/src/PcapPlusPlus/Packet++/src/WireGuardLayer.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | #define LOG_MODULE PacketLogModuleWireGuardLayer |
2 | | |
3 | | #include "UdpLayer.h" |
4 | | #include "WireGuardLayer.h" |
5 | | #include "EndianPortable.h" |
6 | | #include <iomanip> |
7 | | |
8 | | namespace pcpp |
9 | | { |
10 | | WireGuardLayer* WireGuardLayer::parseWireGuardLayer(uint8_t* data, size_t dataLen, Layer* prevLayer, Packet* packet) |
11 | 430 | { |
12 | 430 | if (dataLen < sizeof(WireGuardLayer::wg_common_header)) |
13 | 0 | return nullptr; |
14 | 430 | wg_common_header* wgHeader = reinterpret_cast<wg_common_header*>(data); |
15 | | |
16 | 430 | switch (wgHeader->messageType) |
17 | 430 | { |
18 | 75 | case static_cast<uint8_t>(WireGuardMessageType::HandshakeInitiation): |
19 | 75 | return new WireGuardHandshakeInitiationLayer(data, dataLen, prevLayer, packet); |
20 | 55 | case static_cast<uint8_t>(WireGuardMessageType::HandshakeResponse): |
21 | 55 | return new WireGuardHandshakeResponseLayer(data, dataLen, prevLayer, packet); |
22 | 5 | case static_cast<uint8_t>(WireGuardMessageType::CookieReply): |
23 | 5 | return new WireGuardCookieReplyLayer(data, dataLen, prevLayer, packet); |
24 | 295 | case static_cast<uint8_t>(WireGuardMessageType::TransportData): |
25 | 295 | return new WireGuardTransportDataLayer(data, dataLen, prevLayer, packet); |
26 | 0 | default: |
27 | 0 | return nullptr; |
28 | 430 | } |
29 | 430 | } |
30 | | |
31 | | std::string WireGuardLayer::getMessageTypeAsString() const |
32 | 172 | { |
33 | 172 | uint32_t messageType = getMessageType(); |
34 | 172 | switch (messageType) |
35 | 172 | { |
36 | 30 | case static_cast<uint8_t>(WireGuardMessageType::HandshakeInitiation): |
37 | 30 | return "Handshake Initiation"; |
38 | 22 | case static_cast<uint8_t>(WireGuardMessageType::HandshakeResponse): |
39 | 22 | return "Handshake Response"; |
40 | 2 | case static_cast<uint8_t>(WireGuardMessageType::CookieReply): |
41 | 2 | return "Cookie Reply"; |
42 | 118 | case static_cast<uint8_t>(WireGuardMessageType::TransportData): |
43 | 118 | return "Transport Data"; |
44 | 0 | default: |
45 | 0 | return "Unknown"; |
46 | 172 | } |
47 | 172 | } |
48 | | |
49 | | std::string WireGuardLayer::toString() const |
50 | 172 | { |
51 | 172 | return "WireGuard Layer, " + getMessageTypeAsString() + " message"; |
52 | 172 | } |
53 | | |
54 | | size_t WireGuardLayer::getHeaderLen() const |
55 | 86 | { |
56 | 86 | return m_DataLen; |
57 | 86 | } |
58 | | |
59 | | uint8_t WireGuardLayer::getMessageType() const |
60 | 172 | { |
61 | 172 | return getBasicHeader()->messageType; |
62 | 172 | } |
63 | | |
64 | | uint32_t WireGuardLayer::getReserved() const |
65 | 0 | { |
66 | 0 | uint32_t reservedValue = 0; |
67 | 0 | memcpy(&reservedValue, getBasicHeader()->reserved, 3); |
68 | 0 | return be32toh(reservedValue); |
69 | 0 | } |
70 | | |
71 | | void WireGuardLayer::setReserved(const std::array<uint8_t, 3>& reserved) |
72 | 0 | { |
