Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.9/dist-packages/numpy/lib/npyio.py: 9%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

795 statements  

1import os 

2import re 

3import functools 

4import itertools 

5import warnings 

6import weakref 

7import contextlib 

8import operator 

9from operator import itemgetter, index as opindex, methodcaller 

10from collections.abc import Mapping 

11 

12import numpy as np 

13from . import format 

14from ._datasource import DataSource 

15from numpy.core import overrides 

16from numpy.core.multiarray import packbits, unpackbits 

17from numpy.core._multiarray_umath import _load_from_filelike 

18from numpy.core.overrides import set_array_function_like_doc, set_module 

19from ._iotools import ( 

20 LineSplitter, NameValidator, StringConverter, ConverterError, 

21 ConverterLockError, ConversionWarning, _is_string_like, 

22 has_nested_fields, flatten_dtype, easy_dtype, _decode_line 

23 ) 

24 

25from numpy.compat import ( 

26 asbytes, asstr, asunicode, os_fspath, os_PathLike, 

27 pickle 

28 ) 

29 

30 

31__all__ = [ 

32 'savetxt', 'loadtxt', 'genfromtxt', 

33 'recfromtxt', 'recfromcsv', 'load', 'save', 'savez', 

34 'savez_compressed', 'packbits', 'unpackbits', 'fromregex', 'DataSource' 

35 ] 

36 

37 

38array_function_dispatch = functools.partial( 

39 overrides.array_function_dispatch, module='numpy') 

40 

41 

42class BagObj: 

43 """ 

44 BagObj(obj) 

45 

46 Convert attribute look-ups to getitems on the object passed in. 

47 

48 Parameters 

49 ---------- 

50 obj : class instance 

51 Object on which attribute look-up is performed. 

52 

53 Examples 

54 -------- 

55 >>> from numpy.lib.npyio import BagObj as BO 

56 >>> class BagDemo: 

57 ... def __getitem__(self, key): # An instance of BagObj(BagDemo) 

58 ... # will call this method when any 

59 ... # attribute look-up is required 

60 ... result = "Doesn't matter what you want, " 

61 ... return result + "you're gonna get this" 

62 ... 

63 >>> demo_obj = BagDemo() 

64 >>> bagobj = BO(demo_obj) 

65 >>> bagobj.hello_there 

66 "Doesn't matter what you want, you're gonna get this" 

67 >>> bagobj.I_can_be_anything 

68 "Doesn't matter what you want, you're gonna get this" 

69 

70 """ 

71 

72 def __init__(self, obj): 

73 # Use weakref to make NpzFile objects collectable by refcount 

74 self._obj = weakref.proxy(obj) 

75 

76 def __getattribute__(self, key): 

77 try: 

78 return object.__getattribute__(self, '_obj')[key] 

79 except KeyError: 

80 raise AttributeError(key) from None 

81 

82 def __dir__(self): 

83 """ 

84 Enables dir(bagobj) to list the files in an NpzFile. 

85 

86 This also enables tab-completion in an interpreter or IPython. 

87 """ 

88 return list(object.__getattribute__(self, '_obj').keys()) 

89 

90 

91def zipfile_factory(file, *args, **kwargs): 

92 """ 

93 Create a ZipFile. 

94 

95 Allows for Zip64, and the `file` argument can accept file, str, or 

96 pathlib.Path objects. `args` and `kwargs` are passed to the zipfile.ZipFile 

97 constructor. 

98 """ 

99 if not hasattr(file, 'read'): 

100 file = os_fspath(file) 

101 import zipfile 

102 kwargs['allowZip64'] = True 

103 return zipfile.ZipFile(file, *args, **kwargs) 

104 

105 

106class NpzFile(Mapping): 

107 """ 

108 NpzFile(fid) 

109 

110 A dictionary-like object with lazy-loading of files in the zipped 

111 archive provided on construction. 

112 

113 `NpzFile` is used to load files in the NumPy ``.npz`` data archive 

114 format. It assumes that files in the archive have a ``.npy`` extension, 

115 other files are ignored. 

116 

117 The arrays and file strings are lazily loaded on either 

118 getitem access using ``obj['key']`` or attribute lookup using 

119 ``obj.f.key``. A list of all files (without ``.npy`` extensions) can 

120 be obtained with ``obj.files`` and the ZipFile object itself using 

121 ``obj.zip``. 

122 

123 Attributes 

124 ---------- 

125 files : list of str 

126 List of all files in the archive with a ``.npy`` extension. 

127 zip : ZipFile instance 

128 The ZipFile object initialized with the zipped archive. 

129 f : BagObj instance 

130 An object on which attribute can be performed as an alternative 

131 to getitem access on the `NpzFile` instance itself. 

132 allow_pickle : bool, optional 

133 Allow loading pickled data. Default: False 

134 

135 .. versionchanged:: 1.16.3 

136 Made default False in response to CVE-2019-6446. 

137 

138 pickle_kwargs : dict, optional 

139 Additional keyword arguments to pass on to pickle.load. 

140 These are only useful when loading object arrays saved on 

141 Python 2 when using Python 3. 

142 max_header_size : int, optional 

143 Maximum allowed size of the header. Large headers may not be safe 

144 to load securely and thus require explicitly passing a larger value. 

145 See :py:func:`ast.literal_eval()` for details. 

146 This option is ignored when `allow_pickle` is passed. In that case 

147 the file is by definition trusted and the limit is unnecessary. 

148 

149 Parameters 

150 ---------- 

151 fid : file or str 

152 The zipped archive to open. This is either a file-like object 

153 or a string containing the path to the archive. 

154 own_fid : bool, optional 

155 Whether NpzFile should close the file handle. 

156 Requires that `fid` is a file-like object. 

157 

158 Examples 

159 -------- 

160 >>> from tempfile import TemporaryFile 

161 >>> outfile = TemporaryFile() 

162 >>> x = np.arange(10) 

163 >>> y = np.sin(x) 

164 >>> np.savez(outfile, x=x, y=y) 

165 >>> _ = outfile.seek(0) 

166 

167 >>> npz = np.load(outfile) 

168 >>> isinstance(npz, np.lib.npyio.NpzFile) 

169 True 

170 >>> npz 

171 NpzFile 'object' with keys x, y 

172 >>> sorted(npz.files) 

173 ['x', 'y'] 

174 >>> npz['x'] # getitem access 

175 array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 

176 >>> npz.f.x # attribute lookup 

177 array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 

178 

179 """ 

180 # Make __exit__ safe if zipfile_factory raises an exception 

181 zip = None 

182 fid = None 

183 _MAX_REPR_ARRAY_COUNT = 5 

184 

185 def __init__(self, fid, own_fid=False, allow_pickle=False, 

186 pickle_kwargs=None, *, 

187 max_header_size=format._MAX_HEADER_SIZE): 

188 # Import is postponed to here since zipfile depends on gzip, an 

189 # optional component of the so-called standard library. 

190 _zip = zipfile_factory(fid) 

191 self._files = _zip.namelist() 

192 self.files = [] 

193 self.allow_pickle = allow_pickle 

194 self.max_header_size = max_header_size 

195 self.pickle_kwargs = pickle_kwargs 

196 for x in self._files: 

197 if x.endswith('.npy'): 

198 self.files.append(x[:-4]) 

199 else: 

200 self.files.append(x) 

201 self.zip = _zip 

202 self.f = BagObj(self) 

203 if own_fid: 

204 self.fid = fid 

205 

206 def __enter__(self): 

207 return self 

208 

209 def __exit__(self, exc_type, exc_value, traceback): 

210 self.close() 

211 

212 def close(self): 

213 """ 

214 Close the file. 

215 

216 """ 

217 if self.zip is not None: 

218 self.zip.close() 

219 self.zip = None 

220 if self.fid is not None: 

221 self.fid.close() 

222 self.fid = None 

223 self.f = None # break reference cycle 

224 

225 def __del__(self): 

226 self.close() 

227 

228 # Implement the Mapping ABC 

229 def __iter__(self): 

230 return iter(self.files) 

231 

232 def __len__(self): 

233 return len(self.files) 

234 

235 def __getitem__(self, key): 

236 # FIXME: This seems like it will copy strings around 

237 # more than is strictly necessary. The zipfile 

238 # will read the string and then 

239 # the format.read_array will copy the string 

240 # to another place in memory. 

241 # It would be better if the zipfile could read 

242 # (or at least uncompress) the data 

243 # directly into the array memory. 

244 member = False 

245 if key in self._files: 

246 member = True 

247 elif key in self.files: 

248 member = True 

249 key += '.npy' 

250 if member: 

251 bytes = self.zip.open(key) 

252 magic = bytes.read(len(format.MAGIC_PREFIX)) 

253 bytes.close() 

254 if magic == format.MAGIC_PREFIX: 

255 bytes = self.zip.open(key) 

256 return format.read_array(bytes, 

257 allow_pickle=self.allow_pickle, 

258 pickle_kwargs=self.pickle_kwargs, 

259 max_header_size=self.max_header_size) 

260 else: 

261 return self.zip.read(key) 

262 else: 

263 raise KeyError(f"{key} is not a file in the archive") 

264 

265 def __contains__(self, key): 

266 return (key in self._files or key in self.files) 

267 

268 def __repr__(self): 

269 # Get filename or default to `object` 

270 if isinstance(self.fid, str): 

271 filename = self.fid 

272 else: 

273 filename = getattr(self.fid, "name", "object") 

274 

275 # Get the name of arrays 

276 array_names = ', '.join(self.files[:self._MAX_REPR_ARRAY_COUNT]) 

277 if len(self.files) > self._MAX_REPR_ARRAY_COUNT: 

278 array_names += "..." 

279 return f"NpzFile {filename!r} with keys: {array_names}" 

280 

281 

282@set_module('numpy') 

283def load(file, mmap_mode=None, allow_pickle=False, fix_imports=True, 

284 encoding='ASCII', *, max_header_size=format._MAX_HEADER_SIZE): 

285 """ 

286 Load arrays or pickled objects from ``.npy``, ``.npz`` or pickled files. 

287 

288 .. warning:: Loading files that contain object arrays uses the ``pickle`` 

289 module, which is not secure against erroneous or maliciously 

290 constructed data. Consider passing ``allow_pickle=False`` to 

291 load data that is known not to contain object arrays for the 

292 safer handling of untrusted sources. 

293 

294 Parameters 

295 ---------- 

296 file : file-like object, string, or pathlib.Path 

297 The file to read. File-like objects must support the 

298 ``seek()`` and ``read()`` methods and must always 

299 be opened in binary mode. Pickled files require that the 

300 file-like object support the ``readline()`` method as well. 

301 mmap_mode : {None, 'r+', 'r', 'w+', 'c'}, optional 

302 If not None, then memory-map the file, using the given mode (see 

303 `numpy.memmap` for a detailed description of the modes). A 

304 memory-mapped array is kept on disk. However, it can be accessed 

305 and sliced like any ndarray. Memory mapping is especially useful 

306 for accessing small fragments of large files without reading the 

307 entire file into memory. 

308 allow_pickle : bool, optional 

309 Allow loading pickled object arrays stored in npy files. Reasons for 

310 disallowing pickles include security, as loading pickled data can 

311 execute arbitrary code. If pickles are disallowed, loading object 

312 arrays will fail. Default: False 

313 

314 .. versionchanged:: 1.16.3 

315 Made default False in response to CVE-2019-6446. 

316 

317 fix_imports : bool, optional 

318 Only useful when loading Python 2 generated pickled files on Python 3, 

319 which includes npy/npz files containing object arrays. If `fix_imports` 

320 is True, pickle will try to map the old Python 2 names to the new names 

321 used in Python 3. 

322 encoding : str, optional 

323 What encoding to use when reading Python 2 strings. Only useful when 

324 loading Python 2 generated pickled files in Python 3, which includes 

325 npy/npz files containing object arrays. Values other than 'latin1', 

326 'ASCII', and 'bytes' are not allowed, as they can corrupt numerical 

327 data. Default: 'ASCII' 

328 max_header_size : int, optional 

329 Maximum allowed size of the header. Large headers may not be safe 

330 to load securely and thus require explicitly passing a larger value. 

331 See :py:func:`ast.literal_eval()` for details. 

332 This option is ignored when `allow_pickle` is passed. In that case 

333 the file is by definition trusted and the limit is unnecessary. 

334 

335 Returns 

336 ------- 

337 result : array, tuple, dict, etc. 

338 Data stored in the file. For ``.npz`` files, the returned instance 

339 of NpzFile class must be closed to avoid leaking file descriptors. 

