0) | 1108 | 203M | { | 1109 | 203M | int K = get_pulses(q); | 1110 | | | 1111 | | /* Finally do the actual quantization */ | 1112 | 203M | if (encode) | 1113 | 202M | { | 1114 | 202M | cm = alg_quant(X, N, K, spread, B, ec, gain, ctx->resynth | 1115 | 202M | ARG_QEXT(ctx->ext_ec) ARG_QEXT(extra_bits), | 1116 | 202M | ctx->arch); | 1117 | 202M | } else { | 1118 | 729k | cm = alg_unquant(X, N, K, spread, B, ec, gain | 1119 | 729k | ARG_QEXT(ctx->ext_ec) ARG_QEXT(extra_bits)); | 1120 | 729k | } | 1121 | | #ifdef ENABLE_QEXT | 1122 | | } else if (ext_b > 2*N<<BITRES) | 1123 | | { | 1124 | | extra_bits = ext_b/(N-1)>>BITRES; | 1125 | | ext_remaining_bits = ctx->ext_total_bits-ec_tell_frac(ctx->ext_ec); | 1126 | | if (ext_remaining_bits < ((extra_bits+1)*(N-1)+N)<<BITRES) { | 1127 | | extra_bits = (ext_remaining_bits-(N<<BITRES))/(N-1)>>BITRES; | 1128 | | extra_bits = IMAX(extra_bits-1, 0); | 1129 | | } | 1130 | | extra_bits = IMIN(14, extra_bits); | 1131 | | if (encode) cm = cubic_quant(X, N, extra_bits, B, ctx->ext_ec, gain, ctx->resynth); | 1132 | | else cm = cubic_unquant(X, N, extra_bits, B, ctx->ext_ec, gain); | 1133 | | #endif | 1134 | 793M | } else { | 1135 | | /* If there's no pulse, fill the band anyway */ | 1136 | 793M | int j; | 1137 | 793M | if (ctx->resynth) | 1138 | 122M | { | 1139 | 122M | unsigned cm_mask; | 1140 | | /* B can be as large as 16, so this shift might overflow an int on a | 1141 | | 16-bit platform; use a long to get defined behavior.*/ | 1142 | 122M | cm_mask = (unsigned)(1UL<<B)-1; | 1143 | 122M | fill &= cm_mask; | 1144 | 122M | if (!fill) | 1145 | 63.3M | { | 1146 | 63.3M | OPUS_CLEAR(X, N); | 1147 | 63.3M | } else { | 1148 | 59.4M | if (lowband == NULL) | 1149 | 3.51M | { | 1150 | | /* Noise */ | 1151 | 23.1M | for (j=0;j<N;j++) | 1152 | 19.6M | { | 1153 | 19.6M | ctx->seed = celt_lcg_rand(ctx->seed); | 1154 | 19.6M | X[j] = SHL32((celt_norm)((opus_int32)ctx->seed>>20), NORM_SHIFT-14); | 1155 | 19.6M | } | 1156 | 3.51M | cm = cm_mask; | 1157 | 55.9M | } else { | 1158 | | /* Folded spectrum */ | 1159 | 805M | for (j=0;j<N;j++) | 1160 | 749M | { | 1161 | 749M | opus_val16 tmp; | 1162 | 749M | ctx->seed = celt_lcg_rand(ctx->seed); | 1163 | | /* About 48 dB below the "normal" folding level */ | 1164 | 749M | tmp = QCONST16(1.0f/256, NORM_SHIFT-4); | 1165 | 749M | tmp = (ctx->seed)&0x8000 ? tmp : -tmp; | 1166 | 749M | X[j] = lowband[j]+tmp; | 1167 | 749M | } | 1168 | 55.9M | cm = fill; | 1169 | 55.9M | } | 1170 | 59.4M | renormalise_vector(X, N, gain, ctx->arch); | 1171 | 59.4M | } | 1172 | 122M | } | 1173 | 793M | } | 1174 | 996M | } | 1175 | | | 1176 | 1.07G | return cm; | 1177 | 1.07G | } |
|
1178 | | |
1179 | | #ifdef ENABLE_QEXT |
1180 | | static unsigned cubic_quant_partition(struct band_ctx *ctx, celt_norm *X, int N, int b, int B, ec_ctx *ec, int LM, opus_val32 gain, int resynth, int encode) |
1181 | 173k | { |
1182 | 173k | celt_assert(LM>=0); |
1183 | 173k | ctx->remaining_bits = ctx->ec->storage*8*8 - ec_tell_frac(ctx->ec); |
1184 | 173k | b = IMIN(b, ctx->remaining_bits); |
1185 | | /* As long as we have at least two bits of depth, split all the way to LM=0 (not -1 like PVQ). */ |
1186 | 173k | if (LM==0 || b<=2*N<<BITRES) { |
1187 | 101k | int res, ret; |
1188 | 101k | b = IMIN(b + ((N-1)<<BITRES)/2, ctx->remaining_bits); |
1189 | | /* Resolution left after taking into account coding the cube face. */ |
1190 | 101k | res = (b-(1<<BITRES)-ctx->m->logN[ctx->i]-(LM<<BITRES)-1)/(N-1)>>BITRES; |
1191 | 101k | res = IMIN(14, IMAX(0, res)); |
1192 | 101k | if (encode) ret = cubic_quant(X, N, res, B, ec, gain, resynth); |
1193 | 100k | else ret = cubic_unquant(X, N, res, B, ec, gain); |
1194 | 101k | ctx->remaining_bits = ctx->ec->storage*8*8 - ec_tell_frac(ctx->ec); |
1195 | 101k | return ret; |
1196 | 101k | } else { |
1197 | 72.2k | celt_norm *Y; |
1198 | 72.2k | opus_int32 itheta_q30; |
1199 | 72.2k | opus_val32 g1, g2; |
1200 | 72.2k | opus_int32 theta_res; |
1201 | 72.2k | opus_int32 qtheta; |
1202 | 72.2k | int delta; |
1203 | 72.2k | int b1, b2; |
1204 | 72.2k | int cm; |
1205 | 72.2k | int N0; |
1206 | 72.2k | N0 = N; |
1207 | 72.2k | N >>= 1; |
1208 | 72.2k | Y = X+N; |
1209 | 72.2k | LM -= 1; |
1210 | 72.2k | B = (B+1)>>1; |
1211 | 72.2k | theta_res = IMIN(16, (b>>BITRES)/(N0-1) + 1); |
1212 | 72.2k | if (encode) { |
1213 | 300 | itheta_q30 = stereo_itheta(X, Y, 0, N, ctx->arch); |
1214 | 300 | qtheta = (itheta_q30+(1<<(29-theta_res)))>>(30-theta_res); |
1215 | 300 | ec_enc_uint(ec, qtheta, (1<<theta_res)+1); |
1216 | 71.9k | } else { |
1217 | 71.9k | qtheta = ec_dec_uint(ec, (1<<theta_res)+1); |
1218 | 71.9k | } |
1219 | 72.2k | itheta_q30 = qtheta<<(30-theta_res); |
1220 | 72.2k | b -= theta_res<<BITRES; |
1221 | 72.2k | delta = (N0-1) * 23 * ((itheta_q30>>16)-8192) >> (17-BITRES); |
1222 | | |
1223 | | #ifdef FIXED_POINT |
1224 | | g1 = celt_cos_norm32(itheta_q30); |
1225 | | g2 = celt_cos_norm32((1<<30)-itheta_q30); |
1226 | | #else |
1227 | | g1 = celt_cos_norm2(itheta_q30*(1.f/(1<<30))); |
1228 | | g2 = celt_cos_norm2(1.f-itheta_q30*(1.f/(1<<30))); |
1229 | | #endif |
1230 | 72.2k | if (itheta_q30 == 0) { |
1231 | 2.46k | b1=b; |
1232 | 2.46k | b2=0; |
1233 | 69.7k | } else if (itheta_q30==1073741824) { |
1234 | 2.46k | b1=0; |
1235 | 2.46k | b2=b; |
1236 | 67.3k | } else { |
1237 | 67.3k | b1 = IMIN(b, IMAX(0, (b-delta)/2)); |
1238 | 67.3k | b2 = b-b1; |
1239 | 67.3k | } |
1240 | 72.2k | cm = cubic_quant_partition(ctx, X, N, b1, B, ec, LM, MULT32_32_Q31(gain, g1), resynth, encode); |
1241 | 72.2k | cm |= cubic_quant_partition(ctx, Y, N, b2, B, ec, LM, MULT32_32_Q31(gain, g2), resynth, encode); |
1242 | 72.2k | return cm; |
1243 | 72.2k | } |
1244 | 173k | } bands.c:cubic_quant_partition Line | Count | Source | 1181 | 86.6k | { | 1182 | 86.6k | celt_assert(LM>=0); | 1183 | 86.6k | ctx->remaining_bits = ctx->ec->storage*8*8 - ec_tell_frac(ctx->ec); | 1184 | 86.6k | b = IMIN(b, ctx->remaining_bits); | 1185 | | /* As long as we have at least two bits of depth, split all the way to LM=0 (not -1 like PVQ). */ | 1186 | 86.6k | if (LM==0 || b<=2*N<<BITRES) { | 1187 | 50.5k | int res, ret; | 1188 | 50.5k | b = IMIN(b + ((N-1)<<BITRES)/2, ctx->remaining_bits); | 1189 | | /* Resolution left after taking into account coding the cube face. */ | 1190 | 50.5k | res = (b-(1<<BITRES)-ctx->m->logN[ctx->i]-(LM<<BITRES)-1)/(N-1)>>BITRES; | 1191 | 50.5k | res = IMIN(14, IMAX(0, res)); | 1192 | 50.5k | if (encode) ret = cubic_quant(X, N, res, B, ec, gain, resynth); | 1193 | 50.3k | else ret = cubic_unquant(X, N, res, B, ec, gain); | 1194 | 50.5k | ctx->remaining_bits = ctx->ec->storage*8*8 - ec_tell_frac(ctx->ec); | 1195 | 50.5k | return ret; | 1196 | 50.5k | } else { | 1197 | 36.1k | celt_norm *Y; | 1198 | 36.1k | opus_int32 itheta_q30; | 1199 | 36.1k | opus_val32 g1, g2; | 1200 | 36.1k | opus_int32 theta_res; | 1201 | 36.1k | opus_int32 qtheta; | 1202 | 36.1k | int delta; | 1203 | 36.1k | int b1, b2; | 1204 | 36.1k | int cm; | 1205 | 36.1k | int N0; | 1206 | 36.1k | N0 = N; | 1207 | 36.1k | N >>= 1; | 1208 | 36.1k | Y = X+N; | 1209 | 36.1k | LM -= 1; | 1210 | 36.1k | B = (B+1)>>1; | 1211 | 36.1k | theta_res = IMIN(16, (b>>BITRES)/(N0-1) + 1); | 1212 | 36.1k | if (encode) { | 1213 | 150 | itheta_q30 = stereo_itheta(X, Y, 0, N, ctx->arch); | 1214 | 150 | qtheta = (itheta_q30+(1<<(29-theta_res)))>>(30-theta_res); | 1215 | 150 | ec_enc_uint(ec, qtheta, (1<<theta_res)+1); | 1216 | 35.9k | } else { | 1217 | 35.9k | qtheta = ec_dec_uint(ec, (1<<theta_res)+1); | 1218 | 35.9k | } | 1219 | 36.1k | itheta_q30 = qtheta<<(30-theta_res); | 1220 | 36.1k | b -= theta_res<<BITRES; | 1221 | 36.1k | delta = (N0-1) * 23 * ((itheta_q30>>16)-8192) >> (17-BITRES); | 1222 | | | 1223 | 36.1k | #ifdef FIXED_POINT | 1224 | 36.1k | g1 = celt_cos_norm32(itheta_q30); | 1225 | 36.1k | g2 = celt_cos_norm32((1<<30)-itheta_q30); | 1226 | | #else | 1227 | | g1 = celt_cos_norm2(itheta_q30*(1.f/(1<<30))); | 1228 | | g2 = celt_cos_norm2(1.f-itheta_q30*(1.f/(1<<30))); | 1229 | | #endif | 1230 | 36.1k | if (itheta_q30 == 0) { | 1231 | 1.23k | b1=b; | 1232 | 1.23k | b2=0; | 1233 | 34.8k | } else if (itheta_q30==1073741824) { | 1234 | 1.23k | b1=0; | 1235 | 1.23k | b2=b; | 1236 | 33.6k | } else { | 1237 | 33.6k | b1 = IMIN(b, IMAX(0, (b-delta)/2)); | 1238 | 33.6k | b2 = b-b1; | 1239 | 33.6k | } | 1240 | 36.1k | cm = cubic_quant_partition(ctx, X, N, b1, B, ec, LM, MULT32_32_Q31(gain, g1), resynth, encode); | 1241 | 36.1k | cm |= cubic_quant_partition(ctx, Y, N, b2, B, ec, LM, MULT32_32_Q31(gain, g2), resynth, encode); | 1242 | 36.1k | return cm; | 1243 | 36.1k | } | 1244 | 86.6k | } |
bands.c:cubic_quant_partition Line | Count | Source | 1181 | 86.6k | { | 1182 | 86.6k | celt_assert(LM>=0); | 1183 | 86.6k | ctx->remaining_bits = ctx->ec->storage*8*8 - ec_tell_frac(ctx->ec); | 1184 | 86.6k | b = IMIN(b, ctx->remaining_bits); | 1185 | | /* As long as we have at least two bits of depth, split all the way to LM=0 (not -1 like PVQ). */ | 1186 | 86.6k | if (LM==0 || b<=2*N<<BITRES) { | 1187 | 50.5k | int res, ret; | 1188 | 50.5k | b = IMIN(b + ((N-1)<<BITRES)/2, ctx->remaining_bits); | 1189 | | /* Resolution left after taking into account coding the cube face. */ | 1190 | 50.5k | res = (b-(1<<BITRES)-ctx->m->logN[ctx->i]-(LM<<BITRES)-1)/(N-1)>>BITRES; | 1191 | 50.5k | res = IMIN(14, IMAX(0, res)); | 1192 | 50.5k | if (encode) ret = cubic_quant(X, N, res, B, ec, gain, resynth); | 1193 | 50.3k | else ret = cubic_unquant(X, N, res, B, ec, gain); | 1194 | 50.5k | ctx->remaining_bits = ctx->ec->storage*8*8 - ec_tell_frac(ctx->ec); | 1195 | 50.5k | return ret; | 1196 | 50.5k | } else { | 1197 | 36.1k | celt_norm *Y; | 1198 | 36.1k | opus_int32 itheta_q30; | 1199 | 36.1k | opus_val32 g1, g2; | 1200 | 36.1k | opus_int32 theta_res; | 1201 | 36.1k | opus_int32 qtheta; | 1202 | 36.1k | int delta; | 1203 | 36.1k | int b1, b2; | 1204 | 36.1k | int cm; | 1205 | 36.1k | int N0; | 1206 | 36.1k | N0 = N; | 1207 | 36.1k | N >>= 1; | 1208 | 36.1k | Y = X+N; | 1209 | 36.1k | LM -= 1; | 1210 | 36.1k | B = (B+1)>>1; | 1211 | 36.1k | theta_res = IMIN(16, (b>>BITRES)/(N0-1) + 1); | 1212 | 36.1k | if (encode) { | 1213 | 150 | itheta_q30 = stereo_itheta(X, Y, 0, N, ctx->arch); | 1214 | 150 | qtheta = (itheta_q30+(1<<(29-theta_res)))>>(30-theta_res); | 1215 | 150 | ec_enc_uint(ec, qtheta, (1<<theta_res)+1); | 1216 | 35.9k | } else { | 1217 | 35.9k | qtheta = ec_dec_uint(ec, (1<<theta_res)+1); | 1218 | 35.9k | } | 1219 | 36.1k | itheta_q30 = qtheta<<(30-theta_res); | 1220 | 36.1k | b -= theta_res<<BITRES; | 1221 | 36.1k | delta = (N0-1) * 23 * ((itheta_q30>>16)-8192) >> (17-BITRES); | 1222 | | | 1223 | | #ifdef FIXED_POINT | 1224 | | g1 = celt_cos_norm32(itheta_q30); | 1225 | | g2 = celt_cos_norm32((1<<30)-itheta_q30); | 1226 | | #else | 1227 | 36.1k | g1 = celt_cos_norm2(itheta_q30*(1.f/(1<<30))); | 1228 | 36.1k | g2 = celt_cos_norm2(1.f-itheta_q30*(1.f/(1<<30))); | 1229 | 36.1k | #endif | 1230 | 36.1k | if (itheta_q30 == 0) { | 1231 | 1.23k | b1=b; | 1232 | 1.23k | b2=0; | 1233 | 34.8k | } else if (itheta_q30==1073741824) { | 1234 | 1.23k | b1=0; | 1235 | 1.23k | b2=b; | 1236 | 33.6k | } else { | 1237 | 33.6k | b1 = IMIN(b, IMAX(0, (b-delta)/2)); | 1238 | 33.6k | b2 = b-b1; | 1239 | 33.6k | } | 1240 | 36.1k | cm = cubic_quant_partition(ctx, X, N, b1, B, ec, LM, MULT32_32_Q31(gain, g1), resynth, encode); | 1241 | 36.1k | cm |= cubic_quant_partition(ctx, Y, N, b2, B, ec, LM, MULT32_32_Q31(gain, g2), resynth, encode); | 1242 | 36.1k | return cm; | 1243 | 36.1k | } | 1244 | 86.6k | } |
|
1245 | | #endif |
1246 | | |
1247 | | /* This function is responsible for encoding and decoding a band for the mono case. */ |
1248 | | static unsigned quant_band(struct band_ctx *ctx, celt_norm *X, |
1249 | | int N, int b, int B, celt_norm *lowband, |
1250 | | int LM, celt_norm *lowband_out, |
1251 | | opus_val32 gain, celt_norm *lowband_scratch, int fill |
1252 | | ARG_QEXT(int ext_b)) |
1253 | 4.15G | { |
1254 | 4.15G | int N0=N; |
1255 | 4.15G | int N_B=N; |
1256 | 4.15G | int N_B0; |
1257 | 4.15G | int B0=B; |
1258 | 4.15G | int time_divide=0; |
1259 | 4.15G | int recombine=0; |
1260 | 4.15G | int longBlocks; |
1261 | 4.15G | unsigned cm=0; |
1262 | 4.15G | int k; |
1263 | 4.15G | int encode; |
1264 | 4.15G | int tf_change; |
1265 | | |
1266 | 4.15G | encode = ctx->encode; |
1267 | 4.15G | tf_change = ctx->tf_change; |
1268 | | |
1269 | 4.15G | longBlocks = B0==1; |
1270 | | |
1271 | 4.15G | N_B = celt_udiv(N_B, B); |
1272 | | |
1273 | | /* Special case for one sample */ |
1274 | 4.15G | if (N==1) |
1275 | 813M | { |
1276 | 813M | return quant_band_n1(ctx, X, NULL, lowband_out); |
1277 | 813M | } |
1278 | | |
1279 | 3.33G | if (tf_change>0) |
1280 | 22.1M | recombine = tf_change; |
1281 | | /* Band recombining to increase frequency resolution */ |
1282 | | |
1283 | 3.33G | if (lowband_scratch && lowband && (recombine || ((N_B&1) == 0 && tf_change<0) || B0>1)) |
1284 | 4.35M | { |
1285 | 4.35M | OPUS_COPY(lowband_scratch, lowband, N); |
1286 | 4.35M | lowband = lowband_scratch; |
1287 | 4.35M | } |
1288 | | |
1289 | 3.37G | for (k=0;k<recombine;k++) |
1290 | 37.6M | { |
1291 | 37.6M | static const unsigned char bit_interleave_table[16]={ |
1292 | 37.6M | 0,1,1,1,2,3,3,3,2,3,3,3,2,3,3,3 |
1293 | 37.6M | }; |
1294 | 37.6M | if (encode) |
1295 | 35.9M | haar1(X, N>>k, 1<<k); |
1296 | 37.6M | if (lowband) |
1297 | 1.75M | haar1(lowband, N>>k, 1<<k); |
1298 | 37.6M | fill = bit_interleave_table[fill&0xF]|bit_interleave_table[fill>>4]<<2; |
1299 | 37.6M | } |
1300 | 3.33G | B>>=recombine; |
1301 | 3.33G | N_B<<=recombine; |
1302 | | |
1303 | | /* Increasing the time resolution */ |
1304 | 3.35G | while ((N_B&1) == 0 && tf_change<0) |
1305 | 21.0M | { |
1306 | 21.0M | if (encode) |
1307 | 19.8M | haar1(X, N_B, B); |
1308 | 21.0M | if (lowband) |
1309 | 3.23M | haar1(lowband, N_B, B); |
1310 | 21.0M | fill |= fill<<B; |
1311 | 21.0M | B <<= 1; |
1312 | 21.0M | N_B >>= 1; |
1313 | 21.0M | time_divide++; |
1314 | 21.0M | tf_change++; |
1315 | 21.0M | } |
1316 | 3.33G | B0=B; |
1317 | 3.33G | N_B0 = N_B; |
1318 | | |
1319 | | /* Reorganize the samples in time order instead of frequency order */ |
1320 | 3.33G | if (B0>1) |
1321 | 37.4M | { |
1322 | 37.4M | if (encode) |
1323 | 36.3M | deinterleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks); |
1324 | 37.4M | if (lowband) |
1325 | 3.70M | deinterleave_hadamard(lowband, N_B>>recombine, B0<<recombine, longBlocks); |
1326 | 37.4M | } |
1327 | | |
1328 | | #ifdef ENABLE_QEXT |
1329 | 1.49G | if (ctx->extra_bands && b > (3*N<<BITRES)+(ctx->m->logN[ctx->i]+8+8*LM)) { |
1330 | 28.7k | cm = cubic_quant_partition(ctx, X, N, b, B, ctx->ec, LM, gain, ctx->resynth, encode); |
1331 | 28.7k | } else |
1332 | 1.49G | #endif |
1333 | 1.49G | { |
1334 | 1.49G | cm = quant_partition(ctx, X, N, b, B, lowband, LM, gain, fill ARG_QEXT(ext_b)); |
1335 | 1.49G | } |
1336 | | |
1337 | | /* This code is used by the decoder and by the resynthesis-enabled encoder */ |
1338 | 3.33G | if (ctx->resynth) |
1339 | 421M | { |
1340 | | /* Undo the sample reorganization going from time order to frequency order */ |
1341 | 421M | if (B0>1) |
1342 | 7.04M | interleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks); |
1343 | | |
1344 | | /* Undo time-freq changes that we did earlier */ |
1345 | 421M | N_B = N_B0; |
1346 | 421M | B = B0; |
1347 | 427M | for (k=0;k<time_divide;k++) |
1348 | 6.11M | { |
1349 | 6.11M | B >>= 1; |
1350 | 6.11M | N_B <<= 1; |
1351 | 6.11M | cm |= cm>>B; |
1352 | 6.11M | haar1(X, N_B, B); |
1353 | 6.11M | } |
1354 | | |
1355 | 424M | for (k=0;k<recombine;k++) |
1356 | 3.03M | { |
1357 | 3.03M | static const unsigned char bit_deinterleave_table[16]={ |
1358 | 3.03M | 0x00,0x03,0x0C,0x0F,0x30,0x33,0x3C,0x3F, |
1359 | 3.03M | 0xC0,0xC3,0xCC,0xCF,0xF0,0xF3,0xFC,0xFF |
1360 | 3.03M | }; |
1361 | 3.03M | cm = bit_deinterleave_table[cm]; |
1362 | 3.03M | haar1(X, N0>>k, 1<<k); |
1363 | 3.03M | } |
1364 | 421M | B<<=recombine; |
1365 | | |
1366 | | /* Scale output for later folding */ |
1367 | 421M | if (lowband_out) |
1368 | 214M | { |
1369 | 214M | int j; |
1370 | 214M | opus_val16 n; |
1371 | 214M | n = celt_sqrt(SHL32(EXTEND32(N0),22)); |
1372 | 2.50G | for (j=0;j<N0;j++) |
1373 | 2.29G | lowband_out[j] = MULT16_32_Q15(n,X[j]); |
1374 | 214M | } |
1375 | 421M | cm &= (1<<B)-1; |
1376 | 421M | } |
1377 | 3.33G | return cm; |
