Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.9/dist-packages/numpy/lib/format.py: 12%
Shortcuts on this page
r m x toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
Shortcuts on this page
r m x toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
1"""
2Binary serialization
4NPY format
5==========
7A simple format for saving numpy arrays to disk with the full
8information about them.
10The ``.npy`` format is the standard binary file format in NumPy for
11persisting a *single* arbitrary NumPy array on disk. The format stores all
12of the shape and dtype information necessary to reconstruct the array
13correctly even on another machine with a different architecture.
14The format is designed to be as simple as possible while achieving
15its limited goals.
17The ``.npz`` format is the standard format for persisting *multiple* NumPy
18arrays on disk. A ``.npz`` file is a zip file containing multiple ``.npy``
19files, one for each array.
21Capabilities
22------------
24- Can represent all NumPy arrays including nested record arrays and
25 object arrays.
27- Represents the data in its native binary form.
29- Supports Fortran-contiguous arrays directly.
31- Stores all of the necessary information to reconstruct the array
32 including shape and dtype on a machine of a different
33 architecture. Both little-endian and big-endian arrays are
34 supported, and a file with little-endian numbers will yield
35 a little-endian array on any machine reading the file. The
36 types are described in terms of their actual sizes. For example,
37 if a machine with a 64-bit C "long int" writes out an array with
38 "long ints", a reading machine with 32-bit C "long ints" will yield
39 an array with 64-bit integers.
41- Is straightforward to reverse engineer. Datasets often live longer than
42 the programs that created them. A competent developer should be
43 able to create a solution in their preferred programming language to
44 read most ``.npy`` files that they have been given without much
45 documentation.
47- Allows memory-mapping of the data. See `open_memmap`.
49- Can be read from a filelike stream object instead of an actual file.
51- Stores object arrays, i.e. arrays containing elements that are arbitrary
52 Python objects. Files with object arrays are not to be mmapable, but
53 can be read and written to disk.
55Limitations
56-----------
58- Arbitrary subclasses of numpy.ndarray are not completely preserved.
59 Subclasses will be accepted for writing, but only the array data will
60 be written out. A regular numpy.ndarray object will be created
61 upon reading the file.
63.. warning::
65 Due to limitations in the interpretation of structured dtypes, dtypes
66 with fields with empty names will have the names replaced by 'f0', 'f1',
67 etc. Such arrays will not round-trip through the format entirely
68 accurately. The data is intact; only the field names will differ. We are
69 working on a fix for this. This fix will not require a change in the
70 file format. The arrays with such structures can still be saved and
71 restored, and the correct dtype may be restored by using the
72 ``loadedarray.view(correct_dtype)`` method.
74File extensions
75---------------
77We recommend using the ``.npy`` and ``.npz`` extensions for files saved
78in this format. This is by no means a requirement; applications may wish
79to use these file formats but use an extension specific to the
80application. In the absence of an obvious alternative, however,
81we suggest using ``.npy`` and ``.npz``.
83Version numbering
84-----------------
86The version numbering of these formats is independent of NumPy version
87numbering. If the format is upgraded, the code in `numpy.io` will still
88be able to read and write Version 1.0 files.
90Format Version 1.0
91------------------
93The first 6 bytes are a magic string: exactly ``\\x93NUMPY``.
95The next 1 byte is an unsigned byte: the major version number of the file
96format, e.g. ``\\x01``.
98The next 1 byte is an unsigned byte: the minor version number of the file
99format, e.g. ``\\x00``. Note: the version of the file format is not tied
100to the version of the numpy package.
102The next 2 bytes form a little-endian unsigned short int: the length of
103the header data HEADER_LEN.
105The next HEADER_LEN bytes form the header data describing the array's
106format. It is an ASCII string which contains a Python literal expression
107of a dictionary. It is terminated by a newline (``\\n``) and padded with
108spaces (``\\x20``) to make the total of
109``len(magic string) + 2 + len(length) + HEADER_LEN`` be evenly divisible
110by 64 for alignment purposes.
112The dictionary contains three keys:
114 "descr" : dtype.descr
115 An object that can be passed as an argument to the `numpy.dtype`
116 constructor to create the array's dtype.
