/src/perfetto/buildtools/zstd/lib/decompress/huf_decompress.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* ****************************************************************** |
2 | | * huff0 huffman decoder, |
3 | | * part of Finite State Entropy library |
4 | | * Copyright (c) Meta Platforms, Inc. and affiliates. |
5 | | * |
6 | | * You can contact the author at : |
7 | | * - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy |
8 | | * |
9 | | * This source code is licensed under both the BSD-style license (found in the |
10 | | * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
11 | | * in the COPYING file in the root directory of this source tree). |
12 | | * You may select, at your option, one of the above-listed licenses. |
13 | | ****************************************************************** */ |
14 | | |
15 | | /* ************************************************************** |
16 | | * Dependencies |
17 | | ****************************************************************/ |
18 | | #include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset */ |
19 | | #include "../common/compiler.h" |
20 | | #include "../common/bitstream.h" /* BIT_* */ |
21 | | #include "../common/fse.h" /* to compress headers */ |
22 | | #include "../common/huf.h" |
23 | | #include "../common/error_private.h" |
24 | | #include "../common/zstd_internal.h" |
25 | | #include "../common/bits.h" /* ZSTD_highbit32, ZSTD_countTrailingZeros64 */ |
26 | | |
27 | | /* ************************************************************** |
28 | | * Constants |
29 | | ****************************************************************/ |
30 | | |
31 | 0 | #define HUF_DECODER_FAST_TABLELOG 11 |
32 | | |
33 | | /* ************************************************************** |
34 | | * Macros |
35 | | ****************************************************************/ |
36 | | |
37 | | /* These two optional macros force the use one way or another of the two |
38 | | * Huffman decompression implementations. You can't force in both directions |
39 | | * at the same time. |
40 | | */ |
41 | | #if defined(HUF_FORCE_DECOMPRESS_X1) && \ |
42 | | defined(HUF_FORCE_DECOMPRESS_X2) |
43 | | #error "Cannot force the use of the X1 and X2 decoders at the same time!" |
44 | | #endif |
45 | | |
46 | | /* When DYNAMIC_BMI2 is enabled, fast decoders are only called when bmi2 is |
47 | | * supported at runtime, so we can add the BMI2 target attribute. |
48 | | * When it is disabled, we will still get BMI2 if it is enabled statically. |
49 | | */ |
50 | | #if DYNAMIC_BMI2 |
51 | | # define HUF_FAST_BMI2_ATTRS BMI2_TARGET_ATTRIBUTE |
52 | | #else |
53 | | # define HUF_FAST_BMI2_ATTRS |
54 | | #endif |
55 | | |
56 | | #ifdef __cplusplus |
57 | | # define HUF_EXTERN_C extern "C" |
58 | | #else |
59 | | # define HUF_EXTERN_C |
60 | | #endif |
61 | | #define HUF_ASM_DECL HUF_EXTERN_C |
62 | | |
63 | | #if DYNAMIC_BMI2 |
64 | | # define HUF_NEED_BMI2_FUNCTION 1 |
65 | | #else |
66 | | # define HUF_NEED_BMI2_FUNCTION 0 |
67 | | #endif |
68 | | |
69 | | /* ************************************************************** |
70 | | * Error Management |
71 | | ****************************************************************/ |