1378 | 4.15G | } Line | Count | Source | 1253 | 1.18G | { | 1254 | 1.18G | int N0=N; | 1255 | 1.18G | int N_B=N; | 1256 | 1.18G | int N_B0; | 1257 | 1.18G | int B0=B; | 1258 | 1.18G | int time_divide=0; | 1259 | 1.18G | int recombine=0; | 1260 | 1.18G | int longBlocks; | 1261 | 1.18G | unsigned cm=0; | 1262 | 1.18G | int k; | 1263 | 1.18G | int encode; | 1264 | 1.18G | int tf_change; | 1265 | | | 1266 | 1.18G | encode = ctx->encode; | 1267 | 1.18G | tf_change = ctx->tf_change; | 1268 | | | 1269 | 1.18G | longBlocks = B0==1; | 1270 | | | 1271 | 1.18G | N_B = celt_udiv(N_B, B); | 1272 | | | 1273 | | /* Special case for one sample */ | 1274 | 1.18G | if (N==1) | 1275 | 263M | { | 1276 | 263M | return quant_band_n1(ctx, X, NULL, lowband_out); | 1277 | 263M | } | 1278 | | | 1279 | 920M | if (tf_change>0) | 1280 | 9.68M | recombine = tf_change; | 1281 | | /* Band recombining to increase frequency resolution */ | 1282 | | | 1283 | 920M | if (lowband_scratch && lowband && (recombine || ((N_B&1) == 0 && tf_change<0) || B0>1)) | 1284 | 1.46M | { | 1285 | 1.46M | OPUS_COPY(lowband_scratch, lowband, N); | 1286 | 1.46M | lowband = lowband_scratch; | 1287 | 1.46M | } | 1288 | | | 1289 | 936M | for (k=0;k<recombine;k++) | 1290 | 16.0M | { | 1291 | 16.0M | static const unsigned char bit_interleave_table[16]={ | 1292 | 16.0M | 0,1,1,1,2,3,3,3,2,3,3,3,2,3,3,3 | 1293 | 16.0M | }; | 1294 | 16.0M | if (encode) | 1295 | 15.4M | haar1(X, N>>k, 1<<k); | 1296 | 16.0M | if (lowband) | 1297 | 610k | haar1(lowband, N>>k, 1<<k); | 1298 | 16.0M | fill = bit_interleave_table[fill&0xF]|bit_interleave_table[fill>>4]<<2; | 1299 | 16.0M | } | 1300 | 920M | B>>=recombine; | 1301 | 920M | N_B<<=recombine; | 1302 | | | 1303 | | /* Increasing the time resolution */ | 1304 | 926M | while ((N_B&1) == 0 && tf_change<0) | 1305 | 6.03M | { | 1306 | 6.03M | if (encode) | 1307 | 5.77M | haar1(X, N_B, B); | 1308 | 6.03M | if (lowband) | 1309 | 1.13M | haar1(lowband, N_B, B); | 1310 | 6.03M | fill |= fill<<B; | 1311 | 6.03M | B <<= 1; | 1312 | 6.03M | N_B >>= 1; | 1313 | 6.03M | time_divide++; | 1314 | 6.03M | tf_change++; | 1315 | 6.03M | } | 1316 | 920M | B0=B; | 1317 | 920M | N_B0 = N_B; | 1318 | | | 1319 | | /* Reorganize the samples in time order instead of frequency order */ | 1320 | 920M | if (B0>1) | 1321 | 12.9M | { | 1322 | 12.9M | if (encode) | 1323 | 12.7M | deinterleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks); | 1324 | 12.9M | if (lowband) | 1325 | 1.23M | deinterleave_hadamard(lowband, N_B>>recombine, B0<<recombine, longBlocks); | 1326 | 12.9M | } | 1327 | | | 1328 | | #ifdef ENABLE_QEXT | 1329 | | if (ctx->extra_bands && b > (3*N<<BITRES)+(ctx->m->logN[ctx->i]+8+8*LM)) { | 1330 | | cm = cubic_quant_partition(ctx, X, N, b, B, ctx->ec, LM, gain, ctx->resynth, encode); | 1331 | | } else | 1332 | | #endif | 1333 | 920M | { | 1334 | 920M | cm = quant_partition(ctx, X, N, b, B, lowband, LM, gain, fill ARG_QEXT(ext_b)); | 1335 | 920M | } | 1336 | | | 1337 | | /* This code is used by the decoder and by the resynthesis-enabled encoder */ | 1338 | 920M | if (ctx->resynth) | 1339 | 137M | { | 1340 | | /* Undo the sample reorganization going from time order to frequency order */ | 1341 | 137M | if (B0>1) | 1342 | 2.43M | interleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks); | 1343 | | | 1344 | | /* Undo time-freq changes that we did earlier */ | 1345 | 137M | N_B = N_B0; | 1346 | 137M | B = B0; | 1347 | 139M | for (k=0;k<time_divide;k++) | 1348 | 2.22M | { | 1349 | 2.22M | B >>= 1; | 1350 | 2.22M | N_B <<= 1; | 1351 | 2.22M | cm |= cm>>B; | 1352 | 2.22M | haar1(X, N_B, B); | 1353 | 2.22M | } | 1354 | | | 1355 | 138M | for (k=0;k<recombine;k++) | 1356 | 1.08M | { | 1357 | 1.08M | static const unsigned char bit_deinterleave_table[16]={ | 1358 | 1.08M | 0x00,0x03,0x0C,0x0F,0x30,0x33,0x3C,0x3F, | 1359 | 1.08M | 0xC0,0xC3,0xCC,0xCF,0xF0,0xF3,0xFC,0xFF | 1360 | 1.08M | }; | 1361 | 1.08M | cm = bit_deinterleave_table[cm]; | 1362 | 1.08M | haar1(X, N0>>k, 1<<k); | 1363 | 1.08M | } | 1364 | 137M | B<<=recombine; | 1365 | | | 1366 | | /* Scale output for later folding */ | 1367 | 137M | if (lowband_out) | 1368 | 69.6M | { | 1369 | 69.6M | int j; | 1370 | 69.6M | opus_val16 n; | 1371 | 69.6M | n = celt_sqrt(SHL32(EXTEND32(N0),22)); | 1372 | 828M | for (j=0;j<N0;j++) | 1373 | 759M | lowband_out[j] = MULT16_32_Q15(n,X[j]); | 1374 | 69.6M | } | 1375 | 137M | cm &= (1<<B)-1; | 1376 | 137M | } | 1377 | 920M | return cm; | 1378 | 1.18G | } |
Line | Count | Source | 1253 | 891M | { | 1254 | 891M | int N0=N; | 1255 | 891M | int N_B=N; | 1256 | 891M | int N_B0; | 1257 | 891M | int B0=B; | 1258 | 891M | int time_divide=0; | 1259 | 891M | int recombine=0; | 1260 | 891M | int longBlocks; | 1261 | 891M | unsigned cm=0; | 1262 | 891M | int k; | 1263 | 891M | int encode; | 1264 | 891M | int tf_change; | 1265 | | | 1266 | 891M | encode = ctx->encode; | 1267 | 891M | tf_change = ctx->tf_change; | 1268 | | | 1269 | 891M | longBlocks = B0==1; | 1270 | | | 1271 | 891M | N_B = celt_udiv(N_B, B); | 1272 | | | 1273 | | /* Special case for one sample */ | 1274 | 891M | if (N==1) | 1275 | 143M | { | 1276 | 143M | return quant_band_n1(ctx, X, NULL, lowband_out); | 1277 | 143M | } | 1278 | | | 1279 | 748M | if (tf_change>0) | 1280 | 1.39M | recombine = tf_change; | 1281 | | /* Band recombining to increase frequency resolution */ | 1282 | | | 1283 | 748M | if (lowband_scratch && lowband && (recombine || ((N_B&1) == 0 && tf_change<0) || B0>1)) | 1284 | 714k | { | 1285 | 714k | OPUS_COPY(lowband_scratch, lowband, N); | 1286 | 714k | lowband = lowband_scratch; | 1287 | 714k | } | 1288 | | | 1289 | 751M | for (k=0;k<recombine;k++) | 1290 | 2.77M | { | 1291 | 2.77M | static const unsigned char bit_interleave_table[16]={ | 1292 | 2.77M | 0,1,1,1,2,3,3,3,2,3,3,3,2,3,3,3 | 1293 | 2.77M | }; | 1294 | 2.77M | if (encode) | 1295 | 2.46M | haar1(X, N>>k, 1<<k); | 1296 | 2.77M | if (lowband) | 1297 | 266k | haar1(lowband, N>>k, 1<<k); | 1298 | 2.77M | fill = bit_interleave_table[fill&0xF]|bit_interleave_table[fill>>4]<<2; | 1299 | 2.77M | } | 1300 | 748M | B>>=recombine; | 1301 | 748M | N_B<<=recombine; | 1302 | | | 1303 | | /* Increasing the time resolution */ | 1304 | 752M | while ((N_B&1) == 0 && tf_change<0) | 1305 | 4.48M | { | 1306 | 4.48M | if (encode) | 1307 | 4.14M | haar1(X, N_B, B); | 1308 | 4.48M | if (lowband) | 1309 | 488k | haar1(lowband, N_B, B); | 1310 | 4.48M | fill |= fill<<B; | 1311 | 4.48M | B <<= 1; | 1312 | 4.48M | N_B >>= 1; | 1313 | 4.48M | time_divide++; | 1314 | 4.48M | tf_change++; | 1315 | 4.48M | } | 1316 | 748M | B0=B; | 1317 | 748M | N_B0 = N_B; | 1318 | | | 1319 | | /* Reorganize the samples in time order instead of frequency order */ | 1320 | 748M | if (B0>1) | 1321 | 5.77M | { | 1322 | 5.77M | if (encode) | 1323 | 5.44M | deinterleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks); | 1324 | 5.77M | if (lowband) | 1325 | 615k | deinterleave_hadamard(lowband, N_B>>recombine, B0<<recombine, longBlocks); | 1326 | 5.77M | } | 1327 | | | 1328 | 748M | #ifdef ENABLE_QEXT | 1329 | 748M | if (ctx->extra_bands && b > (3*N<<BITRES)+(ctx->m->logN[ctx->i]+8+8*LM)) { | 1330 | 14.3k | cm = cubic_quant_partition(ctx, X, N, b, B, ctx->ec, LM, gain, ctx->resynth, encode); | 1331 | 14.3k | } else | 1332 | 748M | #endif | 1333 | 748M | { | 1334 | 748M | cm = quant_partition(ctx, X, N, b, B, lowband, LM, gain, fill ARG_QEXT(ext_b)); | 1335 | 748M | } | 1336 | | | 1337 | | /* This code is used by the decoder and by the resynthesis-enabled encoder */ | 1338 | 748M | if (ctx->resynth) | 1339 | 73.2M | { | 1340 | | /* Undo the sample reorganization going from time order to frequency order */ | 1341 | 73.2M | if (B0>1) | 1342 | 1.08M | interleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks); | 1343 | | | 1344 | | /* Undo time-freq changes that we did earlier */ | 1345 | 73.2M | N_B = N_B0; | 1346 | 73.2M | B = B0; | 1347 | 74.0M | for (k=0;k<time_divide;k++) | 1348 | 832k | { | 1349 | 832k | B >>= 1; | 1350 | 832k | N_B <<= 1; | 1351 | 832k | cm |= cm>>B; | 1352 | 832k | haar1(X, N_B, B); | 1353 | 832k | } | 1354 | | | 1355 | 73.6M | for (k=0;k<recombine;k++) | 1356 | 428k | { | 1357 | 428k | static const unsigned char bit_deinterleave_table[16]={ | 1358 | 428k | 0x00,0x03,0x0C,0x0F,0x30,0x33,0x3C,0x3F, | 1359 | 428k | 0xC0,0xC3,0xCC,0xCF,0xF0,0xF3,0xFC,0xFF | 1360 | 428k | }; | 1361 | 428k | cm = bit_deinterleave_table[cm]; | 1362 | 428k | haar1(X, N0>>k, 1<<k); | 1363 | 428k | } | 1364 | 73.2M | B<<=recombine; | 1365 | | | 1366 | | /* Scale output for later folding */ | 1367 | 73.2M | if (lowband_out) | 1368 | 37.7M | { | 1369 | 37.7M | int j; | 1370 | 37.7M | opus_val16 n; | 1371 | 37.7M | n = celt_sqrt(SHL32(EXTEND32(N0),22)); | 1372 | 423M | for (j=0;j<N0;j++) | 1373 | 385M | lowband_out[j] = MULT16_32_Q15(n,X[j]); | 1374 | 37.7M | } | 1375 | 73.2M | cm &= (1<<B)-1; | 1376 | 73.2M | } | 1377 | 748M | return cm; | 1378 | 891M | } |
Line | Count | Source | 1253 | 891M | { | 1254 | 891M | int N0=N; | 1255 | 891M | int N_B=N; | 1256 | 891M | int N_B0; | 1257 | 891M | int B0=B; | 1258 | 891M | int time_divide=0; | 1259 | 891M | int recombine=0; | 1260 | 891M | int longBlocks; | 1261 | 891M | unsigned cm=0; | 1262 | 891M | int k; | 1263 | 891M | int encode; | 1264 | 891M | int tf_change; | 1265 | | | 1266 | 891M | encode = ctx->encode; | 1267 | 891M | tf_change = ctx->tf_change; | 1268 | | | 1269 | 891M | longBlocks = B0==1; | 1270 | | | 1271 | 891M | N_B = celt_udiv(N_B, B); | 1272 | | | 1273 | | /* Special case for one sample */ | 1274 | 891M | if (N==1) | 1275 | 143M | { | 1276 | 143M | return quant_band_n1(ctx, X, NULL, lowband_out); | 1277 | 143M | } | 1278 | | | 1279 | 748M | if (tf_change>0) | 1280 | 1.39M | recombine = tf_change; | 1281 | | /* Band recombining to increase frequency resolution */ | 1282 | | | 1283 | 748M | if (lowband_scratch && lowband && (recombine || ((N_B&1) == 0 && tf_change<0) || B0>1)) | 1284 | 714k | { | 1285 | 714k | OPUS_COPY(lowband_scratch, lowband, N); | 1286 | 714k | lowband = lowband_scratch; | 1287 | 714k | } | 1288 | | | 1289 | 751M | for (k=0;k<recombine;k++) | 1290 | 2.77M | { | 1291 | 2.77M | static const unsigned char bit_interleave_table[16]={ | 1292 | 2.77M | 0,1,1,1,2,3,3,3,2,3,3,3,2,3,3,3 | 1293 | 2.77M | }; | 1294 | 2.77M | if (encode) | 1295 | 2.46M | haar1(X, N>>k, 1<<k); | 1296 | 2.77M | if (lowband) | 1297 | 266k | haar1(lowband, N>>k, 1<<k); | 1298 | 2.77M | fill = bit_interleave_table[fill&0xF]|bit_interleave_table[fill>>4]<<2; | 1299 | 2.77M | } | 1300 | 748M | B>>=recombine; | 1301 | 748M | N_B<<=recombine; | 1302 | | | 1303 | | /* Increasing the time resolution */ | 1304 | 752M | while ((N_B&1) == 0 && tf_change<0) | 1305 | 4.48M | { | 1306 | 4.48M | if (encode) | 1307 | 4.14M | haar1(X, N_B, B); | 1308 | 4.48M | if (lowband) | 1309 | 488k | haar1(lowband, N_B, B); | 1310 | 4.48M | fill |= fill<<B; | 1311 | 4.48M | B <<= 1; | 1312 | 4.48M | N_B >>= 1; | 1313 | 4.48M | time_divide++; | 1314 | 4.48M | tf_change++; | 1315 | 4.48M | } | 1316 | 748M | B0=B; | 1317 | 748M | N_B0 = N_B; | 1318 | | | 1319 | | /* Reorganize the samples in time order instead of frequency order */ | 1320 | 748M | if (B0>1) | 1321 | 5.77M | { | 1322 | 5.77M | if (encode) | 1323 | 5.44M | deinterleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks); | 1324 | 5.77M | if (lowband) | 1325 | 615k | deinterleave_hadamard(lowband, N_B>>recombine, B0<<recombine, longBlocks); | 1326 | 5.77M | } | 1327 | | | 1328 | 748M | #ifdef ENABLE_QEXT | 1329 | 748M | if (ctx->extra_bands && b > (3*N<<BITRES)+(ctx->m->logN[ctx->i]+8+8*LM)) { | 1330 | 14.3k | cm = cubic_quant_partition(ctx, X, N, b, B, ctx->ec, LM, gain, ctx->resynth, encode); | 1331 | 14.3k | } else | 1332 | 748M | #endif | 1333 | 748M | { | 1334 | 748M | cm = quant_partition(ctx, X, N, b, B, lowband, LM, gain, fill ARG_QEXT(ext_b)); | 1335 | 748M | } | 1336 | | | 1337 | | /* This code is used by the decoder and by the resynthesis-enabled encoder */ | 1338 | 748M | if (ctx->resynth) | 1339 | 73.2M | { | 1340 | | /* Undo the sample reorganization going from time order to frequency order */ | 1341 | 73.2M | if (B0>1) | 1342 | 1.08M | interleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks); | 1343 | | | 1344 | | /* Undo time-freq changes that we did earlier */ | 1345 | 73.2M | N_B = N_B0; | 1346 | 73.2M | B = B0; | 1347 | 74.0M | for (k=0;k<time_divide;k++) | 1348 | 832k | { | 1349 | 832k | B >>= 1; | 1350 | 832k | N_B <<= 1; | 1351 | 832k | cm |= cm>>B; | 1352 | 832k | haar1(X, N_B, B); | 1353 | 832k | } | 1354 | | | 1355 | 73.6M | for (k=0;k<recombine;k++) | 1356 | 428k | { | 1357 | 428k | static const unsigned char bit_deinterleave_table[16]={ | 1358 | 428k | 0x00,0x03,0x0C,0x0F,0x30,0x33,0x3C,0x3F, | 1359 | 428k | 0xC0,0xC3,0xCC,0xCF,0xF0,0xF3,0xFC,0xFF | 1360 | 428k | }; | 1361 | 428k | cm = bit_deinterleave_table[cm]; | 1362 | 428k | haar1(X, N0>>k, 1<<k); | 1363 | 428k | } | 1364 | 73.2M | B<<=recombine; | 1365 | | | 1366 | | /* Scale output for later folding */ | 1367 | 73.2M | if (lowband_out) | 1368 | 37.7M | { | 1369 | 37.7M | int j; | 1370 | 37.7M | opus_val16 n; | 1371 | 37.7M | n = celt_sqrt(SHL32(EXTEND32(N0),22)); | 1372 | 423M | for (j=0;j<N0;j++) | 1373 | 385M | lowband_out[j] = MULT16_32_Q15(n,X[j]); | 1374 | 37.7M | } | 1375 | 73.2M | cm &= (1<<B)-1; | 1376 | 73.2M | } | 1377 | 748M | return cm; | 1378 | 891M | } |
Line | Count | Source | 1253 | 1.18G | { | 1254 | 1.18G | int N0=N; | 1255 | 1.18G | int N_B=N; | 1256 | 1.18G | int N_B0; | 1257 | 1.18G | int B0=B; | 1258 | 1.18G | int time_divide=0; | 1259 | 1.18G | int recombine=0; | 1260 | 1.18G | int longBlocks; | 1261 | 1.18G | unsigned cm=0; | 1262 | 1.18G | int k; | 1263 | 1.18G | int encode; | 1264 | 1.18G | int tf_change; | 1265 | | | 1266 | 1.18G | encode = ctx->encode; | 1267 | 1.18G | tf_change = ctx->tf_change; | 1268 | | | 1269 | 1.18G | longBlocks = B0==1; | 1270 | | | 1271 | 1.18G | N_B = celt_udiv(N_B, B); | 1272 | | | 1273 | | /* Special case for one sample */ | 1274 | 1.18G | if (N==1) | 1275 | 263M | { | 1276 | 263M | return quant_band_n1(ctx, X, NULL, lowband_out); | 1277 | 263M | } | 1278 | | | 1279 | 920M | if (tf_change>0) | 1280 | 9.68M | recombine = tf_change; | 1281 | | /* Band recombining to increase frequency resolution */ | 1282 | | | 1283 | 920M | if (lowband_scratch && lowband && (recombine || ((N_B&1) == 0 && tf_change<0) || B0>1)) | 1284 | 1.46M | { | 1285 | 1.46M | OPUS_COPY(lowband_scratch, lowband, N); | 1286 | 1.46M | lowband = lowband_scratch; | 1287 | 1.46M | } | 1288 | | | 1289 | 936M | for (k=0;k<recombine;k++) | 1290 | 16.0M | { | 1291 | 16.0M | static const unsigned char bit_interleave_table[16]={ | 1292 | 16.0M | 0,1,1,1,2,3,3,3,2,3,3,3,2,3,3,3 | 1293 | 16.0M | }; | 1294 | 16.0M | if (encode) | 1295 | 15.4M | haar1(X, N>>k, 1<<k); | 1296 | 16.0M | if (lowband) | 1297 | 610k | haar1(lowband, N>>k, 1<<k); | 1298 | 16.0M | fill = bit_interleave_table[fill&0xF]|bit_interleave_table[fill>>4]<<2; | 1299 | 16.0M | } | 1300 | 920M | B>>=recombine; | 1301 | 920M | N_B<<=recombine; | 1302 | | | 1303 | | /* Increasing the time resolution */ | 1304 | 926M | while ((N_B&1) == 0 && tf_change<0) | 1305 | 6.03M | { | 1306 | 6.03M | if (encode) | 1307 | 5.77M | haar1(X, N_B, B); | 1308 | 6.03M | if (lowband) | 1309 | 1.13M | haar1(lowband, N_B, B); | 1310 | 6.03M | fill |= fill<<B; | 1311 | 6.03M | B <<= 1; | 1312 | 6.03M | N_B >>= 1; | 1313 | 6.03M | time_divide++; | 1314 | 6.03M | tf_change++; | 1315 | 6.03M | } | 1316 | 920M | B0=B; | 1317 | 920M | N_B0 = N_B; | 1318 | | | 1319 | | /* Reorganize the samples in time order instead of frequency order */ | 1320 | 920M | if (B0>1) | 1321 | 12.9M | { | 1322 | 12.9M | if (encode) | 1323 | 12.7M | deinterleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks); | 1324 | 12.9M | if (lowband) | 1325 | 1.23M | deinterleave_hadamard(lowband, N_B>>recombine, B0<<recombine, longBlocks); | 1326 | 12.9M | } | 1327 | | | 1328 | | #ifdef ENABLE_QEXT | 1329 | | if (ctx->extra_bands && b > (3*N<<BITRES)+(ctx->m->logN[ctx->i]+8+8*LM)) { | 1330 | | cm = cubic_quant_partition(ctx, X, N, b, B, ctx->ec, LM, gain, ctx->resynth, encode); | 1331 | | } else | 1332 | | #endif | 1333 | 920M | { | 1334 | 920M | cm = quant_partition(ctx, X, N, b, B, lowband, LM, gain, fill ARG_QEXT(ext_b)); | 1335 | 920M | } | 1336 | | | 1337 | | /* This code is used by the decoder and by the resynthesis-enabled encoder */ | 1338 | 920M | if (ctx->resynth) | 1339 | 137M | { | 1340 | | /* Undo the sample reorganization going from time order to frequency order */ | 1341 | 137M | if (B0>1) | 1342 | 2.43M | interleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks); | 1343 | | | 1344 | | /* Undo time-freq changes that we did earlier */ | 1345 | 137M | N_B = N_B0; | 1346 | 137M | B = B0; | 1347 | 139M | for (k=0;k<time_divide;k++) | 1348 | 2.22M | { | 1349 | 2.22M | B >>= 1; | 1350 | 2.22M | N_B <<= 1; | 1351 | 2.22M | cm |= cm>>B; | 1352 | 2.22M | haar1(X, N_B, B); | 1353 | 2.22M | } | 1354 | | | 1355 | 138M | for (k=0;k<recombine;k++) | 1356 | 1.08M | { | 1357 | 1.08M | static const unsigned char bit_deinterleave_table[16]={ | 1358 | 1.08M | 0x00,0x03,0x0C,0x0F,0x30,0x33,0x3C,0x3F, | 1359 | 1.08M | 0xC0,0xC3,0xCC,0xCF,0xF0,0xF3,0xFC,0xFF | 1360 | 1.08M | }; | 1361 | 1.08M | cm = bit_deinterleave_table[cm]; | 1362 | 1.08M | haar1(X, N0>>k, 1<<k); | 1363 | 1.08M | } | 1364 | 137M | B<<=recombine; | 1365 | | | 1366 | | /* Scale output for later folding */ | 1367 | 137M | if (lowband_out) | 1368 | 69.6M | { | 1369 | 69.6M | int j; | 1370 | 69.6M | opus_val16 n; | 1371 | 69.6M | n = celt_sqrt(SHL32(EXTEND32(N0),22)); | 1372 | 828M | for (j=0;j<N0;j++) | 1373 | 759M | lowband_out[j] = MULT16_32_Q15(n,X[j]); | 1374 | 69.6M | } | 1375 | 137M | cm &= (1<<B)-1; | 1376 | 137M | } | 1377 | 920M | return cm; | 1378 | 1.18G | } |
|
1379 | | |
1380 | | #ifdef FIXED_POINT |
1381 | 660M | #define MIN_STEREO_ENERGY 2 |
1382 | | #else |
1383 | 660M | #define MIN_STEREO_ENERGY 1e-10f |
1384 | | #endif |
1385 | | |
1386 | | /* This function is responsible for encoding and decoding a band for the stereo case. */ |
1387 | | static unsigned quant_band_stereo(struct band_ctx *ctx, celt_norm *X, celt_norm *Y, |
1388 | | int N, int b, int B, celt_norm *lowband, |
1389 | | int LM, celt_norm *lowband_out, |
1390 | | celt_norm *lowband_scratch, int fill |
1391 | | ARG_QEXT(int ext_b) ARG_QEXT(const int *cap)) |
1392 | 752M | { |
1393 | 752M | int imid=0, iside=0; |
1394 | 752M | int inv = 0; |
1395 | 752M | opus_val32 mid=0, side=0; |
1396 | 752M | unsigned cm=0; |
1397 | 752M | int mbits, sbits, delta; |
1398 | 752M | int itheta; |
1399 | 752M | int qalloc; |
1400 | 752M | struct split_ctx sctx; |
1401 | 752M | int orig_fill; |
1402 | 752M | int encode; |
1403 | 752M | ec_ctx *ec; |
1404 | | |
1405 | 752M | encode = ctx->encode; |
1406 | 752M | ec = ctx->ec; |
1407 | | |
1408 | | /* Special case for one sample */ |
1409 | 752M | if (N==1) |
1410 | 104M | { |
1411 | 104M | return quant_band_n1(ctx, X, Y, lowband_out); |
1412 | 104M | } |
1413 | | |
1414 | 648M | orig_fill = fill; |
1415 | | |
1416 | 648M | if (encode) { |
1417 | 646M | if (ctx->bandE[ctx->i] < MIN_STEREO_ENERGY || ctx->bandE[ctx->m->nbEBands+ctx->i] < MIN_STEREO_ENERGY) { |
1418 | 618M | if (ctx->bandE[ctx->i] > ctx->bandE[ctx->m->nbEBands+ctx->i]) OPUS_COPY(Y, X, N); |
1419 | 617M | else OPUS_COPY(X, Y, N); |
1420 | 618M | } |
1421 | 646M | } |
1422 | 648M | compute_theta(ctx, &sctx, X, Y, N, &b, B, B, LM, 1, &fill ARG_QEXT(&ext_b)); |
1423 | 648M | inv = sctx.inv; |
1424 | 648M | imid = sctx.imid; |
1425 | 648M | iside = sctx.iside; |
1426 | 648M | delta = sctx.delta; |
1427 | 648M | itheta = sctx.itheta; |
1428 | 648M | qalloc = sctx.qalloc; |
1429 | | #ifdef FIXED_POINT |
1430 | | # ifdef ENABLE_QEXT |
1431 | | (void)imid; |
1432 | | (void)iside; |
1433 | | mid = celt_cos_norm32(sctx.itheta_q30); |
1434 | | side = celt_cos_norm32((1<<30)-sctx.itheta_q30); |
1435 | | # else |
1436 | 190M | mid = SHL32(EXTEND32(imid), 16); |
1437 | 190M | side = SHL32(EXTEND32(iside), 16); |
1438 | | # endif |
1439 | | #else |
1440 | | # ifdef ENABLE_QEXT |