117 "fortran_order" : bool
118 Whether the array data is Fortran-contiguous or not. Since
119 Fortran-contiguous arrays are a common form of non-C-contiguity,
120 we allow them to be written directly to disk for efficiency.
121 "shape" : tuple of int
122 The shape of the array.
124For repeatability and readability, the dictionary keys are sorted in
125alphabetic order. This is for convenience only. A writer SHOULD implement
126this if possible. A reader MUST NOT depend on this.
128Following the header comes the array data. If the dtype contains Python
129objects (i.e. ``dtype.hasobject is True``), then the data is a Python
130pickle of the array. Otherwise the data is the contiguous (either C-
131or Fortran-, depending on ``fortran_order``) bytes of the array.
132Consumers can figure out the number of bytes by multiplying the number
133of elements given by the shape (noting that ``shape=()`` means there is
1341 element) by ``dtype.itemsize``.
136Format Version 2.0
137------------------
139The version 1.0 format only allowed the array header to have a total size of
14065535 bytes. This can be exceeded by structured arrays with a large number of
141columns. The version 2.0 format extends the header size to 4 GiB.
142`numpy.save` will automatically save in 2.0 format if the data requires it,
143else it will always use the more compatible 1.0 format.
145The description of the fourth element of the header therefore has become:
146"The next 4 bytes form a little-endian unsigned int: the length of the header
147data HEADER_LEN."
149Format Version 3.0
150------------------
152This version replaces the ASCII string (which in practice was latin1) with
153a utf8-encoded string, so supports structured types with any unicode field
154names.
156Notes
157-----
158The ``.npy`` format, including motivation for creating it and a comparison of
159alternatives, is described in the
160:doc:`"npy-format" NEP <neps:nep-0001-npy-format>`, however details have
161evolved with time and this document is more current.
163"""
164import numpy
165import warnings
166from numpy.lib.utils import safe_eval, drop_metadata
167from numpy.compat import (
168 isfileobj, os_fspath, pickle
169 )
172__all__ = []
175EXPECTED_KEYS = {'descr', 'fortran_order', 'shape'}
176MAGIC_PREFIX = b'\x93NUMPY'
177MAGIC_LEN = len(MAGIC_PREFIX) + 2
178ARRAY_ALIGN = 64 # plausible values are powers of 2 between 16 and 4096
179BUFFER_SIZE = 2**18 # size of buffer for reading npz files in bytes
180# allow growth within the address space of a 64 bit machine along one axis
181GROWTH_AXIS_MAX_DIGITS = 21 # = len(str(8*2**64-1)) hypothetical int1 dtype
183# difference between version 1.0 and 2.0 is a 4 byte (I) header length
184# instead of 2 bytes (H) allowing storage of large structured arrays
185_header_size_info = {
186 (1, 0): ('<H', 'latin1'),
187 (2, 0): ('<I', 'latin1'),
188 (3, 0): ('<I', 'utf8'),
189}
191# Python's literal_eval is not actually safe for large inputs, since parsing
192# may become slow or even cause interpreter crashes.
193# This is an arbitrary, low limit which should make it safe in practice.
194_MAX_HEADER_SIZE = 10000
196def _check_version(version):
197 if version not in [(1, 0), (2, 0), (3, 0), None]:
198 msg = "we only support format version (1,0), (2,0), and (3,0), not %s"
199 raise ValueError(msg % (version,))
201def magic(major, minor):
202 """ Return the magic string for the given file format version.
204 Parameters
205 ----------
206 major : int in [0, 255]
207 minor : int in [0, 255]
209 Returns
210 -------
211 magic : str
213 Raises
214 ------
215 ValueError if the version cannot be formatted.
216 """
217 if major < 0 or major > 255:
218 raise ValueError("major version must be 0 <= major < 256")
219 if minor < 0 or minor > 255:
220 raise ValueError("minor version must be 0 <= minor < 256")
221 return MAGIC_PREFIX + bytes([major, minor])
223def read_magic(fp):
224 """ Read the magic string to get the version of the file format.