340 

341 Raises 

342 ------ 

343 OSError 

344 If the input file does not exist or cannot be read. 

345 UnpicklingError 

346 If ``allow_pickle=True``, but the file cannot be loaded as a pickle. 

347 ValueError 

348 The file contains an object array, but ``allow_pickle=False`` given. 

349 EOFError 

350 When calling ``np.load`` multiple times on the same file handle, 

351 if all data has already been read 

352 

353 See Also 

354 -------- 

355 save, savez, savez_compressed, loadtxt 

356 memmap : Create a memory-map to an array stored in a file on disk. 

357 lib.format.open_memmap : Create or load a memory-mapped ``.npy`` file. 

358 

359 Notes 

360 ----- 

361 - If the file contains pickle data, then whatever object is stored 

362 in the pickle is returned. 

363 - If the file is a ``.npy`` file, then a single array is returned. 

364 - If the file is a ``.npz`` file, then a dictionary-like object is 

365 returned, containing ``{filename: array}`` key-value pairs, one for 

366 each file in the archive. 

367 - If the file is a ``.npz`` file, the returned value supports the 

368 context manager protocol in a similar fashion to the open function:: 

369 

370 with load('foo.npz') as data: 

371 a = data['a'] 

372 

373 The underlying file descriptor is closed when exiting the 'with' 

374 block. 

375 

376 Examples 

377 -------- 

378 Store data to disk, and load it again: 

379 

380 >>> np.save('/tmp/123', np.array([[1, 2, 3], [4, 5, 6]])) 

381 >>> np.load('/tmp/123.npy') 

382 array([[1, 2, 3], 

383 [4, 5, 6]]) 

384 

385 Store compressed data to disk, and load it again: 

386 

387 >>> a=np.array([[1, 2, 3], [4, 5, 6]]) 

388 >>> b=np.array([1, 2]) 

389 >>> np.savez('/tmp/123.npz', a=a, b=b) 

390 >>> data = np.load('/tmp/123.npz') 

391 >>> data['a'] 

392 array([[1, 2, 3], 

393 [4, 5, 6]]) 

394 >>> data['b'] 

395 array([1, 2]) 

396 >>> data.close() 

397 

398 Mem-map the stored array, and then access the second row 

399 directly from disk: 

400 

401 >>> X = np.load('/tmp/123.npy', mmap_mode='r') 

402 >>> X[1, :] 

403 memmap([4, 5, 6]) 

404 

405 """ 

406 if encoding not in ('ASCII', 'latin1', 'bytes'): 

407 # The 'encoding' value for pickle also affects what encoding 

408 # the serialized binary data of NumPy arrays is loaded 

409 # in. Pickle does not pass on the encoding information to 

410 # NumPy. The unpickling code in numpy.core.multiarray is 

411 # written to assume that unicode data appearing where binary 

412 # should be is in 'latin1'. 'bytes' is also safe, as is 'ASCII'. 

413 # 

414 # Other encoding values can corrupt binary data, and we 

415 # purposefully disallow them. For the same reason, the errors= 

416 # argument is not exposed, as values other than 'strict' 

417 # result can similarly silently corrupt numerical data. 

418 raise ValueError("encoding must be 'ASCII', 'latin1', or 'bytes'") 

419 

420 pickle_kwargs = dict(encoding=encoding, fix_imports=fix_imports) 

421 

422 with contextlib.ExitStack() as stack: 

423 if hasattr(file, 'read'): 

424 fid = file 

425 own_fid = False 

426 else: 

427 fid = stack.enter_context(open(os_fspath(file), "rb")) 

428 own_fid = True 

429 

430 # Code to distinguish from NumPy binary files and pickles. 

431 _ZIP_PREFIX = b'PK\x03\x04' 

432 _ZIP_SUFFIX = b'PK\x05\x06' # empty zip files start with this 

433 N = len(format.MAGIC_PREFIX) 

434 magic = fid.read(N) 

435 if not magic: 

436 raise EOFError("No data left in file") 

437 # If the file size is less than N, we need to make sure not 

438 # to seek past the beginning of the file 

439 fid.seek(-min(N, len(magic)), 1) # back-up 

440 if magic.startswith(_ZIP_PREFIX) or magic.startswith(_ZIP_SUFFIX): 

441 # zip-file (assume .npz) 

442 # Potentially transfer file ownership to NpzFile 

443 stack.pop_all() 

444 ret = NpzFile(fid, own_fid=own_fid, allow_pickle=allow_pickle, 

445 pickle_kwargs=pickle_kwargs, 

446 max_header_size=max_header_size) 

447 return ret 

448 elif magic == format.MAGIC_PREFIX: 

449 # .npy file 

450 if mmap_mode: 

451 if allow_pickle: 

452 max_header_size = 2**64 

453 return format.open_memmap(file, mode=mmap_mode, 

454 max_header_size=max_header_size) 

455 else: 

456 return format.read_array(fid, allow_pickle=allow_pickle, 

457 pickle_kwargs=pickle_kwargs, 

458 max_header_size=max_header_size) 

459 else: 

460 # Try a pickle 

461 if not allow_pickle: 

462 raise ValueError("Cannot load file containing pickled data " 

463 "when allow_pickle=False") 

464 try: 

465 return pickle.load(fid, **pickle_kwargs) 

466 except Exception as e: 

467 raise pickle.UnpicklingError( 

468 f"Failed to interpret file {file!r} as a pickle") from e 

469 

470 

471def _save_dispatcher(file, arr, allow_pickle=None, fix_imports=None): 

472 return (arr,) 

473 

474 

475@array_function_dispatch(_save_dispatcher) 

476def save(file, arr, allow_pickle=True, fix_imports=True): 

477 """ 

478 Save an array to a binary file in NumPy ``.npy`` format. 

479 

480 Parameters 

481 ---------- 

482 file : file, str, or pathlib.Path 

483 File or filename to which the data is saved. If file is a file-object, 

484 then the filename is unchanged. If file is a string or Path, a ``.npy`` 

485 extension will be appended to the filename if it does not already 

486 have one. 

487 arr : array_like 

488 Array data to be saved. 

489 allow_pickle : bool, optional 

490 Allow saving object arrays using Python pickles. Reasons for disallowing 

491 pickles include security (loading pickled data can execute arbitrary 

492 code) and portability (pickled objects may not be loadable on different 

493 Python installations, for example if the stored objects require libraries 

494 that are not available, and not all pickled data is compatible between 

495 Python 2 and Python 3). 

496 Default: True 

497 fix_imports : bool, optional 

498 Only useful in forcing objects in object arrays on Python 3 to be 

499 pickled in a Python 2 compatible way. If `fix_imports` is True, pickle 

500 will try to map the new Python 3 names to the old module names used in 

501 Python 2, so that the pickle data stream is readable with Python 2. 

502 

503 See Also 

504 -------- 

505 savez : Save several arrays into a ``.npz`` archive 

506 savetxt, load 

507 

508 Notes 

509 ----- 

510 For a description of the ``.npy`` format, see :py:mod:`numpy.lib.format`. 

511 

512 Any data saved to the file is appended to the end of the file. 

513 

514 Examples 

515 -------- 

516 >>> from tempfile import TemporaryFile 

517 >>> outfile = TemporaryFile() 

518 

519 >>> x = np.arange(10) 

520 >>> np.save(outfile, x) 

521 

522 >>> _ = outfile.seek(0) # Only needed here to simulate closing & reopening file 

523 >>> np.load(outfile) 

524 array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 

525 

526 

527 >>> with open('test.npy', 'wb') as f: 

528 ... np.save(f, np.array([1, 2])) 

529 ... np.save(f, np.array([1, 3])) 

530 >>> with open('test.npy', 'rb') as f: 

531 ... a = np.load(f) 

532 ... b = np.load(f) 

533 >>> print(a, b) 

534 # [1 2] [1 3] 

535 """ 

536 if hasattr(file, 'write'): 

537 file_ctx = contextlib.nullcontext(file) 

538 else: 

539 file = os_fspath(file) 

540 if not file.endswith('.npy'): 

541 file = file + '.npy' 

542 file_ctx = open(file, "wb") 

543 

544 with file_ctx as fid: 

545 arr = np.asanyarray(arr) 

546 format.write_array(fid, arr, allow_pickle=allow_pickle, 

547 pickle_kwargs=dict(fix_imports=fix_imports)) 

548 

549 

550def _savez_dispatcher(file, *args, **kwds): 

551 yield from args 

552 yield from kwds.values() 

553 

554 

555@array_function_dispatch(_savez_dispatcher) 

556def savez(file, *args, **kwds): 

557 """Save several arrays into a single file in uncompressed ``.npz`` format. 

558 

559 Provide arrays as keyword arguments to store them under the 

560 corresponding name in the output file: ``savez(fn, x=x, y=y)``. 

561 

562 If arrays are specified as positional arguments, i.e., ``savez(fn, 

563 x, y)``, their names will be `arr_0`, `arr_1`, etc. 

564 

565 Parameters 

566 ---------- 

567 file : str or file 

568 Either the filename (string) or an open file (file-like object) 

569 where the data will be saved. If file is a string or a Path, the 

570 ``.npz`` extension will be appended to the filename if it is not 

571 already there. 

572 args : Arguments, optional 

573 Arrays to save to the file. Please use keyword arguments (see 

574 `kwds` below) to assign names to arrays. Arrays specified as 

575 args will be named "arr_0", "arr_1", and so on. 

576 kwds : Keyword arguments, optional 

577 Arrays to save to the file. Each array will be saved to the 

578 output file with its corresponding keyword name. 

579 

580 Returns 

581 ------- 

582 None 

583 

584 See Also 

585 -------- 

586 save : Save a single array to a binary file in NumPy format. 

587 savetxt : Save an array to a file as plain text. 

588 savez_compressed : Save several arrays into a compressed ``.npz`` archive 

589 

590 Notes 

591 ----- 

592 The ``.npz`` file format is a zipped archive of files named after the 

593 variables they contain. The archive is not compressed and each file 

594 in the archive contains one variable in ``.npy`` format. For a 

595 description of the ``.npy`` format, see :py:mod:`numpy.lib.format`. 

596 

597 When opening the saved ``.npz`` file with `load` a `NpzFile` object is 

598 returned. This is a dictionary-like object which can be queried for 

599 its list of arrays (with the ``.files`` attribute), and for the arrays 

600 themselves. 

601 

602 Keys passed in `kwds` are used as filenames inside the ZIP archive. 

603 Therefore, keys should be valid filenames; e.g., avoid keys that begin with 

604 ``/`` or contain ``.``. 

605 

606 When naming variables with keyword arguments, it is not possible to name a 

607 variable ``file``, as this would cause the ``file`` argument to be defined 

608 twice in the call to ``savez``. 

609 

610 Examples 

611 -------- 

612 >>> from tempfile import TemporaryFile 

613 >>> outfile = TemporaryFile() 

614 >>> x = np.arange(10) 

615 >>> y = np.sin(x) 

616 

617 Using `savez` with \\*args, the arrays are saved with default names. 

618 

619 >>> np.savez(outfile, x, y) 

620 >>> _ = outfile.seek(0) # Only needed here to simulate closing & reopening file 

621 >>> npzfile = np.load(outfile) 

622 >>> npzfile.files 

623 ['arr_0', 'arr_1'] 

624 >>> npzfile['arr_0'] 

625 array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 

626 

627 Using `savez` with \\**kwds, the arrays are saved with the keyword names. 

628 

629 >>> outfile = TemporaryFile() 

630 >>> np.savez(outfile, x=x, y=y) 

631 >>> _ = outfile.seek(0) 

632 >>> npzfile = np.load(outfile) 

633 >>> sorted(npzfile.files) 

634 ['x', 'y'] 

635 >>> npzfile['x'] 

636 array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 

637 

638 """ 

639 _savez(file, args, kwds, False) 

640 

641 

642def _savez_compressed_dispatcher(file, *args, **kwds): 

643 yield from args 

644 yield from kwds.values() 

645 

646 

647@array_function_dispatch(_savez_compressed_dispatcher) 

648def savez_compressed(file, *args, **kwds): 

649 """ 

650 Save several arrays into a single file in compressed ``.npz`` format. 

651 

652 Provide arrays as keyword arguments to store them under the 

653 corresponding name in the output file: ``savez(fn, x=x, y=y)``. 

654 

655 If arrays are specified as positional arguments, i.e., ``savez(fn, 

656 x, y)``, their names will be `arr_0`, `arr_1`, etc. 

657 

658 Parameters 

659 ---------- 

660 file : str or file 

661 Either the filename (string) or an open file (file-like object) 

662 where the data will be saved. If file is a string or a Path, the 

663 ``.npz`` extension will be appended to the filename if it is not 

664 already there. 

665 args : Arguments, optional 

666 Arrays to save to the file. Please use keyword arguments (see 

667 `kwds` below) to assign names to arrays. Arrays specified as 

668 args will be named "arr_0", "arr_1", and so on. 