1441 | | (void)imid; |
1442 | | (void)iside; |
1443 | | mid = celt_cos_norm2(sctx.itheta_q30*(1.f/(1<<30))); |
1444 | | side = celt_cos_norm2(1.f-sctx.itheta_q30*(1.f/(1<<30))); |
1445 | | # else |
1446 | | mid = (1.f/32768)*imid; |
1447 | | side = (1.f/32768)*iside; |
1448 | | # endif |
1449 | | #endif |
1450 | | |
1451 | | /* This is a special case for N=2 that only works for stereo and takes |
1452 | | advantage of the fact that mid and side are orthogonal to encode |
1453 | | the side with just one bit. */ |
1454 | 648M | if (N==2) |
1455 | 161M | { |
1456 | 161M | int c; |
1457 | 161M | int sign=0; |
1458 | 161M | celt_norm *x2, *y2; |
1459 | 161M | mbits = b; |
1460 | 161M | sbits = 0; |
1461 | | /* Only need one bit for the side. */ |
1462 | 161M | if (itheta != 0 && itheta != 16384) |
1463 | 928k | sbits = 1<<BITRES; |
1464 | 161M | mbits -= sbits; |
1465 | 161M | c = itheta > 8192; |
1466 | 161M | ctx->remaining_bits -= qalloc+sbits; |
1467 | | |
1468 | 161M | x2 = c ? Y : X; |
1469 | 161M | y2 = c ? X : Y; |
1470 | 161M | if (sbits) |
1471 | 928k | { |
1472 | 928k | if (encode) |
1473 | 880k | { |
1474 | | /* Here we only need to encode a sign for the side. */ |
1475 | | /* FIXME: Need to increase fixed-point precision? */ |
1476 | 880k | sign = MULT32_32_Q31(x2[0],y2[1]) - MULT32_32_Q31(x2[1],y2[0]) < 0; |
1477 | 880k | ec_enc_bits(ec, sign, 1); |
1478 | 880k | } else { |
1479 | 47.7k | sign = ec_dec_bits(ec, 1); |
1480 | 47.7k | } |
1481 | 928k | } |
1482 | 161M | sign = 1-2*sign; |
1483 | | /* We use orig_fill here because we want to fold the side, but if |
1484 | | itheta==16384, we'll have cleared the low bits of fill. */ |
1485 | 161M | cm = quant_band(ctx, x2, N, mbits, B, lowband, LM, lowband_out, Q31ONE, |
1486 | 161M | lowband_scratch, orig_fill ARG_QEXT(ext_b)); |
1487 | | /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse), |
1488 | | and there's no need to worry about mixing with the other channel. */ |
1489 | 161M | y2[0] = -sign*x2[1]; |
1490 | 161M | y2[1] = sign*x2[0]; |
1491 | 161M | if (ctx->resynth) |
1492 | 33.4M | { |
1493 | 33.4M | celt_norm tmp; |
1494 | 33.4M | X[0] = MULT32_32_Q31(mid, X[0]); |
1495 | 33.4M | X[1] = MULT32_32_Q31(mid, X[1]); |
1496 | 33.4M | Y[0] = MULT32_32_Q31(side, Y[0]); |
1497 | 33.4M | Y[1] = MULT32_32_Q31(side, Y[1]); |
1498 | 33.4M | tmp = X[0]; |
1499 | 33.4M | X[0] = SUB32(tmp,Y[0]); |
1500 | 33.4M | Y[0] = ADD32(tmp,Y[0]); |
1501 | 33.4M | tmp = X[1]; |
1502 | 33.4M | X[1] = SUB32(tmp,Y[1]); |
1503 | 33.4M | Y[1] = ADD32(tmp,Y[1]); |
1504 | 33.4M | } |
1505 | 487M | } else { |
1506 | | /* "Normal" split code */ |
1507 | 487M | opus_int32 rebalance; |
1508 | | |
1509 | 487M | mbits = IMAX(0, IMIN(b, (b-delta)/2)); |
1510 | 487M | sbits = b-mbits; |
1511 | 487M | ctx->remaining_bits -= qalloc; |
1512 | | |
1513 | 487M | rebalance = ctx->remaining_bits; |
1514 | 487M | if (mbits >= sbits) |
1515 | 484M | { |
1516 | | #ifdef ENABLE_QEXT |
1517 | | int qext_extra = 0; |
1518 | | /* Reallocate any mid bits that cannot be used to extra mid bits. */ |
1519 | 202M | if (cap != NULL && ext_b != 0) qext_extra = IMAX(0, IMIN(ext_b/2, mbits - cap[ctx->i]/2)); |
1520 | | #endif |
1521 | | /* In stereo mode, we do not apply a scaling to the mid because we need the normalized |
1522 | | mid for folding later. */ |
1523 | 484M | cm = quant_band(ctx, X, N, mbits, B, lowband, LM, lowband_out, Q31ONE, |
1524 | 484M | lowband_scratch, fill ARG_QEXT(ext_b/2+qext_extra)); |
1525 | 484M | rebalance = mbits - (rebalance-ctx->remaining_bits); |
1526 | 484M | if (rebalance > 3<<BITRES && itheta!=0) |
1527 | 1.11M | sbits += rebalance - (3<<BITRES); |
1528 | | #ifdef ENABLE_QEXT |
1529 | | /* Guard against overflowing the EC with the angle if the cubic quant used too many bits for the mid. */ |
1530 | 202M | if (ctx->extra_bands) sbits = IMIN(sbits, ctx->remaining_bits); |
1531 | | #endif |
1532 | | /* For a stereo split, the high bits of fill are always zero, so no |
1533 | | folding will be done to the side. */ |
1534 | 484M | cm |= quant_band(ctx, Y, N, sbits, B, NULL, LM, NULL, side, NULL, fill>>B ARG_QEXT(ext_b/2-qext_extra)); |
1535 | 484M | } else { |
1536 | | #ifdef ENABLE_QEXT |
1537 | | int qext_extra = 0; |
1538 | | /* Reallocate any side bits that cannot be used to extra side bits. */ |
1539 | 591k | if (cap != NULL && ext_b != 0) qext_extra = IMAX(0, IMIN(ext_b/2, sbits - cap[ctx->i]/2)); |
1540 | | #endif |
1541 | | /* For a stereo split, the high bits of fill are always zero, so no |
1542 | | folding will be done to the side. */ |
1543 | 2.64M | cm = quant_band(ctx, Y, N, sbits, B, NULL, LM, NULL, side, NULL, fill>>B ARG_QEXT(ext_b/2+qext_extra)); |
1544 | 2.64M | rebalance = sbits - (rebalance-ctx->remaining_bits); |
1545 | 2.64M | if (rebalance > 3<<BITRES && itheta!=16384) |
1546 | 59.0k | mbits += rebalance - (3<<BITRES); |
1547 | | #ifdef ENABLE_QEXT |
1548 | | /* Guard against overflowing the EC with the angle if the cubic quant used too many bits for the side. */ |
1549 | 591k | if (ctx->extra_bands) mbits = IMIN(mbits, ctx->remaining_bits); |
1550 | | #endif |
1551 | | /* In stereo mode, we do not apply a scaling to the mid because we need the normalized |
1552 | | mid for folding later. */ |
1553 | 2.64M | cm |= quant_band(ctx, X, N, mbits, B, lowband, LM, lowband_out, Q31ONE, |
1554 | 2.64M | lowband_scratch, fill ARG_QEXT(ext_b/2-qext_extra)); |
1555 | 2.64M | } |
1556 | 487M | } |
1557 | | |
1558 | | |
1559 | | /* This code is used by the decoder and by the resynthesis-enabled encoder */ |
1560 | 648M | if (ctx->resynth) |
1561 | 224M | { |
1562 | 224M | if (N!=2) |
1563 | 191M | stereo_merge(X, Y, mid, N, ctx->arch); |
1564 | 224M | if (inv) |
1565 | 179k | { |
1566 | 179k | int j; |
1567 | 3.66M | for (j=0;j<N;j++) |
1568 | 3.48M | Y[j] = -Y[j]; |
1569 | 179k | } |
1570 | 224M | } |
1571 | 648M | return cm; |
1572 | 752M | } bands.c:quant_band_stereo Line | Count | Source | 1392 | 235M | { | 1393 | 235M | int imid=0, iside=0; | 1394 | 235M | int inv = 0; | 1395 | 235M | opus_val32 mid=0, side=0; | 1396 | 235M | unsigned cm=0; | 1397 | 235M | int mbits, sbits, delta; | 1398 | 235M | int itheta; | 1399 | 235M | int qalloc; | 1400 | 235M | struct split_ctx sctx; | 1401 | 235M | int orig_fill; | 1402 | 235M | int encode; | 1403 | 235M | ec_ctx *ec; | 1404 | | | 1405 | 235M | encode = ctx->encode; | 1406 | 235M | ec = ctx->ec; | 1407 | | | 1408 | | /* Special case for one sample */ | 1409 | 235M | if (N==1) | 1410 | 44.9M | { | 1411 | 44.9M | return quant_band_n1(ctx, X, Y, lowband_out); | 1412 | 44.9M | } | 1413 | | | 1414 | 190M | orig_fill = fill; | 1415 | | | 1416 | 190M | if (encode) { | 1417 | 189M | if (ctx->bandE[ctx->i] < MIN_STEREO_ENERGY || ctx->bandE[ctx->m->nbEBands+ctx->i] < MIN_STEREO_ENERGY) { | 1418 | 179M | if (ctx->bandE[ctx->i] > ctx->bandE[ctx->m->nbEBands+ctx->i]) OPUS_COPY(Y, X, N); | 1419 | 178M | else OPUS_COPY(X, Y, N); | 1420 | 179M | } | 1421 | 189M | } | 1422 | 190M | compute_theta(ctx, &sctx, X, Y, N, &b, B, B, LM, 1, &fill ARG_QEXT(&ext_b)); | 1423 | 190M | inv = sctx.inv; | 1424 | 190M | imid = sctx.imid; | 1425 | 190M | iside = sctx.iside; | 1426 | 190M | delta = sctx.delta; | 1427 | 190M | itheta = sctx.itheta; | 1428 | 190M | qalloc = sctx.qalloc; | 1429 | 190M | #ifdef FIXED_POINT | 1430 | | # ifdef ENABLE_QEXT | 1431 | | (void)imid; | 1432 | | (void)iside; | 1433 | | mid = celt_cos_norm32(sctx.itheta_q30); | 1434 | | side = celt_cos_norm32((1<<30)-sctx.itheta_q30); | 1435 | | # else | 1436 | 190M | mid = SHL32(EXTEND32(imid), 16); | 1437 | 190M | side = SHL32(EXTEND32(iside), 16); | 1438 | 190M | # endif | 1439 | | #else | 1440 | | # ifdef ENABLE_QEXT | 1441 | | (void)imid; | 1442 | | (void)iside; | 1443 | | mid = celt_cos_norm2(sctx.itheta_q30*(1.f/(1<<30))); | 1444 | | side = celt_cos_norm2(1.f-sctx.itheta_q30*(1.f/(1<<30))); | 1445 | | # else | 1446 | | mid = (1.f/32768)*imid; | 1447 | | side = (1.f/32768)*iside; | 1448 | | # endif | 1449 | | #endif | 1450 | | | 1451 | | /* This is a special case for N=2 that only works for stereo and takes | 1452 | | advantage of the fact that mid and side are orthogonal to encode | 1453 | | the side with just one bit. */ | 1454 | 190M | if (N==2) | 1455 | 48.3M | { | 1456 | 48.3M | int c; | 1457 | 48.3M | int sign=0; | 1458 | 48.3M | celt_norm *x2, *y2; | 1459 | 48.3M | mbits = b; | 1460 | 48.3M | sbits = 0; | 1461 | | /* Only need one bit for the side. */ | 1462 | 48.3M | if (itheta != 0 && itheta != 16384) | 1463 | 353k | sbits = 1<<BITRES; | 1464 | 48.3M | mbits -= sbits; | 1465 | 48.3M | c = itheta > 8192; | 1466 | 48.3M | ctx->remaining_bits -= qalloc+sbits; | 1467 | | | 1468 | 48.3M | x2 = c ? Y : X; | 1469 | 48.3M | y2 = c ? X : Y; | 1470 | 48.3M | if (sbits) | 1471 | 353k | { | 1472 | 353k | if (encode) | 1473 | 342k | { | 1474 | | /* Here we only need to encode a sign for the side. */ | 1475 | | /* FIXME: Need to increase fixed-point precision? */ | 1476 | 342k | sign = MULT32_32_Q31(x2[0],y2[1]) - MULT32_32_Q31(x2[1],y2[0]) < 0; | 1477 | 342k | ec_enc_bits(ec, sign, 1); | 1478 | 342k | } else { | 1479 | 10.7k | sign = ec_dec_bits(ec, 1); | 1480 | 10.7k | } | 1481 | 353k | } | 1482 | 48.3M | sign = 1-2*sign; | 1483 | | /* We use orig_fill here because we want to fold the side, but if | 1484 | | itheta==16384, we'll have cleared the low bits of fill. */ | 1485 | 48.3M | cm = quant_band(ctx, x2, N, mbits, B, lowband, LM, lowband_out, Q31ONE, | 1486 | 48.3M | lowband_scratch, orig_fill ARG_QEXT(ext_b)); | 1487 | | /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse), | 1488 | | and there's no need to worry about mixing with the other channel. */ | 1489 | 48.3M | y2[0] = -sign*x2[1]; | 1490 | 48.3M | y2[1] = sign*x2[0]; | 1491 | 48.3M | if (ctx->resynth) | 1492 | 10.3M | { | 1493 | 10.3M | celt_norm tmp; | 1494 | 10.3M | X[0] = MULT32_32_Q31(mid, X[0]); | 1495 | 10.3M | X[1] = MULT32_32_Q31(mid, X[1]); | 1496 | 10.3M | Y[0] = MULT32_32_Q31(side, Y[0]); | 1497 | 10.3M | Y[1] = MULT32_32_Q31(side, Y[1]); | 1498 | 10.3M | tmp = X[0]; | 1499 | 10.3M | X[0] = SUB32(tmp,Y[0]); | 1500 | 10.3M | Y[0] = ADD32(tmp,Y[0]); | 1501 | 10.3M | tmp = X[1]; | 1502 | 10.3M | X[1] = SUB32(tmp,Y[1]); | 1503 | 10.3M | Y[1] = ADD32(tmp,Y[1]); | 1504 | 10.3M | } | 1505 | 142M | } else { | 1506 | | /* "Normal" split code */ | 1507 | 142M | opus_int32 rebalance; | 1508 | | | 1509 | 142M | mbits = IMAX(0, IMIN(b, (b-delta)/2)); | 1510 | 142M | sbits = b-mbits; | 1511 | 142M | ctx->remaining_bits -= qalloc; | 1512 | | | 1513 | 142M | rebalance = ctx->remaining_bits; | 1514 | 142M | if (mbits >= sbits) | 1515 | 141M | { | 1516 | | #ifdef ENABLE_QEXT | 1517 | | int qext_extra = 0; | 1518 | | /* Reallocate any mid bits that cannot be used to extra mid bits. */ | 1519 | | if (cap != NULL && ext_b != 0) qext_extra = IMAX(0, IMIN(ext_b/2, mbits - cap[ctx->i]/2)); | 1520 | | #endif | 1521 | | /* In stereo mode, we do not apply a scaling to the mid because we need the normalized | 1522 | | mid for folding later. */ | 1523 | 141M | cm = quant_band(ctx, X, N, mbits, B, lowband, LM, lowband_out, Q31ONE, | 1524 | 141M | lowband_scratch, fill ARG_QEXT(ext_b/2+qext_extra)); | 1525 | 141M | rebalance = mbits - (rebalance-ctx->remaining_bits); | 1526 | 141M | if (rebalance > 3<<BITRES && itheta!=0) | 1527 | 531k | sbits += rebalance - (3<<BITRES); | 1528 | | #ifdef ENABLE_QEXT | 1529 | | /* Guard against overflowing the EC with the angle if the cubic quant used too many bits for the mid. */ | 1530 | | if (ctx->extra_bands) sbits = IMIN(sbits, ctx->remaining_bits); | 1531 | | #endif | 1532 | | /* For a stereo split, the high bits of fill are always zero, so no | 1533 | | folding will be done to the side. */ | 1534 | 141M | cm |= quant_band(ctx, Y, N, sbits, B, NULL, LM, NULL, side, NULL, fill>>B ARG_QEXT(ext_b/2-qext_extra)); | 1535 | 141M | } else { | 1536 | | #ifdef ENABLE_QEXT | 1537 | | int qext_extra = 0; | 1538 | | /* Reallocate any side bits that cannot be used to extra side bits. */ | 1539 | | if (cap != NULL && ext_b != 0) qext_extra = IMAX(0, IMIN(ext_b/2, sbits - cap[ctx->i]/2)); | 1540 | | #endif | 1541 | | /* For a stereo split, the high bits of fill are always zero, so no | 1542 | | folding will be done to the side. */ | 1543 | 1.02M | cm = quant_band(ctx, Y, N, sbits, B, NULL, LM, NULL, side, NULL, fill>>B ARG_QEXT(ext_b/2+qext_extra)); | 1544 | 1.02M | rebalance = sbits - (rebalance-ctx->remaining_bits); | 1545 | 1.02M | if (rebalance > 3<<BITRES && itheta!=16384) | 1546 | 18.2k | mbits += rebalance - (3<<BITRES); | 1547 | | #ifdef ENABLE_QEXT | 1548 | | /* Guard against overflowing the EC with the angle if the cubic quant used too many bits for the side. */ | 1549 | | if (ctx->extra_bands) mbits = IMIN(mbits, ctx->remaining_bits); | 1550 | | #endif | 1551 | | /* In stereo mode, we do not apply a scaling to the mid because we need the normalized | 1552 | | mid for folding later. */ | 1553 | 1.02M | cm |= quant_band(ctx, X, N, mbits, B, lowband, LM, lowband_out, Q31ONE, | 1554 | 1.02M | lowband_scratch, fill ARG_QEXT(ext_b/2-qext_extra)); | 1555 | 1.02M | } | 1556 | 142M | } | 1557 | | | 1558 | | | 1559 | | /* This code is used by the decoder and by the resynthesis-enabled encoder */ | 1560 | 190M | if (ctx->resynth) | 1561 | 73.3M | { | 1562 | 73.3M | if (N!=2) | 1563 | 62.9M | stereo_merge(X, Y, mid, N, ctx->arch); | 1564 | 73.3M | if (inv) | 1565 | 56.4k | { | 1566 | 56.4k | int j; | 1567 | 1.34M | for (j=0;j<N;j++) | 1568 | 1.28M | Y[j] = -Y[j]; | 1569 | 56.4k | } | 1570 | 73.3M | } | 1571 | 190M | return cm; | 1572 | 235M | } |
bands.c:quant_band_stereo Line | Count | Source | 1392 | 140M | { | 1393 | 140M | int imid=0, iside=0; | 1394 | 140M | int inv = 0; | 1395 | 140M | opus_val32 mid=0, side=0; | 1396 | 140M | unsigned cm=0; | 1397 | 140M | int mbits, sbits, delta; | 1398 | 140M | int itheta; | 1399 | 140M | int qalloc; | 1400 | 140M | struct split_ctx sctx; | 1401 | 140M | int orig_fill; | 1402 | 140M | int encode; | 1403 | 140M | ec_ctx *ec; | 1404 | | | 1405 | 140M | encode = ctx->encode; | 1406 | 140M | ec = ctx->ec; | 1407 | | | 1408 | | /* Special case for one sample */ | 1409 | 140M | if (N==1) | 1410 | 7.18M | { | 1411 | 7.18M | return quant_band_n1(ctx, X, Y, lowband_out); | 1412 | 7.18M | } | 1413 | | | 1414 | 133M | orig_fill = fill; | 1415 | | | 1416 | 133M | if (encode) { | 1417 | 133M | if (ctx->bandE[ctx->i] < MIN_STEREO_ENERGY || ctx->bandE[ctx->m->nbEBands+ctx->i] < MIN_STEREO_ENERGY) { | 1418 | 130M | if (ctx->bandE[ctx->i] > ctx->bandE[ctx->m->nbEBands+ctx->i]) OPUS_COPY(Y, X, N); | 1419 | 129M | else OPUS_COPY(X, Y, N); | 1420 | 130M | } | 1421 | 133M | } | 1422 | 133M | compute_theta(ctx, &sctx, X, Y, N, &b, B, B, LM, 1, &fill ARG_QEXT(&ext_b)); | 1423 | 133M | inv = sctx.inv; | 1424 | 133M | imid = sctx.imid; | 1425 | 133M | iside = sctx.iside; | 1426 | 133M | delta = sctx.delta; | 1427 | 133M | itheta = sctx.itheta; | 1428 | 133M | qalloc = sctx.qalloc; | 1429 | 133M | #ifdef FIXED_POINT | 1430 | 133M | # ifdef ENABLE_QEXT | 1431 | 133M | (void)imid; | 1432 | 133M | (void)iside; | 1433 | 133M | mid = celt_cos_norm32(sctx.itheta_q30); | 1434 | 133M | side = celt_cos_norm32((1<<30)-sctx.itheta_q30); | 1435 | | # else | 1436 | | mid = SHL32(EXTEND32(imid), 16); | 1437 | | side = SHL32(EXTEND32(iside), 16); | 1438 | | # endif | 1439 | | #else | 1440 | | # ifdef ENABLE_QEXT | 1441 | | (void)imid; | 1442 | | (void)iside; | 1443 | | mid = celt_cos_norm2(sctx.itheta_q30*(1.f/(1<<30))); | 1444 | | side = celt_cos_norm2(1.f-sctx.itheta_q30*(1.f/(1<<30))); | 1445 | | # else | 1446 | | mid = (1.f/32768)*imid; | 1447 | | side = (1.f/32768)*iside; | 1448 | | # endif | 1449 | | #endif | 1450 | | | 1451 | | /* This is a special case for N=2 that only works for stereo and takes | 1452 | | advantage of the fact that mid and side are orthogonal to encode | 1453 | | the side with just one bit. */ | 1454 | 133M | if (N==2) | 1455 | 32.1M | { | 1456 | 32.1M | int c; | 1457 | 32.1M | int sign=0; | 1458 | 32.1M | celt_norm *x2, *y2; | 1459 | 32.1M | mbits = b; | 1460 | 32.1M | sbits = 0; | 1461 | | /* Only need one bit for the side. */ | 1462 | 32.1M | if (itheta != 0 && itheta != 16384) | 1463 | 110k | sbits = 1<<BITRES; | 1464 | 32.1M | mbits -= sbits; | 1465 | 32.1M | c = itheta > 8192; | 1466 | 32.1M | ctx->remaining_bits -= qalloc+sbits; | 1467 | | | 1468 | 32.1M | x2 = c ? Y : X; | 1469 | 32.1M | y2 = c ? X : Y; | 1470 | 32.1M | if (sbits) | 1471 | 110k | { | 1472 | 110k | if (encode) | 1473 | 97.3k | { | 1474 | | /* Here we only need to encode a sign for the side. */ | 1475 | | /* FIXME: Need to increase fixed-point precision? */ | 1476 | 97.3k | sign = MULT32_32_Q31(x2[0],y2[1]) - MULT32_32_Q31(x2[1],y2[0]) < 0; | 1477 | 97.3k | ec_enc_bits(ec, sign, 1); | 1478 | 97.3k | } else { | 1479 | 13.1k | sign = ec_dec_bits(ec, 1); | 1480 | 13.1k | } | 1481 | 110k | } | 1482 | 32.1M | sign = 1-2*sign; | 1483 | | /* We use orig_fill here because we want to fold the side, but if | 1484 | | itheta==16384, we'll have cleared the low bits of fill. */ | 1485 | 32.1M | cm = quant_band(ctx, x2, N, mbits, B, lowband, LM, lowband_out, Q31ONE, | 1486 | 32.1M | lowband_scratch, orig_fill ARG_QEXT(ext_b)); | 1487 | | /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse), | 1488 | | and there's no need to worry about mixing with the other channel. */ | 1489 | 32.1M | y2[0] = -sign*x2[1]; | 1490 | 32.1M | y2[1] = sign*x2[0]; | 1491 | 32.1M | if (ctx->resynth) | 1492 | 6.33M | { | 1493 | 6.33M | celt_norm tmp; | 1494 | 6.33M | X[0] = MULT32_32_Q31(mid, X[0]); | 1495 | 6.33M | X[1] = MULT32_32_Q31(mid, X[1]); | 1496 | 6.33M | Y[0] = MULT32_32_Q31(side, Y[0]); | 1497 | 6.33M | Y[1] = MULT32_32_Q31(side, Y[1]); | 1498 | 6.33M | tmp = X[0]; | 1499 | 6.33M | X[0] = SUB32(tmp,Y[0]); | 1500 | 6.33M | Y[0] = ADD32(tmp,Y[0]); | 1501 | 6.33M | tmp = X[1]; | 1502 | 6.33M | X[1] = SUB32(tmp,Y[1]); | 1503 | 6.33M | Y[1] = ADD32(tmp,Y[1]); | 1504 | 6.33M | } | 1505 | 101M | } else { | 1506 | | /* "Normal" split code */ | 1507 | 101M | opus_int32 rebalance; | 1508 | | | 1509 | 101M | mbits = IMAX(0, IMIN(b, (b-delta)/2)); | 1510 | 101M | sbits = b-mbits; | 1511 | 101M | ctx->remaining_bits -= qalloc; | 1512 | | | 1513 | 101M | rebalance = ctx->remaining_bits; | 1514 | 101M | if (mbits >= sbits) | 1515 | 101M | { | 1516 | 101M | #ifdef ENABLE_QEXT | 1517 | 101M | int qext_extra = 0; | 1518 | | /* Reallocate any mid bits that cannot be used to extra mid bits. */ | 1519 | 101M | if (cap != NULL && ext_b != 0) qext_extra = IMAX(0, IMIN(ext_b/2, mbits - cap[ctx->i]/2)); | 1520 | 101M | #endif | 1521 | | /* In stereo mode, we do not apply a scaling to the mid because we need the normalized | 1522 | | mid for folding later. */ | 1523 | 101M | cm = quant_band(ctx, X, N, mbits, B, lowband, LM, lowband_out, Q31ONE, | 1524 | 101M | lowband_scratch, fill ARG_QEXT(ext_b/2+qext_extra)); | 1525 | 101M | rebalance = mbits - (rebalance-ctx->remaining_bits); | 1526 | 101M | if (rebalance > 3<<BITRES && itheta!