73 | 0 | wg_common_header* msg = reinterpret_cast<wg_common_header*>(m_Data); |
74 | 0 | memcpy(msg->reserved, reserved.data(), 3); |
75 | 0 | } |
76 | | |
77 | | bool WireGuardLayer::isDataValid(const uint8_t* data, size_t dataLen) |
78 | 445 | { |
79 | 445 | if (dataLen < sizeof(WireGuardLayer::wg_common_header)) |
80 | 0 | return false; |
81 | | |
82 | 445 | uint8_t messageType = data[0]; |
83 | 445 | return messageType >= static_cast<uint8_t>(WireGuardLayer::WireGuardMessageType::HandshakeInitiation) && |
84 | 445 | messageType <= static_cast<uint8_t>(WireGuardLayer::WireGuardMessageType::TransportData); |
85 | 445 | } |
86 | | |
87 | | // ~~~~~~~~~~~~~~~~~~~~ |
88 | | // WireGuardHandshakeInitiationLayer |
89 | | // ~~~~~~~~~~~~~~~~~~~~ |
90 | | |
91 | | WireGuardHandshakeInitiationLayer::WireGuardHandshakeInitiationLayer(uint32_t senderIndex, |
92 | | const uint8_t initiatorEphemeral[32], |
93 | | const uint8_t encryptedInitiatorStatic[48], |
94 | | const uint8_t encryptedTimestamp[28], |
95 | | const uint8_t mac1[16], const uint8_t mac2[16]) |
96 | 0 | { |
97 | 0 | const size_t messageLen = sizeof(wg_handshake_initiation); |
98 | 0 | m_DataLen = messageLen; |
99 | 0 | m_Data = new uint8_t[messageLen]; |
100 | 0 | memset(m_Data, 0, messageLen); |
101 | |
|
102 | 0 | wg_handshake_initiation* msg = reinterpret_cast<wg_handshake_initiation*>(m_Data); |
103 | |
|
104 | 0 | msg->messageType = static_cast<uint8_t>(WireGuardMessageType::HandshakeInitiation); |
105 | 0 | memset(msg->reserved, 0, 3); |
106 | 0 | msg->senderIndex = htobe32(senderIndex); |
107 | |
|
108 | 0 | memcpy(msg->initiatorEphemeral, initiatorEphemeral, 32); |
109 | 0 | memcpy(msg->encryptedInitiatorStatic, encryptedInitiatorStatic, 48); |
110 | 0 | memcpy(msg->encryptedTimestamp, encryptedTimestamp, 28); |
111 | 0 | memcpy(msg->mac1, mac1, 16); |
112 | 0 | memcpy(msg->mac2, mac2, 16); |
113 | |
|
114 | 0 | m_Protocol = WireGuard; |
115 | 0 | } |
116 | | |
117 | | uint32_t WireGuardHandshakeInitiationLayer::getSenderIndex() const |
118 | 0 | { |
119 | 0 | return be32toh(getHandshakeInitiationHeader()->senderIndex); |
120 | 0 | } |
121 | | |
122 | | std::array<uint8_t, 32> WireGuardHandshakeInitiationLayer::getInitiatorEphemeral() const |
123 | 0 | { |
124 | 0 | std::array<uint8_t, 32> ephemeralArray; |
125 | 0 | memcpy(ephemeralArray.data(), getHandshakeInitiationHeader()->initiatorEphemeral, 32); |
126 | 0 | return ephemeralArray; |
127 | 0 | } |
128 | | |
129 | | std::array<uint8_t, 48> WireGuardHandshakeInitiationLayer::getEncryptedInitiatorStatic() const |
130 | 0 | { |
131 | 0 | std::array<uint8_t, 48> initArray; |
132 | 0 | memcpy(initArray.data(), getHandshakeInitiationHeader()->encryptedInitiatorStatic, 48); |
133 | 0 | return initArray; |
134 | 0 | } |
135 | | |
136 | | std::array<uint8_t, 28> WireGuardHandshakeInitiationLayer::getEncryptedTimestamp() const |
137 | 0 | { |
138 | 0 | std::array<uint8_t, 28> tsArray; |