226 Parameters
227 ----------
228 fp : filelike object
230 Returns
231 -------
232 major : int
233 minor : int
234 """
235 magic_str = _read_bytes(fp, MAGIC_LEN, "magic string")
236 if magic_str[:-2] != MAGIC_PREFIX:
237 msg = "the magic string is not correct; expected %r, got %r"
238 raise ValueError(msg % (MAGIC_PREFIX, magic_str[:-2]))
239 major, minor = magic_str[-2:]
240 return major, minor
243def dtype_to_descr(dtype):
244 """
245 Get a serializable descriptor from the dtype.
247 The .descr attribute of a dtype object cannot be round-tripped through
248 the dtype() constructor. Simple types, like dtype('float32'), have
249 a descr which looks like a record array with one field with '' as
250 a name. The dtype() constructor interprets this as a request to give
251 a default name. Instead, we construct descriptor that can be passed to
252 dtype().
254 Parameters
255 ----------
256 dtype : dtype
257 The dtype of the array that will be written to disk.
259 Returns
260 -------
261 descr : object
262 An object that can be passed to `numpy.dtype()` in order to
263 replicate the input dtype.
265 """
266 # NOTE: that drop_metadata may not return the right dtype e.g. for user
267 # dtypes. In that case our code below would fail the same, though.
268 new_dtype = drop_metadata(dtype)
269 if new_dtype is not dtype:
270 warnings.warn("metadata on a dtype is not saved to an npy/npz. "
271 "Use another format (such as pickle) to store it.",
272 UserWarning, stacklevel=2)
273 if dtype.names is not None:
274 # This is a record array. The .descr is fine. XXX: parts of the
275 # record array with an empty name, like padding bytes, still get
276 # fiddled with. This needs to be fixed in the C implementation of
277 # dtype().
278 return dtype.descr
279 else:
280 return dtype.str
282def descr_to_dtype(descr):
283 """
284 Returns a dtype based off the given description.
286 This is essentially the reverse of `dtype_to_descr()`. It will remove
287 the valueless padding fields created by, i.e. simple fields like
288 dtype('float32'), and then convert the description to its corresponding
289 dtype.
291 Parameters
292 ----------
293 descr : object
294 The object retrieved by dtype.descr. Can be passed to
295 `numpy.dtype()` in order to replicate the input dtype.
297 Returns
298 -------
299 dtype : dtype
300 The dtype constructed by the description.
302 """
303 if isinstance(descr, str):
304 # No padding removal needed
305 return numpy.dtype(descr)
306 elif isinstance(descr, tuple):
307 # subtype, will always have a shape descr[1]
308 dt = descr_to_dtype(descr[0])
309 return numpy.dtype((dt, descr[1]))
311 titles = []
312 names = []
313 formats = []
314 offsets = []
315 offset = 0
316 for field in descr:
317 if len(field) == 2:
318 name, descr_str = field
319 dt = descr_to_dtype(descr_str)
320 else:
321 name, descr_str, shape = field
322 dt = numpy.dtype((descr_to_dtype(descr_str), shape))
324 # Ignore padding bytes, which will be void bytes with '' as name
325 # Once support for blank names is removed, only "if name == ''" needed)
326 is_pad = (name == '' and dt.type is numpy.void and dt.names is None)
327 if not is_pad:
328 title, name = name if isinstance(name, tuple) else (None, name)
329 titles.append(title)
330 names.append(name)
331 formats.append(dt)
332 offsets.append(offset)
333 offset += dt.itemsize
335 return numpy.dtype({'names': names, 'formats': formats, 'titles': titles,
336 'offsets': offsets, 'itemsize': offset})
338def header_data_from_array_1_0(array):
339 """ Get the dictionary of header metadata from a numpy.ndarray.
341 Parameters
342 ----------
343 array : numpy.ndarray
345 Returns
346 -------
347 d : dict
348 This has the appropriate entries for writing its string representation
349 to the header of the file.
350 """
351 d = {'shape': array.shape}
352 if array.flags.c_contiguous:
353 d['fortran_order'] = False
354 elif array.flags.f_contiguous:
355 d['fortran_order'] = True
356 else:
357 # Totally non-contiguous data. We will have to make it C-contiguous
358 # before writing. Note that we need to test for C_CONTIGUOUS first
359 # because a 1-D array is both C_CONTIGUOUS and F_CONTIGUOUS.
