Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.9/dist-packages/numpy/lib/histograms.py: 12%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

272 statements  

1""" 

2Histogram-related functions 

3""" 

4import contextlib 

5import functools 

6import operator 

7import warnings 

8 

9import numpy as np 

10from numpy.core import overrides 

11 

12__all__ = ['histogram', 'histogramdd', 'histogram_bin_edges'] 

13 

14array_function_dispatch = functools.partial( 

15 overrides.array_function_dispatch, module='numpy') 

16 

17# range is a keyword argument to many functions, so save the builtin so they can 

18# use it. 

19_range = range 

20 

21 

22def _ptp(x): 

23 """Peak-to-peak value of x. 

24 

25 This implementation avoids the problem of signed integer arrays having a 

26 peak-to-peak value that cannot be represented with the array's data type. 

27 This function returns an unsigned value for signed integer arrays. 

28 """ 

29 return _unsigned_subtract(x.max(), x.min()) 

30 

31 

32def _hist_bin_sqrt(x, range): 

33 """ 

34 Square root histogram bin estimator. 

35 

36 Bin width is inversely proportional to the data size. Used by many 

37 programs for its simplicity. 

38 

39 Parameters 

40 ---------- 

41 x : array_like 

42 Input data that is to be histogrammed, trimmed to range. May not 

43 be empty. 

44 

45 Returns 

46 ------- 

47 h : An estimate of the optimal bin width for the given data. 

48 """ 

49 del range # unused 

50 return _ptp(x) / np.sqrt(x.size) 

51 

52 

53def _hist_bin_sturges(x, range): 

54 """ 

55 Sturges histogram bin estimator. 

56 

57 A very simplistic estimator based on the assumption of normality of 

58 the data. This estimator has poor performance for non-normal data, 

59 which becomes especially obvious for large data sets. The estimate 

60 depends only on size of the data. 

61 

62 Parameters 

63 ---------- 

64 x : array_like 

65 Input data that is to be histogrammed, trimmed to range. May not 

66 be empty. 

67 

68 Returns 

69 ------- 

70 h : An estimate of the optimal bin width for the given data. 

71 """ 

72 del range # unused 

73 return _ptp(x) / (np.log2(x.size) + 1.0) 

74 

75 

76def _hist_bin_rice(x, range): 

77 """ 

78 Rice histogram bin estimator. 

79 

80 Another simple estimator with no normality assumption. It has better 

81 performance for large data than Sturges, but tends to overestimate 

82 the number of bins. The number of bins is proportional to the cube 

83 root of data size (asymptotically optimal). The estimate depends 

84 only on size of the data. 

85 

86 Parameters 

87 ---------- 

88 x : array_like 

89 Input data that is to be histogrammed, trimmed to range. May not 

90 be empty. 

91 

92 Returns 

93 ------- 

94 h : An estimate of the optimal bin width for the given data. 

95 """ 

96 del range # unused 

97 return _ptp(x) / (2.0 * x.size ** (1.0 / 3)) 

98 

99 

100def _hist_bin_scott(x, range): 

101 """ 

102 Scott histogram bin estimator. 

103 

104 The binwidth is proportional to the standard deviation of the data 

105 and inversely proportional to the cube root of data size 

106 (asymptotically optimal). 

107 

108 Parameters 

109 ---------- 

110 x : array_like 

111 Input data that is to be histogrammed, trimmed to range. May not 

112 be empty. 

113 

114 Returns 

115 ------- 

116 h : An estimate of the optimal bin width for the given data. 

117 """ 

118 del range # unused 

119 return (24.0 * np.pi**0.5 / x.size)**(1.0 / 3.0) * np.std(x) 

120 

121 

122def _hist_bin_stone(x, range): 

123 """ 

124 Histogram bin estimator based on minimizing the estimated integrated squared error (ISE). 

125 

126 The number of bins is chosen by minimizing the estimated ISE against the unknown true distribution. 

127 The ISE is estimated using cross-validation and can be regarded as a generalization of Scott's rule. 

128 https://en.wikipedia.org/wiki/Histogram#Scott.27s_normal_reference_rule 

129 

130 This paper by Stone appears to be the origination of this rule. 

131 http://digitalassets.lib.berkeley.edu/sdtr/ucb/text/34.pdf 

132 

133 Parameters 

134 ---------- 

135 x : array_like 

136 Input data that is to be histogrammed, trimmed to range. May not 

137 be empty. 

138 range : (float, float) 

139 The lower and upper range of the bins. 

140 

141 Returns 

142 ------- 

143 h : An estimate of the optimal bin width for the given data. 

144 """ 

145 

146 n = x.size 

147 ptp_x = _ptp(x) 

148 if n <= 1 or ptp_x == 0: 

149 return 0 

150 

151 def jhat(nbins): 

152 hh = ptp_x / nbins 

153 p_k = np.histogram(x, bins=nbins, range=range)[0] / n 

154 return (2 - (n + 1) * p_k.dot(p_k)) / hh 

155 

156 nbins_upper_bound = max(100, int(np.sqrt(n))) 

157 nbins = min(_range(1, nbins_upper_bound + 1), key=jhat) 

158 if nbins == nbins_upper_bound: 

159 warnings.warn("The number of bins estimated may be suboptimal.", 

160 RuntimeWarning, stacklevel=3) 

161 return ptp_x / nbins 

162 

163 

164def _hist_bin_doane(x, range): 

165 """ 

166 Doane's histogram bin estimator. 

167 

168 Improved version of Sturges' formula which works better for 

169 non-normal data. See 

170 stats.stackexchange.com/questions/55134/doanes-formula-for-histogram-binning 

171 

172 Parameters 

173 ---------- 

174 x : array_like 

175 Input data that is to be histogrammed, trimmed to range. May not 

176 be empty. 