139 | 0 | memcpy(tsArray.data(), getHandshakeInitiationHeader()->encryptedTimestamp, 28); |
140 | 0 | return tsArray; |
141 | 0 | } |
142 | | |
143 | | std::array<uint8_t, 16> WireGuardHandshakeInitiationLayer::getMac1() const |
144 | 0 | { |
145 | 0 | std::array<uint8_t, 16> mac1Array; |
146 | 0 | memcpy(mac1Array.data(), getHandshakeInitiationHeader()->mac1, 16); |
147 | 0 | return mac1Array; |
148 | 0 | } |
149 | | |
150 | | std::array<uint8_t, 16> WireGuardHandshakeInitiationLayer::getMac2() const |
151 | 0 | { |
152 | 0 | std::array<uint8_t, 16> mac2Array; |
153 | 0 | memcpy(mac2Array.data(), getHandshakeInitiationHeader()->mac2, 16); |
154 | 0 | return mac2Array; |
155 | 0 | } |
156 | | |
157 | | void WireGuardHandshakeInitiationLayer::setSenderIndex(uint32_t senderIndex) |
158 | 0 | { |
159 | 0 | wg_handshake_initiation* msg = reinterpret_cast<wg_handshake_initiation*>(m_Data); |
160 | 0 | msg->senderIndex = htobe32(senderIndex); |
161 | 0 | } |
162 | | |
163 | | void WireGuardHandshakeInitiationLayer::setInitiatorEphemeral(const std::array<uint8_t, 32>& initiatorEphemeral) |
164 | 0 | { |
165 | 0 | wg_handshake_initiation* msg = reinterpret_cast<wg_handshake_initiation*>(m_Data); |
166 | 0 | memcpy(msg->initiatorEphemeral, initiatorEphemeral.data(), 32); |
167 | 0 | } |
168 | | |
169 | | void WireGuardHandshakeInitiationLayer::setEncryptedInitiatorStatic( |
170 | | const std::array<uint8_t, 48>& encryptedInitiatorStatic) |
171 | 0 | { |
172 | 0 | wg_handshake_initiation* msg = reinterpret_cast<wg_handshake_initiation*>(m_Data); |
173 | 0 | memcpy(msg->encryptedInitiatorStatic, encryptedInitiatorStatic.data(), 48); |
174 | 0 | } |
175 | | |
176 | | void WireGuardHandshakeInitiationLayer::setEncryptedTimestamp(const std::array<uint8_t, 28>& encryptedTimestamp) |
177 | 0 | { |
178 | 0 | wg_handshake_initiation* msg = reinterpret_cast<wg_handshake_initiation*>(m_Data); |
179 | 0 | memcpy(msg->encryptedTimestamp, encryptedTimestamp.data(), 28); |
180 | 0 | } |
181 | | |
182 | | void WireGuardHandshakeInitiationLayer::setMac1(const std::array<uint8_t, 16>& mac1) |
183 | 0 | { |
184 | 0 | wg_handshake_initiation* msg = reinterpret_cast<wg_handshake_initiation*>(m_Data); |
185 | 0 | memcpy(msg->mac1, mac1.data(), 16); |
186 | 0 | } |
187 | | |
188 | | void WireGuardHandshakeInitiationLayer::setMac2(const std::array<uint8_t, 16>& mac2) |
189 | 0 | { |
190 | 0 | wg_handshake_initiation* msg = reinterpret_cast<wg_handshake_initiation*>(m_Data); |
191 | 0 | memcpy(msg->mac2, mac2.data(), 16); |
192 | 0 | } |
193 | | |
194 | | // ~~~~~~~~~~~~~~~~~~~~ |
195 | | // WireGuardHandshakeResponseLayer |
196 | | // ~~~~~~~~~~~~~~~~~~~~ |
197 | | |
198 | | WireGuardHandshakeResponseLayer::WireGuardHandshakeResponseLayer(uint32_t senderIndex, uint32_t receiverIndex, |
199 | | const uint8_t responderEphemeral[32], |
200 | | const uint8_t encryptedEmpty[16], |
201 | | const uint8_t mac1[16], const uint8_t mac2[16]) |
202 | 0 | { |
203 | 0 | const size_t messageLen = sizeof(wg_handshake_response); |