360 d['fortran_order'] = False
362 d['descr'] = dtype_to_descr(array.dtype)
363 return d
366def _wrap_header(header, version):
367 """
368 Takes a stringified header, and attaches the prefix and padding to it
369 """
370 import struct
371 assert version is not None
372 fmt, encoding = _header_size_info[version]
373 header = header.encode(encoding)
374 hlen = len(header) + 1
375 padlen = ARRAY_ALIGN - ((MAGIC_LEN + struct.calcsize(fmt) + hlen) % ARRAY_ALIGN)
376 try:
377 header_prefix = magic(*version) + struct.pack(fmt, hlen + padlen)
378 except struct.error:
379 msg = "Header length {} too big for version={}".format(hlen, version)
380 raise ValueError(msg) from None
382 # Pad the header with spaces and a final newline such that the magic
383 # string, the header-length short and the header are aligned on a
384 # ARRAY_ALIGN byte boundary. This supports memory mapping of dtypes
385 # aligned up to ARRAY_ALIGN on systems like Linux where mmap()
386 # offset must be page-aligned (i.e. the beginning of the file).
387 return header_prefix + header + b' '*padlen + b'\n'
390def _wrap_header_guess_version(header):
391 """
392 Like `_wrap_header`, but chooses an appropriate version given the contents
393 """
394 try:
395 return _wrap_header(header, (1, 0))
396 except ValueError:
397 pass
399 try:
400 ret = _wrap_header(header, (2, 0))
401 except UnicodeEncodeError:
402 pass
403 else:
404 warnings.warn("Stored array in format 2.0. It can only be"
405 "read by NumPy >= 1.9", UserWarning, stacklevel=2)
406 return ret
408 header = _wrap_header(header, (3, 0))
409 warnings.warn("Stored array in format 3.0. It can only be "
410 "read by NumPy >= 1.17", UserWarning, stacklevel=2)
411 return header
414def _write_array_header(fp, d, version=None):
415 """ Write the header for an array and returns the version used
417 Parameters
418 ----------
419 fp : filelike object
420 d : dict
421 This has the appropriate entries for writing its string representation
422 to the header of the file.
423 version : tuple or None
424 None means use oldest that works. Providing an explicit version will
425 raise a ValueError if the format does not allow saving this data.
426 Default: None
427 """
428 header = ["{"]
429 for key, value in sorted(d.items()):
430 # Need to use repr here, since we eval these when reading
431 header.append("'%s': %s, " % (key, repr(value)))
432 header.append("}")
433 header = "".join(header)
435 # Add some spare space so that the array header can be modified in-place
436 # when changing the array size, e.g. when growing it by appending data at
437 # the end.
438 shape = d['shape']
439 header += " " * ((GROWTH_AXIS_MAX_DIGITS - len(repr(
440 shape[-1 if d['fortran_order'] else 0]
441 ))) if len(shape) > 0 else 0)
443 if version is None:
444 header = _wrap_header_guess_version(header)
445 else:
446 header = _wrap_header(header, version)
447 fp.write(header)
449def write_array_header_1_0(fp, d):
450 """ Write the header for an array using the 1.0 format.
452 Parameters
453 ----------
454 fp : filelike object
455 d : dict
456 This has the appropriate entries for writing its string
457 representation to the header of the file.
458 """
459 _write_array_header(fp, d, (1, 0))
462def write_array_header_2_0(fp, d):
463 """ Write the header for an array using the 2.0 format.
464 The 2.0 format allows storing very large structured arrays.
466 .. versionadded:: 1.9.0
468 Parameters
469 ----------
470 fp : filelike object
471 d : dict
472 This has the appropriate entries for writing its string
473 representation to the header of the file.
474 """
475 _write_array_header(fp, d, (2, 0))
477def read_array_header_1_0(fp, max_header_size=_MAX_HEADER_SIZE):
478 """
479 Read an array header from a filelike object using the 1.0 file format
480 version.