177 

178 Returns 

179 ------- 

180 h : An estimate of the optimal bin width for the given data. 

181 """ 

182 del range # unused 

183 if x.size > 2: 

184 sg1 = np.sqrt(6.0 * (x.size - 2) / ((x.size + 1.0) * (x.size + 3))) 

185 sigma = np.std(x) 

186 if sigma > 0.0: 

187 # These three operations add up to 

188 # g1 = np.mean(((x - np.mean(x)) / sigma)**3) 

189 # but use only one temp array instead of three 

190 temp = x - np.mean(x) 

191 np.true_divide(temp, sigma, temp) 

192 np.power(temp, 3, temp) 

193 g1 = np.mean(temp) 

194 return _ptp(x) / (1.0 + np.log2(x.size) + 

195 np.log2(1.0 + np.absolute(g1) / sg1)) 

196 return 0.0 

197 

198 

199def _hist_bin_fd(x, range): 

200 """ 

201 The Freedman-Diaconis histogram bin estimator. 

202 

203 The Freedman-Diaconis rule uses interquartile range (IQR) to 

204 estimate binwidth. It is considered a variation of the Scott rule 

205 with more robustness as the IQR is less affected by outliers than 

206 the standard deviation. However, the IQR depends on fewer points 

207 than the standard deviation, so it is less accurate, especially for 

208 long tailed distributions. 

209 

210 If the IQR is 0, this function returns 0 for the bin width. 

211 Binwidth is inversely proportional to the cube root of data size 

212 (asymptotically optimal). 

213 

214 Parameters 

215 ---------- 

216 x : array_like 

217 Input data that is to be histogrammed, trimmed to range. May not 

218 be empty. 

219 

220 Returns 

221 ------- 

222 h : An estimate of the optimal bin width for the given data. 

223 """ 

224 del range # unused 

225 iqr = np.subtract(*np.percentile(x, [75, 25])) 

226 return 2.0 * iqr * x.size ** (-1.0 / 3.0) 

227 

228 

229def _hist_bin_auto(x, range): 

230 """ 

231 Histogram bin estimator that uses the minimum width of the 

232 Freedman-Diaconis and Sturges estimators if the FD bin width is non-zero. 

233 If the bin width from the FD estimator is 0, the Sturges estimator is used. 

234 

235 The FD estimator is usually the most robust method, but its width 

236 estimate tends to be too large for small `x` and bad for data with limited 

237 variance. The Sturges estimator is quite good for small (<1000) datasets 

238 and is the default in the R language. This method gives good off-the-shelf 

239 behaviour. 

240 

241 .. versionchanged:: 1.15.0 

242 If there is limited variance the IQR can be 0, which results in the 

243 FD bin width being 0 too. This is not a valid bin width, so 

244 ``np.histogram_bin_edges`` chooses 1 bin instead, which may not be optimal. 

245 If the IQR is 0, it's unlikely any variance-based estimators will be of 

246 use, so we revert to the Sturges estimator, which only uses the size of the 

247 dataset in its calculation. 

248 

249 Parameters 

250 ---------- 

251 x : array_like 

252 Input data that is to be histogrammed, trimmed to range. May not 

253 be empty. 

254 

255 Returns 

256 ------- 

257 h : An estimate of the optimal bin width for the given data. 

258 

259 See Also 

260 -------- 

261 _hist_bin_fd, _hist_bin_sturges 

262 """ 

263 fd_bw = _hist_bin_fd(x, range) 

264 sturges_bw = _hist_bin_sturges(x, range) 

265 del range # unused 

266 if fd_bw: 

267 return min(fd_bw, sturges_bw) 

268 else: 

269 # limited variance, so we return a len dependent bw estimator 

270 return sturges_bw 

271 

272# Private dict initialized at module load time 

273_hist_bin_selectors = {'stone': _hist_bin_stone, 

274 'auto': _hist_bin_auto, 

275 'doane': _hist_bin_doane, 

276 'fd': _hist_bin_fd, 

277 'rice': _hist_bin_rice, 

278 'scott': _hist_bin_scott, 

279 'sqrt': _hist_bin_sqrt, 

280 'sturges': _hist_bin_sturges} 

281 

282 

283def _ravel_and_check_weights(a, weights): 

284 """ Check a and weights have matching shapes, and ravel both """ 

285 a = np.asarray(a) 

286 

287 # Ensure that the array is a "subtractable" dtype 

288 if a.dtype == np.bool_: 

289 warnings.warn("Converting input from {} to {} for compatibility." 