72 | 0 | #define HUF_isError ERR_isError |
73 | | |
74 | | |
75 | | /* ************************************************************** |
76 | | * Byte alignment for workSpace management |
77 | | ****************************************************************/ |
78 | | #define HUF_ALIGN(x, a) HUF_ALIGN_MASK((x), (a) - 1) |
79 | | #define HUF_ALIGN_MASK(x, mask) (((x) + (mask)) & ~(mask)) |
80 | | |
81 | | |
82 | | /* ************************************************************** |
83 | | * BMI2 Variant Wrappers |
84 | | ****************************************************************/ |
85 | | typedef size_t (*HUF_DecompressUsingDTableFn)(void *dst, size_t dstSize, |
86 | | const void *cSrc, |
87 | | size_t cSrcSize, |
88 | | const HUF_DTable *DTable); |
89 | | |
90 | | #if DYNAMIC_BMI2 |
91 | | |
92 | | #define HUF_DGEN(fn) \ |
93 | | \ |
94 | | static size_t fn##_default( \ |
95 | | void* dst, size_t dstSize, \ |
96 | | const void* cSrc, size_t cSrcSize, \ |
97 | | const HUF_DTable* DTable) \ |
98 | | { \ |
99 | | return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \ |
100 | | } \ |
101 | | \ |
102 | | static BMI2_TARGET_ATTRIBUTE size_t fn##_bmi2( \ |
103 | | void* dst, size_t dstSize, \ |
104 | | const void* cSrc, size_t cSrcSize, \ |
105 | | const HUF_DTable* DTable) \ |
106 | | { \ |
107 | | return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \ |
108 | | } \ |
109 | | \ |
110 | | static size_t fn(void* dst, size_t dstSize, void const* cSrc, \ |
111 | | size_t cSrcSize, HUF_DTable const* DTable, int flags) \ |
112 | | { \ |
113 | | if (flags & HUF_flags_bmi2) { \ |
114 | | return fn##_bmi2(dst, dstSize, cSrc, cSrcSize, DTable); \ |
115 | | } \ |
116 | | return fn##_default(dst, dstSize, cSrc, cSrcSize, DTable); \ |
117 | | } |
118 | | |
119 | | #else |
120 | | |
121 | | #define HUF_DGEN(fn) \ |
122 | | static size_t fn(void* dst, size_t dstSize, void const* cSrc, \ |
123 | | size_t cSrcSize, HUF_DTable const* DTable, int flags) \ |
124 | 0 | { \ |
125 | 0 | (void)flags; \ |
126 | 0 | return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \ |
127 | 0 | } Unexecuted instantiation: huf_decompress.c:HUF_decompress1X2_usingDTable_internal Unexecuted instantiation: huf_decompress.c:HUF_decompress1X1_usingDTable_internal |
128 | | |
129 | | #endif |
130 | | |
131 | | |
132 | | /*-***************************/ |
133 | | /* generic DTableDesc */ |
134 | | /*-***************************/ |
135 | | typedef struct { BYTE maxTableLog; BYTE tableType; BYTE tableLog; BYTE reserved; } DTableDesc; |
136 | | |
137 | | static DTableDesc HUF_getDTableDesc(const HUF_DTable* table) |
138 | 0 | { |
139 | 0 | DTableDesc dtd; |
140 | 0 | ZSTD_memcpy(&dtd, table, sizeof(dtd)); |
141 | 0 | return dtd; |
142 | 0 | } |
143 | | |
144 | 0 | static size_t HUF_initFastDStream(BYTE const* ip) { |
145 | 0 | BYTE const lastByte = ip[7]; |
146 | 0 | size_t const bitsConsumed = lastByte ? 8 - ZSTD_highbit32(lastByte) : 0; |
147 | 0 | size_t const value = MEM_readLEST(ip) | 1; |
148 | 0 | assert(bitsConsumed <= 8); |
149 | 0 | assert(sizeof(size_t) == 8); |
150 | 0 | return value << bitsConsumed; |
151 | 0 | } |
152 | | |
153 | | |
154 | | /** |