482 This will leave the file object located just after the header.
484 Parameters
485 ----------
486 fp : filelike object
487 A file object or something with a `.read()` method like a file.
489 Returns
490 -------
491 shape : tuple of int
492 The shape of the array.
493 fortran_order : bool
494 The array data will be written out directly if it is either
495 C-contiguous or Fortran-contiguous. Otherwise, it will be made
496 contiguous before writing it out.
497 dtype : dtype
498 The dtype of the file's data.
499 max_header_size : int, optional
500 Maximum allowed size of the header. Large headers may not be safe
501 to load securely and thus require explicitly passing a larger value.
502 See :py:func:`ast.literal_eval()` for details.
504 Raises
505 ------
506 ValueError
507 If the data is invalid.
509 """
510 return _read_array_header(
511 fp, version=(1, 0), max_header_size=max_header_size)
513def read_array_header_2_0(fp, max_header_size=_MAX_HEADER_SIZE):
514 """
515 Read an array header from a filelike object using the 2.0 file format
516 version.
518 This will leave the file object located just after the header.
520 .. versionadded:: 1.9.0
522 Parameters
523 ----------
524 fp : filelike object
525 A file object or something with a `.read()` method like a file.
526 max_header_size : int, optional
527 Maximum allowed size of the header. Large headers may not be safe
528 to load securely and thus require explicitly passing a larger value.
529 See :py:func:`ast.literal_eval()` for details.
531 Returns
532 -------
533 shape : tuple of int
534 The shape of the array.
535 fortran_order : bool
536 The array data will be written out directly if it is either
537 C-contiguous or Fortran-contiguous. Otherwise, it will be made
538 contiguous before writing it out.
539 dtype : dtype
540 The dtype of the file's data.
542 Raises
543 ------
544 ValueError
545 If the data is invalid.
547 """
548 return _read_array_header(
549 fp, version=(2, 0), max_header_size=max_header_size)
552def _filter_header(s):
553 """Clean up 'L' in npz header ints.
555 Cleans up the 'L' in strings representing integers. Needed to allow npz
556 headers produced in Python2 to be read in Python3.
558 Parameters
559 ----------
560 s : string
561 Npy file header.
563 Returns
564 -------
565 header : str
566 Cleaned up header.
568 """
569 import tokenize
570 from io import StringIO
572 tokens = []
573 last_token_was_number = False
574 for token in tokenize.generate_tokens(StringIO(s).readline):
575 token_type = token[0]
576 token_string = token[1]
577 if (last_token_was_number and
578 token_type == tokenize.NAME and
579 token_string == "L"):
580 continue
581 else:
582 tokens.append(token)
583 last_token_was_number = (token_type == tokenize.NUMBER)
584 return tokenize.untokenize(tokens)
587def _read_array_header(fp, version, max_header_size=_MAX_HEADER_SIZE):
588 """
589 see read_array_header_1_0
590 """
591 # Read an unsigned, little-endian short int which has the length of the
592 # header.
593 import struct
594 hinfo = _header_size_info.get(version)
595 if hinfo is None:
596 raise ValueError("Invalid version {!r}".format(version))
597 hlength_type, encoding = hinfo
599 hlength_str = _read_bytes(fp, struct.calcsize(hlength_type), "array header length")
600 header_length = struct.unpack(hlength_type, hlength_str)[0]
601 header = _read_bytes(fp, header_length, "array header")
602 header = header.decode(encoding)
603 if len(header) > max_header_size:
604 raise ValueError(
605 f"Header info length ({len(header)}) is large and may not be safe "
606 "to load securely.\n"
607 "To allow loading, adjust `max_header_size` or fully trust "
608 "the `.npy` file using `allow_pickle=True`.\n"
609 "For safety against large resource use or crashes, sandboxing "
610 "may be necessary.")
612 # The header is a pretty-printed string representation of a literal
613 # Python dictionary with trailing newlines padded to a ARRAY_ALIGN byte
614 # boundary. The keys are strings.
615 # "shape" : tuple of int
616 # "fortran_order" : bool
617 # "descr" : dtype.descr
618 # Versions (2, 0) and (1, 0) could have been created by a Python 2
619 # implementation before header filtering was implemented.