290 .format(a.dtype, np.uint8), 

291 RuntimeWarning, stacklevel=3) 

292 a = a.astype(np.uint8) 

293 

294 if weights is not None: 

295 weights = np.asarray(weights) 

296 if weights.shape != a.shape: 

297 raise ValueError( 

298 'weights should have the same shape as a.') 

299 weights = weights.ravel() 

300 a = a.ravel() 

301 return a, weights 

302 

303 

304def _get_outer_edges(a, range): 

305 """ 

306 Determine the outer bin edges to use, from either the data or the range 

307 argument 

308 """ 

309 if range is not None: 

310 first_edge, last_edge = range 

311 if first_edge > last_edge: 

312 raise ValueError( 

313 'max must be larger than min in range parameter.') 

314 if not (np.isfinite(first_edge) and np.isfinite(last_edge)): 

315 raise ValueError( 

316 "supplied range of [{}, {}] is not finite".format(first_edge, last_edge)) 

317 elif a.size == 0: 

318 # handle empty arrays. Can't determine range, so use 0-1. 

319 first_edge, last_edge = 0, 1 

320 else: 

321 first_edge, last_edge = a.min(), a.max() 

322 if not (np.isfinite(first_edge) and np.isfinite(last_edge)): 

323 raise ValueError( 

324 "autodetected range of [{}, {}] is not finite".format(first_edge, last_edge)) 

325 

326 # expand empty range to avoid divide by zero 

327 if first_edge == last_edge: 

328 first_edge = first_edge - 0.5 

329 last_edge = last_edge + 0.5 

330 

331 return first_edge, last_edge 

332 

333 

334def _unsigned_subtract(a, b): 

335 """ 

336 Subtract two values where a >= b, and produce an unsigned result 

337 

338 This is needed when finding the difference between the upper and lower 

339 bound of an int16 histogram 

340 """ 

341 # coerce to a single type 

342 signed_to_unsigned = { 

343 np.byte: np.ubyte, 

344 np.short: np.ushort, 

345 np.intc: np.uintc, 

346 np.int_: np.uint, 

347 np.longlong: np.ulonglong 

348 } 

349 dt = np.result_type(a, b) 

350 try: 

351 dt = signed_to_unsigned[dt.type] 

352 except KeyError: 

353 return np.subtract(a, b, dtype=dt) 

354 else: 

355 # we know the inputs are integers, and we are deliberately casting 

356 # signed to unsigned 

357 return np.subtract(a, b, casting='unsafe', dtype=dt) 

358 

359 

360def _get_bin_edges(a, bins, range, weights): 

361 """ 

362 Computes the bins used internally by `histogram`. 

363 

364 Parameters 

365 ========== 

366 a : ndarray 

367 Ravelled data array 

368 bins, range 

369 Forwarded arguments from `histogram`. 

370 weights : ndarray, optional 

371 Ravelled weights array, or None 

372 

373 Returns 

374 ======= 

375 bin_edges : ndarray 

376 Array of bin edges 

377 uniform_bins : (Number, Number, int): 

378 The upper bound, lowerbound, and number of bins, used in the optimized 

379 implementation of `histogram` that works on uniform bins. 

380 """ 

381 # parse the overloaded bins argument 

382 n_equal_bins = None 

383 bin_edges = None 

384 

385 if isinstance(bins, str): 

386 bin_name = bins 

387 # if `bins` is a string for an automatic method, 

388 # this will replace it with the number of bins calculated 

389 if bin_name not in _hist_bin_selectors: 

390 raise ValueError( 

391 "{!r} is not a valid estimator for `bins`".format(bin_name)) 

392 if weights is not None: 

393 raise TypeError("Automated estimation of the number of " 

394 "bins is not supported for weighted data") 

395 

396 first_edge, last_edge = _get_outer_edges(a, range) 

397 

398 # truncate the range if needed 

399 if range is not None: 

400 keep = (a >= first_edge) 

401 keep &= (a <= last_edge) 

402 if not np.logical_and.reduce(keep): 

403 a = a[keep] 

404 

405 if a.size == 0: 

406 n_equal_bins = 1 

407 else: 

408 # Do not call selectors on empty arrays 

409 width = _hist_bin_selectors[bin_name](a, (first_edge, last_edge)) 

410 if width: 

411 n_equal_bins = int(np.ceil(_unsigned_subtract(last_edge, first_edge) / width)) 

412 else: 

413 # Width can be zero for some estimators, e.g. FD when 

414 # the IQR of the data is zero. 

415 n_equal_bins = 1 

416 

417 elif np.ndim(bins) == 0: 

418 try: 

419 n_equal_bins = operator.index(bins) 

420 except TypeError as e: 

421 raise TypeError( 

422 '`bins` must be an integer, a string, or an array') from e 

423 if n_equal_bins < 1: 

424 raise ValueError('`bins` must be positive, when an integer') 

425 

426 first_edge, last_edge = _get_outer_edges(a, range) 

427 

428 elif np.ndim(bins) == 1: 

429 bin_edges = np.asarray(bins) 

430 if np.any(bin_edges[:-1] > bin_edges[1:]): 

431 raise ValueError( 

432 '`bins` must increase monotonically, when an array') 

433 

434 else: 

435 raise ValueError('`bins` must be 1d, when an array') 

436 

437 if n_equal_bins is not None: 

438 # gh-10322 means that type resolution rules are dependent on array 

439 # shapes. To avoid this causing problems, we pick a type now and stick 

440 # with it throughout. 