669 kwds : Keyword arguments, optional 

670 Arrays to save to the file. Each array will be saved to the 

671 output file with its corresponding keyword name. 

672 

673 Returns 

674 ------- 

675 None 

676 

677 See Also 

678 -------- 

679 numpy.save : Save a single array to a binary file in NumPy format. 

680 numpy.savetxt : Save an array to a file as plain text. 

681 numpy.savez : Save several arrays into an uncompressed ``.npz`` file format 

682 numpy.load : Load the files created by savez_compressed. 

683 

684 Notes 

685 ----- 

686 The ``.npz`` file format is a zipped archive of files named after the 

687 variables they contain. The archive is compressed with 

688 ``zipfile.ZIP_DEFLATED`` and each file in the archive contains one variable 

689 in ``.npy`` format. For a description of the ``.npy`` format, see 

690 :py:mod:`numpy.lib.format`. 

691 

692 

693 When opening the saved ``.npz`` file with `load` a `NpzFile` object is 

694 returned. This is a dictionary-like object which can be queried for 

695 its list of arrays (with the ``.files`` attribute), and for the arrays 

696 themselves. 

697 

698 Examples 

699 -------- 

700 >>> test_array = np.random.rand(3, 2) 

701 >>> test_vector = np.random.rand(4) 

702 >>> np.savez_compressed('/tmp/123', a=test_array, b=test_vector) 

703 >>> loaded = np.load('/tmp/123.npz') 

704 >>> print(np.array_equal(test_array, loaded['a'])) 

705 True 

706 >>> print(np.array_equal(test_vector, loaded['b'])) 

707 True 

708 

709 """ 

710 _savez(file, args, kwds, True) 

711 

712 

713def _savez(file, args, kwds, compress, allow_pickle=True, pickle_kwargs=None): 

714 # Import is postponed to here since zipfile depends on gzip, an optional 

715 # component of the so-called standard library. 

716 import zipfile 

717 

718 if not hasattr(file, 'write'): 

719 file = os_fspath(file) 

720 if not file.endswith('.npz'): 

721 file = file + '.npz' 

722 

723 namedict = kwds 

724 for i, val in enumerate(args): 

725 key = 'arr_%d' % i 

726 if key in namedict.keys(): 

727 raise ValueError( 

728 "Cannot use un-named variables and keyword %s" % key) 

729 namedict[key] = val 

730 

731 if compress: 

732 compression = zipfile.ZIP_DEFLATED 

733 else: 

734 compression = zipfile.ZIP_STORED 

735 

736 zipf = zipfile_factory(file, mode="w", compression=compression) 

737 

738 for key, val in namedict.items(): 

739 fname = key + '.npy' 

740 val = np.asanyarray(val) 

741 # always force zip64, gh-10776 

742 with zipf.open(fname, 'w', force_zip64=True) as fid: 

743 format.write_array(fid, val, 

744 allow_pickle=allow_pickle, 

745 pickle_kwargs=pickle_kwargs) 

746 

747 zipf.close() 

748 

749 

750def _ensure_ndmin_ndarray_check_param(ndmin): 

751 """Just checks if the param ndmin is supported on 

752 _ensure_ndmin_ndarray. It is intended to be used as 

753 verification before running anything expensive. 

754 e.g. loadtxt, genfromtxt 

755 """ 

756 # Check correctness of the values of `ndmin` 

757 if ndmin not in [0, 1, 2]: 

758 raise ValueError(f"Illegal value of ndmin keyword: {ndmin}") 

759 

760def _ensure_ndmin_ndarray(a, *, ndmin: int): 

761 """This is a helper function of loadtxt and genfromtxt to ensure 

762 proper minimum dimension as requested 

763 

764 ndim : int. Supported values 1, 2, 3 

765 ^^ whenever this changes, keep in sync with 

766 _ensure_ndmin_ndarray_check_param 

767 """ 

768 # Verify that the array has at least dimensions `ndmin`. 

769 # Tweak the size and shape of the arrays - remove extraneous dimensions 

770 if a.ndim > ndmin: 

771 a = np.squeeze(a) 

772 # and ensure we have the minimum number of dimensions asked for 

773 # - has to be in this order for the odd case ndmin=1, a.squeeze().ndim=0 

774 if a.ndim < ndmin: 

775 if ndmin == 1: 

776 a = np.atleast_1d(a) 

777 elif ndmin == 2: 

778 a = np.atleast_2d(a).T 

779 

780 return a 

781 

782 

783# amount of lines loadtxt reads in one chunk, can be overridden for testing 

784_loadtxt_chunksize = 50000 

785 

786 

787def _check_nonneg_int(value, name="argument"): 

788 try: 

789 operator.index(value) 

790 except TypeError: 

791 raise TypeError(f"{name} must be an integer") from None 

792 if value < 0: 

793 raise ValueError(f"{name} must be nonnegative") 

794 

795 

796def _preprocess_comments(iterable, comments, encoding): 

797 """ 

798 Generator that consumes a line iterated iterable and strips out the 

799 multiple (or multi-character) comments from lines. 

800 This is a pre-processing step to achieve feature parity with loadtxt 

801 (we assume that this feature is a nieche feature). 

802 """ 

803 for line in iterable: 

804 if isinstance(line, bytes): 

805 # Need to handle conversion here, or the splitting would fail 

806 line = line.decode(encoding) 

807 

808 for c in comments: 

809 line = line.split(c, 1)[0] 

810 

811 yield line 

812 

813 

814# The number of rows we read in one go if confronted with a parametric dtype 

815_loadtxt_chunksize = 50000 

816 

817 

818def _read(fname, *, delimiter=',', comment='#', quote='"', 

819 imaginary_unit='j', usecols=None, skiplines=0, 

820 max_rows=None, converters=None, ndmin=None, unpack=False, 

821 dtype=np.float64, encoding="bytes"): 

822 r""" 

823 Read a NumPy array from a text file. 

824 

825 Parameters 

826 ---------- 

827 fname : str or file object 

828 The filename or the file to be read. 

829 delimiter : str, optional 

830 Field delimiter of the fields in line of the file. 

831 Default is a comma, ','. If None any sequence of whitespace is 

832 considered a delimiter. 

833 comment : str or sequence of str or None, optional 

834 Character that begins a comment. All text from the comment 

835 character to the end of the line is ignored. 

836 Multiple comments or multiple-character comment strings are supported, 

837 but may be slower and `quote` must be empty if used. 

838 Use None to disable all use of comments. 

839 quote : str or None, optional 

840 Character that is used to quote string fields. Default is '"' 

841 (a double quote). Use None to disable quote support. 

842 imaginary_unit : str, optional 

843 Character that represent the imaginay unit `sqrt(-1)`. 

844 Default is 'j'. 

845 usecols : array_like, optional 

846 A one-dimensional array of integer column numbers. These are the 

847 columns from the file to be included in the array. If this value 

848 is not given, all the columns are used. 

849 skiplines : int, optional 

850 Number of lines to skip before interpreting the data in the file. 

851 max_rows : int, optional 

852 Maximum number of rows of data to read. Default is to read the 

853 entire file. 

854 converters : dict or callable, optional 

855 A function to parse all columns strings into the desired value, or 

856 a dictionary mapping column number to a parser function. 

857 E.g. if column 0 is a date string: ``converters = {0: datestr2num}``. 

858 Converters can also be used to provide a default value for missing 

859 data, e.g. ``converters = lambda s: float(s.strip() or 0)`` will 

860 convert empty fields to 0. 

861 Default: None 

862 ndmin : int, optional 

863 Minimum dimension of the array returned. 

864 Allowed values are 0, 1 or 2. Default is 0. 

865 unpack : bool, optional 

866 If True, the returned array is transposed, so that arguments may be 

867 unpacked using ``x, y, z = read(...)``. When used with a structured 

868 data-type, arrays are returned for each field. Default is False. 

869 dtype : numpy data type 

870 A NumPy dtype instance, can be a structured dtype to map to the 

871 columns of the file. 

872 encoding : str, optional 

873 Encoding used to decode the inputfile. The special value 'bytes' 

874 (the default) enables backwards-compatible behavior for `converters`, 

875 ensuring that inputs to the converter functions are encoded 

876 bytes objects. The special value 'bytes' has no additional effect if 

877 ``converters=None``. If encoding is ``'bytes'`` or ``None``, the 

878 default system encoding is used. 

879 

880 Returns 

881 ------- 

882 ndarray 

883 NumPy array. 

884 

885 Examples 

886 -------- 

887 First we create a file for the example. 

888 

889 >>> s1 = '1.0,2.0,3.0\n4.0,5.0,6.0\n' 

890 >>> with open('example1.csv', 'w') as f: 

891 ... f.write(s1) 

892 >>> a1 = read_from_filename('example1.csv') 

893 >>> a1 

894 array([[1., 2., 3.], 

895 [4., 5., 6.]]) 

896 

897 The second example has columns with different data types, so a 

898 one-dimensional array with a structured data type is returned. 

899 The tab character is used as the field delimiter. 

900 

901 >>> s2 = '1.0\t10\talpha\n2.3\t25\tbeta\n4.5\t16\tgamma\n' 

902 >>> with open('example2.tsv', 'w') as f: 

903 ... f.write(s2) 

904 >>> a2 = read_from_filename('example2.tsv', delimiter='\t') 

905 >>> a2 

906 array([(1. , 10, b'alpha'), (2.3, 25, b'beta'), (4.5, 16, b'gamma')], 

907 dtype=[('f0', '<f8'), ('f1', 'u1'), ('f2', 'S5')]) 

908 """ 

909 # Handle special 'bytes' keyword for encoding 

910 byte_converters = False 

911 if encoding == 'bytes': 

912 encoding = None 

913 byte_converters = True 

914 

915 if dtype is None: 

916 raise TypeError("a dtype must be provided.") 

917 dtype = np.dtype(dtype) 

918 

919 read_dtype_via_object_chunks = None 

920 if dtype.kind in 'SUM' and ( 

921 dtype == "S0" or dtype == "U0" or dtype == "M8" or dtype == 'm8'): 

922 # This is a legacy "flexible" dtype. We do not truly support 

923 # parametric dtypes currently (no dtype discovery step in the core), 

924 # but have to support these for backward compatibility. 

925 read_dtype_via_object_chunks = dtype 

926 dtype = np.dtype(object) 

927 

928 if usecols is not None: 

929 # Allow usecols to be a single int or a sequence of ints, the C-code 

930 # handles the rest 

931 try: 

932 usecols = list(usecols) 

933 except TypeError: 

934 usecols = [usecols] 

935 

936 _ensure_ndmin_ndarray_check_param(ndmin) 

937 

938 if comment is None: 

939 comments = None 

940 else: 

941 # assume comments are a sequence of strings 

942 if "" in comment: 

943 raise ValueError( 

944 "comments cannot be an empty string. Use comments=None to " 

945 "disable comments." 

946 ) 

947 comments = tuple(comment) 

948 comment = None 

949 if len(comments) == 0: 

950 comments = None # No comments at all 

951 elif len(comments) == 1: 

952 # If there is only one comment, and that comment has one character, 

953 # the normal parsing can deal with it just fine. 

954 if isinstance(comments[0], str) and len(comments[0]) == 1: 

955 comment = comments[0] 

956 comments = None 

957 else: 

958 # Input validation if there are multiple comment characters 

959 if delimiter in comments: 

960 raise TypeError( 

961 f"Comment characters '{comments}' cannot include the " 

962 f"delimiter '{delimiter}'" 

963 ) 

964 

965 # comment is now either a 1 or 0 character string or a tuple: 

966 if comments is not None: 

967 # Note: An earlier version support two character comments (and could 

968 # have been extended to multiple characters, we assume this is 

969 # rare enough to not optimize for. 

970 if quote is not None: 

971 raise ValueError( 

972 "when multiple comments or a multi-character comment is " 

973 "given, quotes are not supported. In this case quotechar " 

974 "must be set to None.") 

975 

976 if len(imaginary_unit) != 1: 

977 raise ValueError('len(imaginary_unit) must be 1.') 

978 

979 _check_nonneg_int(skiplines) 

980 if max_rows is not None: 

981 _check_nonneg_int(max_rows) 

982 else: 

983 # Passing -1 to the C code means "read the entire file". 