620 #
621 # For performance reasons, we try without _filter_header first though
622 try:
623 d = safe_eval(header)
624 except SyntaxError as e:
625 if version <= (2, 0):
626 header = _filter_header(header)
627 try:
628 d = safe_eval(header)
629 except SyntaxError as e2:
630 msg = "Cannot parse header: {!r}"
631 raise ValueError(msg.format(header)) from e2
632 else:
633 warnings.warn(
634 "Reading `.npy` or `.npz` file required additional "
635 "header parsing as it was created on Python 2. Save the "
636 "file again to speed up loading and avoid this warning.",
637 UserWarning, stacklevel=4)
638 else:
639 msg = "Cannot parse header: {!r}"
640 raise ValueError(msg.format(header)) from e
641 if not isinstance(d, dict):
642 msg = "Header is not a dictionary: {!r}"
643 raise ValueError(msg.format(d))
645 if EXPECTED_KEYS != d.keys():
646 keys = sorted(d.keys())
647 msg = "Header does not contain the correct keys: {!r}"
648 raise ValueError(msg.format(keys))
650 # Sanity-check the values.
651 if (not isinstance(d['shape'], tuple) or
652 not all(isinstance(x, int) for x in d['shape'])):
653 msg = "shape is not valid: {!r}"
654 raise ValueError(msg.format(d['shape']))
655 if not isinstance(d['fortran_order'], bool):
656 msg = "fortran_order is not a valid bool: {!r}"
657 raise ValueError(msg.format(d['fortran_order']))
658 try:
659 dtype = descr_to_dtype(d['descr'])
660 except TypeError as e:
661 msg = "descr is not a valid dtype descriptor: {!r}"
662 raise ValueError(msg.format(d['descr'])) from e
664 return d['shape'], d['fortran_order'], dtype
666def write_array(fp, array, version=None, allow_pickle=True, pickle_kwargs=None):
667 """
668 Write an array to an NPY file, including a header.
670 If the array is neither C-contiguous nor Fortran-contiguous AND the
671 file_like object is not a real file object, this function will have to
672 copy data in memory.
674 Parameters
675 ----------
676 fp : file_like object
677 An open, writable file object, or similar object with a
678 ``.write()`` method.
679 array : ndarray
680 The array to write to disk.
681 version : (int, int) or None, optional
682 The version number of the format. None means use the oldest
683 supported version that is able to store the data. Default: None
684 allow_pickle : bool, optional
685 Whether to allow writing pickled data. Default: True
686 pickle_kwargs : dict, optional
687 Additional keyword arguments to pass to pickle.dump, excluding
688 'protocol'. These are only useful when pickling objects in object
689 arrays on Python 3 to Python 2 compatible format.
691 Raises
692 ------
693 ValueError
694 If the array cannot be persisted. This includes the case of
695 allow_pickle=False and array being an object array.
696 Various other errors
697 If the array contains Python objects as part of its dtype, the
698 process of pickling them may raise various errors if the objects
699 are not picklable.
701 """
702 _check_version(version)
703 _write_array_header(fp, header_data_from_array_1_0(array), version)
705 if array.itemsize == 0:
706 buffersize = 0
707 else:
708 # Set buffer size to 16 MiB to hide the Python loop overhead.
709 buffersize = max(16 * 1024 ** 2 // array.itemsize, 1)
711 if array.dtype.hasobject:
712 # We contain Python objects so we cannot write out the data
713 # directly. Instead, we will pickle it out
714 if not allow_pickle:
715 raise ValueError("Object arrays cannot be saved when "
716 "allow_pickle=False")
717 if pickle_kwargs is None:
718 pickle_kwargs = {}
719 pickle.dump(array, fp, protocol=3, **pickle_kwargs)
720 elif array.flags.f_contiguous and not array.flags.c_contiguous:
721 if isfileobj(fp):
722 array.T.tofile(fp)
723 else:
724 for chunk in numpy.nditer(
725 array, flags=['external_loop', 'buffered', 'zerosize_ok'],
726 buffersize=buffersize, order='F'):
727 fp.write(chunk.tobytes('C'))
728 else:
729 if isfileobj(fp):
730 array.tofile(fp)
731 else:
732 for chunk in numpy.nditer(
733 array, flags=['external_loop', 'buffered', 'zerosize_ok'],
734 buffersize=buffersize, order='C'):
735 fp.write(chunk.tobytes('C'))
738def read_array(fp, allow_pickle=False, pickle_kwargs=None, *,
739 max_header_size=_MAX_HEADER_SIZE):
740 """
741 Read an array from an NPY file.
743 Parameters
744 ----------
745 fp : file_like object
746 If this is not a real file object, then this may take extra memory
747 and time.