441 bin_type = np.result_type(first_edge, last_edge, a) 

442 if np.issubdtype(bin_type, np.integer): 

443 bin_type = np.result_type(bin_type, float) 

444 

445 # bin edges must be computed 

446 bin_edges = np.linspace( 

447 first_edge, last_edge, n_equal_bins + 1, 

448 endpoint=True, dtype=bin_type) 

449 return bin_edges, (first_edge, last_edge, n_equal_bins) 

450 else: 

451 return bin_edges, None 

452 

453 

454def _search_sorted_inclusive(a, v): 

455 """ 

456 Like `searchsorted`, but where the last item in `v` is placed on the right. 

457 

458 In the context of a histogram, this makes the last bin edge inclusive 

459 """ 

460 return np.concatenate(( 

461 a.searchsorted(v[:-1], 'left'), 

462 a.searchsorted(v[-1:], 'right') 

463 )) 

464 

465 

466def _histogram_bin_edges_dispatcher(a, bins=None, range=None, weights=None): 

467 return (a, bins, weights) 

468 

469 

470@array_function_dispatch(_histogram_bin_edges_dispatcher) 

471def histogram_bin_edges(a, bins=10, range=None, weights=None): 

472 r""" 

473 Function to calculate only the edges of the bins used by the `histogram` 

474 function. 

475 

476 Parameters 

477 ---------- 

478 a : array_like 

479 Input data. The histogram is computed over the flattened array. 

480 bins : int or sequence of scalars or str, optional 

481 If `bins` is an int, it defines the number of equal-width 

482 bins in the given range (10, by default). If `bins` is a 

483 sequence, it defines the bin edges, including the rightmost 

484 edge, allowing for non-uniform bin widths. 

485 

486 If `bins` is a string from the list below, `histogram_bin_edges` will use 

487 the method chosen to calculate the optimal bin width and 

488 consequently the number of bins (see `Notes` for more detail on 

489 the estimators) from the data that falls within the requested 

490 range. While the bin width will be optimal for the actual data 

491 in the range, the number of bins will be computed to fill the 

492 entire range, including the empty portions. For visualisation, 

493 using the 'auto' option is suggested. Weighted data is not 

494 supported for automated bin size selection. 

495 

496 'auto' 

497 Maximum of the 'sturges' and 'fd' estimators. Provides good 

498 all around performance. 

499 

500 'fd' (Freedman Diaconis Estimator) 

501 Robust (resilient to outliers) estimator that takes into 

502 account data variability and data size. 

503 

504 'doane' 

505 An improved version of Sturges' estimator that works better 

506 with non-normal datasets. 

507 

508 'scott' 

509 Less robust estimator that takes into account data variability 

510 and data size. 

511 

512 'stone' 

513 Estimator based on leave-one-out cross-validation estimate of 

514 the integrated squared error. Can be regarded as a generalization 

515 of Scott's rule. 

516 

517 'rice' 

518 Estimator does not take variability into account, only data 

519 size. Commonly overestimates number of bins required. 

520 

521 'sturges' 

522 R's default method, only accounts for data size. Only 

523 optimal for gaussian data and underestimates number of bins 

524 for large non-gaussian datasets. 

525 

526 'sqrt' 

527 Square root (of data size) estimator, used by Excel and 

528 other programs for its speed and simplicity. 

529 

530 range : (float, float), optional 

531 The lower and upper range of the bins. If not provided, range 

532 is simply ``(a.min(), a.max())``. Values outside the range are 

533 ignored. The first element of the range must be less than or 

534 equal to the second. `range` affects the automatic bin 

535 computation as well. While bin width is computed to be optimal 

536 based on the actual data within `range`, the bin count will fill 

537 the entire range including portions containing no data. 

538 

539 weights : array_like, optional 

540 An array of weights, of the same shape as `a`. Each value in 

541 `a` only contributes its associated weight towards the bin count 

542 (instead of 1). This is currently not used by any of the bin estimators, 

543 but may be in the future. 

544 

545 Returns 

546 ------- 

547 bin_edges : array of dtype float 

548 The edges to pass into `histogram` 

549 

550 See Also 

551 -------- 

552 histogram 

553 

554 Notes 

555 ----- 

556 The methods to estimate the optimal number of bins are well founded 

557 in literature, and are inspired by the choices R provides for 

558 histogram visualisation. Note that having the number of bins 

559 proportional to :math:`n^{1/3}` is asymptotically optimal, which is 

560 why it appears in most estimators. These are simply plug-in methods 

561 that give good starting points for number of bins. In the equations 

562 below, :math:`h` is the binwidth and :math:`n_h` is the number of 

563 bins. All estimators that compute bin counts are recast to bin width 

564 using the `ptp` of the data. The final bin count is obtained from 

565 ``np.round(np.ceil(range / h))``. The final bin width is often less 

566 than what is returned by the estimators below. 

567 

568 'auto' (maximum of the 'sturges' and 'fd' estimators) 

569 A compromise to get a good value. For small datasets the Sturges 

570 value will usually be chosen, while larger datasets will usually 

571 default to FD. Avoids the overly conservative behaviour of FD 

572 and Sturges for small and large datasets respectively. 