=0) | 1527 | 24.5k | sbits += rebalance - (3<<BITRES); | 1528 | 101M | #ifdef ENABLE_QEXT | 1529 | | /* Guard against overflowing the EC with the angle if the cubic quant used too many bits for the mid. */ | 1530 | 101M | if (ctx->extra_bands) sbits = IMIN(sbits, ctx->remaining_bits); | 1531 | 101M | #endif | 1532 | | /* For a stereo split, the high bits of fill are always zero, so no | 1533 | | folding will be done to the side. */ | 1534 | 101M | cm |= quant_band(ctx, Y, N, sbits, B, NULL, LM, NULL, side, NULL, fill>>B ARG_QEXT(ext_b/2-qext_extra)); | 1535 | 101M | } else { | 1536 | 295k | #ifdef ENABLE_QEXT | 1537 | 295k | int qext_extra = 0; | 1538 | | /* Reallocate any side bits that cannot be used to extra side bits. */ | 1539 | 295k | if (cap != NULL && ext_b != 0) qext_extra = IMAX(0, IMIN(ext_b/2, sbits - cap[ctx->i]/2)); | 1540 | 295k | #endif | 1541 | | /* For a stereo split, the high bits of fill are always zero, so no | 1542 | | folding will be done to the side. */ | 1543 | 295k | cm = quant_band(ctx, Y, N, sbits, B, NULL, LM, NULL, side, NULL, fill>>B ARG_QEXT(ext_b/2+qext_extra)); | 1544 | 295k | rebalance = sbits - (rebalance-ctx->remaining_bits); | 1545 | 295k | if (rebalance > 3<<BITRES && itheta!=16384) | 1546 | 11.2k | mbits += rebalance - (3<<BITRES); | 1547 | 295k | #ifdef ENABLE_QEXT | 1548 | | /* Guard against overflowing the EC with the angle if the cubic quant used too many bits for the side. */ | 1549 | 295k | if (ctx->extra_bands) mbits = IMIN(mbits, ctx->remaining_bits); | 1550 | 295k | #endif | 1551 | | /* In stereo mode, we do not apply a scaling to the mid because we need the normalized | 1552 | | mid for folding later. */ | 1553 | 295k | cm |= quant_band(ctx, X, N, mbits, B, lowband, LM, lowband_out, Q31ONE, | 1554 | 295k | lowband_scratch, fill ARG_QEXT(ext_b/2-qext_extra)); | 1555 | 295k | } | 1556 | 101M | } | 1557 | | | 1558 | | | 1559 | | /* This code is used by the decoder and by the resynthesis-enabled encoder */ | 1560 | 133M | if (ctx->resynth) | 1561 | 39.0M | { | 1562 | 39.0M | if (N!=2) | 1563 | 32.7M | stereo_merge(X, Y, mid, N, ctx->arch); | 1564 | 39.0M | if (inv) | 1565 | 33.2k | { | 1566 | 33.2k | int j; | 1567 | 489k | for (j=0;j<N;j++) | 1568 | 455k | Y[j] = -Y[j]; | 1569 | 33.2k | } | 1570 | 39.0M | } | 1571 | 133M | return cm; | 1572 | 140M | } |
bands.c:quant_band_stereo Line | Count | Source | 1392 | 140M | { | 1393 | 140M | int imid=0, iside=0; | 1394 | 140M | int inv = 0; | 1395 | 140M | opus_val32 mid=0, side=0; | 1396 | 140M | unsigned cm=0; | 1397 | 140M | int mbits, sbits, delta; | 1398 | 140M | int itheta; | 1399 | 140M | int qalloc; | 1400 | 140M | struct split_ctx sctx; | 1401 | 140M | int orig_fill; | 1402 | 140M | int encode; | 1403 | 140M | ec_ctx *ec; | 1404 | | | 1405 | 140M | encode = ctx->encode; | 1406 | 140M | ec = ctx->ec; | 1407 | | | 1408 | | /* Special case for one sample */ | 1409 | 140M | if (N==1) | 1410 | 7.18M | { | 1411 | 7.18M | return quant_band_n1(ctx, X, Y, lowband_out); | 1412 | 7.18M | } | 1413 | | | 1414 | 133M | orig_fill = fill; | 1415 | | | 1416 | 133M | if (encode) { | 1417 | 133M | if (ctx->bandE[ctx->i] < MIN_STEREO_ENERGY || ctx->bandE[ctx->m->nbEBands+ctx->i] < MIN_STEREO_ENERGY) { | 1418 | 130M | if (ctx->bandE[ctx->i] > ctx->bandE[ctx->m->nbEBands+ctx->i]) OPUS_COPY(Y, X, N); | 1419 | 129M | else OPUS_COPY(X, Y, N); | 1420 | 130M | } | 1421 | 133M | } | 1422 | 133M | compute_theta(ctx, &sctx, X, Y, N, &b, B, B, LM, 1, &fill ARG_QEXT(&ext_b)); | 1423 | 133M | inv = sctx.inv; | 1424 | 133M | imid = sctx.imid; | 1425 | 133M | iside = sctx.iside; | 1426 | 133M | delta = sctx.delta; | 1427 | 133M | itheta = sctx.itheta; | 1428 | 133M | qalloc = sctx.qalloc; | 1429 | | #ifdef FIXED_POINT | 1430 | | # ifdef ENABLE_QEXT | 1431 | | (void)imid; | 1432 | | (void)iside; | 1433 | | mid = celt_cos_norm32(sctx.itheta_q30); | 1434 | | side = celt_cos_norm32((1<<30)-sctx.itheta_q30); | 1435 | | # else | 1436 | | mid = SHL32(EXTEND32(imid), 16); | 1437 | | side = SHL32(EXTEND32(iside), 16); | 1438 | | # endif | 1439 | | #else | 1440 | 133M | # ifdef ENABLE_QEXT | 1441 | 133M | (void)imid; | 1442 | 133M | (void)iside; | 1443 | 133M | mid = celt_cos_norm2(sctx.itheta_q30*(1.f/(1<<30))); | 1444 | 133M | side = celt_cos_norm2(1.f-sctx.itheta_q30*(1.f/(1<<30))); | 1445 | | # else | 1446 | | mid = (1.f/32768)*imid; | 1447 | | side = (1.f/32768)*iside; | 1448 | | # endif | 1449 | 133M | #endif | 1450 | | | 1451 | | /* This is a special case for N=2 that only works for stereo and takes | 1452 | | advantage of the fact that mid and side are orthogonal to encode | 1453 | | the side with just one bit. */ | 1454 | 133M | if (N==2) | 1455 | 32.1M | { | 1456 | 32.1M | int c; | 1457 | 32.1M | int sign=0; | 1458 | 32.1M | celt_norm *x2, *y2; | 1459 | 32.1M | mbits = b; | 1460 | 32.1M | sbits = 0; | 1461 | | /* Only need one bit for the side. */ | 1462 | 32.1M | if (itheta != 0 && itheta != 16384) | 1463 | 110k | sbits = 1<<BITRES; | 1464 | 32.1M | mbits -= sbits; | 1465 | 32.1M | c = itheta > 8192; | 1466 | 32.1M | ctx->remaining_bits -= qalloc+sbits; | 1467 | | | 1468 | 32.1M | x2 = c ? Y : X; | 1469 | 32.1M | y2 = c ? X : Y; | 1470 | 32.1M | if (sbits) | 1471 | 110k | { | 1472 | 110k | if (encode) | 1473 | 97.3k | { | 1474 | | /* Here we only need to encode a sign for the side. */ | 1475 | | /* FIXME: Need to increase fixed-point precision? */ | 1476 | 97.3k | sign = MULT32_32_Q31(x2[0],y2[1]) - MULT32_32_Q31(x2[1],y2[0]) < 0; | 1477 | 97.3k | ec_enc_bits(ec, sign, 1); | 1478 | 97.3k | } else { | 1479 | 13.1k | sign = ec_dec_bits(ec, 1); | 1480 | 13.1k | } | 1481 | 110k | } | 1482 | 32.1M | sign = 1-2*sign; | 1483 | | /* We use orig_fill here because we want to fold the side, but if | 1484 | | itheta==16384, we'll have cleared the low bits of fill. */ | 1485 | 32.1M | cm = quant_band(ctx, x2, N, mbits, B, lowband, LM, lowband_out, Q31ONE, | 1486 | 32.1M | lowband_scratch, orig_fill ARG_QEXT(ext_b)); | 1487 | | /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse), | 1488 | | and there's no need to worry about mixing with the other channel. */ | 1489 | 32.1M | y2[0] = -sign*x2[1]; | 1490 | 32.1M | y2[1] = sign*x2[0]; | 1491 | 32.1M | if (ctx->resynth) | 1492 | 6.33M | { | 1493 | 6.33M | celt_norm tmp; | 1494 | 6.33M | X[0] = MULT32_32_Q31(mid, X[0]); | 1495 | 6.33M | X[1] = MULT32_32_Q31(mid, X[1]); | 1496 | 6.33M | Y[0] = MULT32_32_Q31(side, Y[0]); | 1497 | 6.33M | Y[1] = MULT32_32_Q31(side, Y[1]); | 1498 | 6.33M | tmp = X[0]; | 1499 | 6.33M | X[0] = SUB32(tmp,Y[0]); | 1500 | 6.33M | Y[0] = ADD32(tmp,Y[0]); | 1501 | 6.33M | tmp = X[1]; | 1502 | 6.33M | X[1] = SUB32(tmp,Y[1]); | 1503 | 6.33M | Y[1] = ADD32(tmp,Y[1]); | 1504 | 6.33M | } | 1505 | 101M | } else { | 1506 | | /* "Normal" split code */ | 1507 | 101M | opus_int32 rebalance; | 1508 | | | 1509 | 101M | mbits = IMAX(0, IMIN(b, (b-delta)/2)); | 1510 | 101M | sbits = b-mbits; | 1511 | 101M | ctx->remaining_bits -= qalloc; | 1512 | | | 1513 | 101M | rebalance = ctx->remaining_bits; | 1514 | 101M | if (mbits >= sbits) | 1515 | 101M | { | 1516 | 101M | #ifdef ENABLE_QEXT | 1517 | 101M | int qext_extra = 0; | 1518 | | /* Reallocate any mid bits that cannot be used to extra mid bits. */ | 1519 | 101M | if (cap != NULL && ext_b != 0) qext_extra = IMAX(0, IMIN(ext_b/2, mbits - cap[ctx->i]/2)); | 1520 | 101M | #endif | 1521 | | /* In stereo mode, we do not apply a scaling to the mid because we need the normalized | 1522 | | mid for folding later. */ | 1523 | 101M | cm = quant_band(ctx, X, N, mbits, B, lowband, LM, lowband_out, Q31ONE, | 1524 | 101M | lowband_scratch, fill ARG_QEXT(ext_b/2+qext_extra)); | 1525 | 101M | rebalance = mbits - (rebalance-ctx->remaining_bits); | 1526 | 101M | if (rebalance > 3<<BITRES && itheta!=0) | 1527 | 24.5k | sbits += rebalance - (3<<BITRES); | 1528 | 101M | #ifdef ENABLE_QEXT | 1529 | | /* Guard against overflowing the EC with the angle if the cubic quant used too many bits for the mid. */ | 1530 | 101M | if (ctx->extra_bands) sbits = IMIN(sbits, ctx->remaining_bits); | 1531 | 101M | #endif | 1532 | | /* For a stereo split, the high bits of fill are always zero, so no | 1533 | | folding will be done to the side. */ | 1534 | 101M | cm |= quant_band(ctx, Y, N, sbits, B, NULL, LM, NULL, side, NULL, fill>>B ARG_QEXT(ext_b/2-qext_extra)); | 1535 | 101M | } else { | 1536 | 295k | #ifdef ENABLE_QEXT | 1537 | 295k | int qext_extra = 0; | 1538 | | /* Reallocate any side bits that cannot be used to extra side bits. */ | 1539 | 295k | if (cap != NULL && ext_b != 0) qext_extra = IMAX(0, IMIN(ext_b/2, sbits - cap[ctx->i]/2)); | 1540 | 295k | #endif | 1541 | | /* For a stereo split, the high bits of fill are always zero, so no | 1542 | | folding will be done to the side. */ | 1543 | 295k | cm = quant_band(ctx, Y, N, sbits, B, NULL, LM, NULL, side, NULL, fill>>B ARG_QEXT(ext_b/2+qext_extra)); | 1544 | 295k | rebalance = sbits - (rebalance-ctx->remaining_bits); | 1545 | 295k | if (rebalance > 3<<BITRES && itheta!=16384) | 1546 | 11.2k | mbits += rebalance - (3<<BITRES); | 1547 | 295k | #ifdef ENABLE_QEXT | 1548 | | /* Guard against overflowing the EC with the angle if the cubic quant used too many bits for the side. */ | 1549 | 295k | if (ctx->extra_bands) mbits = IMIN(mbits, ctx->remaining_bits); | 1550 | 295k | #endif | 1551 | | /* In stereo mode, we do not apply a scaling to the mid because we need the normalized | 1552 | | mid for folding later. */ | 1553 | 295k | cm |= quant_band(ctx, X, N, mbits, B, lowband, LM, lowband_out, Q31ONE, | 1554 | 295k | lowband_scratch, fill ARG_QEXT(ext_b/2-qext_extra)); | 1555 | 295k | } | 1556 | 101M | } | 1557 | | | 1558 | | | 1559 | | /* This code is used by the decoder and by the resynthesis-enabled encoder */ | 1560 | 133M | if (ctx->resynth) | 1561 | 39.0M | { | 1562 | 39.0M | if (N!=2) | 1563 | 32.7M | stereo_merge(X, Y, mid, N, ctx->arch); | 1564 | 39.0M | if (inv) | 1565 | 33.2k | { | 1566 | 33.2k | int j; | 1567 | 489k | for (j=0;j<N;j++) | 1568 | 455k | Y[j] = -Y[j]; | 1569 | 33.2k | } | 1570 | 39.0M | } | 1571 | 133M | return cm; | 1572 | 140M | } |
bands.c:quant_band_stereo Line | Count | Source | 1392 | 235M | { | 1393 | 235M | int imid=0, iside=0; | 1394 | 235M | int inv = 0; | 1395 | 235M | opus_val32 mid=0, side=0; | 1396 | 235M | unsigned cm=0; | 1397 | 235M | int mbits, sbits, delta; | 1398 | 235M | int itheta; | 1399 | 235M | int qalloc; | 1400 | 235M | struct split_ctx sctx; | 1401 | 235M | int orig_fill; | 1402 | 235M | int encode; | 1403 | 235M | ec_ctx *ec; | 1404 | | | 1405 | 235M | encode = ctx->encode; | 1406 | 235M | ec = ctx->ec; | 1407 | | | 1408 | | /* Special case for one sample */ | 1409 | 235M | if (N==1) | 1410 | 44.9M | { | 1411 | 44.9M | return quant_band_n1(ctx, X, Y, lowband_out); | 1412 | 44.9M | } | 1413 | | | 1414 | 190M | orig_fill = fill; | 1415 | | | 1416 | 190M | if (encode) { | 1417 | 189M | if (ctx->bandE[ctx->i] < MIN_STEREO_ENERGY || ctx->bandE[ctx->m->nbEBands+ctx->i] < MIN_STEREO_ENERGY) { | 1418 | 179M | if (ctx->bandE[ctx->i] > ctx->bandE[ctx->m->nbEBands+ctx->i]) OPUS_COPY(Y, X, N); | 1419 | 178M | else OPUS_COPY(X, Y, N); | 1420 | 179M | } | 1421 | 189M | } | 1422 | 190M | compute_theta(ctx, &sctx, X, Y, N, &b, B, B, LM, 1, &fill ARG_QEXT(&ext_b)); | 1423 | 190M | inv = sctx.inv; | 1424 | 190M | imid = sctx.imid; | 1425 | 190M | iside = sctx.iside; | 1426 | 190M | delta = sctx.delta; | 1427 | 190M | itheta = sctx.itheta; | 1428 | 190M | qalloc = sctx.qalloc; | 1429 | | #ifdef FIXED_POINT | 1430 | | # ifdef ENABLE_QEXT | 1431 | | (void)imid; | 1432 | | (void)iside; | 1433 | | mid = celt_cos_norm32(sctx.itheta_q30); | 1434 | | side = celt_cos_norm32((1<<30)-sctx.itheta_q30); | 1435 | | # else | 1436 | | mid = SHL32(EXTEND32(imid), 16); | 1437 | | side = SHL32(EXTEND32(iside), 16); | 1438 | | # endif | 1439 | | #else | 1440 | | # ifdef ENABLE_QEXT | 1441 | | (void)imid; | 1442 | | (void)iside; | 1443 | | mid = celt_cos_norm2(sctx.itheta_q30*(1.f/(1<<30))); | 1444 | | side = celt_cos_norm2(1.f-sctx.itheta_q30*(1.f/(1<<30))); | 1445 | | # else | 1446 | 190M | mid = (1.f/32768)*imid; | 1447 | 190M | side = (1.f/32768)*iside; | 1448 | 190M | # endif | 1449 | 190M | #endif | 1450 | | | 1451 | | /* This is a special case for N=2 that only works for stereo and takes | 1452 | | advantage of the fact that mid and side are orthogonal to encode | 1453 | | the side with just one bit. */ | 1454 | 190M | if (N==2) | 1455 | 48.3M | { | 1456 | 48.3M | int c; | 1457 | 48.3M | int sign=0; | 1458 | 48.3M | celt_norm *x2, *y2; | 1459 | 48.3M | mbits = b; | 1460 | 48.3M | sbits = 0; | 1461 | | /* Only need one bit for the side. */ | 1462 | 48.3M | if (itheta != 0 && itheta != 16384) | 1463 | 353k | sbits = 1<<BITRES; | 1464 | 48.3M | mbits -= sbits; | 1465 | 48.3M | c = itheta > 8192; | 1466 | 48.3M | ctx->remaining_bits -= qalloc+sbits; | 1467 | | | 1468 | 48.3M | x2 = c ? Y : X; | 1469 | 48.3M | y2 = c ? X : Y; | 1470 | 48.3M | if (sbits) | 1471 | 353k | { | 1472 | 353k | if (encode) | 1473 | 342k | { | 1474 | | /* Here we only need to encode a sign for the side. */ | 1475 | | /* FIXME: Need to increase fixed-point precision? */ | 1476 | 342k | sign = MULT32_32_Q31(x2[0],y2[1]) - MULT32_32_Q31(x2[1],y2[0]) < 0; | 1477 | 342k | ec_enc_bits(ec, sign, 1); | 1478 | 342k | } else { | 1479 | 10.7k | sign = ec_dec_bits(ec, 1); | 1480 | 10.7k | } | 1481 | 353k | } | 1482 | 48.3M | sign = 1-2*sign; | 1483 | | /* We use orig_fill here because we want to fold the side, but if | 1484 | | itheta==16384, we'll have cleared the low bits of fill. */ | 1485 | 48.3M | cm = quant_band(ctx, x2, N, mbits, B, lowband, LM, lowband_out, Q31ONE, | 1486 | 48.3M | lowband_scratch, orig_fill ARG_QEXT(ext_b)); | 1487 | | /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse), | 1488 | | and there's no need to worry about mixing with the other channel. */ | 1489 | 48.3M | y2[0] = -sign*x2[1]; | 1490 | 48.3M | y2[1] = sign*x2[0]; | 1491 | 48.3M | if (ctx->resynth) | 1492 | 10.3M | { | 1493 | 10.3M | celt_norm tmp; | 1494 | 10.3M | X[0] = MULT32_32_Q31(mid, X[0]); | 1495 | 10.3M | X[1] = MULT32_32_Q31(mid, X[1]); | 1496 | 10.3M | Y[0] = MULT32_32_Q31(side, Y[0]); | 1497 | 10.3M | Y[1] = MULT32_32_Q31(side, Y[1]); | 1498 | 10.3M | tmp = X[0]; | 1499 | 10.3M | X[0] = SUB32(tmp,Y[0]); | 1500 | 10.3M | Y[0] = ADD32(tmp,Y[0]); | 1501 | 10.3M | tmp = X[1]; | 1502 | 10.3M | X[1] = SUB32(tmp,Y[1]); | 1503 | 10.3M | Y[1] = ADD32(tmp,Y[1]); | 1504 | 10.3M | } | 1505 | 142M | } else { | 1506 | | /* "Normal" split code */ | 1507 | 142M | opus_int32 rebalance; | 1508 | | | 1509 | 142M | mbits = IMAX(0, IMIN(b, (b-delta)/2)); | 1510 | 142M | sbits = b-mbits; | 1511 | 142M | ctx->remaining_bits -= qalloc; | 1512 | | | 1513 | 142M | rebalance = ctx->remaining_bits; | 1514 | 142M | if (mbits >= sbits) | 1515 | 141M | { | 1516 | | #ifdef ENABLE_QEXT | 1517 | | int qext_extra = 0; | 1518 | | /* Reallocate any mid bits that cannot be used to extra mid bits. */ | 1519 | | if (cap != NULL && ext_b != 0) qext_extra = IMAX(0, IMIN(ext_b/2, mbits - cap[ctx->i]/2)); | 1520 | | #endif | 1521 | | /* In stereo mode, we do not apply a scaling to the mid because we need the normalized | 1522 | | mid for folding later. */ | 1523 | 141M | cm = quant_band(ctx, X, N, mbits, B, lowband, LM, lowband_out, Q31ONE, | 1524 | 141M | lowband_scratch, fill ARG_QEXT(ext_b/2+qext_extra)); | 1525 | 141M | rebalance = mbits - (rebalance-ctx->remaining_bits); | 1526 | 141M | if (rebalance > 3<<BITRES && itheta!=0) | 1527 | 531k | sbits += rebalance - (3<<BITRES); | 1528 | | #ifdef ENABLE_QEXT | 1529 | | /* Guard against overflowing the EC with the angle if the cubic quant used too many bits for the mid. */ | 1530 | | if (ctx->extra_bands) sbits = IMIN(sbits, ctx->remaining_bits); | 1531 | | #endif | 1532 | | /* For a stereo split, the high bits of fill are always zero, so no | 1533 | | folding will be done to the side. */ | 1534 | 141M | cm |= quant_band(ctx, Y, N, sbits, B, NULL, LM, NULL, side, NULL, fill>>B ARG_QEXT(ext_b/2-qext_extra)); | 1535 | 141M | } else { | 1536 | | #ifdef ENABLE_QEXT | 1537 | | int qext_extra = 0; | 1538 | | /* Reallocate any side bits that cannot be used to extra side bits. */ | 1539 | | if (cap != NULL && ext_b != 0) qext_extra = IMAX(0, IMIN(ext_b/2, sbits - cap[ctx->i]/2)); | 1540 | | #endif | 1541 | | /* For a stereo split, the high bits of fill are always zero, so no | 1542 | | folding will be done to the side. */ | 1543 | 1.02M | cm = quant_band(ctx, Y, N, sbits, B, NULL, LM, NULL, side, NULL, fill>>B ARG_QEXT(ext_b/2+qext_extra)); | 1544 | 1.02M | rebalance = sbits - (rebalance-ctx->remaining_bits); | 1545 | 1.02M | if (rebalance > 3<<BITRES && itheta!=16384) | 1546 | 18.2k | mbits += rebalance - (3<<BITRES); | 1547 | | #ifdef ENABLE_QEXT | 1548 | | /* Guard against overflowing the EC with the angle if the cubic quant used too many bits for the side. */ | 1549 | | if (ctx->extra_bands) mbits = IMIN(mbits, ctx->remaining_bits); | 1550 | | #endif | 1551 | | /* In stereo mode, we do not apply a scaling to the mid because we need the normalized | 1552 | | mid for folding later. */ | 1553 | 1.02M | cm |= quant_band(ctx, X, N, mbits, B, lowband, LM, lowband_out, Q31ONE, | 1554 | 1.02M | lowband_scratch, fill ARG_QEXT(ext_b/2-qext_extra)); | 1555 | 1.02M | } | 1556 | 142M | } | 1557 | | | 1558 | | | 1559 | | /* This code is used by the decoder and by the resynthesis-enabled encoder */ | 1560 | 190M | if (ctx->resynth) | 1561 | 73.3M | { | 1562 | 73.3M | if (N!=2) | 1563 | 62.9M | stereo_merge(X, Y, mid, N, ctx->arch); | 1564 | 73.3M | if (inv) | 1565 | 56.4k | { | 1566 | 56.4k | int j; | 1567 | 1.34M | for (j=0;j<N;j++) | 1568 | 1.28M | Y[j] = -Y[j]; | 1569 | 56.4k | } | 1570 | 73.3M | } | 1571 | 190M | return cm; | 1572 | 235M | } |