984 max_rows = -1 

985 

986 fh_closing_ctx = contextlib.nullcontext() 

987 filelike = False 

988 try: 

989 if isinstance(fname, os.PathLike): 

990 fname = os.fspath(fname) 

991 if isinstance(fname, str): 

992 fh = np.lib._datasource.open(fname, 'rt', encoding=encoding) 

993 if encoding is None: 

994 encoding = getattr(fh, 'encoding', 'latin1') 

995 

996 fh_closing_ctx = contextlib.closing(fh) 

997 data = fh 

998 filelike = True 

999 else: 

1000 if encoding is None: 

1001 encoding = getattr(fname, 'encoding', 'latin1') 

1002 data = iter(fname) 

1003 except TypeError as e: 

1004 raise ValueError( 

1005 f"fname must be a string, filehandle, list of strings,\n" 

1006 f"or generator. Got {type(fname)} instead.") from e 

1007 

1008 with fh_closing_ctx: 

1009 if comments is not None: 

1010 if filelike: 

1011 data = iter(data) 

1012 filelike = False 

1013 data = _preprocess_comments(data, comments, encoding) 

1014 

1015 if read_dtype_via_object_chunks is None: 

1016 arr = _load_from_filelike( 

1017 data, delimiter=delimiter, comment=comment, quote=quote, 

1018 imaginary_unit=imaginary_unit, 

1019 usecols=usecols, skiplines=skiplines, max_rows=max_rows, 

1020 converters=converters, dtype=dtype, 

1021 encoding=encoding, filelike=filelike, 

1022 byte_converters=byte_converters) 

1023 

1024 else: 

1025 # This branch reads the file into chunks of object arrays and then 

1026 # casts them to the desired actual dtype. This ensures correct 

1027 # string-length and datetime-unit discovery (like `arr.astype()`). 

1028 # Due to chunking, certain error reports are less clear, currently. 

1029 if filelike: 

1030 data = iter(data) # cannot chunk when reading from file 

1031 

1032 c_byte_converters = False 

1033 if read_dtype_via_object_chunks == "S": 

1034 c_byte_converters = True # Use latin1 rather than ascii 

1035 

1036 chunks = [] 

1037 while max_rows != 0: 

1038 if max_rows < 0: 

1039 chunk_size = _loadtxt_chunksize 

1040 else: 

1041 chunk_size = min(_loadtxt_chunksize, max_rows) 

1042 

1043 next_arr = _load_from_filelike( 

1044 data, delimiter=delimiter, comment=comment, quote=quote, 

1045 imaginary_unit=imaginary_unit, 

1046 usecols=usecols, skiplines=skiplines, max_rows=max_rows, 

1047 converters=converters, dtype=dtype, 

1048 encoding=encoding, filelike=filelike, 

1049 byte_converters=byte_converters, 

1050 c_byte_converters=c_byte_converters) 

1051 # Cast here already. We hope that this is better even for 

1052 # large files because the storage is more compact. It could 

1053 # be adapted (in principle the concatenate could cast). 

1054 chunks.append(next_arr.astype(read_dtype_via_object_chunks)) 

1055 

1056 skiprows = 0 # Only have to skip for first chunk 

1057 if max_rows >= 0: 

1058 max_rows -= chunk_size 

1059 if len(next_arr) < chunk_size: 

1060 # There was less data than requested, so we are done. 

1061 break 

1062 

1063 # Need at least one chunk, but if empty, the last one may have 

1064 # the wrong shape. 

1065 if len(chunks) > 1 and len(chunks[-1]) == 0: 

1066 del chunks[-1] 

1067 if len(chunks) == 1: 

1068 arr = chunks[0] 

1069 else: 

1070 arr = np.concatenate(chunks, axis=0) 

1071 

1072 # NOTE: ndmin works as advertised for structured dtypes, but normally 

1073 # these would return a 1D result plus the structured dimension, 

1074 # so ndmin=2 adds a third dimension even when no squeezing occurs. 

1075 # A `squeeze=False` could be a better solution (pandas uses squeeze). 

1076 arr = _ensure_ndmin_ndarray(arr, ndmin=ndmin) 

1077 

1078 if arr.shape: 

1079 if arr.shape[0] == 0: 

1080 warnings.warn( 

1081 f'loadtxt: input contained no data: "{fname}"', 

1082 category=UserWarning, 

1083 stacklevel=3 

1084 ) 

1085 

1086 if unpack: 

1087 # Unpack structured dtypes if requested: 

1088 dt = arr.dtype 

1089 if dt.names is not None: 

1090 # For structured arrays, return an array for each field. 

1091 return [arr[field] for field in dt.names] 

1092 else: 

1093 return arr.T 

1094 else: 

1095 return arr 

1096 

1097 

1098@set_array_function_like_doc 

1099@set_module('numpy') 

1100def loadtxt(fname, dtype=float, comments='#', delimiter=None, 

1101 converters=None, skiprows=0, usecols=None, unpack=False, 

1102 ndmin=0, encoding='bytes', max_rows=None, *, quotechar=None, 

1103 like=None): 

1104 r""" 

1105 Load data from a text file. 

1106 

1107 Parameters 

1108 ---------- 

1109 fname : file, str, pathlib.Path, list of str, generator 

1110 File, filename, list, or generator to read. If the filename 

1111 extension is ``.gz`` or ``.bz2``, the file is first decompressed. Note 

1112 that generators must return bytes or strings. The strings 

1113 in a list or produced by a generator are treated as lines. 

1114 dtype : data-type, optional 

1115 Data-type of the resulting array; default: float. If this is a 

1116 structured data-type, the resulting array will be 1-dimensional, and 

1117 each row will be interpreted as an element of the array. In this 

1118 case, the number of columns used must match the number of fields in 

1119 the data-type. 

1120 comments : str or sequence of str or None, optional 

1121 The characters or list of characters used to indicate the start of a 

1122 comment. None implies no comments. For backwards compatibility, byte 

1123 strings will be decoded as 'latin1'. The default is '#'. 

1124 delimiter : str, optional 

1125 The character used to separate the values. For backwards compatibility, 

1126 byte strings will be decoded as 'latin1'. The default is whitespace. 

1127 

1128 .. versionchanged:: 1.23.0 

1129 Only single character delimiters are supported. Newline characters 

1130 cannot be used as the delimiter. 

1131 

1132 converters : dict or callable, optional 

1133 Converter functions to customize value parsing. If `converters` is 

1134 callable, the function is applied to all columns, else it must be a 

1135 dict that maps column number to a parser function. 

1136 See examples for further details. 

1137 Default: None. 

1138 

1139 .. versionchanged:: 1.23.0 

1140 The ability to pass a single callable to be applied to all columns 

1141 was added. 

1142 

1143 skiprows : int, optional 

1144 Skip the first `skiprows` lines, including comments; default: 0. 

1145 usecols : int or sequence, optional 

1146 Which columns to read, with 0 being the first. For example, 

1147 ``usecols = (1,4,5)`` will extract the 2nd, 5th and 6th columns. 

1148 The default, None, results in all columns being read. 

1149 

1150 .. versionchanged:: 1.11.0 

1151 When a single column has to be read it is possible to use 

1152 an integer instead of a tuple. E.g ``usecols = 3`` reads the 

1153 fourth column the same way as ``usecols = (3,)`` would. 

1154 unpack : bool, optional 

1155 If True, the returned array is transposed, so that arguments may be 

1156 unpacked using ``x, y, z = loadtxt(...)``. When used with a 

1157 structured data-type, arrays are returned for each field. 

1158 Default is False. 

1159 ndmin : int, optional 

1160 The returned array will have at least `ndmin` dimensions. 

1161 Otherwise mono-dimensional axes will be squeezed. 

1162 Legal values: 0 (default), 1 or 2. 

1163 

1164 .. versionadded:: 1.6.0 

1165 encoding : str, optional 

1166 Encoding used to decode the inputfile. Does not apply to input streams. 

1167 The special value 'bytes' enables backward compatibility workarounds 

1168 that ensures you receive byte arrays as results if possible and passes 

1169 'latin1' encoded strings to converters. Override this value to receive 

1170 unicode arrays and pass strings as input to converters. If set to None 

1171 the system default is used. The default value is 'bytes'. 

1172 

1173 .. versionadded:: 1.14.0 

1174 max_rows : int, optional 

1175 Read `max_rows` rows of content after `skiprows` lines. The default is 

1176 to read all the rows. Note that empty rows containing no data such as 

1177 empty lines and comment lines are not counted towards `max_rows`, 

1178 while such lines are counted in `skiprows`. 

1179 

1180 .. versionadded:: 1.16.0 

1181 

1182 .. versionchanged:: 1.23.0 

1183 Lines containing no data, including comment lines (e.g., lines 

1184 starting with '#' or as specified via `comments`) are not counted 

1185 towards `max_rows`. 

1186 quotechar : unicode character or None, optional 

1187 The character used to denote the start and end of a quoted item. 

1188 Occurrences of the delimiter or comment characters are ignored within 

1189 a quoted item. The default value is ``quotechar=None``, which means 

1190 quoting support is disabled. 

1191 

1192 If two consecutive instances of `quotechar` are found within a quoted 

1193 field, the first is treated as an escape character. See examples. 

1194 

1195 .. versionadded:: 1.23.0 

1196 ${ARRAY_FUNCTION_LIKE} 

1197 

1198 .. versionadded:: 1.20.0 

1199 

1200 Returns 

1201 ------- 

1202 out : ndarray 

1203 Data read from the text file. 

1204 

1205 See Also 

1206 -------- 

1207 load, fromstring, fromregex 

1208 genfromtxt : Load data with missing values handled as specified. 

1209 scipy.io.loadmat : reads MATLAB data files 

1210 

1211 Notes 

1212 ----- 

1213 This function aims to be a fast reader for simply formatted files. The 

1214 `genfromtxt` function provides more sophisticated handling of, e.g., 

1215 lines with missing values. 

1216 

1217 Each row in the input text file must have the same number of values to be 

1218 able to read all values. If all rows do not have same number of values, a 

1219 subset of up to n columns (where n is the least number of values present 

1220 in all rows) can be read by specifying the columns via `usecols`. 

1221 

1222 .. versionadded:: 1.10.0 

1223 

1224 The strings produced by the Python float.hex method can be used as 

1225 input for floats. 

1226 

1227 Examples 

1228 -------- 

1229 >>> from io import StringIO # StringIO behaves like a file object 

1230 >>> c = StringIO("0 1\n2 3") 

1231 >>> np.loadtxt(c) 

1232 array([[0., 1.], 

1233 [2., 3.]]) 

1234 

1235 >>> d = StringIO("M 21 72\nF 35 58") 

1236 >>> np.loadtxt(d, dtype={'names': ('gender', 'age', 'weight'), 

1237 ... 'formats': ('S1', 'i4', 'f4')}) 

1238 array([(b'M', 21, 72.), (b'F', 35, 58.)], 

1239 dtype=[('gender', 'S1'), ('age', '<i4'), ('weight', '<f4')]) 

1240 

1241 >>> c = StringIO("1,0,2\n3,0,4") 

1242 >>> x, y = np.loadtxt(c, delimiter=',', usecols=(0, 2), unpack=True) 

1243 >>> x 

1244 array([1., 3.]) 

1245 >>> y 

1246 array([2., 4.]) 

1247 

1248 The `converters` argument is used to specify functions to preprocess the 

1249 text prior to parsing. `converters` can be a dictionary that maps 

1250 preprocessing functions to each column: 

1251 

1252 >>> s = StringIO("1.618, 2.296\n3.141, 4.669\n") 

1253 >>> conv = { 

1254 ... 0: lambda x: np.floor(float(x)), # conversion fn for column 0 

1255 ... 1: lambda x: np.ceil(float(x)), # conversion fn for column 1 

1256 ... } 

1257 >>> np.loadtxt(s, delimiter=",", converters=conv) 

1258 array([[1., 3.], 

1259 [3., 5.]]) 

1260 

1261 `converters` can be a callable instead of a dictionary, in which case it 

1262 is applied to all columns: 

1263 

1264 >>> s = StringIO("0xDE 0xAD\n0xC0 0xDE") 

1265 >>> import functools 

1266 >>> conv = functools.partial(int, base=16) 

1267 >>> np.loadtxt(s, converters=conv) 

1268 array([[222., 173.], 

1269 [192., 222.]]) 

1270 

1271 This example shows how `converters` can be used to convert a field 

1272 with a trailing minus sign into a negative number. 

1273 

1274 >>> s = StringIO('10.01 31.25-\n19.22 64.31\n17.57- 63.94') 

1275 >>> def conv(fld): 

1276 ... return -float(fld[:-1]) if fld.endswith(b'-') else float(fld) 

1277 ... 