155 | | * The input/output arguments to the Huffman fast decoding loop: |
156 | | * |
157 | | * ip [in/out] - The input pointers, must be updated to reflect what is consumed. |
158 | | * op [in/out] - The output pointers, must be updated to reflect what is written. |
159 | | * bits [in/out] - The bitstream containers, must be updated to reflect the current state. |
160 | | * dt [in] - The decoding table. |
161 | | * ilimit [in] - The input limit, stop when any input pointer is below ilimit. |
162 | | * oend [in] - The end of the output stream. op[3] must not cross oend. |
163 | | * iend [in] - The end of each input stream. ip[i] may cross iend[i], |
164 | | * as long as it is above ilimit, but that indicates corruption. |
165 | | */ |
166 | | typedef struct { |
167 | | BYTE const* ip[4]; |
168 | | BYTE* op[4]; |
169 | | U64 bits[4]; |
170 | | void const* dt; |
171 | | BYTE const* ilimit; |
172 | | BYTE* oend; |
173 | | BYTE const* iend[4]; |
174 | | } HUF_DecompressFastArgs; |
175 | | |
176 | | typedef void (*HUF_DecompressFastLoopFn)(HUF_DecompressFastArgs*); |
177 | | |
178 | | /** |
179 | | * Initializes args for the fast decoding loop. |
180 | | * @returns 1 on success |
181 | | * 0 if the fallback implementation should be used. |
182 | | * Or an error code on failure. |
183 | | */ |
184 | | static size_t HUF_DecompressFastArgs_init(HUF_DecompressFastArgs* args, void* dst, size_t dstSize, void const* src, size_t srcSize, const HUF_DTable* DTable) |
185 | 0 | { |
186 | 0 | void const* dt = DTable + 1; |
187 | 0 | U32 const dtLog = HUF_getDTableDesc(DTable).tableLog; |
188 | |
|
189 | 0 | const BYTE* const ilimit = (const BYTE*)src + 6 + 8; |
190 | |
|
191 | 0 | BYTE* const oend = (BYTE*)dst + dstSize; |
192 | | |
193 | | /* The fast decoding loop assumes 64-bit little-endian. |
194 | | * This condition is false on x32. |
195 | | */ |
196 | 0 | if (!MEM_isLittleEndian() || MEM_32bits()) |
197 | 0 | return 0; |
198 | | |
199 | | /* strict minimum : jump table + 1 byte per stream */ |
200 | 0 | if (srcSize < 10) |
201 | 0 | return ERROR(corruption_detected); |
202 | | |
203 | | /* Must have at least 8 bytes per stream because we don't handle initializing smaller bit containers. |
204 | | * If table log is not correct at this point, fallback to the old decoder. |
205 | | * On small inputs we don't have enough data to trigger the fast loop, so use the old decoder. |
206 | | */ |
207 | 0 | if (dtLog != HUF_DECODER_FAST_TABLELOG) |
208 | 0 | return 0; |
209 | | |
210 | | /* Read the jump table. */ |
211 | 0 | { |
212 | 0 | const BYTE* const istart = (const BYTE*)src; |
213 | 0 | size_t const length1 = MEM_readLE16(istart); |
214 | 0 | size_t const length2 = MEM_readLE16(istart+2); |
215 | 0 | size_t const length3 = MEM_readLE16(istart+4); |
216 | 0 | size_t const length4 = srcSize - (length1 + length2 + length3 + 6); |
217 | 0 | args->iend[0] = istart + 6; /* jumpTable */ |
218 | 0 | args->iend[1] = args->iend[0] + length1; |
219 | 0 | args->iend[2] = args->iend[1] + length2; |
220 | 0 | args->iend[3] = args->iend[2] + length3; |
221 | | |
222 | | /* HUF_initFastDStream() requires this, and this small of an input |
223 | | * won't benefit from the ASM loop anyways. |