573 Switchover point is usually :math:`a.size \approx 1000`. 

574 

575 'fd' (Freedman Diaconis Estimator) 

576 .. math:: h = 2 \frac{IQR}{n^{1/3}} 

577 

578 The binwidth is proportional to the interquartile range (IQR) 

579 and inversely proportional to cube root of a.size. Can be too 

580 conservative for small datasets, but is quite good for large 

581 datasets. The IQR is very robust to outliers. 

582 

583 'scott' 

584 .. math:: h = \sigma \sqrt[3]{\frac{24 \sqrt{\pi}}{n}} 

585 

586 The binwidth is proportional to the standard deviation of the 

587 data and inversely proportional to cube root of ``x.size``. Can 

588 be too conservative for small datasets, but is quite good for 

589 large datasets. The standard deviation is not very robust to 

590 outliers. Values are very similar to the Freedman-Diaconis 

591 estimator in the absence of outliers. 

592 

593 'rice' 

594 .. math:: n_h = 2n^{1/3} 

595 

596 The number of bins is only proportional to cube root of 

597 ``a.size``. It tends to overestimate the number of bins and it 

598 does not take into account data variability. 

599 

600 'sturges' 

601 .. math:: n_h = \log _{2}(n) + 1 

602 

603 The number of bins is the base 2 log of ``a.size``. This 

604 estimator assumes normality of data and is too conservative for 

605 larger, non-normal datasets. This is the default method in R's 

606 ``hist`` method. 

607 

608 'doane' 

609 .. math:: n_h = 1 + \log_{2}(n) + 

610 \log_{2}\left(1 + \frac{|g_1|}{\sigma_{g_1}}\right) 

611 

612 g_1 = mean\left[\left(\frac{x - \mu}{\sigma}\right)^3\right] 

613 

614 \sigma_{g_1} = \sqrt{\frac{6(n - 2)}{(n + 1)(n + 3)}} 

615 

616 An improved version of Sturges' formula that produces better 

617 estimates for non-normal datasets. This estimator attempts to 

618 account for the skew of the data. 

619 

620 'sqrt' 

621 .. math:: n_h = \sqrt n 

622 

623 The simplest and fastest estimator. Only takes into account the 

624 data size. 

625 

626 Examples 

627 -------- 

628 >>> arr = np.array([0, 0, 0, 1, 2, 3, 3, 4, 5]) 

629 >>> np.histogram_bin_edges(arr, bins='auto', range=(0, 1)) 

630 array([0. , 0.25, 0.5 , 0.75, 1. ]) 

631 >>> np.histogram_bin_edges(arr, bins=2) 

632 array([0. , 2.5, 5. ]) 

633 

634 For consistency with histogram, an array of pre-computed bins is 

635 passed through unmodified: 

636 

637 >>> np.histogram_bin_edges(arr, [1, 2]) 

638 array([1, 2]) 

639 

640 This function allows one set of bins to be computed, and reused across 

641 multiple histograms: 

642 

643 >>> shared_bins = np.histogram_bin_edges(arr, bins='auto') 

644 >>> shared_bins 

645 array([0., 1., 2., 3., 4., 5.]) 

646 

647 >>> group_id = np.array([0, 1, 1, 0, 1, 1, 0, 1, 1]) 

648 >>> hist_0, _ = np.histogram(arr[group_id == 0], bins=shared_bins) 

649 >>> hist_1, _ = np.histogram(arr[group_id == 1], bins=shared_bins) 

650 

651 >>> hist_0; hist_1 

652 array([1, 1, 0, 1, 0]) 

653 array([2, 0, 1, 1, 2]) 

654 

655 Which gives more easily comparable results than using separate bins for 

656 each histogram: 

657 

658 >>> hist_0, bins_0 = np.histogram(arr[group_id == 0], bins='auto') 

659 >>> hist_1, bins_1 = np.histogram(arr[group_id == 1], bins='auto') 

660 >>> hist_0; hist_1 

661 array([1, 1, 1]) 

662 array([2, 1, 1, 2]) 

663 >>> bins_0; bins_1 

664 array([0., 1., 2., 3.]) 

665 array([0. , 1.25, 2.5 , 3.75, 5. ]) 

666 

667 """ 

668 a, weights = _ravel_and_check_weights(a, weights) 

669 bin_edges, _ = _get_bin_edges(a, bins, range, weights) 

670 return bin_edges 

671 

672 

673def _histogram_dispatcher( 

674 a, bins=None, range=None, density=None, weights=None): 

675 return (a, bins, weights) 

676 

677 

678@array_function_dispatch(_histogram_dispatcher) 

679def histogram(a, bins=10, range=None, density=None, weights=None): 

680 r""" 

681 Compute the histogram of a dataset. 

682 

683 Parameters 

684 ---------- 

685 a : array_like 

686 Input data. The histogram is computed over the flattened array. 

687 bins : int or sequence of scalars or str, optional 

688 If `bins` is an int, it defines the number of equal-width 

689 bins in the given range (10, by default). If `bins` is a 

690 sequence, it defines a monotonically increasing array of bin edges, 

691 including the rightmost edge, allowing for non-uniform bin widths. 