1278 >>> np.loadtxt(s, converters=conv) 

1279 array([[ 10.01, -31.25], 

1280 [ 19.22, 64.31], 

1281 [-17.57, 63.94]]) 

1282 

1283 Using a callable as the converter can be particularly useful for handling 

1284 values with different formatting, e.g. floats with underscores: 

1285 

1286 >>> s = StringIO("1 2.7 100_000") 

1287 >>> np.loadtxt(s, converters=float) 

1288 array([1.e+00, 2.7e+00, 1.e+05]) 

1289 

1290 This idea can be extended to automatically handle values specified in 

1291 many different formats: 

1292 

1293 >>> def conv(val): 

1294 ... try: 

1295 ... return float(val) 

1296 ... except ValueError: 

1297 ... return float.fromhex(val) 

1298 >>> s = StringIO("1, 2.5, 3_000, 0b4, 0x1.4000000000000p+2") 

1299 >>> np.loadtxt(s, delimiter=",", converters=conv, encoding=None) 

1300 array([1.0e+00, 2.5e+00, 3.0e+03, 1.8e+02, 5.0e+00]) 

1301 

1302 Note that with the default ``encoding="bytes"``, the inputs to the 

1303 converter function are latin-1 encoded byte strings. To deactivate the 

1304 implicit encoding prior to conversion, use ``encoding=None`` 

1305 

1306 >>> s = StringIO('10.01 31.25-\n19.22 64.31\n17.57- 63.94') 

1307 >>> conv = lambda x: -float(x[:-1]) if x.endswith('-') else float(x) 

1308 >>> np.loadtxt(s, converters=conv, encoding=None) 

1309 array([[ 10.01, -31.25], 

1310 [ 19.22, 64.31], 

1311 [-17.57, 63.94]]) 

1312 

1313 Support for quoted fields is enabled with the `quotechar` parameter. 

1314 Comment and delimiter characters are ignored when they appear within a 

1315 quoted item delineated by `quotechar`: 

1316 

1317 >>> s = StringIO('"alpha, #42", 10.0\n"beta, #64", 2.0\n') 

1318 >>> dtype = np.dtype([("label", "U12"), ("value", float)]) 

1319 >>> np.loadtxt(s, dtype=dtype, delimiter=",", quotechar='"') 

1320 array([('alpha, #42', 10.), ('beta, #64', 2.)], 

1321 dtype=[('label', '<U12'), ('value', '<f8')]) 

1322 

1323 Quoted fields can be separated by multiple whitespace characters: 

1324 

1325 >>> s = StringIO('"alpha, #42" 10.0\n"beta, #64" 2.0\n') 

1326 >>> dtype = np.dtype([("label", "U12"), ("value", float)]) 

1327 >>> np.loadtxt(s, dtype=dtype, delimiter=None, quotechar='"') 

1328 array([('alpha, #42', 10.), ('beta, #64', 2.)], 

1329 dtype=[('label', '<U12'), ('value', '<f8')]) 

1330 

1331 Two consecutive quote characters within a quoted field are treated as a 

1332 single escaped character: 

1333 

1334 >>> s = StringIO('"Hello, my name is ""Monty""!"') 

1335 >>> np.loadtxt(s, dtype="U", delimiter=",", quotechar='"') 

1336 array('Hello, my name is "Monty"!', dtype='<U26') 

1337 

1338 Read subset of columns when all rows do not contain equal number of values: 

1339 

1340 >>> d = StringIO("1 2\n2 4\n3 9 12\n4 16 20") 

1341 >>> np.loadtxt(d, usecols=(0, 1)) 

1342 array([[ 1., 2.], 

1343 [ 2., 4.], 

1344 [ 3., 9.], 

1345 [ 4., 16.]]) 

1346 

1347 """ 

1348 

1349 if like is not None: 

1350 return _loadtxt_with_like( 

1351 like, fname, dtype=dtype, comments=comments, delimiter=delimiter, 

1352 converters=converters, skiprows=skiprows, usecols=usecols, 

1353 unpack=unpack, ndmin=ndmin, encoding=encoding, 

1354 max_rows=max_rows 

1355 ) 

1356 

1357 if isinstance(delimiter, bytes): 

1358 delimiter.decode("latin1") 

1359 

1360 if dtype is None: 

1361 dtype = np.float64 

1362 

1363 comment = comments 

1364 # Control character type conversions for Py3 convenience 

1365 if comment is not None: 

1366 if isinstance(comment, (str, bytes)): 

1367 comment = [comment] 

1368 comment = [ 

1369 x.decode('latin1') if isinstance(x, bytes) else x for x in comment] 

1370 if isinstance(delimiter, bytes): 

1371 delimiter = delimiter.decode('latin1') 

1372 

1373 arr = _read(fname, dtype=dtype, comment=comment, delimiter=delimiter, 

1374 converters=converters, skiplines=skiprows, usecols=usecols, 

1375 unpack=unpack, ndmin=ndmin, encoding=encoding, 

1376 max_rows=max_rows, quote=quotechar) 

1377 

1378 return arr 

1379 

1380 

1381_loadtxt_with_like = array_function_dispatch()(loadtxt) 

1382 

1383 

1384def _savetxt_dispatcher(fname, X, fmt=None, delimiter=None, newline=None, 

1385 header=None, footer=None, comments=None, 

1386 encoding=None): 

1387 return (X,) 

1388 

1389 

1390@array_function_dispatch(_savetxt_dispatcher) 

1391def savetxt(fname, X, fmt='%.18e', delimiter=' ', newline='\n', header='', 

1392 footer='', comments='# ', encoding=None): 

1393 """ 

1394 Save an array to a text file. 

1395 

1396 Parameters 

1397 ---------- 

1398 fname : filename or file handle 

1399 If the filename ends in ``.gz``, the file is automatically saved in 

1400 compressed gzip format. `loadtxt` understands gzipped files 

1401 transparently. 

1402 X : 1D or 2D array_like 

1403 Data to be saved to a text file. 

1404 fmt : str or sequence of strs, optional 

1405 A single format (%10.5f), a sequence of formats, or a 

1406 multi-format string, e.g. 'Iteration %d -- %10.5f', in which 

1407 case `delimiter` is ignored. For complex `X`, the legal options 

1408 for `fmt` are: 

1409 

1410 * a single specifier, `fmt='%.4e'`, resulting in numbers formatted 

1411 like `' (%s+%sj)' % (fmt, fmt)` 

1412 * a full string specifying every real and imaginary part, e.g. 

1413 `' %.4e %+.4ej %.4e %+.4ej %.4e %+.4ej'` for 3 columns 

1414 * a list of specifiers, one per column - in this case, the real 

1415 and imaginary part must have separate specifiers, 

1416 e.g. `['%.3e + %.3ej', '(%.15e%+.15ej)']` for 2 columns 

1417 delimiter : str, optional 

1418 String or character separating columns. 

1419 newline : str, optional 

1420 String or character separating lines. 

1421 

1422 .. versionadded:: 1.5.0 

1423 header : str, optional 

1424 String that will be written at the beginning of the file. 

1425 

1426 .. versionadded:: 1.7.0 

1427 footer : str, optional 

1428 String that will be written at the end of the file. 

1429 

1430 .. versionadded:: 1.7.0 

1431 comments : str, optional 

1432 String that will be prepended to the ``header`` and ``footer`` strings, 

1433 to mark them as comments. Default: '# ', as expected by e.g. 

1434 ``numpy.loadtxt``. 

1435 

1436 .. versionadded:: 1.7.0 

1437 encoding : {None, str}, optional 

1438 Encoding used to encode the outputfile. Does not apply to output 

1439 streams. If the encoding is something other than 'bytes' or 'latin1' 

1440 you will not be able to load the file in NumPy versions < 1.14. Default 

1441 is 'latin1'. 

1442 

1443 .. versionadded:: 1.14.0 

1444 

1445 

1446 See Also 

1447 -------- 

1448 save : Save an array to a binary file in NumPy ``.npy`` format 

1449 savez : Save several arrays into an uncompressed ``.npz`` archive 

1450 savez_compressed : Save several arrays into a compressed ``.npz`` archive 

1451 

1452 Notes 

1453 ----- 

1454 Further explanation of the `fmt` parameter 

1455 (``%[flag]width[.precision]specifier``): 

1456 

1457 flags: 

1458 ``-`` : left justify 

1459 

1460 ``+`` : Forces to precede result with + or -. 

1461 

1462 ``0`` : Left pad the number with zeros instead of space (see width). 

1463 

1464 width: 

1465 Minimum number of characters to be printed. The value is not truncated 

1466 if it has more characters. 

1467 

1468 precision: 

1469 - For integer specifiers (eg. ``d,i,o,x``), the minimum number of 

1470 digits. 

1471 - For ``e, E`` and ``f`` specifiers, the number of digits to print 

1472 after the decimal point. 

1473 - For ``g`` and ``G``, the maximum number of significant digits. 

1474 - For ``s``, the maximum number of characters. 

1475 

1476 specifiers: 

1477 ``c`` : character 

1478 

1479 ``d`` or ``i`` : signed decimal integer 

1480 

1481 ``e`` or ``E`` : scientific notation with ``e`` or ``E``. 

1482 

1483 ``f`` : decimal floating point 

1484 

1485 ``g,G`` : use the shorter of ``e,E`` or ``f`` 

1486 

1487 ``o`` : signed octal 

1488 

1489 ``s`` : string of characters 

1490 

1491 ``u`` : unsigned decimal integer 

1492 

1493 ``x,X`` : unsigned hexadecimal integer 

1494 

1495 This explanation of ``fmt`` is not complete, for an exhaustive 

1496 specification see [1]_. 

1497 

1498 References 

1499 ---------- 

1500 .. [1] `Format Specification Mini-Language 

1501 <https://docs.python.org/library/string.html#format-specification-mini-language>`_, 

1502 Python Documentation. 

1503 

1504 Examples 

1505 -------- 

1506 >>> x = y = z = np.arange(0.0,5.0,1.0) 

1507 >>> np.savetxt('test.out', x, delimiter=',') # X is an array 

1508 >>> np.savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays 

1509 >>> np.savetxt('test.out', x, fmt='%1.4e') # use exponential notation 

1510 

1511 """ 

1512 

1513 # Py3 conversions first 

1514 if isinstance(fmt, bytes): 

1515 fmt = asstr(fmt) 

1516 delimiter = asstr(delimiter) 

1517 

1518 class WriteWrap: 

1519 """Convert to bytes on bytestream inputs. 

1520 

1521 """ 

1522 def __init__(self, fh, encoding): 

1523 self.fh = fh 

1524 self.encoding = encoding 

1525 self.do_write = self.first_write 

1526 

1527 def close(self): 

1528 self.fh.close() 

1529 

1530 def write(self, v): 

1531 self.do_write(v) 

1532 

1533 def write_bytes(self, v): 

1534 if isinstance(v, bytes): 

1535 self.fh.write(v) 

1536 else: 

1537 self.fh.write(v.encode(self.encoding)) 

1538 

1539 def write_normal(self, v): 

1540 self.fh.write(asunicode(v)) 

1541 

1542 def first_write(self, v): 

1543 try: 

1544 self.write_normal(v) 

1545 self.write = self.write_normal 

1546 except TypeError: 

1547 # input is probably a bytestream 

1548 self.write_bytes(v) 

1549 self.write = self.write_bytes 

1550 

1551 own_fh = False 

1552 if isinstance(fname, os_PathLike): 

1553 fname = os_fspath(fname) 

1554 if _is_string_like(fname): 

1555 # datasource doesn't support creating a new file ... 