224 | | * length1 must be >= 16 so that ip[0] >= ilimit before the loop |
225 | | * starts. |
226 | | */ |
227 | 0 | if (length1 < 16 || length2 < 8 || length3 < 8 || length4 < 8) |
228 | 0 | return 0; |
229 | 0 | if (length4 > srcSize) return ERROR(corruption_detected); /* overflow */ |
230 | 0 | } |
231 | | /* ip[] contains the position that is currently loaded into bits[]. */ |
232 | 0 | args->ip[0] = args->iend[1] - sizeof(U64); |
233 | 0 | args->ip[1] = args->iend[2] - sizeof(U64); |
234 | 0 | args->ip[2] = args->iend[3] - sizeof(U64); |
235 | 0 | args->ip[3] = (BYTE const*)src + srcSize - sizeof(U64); |
236 | | |
237 | | /* op[] contains the output pointers. */ |
238 | 0 | args->op[0] = (BYTE*)dst; |
239 | 0 | args->op[1] = args->op[0] + (dstSize+3)/4; |
240 | 0 | args->op[2] = args->op[1] + (dstSize+3)/4; |
241 | 0 | args->op[3] = args->op[2] + (dstSize+3)/4; |
242 | | |
243 | | /* No point to call the ASM loop for tiny outputs. */ |
244 | 0 | if (args->op[3] >= oend) |
245 | 0 | return 0; |
246 | | |
247 | | /* bits[] is the bit container. |
248 | | * It is read from the MSB down to the LSB. |
249 | | * It is shifted left as it is read, and zeros are |
250 | | * shifted in. After the lowest valid bit a 1 is |
251 | | * set, so that CountTrailingZeros(bits[]) can be used |
252 | | * to count how many bits we've consumed. |
253 | | */ |
254 | 0 | args->bits[0] = HUF_initFastDStream(args->ip[0]); |
255 | 0 | args->bits[1] = HUF_initFastDStream(args->ip[1]); |
256 | 0 | args->bits[2] = HUF_initFastDStream(args->ip[2]); |
257 | 0 | args->bits[3] = HUF_initFastDStream(args->ip[3]); |
258 | | |
259 | | /* If ip[] >= ilimit, it is guaranteed to be safe to |
260 | | * reload bits[]. It may be beyond its section, but is |
261 | | * guaranteed to be valid (>= istart). |
262 | | */ |
263 | 0 | args->ilimit = ilimit; |
264 | |
|
265 | 0 | args->oend = oend; |
266 | 0 | args->dt = dt; |
267 | |
|
268 | 0 | return 1; |
269 | 0 | } |
270 | | |
271 | | static size_t HUF_initRemainingDStream(BIT_DStream_t* bit, HUF_DecompressFastArgs const* args, int stream, BYTE* segmentEnd) |
272 | 0 | { |
273 | | /* Validate that we haven't overwritten. */ |
274 | 0 | if (args->op[stream] > segmentEnd) |
275 | 0 | return ERROR(corruption_detected); |
276 | | /* Validate that we haven't read beyond iend[]. |
277 | | * Note that ip[] may be < iend[] because the MSB is |
278 | | * the next bit to read, and we may have consumed 100% |
279 | | * of the stream, so down to iend[i] - 8 is valid. |
280 | | */ |
281 | 0 | if (args->ip[stream] < args->iend[stream] - 8) |
282 | 0 | return ERROR(corruption_detected); |
283 | | |
284 | | /* Construct the BIT_DStream_t. */ |
285 | 0 | assert(sizeof(size_t) == 8); |
286 | 0 | bit->bitContainer = MEM_readLEST(args->ip[stream]); |
287 | 0 | bit->bitsConsumed = ZSTD_countTrailingZeros64(args->bits[stream]); |
288 | 0 | bit->start = (const char*)args->iend[0]; |
289 | 0 | bit->limitPtr = bit->start + sizeof(size_t); |
290 | 0 | bit->ptr = (const char*)args->ip[stream]; |
291 | |
|
292 | 0 | return 0; |
293 | 0 | } |
294 | | |
295 | | |
296 | | #ifndef HUF_FORCE_DECOMPRESS_X2 |
297 | | |
298 | | /*-***************************/ |