692 

693 .. versionadded:: 1.11.0 

694 

695 If `bins` is a string, it defines the method used to calculate the 

696 optimal bin width, as defined by `histogram_bin_edges`. 

697 

698 range : (float, float), optional 

699 The lower and upper range of the bins. If not provided, range 

700 is simply ``(a.min(), a.max())``. Values outside the range are 

701 ignored. The first element of the range must be less than or 

702 equal to the second. `range` affects the automatic bin 

703 computation as well. While bin width is computed to be optimal 

704 based on the actual data within `range`, the bin count will fill 

705 the entire range including portions containing no data. 

706 weights : array_like, optional 

707 An array of weights, of the same shape as `a`. Each value in 

708 `a` only contributes its associated weight towards the bin count 

709 (instead of 1). If `density` is True, the weights are 

710 normalized, so that the integral of the density over the range 

711 remains 1. 

712 density : bool, optional 

713 If ``False``, the result will contain the number of samples in 

714 each bin. If ``True``, the result is the value of the 

715 probability *density* function at the bin, normalized such that 

716 the *integral* over the range is 1. Note that the sum of the 

717 histogram values will not be equal to 1 unless bins of unity 

718 width are chosen; it is not a probability *mass* function. 

719 

720 Returns 

721 ------- 

722 hist : array 

723 The values of the histogram. See `density` and `weights` for a 

724 description of the possible semantics. 

725 bin_edges : array of dtype float 

726 Return the bin edges ``(length(hist)+1)``. 

727 

728 

729 See Also 

730 -------- 

731 histogramdd, bincount, searchsorted, digitize, histogram_bin_edges 

732 

733 Notes 

734 ----- 

735 All but the last (righthand-most) bin is half-open. In other words, 

736 if `bins` is:: 

737 

738 [1, 2, 3, 4] 

739 

740 then the first bin is ``[1, 2)`` (including 1, but excluding 2) and 

741 the second ``[2, 3)``. The last bin, however, is ``[3, 4]``, which 

742 *includes* 4. 

743 

744 

745 Examples 

746 -------- 

747 >>> np.histogram([1, 2, 1], bins=[0, 1, 2, 3]) 

748 (array([0, 2, 1]), array([0, 1, 2, 3])) 

749 >>> np.histogram(np.arange(4), bins=np.arange(5), density=True) 

750 (array([0.25, 0.25, 0.25, 0.25]), array([0, 1, 2, 3, 4])) 

751 >>> np.histogram([[1, 2, 1], [1, 0, 1]], bins=[0,1,2,3]) 

752 (array([1, 4, 1]), array([0, 1, 2, 3])) 

753 

754 >>> a = np.arange(5) 

755 >>> hist, bin_edges = np.histogram(a, density=True) 

756 >>> hist 

757 array([0.5, 0. , 0.5, 0. , 0. , 0.5, 0. , 0.5, 0. , 0.5]) 

758 >>> hist.sum() 

759 2.4999999999999996 

760 >>> np.sum(hist * np.diff(bin_edges)) 

761 1.0 

762 

763 .. versionadded:: 1.11.0 

764 

765 Automated Bin Selection Methods example, using 2 peak random data 

766 with 2000 points: 

767 

768 >>> import matplotlib.pyplot as plt 

769 >>> rng = np.random.RandomState(10) # deterministic random data 

770 >>> a = np.hstack((rng.normal(size=1000), 

771 ... rng.normal(loc=5, scale=2, size=1000))) 

772 >>> _ = plt.hist(a, bins='auto') # arguments are passed to np.histogram 

773 >>> plt.title("Histogram with 'auto' bins") 

774 Text(0.5, 1.0, "Histogram with 'auto' bins") 

775 >>> plt.show() 

776 

777 """ 

778 a, weights = _ravel_and_check_weights(a, weights) 

779 

780 bin_edges, uniform_bins = _get_bin_edges(a, bins, range, weights) 

781 

782 # Histogram is an integer or a float array depending on the weights. 

783 if weights is None: 

784 ntype = np.dtype(np.intp) 

785 else: 

786 ntype = weights.dtype 

787 

788 # We set a block size, as this allows us to iterate over chunks when 

789 # computing histograms, to minimize memory usage. 

790 BLOCK = 65536 

791 

792 # The fast path uses bincount, but that only works for certain types 

793 # of weight 

794 simple_weights = ( 

795 weights is None or 

796 np.can_cast(weights.dtype, np.double) or 

797 np.can_cast(weights.dtype, complex) 

798 ) 

799 

800 if uniform_bins is not None and simple_weights: 

801 # Fast algorithm for equal bins 

802 # We now convert values of a to bin indices, under the assumption of 

803 # equal bin widths (which is valid here). 

804 first_edge, last_edge, n_equal_bins = uniform_bins 

805 

806 # Initialize empty histogram 

807 n = np.zeros(n_equal_bins, ntype) 

808 

809 # Pre-compute histogram scaling factor 

810 norm_numerator = n_equal_bins 

811 norm_denom = _unsigned_subtract(last_edge, first_edge) 

812 

813 # We iterate over blocks here for two reasons: the first is that for 

814 # large arrays, it is actually faster (for example for a 10^8 array it 

815 # is 2x as fast) and it results in a memory footprint 3x lower in the 

816 # limit of large arrays. 