1556 open(fname, 'wt').close() 

1557 fh = np.lib._datasource.open(fname, 'wt', encoding=encoding) 

1558 own_fh = True 

1559 elif hasattr(fname, 'write'): 

1560 # wrap to handle byte output streams 

1561 fh = WriteWrap(fname, encoding or 'latin1') 

1562 else: 

1563 raise ValueError('fname must be a string or file handle') 

1564 

1565 try: 

1566 X = np.asarray(X) 

1567 

1568 # Handle 1-dimensional arrays 

1569 if X.ndim == 0 or X.ndim > 2: 

1570 raise ValueError( 

1571 "Expected 1D or 2D array, got %dD array instead" % X.ndim) 

1572 elif X.ndim == 1: 

1573 # Common case -- 1d array of numbers 

1574 if X.dtype.names is None: 

1575 X = np.atleast_2d(X).T 

1576 ncol = 1 

1577 

1578 # Complex dtype -- each field indicates a separate column 

1579 else: 

1580 ncol = len(X.dtype.names) 

1581 else: 

1582 ncol = X.shape[1] 

1583 

1584 iscomplex_X = np.iscomplexobj(X) 

1585 # `fmt` can be a string with multiple insertion points or a 

1586 # list of formats. E.g. '%10.5f\t%10d' or ('%10.5f', '$10d') 

1587 if type(fmt) in (list, tuple): 

1588 if len(fmt) != ncol: 

1589 raise AttributeError('fmt has wrong shape. %s' % str(fmt)) 

1590 format = asstr(delimiter).join(map(asstr, fmt)) 

1591 elif isinstance(fmt, str): 

1592 n_fmt_chars = fmt.count('%') 

1593 error = ValueError('fmt has wrong number of %% formats: %s' % fmt) 

1594 if n_fmt_chars == 1: 

1595 if iscomplex_X: 

1596 fmt = [' (%s+%sj)' % (fmt, fmt), ] * ncol 

1597 else: 

1598 fmt = [fmt, ] * ncol 

1599 format = delimiter.join(fmt) 

1600 elif iscomplex_X and n_fmt_chars != (2 * ncol): 

1601 raise error 

1602 elif ((not iscomplex_X) and n_fmt_chars != ncol): 

1603 raise error 

1604 else: 

1605 format = fmt 

1606 else: 

1607 raise ValueError('invalid fmt: %r' % (fmt,)) 

1608 

1609 if len(header) > 0: 

1610 header = header.replace('\n', '\n' + comments) 

1611 fh.write(comments + header + newline) 

1612 if iscomplex_X: 

1613 for row in X: 

1614 row2 = [] 

1615 for number in row: 

1616 row2.append(number.real) 

1617 row2.append(number.imag) 

1618 s = format % tuple(row2) + newline 

1619 fh.write(s.replace('+-', '-')) 

1620 else: 

1621 for row in X: 

1622 try: 

1623 v = format % tuple(row) + newline 

1624 except TypeError as e: 

1625 raise TypeError("Mismatch between array dtype ('%s') and " 

1626 "format specifier ('%s')" 

1627 % (str(X.dtype), format)) from e 

1628 fh.write(v) 

1629 

1630 if len(footer) > 0: 

1631 footer = footer.replace('\n', '\n' + comments) 

1632 fh.write(comments + footer + newline) 

1633 finally: 

1634 if own_fh: 

1635 fh.close() 

1636 

1637 

1638@set_module('numpy') 

1639def fromregex(file, regexp, dtype, encoding=None): 

1640 r""" 

1641 Construct an array from a text file, using regular expression parsing. 

1642 

1643 The returned array is always a structured array, and is constructed from 

1644 all matches of the regular expression in the file. Groups in the regular 

1645 expression are converted to fields of the structured array. 

1646 

1647 Parameters 

1648 ---------- 

1649 file : path or file 

1650 Filename or file object to read. 

1651 

1652 .. versionchanged:: 1.22.0 

1653 Now accepts `os.PathLike` implementations. 

1654 regexp : str or regexp 

1655 Regular expression used to parse the file. 

1656 Groups in the regular expression correspond to fields in the dtype. 

1657 dtype : dtype or list of dtypes 

1658 Dtype for the structured array; must be a structured datatype. 

1659 encoding : str, optional 

1660 Encoding used to decode the inputfile. Does not apply to input streams. 

1661 

1662 .. versionadded:: 1.14.0 

1663 

1664 Returns 

1665 ------- 

1666 output : ndarray 

1667 The output array, containing the part of the content of `file` that 

1668 was matched by `regexp`. `output` is always a structured array. 

1669 

1670 Raises 

1671 ------ 

1672 TypeError 

1673 When `dtype` is not a valid dtype for a structured array. 

1674 

1675 See Also 

1676 -------- 

1677 fromstring, loadtxt 

1678 

1679 Notes 

1680 ----- 

1681 Dtypes for structured arrays can be specified in several forms, but all 

1682 forms specify at least the data type and field name. For details see 

1683 `basics.rec`. 

1684 

1685 Examples 

1686 -------- 

1687 >>> from io import StringIO 

1688 >>> text = StringIO("1312 foo\n1534 bar\n444 qux") 

1689 

1690 >>> regexp = r"(\d+)\s+(...)" # match [digits, whitespace, anything] 

1691 >>> output = np.fromregex(text, regexp, 

1692 ... [('num', np.int64), ('key', 'S3')]) 

1693 >>> output 

1694 array([(1312, b'foo'), (1534, b'bar'), ( 444, b'qux')], 

1695 dtype=[('num', '<i8'), ('key', 'S3')]) 

1696 >>> output['num'] 

1697 array([1312, 1534, 444]) 

1698 

1699 """ 

1700 own_fh = False 

1701 if not hasattr(file, "read"): 

1702 file = os.fspath(file) 

1703 file = np.lib._datasource.open(file, 'rt', encoding=encoding) 

1704 own_fh = True 

1705 

1706 try: 

1707 if not isinstance(dtype, np.dtype): 

1708 dtype = np.dtype(dtype) 

1709 if dtype.names is None: 

1710 raise TypeError('dtype must be a structured datatype.') 

1711 

1712 content = file.read() 

1713 if isinstance(content, bytes) and isinstance(regexp, str): 

1714 regexp = asbytes(regexp) 

1715 elif isinstance(content, str) and isinstance(regexp, bytes): 

1716 regexp = asstr(regexp) 

1717 

1718 if not hasattr(regexp, 'match'): 

1719 regexp = re.compile(regexp) 

1720 seq = regexp.findall(content) 

1721 if seq and not isinstance(seq[0], tuple): 

1722 # Only one group is in the regexp. 

1723 # Create the new array as a single data-type and then 

1724 # re-interpret as a single-field structured array. 

1725 newdtype = np.dtype(dtype[dtype.names[0]]) 

1726 output = np.array(seq, dtype=newdtype) 

1727 output.dtype = dtype 

1728 else: 

1729 output = np.array(seq, dtype=dtype) 

1730 

1731 return output 

1732 finally: 

1733 if own_fh: 

1734 file.close() 

1735 

1736 

1737#####-------------------------------------------------------------------------- 

1738#---- --- ASCII functions --- 

1739#####-------------------------------------------------------------------------- 

1740 

1741 

1742@set_array_function_like_doc 

1743@set_module('numpy') 

1744def genfromtxt(fname, dtype=float, comments='#', delimiter=None, 

1745 skip_header=0, skip_footer=0, converters=None, 

1746 missing_values=None, filling_values=None, usecols=None, 

1747 names=None, excludelist=None, 

1748 deletechars=''.join(sorted(NameValidator.defaultdeletechars)), 

1749 replace_space='_', autostrip=False, case_sensitive=True, 

1750 defaultfmt="f%i", unpack=None, usemask=False, loose=True, 

1751 invalid_raise=True, max_rows=None, encoding='bytes', 

1752 *, ndmin=0, like=None): 

1753 """ 

1754 Load data from a text file, with missing values handled as specified. 

1755 

1756 Each line past the first `skip_header` lines is split at the `delimiter` 

1757 character, and characters following the `comments` character are discarded. 

1758 

1759 Parameters 

1760 ---------- 

1761 fname : file, str, pathlib.Path, list of str, generator 

1762 File, filename, list, or generator to read. If the filename 

1763 extension is ``.gz`` or ``.bz2``, the file is first decompressed. Note 

1764 that generators must return bytes or strings. The strings 

1765 in a list or produced by a generator are treated as lines. 

1766 dtype : dtype, optional 

1767 Data type of the resulting array. 

1768 If None, the dtypes will be determined by the contents of each 

1769 column, individually. 

1770 comments : str, optional 

1771 The character used to indicate the start of a comment. 

1772 All the characters occurring on a line after a comment are discarded. 

1773 delimiter : str, int, or sequence, optional 

1774 The string used to separate values. By default, any consecutive 

1775 whitespaces act as delimiter. An integer or sequence of integers 

1776 can also be provided as width(s) of each field. 

1777 skiprows : int, optional 

1778 `skiprows` was removed in numpy 1.10. Please use `skip_header` instead. 

1779 skip_header : int, optional 

1780 The number of lines to skip at the beginning of the file. 

1781 skip_footer : int, optional 

1782 The number of lines to skip at the end of the file. 

1783 converters : variable, optional 

1784 The set of functions that convert the data of a column to a value. 

1785 The converters can also be used to provide a default value 

1786 for missing data: ``converters = {3: lambda s: float(s or 0)}``. 

1787 missing : variable, optional 

1788 `missing` was removed in numpy 1.10. Please use `missing_values` 

1789 instead. 

1790 missing_values : variable, optional 

1791 The set of strings corresponding to missing data. 

1792 filling_values : variable, optional 

1793 The set of values to be used as default when the data are missing. 

1794 usecols : sequence, optional 

1795 Which columns to read, with 0 being the first. For example, 

1796 ``usecols = (1, 4, 5)`` will extract the 2nd, 5th and 6th columns. 

1797 names : {None, True, str, sequence}, optional 

1798 If `names` is True, the field names are read from the first line after 

1799 the first `skip_header` lines. This line can optionally be preceded 

1800 by a comment delimiter. If `names` is a sequence or a single-string of 

1801 comma-separated names, the names will be used to define the field names 

1802 in a structured dtype. If `names` is None, the names of the dtype 

1803 fields will be used, if any. 

1804 excludelist : sequence, optional 

1805 A list of names to exclude. This list is appended to the default list 

1806 ['return','file','print']. Excluded names are appended with an 

1807 underscore: for example, `file` would become `file_`. 

1808 deletechars : str, optional 

1809 A string combining invalid characters that must be deleted from the 

1810 names. 

1811 defaultfmt : str, optional 

1812 A format used to define default field names, such as "f%i" or "f_%02i". 

1813 autostrip : bool, optional 

1814 Whether to automatically strip white spaces from the variables. 

1815 replace_space : char, optional 

1816 Character(s) used in replacement of white spaces in the variable 

1817 names. By default, use a '_'. 

1818 case_sensitive : {True, False, 'upper', 'lower'}, optional 

1819 If True, field names are case sensitive. 

1820 If False or 'upper', field names are converted to upper case. 

1821 If 'lower', field names are converted to lower case. 

1822 unpack : bool, optional 

1823 If True, the returned array is transposed, so that arguments may be 

1824 unpacked using ``x, y, z = genfromtxt(...)``. When used with a 

1825 structured data-type, arrays are returned for each field. 

1826 Default is False. 

1827 usemask : bool, optional 

1828 If True, return a masked array. 

1829 If False, return a regular array. 

1830 loose : bool, optional 

1831 If True, do not raise errors for invalid values. 

1832 invalid_raise : bool, optional 

1833 If True, an exception is raised if an inconsistency is detected in the 

1834 number of columns. 

1835 If False, a warning is emitted and the offending lines are skipped. 

1836 max_rows : int, optional 

1837 The maximum number of rows to read. Must not be used with skip_footer 

1838 at the same time. If given, the value must be at least 1. Default is 

1839 to read the entire file. 

1840 

1841 .. versionadded:: 1.10.0 

1842 encoding : str, optional 

1843 Encoding used to decode the inputfile. Does not apply when `fname` is 

1844 a file object. The special value 'bytes' enables backward compatibility 

1845 workarounds that ensure that you receive byte arrays when possible 

1846 and passes latin1 encoded strings to converters. Override this value to 

1847 receive unicode arrays and pass strings as input to converters. If set 

1848 to None the system default is used. The default value is 'bytes'. 

1849 

1850 .. versionadded:: 1.14.0 

1851 ndmin : int, optional 

1852 Same parameter as `loadtxt` 

1853 

1854 .. versionadded:: 1.23.0 

1855 ${ARRAY_FUNCTION_LIKE} 

1856 

1857 .. versionadded:: 1.20.0 

1858 

1859 Returns 

1860 ------- 

1861 out : ndarray 

1862 Data read from the text file. If `usemask` is True, this is a 

1863 masked array. 

1864 

1865 See Also 

1866 -------- 

1867 numpy.loadtxt : equivalent function when no data is missing. 

1868 

1869 Notes 

1870 ----- 

1871 * When spaces are used as delimiters, or when no delimiter has been given 

1872 as input, there should not be any missing data between two fields. 

1873 * When the variables are named (either by a flexible dtype or with `names`), 

1874 there must not be any header in the file (else a ValueError 

1875 exception is raised). 

1876 * Individual values are not stripped of spaces by default. 

1877 When using a custom converter, make sure the function does remove spaces. 

1878 

1879 References 

1880 ---------- 

1881 .. [1] NumPy User Guide, section `I/O with NumPy 

1882 <https://docs.scipy.org/doc/numpy/user/basics.io.genfromtxt.html>`_. 