299 | | /* single-symbol decoding */ |
300 | | /*-***************************/ |
301 | | typedef struct { BYTE nbBits; BYTE byte; } HUF_DEltX1; /* single-symbol decoding */ |
302 | | |
303 | | /** |
304 | | * Packs 4 HUF_DEltX1 structs into a U64. This is used to lay down 4 entries at |
305 | | * a time. |
306 | | */ |
307 | 0 | static U64 HUF_DEltX1_set4(BYTE symbol, BYTE nbBits) { |
308 | 0 | U64 D4; |
309 | 0 | if (MEM_isLittleEndian()) { |
310 | 0 | D4 = (U64)((symbol << 8) + nbBits); |
311 | 0 | } else { |
312 | 0 | D4 = (U64)(symbol + (nbBits << 8)); |
313 | 0 | } |
314 | 0 | assert(D4 < (1U << 16)); |
315 | 0 | D4 *= 0x0001000100010001ULL; |
316 | 0 | return D4; |
317 | 0 | } |
318 | | |
319 | | /** |
320 | | * Increase the tableLog to targetTableLog and rescales the stats. |
321 | | * If tableLog > targetTableLog this is a no-op. |
322 | | * @returns New tableLog |
323 | | */ |
324 | | static U32 HUF_rescaleStats(BYTE* huffWeight, U32* rankVal, U32 nbSymbols, U32 tableLog, U32 targetTableLog) |
325 | 0 | { |
326 | 0 | if (tableLog > targetTableLog) |
327 | 0 | return tableLog; |
328 | 0 | if (tableLog < targetTableLog) { |
329 | 0 | U32 const scale = targetTableLog - tableLog; |
330 | 0 | U32 s; |
331 | | /* Increase the weight for all non-zero probability symbols by scale. */ |
332 | 0 | for (s = 0; s < nbSymbols; ++s) { |
333 | 0 | huffWeight[s] += (BYTE)((huffWeight[s] == 0) ? 0 : scale); |
334 | 0 | } |
335 | | /* Update rankVal to reflect the new weights. |
336 | | * All weights except 0 get moved to weight + scale. |
337 | | * Weights [1, scale] are empty. |
338 | | */ |
339 | 0 | for (s = targetTableLog; s > scale; --s) { |
340 | 0 | rankVal[s] = rankVal[s - scale]; |
341 | 0 | } |
342 | 0 | for (s = scale; s > 0; --s) { |
343 | 0 | rankVal[s] = 0; |
344 | 0 | } |
345 | 0 | } |
346 | 0 | return targetTableLog; |
347 | 0 | } |
348 | | |
349 | | typedef struct { |
350 | | U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1]; |
351 | | U32 rankStart[HUF_TABLELOG_ABSOLUTEMAX + 1]; |
352 | | U32 statsWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32]; |
353 | | BYTE symbols[HUF_SYMBOLVALUE_MAX + 1]; |
354 | | BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1]; |
355 | | } HUF_ReadDTableX1_Workspace; |
356 | | |
357 | | size_t HUF_readDTableX1_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int flags) |
358 | 0 | { |
359 | 0 | U32 tableLog = 0; |
360 | 0 | U32 nbSymbols = 0; |
361 | 0 | size_t iSize; |
362 | 0 | void* const dtPtr = DTable + 1; |
363 | 0 | HUF_DEltX1* const dt = (HUF_DEltX1*)dtPtr; |
364 | 0 | HUF_ReadDTableX1_Workspace* wksp = (HUF_ReadDTableX1_Workspace*)workSpace; |
365 | |
|
366 | 0 | DEBUG_STATIC_ASSERT(HUF_DECOMPRESS_WORKSPACE_SIZE >= sizeof(*wksp)); |
367 | 0 | if (sizeof(*wksp) > wkspSize) return ERROR(tableLog_tooLarge); |
368 | | |
369 | 0 | DEBUG_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable)); |
370 | | /* ZSTD_memset(huffWeight, 0, sizeof(huffWeight)); */ /* is not necessary, even though some analyzer complain ... */ |
371 | |
|
372 | 0 | iSize = HUF_readStats_wksp(wksp->huffWeight, HUF_SYMBOLVALUE_MAX + 1, wksp->rankVal, &nbSymbols, &tableLog, src, srcSize, wksp->statsWksp, sizeof(wksp->statsWksp), flags); |