817 for i in _range(0, len(a), BLOCK): 

818 tmp_a = a[i:i+BLOCK] 

819 if weights is None: 

820 tmp_w = None 

821 else: 

822 tmp_w = weights[i:i + BLOCK] 

823 

824 # Only include values in the right range 

825 keep = (tmp_a >= first_edge) 

826 keep &= (tmp_a <= last_edge) 

827 if not np.logical_and.reduce(keep): 

828 tmp_a = tmp_a[keep] 

829 if tmp_w is not None: 

830 tmp_w = tmp_w[keep] 

831 

832 # This cast ensures no type promotions occur below, which gh-10322 

833 # make unpredictable. Getting it wrong leads to precision errors 

834 # like gh-8123. 

835 tmp_a = tmp_a.astype(bin_edges.dtype, copy=False) 

836 

837 # Compute the bin indices, and for values that lie exactly on 

838 # last_edge we need to subtract one 

839 f_indices = ((_unsigned_subtract(tmp_a, first_edge) / norm_denom) 

840 * norm_numerator) 

841 indices = f_indices.astype(np.intp) 

842 indices[indices == n_equal_bins] -= 1 

843 

844 # The index computation is not guaranteed to give exactly 

845 # consistent results within ~1 ULP of the bin edges. 

846 decrement = tmp_a < bin_edges[indices] 

847 indices[decrement] -= 1 

848 # The last bin includes the right edge. The other bins do not. 

849 increment = ((tmp_a >= bin_edges[indices + 1]) 

850 & (indices != n_equal_bins - 1)) 

851 indices[increment] += 1 

852 

853 # We now compute the histogram using bincount 

854 if ntype.kind == 'c': 

855 n.real += np.bincount(indices, weights=tmp_w.real, 

856 minlength=n_equal_bins) 

857 n.imag += np.bincount(indices, weights=tmp_w.imag, 

858 minlength=n_equal_bins) 

859 else: 

860 n += np.bincount(indices, weights=tmp_w, 

861 minlength=n_equal_bins).astype(ntype) 

862 else: 

863 # Compute via cumulative histogram 

864 cum_n = np.zeros(bin_edges.shape, ntype) 

865 if weights is None: 

866 for i in _range(0, len(a), BLOCK): 

867 sa = np.sort(a[i:i+BLOCK]) 

868 cum_n += _search_sorted_inclusive(sa, bin_edges) 

869 else: 

870 zero = np.zeros(1, dtype=ntype) 

871 for i in _range(0, len(a), BLOCK): 

872 tmp_a = a[i:i+BLOCK] 

873 tmp_w = weights[i:i+BLOCK] 

874 sorting_index = np.argsort(tmp_a) 

875 sa = tmp_a[sorting_index] 

876 sw = tmp_w[sorting_index] 

877 cw = np.concatenate((zero, sw.cumsum())) 

878 bin_index = _search_sorted_inclusive(sa, bin_edges) 

879 cum_n += cw[bin_index] 

880 

881 n = np.diff(cum_n) 

882 

883 if density: 

884 db = np.array(np.diff(bin_edges), float) 

885 return n/db/n.sum(), bin_edges 

886 

887 return n, bin_edges 

888 

889 

890def _histogramdd_dispatcher(sample, bins=None, range=None, density=None, 

891 weights=None): 

892 if hasattr(sample, 'shape'): # same condition as used in histogramdd 

893 yield sample 

894 else: 

895 yield from sample 

896 with contextlib.suppress(TypeError): 

897 yield from bins 

898 yield weights 

899 

900 

901@array_function_dispatch(_histogramdd_dispatcher) 

902def histogramdd(sample, bins=10, range=None, density=None, weights=None): 

903 """ 

904 Compute the multidimensional histogram of some data. 

905 

906 Parameters 

907 ---------- 

908 sample : (N, D) array, or (N, D) array_like 

909 The data to be histogrammed. 

910 

911 Note the unusual interpretation of sample when an array_like: 

912 

913 * When an array, each row is a coordinate in a D-dimensional space - 

914 such as ``histogramdd(np.array([p1, p2, p3]))``. 

915 * When an array_like, each element is the list of values for single 

916 coordinate - such as ``histogramdd((X, Y, Z))``. 

917 

918 The first form should be preferred. 

919 

920 bins : sequence or int, optional 

921 The bin specification: 

922 

923 * A sequence of arrays describing the monotonically increasing bin 

924 edges along each dimension. 

925 * The number of bins for each dimension (nx, ny, ... =bins) 

926 * The number of bins for all dimensions (nx=ny=...=bins). 

927 

928 range : sequence, optional 

929 A sequence of length D, each an optional (lower, upper) tuple giving 

930 the outer bin edges to be used if the edges are not given explicitly in 

931 `bins`. 

932 An entry of None in the sequence results in the minimum and maximum 

933 values being used for the corresponding dimension. 

934 The default, None, is equivalent to passing a tuple of D None values. 

935 density : bool, optional 

936 If False, the default, returns the number of samples in each bin. 

937 If True, returns the probability *density* function at the bin, 

938 ``bin_count / sample_count / bin_volume``. 