204 | 0 | m_DataLen = messageLen; |
205 | 0 | m_Data = new uint8_t[messageLen]; |
206 | 0 | wg_handshake_response* msg = reinterpret_cast<wg_handshake_response*>(m_Data); |
207 | |
|
208 | 0 | msg->messageType = static_cast<uint8_t>(WireGuardMessageType::HandshakeResponse); |
209 | 0 | memset(msg->reserved, 0, 3); |
210 | 0 | msg->senderIndex = htobe32(senderIndex); |
211 | 0 | msg->receiverIndex = htobe32(receiverIndex); |
212 | 0 | memcpy(msg->responderEphemeral, responderEphemeral, 32); |
213 | 0 | memcpy(msg->encryptedEmpty, encryptedEmpty, 16); |
214 | 0 | memcpy(msg->mac1, mac1, 16); |
215 | 0 | memcpy(msg->mac2, mac2, 16); |
216 | |
|
217 | 0 | m_Protocol = WireGuard; |
218 | 0 | } |
219 | | |
220 | | uint32_t WireGuardHandshakeResponseLayer::getSenderIndex() const |
221 | 0 | { |
222 | 0 | return be32toh(getHandshakeResponseHeader()->senderIndex); |
223 | 0 | } |
224 | | |
225 | | uint32_t WireGuardHandshakeResponseLayer::getReceiverIndex() const |
226 | 0 | { |
227 | 0 | return be32toh(getHandshakeResponseHeader()->receiverIndex); |
228 | 0 | } |
229 | | |
230 | | std::array<uint8_t, 32> WireGuardHandshakeResponseLayer::getResponderEphemeral() const |
231 | 0 | { |
232 | 0 | std::array<uint8_t, 32> responderEphemeralArray; |
233 | 0 | memcpy(responderEphemeralArray.data(), getHandshakeResponseHeader()->responderEphemeral, 32); |
234 | 0 | return responderEphemeralArray; |
235 | 0 | } |
236 | | |
237 | | std::array<uint8_t, 16> WireGuardHandshakeResponseLayer::getEncryptedEmpty() const |
238 | 0 | { |
239 | 0 | std::array<uint8_t, 16> encryptedEmptyArray; |
240 | 0 | memcpy(encryptedEmptyArray.data(), getHandshakeResponseHeader()->encryptedEmpty, 16); |
241 | 0 | return encryptedEmptyArray; |
242 | 0 | } |
243 | | |
244 | | std::array<uint8_t, 16> WireGuardHandshakeResponseLayer::getMac1() const |
245 | 0 | { |
246 | 0 | std::array<uint8_t, 16> mac1Array; |
247 | 0 | memcpy(mac1Array.data(), getHandshakeResponseHeader()->mac1, 16); |
248 | 0 | return mac1Array; |
249 | 0 | } |
250 | | |
251 | | std::array<uint8_t, 16> WireGuardHandshakeResponseLayer::getMac2() const |
252 | 0 | { |
253 | 0 | std::array<uint8_t, 16> mac2Array; |
254 | 0 | memcpy(mac2Array.data(), getHandshakeResponseHeader()->mac2, 16); |
255 | 0 | return mac2Array; |
256 | 0 | } |
257 | | |
258 | | void WireGuardHandshakeResponseLayer::setSenderIndex(uint32_t senderIndex) |
259 | 0 | { |
260 | |
|
261 | 0 | wg_handshake_response* msg = reinterpret_cast<wg_handshake_response*>(m_Data); |
262 | 0 | msg->senderIndex = htobe32(senderIndex); |
263 | 0 | } |
264 | | |
265 | | void WireGuardHandshakeResponseLayer::setReceiverIndex(uint32_t receiverIndex) |
266 | 0 | { |
267 | 0 | wg_handshake_response* msg = reinterpret_cast<wg_handshake_response*>(m_Data); |
268 | 0 | msg->receiverIndex = htobe32(receiverIndex); |
269 | 0 | } |
270 | | |
271 | | void WireGuardHandshakeResponseLayer::setResponderEphemeral(const std::array<uint8_t, 32>& responderEphemeral) |