|
1573 | | |
1574 | | #ifndef DISABLE_UPDATE_DRAFT |
1575 | | static void special_hybrid_folding(const CELTMode *m, celt_norm *norm, celt_norm *norm2, int start, int M, int dual_stereo) |
1576 | 127M | { |
1577 | 127M | int n1, n2; |
1578 | 127M | const opus_int16 * OPUS_RESTRICT eBands = m->eBands; |
1579 | 127M | n1 = M*(eBands[start+1]-eBands[start]); |
1580 | 127M | n2 = M*(eBands[start+2]-eBands[start+1]); |
1581 | | /* Duplicate enough of the first band folding data to be able to fold the second band. |
1582 | | Copies no data for CELT-only mode. */ |
1583 | 127M | OPUS_COPY(&norm[n1], &norm[2*n1 - n2], n2-n1); |
1584 | 127M | if (dual_stereo) |
1585 | 474k | OPUS_COPY(&norm2[n1], &norm2[2*n1 - n2], n2-n1); |
1586 | 127M | } |
1587 | | #endif |
1588 | | |
1589 | | void quant_all_bands(int encode, const CELTMode *m, int start, int end, |
1590 | | celt_norm *X_, celt_norm *Y_, unsigned char *collapse_masks, |
1591 | | const celt_ener *bandE, int *pulses, int shortBlocks, int spread, |
1592 | | int dual_stereo, int intensity, int *tf_res, opus_int32 total_bits, |
1593 | | opus_int32 balance, ec_ctx *ec, int LM, int codedBands, |
1594 | | opus_uint32 *seed, int complexity, int arch, int disable_inv |
1595 | | ARG_QEXT(ec_ctx *ext_ec) ARG_QEXT(int *extra_pulses) |
1596 | | ARG_QEXT(opus_int32 ext_total_bits) ARG_QEXT(const int *cap)) |
1597 | 252M | { |
1598 | 252M | int i; |
1599 | 252M | opus_int32 remaining_bits; |
1600 | 252M | const opus_int16 * OPUS_RESTRICT eBands = m->eBands; |
1601 | 252M | celt_norm * OPUS_RESTRICT norm, * OPUS_RESTRICT norm2; |
1602 | 252M | VARDECL(celt_norm, _norm); |
1603 | 252M | VARDECL(celt_norm, _lowband_scratch); |
1604 | 252M | VARDECL(celt_norm, X_save); |
1605 | 252M | VARDECL(celt_norm, Y_save); |
1606 | 252M | VARDECL(celt_norm, X_save2); |
1607 | 252M | VARDECL(celt_norm, Y_save2); |
1608 | 252M | VARDECL(celt_norm, norm_save2); |
1609 | 252M | VARDECL(unsigned char, bytes_save); |
1610 | 252M | int resynth_alloc; |
1611 | 252M | celt_norm *lowband_scratch; |
1612 | 252M | int B; |
1613 | 252M | int M; |
1614 | 252M | int lowband_offset; |
1615 | 252M | int update_lowband = 1; |
1616 | 252M | int C = Y_ != NULL ? 2 : 1; |
1617 | 252M | int norm_offset; |
1618 | 252M | int theta_rdo = encode && Y_!=NULL && !dual_stereo && complexity>=8; |
1619 | | #ifdef RESYNTH |
1620 | | int resynth = 1; |
1621 | | #else |
1622 | 252M | int resynth = !encode || theta_rdo; |
1623 | 252M | #endif |
1624 | 252M | struct band_ctx ctx; |
1625 | | #ifdef ENABLE_QEXT |
1626 | | int ext_b; |
1627 | | opus_int32 ext_balance=0; |
1628 | | opus_int32 ext_tell=0; |
1629 | | VARDECL(unsigned char, ext_bytes_save); |
1630 | | #endif |
1631 | 252M | SAVE_STACK; |
1632 | | |
1633 | 252M | M = 1<<LM; |
1634 | 252M | B = shortBlocks ? M : 1; |
1635 | 252M | norm_offset = M*eBands[start]; |
1636 | | /* No need to allocate norm for the last band because we don't need an |
1637 | | output in that band. */ |
1638 | 252M | ALLOC(_norm, C*(M*eBands[m->nbEBands-1]-norm_offset), celt_norm); |
1639 | 252M | norm = _norm; |
1640 | 252M | norm2 = norm + M*eBands[m->nbEBands-1]-norm_offset; |
1641 | | |
1642 | | /* For decoding, we can use the last band as scratch space because we don't need that |
1643 | | scratch space for the last band and we don't care about the data there until we're |
1644 | | decoding the last band. */ |
1645 | 252M | if (encode && resynth) |
1646 | 14.6M | resynth_alloc = M*(eBands[m->nbEBands]-eBands[m->nbEBands-1]); |
1647 | 238M | else |
1648 | 238M | resynth_alloc = ALLOC_NONE; |
1649 | 252M | ALLOC(_lowband_scratch, resynth_alloc, celt_norm); |
1650 | 252M | if (encode && resynth) |
1651 | 14.6M | lowband_scratch = _lowband_scratch; |
1652 | 238M | else |
1653 | 238M | lowband_scratch = X_+M*eBands[m->effEBands-1]; |
1654 | 252M | ALLOC(X_save, resynth_alloc, celt_norm); |
1655 | 252M | ALLOC(Y_save, resynth_alloc, celt_norm); |
1656 | 252M | ALLOC(X_save2, resynth_alloc, celt_norm); |
1657 | 252M | ALLOC(Y_save2, resynth_alloc, celt_norm); |
1658 | 252M | ALLOC(norm_save2, resynth_alloc, celt_norm); |
1659 | | |
1660 | 252M | lowband_offset = 0; |
1661 | 252M | ctx.bandE = bandE; |
1662 | 252M | ctx.ec = ec; |
1663 | 252M | ctx.encode = encode; |
1664 | 252M | ctx.intensity = intensity; |
1665 | 252M | ctx.m = m; |
1666 | 252M | ctx.seed = *seed; |
1667 | 252M | ctx.spread = spread; |
1668 | 252M | ctx.arch = arch; |
1669 | 252M | ctx.disable_inv = disable_inv; |
1670 | 252M | ctx.resynth = resynth; |
1671 | 252M | ctx.theta_round = 0; |
1672 | | #ifdef ENABLE_QEXT |
1673 | | ctx.ext_ec = ext_ec; |
1674 | | ctx.ext_total_bits = ext_total_bits; |
1675 | 108M | ctx.extra_bands = end == NB_QEXT_BANDS || end == 2; |
1676 | 108M | if (ctx.extra_bands) theta_rdo = 0; |
1677 | 108M | ALLOC(ext_bytes_save, theta_rdo ? QEXT_PACKET_SIZE_CAP : ALLOC_NONE, unsigned char); |
1678 | | #endif |
1679 | 252M | ALLOC(bytes_save, theta_rdo ? 1275 : ALLOC_NONE, unsigned char); |
1680 | | |
1681 | | /* Avoid injecting noise in the first band on transients. */ |
1682 | 252M | ctx.avoid_split_noise = B > 1; |
1683 | 3.99G | for (i=start;i<end;i++) |
1684 | 3.74G | { |
1685 | 3.74G | opus_int32 tell; |
1686 | 3.74G | int b; |
1687 | 3.74G | int N; |
1688 | 3.74G | opus_int32 curr_balance; |
1689 | 3.74G | int effective_lowband=-1; |
1690 | 3.74G | celt_norm * OPUS_RESTRICT X, * OPUS_RESTRICT Y; |
1691 | 3.74G | int tf_change=0; |
1692 | 3.74G | unsigned x_cm; |
1693 | 3.74G | unsigned y_cm; |
1694 | 3.74G | int last; |
1695 | | |
1696 | 3.74G | ctx.i = i; |
1697 | 3.74G | last = (i==end-1); |
1698 | | |
1699 | 3.74G | X = X_+M*eBands[i]; |
1700 | 3.74G | if (Y_!=NULL) |
1701 | 749M | Y = Y_+M*eBands[i]; |
1702 | 2.99G | else |
1703 | 2.99G | Y = NULL; |
1704 | 3.74G | N = M*eBands[i+1]-M*eBands[i]; |
1705 | 3.74G | celt_assert(N > 0); |
1706 | 3.74G | tell = ec_tell_frac(ec); |
1707 | | |
1708 | | /* Compute how many bits we want to allocate to this band */ |
1709 | 3.74G | if (i != start) |
1710 | 3.48G | balance -= tell; |
1711 | 3.74G | remaining_bits = total_bits-tell-1; |
1712 | 3.74G | ctx.remaining_bits = remaining_bits; |
1713 | | #ifdef ENABLE_QEXT |
1714 | 1.59G | if (i != start) { |
1715 | 1.48G | ext_balance += extra_pulses[i-1] + ext_tell; |
1716 | 1.48G | } |
1717 | | ext_tell = ec_tell_frac(ext_ec); |
1718 | | ctx.extra_bits = extra_pulses[i]; |
1719 | 1.59G | if (i != start) |
1720 | 1.48G | ext_balance -= ext_tell; |
1721 | 1.59G | if (i <= codedBands-1) |
1722 | 246M | { |
1723 | 246M | opus_int32 ext_curr_balance = celt_sudiv(ext_balance, IMIN(3, codedBands-i)); |
1724 | 246M | ext_b = IMAX(0, IMIN(16383, IMIN(ext_total_bits-ext_tell,extra_pulses[i]+ext_curr_balance))); |
1725 | 1.34G | } else { |
1726 | 1.34G | ext_b = 0; |
1727 | 1.34G | } |
1728 | | #endif |
1729 | 3.74G | if (i <= codedBands-1) |
1730 | 821M | { |
1731 | 821M | curr_balance = celt_sudiv(balance, IMIN(3, codedBands-i)); |
1732 | 821M | b = IMAX(0, IMIN(16383, IMIN(remaining_bits+1,pulses[i]+curr_balance))); |
1733 | 2.92G | } else { |
1734 | 2.92G | b = 0; |
1735 | 2.92G | } |
1736 | | |
1737 | 3.74G | #ifndef DISABLE_UPDATE_DRAFT |
1738 | 3.74G | if (resynth && (M*eBands[i]-N >= M*eBands[start] || i==start+1) && (update_lowband || lowband_offset==0)) |
1739 | 30.5M | lowband_offset = i; |
1740 | 3.74G | if (i == start+1) |
1741 | 252M | special_hybrid_folding(m, norm, norm2, start, M, dual_stereo); |
1742 | | #else |
1743 | | if (resynth && M*eBands[i]-N >= M*eBands[start] && (update_lowband || lowband_offset==0)) |
1744 | | lowband_offset = i; |
1745 | | #endif |
1746 | | |
1747 | 3.74G | tf_change = tf_res[i]; |
1748 | 3.74G | ctx.tf_change = tf_change; |
1749 | 3.74G | if (i>=m->effEBands) |
1750 | 44.7k | { |
1751 | 44.7k | X=norm; |
1752 | 44.7k | if (Y_!=NULL) |
1753 | 33.9k | Y = norm; |
1754 | 44.7k | lowband_scratch = NULL; |
1755 | 44.7k | } |
1756 | 3.74G | if (last && !theta_rdo) |
1757 | 238M | lowband_scratch = NULL; |
1758 | | |
1759 | | /* Get a conservative estimate of the collapse_mask's for the bands we're |
1760 | | going to be folding from. */ |
1761 | 3.74G | if (lowband_offset != 0 && (spread!=SPREAD_AGGRESSIVE || B>1 || tf_change<0)) |
1762 | 214M | { |
1763 | 214M | int fold_start; |
1764 | 214M | int fold_end; |
1765 | 214M | int fold_i; |
1766 | | /* This ensures we never repeat spectral content within one band */ |
1767 | 214M | effective_lowband = IMAX(0, M*eBands[lowband_offset]-norm_offset-N); |
1768 | 214M | fold_start = lowband_offset; |
1769 | 222M | while(M*eBands[--fold_start] > effective_lowband+norm_offset); |
1770 | 214M | fold_end = lowband_offset-1; |
1771 | 214M | #ifndef DISABLE_UPDATE_DRAFT |
1772 | 459M | while(++fold_end < i && M*eBands[fold_end] < effective_lowband+norm_offset+N); |
1773 | | #else |
1774 | | while(M*eBands[++fold_end] < effective_lowband+norm_offset+N); |
1775 | | #endif |
1776 | 214M | x_cm = y_cm = 0; |
1777 | 468M | fold_i = fold_start; do { |
1778 | 468M | x_cm |= collapse_masks[fold_i*C+0]; |
1779 | 468M | y_cm |= collapse_masks[fold_i*C+C-1]; |
1780 | 468M | } while (++fold_i<fold_end); |
1781 | 214M | } |
1782 | | /* Otherwise, we'll be using the LCG to fold, so all blocks will (almost |
1783 | | always) be non-zero. */ |
1784 | 3.52G | else |
1785 | 3.52G | x_cm = y_cm = (1<<B)-1; |
1786 | | |
1787 | 3.74G | if (dual_stereo && i==intensity) |
1788 | 715k | { |
1789 | 715k | int j; |
1790 | | |
1791 | | /* Switch off dual stereo to do intensity. */ |
1792 | 715k | dual_stereo = 0; |
1793 | 715k | if (resynth) |
1794 | 1.18M | for (j=0;j<M*eBands[i]-norm_offset;j++) |
1795 | 1.15M | norm[j] = HALF32(norm[j]+norm2[j]); |
1796 | 715k | } |
1797 | 3.74G | if (dual_stereo) |
1798 | 10.7M | { |
1799 | 10.7M | x_cm = quant_band(&ctx, X, N, b/2, B, |
1800 | 10.7M | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, |
1801 | 10.7M | last?NULL:norm+M*eBands[i]-norm_offset, Q31ONE, lowband_scratch, x_cm ARG_QEXT(ext_b/2)); |
1802 | 10.7M | y_cm = quant_band(&ctx, Y, N, b/2, B, |
1803 | 10.7M | effective_lowband != -1 ? norm2+effective_lowband : NULL, LM, |
1804 | 10.7M | last?NULL:norm2+M*eBands[i]-norm_offset, Q31ONE, lowband_scratch, y_cm ARG_QEXT(ext_b/2)); |
1805 | 3.73G | } else { |
1806 | 3.73G | if (Y!=NULL) |
1807 | 738M | { |
1808 | 738M | if (theta_rdo && i < intensity) |
1809 | 14.3M | { |
1810 | 14.3M | ec_ctx ec_save, ec_save2; |
1811 | 14.3M | struct band_ctx ctx_save, ctx_save2; |
1812 | 14.3M | opus_val32 dist0, dist1; |
1813 | 14.3M | unsigned cm, cm2; |
1814 | 14.3M | int nstart_bytes, nend_bytes, save_bytes; |
1815 | 14.3M | unsigned char *bytes_buf; |
1816 | | #ifdef ENABLE_QEXT |
1817 | | ec_ctx ext_ec_save, ext_ec_save2; |
1818 | | unsigned char *ext_bytes_buf; |
1819 | | int ext_nstart_bytes, ext_nend_bytes, ext_save_bytes; |
1820 | | #endif |
1821 | 14.3M | opus_val16 w[2]; |
1822 | 14.3M | compute_channel_weights(bandE[i], bandE[i+m->nbEBands], w); |
1823 | | /* Make a copy. */ |
1824 | 14.3M | cm = x_cm|y_cm; |
1825 | 14.3M | ec_save = *ec; |
1826 | | #ifdef ENABLE_QEXT |
1827 | | ext_ec_save = *ext_ec; |
1828 | | #endif |
1829 | 14.3M | ctx_save = ctx; |
1830 | 14.3M | OPUS_COPY(X_save, X, N); |
1831 | 14.3M | OPUS_COPY(Y_save, Y, N); |
1832 | | /* Encode and round down. */ |
1833 | 14.3M | ctx.theta_round = -1; |
1834 | 14.3M | x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, |
1835 | 14.3M | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, |
1836 | 14.3M | last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, cm ARG_QEXT(ext_b) ARG_QEXT(cap)); |
1837 | 14.3M | dist0 = MULT16_32_Q15(w[0], celt_inner_prod_norm_shift(X_save, X, N, arch)) + MULT16_32_Q15(w[1], celt_inner_prod_norm_shift(Y_save, Y, N, arch)); |
1838 | | |
1839 | | /* Save first result. */ |
1840 | 14.3M | cm2 = x_cm; |
1841 | 14.3M | ec_save2 = *ec; |
1842 | | #ifdef ENABLE_QEXT |
1843 | | ext_ec_save2 = *ext_ec; |
1844 | | #endif |
1845 | 14.3M | ctx_save2 = ctx; |
1846 | 14.3M | OPUS_COPY(X_save2, X, N); |
1847 | 14.3M | OPUS_COPY(Y_save2, Y, N); |
1848 | 14.3M | if (!last) |
1849 | 14.2M | OPUS_COPY(norm_save2, norm+M*eBands[i]-norm_offset, N); |
1850 | 14.3M | nstart_bytes = ec_save.offs; |
1851 | 14.3M | nend_bytes = ec_save.storage; |
1852 | 14.3M | bytes_buf = ec_save.buf+nstart_bytes; |
1853 | 14.3M | save_bytes = nend_bytes-nstart_bytes; |
1854 | 14.3M | OPUS_COPY(bytes_save, bytes_buf, save_bytes); |
1855 | | #ifdef ENABLE_QEXT |
1856 | | ext_nstart_bytes = ext_ec_save.offs; |
1857 | | ext_nend_bytes = ext_ec_save.storage; |
1858 | 788k | ext_bytes_buf = ext_ec_save.buf!=NULL ? ext_ec_save.buf+ext_nstart_bytes : NULL; |
1859 | | ext_save_bytes = ext_nend_bytes-ext_nstart_bytes; |
1860 | 788k | if (ext_save_bytes) OPUS_COPY(ext_bytes_save, ext_bytes_buf, ext_save_bytes); |
1861 | | #endif |
1862 | | /* Restore */ |
1863 | 14.3M | *ec = ec_save; |
1864 | | #ifdef ENABLE_QEXT |
1865 | | *ext_ec = ext_ec_save; |
1866 | | #endif |
1867 | 14.3M | ctx = ctx_save; |
1868 | 14.3M | OPUS_COPY(X, X_save, N); |
1869 | 14.3M | OPUS_COPY(Y, Y_save, N); |
1870 | 14.3M | #ifndef DISABLE_UPDATE_DRAFT |
1871 | 14.3M | if (i == start+1) |
1872 | 1.41M | special_hybrid_folding(m, norm, norm2, start, M, dual_stereo); |
1873 | 14.3M | #endif |
1874 | | /* Encode and round up. */ |
1875 | 14.3M | ctx.theta_round = 1; |
1876 | 14.3M | x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, |
1877 | 14.3M | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, |
1878 | 14.3M | last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, cm ARG_QEXT(ext_b) ARG_QEXT(cap)); |
1879 | 14.3M | dist1 = MULT16_32_Q15(w[0], celt_inner_prod_norm_shift(X_save, X, N, arch)) + MULT16_32_Q15(w[1], celt_inner_prod_norm_shift(Y_save, Y, N, arch)); |
1880 | 14.3M | if (dist0 >= dist1) { |
1881 | 13.3M | x_cm = cm2; |
1882 | 13.3M | *ec = ec_save2; |
1883 | | #ifdef ENABLE_QEXT |
1884 | | *ext_ec = ext_ec_save2; |
1885 | | #endif |
1886 | 13.3M | ctx = ctx_save2; |
1887 | 13.3M | OPUS_COPY(X, X_save2, N); |
1888 | 13.3M | OPUS_COPY(Y, Y_save2, N); |
1889 | 13.3M | if (!last) |
1890 | 13.2M | OPUS_COPY(norm+M*eBands[i]-norm_offset, norm_save2, N); |
1891 | 13.3M | OPUS_COPY(bytes_buf, bytes_save, save_bytes); |
1892 | | #ifdef ENABLE_QEXT |
1893 | 509k | if (ext_save_bytes) OPUS_COPY(ext_bytes_buf, ext_bytes_save, ext_save_bytes); |
1894 | | #endif |
1895 | 13.3M | } |
1896 | 724M | } else { |
1897 | 724M | ctx.theta_round = 0; |
1898 | 724M | x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, |
1899 | 724M | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, |
1900 | 724M | last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, x_cm|y_cm ARG_QEXT(ext_b) ARG_QEXT(cap)); |
1901 | 724M | } |
1902 | 2.99G | } else { |
1903 | 2.99G | x_cm = quant_band(&ctx, X, N, b, B, |
1904 | 2.99G | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, |
1905 | 2.99G | last?NULL:norm+M*eBands[i]-norm_offset, Q31ONE, lowband_scratch, x_cm|y_cm ARG_QEXT(ext_b)); |
1906 | 2.99G | } |
1907 | 3.73G | y_cm = x_cm; |
1908 | 3.73G | } |
1909 | 3.74G | collapse_masks[i*C+0] = (unsigned char)x_cm; |
1910 | 3.74G | collapse_masks[i*C+C-1] = (unsigned char)y_cm; |
1911 | 3.74G | balance += pulses[i] + tell; |
1912 | | |
1913 | | /* Update the folding position only as long as we have 1 bit/sample depth. */ |
1914 | 3.74G | update_lowband = b>(N<<BITRES); |
1915 | | /* We only need to avoid noise on a split for the first band. After that, we |
1916 | | have folding. */ |
1917 | 3.74G | ctx.avoid_split_noise = 0; |
1918 | 3.74G | } |
1919 | 252M | *seed = ctx.seed; |
1920 | | |
1921 | 252M | RESTORE_STACK; |