1883 

1884 Examples 

1885 -------- 

1886 >>> from io import StringIO 

1887 >>> import numpy as np 

1888 

1889 Comma delimited file with mixed dtype 

1890 

1891 >>> s = StringIO(u"1,1.3,abcde") 

1892 >>> data = np.genfromtxt(s, dtype=[('myint','i8'),('myfloat','f8'), 

1893 ... ('mystring','S5')], delimiter=",") 

1894 >>> data 

1895 array((1, 1.3, b'abcde'), 

1896 dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', 'S5')]) 

1897 

1898 Using dtype = None 

1899 

1900 >>> _ = s.seek(0) # needed for StringIO example only 

1901 >>> data = np.genfromtxt(s, dtype=None, 

1902 ... names = ['myint','myfloat','mystring'], delimiter=",") 

1903 >>> data 

1904 array((1, 1.3, b'abcde'), 

1905 dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', 'S5')]) 

1906 

1907 Specifying dtype and names 

1908 

1909 >>> _ = s.seek(0) 

1910 >>> data = np.genfromtxt(s, dtype="i8,f8,S5", 

1911 ... names=['myint','myfloat','mystring'], delimiter=",") 

1912 >>> data 

1913 array((1, 1.3, b'abcde'), 

1914 dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', 'S5')]) 

1915 

1916 An example with fixed-width columns 

1917 

1918 >>> s = StringIO(u"11.3abcde") 

1919 >>> data = np.genfromtxt(s, dtype=None, names=['intvar','fltvar','strvar'], 

1920 ... delimiter=[1,3,5]) 

1921 >>> data 

1922 array((1, 1.3, b'abcde'), 

1923 dtype=[('intvar', '<i8'), ('fltvar', '<f8'), ('strvar', 'S5')]) 

1924 

1925 An example to show comments 

1926 

1927 >>> f = StringIO(''' 

1928 ... text,# of chars 

1929 ... hello world,11 

1930 ... numpy,5''') 

1931 >>> np.genfromtxt(f, dtype='S12,S12', delimiter=',') 

1932 array([(b'text', b''), (b'hello world', b'11'), (b'numpy', b'5')], 

1933 dtype=[('f0', 'S12'), ('f1', 'S12')]) 

1934 

1935 """ 

1936 

1937 if like is not None: 

1938 return _genfromtxt_with_like( 

1939 like, fname, dtype=dtype, comments=comments, delimiter=delimiter, 

1940 skip_header=skip_header, skip_footer=skip_footer, 

1941 converters=converters, missing_values=missing_values, 

1942 filling_values=filling_values, usecols=usecols, names=names, 

1943 excludelist=excludelist, deletechars=deletechars, 

1944 replace_space=replace_space, autostrip=autostrip, 

1945 case_sensitive=case_sensitive, defaultfmt=defaultfmt, 

1946 unpack=unpack, usemask=usemask, loose=loose, 

1947 invalid_raise=invalid_raise, max_rows=max_rows, encoding=encoding, 

1948 ndmin=ndmin, 

1949 ) 

1950 

1951 _ensure_ndmin_ndarray_check_param(ndmin) 

1952 

1953 if max_rows is not None: 

1954 if skip_footer: 

1955 raise ValueError( 

1956 "The keywords 'skip_footer' and 'max_rows' can not be " 

1957 "specified at the same time.") 

1958 if max_rows < 1: 

1959 raise ValueError("'max_rows' must be at least 1.") 

1960 

1961 if usemask: 

1962 from numpy.ma import MaskedArray, make_mask_descr 

1963 # Check the input dictionary of converters 

1964 user_converters = converters or {} 

1965 if not isinstance(user_converters, dict): 

1966 raise TypeError( 

1967 "The input argument 'converter' should be a valid dictionary " 

1968 "(got '%s' instead)" % type(user_converters)) 

1969 

1970 if encoding == 'bytes': 

1971 encoding = None 

1972 byte_converters = True 

1973 else: 

1974 byte_converters = False 

1975 

1976 # Initialize the filehandle, the LineSplitter and the NameValidator 

1977 if isinstance(fname, os_PathLike): 

1978 fname = os_fspath(fname) 

1979 if isinstance(fname, str): 

1980 fid = np.lib._datasource.open(fname, 'rt', encoding=encoding) 

1981 fid_ctx = contextlib.closing(fid) 

1982 else: 

1983 fid = fname 

1984 fid_ctx = contextlib.nullcontext(fid) 

1985 try: 

1986 fhd = iter(fid) 

1987 except TypeError as e: 

1988 raise TypeError( 

1989 "fname must be a string, a filehandle, a sequence of strings,\n" 

1990 f"or an iterator of strings. Got {type(fname)} instead." 

1991 ) from e 

1992 with fid_ctx: 

1993 split_line = LineSplitter(delimiter=delimiter, comments=comments, 

1994 autostrip=autostrip, encoding=encoding) 

1995 validate_names = NameValidator(excludelist=excludelist, 

1996 deletechars=deletechars, 

1997 case_sensitive=case_sensitive, 

1998 replace_space=replace_space) 

1999 

2000 # Skip the first `skip_header` rows 

2001 try: 

2002 for i in range(skip_header): 

2003 next(fhd) 

2004 

2005 # Keep on until we find the first valid values 

2006 first_values = None 

2007 

2008 while not first_values: 

2009 first_line = _decode_line(next(fhd), encoding) 

2010 if (names is True) and (comments is not None): 

2011 if comments in first_line: 

2012 first_line = ( 

2013 ''.join(first_line.split(comments)[1:])) 

2014 first_values = split_line(first_line) 

2015 except StopIteration: 

2016 # return an empty array if the datafile is empty 

2017 first_line = '' 

2018 first_values = [] 

2019 warnings.warn('genfromtxt: Empty input file: "%s"' % fname, stacklevel=2) 

2020 

2021 # Should we take the first values as names ? 

2022 if names is True: 

2023 fval = first_values[0].strip() 

2024 if comments is not None: 

2025 if fval in comments: 

2026 del first_values[0] 

2027 

2028 # Check the columns to use: make sure `usecols` is a list 

2029 if usecols is not None: 

2030 try: 

2031 usecols = [_.strip() for _ in usecols.split(",")] 

2032 except AttributeError: 

2033 try: 

2034 usecols = list(usecols) 

2035 except TypeError: 

2036 usecols = [usecols, ] 

2037 nbcols = len(usecols or first_values) 

2038 

2039 # Check the names and overwrite the dtype.names if needed 

2040 if names is True: 

2041 names = validate_names([str(_.strip()) for _ in first_values]) 

2042 first_line = '' 

2043 elif _is_string_like(names): 

2044 names = validate_names([_.strip() for _ in names.split(',')]) 

2045 elif names: 

2046 names = validate_names(names) 

2047 # Get the dtype 

2048 if dtype is not None: 

2049 dtype = easy_dtype(dtype, defaultfmt=defaultfmt, names=names, 

2050 excludelist=excludelist, 

2051 deletechars=deletechars, 

2052 case_sensitive=case_sensitive, 

2053 replace_space=replace_space) 

2054 # Make sure the names is a list (for 2.5) 

2055 if names is not None: 

2056 names = list(names) 

2057 

2058 if usecols: 

2059 for (i, current) in enumerate(usecols): 

2060 # if usecols is a list of names, convert to a list of indices 

2061 if _is_string_like(current): 

2062 usecols[i] = names.index(current) 

2063 elif current < 0: 

2064 usecols[i] = current + len(first_values) 

2065 # If the dtype is not None, make sure we update it 

2066 if (dtype is not None) and (len(dtype) > nbcols): 

2067 descr = dtype.descr 

2068 dtype = np.dtype([descr[_] for _ in usecols]) 

2069 names = list(dtype.names) 

2070 # If `names` is not None, update the names 

2071 elif (names is not None) and (len(names) > nbcols): 

2072 names = [names[_] for _ in usecols] 

2073 elif (names is not None) and (dtype is not None): 

2074 names = list(dtype.names) 

2075 

2076 # Process the missing values ............................... 

2077 # Rename missing_values for convenience 

2078 user_missing_values = missing_values or () 

2079 if isinstance(user_missing_values, bytes): 

2080 user_missing_values = user_missing_values.decode('latin1') 

2081 

2082 # Define the list of missing_values (one column: one list) 

2083 missing_values = [list(['']) for _ in range(nbcols)] 

2084 

2085 # We have a dictionary: process it field by field 

2086 if isinstance(user_missing_values, dict): 

2087 # Loop on the items 

2088 for (key, val) in user_missing_values.items(): 

2089 # Is the key a string ? 

2090 if _is_string_like(key): 

2091 try: 

2092 # Transform it into an integer 

2093 key = names.index(key) 

2094 except ValueError: 

2095 # We couldn't find it: the name must have been dropped 

2096 continue 

2097 # Redefine the key as needed if it's a column number 

2098 if usecols: 

2099 try: 

2100 key = usecols.index(key) 

2101 except ValueError: 

2102 pass 

2103 # Transform the value as a list of string 

2104 if isinstance(val, (list, tuple)): 

2105 val = [str(_) for _ in val] 

2106 else: 

2107 val = [str(val), ] 

2108 # Add the value(s) to the current list of missing 

2109 if key is None: 

2110 # None acts as default 

2111 for miss in missing_values: 

2112 miss.extend(val) 

2113 else: 

2114 missing_values[key].extend(val) 

2115 # We have a sequence : each item matches a column 

2116 elif isinstance(user_missing_values, (list, tuple)): 

2117 for (value, entry) in zip(user_missing_values, missing_values): 

2118 value = str(value) 

2119 if value not in entry: 

2120 entry.append(value) 

2121 # We have a string : apply it to all entries 

2122 elif isinstance(user_missing_values, str): 

2123 user_value = user_missing_values.split(",") 

2124 for entry in missing_values: 

2125 entry.extend(user_value) 

2126 # We have something else: apply it to all entries 

2127 else: 

2128 for entry in missing_values: 

2129 entry.extend([str(user_missing_values)]) 

2130 

2131 # Process the filling_values ............................... 

2132 # Rename the input for convenience 

2133 user_filling_values = filling_values 

2134 if user_filling_values is None: 

2135 user_filling_values = [] 

2136 # Define the default 

2137 filling_values = [None] * nbcols 

2138 # We have a dictionary : update each entry individually 

2139 if isinstance(user_filling_values, dict): 

2140 for (key, val) in user_filling_values.items(): 

2141 if _is_string_like(key): 

2142 try: 

2143 # Transform it into an integer 

2144 key = names.index(key) 

2145 except ValueError: 

2146 # We couldn't find it: the name must have been dropped, 

2147 continue 

2148 # Redefine the key if it's a column number and usecols is defined 

2149 if usecols: 

2150 try: 

2151 key = usecols.index(key) 

2152 except ValueError: 

2153 pass 

2154 # Add the value to the list 

2155 filling_values[key] = val 

2156 # We have a sequence : update on a one-to-one basis 

2157 elif isinstance(user_filling_values, (list, tuple)): 

2158 n = len(user_filling_values) 

2159 if (n <= nbcols): 

2160 filling_values[:n] = user_filling_values 

2161 else: 

2162 filling_values = user_filling_values[:nbcols] 

2163 # We have something else : use it for all entries 

2164 else: 

2165 filling_values = [user_filling_values] * nbcols 

2166 

2167 # Initialize the converters ................................ 

2168 if dtype is None: 

2169 # Note: we can't use a [...]*nbcols, as we would have 3 times the same 

2170 # ... converter, instead of 3 different converters. 

2171 converters = [StringConverter(None, missing_values=miss, default=fill) 

2172 for (miss, fill) in zip(missing_values, filling_values)] 

2173 else: 

2174 dtype_flat = flatten_dtype(dtype, flatten_base=True) 

2175 # Initialize the converters 

2176 if len(dtype_flat) > 1: 

2177 # Flexible type : get a converter from each dtype 

2178 zipit = zip(dtype_flat, missing_values, filling_values) 

2179 converters = [StringConverter(dt, locked=True, 

2180 missing_values=miss, default=fill) 

2181 for (dt, miss, fill) in zipit] 

2182 else: 

2183 # Set to a default converter (but w/ different missing values) 

2184 zipit = zip(missing_values, filling_values) 

2185 converters = [StringConverter(dtype, locked=True, 

2186 missing_values=miss, default=fill) 

2187 for (miss, fill) in zipit] 

2188 # Update the converters to use the user-defined ones 

2189 uc_update = [] 

2190 for (j, conv) in user_converters.items(): 

2191 # If the converter is specified by column names, use the index instead 

2192 if _is_string_like(j): 

2193 try: 

2194 j = names.index(j) 

2195 i = j 

2196 except ValueError: 

2197 continue 

2198 elif usecols: 

2199 try: 

2200 i = usecols.index(j) 

2201 except ValueError: 

2202 # Unused converter specified 

2203 continue 

2204 else: 

2205 i = j 

2206 # Find the value to test - first_line is not filtered by usecols: 

2207 if len(first_line): 

2208 testing_value = first_values[j] 

2209 else: 

2210 testing_value = None 

2211 if conv is bytes: 

2212 user_conv = asbytes 

2213 elif byte_converters: 

2214 # converters may use decode to workaround numpy's old behaviour, 

2215 # so encode the string again before passing to the user converter 

2216 def tobytes_first(x, conv): 

2217 if type(x) is bytes: 

2218 return conv(x) 

2219 return conv(x.encode("latin1")) 

2220 user_conv = functools.partial(tobytes_first, conv=conv) 

2221 else: 

2222 user_conv = conv 

2223 converters[i].update(user_conv, locked=True, 

2224 testing_value=testing_value, 

2225 default=filling_values[i], 

2226 missing_values=missing_values[i],) 

2227 uc_update.append((i, user_conv)) 

2228 # Make sure we have the corrected keys in user_converters... 