748 allow_pickle : bool, optional
749 Whether to allow writing pickled data. Default: False
751 .. versionchanged:: 1.16.3
752 Made default False in response to CVE-2019-6446.
754 pickle_kwargs : dict
755 Additional keyword arguments to pass to pickle.load. These are only
756 useful when loading object arrays saved on Python 2 when using
757 Python 3.
758 max_header_size : int, optional
759 Maximum allowed size of the header. Large headers may not be safe
760 to load securely and thus require explicitly passing a larger value.
761 See :py:func:`ast.literal_eval()` for details.
762 This option is ignored when `allow_pickle` is passed. In that case
763 the file is by definition trusted and the limit is unnecessary.
765 Returns
766 -------
767 array : ndarray
768 The array from the data on disk.
770 Raises
771 ------
772 ValueError
773 If the data is invalid, or allow_pickle=False and the file contains
774 an object array.
776 """
777 if allow_pickle:
778 # Effectively ignore max_header_size, since `allow_pickle` indicates
779 # that the input is fully trusted.
780 max_header_size = 2**64
782 version = read_magic(fp)
783 _check_version(version)
784 shape, fortran_order, dtype = _read_array_header(
785 fp, version, max_header_size=max_header_size)
786 if len(shape) == 0:
787 count = 1
788 else:
789 count = numpy.multiply.reduce(shape, dtype=numpy.int64)
791 # Now read the actual data.
792 if dtype.hasobject:
793 # The array contained Python objects. We need to unpickle the data.
794 if not allow_pickle:
795 raise ValueError("Object arrays cannot be loaded when "
796 "allow_pickle=False")
797 if pickle_kwargs is None:
798 pickle_kwargs = {}
799 try:
800 array = pickle.load(fp, **pickle_kwargs)
801 except UnicodeError as err:
802 # Friendlier error message
803 raise UnicodeError("Unpickling a python object failed: %r\n"
804 "You may need to pass the encoding= option "
805 "to numpy.load" % (err,)) from err
806 else:
807 if isfileobj(fp):
808 # We can use the fast fromfile() function.
809 array = numpy.fromfile(fp, dtype=dtype, count=count)
810 else:
811 # This is not a real file. We have to read it the
812 # memory-intensive way.
813 # crc32 module fails on reads greater than 2 ** 32 bytes,
814 # breaking large reads from gzip streams. Chunk reads to
815 # BUFFER_SIZE bytes to avoid issue and reduce memory overhead
816 # of the read. In non-chunked case count < max_read_count, so
817 # only one read is performed.
819 # Use np.ndarray instead of np.empty since the latter does
820 # not correctly instantiate zero-width string dtypes; see
821 # https://github.com/numpy/numpy/pull/6430
822 array = numpy.ndarray(count, dtype=dtype)
824 if dtype.itemsize > 0:
825 # If dtype.itemsize == 0 then there's nothing more to read
826 max_read_count = BUFFER_SIZE // min(BUFFER_SIZE, dtype.itemsize)
828 for i in range(0, count, max_read_count):
829 read_count = min(max_read_count, count - i)
830 read_size = int(read_count * dtype.itemsize)
831 data = _read_bytes(fp, read_size, "array data")
832 array[i:i+read_count] = numpy.frombuffer(data, dtype=dtype,
833 count=read_count)
835 if fortran_order:
836 array.shape = shape[::-1]
837 array = array.transpose()
838 else:
839 array.shape = shape
841 return array
844def open_memmap(filename, mode='r+', dtype=None, shape=None,
845 fortran_order=False, version=None, *,
846 max_header_size=_MAX_HEADER_SIZE):
847 """
848 Open a .npy file as a memory-mapped array.
850 This may be used to read an existing file or create a new one.
852 Parameters
853 ----------
854 filename : str or path-like
855 The name of the file on disk. This may *not* be a file-like
856 object.