1922 | 252M | } Line | Count | Source | 1597 | 72.0M | { | 1598 | 72.0M | int i; | 1599 | 72.0M | opus_int32 remaining_bits; | 1600 | 72.0M | const opus_int16 * OPUS_RESTRICT eBands = m->eBands; | 1601 | 72.0M | celt_norm * OPUS_RESTRICT norm, * OPUS_RESTRICT norm2; | 1602 | 72.0M | VARDECL(celt_norm, _norm); | 1603 | 72.0M | VARDECL(celt_norm, _lowband_scratch); | 1604 | 72.0M | VARDECL(celt_norm, X_save); | 1605 | 72.0M | VARDECL(celt_norm, Y_save); | 1606 | 72.0M | VARDECL(celt_norm, X_save2); | 1607 | 72.0M | VARDECL(celt_norm, Y_save2); | 1608 | 72.0M | VARDECL(celt_norm, norm_save2); | 1609 | 72.0M | VARDECL(unsigned char, bytes_save); | 1610 | 72.0M | int resynth_alloc; | 1611 | 72.0M | celt_norm *lowband_scratch; | 1612 | 72.0M | int B; | 1613 | 72.0M | int M; | 1614 | 72.0M | int lowband_offset; | 1615 | 72.0M | int update_lowband = 1; | 1616 | 72.0M | int C = Y_ != NULL ? 2 : 1; | 1617 | 72.0M | int norm_offset; | 1618 | 72.0M | int theta_rdo = encode && Y_!=NULL && !dual_stereo && complexity>=8; | 1619 | | #ifdef RESYNTH | 1620 | | int resynth = 1; | 1621 | | #else | 1622 | 72.0M | int resynth = !encode || theta_rdo; | 1623 | 72.0M | #endif | 1624 | 72.0M | struct band_ctx ctx; | 1625 | | #ifdef ENABLE_QEXT | 1626 | | int ext_b; | 1627 | | opus_int32 ext_balance=0; | 1628 | | opus_int32 ext_tell=0; | 1629 | | VARDECL(unsigned char, ext_bytes_save); | 1630 | | #endif | 1631 | 72.0M | SAVE_STACK; | 1632 | | | 1633 | 72.0M | M = 1<<LM; | 1634 | 72.0M | B = shortBlocks ? M : 1; | 1635 | 72.0M | norm_offset = M*eBands[start]; | 1636 | | /* No need to allocate norm for the last band because we don't need an | 1637 | | output in that band. */ | 1638 | 72.0M | ALLOC(_norm, C*(M*eBands[m->nbEBands-1]-norm_offset), celt_norm); | 1639 | 72.0M | norm = _norm; | 1640 | 72.0M | norm2 = norm + M*eBands[m->nbEBands-1]-norm_offset; | 1641 | | | 1642 | | /* For decoding, we can use the last band as scratch space because we don't need that | 1643 | | scratch space for the last band and we don't care about the data there until we're | 1644 | | decoding the last band. */ | 1645 | 72.0M | if (encode && resynth) | 1646 | 4.68M | resynth_alloc = M*(eBands[m->nbEBands]-eBands[m->nbEBands-1]); | 1647 | 67.3M | else | 1648 | 67.3M | resynth_alloc = ALLOC_NONE; | 1649 | 72.0M | ALLOC(_lowband_scratch, resynth_alloc, celt_norm); | 1650 | 72.0M | if (encode && resynth) | 1651 | 4.68M | lowband_scratch = _lowband_scratch; | 1652 | 67.3M | else | 1653 | 67.3M | lowband_scratch = X_+M*eBands[m->effEBands-1]; | 1654 | 72.0M | ALLOC(X_save, resynth_alloc, celt_norm); | 1655 | 72.0M | ALLOC(Y_save, resynth_alloc, celt_norm); | 1656 | 72.0M | ALLOC(X_save2, resynth_alloc, celt_norm); | 1657 | 72.0M | ALLOC(Y_save2, resynth_alloc, celt_norm); | 1658 | 72.0M | ALLOC(norm_save2, resynth_alloc, celt_norm); | 1659 | | | 1660 | 72.0M | lowband_offset = 0; | 1661 | 72.0M | ctx.bandE = bandE; | 1662 | 72.0M | ctx.ec = ec; | 1663 | 72.0M | ctx.encode = encode; | 1664 | 72.0M | ctx.intensity = intensity; | 1665 | 72.0M | ctx.m = m; | 1666 | 72.0M | ctx.seed = *seed; | 1667 | 72.0M | ctx.spread = spread; | 1668 | 72.0M | ctx.arch = arch; | 1669 | 72.0M | ctx.disable_inv = disable_inv; | 1670 | 72.0M | ctx.resynth = resynth; | 1671 | 72.0M | ctx.theta_round = 0; | 1672 | | #ifdef ENABLE_QEXT | 1673 | | ctx.ext_ec = ext_ec; | 1674 | | ctx.ext_total_bits = ext_total_bits; | 1675 | | ctx.extra_bands = end == NB_QEXT_BANDS || end == 2; | 1676 | | if (ctx.extra_bands) theta_rdo = 0; | 1677 | | ALLOC(ext_bytes_save, theta_rdo ? QEXT_PACKET_SIZE_CAP : ALLOC_NONE, unsigned char); | 1678 | | #endif | 1679 | 72.0M | ALLOC(bytes_save, theta_rdo ? 1275 : ALLOC_NONE, unsigned char); | 1680 | | | 1681 | | /* Avoid injecting noise in the first band on transients. */ | 1682 | 72.0M | ctx.avoid_split_noise = B > 1; | 1683 | 1.14G | for (i=start;i<end;i++) | 1684 | 1.07G | { | 1685 | 1.07G | opus_int32 tell; | 1686 | 1.07G | int b; | 1687 | 1.07G | int N; | 1688 | 1.07G | opus_int32 curr_balance; | 1689 | 1.07G | int effective_lowband=-1; | 1690 | 1.07G | celt_norm * OPUS_RESTRICT X, * OPUS_RESTRICT Y; | 1691 | 1.07G | int tf_change=0; | 1692 | 1.07G | unsigned x_cm; | 1693 | 1.07G | unsigned y_cm; | 1694 | 1.07G | int last; | 1695 | | | 1696 | 1.07G | ctx.i = i; | 1697 | 1.07G | last = (i==end-1); | 1698 | | | 1699 | 1.07G | X = X_+M*eBands[i]; | 1700 | 1.07G | if (Y_!=NULL) | 1701 | 233M | Y = Y_+M*eBands[i]; | 1702 | 840M | else | 1703 | 840M | Y = NULL; | 1704 | 1.07G | N = M*eBands[i+1]-M*eBands[i]; | 1705 | 1.07G | celt_assert(N > 0); | 1706 | 1.07G | tell = ec_tell_frac(ec); | 1707 | | | 1708 | | /* Compute how many bits we want to allocate to this band */ | 1709 | 1.07G | if (i != start) | 1710 | 1.00G | balance -= tell; | 1711 | 1.07G | remaining_bits = total_bits-tell-1; | 1712 | 1.07G | ctx.remaining_bits = remaining_bits; | 1713 | | #ifdef ENABLE_QEXT | 1714 | | if (i != start) { | 1715 | | ext_balance += extra_pulses[i-1] + ext_tell; | 1716 | | } | 1717 | | ext_tell = ec_tell_frac(ext_ec); | 1718 | | ctx.extra_bits = extra_pulses[i]; | 1719 | | if (i != start) | 1720 | | ext_balance -= ext_tell; | 1721 | | if (i <= codedBands-1) | 1722 | | { | 1723 | | opus_int32 ext_curr_balance = celt_sudiv(ext_balance, IMIN(3, codedBands-i)); | 1724 | | ext_b = IMAX(0, IMIN(16383, IMIN(ext_total_bits-ext_tell,extra_pulses[i]+ext_curr_balance))); | 1725 | | } else { | 1726 | | ext_b = 0; | 1727 | | } | 1728 | | #endif | 1729 | 1.07G | if (i <= codedBands-1) | 1730 | 287M | { | 1731 | 287M | curr_balance = celt_sudiv(balance, IMIN(3, codedBands-i)); | 1732 | 287M | b = IMAX(0, IMIN(16383, IMIN(remaining_bits+1,pulses[i]+curr_balance))); | 1733 | 786M | } else { | 1734 | 786M | b = 0; | 1735 | 786M | } | 1736 | | | 1737 | 1.07G | #ifndef DISABLE_UPDATE_DRAFT | 1738 | 1.07G | if (resynth && (M*eBands[i]-N >= M*eBands[start] || i==start+1) && (update_lowband || lowband_offset==0)) | 1739 | 11.6M | lowband_offset = i; | 1740 | 1.07G | if (i == start+1) | 1741 | 72.0M | special_hybrid_folding(m, norm, norm2, start, M, dual_stereo); | 1742 | | #else | 1743 | | if (resynth && M*eBands[i]-N >= M*eBands[start] && (update_lowband || lowband_offset==0)) | 1744 | | lowband_offset = i; | 1745 | | #endif | 1746 | | | 1747 | 1.07G | tf_change = tf_res[i]; | 1748 | 1.07G | ctx.tf_change = tf_change; | 1749 | 1.07G | if (i>=m->effEBands) | 1750 | 0 | { | 1751 | 0 | X=norm; | 1752 | 0 | if (Y_!=NULL) | 1753 | 0 | Y = norm; | 1754 | 0 | lowband_scratch = NULL; | 1755 | 0 | } | 1756 | 1.07G | if (last && !theta_rdo) | 1757 | 67.3M | lowband_scratch = NULL; | 1758 | | | 1759 | | /* Get a conservative estimate of the collapse_mask's for the bands we're | 1760 | | going to be folding from. */ | 1761 | 1.07G | if (lowband_offset != 0 && (spread!=SPREAD_AGGRESSIVE || B>1 || tf_change<0)) | 1762 | 68.5M | { | 1763 | 68.5M | int fold_start; | 1764 | 68.5M | int fold_end; | 1765 | 68.5M | int fold_i; | 1766 | | /* This ensures we never repeat spectral content within one band */ | 1767 | 68.5M | effective_lowband = IMAX(0, M*eBands[lowband_offset]-norm_offset-N); | 1768 | 68.5M | fold_start = lowband_offset; | 1769 | 72.3M | while(M*eBands[--fold_start] > effective_lowband+norm_offset); | 1770 | 68.5M | fold_end = lowband_offset-1; | 1771 | 68.5M | #ifndef DISABLE_UPDATE_DRAFT | 1772 | 147M | while(++fold_end < i && M*eBands[fold_end] < effective_lowband+norm_offset+N); | 1773 | | #else | 1774 | | while(M*eBands[++fold_end] < effective_lowband+norm_offset+N); | 1775 | | #endif | 1776 | 68.5M | x_cm = y_cm = 0; | 1777 | 151M | fold_i = fold_start; do { | 1778 | 151M | x_cm |= collapse_masks[fold_i*C+0]; | 1779 | 151M | y_cm |= collapse_masks[fold_i*C+C-1]; | 1780 | 151M | } while (++fold_i<fold_end); | 1781 | 68.5M | } | 1782 | | /* Otherwise, we'll be using the LCG to fold, so all blocks will (almost | 1783 | | always) be non-zero. */ | 1784 | 1.00G | else | 1785 | 1.00G | x_cm = y_cm = (1<<B)-1; | 1786 | | | 1787 | 1.07G | if (dual_stereo && i==intensity) | 1788 | 308k | { | 1789 | 308k | int j; | 1790 | | | 1791 | | /* Switch off dual stereo to do intensity. */ | 1792 | 308k | dual_stereo = 0; | 1793 | 308k | if (resynth) | 1794 | 222k | for (j=0;j<M*eBands[i]-norm_offset;j++) | 1795 | 216k | norm[j] = HALF32(norm[j]+norm2[j]); | 1796 | 308k | } | 1797 | 1.07G | if (dual_stereo) | 1798 | 4.80M | { | 1799 | 4.80M | x_cm = quant_band(&ctx, X, N, b/2, B, | 1800 | 4.80M | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1801 | 4.80M | last?NULL:norm+M*eBands[i]-norm_offset, Q31ONE, lowband_scratch, x_cm ARG_QEXT(ext_b/2)); | 1802 | 4.80M | y_cm = quant_band(&ctx, Y, N, b/2, B, | 1803 | 4.80M | effective_lowband != -1 ? norm2+effective_lowband : NULL, LM, | 1804 | 4.80M | last?NULL:norm2+M*eBands[i]-norm_offset, Q31ONE, lowband_scratch, y_cm ARG_QEXT(ext_b/2)); | 1805 | 1.06G | } else { | 1806 | 1.06G | if (Y!=NULL) | 1807 | 228M | { | 1808 | 228M | if (theta_rdo && i < intensity) | 1809 | 6.77M | { | 1810 | 6.77M | ec_ctx ec_save, ec_save2; | 1811 | 6.77M | struct band_ctx ctx_save, ctx_save2; | 1812 | 6.77M | opus_val32 dist0, dist1; | 1813 | 6.77M | unsigned cm, cm2; | 1814 | 6.77M | int nstart_bytes, nend_bytes, save_bytes; | 1815 | 6.77M | unsigned char *bytes_buf; | 1816 | | #ifdef ENABLE_QEXT | 1817 | | ec_ctx ext_ec_save, ext_ec_save2; | 1818 | | unsigned char *ext_bytes_buf; | 1819 | | int ext_nstart_bytes, ext_nend_bytes, ext_save_bytes; | 1820 | | #endif | 1821 | 6.77M | opus_val16 w[2]; | 1822 | 6.77M | compute_channel_weights(bandE[i], bandE[i+m->nbEBands], w); | 1823 | | /* Make a copy. */ | 1824 | 6.77M | cm = x_cm|y_cm; | 1825 | 6.77M | ec_save = *ec; | 1826 | | #ifdef ENABLE_QEXT | 1827 | | ext_ec_save = *ext_ec; | 1828 | | #endif | 1829 | 6.77M | ctx_save = ctx; | 1830 | 6.77M | OPUS_COPY(X_save, X, N); | 1831 | 6.77M | OPUS_COPY(Y_save, Y, N); | 1832 | | /* Encode and round down. */ | 1833 | 6.77M | ctx.theta_round = -1; | 1834 | 6.77M | x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, | 1835 | 6.77M | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1836 | 6.77M | last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, cm ARG_QEXT(ext_b) ARG_QEXT(cap)); | 1837 | 6.77M | dist0 = MULT16_32_Q15(w[0], celt_inner_prod_norm_shift(X_save, X, N, arch)) + MULT16_32_Q15(w[1], celt_inner_prod_norm_shift(Y_save, Y, N, arch)); | 1838 | | | 1839 | | /* Save first result. */ | 1840 | 6.77M | cm2 = x_cm; | 1841 | 6.77M | ec_save2 = *ec; | 1842 | | #ifdef ENABLE_QEXT | 1843 | | ext_ec_save2 = *ext_ec; | 1844 | | #endif | 1845 | 6.77M | ctx_save2 = ctx; | 1846 | 6.77M | OPUS_COPY(X_save2, X, N); | 1847 | 6.77M | OPUS_COPY(Y_save2, Y, N); | 1848 | 6.77M | if (!last) | 1849 | 6.73M | OPUS_COPY(norm_save2, norm+M*eBands[i]-norm_offset, N); | 1850 | 6.77M | nstart_bytes = ec_save.offs; | 1851 | 6.77M | nend_bytes = ec_save.storage; | 1852 | 6.77M | bytes_buf = ec_save.buf+nstart_bytes; | 1853 | 6.77M | save_bytes = nend_bytes-nstart_bytes; | 1854 | 6.77M | OPUS_COPY(bytes_save, bytes_buf, save_bytes); | 1855 | | #ifdef ENABLE_QEXT | 1856 | | ext_nstart_bytes = ext_ec_save.offs; | 1857 | | ext_nend_bytes = ext_ec_save.storage; | 1858 | | ext_bytes_buf = ext_ec_save.buf!=NULL ? ext_ec_save.buf+ext_nstart_bytes : NULL; | 1859 | | ext_save_bytes = ext_nend_bytes-ext_nstart_bytes; | 1860 | | if (ext_save_bytes) OPUS_COPY(ext_bytes_save, ext_bytes_buf, ext_save_bytes); | 1861 | | #endif | 1862 | | /* Restore */ | 1863 | 6.77M | *ec = ec_save; | 1864 | | #ifdef ENABLE_QEXT | 1865 | | *ext_ec = ext_ec_save; | 1866 | | #endif | 1867 | 6.77M | ctx = ctx_save; | 1868 | 6.77M | OPUS_COPY(X, X_save, N); | 1869 | 6.77M | OPUS_COPY(Y, Y_save, N); | 1870 | 6.77M | #ifndef DISABLE_UPDATE_DRAFT | 1871 | 6.77M | if (i == start+1) | 1872 | 671k | special_hybrid_folding(m, norm, norm2, start, M, dual_stereo); | 1873 | 6.77M | #endif | 1874 | | /* Encode and round up. */ | 1875 | 6.77M | ctx.theta_round = 1; | 1876 | 6.77M | x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, | 1877 | 6.77M | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1878 | 6.77M | last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, cm ARG_QEXT(ext_b) ARG_QEXT(cap)); | 1879 | 6.77M | dist1 = MULT16_32_Q15(w[0], celt_inner_prod_norm_shift(X_save, X, N, arch)) + MULT16_32_Q15(w[1], celt_inner_prod_norm_shift(Y_save, Y, N, arch)); | 1880 | 6.77M | if (dist0 >= dist1) { | 1881 | 6.41M | x_cm = cm2; | 1882 | 6.41M | *ec = ec_save2; | 1883 | | #ifdef ENABLE_QEXT | 1884 | | *ext_ec = ext_ec_save2; | 1885 | | #endif | 1886 | 6.41M | ctx = ctx_save2; | 1887 | 6.41M | OPUS_COPY(X, X_save2, N); | 1888 | 6.41M | OPUS_COPY(Y, Y_save2, N); | 1889 | 6.41M | if (!last) | 1890 | 6.37M | OPUS_COPY(norm+M*eBands[i]-norm_offset, norm_save2, N); | 1891 | 6.41M | OPUS_COPY(bytes_buf, bytes_save, save_bytes); | 1892 | | #ifdef ENABLE_QEXT | 1893 | | if (ext_save_bytes) OPUS_COPY(ext_bytes_buf, ext_bytes_save, ext_save_bytes); | 1894 | | #endif | 1895 | 6.41M | } | 1896 | 221M | } else { | 1897 | 221M | ctx.theta_round = 0; | 1898 | 221M | x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, | 1899 | 221M | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1900 | 221M | last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, x_cm|y_cm ARG_QEXT(ext_b) ARG_QEXT(cap)); | 1901 | 221M | } | 1902 | 840M | } else { | 1903 | 840M | x_cm = quant_band(&ctx, X, N, b, B, | 1904 | 840M | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1905 | 840M | last?NULL:norm+M*eBands[i]-norm_offset, Q31ONE, lowband_scratch, x_cm|y_cm ARG_QEXT(ext_b)); | 1906 | 840M | } | 1907 | 1.06G | y_cm = x_cm; | 1908 | 1.06G | } | 1909 | 1.07G | collapse_masks[i*C+0] = (unsigned char)x_cm; | 1910 | 1.07G | collapse_masks[i*C+C-1] = (unsigned char)y_cm; | 1911 | 1.07G | balance += pulses[i] + tell; | 1912 | | | 1913 | | /* Update the folding position only as long as we have 1 bit/sample depth. */ | 1914 | 1.07G | update_lowband = b>(N<<BITRES); | 1915 | | /* We only need to avoid noise on a split for the first band. After that, we | 1916 | | have folding. */ | 1917 | 1.07G | ctx.avoid_split_noise = 0; | 1918 | 1.07G | } | 1919 | 72.0M | *seed = ctx.seed; | 1920 | | | 1921 | 72.0M | RESTORE_STACK; | 1922 | 72.0M | } |
Line | Count | Source | 1597 | 54.3M | { | 1598 | 54.3M | int i; | 1599 | 54.3M | opus_int32 remaining_bits; | 1600 | 54.3M | const opus_int16 * OPUS_RESTRICT eBands = m->eBands; | 1601 | 54.3M | celt_norm * OPUS_RESTRICT norm, * OPUS_RESTRICT norm2; | 1602 | 54.3M | VARDECL(celt_norm, _norm); | 1603 | 54.3M | VARDECL(celt_norm, _lowband_scratch); | 1604 | 54.3M | VARDECL(celt_norm, X_save); | 1605 | 54.3M | VARDECL(celt_norm, Y_save); | 1606 | 54.3M | VARDECL(celt_norm, X_save2); | 1607 | 54.3M | VARDECL(celt_norm, Y_save2); | 1608 | 54.3M | VARDECL(celt_norm, norm_save2); | 1609 | 54.3M | VARDECL(unsigned char, bytes_save); | 1610 | 54.3M | int resynth_alloc; | 1611 | 54.3M | celt_norm *lowband_scratch; | 1612 | 54.3M | int B; | 1613 | 54.3M | int M; | 1614 | 54.3M | int lowband_offset; | 1615 | 54.3M | int update_lowband = 1; | 1616 | 54.3M | int C = Y_ != NULL ? 2 : 1; | 1617 | 54.3M | int norm_offset; | 1618 | 54.3M | int theta_rdo = encode && Y_!=NULL && !dual_stereo && complexity>=8; | 1619 | | #ifdef RESYNTH | 1620 | | int resynth = 1; | 1621 | | #else | 1622 | 54.3M | int resynth = !encode || theta_rdo; | 1623 | 54.3M | #endif | 1624 | 54.3M | struct band_ctx ctx; | 1625 | 54.3M | #ifdef ENABLE_QEXT | 1626 | 54.3M | int ext_b; | 1627 | 54.3M | opus_int32 ext_balance=0; | 1628 | 54.3M | opus_int32 ext_tell=0; | 1629 | 54.3M | VARDECL(unsigned char, ext_bytes_save); | 1630 | 54.3M | #endif | 1631 | 54.3M | SAVE_STACK; | 1632 | | | 1633 | 54.3M | M = 1<<LM; | 1634 | 54.3M | B = shortBlocks ? M : 1; | 1635 | 54.3M | norm_offset = M*eBands[start]; | 1636 | | /* No need to allocate norm for the last band because we don't need an | 1637 | | output in that band. */ | 1638 | 54.3M | ALLOC(_norm, C*(M*eBands[m->nbEBands-1]-norm_offset), celt_norm); | 1639 | 54.3M | norm = _norm; | 1640 | 54.3M | norm2 = norm + M*eBands[m->nbEBands-1]-norm_offset; | 1641 | | | 1642 | | /* For decoding, we can use the last band as scratch space because we don't need that | 1643 | | scratch space for the last band and we don't care about the data there until we're | 1644 | | decoding the last band. */ | 1645 | 54.3M | if (encode && resynth) | 1646 | 2.62M | resynth_alloc = M*(eBands[m->nbEBands]-eBands[m->nbEBands-1]); | 1647 | 51.7M | else | 1648 | 51.7M | resynth_alloc = ALLOC_NONE; | 1649 | 54.3M | ALLOC(_lowband_scratch, resynth_alloc, celt_norm); | 1650 | 54.3M | if (encode && resynth) | 1651 | 2.62M | lowband_scratch = _lowband_scratch; | 1652 | 51.7M | else | 1653 | 51.7M | lowband_scratch = X_+M*eBands[m->effEBands-1]; | 1654 | 54.3M | ALLOC(X_save, resynth_alloc, celt_norm); | 1655 | 54.3M | ALLOC(Y_save, resynth_alloc, celt_norm); | 1656 | 54.3M | ALLOC(X_save2, resynth_alloc, celt_norm); | 1657 | 54.3M | ALLOC(Y_save2, resynth_alloc, celt_norm); | 1658 | 54.3M | ALLOC(norm_save2, resynth_alloc, celt_norm); | 1659 | | | 1660 | 54.3M | lowband_offset = 0; | 1661 | 54.3M | ctx.bandE = bandE; | 1662 | 54.3M | ctx.ec = ec; | 1663 | 54.3M | ctx.encode = encode; | 1664 | 54.3M | ctx.intensity = intensity; | 1665 | 54.3M | ctx.m = m; | 1666 | 54.3M | ctx.seed = *seed; | 1667 | 54.3M | ctx.spread = spread; | 1668 | 54.3M | ctx.arch = arch; | 1669 | 54.3M | ctx.disable_inv = disable_inv; | 1670 | 54.3M | ctx.resynth = resynth; | 1671 | 54.3M | ctx.theta_round = 0; | 1672 | 54.3M | #ifdef ENABLE_QEXT | 1673 | 54.3M | ctx.ext_ec = ext_ec; | 1674 | 54.3M | ctx.ext_total_bits = ext_total_bits; | 1675 | 54.3M | ctx.extra_bands = end == NB_QEXT_BANDS || end == 2; | 1676 | 54.3M | if (ctx.extra_bands) theta_rdo = 0; | 1677 | 54.3M | ALLOC(ext_bytes_save, theta_rdo ? QEXT_PACKET_SIZE_CAP : ALLOC_NONE, unsigned char); | 1678 | 54.3M | #endif | 1679 | 54.3M | ALLOC(bytes_save, theta_rdo ? 1275 : ALLOC_NONE, unsigned char); | 1680 | | | 1681 | | /* Avoid injecting noise in the first band on transients. */ | 1682 | 54.3M | ctx.avoid_split_noise = B > 1; | 1683 | 850M | for (i=start;i<end;i++) | 1684 | 796M | { | 1685 | 796M | opus_int32 tell; | 1686 | 796M | int b; | 1687 | 796M | int N; | 1688 | 796M | opus_int32 curr_balance; | 1689 | 796M | int effective_lowband=-1; | 1690 | 796M | celt_norm * OPUS_RESTRICT X, * OPUS_RESTRICT Y; | 1691 | 796M | int tf_change=0; | 1692 | 796M | unsigned x_cm; | 1693 | 796M | unsigned y_cm; | 1694 | 796M | int last; | 1695 | | | 1696 | 796M | ctx.i = i; | 1697 | 796M | last = (i==end-1); | 1698 | | | 1699 | 796M | X = X_+M*eBands[i]; | 1700 | 796M | if (Y_!=NULL) | 1701 | 141M | Y = Y_+M*eBands[i]; | 1702 | 655M | else | 1703 | 655M | Y = NULL; | 1704 | 796M | N = M*eBands[i+1]-M*eBands[i]; | 1705 | 796M | celt_assert(N > 0); | 1706 | 796M | tell = ec_tell_frac(ec); | 1707 | | | 1708 | | /* Compute how many bits we want to allocate to this band */ | 1709 | 796M | if (i != start) | 1710 | 742M | balance -= tell; | 1711 | 796M | remaining_bits = total_bits-tell-1; | 1712 | 796M | ctx.remaining_bits = remaining_bits; | 1713 | 796M | #ifdef ENABLE_QEXT | 1714 | 796M | if (i != start) { | 1715 | 742M | ext_balance += extra_pulses[i-1] + ext_tell; | 1716 | 742M | } | 1717 | 796M | ext_tell = ec_tell_frac(ext_ec); | 1718 | 796M | ctx.extra_bits = extra_pulses[i]; | 1719 | 796M | if (i != start) | 1720 | 742M | ext_balance -= ext_tell; | 1721 | 796M | if (i <= codedBands-1) | 1722 | 123M | { | 1723 | 123M | opus_int32 ext_curr_balance = celt_sudiv(ext_balance, IMIN(3, codedBands-i)); | 1724 | 123M | ext_b = IMAX(0, IMIN(16383, IMIN(ext_total_bits-ext_tell,extra_pulses[i]+ext_curr_balance))); | 1725 | 673M | } else { | 1726 | 673M | ext_b = 0; | 1727 | 673M | } | 1728 | 796M | #endif | 1729 | 796M | if (i <= codedBands-1) | 1730 | 123M | { | 1731 | 123M | curr_balance = celt_sudiv(balance, IMIN(3, codedBands-i)); | 1732 | 123M | b = IMAX(0, IMIN(16383, IMIN(remaining_bits+1,pulses[i]+curr_balance))); | 1733 | 673M | } else { | 1734 | 673M | b = 0; | 1735 | 673M | } | 1736 | | | 1737 | 796M | #ifndef DISABLE_UPDATE_DRAFT | 1738 | 796M | if (resynth && (M*eBands[i]-N >= M*eBands[start] || i==start+1) && (update_lowband || lowband_offset==0)) | 1739 | 3.67M | lowband_offset = i; | 1740 | 796M | if (i == start+1) | 1741 | 54.3M | special_hybrid_folding(m, norm, norm2, start, M, dual_stereo); | 1742 | | #else | 1743 | | if (resynth && M*eBands[i]-N >= M*eBands[start] && (update_lowband || lowband_offset==0)) | 1744 | | lowband_offset = i; | 1745 | | #endif | 1746 | | | 1747 | 796M | tf_change = tf_res[i]; | 1748 | 796M | ctx.tf_change = tf_change; | 1749 | 796M | if (i>=m->effEBands) | 1750 | 22.3k | { | 1751 | 22.3k | X=norm; | 1752 | 22.3k | if (Y_!