272 | 0 | { |
273 | 0 | wg_handshake_response* msg = reinterpret_cast<wg_handshake_response*>(m_Data); |
274 | 0 | memcpy(msg->responderEphemeral, responderEphemeral.data(), 32); |
275 | 0 | } |
276 | | |
277 | | void WireGuardHandshakeResponseLayer::setEncryptedEmpty(const std::array<uint8_t, 16>& encryptedEmpty) |
278 | 0 | { |
279 | 0 | wg_handshake_response* msg = reinterpret_cast<wg_handshake_response*>(m_Data); |
280 | 0 | memcpy(msg->encryptedEmpty, encryptedEmpty.data(), 16); |
281 | 0 | } |
282 | | |
283 | | void WireGuardHandshakeResponseLayer::setMac1(const std::array<uint8_t, 16>& mac1) |
284 | 0 | { |
285 | 0 | wg_handshake_response* msg = reinterpret_cast<wg_handshake_response*>(m_Data); |
286 | 0 | memcpy(msg->mac1, mac1.data(), 16); |
287 | 0 | } |
288 | | |
289 | | void WireGuardHandshakeResponseLayer::setMac2(const std::array<uint8_t, 16>& mac2) |
290 | 0 | { |
291 | 0 | wg_handshake_response* msg = reinterpret_cast<wg_handshake_response*>(m_Data); |
292 | 0 | memcpy(msg->mac2, mac2.data(), 16); |
293 | 0 | } |
294 | | |
295 | | // ~~~~~~~~~~~~~~~~~~~~ |
296 | | // WireGuardCookieReplyLayer |
297 | | // ~~~~~~~~~~~~~~~~~~~~ |
298 | | |
299 | | WireGuardCookieReplyLayer::WireGuardCookieReplyLayer(uint32_t receiverIndex, const uint8_t nonce[24], |
300 | | const uint8_t encryptedCookie[32]) |
301 | 0 | { |
302 | 0 | const size_t messageLen = sizeof(wg_cookie_reply); |
303 | 0 | m_DataLen = messageLen; |
304 | 0 | m_Data = new uint8_t[messageLen]; |
305 | 0 | memset(m_Data, 0, messageLen); |
306 | |
|
307 | 0 | wg_cookie_reply* msg = reinterpret_cast<wg_cookie_reply*>(m_Data); |
308 | |
|
309 | 0 | msg->messageType = static_cast<uint8_t>(WireGuardMessageType::CookieReply); |
310 | 0 | memset(msg->reserved, 0, 3); |
311 | 0 | msg->receiverIndex = htobe32(receiverIndex); |
312 | 0 | memcpy(msg->nonce, nonce, 24); |
313 | 0 | memcpy(msg->encryptedCookie, encryptedCookie, 32); |
314 | |
|
315 | 0 | m_Protocol = WireGuard; |
316 | 0 | } |
317 | | |
318 | | uint32_t WireGuardCookieReplyLayer::getReceiverIndex() const |
319 | 0 | { |
320 | 0 | return be32toh(getCookieReplyHeader()->receiverIndex); |
321 | 0 | } |
322 | | |
323 | | std::array<uint8_t, 24> WireGuardCookieReplyLayer::getNonce() const |
324 | 0 | { |
325 | 0 | std::array<uint8_t, 24> nonceArray; |
326 | 0 | memcpy(nonceArray.data(), getCookieReplyHeader()->nonce, 24); |
327 | 0 | return nonceArray; |
328 | 0 | } |
329 | | |
330 | | std::array<uint8_t, 32> WireGuardCookieReplyLayer::getEncryptedCookie() const |
331 | 0 | { |
332 | 0 | std::array<uint8_t, 32> encryptedCookieArray; |
333 | 0 | memcpy(encryptedCookieArray.data(), getCookieReplyHeader()->encryptedCookie, 32); |
334 | 0 | return encryptedCookieArray; |
335 | 0 | } |
336 | | |
337 | | void WireGuardCookieReplyLayer::setReceiverIndex(uint32_t receiverIndex) |
338 | 0 | { |
339 | 0 | wg_cookie_reply* msg = reinterpret_cast<wg_cookie_reply*>(m_Data); |