2229 user_converters.update(uc_update) 

2230 

2231 # Fixme: possible error as following variable never used. 

2232 # miss_chars = [_.missing_values for _ in converters] 

2233 

2234 # Initialize the output lists ... 

2235 # ... rows 

2236 rows = [] 

2237 append_to_rows = rows.append 

2238 # ... masks 

2239 if usemask: 

2240 masks = [] 

2241 append_to_masks = masks.append 

2242 # ... invalid 

2243 invalid = [] 

2244 append_to_invalid = invalid.append 

2245 

2246 # Parse each line 

2247 for (i, line) in enumerate(itertools.chain([first_line, ], fhd)): 

2248 values = split_line(line) 

2249 nbvalues = len(values) 

2250 # Skip an empty line 

2251 if nbvalues == 0: 

2252 continue 

2253 if usecols: 

2254 # Select only the columns we need 

2255 try: 

2256 values = [values[_] for _ in usecols] 

2257 except IndexError: 

2258 append_to_invalid((i + skip_header + 1, nbvalues)) 

2259 continue 

2260 elif nbvalues != nbcols: 

2261 append_to_invalid((i + skip_header + 1, nbvalues)) 

2262 continue 

2263 # Store the values 

2264 append_to_rows(tuple(values)) 

2265 if usemask: 

2266 append_to_masks(tuple([v.strip() in m 

2267 for (v, m) in zip(values, 

2268 missing_values)])) 

2269 if len(rows) == max_rows: 

2270 break 

2271 

2272 # Upgrade the converters (if needed) 

2273 if dtype is None: 

2274 for (i, converter) in enumerate(converters): 

2275 current_column = [itemgetter(i)(_m) for _m in rows] 

2276 try: 

2277 converter.iterupgrade(current_column) 

2278 except ConverterLockError: 

2279 errmsg = "Converter #%i is locked and cannot be upgraded: " % i 

2280 current_column = map(itemgetter(i), rows) 

2281 for (j, value) in enumerate(current_column): 

2282 try: 

2283 converter.upgrade(value) 

2284 except (ConverterError, ValueError): 

2285 errmsg += "(occurred line #%i for value '%s')" 

2286 errmsg %= (j + 1 + skip_header, value) 

2287 raise ConverterError(errmsg) 

2288 

2289 # Check that we don't have invalid values 

2290 nbinvalid = len(invalid) 

2291 if nbinvalid > 0: 

2292 nbrows = len(rows) + nbinvalid - skip_footer 

2293 # Construct the error message 

2294 template = " Line #%%i (got %%i columns instead of %i)" % nbcols 

2295 if skip_footer > 0: 

2296 nbinvalid_skipped = len([_ for _ in invalid 

2297 if _[0] > nbrows + skip_header]) 

2298 invalid = invalid[:nbinvalid - nbinvalid_skipped] 

2299 skip_footer -= nbinvalid_skipped 

2300# 

2301# nbrows -= skip_footer 

2302# errmsg = [template % (i, nb) 

2303# for (i, nb) in invalid if i < nbrows] 

2304# else: 

2305 errmsg = [template % (i, nb) 

2306 for (i, nb) in invalid] 

2307 if len(errmsg): 

2308 errmsg.insert(0, "Some errors were detected !") 

2309 errmsg = "\n".join(errmsg) 

2310 # Raise an exception ? 

2311 if invalid_raise: 

2312 raise ValueError(errmsg) 

2313 # Issue a warning ? 

2314 else: 

2315 warnings.warn(errmsg, ConversionWarning, stacklevel=2) 

2316 

2317 # Strip the last skip_footer data 

2318 if skip_footer > 0: 

2319 rows = rows[:-skip_footer] 

2320 if usemask: 

2321 masks = masks[:-skip_footer] 

2322 

2323 # Convert each value according to the converter: 

2324 # We want to modify the list in place to avoid creating a new one... 

2325 if loose: 

2326 rows = list( 

2327 zip(*[[conv._loose_call(_r) for _r in map(itemgetter(i), rows)] 

2328 for (i, conv) in enumerate(converters)])) 

2329 else: 

2330 rows = list( 

2331 zip(*[[conv._strict_call(_r) for _r in map(itemgetter(i), rows)] 

2332 for (i, conv) in enumerate(converters)])) 

2333 

2334 # Reset the dtype 

2335 data = rows 

2336 if dtype is None: 

2337 # Get the dtypes from the types of the converters 

2338 column_types = [conv.type for conv in converters] 

2339 # Find the columns with strings... 

2340 strcolidx = [i for (i, v) in enumerate(column_types) 

2341 if v == np.str_] 

2342 

2343 if byte_converters and strcolidx: 

2344 # convert strings back to bytes for backward compatibility 

2345 warnings.warn( 

2346 "Reading unicode strings without specifying the encoding " 

2347 "argument is deprecated. Set the encoding, use None for the " 

2348 "system default.", 

2349 np.VisibleDeprecationWarning, stacklevel=2) 

2350 def encode_unicode_cols(row_tup): 

2351 row = list(row_tup) 

2352 for i in strcolidx: 

2353 row[i] = row[i].encode('latin1') 

2354 return tuple(row) 

2355 

2356 try: 

2357 data = [encode_unicode_cols(r) for r in data] 

2358 except UnicodeEncodeError: 

2359 pass 

2360 else: 

2361 for i in strcolidx: 

2362 column_types[i] = np.bytes_ 

2363 

2364 # Update string types to be the right length 

2365 sized_column_types = column_types[:] 

2366 for i, col_type in enumerate(column_types): 

2367 if np.issubdtype(col_type, np.character): 

2368 n_chars = max(len(row[i]) for row in data) 

2369 sized_column_types[i] = (col_type, n_chars) 

2370 

2371 if names is None: 

2372 # If the dtype is uniform (before sizing strings) 

2373 base = { 

2374 c_type 

2375 for c, c_type in zip(converters, column_types) 

2376 if c._checked} 

2377 if len(base) == 1: 

2378 uniform_type, = base 

2379 (ddtype, mdtype) = (uniform_type, bool) 

2380 else: 

2381 ddtype = [(defaultfmt % i, dt) 

2382 for (i, dt) in enumerate(sized_column_types)] 

2383 if usemask: 

2384 mdtype = [(defaultfmt % i, bool) 

2385 for (i, dt) in enumerate(sized_column_types)] 

2386 else: 

2387 ddtype = list(zip(names, sized_column_types)) 

2388 mdtype = list(zip(names, [bool] * len(sized_column_types))) 

2389 output = np.array(data, dtype=ddtype) 

2390 if usemask: 

2391 outputmask = np.array(masks, dtype=mdtype) 

2392 else: 

2393 # Overwrite the initial dtype names if needed 

2394 if names and dtype.names is not None: 

2395 dtype.names = names 

2396 # Case 1. We have a structured type 

2397 if len(dtype_flat) > 1: 

2398 # Nested dtype, eg [('a', int), ('b', [('b0', int), ('b1', 'f4')])] 

2399 # First, create the array using a flattened dtype: 

2400 # [('a', int), ('b1', int), ('b2', float)] 

2401 # Then, view the array using the specified dtype. 

2402 if 'O' in (_.char for _ in dtype_flat): 

2403 if has_nested_fields(dtype): 

2404 raise NotImplementedError( 

2405 "Nested fields involving objects are not supported...") 

2406 else: 

2407 output = np.array(data, dtype=dtype) 

2408 else: 

2409 rows = np.array(data, dtype=[('', _) for _ in dtype_flat]) 

2410 output = rows.view(dtype) 

2411 # Now, process the rowmasks the same way 

2412 if usemask: 

2413 rowmasks = np.array( 

2414 masks, dtype=np.dtype([('', bool) for t in dtype_flat])) 

2415 # Construct the new dtype 

2416 mdtype = make_mask_descr(dtype) 

2417 outputmask = rowmasks.view(mdtype) 

2418 # Case #2. We have a basic dtype 

2419 else: 

2420 # We used some user-defined converters 

2421 if user_converters: 

2422 ishomogeneous = True 

2423 descr = [] 

2424 for i, ttype in enumerate([conv.type for conv in converters]): 

2425 # Keep the dtype of the current converter 

2426 if i in user_converters: 

2427 ishomogeneous &= (ttype == dtype.type) 

2428 if np.issubdtype(ttype, np.character): 

2429 ttype = (ttype, max(len(row[i]) for row in data)) 

2430 descr.append(('', ttype)) 

2431 else: 

2432 descr.append(('', dtype)) 

2433 # So we changed the dtype ? 

2434 if not ishomogeneous: 

2435 # We have more than one field 

2436 if len(descr) > 1: 

2437 dtype = np.dtype(descr) 

2438 # We have only one field: drop the name if not needed. 

2439 else: 

2440 dtype = np.dtype(ttype) 

2441 # 

2442 output = np.array(data, dtype) 

2443 if usemask: 

2444 if dtype.names is not None: 

2445 mdtype = [(_, bool) for _ in dtype.names] 

2446 else: 

2447 mdtype = bool 

2448 outputmask = np.array(masks, dtype=mdtype) 

2449 # Try to take care of the missing data we missed 

2450 names = output.dtype.names 

2451 if usemask and names: 

2452 for (name, conv) in zip(names, converters): 

2453 missing_values = [conv(_) for _ in conv.missing_values 

2454 if _ != ''] 

2455 for mval in missing_values: 

2456 outputmask[name] |= (output[name] == mval) 

2457 # Construct the final array 

2458 if usemask: 

2459 output = output.view(MaskedArray) 

2460 output._mask = outputmask 

2461 

2462 output = _ensure_ndmin_ndarray(output, ndmin=ndmin) 

2463 

2464 if unpack: 

2465 if names is None: 

2466 return output.T 

2467 elif len(names) == 1: 

2468 # squeeze single-name dtypes too 

2469 return output[names[0]] 

2470 else: 

2471 # For structured arrays with multiple fields, 

2472 # return an array for each field. 

2473 return [output[field] for field in names] 

2474 return output 

2475 

2476 

2477_genfromtxt_with_like = array_function_dispatch()(genfromtxt) 

2478 

2479 

2480def recfromtxt(fname, **kwargs): 

2481 """ 

2482 Load ASCII data from a file and return it in a record array. 

2483 

2484 If ``usemask=False`` a standard `recarray` is returned, 

2485 if ``usemask=True`` a MaskedRecords array is returned. 

2486 

2487 Parameters 

2488 ---------- 

2489 fname, kwargs : For a description of input parameters, see `genfromtxt`. 

2490 

2491 See Also 

2492 -------- 

2493 numpy.genfromtxt : generic function 

2494 

2495 Notes 

2496 ----- 

2497 By default, `dtype` is None, which means that the data-type of the output 

2498 array will be determined from the data. 

2499 

2500 """ 

2501 kwargs.setdefault("dtype", None) 

2502 usemask = kwargs.get('usemask', False) 

2503 output = genfromtxt(fname, **kwargs) 

2504 if usemask: 

2505 from numpy.ma.mrecords import MaskedRecords 

2506 output = output.view(MaskedRecords) 

2507 else: 

2508 output = output.view(np.recarray) 

2509 return output 

2510 

2511 

2512def recfromcsv(fname, **kwargs): 

2513 """ 

2514 Load ASCII data stored in a comma-separated file. 

2515 

2516 The returned array is a record array (if ``usemask=False``, see 

2517 `recarray`) or a masked record array (if ``usemask=True``, 

2518 see `ma.mrecords.MaskedRecords`). 

2519 

2520 Parameters 

2521 ---------- 

2522 fname, kwargs : For a description of input parameters, see `genfromtxt`. 

2523 

2524 See Also 

2525 -------- 

2526 numpy.genfromtxt : generic function to load ASCII data. 

2527 

2528 Notes 

2529 ----- 

2530 By default, `dtype` is None, which means that the data-type of the output 

2531 array will be determined from the data. 

2532 

2533 """ 

2534 # Set default kwargs for genfromtxt as relevant to csv import. 

2535 kwargs.setdefault("case_sensitive", "lower") 

2536 kwargs.setdefault("names", True) 

2537 kwargs.setdefault("delimiter", ",") 

2538 kwargs.setdefault("dtype", None) 

2539 output = genfromtxt(fname, **kwargs) 

2540 

2541 usemask = kwargs.get("usemask", False) 

2542 if usemask: 

2543 from numpy.ma.mrecords import MaskedRecords 

2544 output = output.view(MaskedRecords) 

2545 else: 

2546 output = output.view(np.recarray) 

2547 return output