=NULL) | 1753 | 16.9k | Y = norm; | 1754 | 22.3k | lowband_scratch = NULL; | 1755 | 22.3k | } | 1756 | 796M | if (last && !theta_rdo) | 1757 | 51.7M | lowband_scratch = NULL; | 1758 | | | 1759 | | /* Get a conservative estimate of the collapse_mask's for the bands we're | 1760 | | going to be folding from. */ | 1761 | 796M | if (lowband_offset != 0 && (spread!=SPREAD_AGGRESSIVE || B>1 || tf_change<0)) | 1762 | 38.5M | { | 1763 | 38.5M | int fold_start; | 1764 | 38.5M | int fold_end; | 1765 | 38.5M | int fold_i; | 1766 | | /* This ensures we never repeat spectral content within one band */ | 1767 | 38.5M | effective_lowband = IMAX(0, M*eBands[lowband_offset]-norm_offset-N); | 1768 | 38.5M | fold_start = lowband_offset; | 1769 | 38.9M | while(M*eBands[--fold_start] > effective_lowband+norm_offset); | 1770 | 38.5M | fold_end = lowband_offset-1; | 1771 | 38.5M | #ifndef DISABLE_UPDATE_DRAFT | 1772 | 82.5M | while(++fold_end < i && M*eBands[fold_end] < effective_lowband+norm_offset+N); | 1773 | | #else | 1774 | | while(M*eBands[++fold_end] < effective_lowband+norm_offset+N); | 1775 | | #endif | 1776 | 38.5M | x_cm = y_cm = 0; | 1777 | 82.9M | fold_i = fold_start; do { | 1778 | 82.9M | x_cm |= collapse_masks[fold_i*C+0]; | 1779 | 82.9M | y_cm |= collapse_masks[fold_i*C+C-1]; | 1780 | 82.9M | } while (++fold_i<fold_end); | 1781 | 38.5M | } | 1782 | | /* Otherwise, we'll be using the LCG to fold, so all blocks will (almost | 1783 | | always) be non-zero. */ | 1784 | 757M | else | 1785 | 757M | x_cm = y_cm = (1<<B)-1; | 1786 | | | 1787 | 796M | if (dual_stereo && i==intensity) | 1788 | 49.1k | { | 1789 | 49.1k | int j; | 1790 | | | 1791 | | /* Switch off dual stereo to do intensity. */ | 1792 | 49.1k | dual_stereo = 0; | 1793 | 49.1k | if (resynth) | 1794 | 369k | for (j=0;j<M*eBands[i]-norm_offset;j++) | 1795 | 360k | norm[j] = HALF32(norm[j]+norm2[j]); | 1796 | 49.1k | } | 1797 | 796M | if (dual_stereo) | 1798 | 568k | { | 1799 | 568k | x_cm = quant_band(&ctx, X, N, b/2, B, | 1800 | 568k | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1801 | 568k | last?NULL:norm+M*eBands[i]-norm_offset, Q31ONE, lowband_scratch, x_cm ARG_QEXT(ext_b/2)); | 1802 | 568k | y_cm = quant_band(&ctx, Y, N, b/2, B, | 1803 | 568k | effective_lowband != -1 ? norm2+effective_lowband : NULL, LM, | 1804 | 568k | last?NULL:norm2+M*eBands[i]-norm_offset, Q31ONE, lowband_scratch, y_cm ARG_QEXT(ext_b/2)); | 1805 | 795M | } else { | 1806 | 795M | if (Y!=NULL) | 1807 | 140M | { | 1808 | 140M | if (theta_rdo && i < intensity) | 1809 | 394k | { | 1810 | 394k | ec_ctx ec_save, ec_save2; | 1811 | 394k | struct band_ctx ctx_save, ctx_save2; | 1812 | 394k | opus_val32 dist0, dist1; | 1813 | 394k | unsigned cm, cm2; | 1814 | 394k | int nstart_bytes, nend_bytes, save_bytes; | 1815 | 394k | unsigned char *bytes_buf; | 1816 | 394k | #ifdef ENABLE_QEXT | 1817 | 394k | ec_ctx ext_ec_save, ext_ec_save2; | 1818 | 394k | unsigned char *ext_bytes_buf; | 1819 | 394k | int ext_nstart_bytes, ext_nend_bytes, ext_save_bytes; | 1820 | 394k | #endif | 1821 | 394k | opus_val16 w[2]; | 1822 | 394k | compute_channel_weights(bandE[i], bandE[i+m->nbEBands], w); | 1823 | | /* Make a copy. */ | 1824 | 394k | cm = x_cm|y_cm; | 1825 | 394k | ec_save = *ec; | 1826 | 394k | #ifdef ENABLE_QEXT | 1827 | 394k | ext_ec_save = *ext_ec; | 1828 | 394k | #endif | 1829 | 394k | ctx_save = ctx; | 1830 | 394k | OPUS_COPY(X_save, X, N); | 1831 | 394k | OPUS_COPY(Y_save, Y, N); | 1832 | | /* Encode and round down. */ | 1833 | 394k | ctx.theta_round = -1; | 1834 | 394k | x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, | 1835 | 394k | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1836 | 394k | last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, cm ARG_QEXT(ext_b) ARG_QEXT(cap)); | 1837 | 394k | dist0 = MULT16_32_Q15(w[0], celt_inner_prod_norm_shift(X_save, X, N, arch)) + MULT16_32_Q15(w[1], celt_inner_prod_norm_shift(Y_save, Y, N, arch)); | 1838 | | | 1839 | | /* Save first result. */ | 1840 | 394k | cm2 = x_cm; | 1841 | 394k | ec_save2 = *ec; | 1842 | 394k | #ifdef ENABLE_QEXT | 1843 | 394k | ext_ec_save2 = *ext_ec; | 1844 | 394k | #endif | 1845 | 394k | ctx_save2 = ctx; | 1846 | 394k | OPUS_COPY(X_save2, X, N); | 1847 | 394k | OPUS_COPY(Y_save2, Y, N); | 1848 | 394k | if (!last) | 1849 | 387k | OPUS_COPY(norm_save2, norm+M*eBands[i]-norm_offset, N); | 1850 | 394k | nstart_bytes = ec_save.offs; | 1851 | 394k | nend_bytes = ec_save.storage; | 1852 | 394k | bytes_buf = ec_save.buf+nstart_bytes; | 1853 | 394k | save_bytes = nend_bytes-nstart_bytes; | 1854 | 394k | OPUS_COPY(bytes_save, bytes_buf, save_bytes); | 1855 | 394k | #ifdef ENABLE_QEXT | 1856 | 394k | ext_nstart_bytes = ext_ec_save.offs; | 1857 | 394k | ext_nend_bytes = ext_ec_save.storage; | 1858 | 394k | ext_bytes_buf = ext_ec_save.buf!=NULL ? ext_ec_save.buf+ext_nstart_bytes : NULL; | 1859 | 394k | ext_save_bytes = ext_nend_bytes-ext_nstart_bytes; | 1860 | 394k | if (ext_save_bytes) OPUS_COPY(ext_bytes_save, ext_bytes_buf, ext_save_bytes); | 1861 | 394k | #endif | 1862 | | /* Restore */ | 1863 | 394k | *ec = ec_save; | 1864 | 394k | #ifdef ENABLE_QEXT | 1865 | 394k | *ext_ec = ext_ec_save; | 1866 | 394k | #endif | 1867 | 394k | ctx = ctx_save; | 1868 | 394k | OPUS_COPY(X, X_save, N); | 1869 | 394k | OPUS_COPY(Y, Y_save, N); | 1870 | 394k | #ifndef DISABLE_UPDATE_DRAFT | 1871 | 394k | if (i == start+1) | 1872 | 33.9k | special_hybrid_folding(m, norm, norm2, start, M, dual_stereo); | 1873 | 394k | #endif | 1874 | | /* Encode and round up. */ | 1875 | 394k | ctx.theta_round = 1; | 1876 | 394k | x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, | 1877 | 394k | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1878 | 394k | last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, cm ARG_QEXT(ext_b) ARG_QEXT(cap)); | 1879 | 394k | dist1 = MULT16_32_Q15(w[0], celt_inner_prod_norm_shift(X_save, X, N, arch)) + MULT16_32_Q15(w[1], celt_inner_prod_norm_shift(Y_save, Y, N, arch)); | 1880 | 394k | if (dist0 >= dist1) { | 1881 | 254k | x_cm = cm2; | 1882 | 254k | *ec = ec_save2; | 1883 | 254k | #ifdef ENABLE_QEXT | 1884 | 254k | *ext_ec = ext_ec_save2; | 1885 | 254k | #endif | 1886 | 254k | ctx = ctx_save2; | 1887 | 254k | OPUS_COPY(X, X_save2, N); | 1888 | 254k | OPUS_COPY(Y, Y_save2, N); | 1889 | 254k | if (!last) | 1890 | 251k | OPUS_COPY(norm+M*eBands[i]-norm_offset, norm_save2, N); | 1891 | 254k | OPUS_COPY(bytes_buf, bytes_save, save_bytes); | 1892 | 254k | #ifdef ENABLE_QEXT | 1893 | 254k | if (ext_save_bytes) OPUS_COPY(ext_bytes_buf, ext_bytes_save, ext_save_bytes); | 1894 | 254k | #endif | 1895 | 254k | } | 1896 | 140M | } else { | 1897 | 140M | ctx.theta_round = 0; | 1898 | 140M | x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, | 1899 | 140M | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1900 | 140M | last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, x_cm|y_cm ARG_QEXT(ext_b) ARG_QEXT(cap)); | 1901 | 140M | } | 1902 | 655M | } else { | 1903 | 655M | x_cm = quant_band(&ctx, X, N, b, B, | 1904 | 655M | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1905 | 655M | last?NULL:norm+M*eBands[i]-norm_offset, Q31ONE, lowband_scratch, x_cm|y_cm ARG_QEXT(ext_b)); | 1906 | 655M | } | 1907 | 795M | y_cm = x_cm; | 1908 | 795M | } | 1909 | 796M | collapse_masks[i*C+0] = (unsigned char)x_cm; | 1910 | 796M | collapse_masks[i*C+C-1] = (unsigned char)y_cm; | 1911 | 796M | balance += pulses[i] + tell; | 1912 | | | 1913 | | /* Update the folding position only as long as we have 1 bit/sample depth. */ | 1914 | 796M | update_lowband = b>(N<<BITRES); | 1915 | | /* We only need to avoid noise on a split for the first band. After that, we | 1916 | | have folding. */ | 1917 | 796M | ctx.avoid_split_noise = 0; | 1918 | 796M | } | 1919 | 54.3M | *seed = ctx.seed; | 1920 | | | 1921 | 54.3M | RESTORE_STACK; | 1922 | 54.3M | } |
Line | Count | Source | 1597 | 54.3M | { | 1598 | 54.3M | int i; | 1599 | 54.3M | opus_int32 remaining_bits; | 1600 | 54.3M | const opus_int16 * OPUS_RESTRICT eBands = m->eBands; | 1601 | 54.3M | celt_norm * OPUS_RESTRICT norm, * OPUS_RESTRICT norm2; | 1602 | 54.3M | VARDECL(celt_norm, _norm); | 1603 | 54.3M | VARDECL(celt_norm, _lowband_scratch); | 1604 | 54.3M | VARDECL(celt_norm, X_save); | 1605 | 54.3M | VARDECL(celt_norm, Y_save); | 1606 | 54.3M | VARDECL(celt_norm, X_save2); | 1607 | 54.3M | VARDECL(celt_norm, Y_save2); | 1608 | 54.3M | VARDECL(celt_norm, norm_save2); | 1609 | 54.3M | VARDECL(unsigned char, bytes_save); | 1610 | 54.3M | int resynth_alloc; | 1611 | 54.3M | celt_norm *lowband_scratch; | 1612 | 54.3M | int B; | 1613 | 54.3M | int M; | 1614 | 54.3M | int lowband_offset; | 1615 | 54.3M | int update_lowband = 1; | 1616 | 54.3M | int C = Y_ != NULL ? 2 : 1; | 1617 | 54.3M | int norm_offset; | 1618 | 54.3M | int theta_rdo = encode && Y_!=NULL && !dual_stereo && complexity>=8; | 1619 | | #ifdef RESYNTH | 1620 | | int resynth = 1; | 1621 | | #else | 1622 | 54.3M | int resynth = !encode || theta_rdo; | 1623 | 54.3M | #endif | 1624 | 54.3M | struct band_ctx ctx; | 1625 | 54.3M | #ifdef ENABLE_QEXT | 1626 | 54.3M | int ext_b; | 1627 | 54.3M | opus_int32 ext_balance=0; | 1628 | 54.3M | opus_int32 ext_tell=0; | 1629 | 54.3M | VARDECL(unsigned char, ext_bytes_save); | 1630 | 54.3M | #endif | 1631 | 54.3M | SAVE_STACK; | 1632 | | | 1633 | 54.3M | M = 1<<LM; | 1634 | 54.3M | B = shortBlocks ? M : 1; | 1635 | 54.3M | norm_offset = M*eBands[start]; | 1636 | | /* No need to allocate norm for the last band because we don't need an | 1637 | | output in that band. */ | 1638 | 54.3M | ALLOC(_norm, C*(M*eBands[m->nbEBands-1]-norm_offset), celt_norm); | 1639 | 54.3M | norm = _norm; | 1640 | 54.3M | norm2 = norm + M*eBands[m->nbEBands-1]-norm_offset; | 1641 | | | 1642 | | /* For decoding, we can use the last band as scratch space because we don't need that | 1643 | | scratch space for the last band and we don't care about the data there until we're | 1644 | | decoding the last band. */ | 1645 | 54.3M | if (encode && resynth) | 1646 | 2.62M | resynth_alloc = M*(eBands[m->nbEBands]-eBands[m->nbEBands-1]); | 1647 | 51.7M | else | 1648 | 51.7M | resynth_alloc = ALLOC_NONE; | 1649 | 54.3M | ALLOC(_lowband_scratch, resynth_alloc, celt_norm); | 1650 | 54.3M | if (encode && resynth) | 1651 | 2.62M | lowband_scratch = _lowband_scratch; | 1652 | 51.7M | else | 1653 | 51.7M | lowband_scratch = X_+M*eBands[m->effEBands-1]; | 1654 | 54.3M | ALLOC(X_save, resynth_alloc, celt_norm); | 1655 | 54.3M | ALLOC(Y_save, resynth_alloc, celt_norm); | 1656 | 54.3M | ALLOC(X_save2, resynth_alloc, celt_norm); | 1657 | 54.3M | ALLOC(Y_save2, resynth_alloc, celt_norm); | 1658 | 54.3M | ALLOC(norm_save2, resynth_alloc, celt_norm); | 1659 | | | 1660 | 54.3M | lowband_offset = 0; | 1661 | 54.3M | ctx.bandE = bandE; | 1662 | 54.3M | ctx.ec = ec; | 1663 | 54.3M | ctx.encode = encode; | 1664 | 54.3M | ctx.intensity = intensity; | 1665 | 54.3M | ctx.m = m; | 1666 | 54.3M | ctx.seed = *seed; | 1667 | 54.3M | ctx.spread = spread; | 1668 | 54.3M | ctx.arch = arch; | 1669 | 54.3M | ctx.disable_inv = disable_inv; | 1670 | 54.3M | ctx.resynth = resynth; | 1671 | 54.3M | ctx.theta_round = 0; | 1672 | 54.3M | #ifdef ENABLE_QEXT | 1673 | 54.3M | ctx.ext_ec = ext_ec; | 1674 | 54.3M | ctx.ext_total_bits = ext_total_bits; | 1675 | 54.3M | ctx.extra_bands = end == NB_QEXT_BANDS || end == 2; | 1676 | 54.3M | if (ctx.extra_bands) theta_rdo = 0; | 1677 | 54.3M | ALLOC(ext_bytes_save, theta_rdo ? QEXT_PACKET_SIZE_CAP : ALLOC_NONE, unsigned char); | 1678 | 54.3M | #endif | 1679 | 54.3M | ALLOC(bytes_save, theta_rdo ? 1275 : ALLOC_NONE, unsigned char); | 1680 | | | 1681 | | /* Avoid injecting noise in the first band on transients. */ | 1682 | 54.3M | ctx.avoid_split_noise = B > 1; | 1683 | 850M | for (i=start;i<end;i++) | 1684 | 796M | { | 1685 | 796M | opus_int32 tell; | 1686 | 796M | int b; | 1687 | 796M | int N; | 1688 | 796M | opus_int32 curr_balance; | 1689 | 796M | int effective_lowband=-1; | 1690 | 796M | celt_norm * OPUS_RESTRICT X, * OPUS_RESTRICT Y; | 1691 | 796M | int tf_change=0; | 1692 | 796M | unsigned x_cm; | 1693 | 796M | unsigned y_cm; | 1694 | 796M | int last; | 1695 | | | 1696 | 796M | ctx.i = i; | 1697 | 796M | last = (i==end-1); | 1698 | | | 1699 | 796M | X = X_+M*eBands[i]; | 1700 | 796M | if (Y_!=NULL) | 1701 | 141M | Y = Y_+M*eBands[i]; | 1702 | 655M | else | 1703 | 655M | Y = NULL; | 1704 | 796M | N = M*eBands[i+1]-M*eBands[i]; | 1705 | 796M | celt_assert(N > 0); | 1706 | 796M | tell = ec_tell_frac(ec); | 1707 | | | 1708 | | /* Compute how many bits we want to allocate to this band */ | 1709 | 796M | if (i != start) | 1710 | 742M | balance -= tell; | 1711 | 796M | remaining_bits = total_bits-tell-1; | 1712 | 796M | ctx.remaining_bits = remaining_bits; | 1713 | 796M | #ifdef ENABLE_QEXT | 1714 | 796M | if (i != start) { | 1715 | 742M | ext_balance += extra_pulses[i-1] + ext_tell; | 1716 | 742M | } | 1717 | 796M | ext_tell = ec_tell_frac(ext_ec); | 1718 | 796M | ctx.extra_bits = extra_pulses[i]; | 1719 | 796M | if (i != start) | 1720 | 742M | ext_balance -= ext_tell; | 1721 | 796M | if (i <= codedBands-1) | 1722 | 123M | { | 1723 | 123M | opus_int32 ext_curr_balance = celt_sudiv(ext_balance, IMIN(3, codedBands-i)); | 1724 | 123M | ext_b = IMAX(0, IMIN(16383, IMIN(ext_total_bits-ext_tell,extra_pulses[i]+ext_curr_balance))); | 1725 | 673M | } else { | 1726 | 673M | ext_b = 0; | 1727 | 673M | } | 1728 | 796M | #endif | 1729 | 796M | if (i <= codedBands-1) | 1730 | 123M | { | 1731 | 123M | curr_balance = celt_sudiv(balance, IMIN(3, codedBands-i)); | 1732 | 123M | b = IMAX(0, IMIN(16383, IMIN(remaining_bits+1,pulses[i]+curr_balance))); | 1733 | 673M | } else { | 1734 | 673M | b = 0; | 1735 | 673M | } | 1736 | | | 1737 | 796M | #ifndef DISABLE_UPDATE_DRAFT | 1738 | 796M | if (resynth && (M*eBands[i]-N >= M*eBands[start] || i==start+1) && (update_lowband || lowband_offset==0)) | 1739 | 3.67M | lowband_offset = i; | 1740 | 796M | if (i == start+1) | 1741 | 54.3M | special_hybrid_folding(m, norm, norm2, start, M, dual_stereo); | 1742 | | #else | 1743 | | if (resynth && M*eBands[i]-N >= M*eBands[start] && (update_lowband || lowband_offset==0)) | 1744 | | lowband_offset = i; | 1745 | | #endif | 1746 | | | 1747 | 796M | tf_change = tf_res[i]; | 1748 | 796M | ctx.tf_change = tf_change; | 1749 | 796M | if (i>=m->effEBands) | 1750 | 22.3k | { | 1751 | 22.3k | X=norm; | 1752 | 22.3k | if (Y_!=NULL) | 1753 | 16.9k | Y = norm; | 1754 | 22.3k | lowband_scratch = NULL; | 1755 | 22.3k | } | 1756 | 796M | if (last && !theta_rdo) | 1757 | 51.7M | lowband_scratch = NULL; | 1758 | | | 1759 | | /* Get a conservative estimate of the collapse_mask's for the bands we're | 1760 | | going to be folding from. */ | 1761 | 796M | if (lowband_offset != 0 && (spread!=SPREAD_AGGRESSIVE || B>1 || tf_change<0)) | 1762 | 38.5M | { | 1763 | 38.5M | int fold_start; | 1764 | 38.5M | int fold_end; | 1765 | 38.5M | int fold_i; | 1766 | | /* This ensures we never repeat spectral content within one band */ | 1767 | 38.5M | effective_lowband = IMAX(0, M*eBands[lowband_offset]-norm_offset-N); | 1768 | 38.5M | fold_start = lowband_offset; | 1769 | 38.9M | while(M*eBands[--fold_start] > effective_lowband+norm_offset); | 1770 | 38.5M | fold_end = lowband_offset-1; | 1771 | 38.5M | #ifndef DISABLE_UPDATE_DRAFT | 1772 | 82.5M | while(++fold_end < i && M*eBands[fold_end] < effective_lowband+norm_offset+N); | 1773 | | #else | 1774 | | while(M*eBands[++fold_end] < effective_lowband+norm_offset+N); | 1775 | | #endif | 1776 | 38.5M | x_cm = y_cm = 0; | 1777 | 82.9M | fold_i = fold_start; do { | 1778 | 82.9M | x_cm |= collapse_masks[fold_i*C+0]; | 1779 | 82.9M | y_cm |= collapse_masks[fold_i*C+C-1]; | 1780 | 82.9M | } while (++fold_i<fold_end); | 1781 | 38.5M | } | 1782 | | /* Otherwise, we'll be using the LCG to fold, so all blocks will (almost | 1783 | | always) be non-zero. */ | 1784 | 757M | else | 1785 | 757M | x_cm = y_cm = (1<<B)-1; | 1786 | | | 1787 | 796M | if (dual_stereo && i==intensity) | 1788 | 49.1k | { | 1789 | 49.1k | int j; | 1790 | | | 1791 | | /* Switch off dual stereo to do intensity. */ | 1792 | 49.1k | dual_stereo = 0; | 1793 | 49.1k | if (resynth) | 1794 | 369k | for (j=0;j<M*eBands[i]-norm_offset;j++) | 1795 | 360k | norm[j] = HALF32(norm[j]+norm2[j]); | 1796 | 49.1k | } | 1797 | 796M | if (dual_stereo) | 1798 | 568k | { | 1799 | 568k | x_cm = quant_band(&ctx, X, N, b/2, B, | 1800 | 568k | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1801 | 568k | last?NULL:norm+M*eBands[i]-norm_offset, Q31ONE, lowband_scratch, x_cm ARG_QEXT(ext_b/2)); | 1802 | 568k | y_cm = quant_band(&ctx, Y, N, b/2, B, | 1803 | 568k | effective_lowband != -1 ? norm2+effective_lowband : NULL, LM, | 1804 | 568k | last?NULL:norm2+M*eBands[i]-norm_offset, Q31ONE, lowband_scratch, y_cm ARG_QEXT(ext_b/2)); | 1805 | 795M | } else { | 1806 | 795M | if (Y!=NULL) | 1807 | 140M | { | 1808 | 140M | if (theta_rdo && i < intensity) | 1809 | 394k | { | 1810 | 394k | ec_ctx ec_save, ec_save2; | 1811 | 394k | struct band_ctx ctx_save, ctx_save2; | 1812 | 394k | opus_val32 dist0, dist1; | 1813 | 394k | unsigned cm, cm2; | 1814 | 394k | int nstart_bytes, nend_bytes, save_bytes; | 1815 | 394k | unsigned char *bytes_buf; | 1816 | 394k | #ifdef ENABLE_QEXT | 1817 | 394k | ec_ctx ext_ec_save, ext_ec_save2; | 1818 | 394k | unsigned char *ext_bytes_buf; | 1819 | 394k | int ext_nstart_bytes, ext_nend_bytes, ext_save_bytes; | 1820 | 394k | #endif | 1821 | 394k | opus_val16 w[2]; | 1822 | 394k | compute_channel_weights(bandE[i], bandE[i+m->nbEBands], w); | 1823 | | /* Make a copy. */ | 1824 | 394k | cm = x_cm|y_cm; | 1825 | 394k | ec_save = *ec; | 1826 | 394k | #ifdef ENABLE_QEXT | 1827 | 394k | ext_ec_save = *ext_ec; | 1828 | 394k | #endif | 1829 | 394k | ctx_save = ctx; | 1830 | 394k | OPUS_COPY(X_save, X, N); | 1831 | 394k | OPUS_COPY(Y_save, Y, N); | 1832 | | /* Encode and round down. */ | 1833 | 394k | ctx.theta_round = -1; | 1834 | 394k | x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, | 1835 | 394k | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1836 | 394k | last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, cm ARG_QEXT(ext_b) ARG_QEXT(cap)); | 1837 | 394k | dist0 = MULT16_32_Q15(w[0], celt_inner_prod_norm_shift(X_save, X, N, arch)) + MULT16_32_Q15(w[1], celt_inner_prod_norm_shift(Y_save, Y, N, arch)); | 1838 | | | 1839 | | /* Save first result. */ | 1840 | 394k | cm2 = x_cm; | 1841 | 394k | ec_save2 = *ec; | 1842 | 394k | #ifdef ENABLE_QEXT | 1843 | 394k | ext_ec_save2 = *ext_ec; | 1844 | 394k | #endif | 1845 | 394k | ctx_save2 = ctx; | 1846 | 394k | OPUS_COPY(X_save2, X, N); | 1847 | 394k | OPUS_COPY(Y_save2, Y, N); | 1848 | 394k | if (!last) | 1849 | 387k | OPUS_COPY(norm_save2, norm+M*eBands[i]-norm_offset, N); | 1850 | 394k | nstart_bytes = ec_save.offs; | 1851 | 394k | nend_bytes = ec_save.storage; | 1852 | 394k | bytes_buf = ec_save.buf+nstart_bytes; | 1853 | 394k | save_bytes = nend_bytes-nstart_bytes; | 1854 | 394k | OPUS_COPY(bytes_save, bytes_buf, save_bytes); | 1855 | 394k | #ifdef ENABLE_QEXT | 1856 | 394k | ext_nstart_bytes = ext_ec_save.offs; | 1857 | 394k | ext_nend_bytes = ext_ec_save.storage; | 1858 | 394k | ext_bytes_buf = ext_ec_save.buf!