857 mode : str, optional
858 The mode in which to open the file; the default is 'r+'. In
859 addition to the standard file modes, 'c' is also accepted to mean
860 "copy on write." See `memmap` for the available mode strings.
861 dtype : data-type, optional
862 The data type of the array if we are creating a new file in "write"
863 mode, if not, `dtype` is ignored. The default value is None, which
864 results in a data-type of `float64`.
865 shape : tuple of int
866 The shape of the array if we are creating a new file in "write"
867 mode, in which case this parameter is required. Otherwise, this
868 parameter is ignored and is thus optional.
869 fortran_order : bool, optional
870 Whether the array should be Fortran-contiguous (True) or
871 C-contiguous (False, the default) if we are creating a new file in
872 "write" mode.
873 version : tuple of int (major, minor) or None
874 If the mode is a "write" mode, then this is the version of the file
875 format used to create the file. None means use the oldest
876 supported version that is able to store the data. Default: None
877 max_header_size : int, optional
878 Maximum allowed size of the header. Large headers may not be safe
879 to load securely and thus require explicitly passing a larger value.
880 See :py:func:`ast.literal_eval()` for details.
882 Returns
883 -------
884 marray : memmap
885 The memory-mapped array.
887 Raises
888 ------
889 ValueError
890 If the data or the mode is invalid.
891 OSError
892 If the file is not found or cannot be opened correctly.
894 See Also
895 --------
896 numpy.memmap
898 """
899 if isfileobj(filename):
900 raise ValueError("Filename must be a string or a path-like object."
901 " Memmap cannot use existing file handles.")
903 if 'w' in mode:
904 # We are creating the file, not reading it.
905 # Check if we ought to create the file.
906 _check_version(version)
907 # Ensure that the given dtype is an authentic dtype object rather
908 # than just something that can be interpreted as a dtype object.
909 dtype = numpy.dtype(dtype)
910 if dtype.hasobject:
911 msg = "Array can't be memory-mapped: Python objects in dtype."
912 raise ValueError(msg)
913 d = dict(
914 descr=dtype_to_descr(dtype),
915 fortran_order=fortran_order,
916 shape=shape,
917 )
918 # If we got here, then it should be safe to create the file.
919 with open(os_fspath(filename), mode+'b') as fp:
920 _write_array_header(fp, d, version)
921 offset = fp.tell()
922 else:
923 # Read the header of the file first.
924 with open(os_fspath(filename), 'rb') as fp:
925 version = read_magic(fp)
926 _check_version(version)
928 shape, fortran_order, dtype = _read_array_header(
929 fp, version, max_header_size=max_header_size)
930 if dtype.hasobject:
931 msg = "Array can't be memory-mapped: Python objects in dtype."
932 raise ValueError(msg)
933 offset = fp.tell()
935 if fortran_order:
936 order = 'F'
937 else:
938 order = 'C'
940 # We need to change a write-only mode to a read-write mode since we've
941 # already written data to the file.
942 if mode == 'w+':
943 mode = 'r+'
945 marray = numpy.memmap(filename, dtype=dtype, shape=shape, order=order,
946 mode=mode, offset=offset)
948 return marray
951def _read_bytes(fp, size, error_template="ran out of data"):
952 """
953 Read from file-like object until size bytes are read.
954 Raises ValueError if not EOF is encountered before size bytes are read.
955 Non-blocking objects only supported if they derive from io objects.
957 Required as e.g. ZipExtFile in python 2.6 can return less data than
958 requested.
959 """
960 data = bytes()
961 while True:
962 # io files (default in python3) return None or raise on
963 # would-block, python2 file will truncate, probably nothing can be
964 # done about that. note that regular files can't be non-blocking
965 try:
966 r = fp.read(size - len(data))
967 data += r
968 if len(r) == 0 or len(data) == size:
969 break
970 except BlockingIOError:
971 pass
972 if len(data) != size:
973 msg = "EOF: reading %s, expected %d bytes got %d"
974 raise ValueError(msg % (error_template, size, len(data)))
975 else:
976 return data