340 | 0 | msg->receiverIndex = htobe32(receiverIndex); |
341 | 0 | } |
342 | | |
343 | | void WireGuardCookieReplyLayer::setNonce(const std::array<uint8_t, 24>& nonce) |
344 | 0 | { |
345 | 0 | wg_cookie_reply* msg = reinterpret_cast<wg_cookie_reply*>(m_Data); |
346 | 0 | memcpy(msg->nonce, nonce.data(), 24); |
347 | 0 | } |
348 | | |
349 | | void WireGuardCookieReplyLayer::setEncryptedCookie(const std::array<uint8_t, 32>& encryptedCookie) |
350 | 0 | { |
351 | 0 | wg_cookie_reply* msg = reinterpret_cast<wg_cookie_reply*>(m_Data); |
352 | 0 | memcpy(msg->encryptedCookie, encryptedCookie.data(), 32); |
353 | 0 | } |
354 | | |
355 | | // ~~~~~~~~~~~~~~~~~~~~ |
356 | | // WireGuardTransportDataLayer |
357 | | // ~~~~~~~~~~~~~~~~~~~~ |
358 | | |
359 | | WireGuardTransportDataLayer::WireGuardTransportDataLayer(uint32_t receiverIndex, uint64_t counter, |
360 | | const uint8_t* encryptedData, size_t encryptedDataLen) |
361 | 0 | { |
362 | 0 | const size_t messageLen = sizeof(wg_transport_data) + encryptedDataLen; |
363 | 0 | m_DataLen = messageLen; |
364 | 0 | m_Data = new uint8_t[messageLen]; |
365 | 0 | memset(m_Data, 0, messageLen); |
366 | |
|
367 | 0 | wg_transport_data* msg = reinterpret_cast<wg_transport_data*>(m_Data); |
368 | |
|
369 | 0 | msg->messageType = static_cast<uint8_t>(WireGuardMessageType::TransportData); |
370 | 0 | memset(msg->reserved, 0, 3); |
371 | 0 | msg->receiverIndex = htobe32(receiverIndex); |
372 | 0 | msg->counter = htobe64(counter); |
373 | 0 | memcpy(m_Data + sizeof(wg_transport_data), encryptedData, encryptedDataLen); |
374 | |
|
375 | 0 | m_Protocol = WireGuard; |
376 | 0 | } |
377 | | |
378 | | uint32_t WireGuardTransportDataLayer::getReceiverIndex() const |
379 | 0 | { |
380 | 0 | return be32toh(getTransportHeader()->receiverIndex); |
381 | 0 | } |
382 | | |
383 | | uint64_t WireGuardTransportDataLayer::getCounter() const |
384 | 0 | { |
385 | 0 | return be64toh(getTransportHeader()->counter); |
386 | 0 | } |
387 | | |
388 | | const uint8_t* WireGuardTransportDataLayer::getEncryptedData() const |
389 | 0 | { |
390 | 0 | return getTransportHeader()->encryptedData; |
391 | 0 | } |
392 | | |
393 | | void WireGuardTransportDataLayer::setReceiverIndex(uint32_t receiverIndex) |
394 | 0 | { |
395 | 0 | wg_transport_data* msg = reinterpret_cast<wg_transport_data*>(m_Data); |
396 | 0 | msg->receiverIndex = htobe32(receiverIndex); |
397 | 0 | } |
398 | | |
399 | | void WireGuardTransportDataLayer::setCounter(uint64_t counter) |
400 | 0 | { |
401 | 0 | wg_transport_data* msg = reinterpret_cast<wg_transport_data*>(m_Data); |
402 | 0 | msg->counter = htobe64(counter); |
403 | 0 | } |
404 | | |
405 | | void WireGuardTransportDataLayer::setEncryptedData(const uint8_t* encryptedData, size_t encryptedDataLen) |
406 | 0 | { |
407 | 0 | wg_transport_data* msg = reinterpret_cast<wg_transport_data*>(m_Data); |
408 | 0 | memcpy(msg->encryptedData, encryptedData, encryptedDataLen); |
409 | 0 | } |
410 | | |
411 | | } // namespace pcpp |