=NULL ? ext_ec_save.buf+ext_nstart_bytes : NULL; | 1859 | 394k | ext_save_bytes = ext_nend_bytes-ext_nstart_bytes; | 1860 | 394k | if (ext_save_bytes) OPUS_COPY(ext_bytes_save, ext_bytes_buf, ext_save_bytes); | 1861 | 394k | #endif | 1862 | | /* Restore */ | 1863 | 394k | *ec = ec_save; | 1864 | 394k | #ifdef ENABLE_QEXT | 1865 | 394k | *ext_ec = ext_ec_save; | 1866 | 394k | #endif | 1867 | 394k | ctx = ctx_save; | 1868 | 394k | OPUS_COPY(X, X_save, N); | 1869 | 394k | OPUS_COPY(Y, Y_save, N); | 1870 | 394k | #ifndef DISABLE_UPDATE_DRAFT | 1871 | 394k | if (i == start+1) | 1872 | 33.9k | special_hybrid_folding(m, norm, norm2, start, M, dual_stereo); | 1873 | 394k | #endif | 1874 | | /* Encode and round up. */ | 1875 | 394k | ctx.theta_round = 1; | 1876 | 394k | x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, | 1877 | 394k | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1878 | 394k | last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, cm ARG_QEXT(ext_b) ARG_QEXT(cap)); | 1879 | 394k | dist1 = MULT16_32_Q15(w[0], celt_inner_prod_norm_shift(X_save, X, N, arch)) + MULT16_32_Q15(w[1], celt_inner_prod_norm_shift(Y_save, Y, N, arch)); | 1880 | 394k | if (dist0 >= dist1) { | 1881 | 254k | x_cm = cm2; | 1882 | 254k | *ec = ec_save2; | 1883 | 254k | #ifdef ENABLE_QEXT | 1884 | 254k | *ext_ec = ext_ec_save2; | 1885 | 254k | #endif | 1886 | 254k | ctx = ctx_save2; | 1887 | 254k | OPUS_COPY(X, X_save2, N); | 1888 | 254k | OPUS_COPY(Y, Y_save2, N); | 1889 | 254k | if (!last) | 1890 | 251k | OPUS_COPY(norm+M*eBands[i]-norm_offset, norm_save2, N); | 1891 | 254k | OPUS_COPY(bytes_buf, bytes_save, save_bytes); | 1892 | 254k | #ifdef ENABLE_QEXT | 1893 | 254k | if (ext_save_bytes) OPUS_COPY(ext_bytes_buf, ext_bytes_save, ext_save_bytes); | 1894 | 254k | #endif | 1895 | 254k | } | 1896 | 140M | } else { | 1897 | 140M | ctx.theta_round = 0; | 1898 | 140M | x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, | 1899 | 140M | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1900 | 140M | last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, x_cm|y_cm ARG_QEXT(ext_b) ARG_QEXT(cap)); | 1901 | 140M | } | 1902 | 655M | } else { | 1903 | 655M | x_cm = quant_band(&ctx, X, N, b, B, | 1904 | 655M | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1905 | 655M | last?NULL:norm+M*eBands[i]-norm_offset, Q31ONE, lowband_scratch, x_cm|y_cm ARG_QEXT(ext_b)); | 1906 | 655M | } | 1907 | 795M | y_cm = x_cm; | 1908 | 795M | } | 1909 | 796M | collapse_masks[i*C+0] = (unsigned char)x_cm; | 1910 | 796M | collapse_masks[i*C+C-1] = (unsigned char)y_cm; | 1911 | 796M | balance += pulses[i] + tell; | 1912 | | | 1913 | | /* Update the folding position only as long as we have 1 bit/sample depth. */ | 1914 | 796M | update_lowband = b>(N<<BITRES); | 1915 | | /* We only need to avoid noise on a split for the first band. After that, we | 1916 | | have folding. */ | 1917 | 796M | ctx.avoid_split_noise = 0; | 1918 | 796M | } | 1919 | 54.3M | *seed = ctx.seed; | 1920 | | | 1921 | 54.3M | RESTORE_STACK; | 1922 | 54.3M | } |
Line | Count | Source | 1597 | 72.0M | { | 1598 | 72.0M | int i; | 1599 | 72.0M | opus_int32 remaining_bits; | 1600 | 72.0M | const opus_int16 * OPUS_RESTRICT eBands = m->eBands; | 1601 | 72.0M | celt_norm * OPUS_RESTRICT norm, * OPUS_RESTRICT norm2; | 1602 | 72.0M | VARDECL(celt_norm, _norm); | 1603 | 72.0M | VARDECL(celt_norm, _lowband_scratch); | 1604 | 72.0M | VARDECL(celt_norm, X_save); | 1605 | 72.0M | VARDECL(celt_norm, Y_save); | 1606 | 72.0M | VARDECL(celt_norm, X_save2); | 1607 | 72.0M | VARDECL(celt_norm, Y_save2); | 1608 | 72.0M | VARDECL(celt_norm, norm_save2); | 1609 | 72.0M | VARDECL(unsigned char, bytes_save); | 1610 | 72.0M | int resynth_alloc; | 1611 | 72.0M | celt_norm *lowband_scratch; | 1612 | 72.0M | int B; | 1613 | 72.0M | int M; | 1614 | 72.0M | int lowband_offset; | 1615 | 72.0M | int update_lowband = 1; | 1616 | 72.0M | int C = Y_ != NULL ? 2 : 1; | 1617 | 72.0M | int norm_offset; | 1618 | 72.0M | int theta_rdo = encode && Y_!=NULL && !dual_stereo && complexity>=8; | 1619 | | #ifdef RESYNTH | 1620 | | int resynth = 1; | 1621 | | #else | 1622 | 72.0M | int resynth = !encode || theta_rdo; | 1623 | 72.0M | #endif | 1624 | 72.0M | struct band_ctx ctx; | 1625 | | #ifdef ENABLE_QEXT | 1626 | | int ext_b; | 1627 | | opus_int32 ext_balance=0; | 1628 | | opus_int32 ext_tell=0; | 1629 | | VARDECL(unsigned char, ext_bytes_save); | 1630 | | #endif | 1631 | 72.0M | SAVE_STACK; | 1632 | | | 1633 | 72.0M | M = 1<<LM; | 1634 | 72.0M | B = shortBlocks ? M : 1; | 1635 | 72.0M | norm_offset = M*eBands[start]; | 1636 | | /* No need to allocate norm for the last band because we don't need an | 1637 | | output in that band. */ | 1638 | 72.0M | ALLOC(_norm, C*(M*eBands[m->nbEBands-1]-norm_offset), celt_norm); | 1639 | 72.0M | norm = _norm; | 1640 | 72.0M | norm2 = norm + M*eBands[m->nbEBands-1]-norm_offset; | 1641 | | | 1642 | | /* For decoding, we can use the last band as scratch space because we don't need that | 1643 | | scratch space for the last band and we don't care about the data there until we're | 1644 | | decoding the last band. */ | 1645 | 72.0M | if (encode && resynth) | 1646 | 4.68M | resynth_alloc = M*(eBands[m->nbEBands]-eBands[m->nbEBands-1]); | 1647 | 67.3M | else | 1648 | 67.3M | resynth_alloc = ALLOC_NONE; | 1649 | 72.0M | ALLOC(_lowband_scratch, resynth_alloc, celt_norm); | 1650 | 72.0M | if (encode && resynth) | 1651 | 4.68M | lowband_scratch = _lowband_scratch; | 1652 | 67.3M | else | 1653 | 67.3M | lowband_scratch = X_+M*eBands[m->effEBands-1]; | 1654 | 72.0M | ALLOC(X_save, resynth_alloc, celt_norm); | 1655 | 72.0M | ALLOC(Y_save, resynth_alloc, celt_norm); | 1656 | 72.0M | ALLOC(X_save2, resynth_alloc, celt_norm); | 1657 | 72.0M | ALLOC(Y_save2, resynth_alloc, celt_norm); | 1658 | 72.0M | ALLOC(norm_save2, resynth_alloc, celt_norm); | 1659 | | | 1660 | 72.0M | lowband_offset = 0; | 1661 | 72.0M | ctx.bandE = bandE; | 1662 | 72.0M | ctx.ec = ec; | 1663 | 72.0M | ctx.encode = encode; | 1664 | 72.0M | ctx.intensity = intensity; | 1665 | 72.0M | ctx.m = m; | 1666 | 72.0M | ctx.seed = *seed; | 1667 | 72.0M | ctx.spread = spread; | 1668 | 72.0M | ctx.arch = arch; | 1669 | 72.0M | ctx.disable_inv = disable_inv; | 1670 | 72.0M | ctx.resynth = resynth; | 1671 | 72.0M | ctx.theta_round = 0; | 1672 | | #ifdef ENABLE_QEXT | 1673 | | ctx.ext_ec = ext_ec; | 1674 | | ctx.ext_total_bits = ext_total_bits; | 1675 | | ctx.extra_bands = end == NB_QEXT_BANDS || end == 2; | 1676 | | if (ctx.extra_bands) theta_rdo = 0; | 1677 | | ALLOC(ext_bytes_save, theta_rdo ? QEXT_PACKET_SIZE_CAP : ALLOC_NONE, unsigned char); | 1678 | | #endif | 1679 | 72.0M | ALLOC(bytes_save, theta_rdo ? 1275 : ALLOC_NONE, unsigned char); | 1680 | | | 1681 | | /* Avoid injecting noise in the first band on transients. */ | 1682 | 72.0M | ctx.avoid_split_noise = B > 1; | 1683 | 1.14G | for (i=start;i<end;i++) | 1684 | 1.07G | { | 1685 | 1.07G | opus_int32 tell; | 1686 | 1.07G | int b; | 1687 | 1.07G | int N; | 1688 | 1.07G | opus_int32 curr_balance; | 1689 | 1.07G | int effective_lowband=-1; | 1690 | 1.07G | celt_norm * OPUS_RESTRICT X, * OPUS_RESTRICT Y; | 1691 | 1.07G | int tf_change=0; | 1692 | 1.07G | unsigned x_cm; | 1693 | 1.07G | unsigned y_cm; | 1694 | 1.07G | int last; | 1695 | | | 1696 | 1.07G | ctx.i = i; | 1697 | 1.07G | last = (i==end-1); | 1698 | | | 1699 | 1.07G | X = X_+M*eBands[i]; | 1700 | 1.07G | if (Y_!=NULL) | 1701 | 233M | Y = Y_+M*eBands[i]; | 1702 | 840M | else | 1703 | 840M | Y = NULL; | 1704 | 1.07G | N = M*eBands[i+1]-M*eBands[i]; | 1705 | 1.07G | celt_assert(N > 0); | 1706 | 1.07G | tell = ec_tell_frac(ec); | 1707 | | | 1708 | | /* Compute how many bits we want to allocate to this band */ | 1709 | 1.07G | if (i != start) | 1710 | 1.00G | balance -= tell; | 1711 | 1.07G | remaining_bits = total_bits-tell-1; | 1712 | 1.07G | ctx.remaining_bits = remaining_bits; | 1713 | | #ifdef ENABLE_QEXT | 1714 | | if (i != start) { | 1715 | | ext_balance += extra_pulses[i-1] + ext_tell; | 1716 | | } | 1717 | | ext_tell = ec_tell_frac(ext_ec); | 1718 | | ctx.extra_bits = extra_pulses[i]; | 1719 | | if (i != start) | 1720 | | ext_balance -= ext_tell; | 1721 | | if (i <= codedBands-1) | 1722 | | { | 1723 | | opus_int32 ext_curr_balance = celt_sudiv(ext_balance, IMIN(3, codedBands-i)); | 1724 | | ext_b = IMAX(0, IMIN(16383, IMIN(ext_total_bits-ext_tell,extra_pulses[i]+ext_curr_balance))); | 1725 | | } else { | 1726 | | ext_b = 0; | 1727 | | } | 1728 | | #endif | 1729 | 1.07G | if (i <= codedBands-1) | 1730 | 287M | { | 1731 | 287M | curr_balance = celt_sudiv(balance, IMIN(3, codedBands-i)); | 1732 | 287M | b = IMAX(0, IMIN(16383, IMIN(remaining_bits+1,pulses[i]+curr_balance))); | 1733 | 786M | } else { | 1734 | 786M | b = 0; | 1735 | 786M | } | 1736 | | | 1737 | 1.07G | #ifndef DISABLE_UPDATE_DRAFT | 1738 | 1.07G | if (resynth && (M*eBands[i]-N >= M*eBands[start] || i==start+1) && (update_lowband || lowband_offset==0)) | 1739 | 11.6M | lowband_offset = i; | 1740 | 1.07G | if (i == start+1) | 1741 | 72.0M | special_hybrid_folding(m, norm, norm2, start, M, dual_stereo); | 1742 | | #else | 1743 | | if (resynth && M*eBands[i]-N >= M*eBands[start] && (update_lowband || lowband_offset==0)) | 1744 | | lowband_offset = i; | 1745 | | #endif | 1746 | | | 1747 | 1.07G | tf_change = tf_res[i]; | 1748 | 1.07G | ctx.tf_change = tf_change; | 1749 | 1.07G | if (i>=m->effEBands) | 1750 | 0 | { | 1751 | 0 | X=norm; | 1752 | 0 | if (Y_!=NULL) | 1753 | 0 | Y = norm; | 1754 | 0 | lowband_scratch = NULL; | 1755 | 0 | } | 1756 | 1.07G | if (last && !theta_rdo) | 1757 | 67.3M | lowband_scratch = NULL; | 1758 | | | 1759 | | /* Get a conservative estimate of the collapse_mask's for the bands we're | 1760 | | going to be folding from. */ | 1761 | 1.07G | if (lowband_offset != 0 && (spread!=SPREAD_AGGRESSIVE || B>1 || tf_change<0)) | 1762 | 68.5M | { | 1763 | 68.5M | int fold_start; | 1764 | 68.5M | int fold_end; | 1765 | 68.5M | int fold_i; | 1766 | | /* This ensures we never repeat spectral content within one band */ | 1767 | 68.5M | effective_lowband = IMAX(0, M*eBands[lowband_offset]-norm_offset-N); | 1768 | 68.5M | fold_start = lowband_offset; | 1769 | 72.3M | while(M*eBands[--fold_start] > effective_lowband+norm_offset); | 1770 | 68.5M | fold_end = lowband_offset-1; | 1771 | 68.5M | #ifndef DISABLE_UPDATE_DRAFT | 1772 | 147M | while(++fold_end < i && M*eBands[fold_end] < effective_lowband+norm_offset+N); | 1773 | | #else | 1774 | | while(M*eBands[++fold_end] < effective_lowband+norm_offset+N); | 1775 | | #endif | 1776 | 68.5M | x_cm = y_cm = 0; | 1777 | 151M | fold_i = fold_start; do { | 1778 | 151M | x_cm |= collapse_masks[fold_i*C+0]; | 1779 | 151M | y_cm |= collapse_masks[fold_i*C+C-1]; | 1780 | 151M | } while (++fold_i<fold_end); | 1781 | 68.5M | } | 1782 | | /* Otherwise, we'll be using the LCG to fold, so all blocks will (almost | 1783 | | always) be non-zero. */ | 1784 | 1.00G | else | 1785 | 1.00G | x_cm = y_cm = (1<<B)-1; | 1786 | | | 1787 | 1.07G | if (dual_stereo && i==intensity) | 1788 | 308k | { | 1789 | 308k | int j; | 1790 | | | 1791 | | /* Switch off dual stereo to do intensity. */ | 1792 | 308k | dual_stereo = 0; | 1793 | 308k | if (resynth) | 1794 | 222k | for (j=0;j<M*eBands[i]-norm_offset;j++) | 1795 | 216k | norm[j] = HALF32(norm[j]+norm2[j]); | 1796 | 308k | } | 1797 | 1.07G | if (dual_stereo) | 1798 | 4.80M | { | 1799 | 4.80M | x_cm = quant_band(&ctx, X, N, b/2, B, | 1800 | 4.80M | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1801 | 4.80M | last?NULL:norm+M*eBands[i]-norm_offset, Q31ONE, lowband_scratch, x_cm ARG_QEXT(ext_b/2)); | 1802 | 4.80M | y_cm = quant_band(&ctx, Y, N, b/2, B, | 1803 | 4.80M | effective_lowband != -1 ? norm2+effective_lowband : NULL, LM, | 1804 | 4.80M | last?NULL:norm2+M*eBands[i]-norm_offset, Q31ONE, lowband_scratch, y_cm ARG_QEXT(ext_b/2)); | 1805 | 1.06G | } else { | 1806 | 1.06G | if (Y!=NULL) | 1807 | 228M | { | 1808 | 228M | if (theta_rdo && i < intensity) | 1809 | 6.77M | { | 1810 | 6.77M | ec_ctx ec_save, ec_save2; | 1811 | 6.77M | struct band_ctx ctx_save, ctx_save2; | 1812 | 6.77M | opus_val32 dist0, dist1; | 1813 | 6.77M | unsigned cm, cm2; | 1814 | 6.77M | int nstart_bytes, nend_bytes, save_bytes; | 1815 | 6.77M | unsigned char *bytes_buf; | 1816 | | #ifdef ENABLE_QEXT | 1817 | | ec_ctx ext_ec_save, ext_ec_save2; | 1818 | | unsigned char *ext_bytes_buf; | 1819 | | int ext_nstart_bytes, ext_nend_bytes, ext_save_bytes; | 1820 | | #endif | 1821 | 6.77M | opus_val16 w[2]; | 1822 | 6.77M | compute_channel_weights(bandE[i], bandE[i+m->nbEBands], w); | 1823 | | /* Make a copy. */ | 1824 | 6.77M | cm = x_cm|y_cm; | 1825 | 6.77M | ec_save = *ec; | 1826 | | #ifdef ENABLE_QEXT | 1827 | | ext_ec_save = *ext_ec; | 1828 | | #endif | 1829 | 6.77M | ctx_save = ctx; | 1830 | 6.77M | OPUS_COPY(X_save, X, N); | 1831 | 6.77M | OPUS_COPY(Y_save, Y, N); | 1832 | | /* Encode and round down. */ | 1833 | 6.77M | ctx.theta_round = -1; | 1834 | 6.77M | x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, | 1835 | 6.77M | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1836 | 6.77M | last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, cm ARG_QEXT(ext_b) ARG_QEXT(cap)); | 1837 | 6.77M | dist0 = MULT16_32_Q15(w[0], celt_inner_prod_norm_shift(X_save, X, N, arch)) + MULT16_32_Q15(w[1], celt_inner_prod_norm_shift(Y_save, Y, N, arch)); | 1838 | | | 1839 | | /* Save first result. */ | 1840 | 6.77M | cm2 = x_cm; | 1841 | 6.77M | ec_save2 = *ec; | 1842 | | #ifdef ENABLE_QEXT | 1843 | | ext_ec_save2 = *ext_ec; | 1844 | | #endif | 1845 | 6.77M | ctx_save2 = ctx; | 1846 | 6.77M | OPUS_COPY(X_save2, X, N); | 1847 | 6.77M | OPUS_COPY(Y_save2, Y, N); | 1848 | 6.77M | if (!last) | 1849 | 6.73M | OPUS_COPY(norm_save2, norm+M*eBands[i]-norm_offset, N); | 1850 | 6.77M | nstart_bytes = ec_save.offs; | 1851 | 6.77M | nend_bytes = ec_save.storage; | 1852 | 6.77M | bytes_buf = ec_save.buf+nstart_bytes; | 1853 | 6.77M | save_bytes = nend_bytes-nstart_bytes; | 1854 | 6.77M | OPUS_COPY(bytes_save, bytes_buf, save_bytes); | 1855 | | #ifdef ENABLE_QEXT | 1856 | | ext_nstart_bytes = ext_ec_save.offs; | 1857 | | ext_nend_bytes = ext_ec_save.storage; | 1858 | | ext_bytes_buf = ext_ec_save.buf!=NULL ? ext_ec_save.buf+ext_nstart_bytes : NULL; | 1859 | | ext_save_bytes = ext_nend_bytes-ext_nstart_bytes; | 1860 | | if (ext_save_bytes) OPUS_COPY(ext_bytes_save, ext_bytes_buf, ext_save_bytes); | 1861 | | #endif | 1862 | | /* Restore */ | 1863 | 6.77M | *ec = ec_save; | 1864 | | #ifdef ENABLE_QEXT | 1865 | | *ext_ec = ext_ec_save; | 1866 | | #endif | 1867 | 6.77M | ctx = ctx_save; | 1868 | 6.77M | OPUS_COPY(X, X_save, N); | 1869 | 6.77M | OPUS_COPY(Y, Y_save, N); | 1870 | 6.77M | #ifndef DISABLE_UPDATE_DRAFT | 1871 | 6.77M | if (i == start+1) | 1872 | 671k | special_hybrid_folding(m, norm, norm2, start, M, dual_stereo); | 1873 | 6.77M | #endif | 1874 | | /* Encode and round up. */ | 1875 | 6.77M | ctx.theta_round = 1; | 1876 | 6.77M | x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, | 1877 | 6.77M | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1878 | 6.77M | last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, cm ARG_QEXT(ext_b) ARG_QEXT(cap)); | 1879 | 6.77M | dist1 = MULT16_32_Q15(w[0], celt_inner_prod_norm_shift(X_save, X, N, arch)) + MULT16_32_Q15(w[1], celt_inner_prod_norm_shift(Y_save, Y, N, arch)); | 1880 | 6.77M | if (dist0 >= dist1) { | 1881 | 6.41M | x_cm = cm2; | 1882 | 6.41M | *ec = ec_save2; | 1883 | | #ifdef ENABLE_QEXT | 1884 | | *ext_ec = ext_ec_save2; | 1885 | | #endif | 1886 | 6.41M | ctx = ctx_save2; | 1887 | 6.41M | OPUS_COPY(X, X_save2, N); | 1888 | 6.41M | OPUS_COPY(Y, Y_save2, N); | 1889 | 6.41M | if (!last) | 1890 | 6.37M | OPUS_COPY(norm+M*eBands[i]-norm_offset, norm_save2, N); | 1891 | 6.41M | OPUS_COPY(bytes_buf, bytes_save, save_bytes); | 1892 | | #ifdef ENABLE_QEXT | 1893 | | if (ext_save_bytes) OPUS_COPY(ext_bytes_buf, ext_bytes_save, ext_save_bytes); | 1894 | | #endif | 1895 | 6.41M | } | 1896 | 221M | } else { | 1897 | 221M | ctx.theta_round = 0; | 1898 | 221M | x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, | 1899 | 221M | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1900 | 221M | last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, x_cm|y_cm ARG_QEXT(ext_b) ARG_QEXT(cap)); | 1901 | 221M | } | 1902 | 840M | } else { | 1903 | 840M | x_cm = quant_band(&ctx, X, N, b, B, | 1904 | 840M | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, | 1905 | 840M | last?NULL:norm+M*eBands[i]-norm_offset, Q31ONE, lowband_scratch, x_cm|y_cm ARG_QEXT(ext_b)); | 1906 | 840M | } | 1907 | 1.06G | y_cm = x_cm; | 1908 | 1.06G | } | 1909 | 1.07G | collapse_masks[i*C+0] = (unsigned char)x_cm; | 1910 | 1.07G | collapse_masks[i*C+C-1] = (unsigned char)y_cm; | 1911 | 1.07G | balance += pulses[i] + tell; | 1912 | | | 1913 | | /* Update the folding position only as long as we have 1 bit/sample depth. */ | 1914 | 1.07G | update_lowband = b>(N<<BITRES); | 1915 | | /* We only need to avoid noise on a split for the first band. After that, we | 1916 | | have folding. */ | 1917 | 1.07G | ctx.avoid_split_noise = 0; | 1918 | 1.07G | } | 1919 | 72.0M | *seed = ctx.seed; | 1920 | | | 1921 | 72.0M | RESTORE_STACK; | 1922 | 72.0M | } |
|