939 weights : (N,) array_like, optional 

940 An array of values `w_i` weighing each sample `(x_i, y_i, z_i, ...)`. 

941 Weights are normalized to 1 if density is True. If density is False, 

942 the values of the returned histogram are equal to the sum of the 

943 weights belonging to the samples falling into each bin. 

944 

945 Returns 

946 ------- 

947 H : ndarray 

948 The multidimensional histogram of sample x. See density and weights 

949 for the different possible semantics. 

950 edges : list 

951 A list of D arrays describing the bin edges for each dimension. 

952 

953 See Also 

954 -------- 

955 histogram: 1-D histogram 

956 histogram2d: 2-D histogram 

957 

958 Examples 

959 -------- 

960 >>> r = np.random.randn(100,3) 

961 >>> H, edges = np.histogramdd(r, bins = (5, 8, 4)) 

962 >>> H.shape, edges[0].size, edges[1].size, edges[2].size 

963 ((5, 8, 4), 6, 9, 5) 

964 

965 """ 

966 

967 try: 

968 # Sample is an ND-array. 

969 N, D = sample.shape 

970 except (AttributeError, ValueError): 

971 # Sample is a sequence of 1D arrays. 

972 sample = np.atleast_2d(sample).T 

973 N, D = sample.shape 

974 

975 nbin = np.empty(D, np.intp) 

976 edges = D*[None] 

977 dedges = D*[None] 

978 if weights is not None: 

979 weights = np.asarray(weights) 

980 

981 try: 

982 M = len(bins) 

983 if M != D: 

984 raise ValueError( 

985 'The dimension of bins must be equal to the dimension of the ' 

986 'sample x.') 

987 except TypeError: 

988 # bins is an integer 

989 bins = D*[bins] 

990 

991 # normalize the range argument 

992 if range is None: 

993 range = (None,) * D 

994 elif len(range) != D: 

995 raise ValueError('range argument must have one entry per dimension') 

996 

997 # Create edge arrays 

998 for i in _range(D): 

999 if np.ndim(bins[i]) == 0: 

1000 if bins[i] < 1: 

1001 raise ValueError( 

1002 '`bins[{}]` must be positive, when an integer'.format(i)) 

1003 smin, smax = _get_outer_edges(sample[:,i], range[i]) 

1004 try: 

1005 n = operator.index(bins[i]) 

1006 

1007 except TypeError as e: 

1008 raise TypeError( 

1009 "`bins[{}]` must be an integer, when a scalar".format(i) 

1010 ) from e 

1011 

1012 edges[i] = np.linspace(smin, smax, n + 1) 

1013 elif np.ndim(bins[i]) == 1: 

1014 edges[i] = np.asarray(bins[i]) 

1015 if np.any(edges[i][:-1] > edges[i][1:]): 

1016 raise ValueError( 

1017 '`bins[{}]` must be monotonically increasing, when an array' 

1018 .format(i)) 

1019 else: 

1020 raise ValueError( 

1021 '`bins[{}]` must be a scalar or 1d array'.format(i)) 

1022 

1023 nbin[i] = len(edges[i]) + 1 # includes an outlier on each end 

1024 dedges[i] = np.diff(edges[i]) 

1025 

1026 # Compute the bin number each sample falls into. 

1027 Ncount = tuple( 

1028 # avoid np.digitize to work around gh-11022 

1029 np.searchsorted(edges[i], sample[:, i], side='right') 

1030 for i in _range(D) 

1031 ) 

1032 

1033 # Using digitize, values that fall on an edge are put in the right bin. 

1034 # For the rightmost bin, we want values equal to the right edge to be 

1035 # counted in the last bin, and not as an outlier. 

1036 for i in _range(D): 

1037 # Find which points are on the rightmost edge. 

1038 on_edge = (sample[:, i] == edges[i][-1]) 

1039 # Shift these points one bin to the left. 

1040 Ncount[i][on_edge] -= 1 

1041 

1042 # Compute the sample indices in the flattened histogram matrix. 

1043 # This raises an error if the array is too large. 

1044 xy = np.ravel_multi_index(Ncount, nbin) 

1045 

1046 # Compute the number of repetitions in xy and assign it to the 

1047 # flattened histmat. 

1048 hist = np.bincount(xy, weights, minlength=nbin.prod()) 

1049 

1050 # Shape into a proper matrix 

1051 hist = hist.reshape(nbin) 

1052 

1053 # This preserves the (bad) behavior observed in gh-7845, for now. 

1054 hist = hist.astype(float, casting='safe') 

1055 

1056 # Remove outliers (indices 0 and -1 for each dimension). 

1057 core = D*(slice(1, -1),) 

1058 hist = hist[core] 

1059 

1060 if density: 

1061 # calculate the probability density function 

1062 s = hist.sum() 

1063 for i in _range(D): 

1064 shape = np.ones(D, int) 

1065 shape[i] = nbin[i] - 2 

1066 hist = hist / dedges[i].reshape(shape) 

1067 hist /= s 

1068 

1069 if (hist.shape != nbin - 2).any(): 

1070 raise RuntimeError( 

1071 "Internal Shape Error") 

1072 return hist, edges