373 | 0 | if (HUF_isError(iSize)) return iSize; |
374 | | |
375 | | |
376 | | /* Table header */ |
377 | 0 | { DTableDesc dtd = HUF_getDTableDesc(DTable); |
378 | 0 | U32 const maxTableLog = dtd.maxTableLog + 1; |
379 | 0 | U32 const targetTableLog = MIN(maxTableLog, HUF_DECODER_FAST_TABLELOG); |
380 | 0 | tableLog = HUF_rescaleStats(wksp->huffWeight, wksp->rankVal, nbSymbols, tableLog, targetTableLog); |
381 | 0 | if (tableLog > (U32)(dtd.maxTableLog+1)) return ERROR(tableLog_tooLarge); /* DTable too small, Huffman tree cannot fit in */ |
382 | 0 | dtd.tableType = 0; |
383 | 0 | dtd.tableLog = (BYTE)tableLog; |
384 | 0 | ZSTD_memcpy(DTable, &dtd, sizeof(dtd)); |
385 | 0 | } |
386 | | |
387 | | /* Compute symbols and rankStart given rankVal: |
388 | | * |
389 | | * rankVal already contains the number of values of each weight. |
390 | | * |
391 | | * symbols contains the symbols ordered by weight. First are the rankVal[0] |
392 | | * weight 0 symbols, followed by the rankVal[1] weight 1 symbols, and so on. |
393 | | * symbols[0] is filled (but unused) to avoid a branch. |
394 | | * |
395 | | * rankStart contains the offset where each rank belongs in the DTable. |
396 | | * rankStart[0] is not filled because there are no entries in the table for |
397 | | * weight 0. |
398 | | */ |
399 | 0 | { int n; |
400 | 0 | U32 nextRankStart = 0; |
401 | 0 | int const unroll = 4; |
402 | 0 | int const nLimit = (int)nbSymbols - unroll + 1; |
403 | 0 | for (n=0; n<(int)tableLog+1; n++) { |
404 | 0 | U32 const curr = nextRankStart; |
405 | 0 | nextRankStart += wksp->rankVal[n]; |
406 | 0 | wksp->rankStart[n] = curr; |
407 | 0 | } |
408 | 0 | for (n=0; n < nLimit; n += unroll) { |
409 | 0 | int u; |
410 | 0 | for (u=0; u < unroll; ++u) { |
411 | 0 | size_t const w = wksp->huffWeight[n+u]; |
412 | 0 | wksp->symbols[wksp->rankStart[w]++] = (BYTE)(n+u); |
413 | 0 | } |
414 | 0 | } |
415 | 0 | for (; n < (int)nbSymbols; ++n) { |
416 | 0 | size_t const w = wksp->huffWeight[n]; |
417 | 0 | wksp->symbols[wksp->rankStart[w]++] = (BYTE)n; |
418 | 0 | } |
419 | 0 | } |
420 | | |
421 | | /* fill DTable |
422 | | * We fill all entries of each weight in order. |
423 | | * That way length is a constant for each iteration of the outer loop. |
424 | | * We can switch based on the length to a different inner loop which is |
425 | | * optimized for that particular case. |
426 | | */ |
427 | 0 | { U32 w; |
428 | 0 | int symbol = wksp->rankVal[0]; |
429 | 0 | int rankStart = 0; |
430 | 0 | for (w=1; w<tableLog+1; ++w) { |
431 | 0 | int const symbolCount = wksp->rankVal[w]; |
432 | 0 | int const length = (1 << w) >> 1; |
433 | 0 | int uStart = rankStart; |
434 | 0 | BYTE const nbBits = (BYTE)(tableLog + 1 - w); |
435 | 0 | int s; |
436 | 0 | int u; |
437 | 0 | switch (length) { |
438 | 0 | case 1: |
439 | 0 | for (s=0; s<symbolCount; ++s) { |
440 | 0 | HUF_DEltX1 D; |
441 | 0 | D.byte = wksp->symbols[symbol + s]; |
442 | 0 | D.nbBits = nbBits; |
443 | 0 | dt[uStart] = D; |
444 | 0 | uStart += 1; |
445 | 0 | } |
446 | 0 | break; |
447 | 0 | case 2: |
448 | 0 | for (s=0; s<symbolCount; ++s) { |
449 | 0 | HUF_DEltX1 D; |
450 | 0 | D.byte = wksp->symbols[symbol + s]; |
451 | 0 | D.nbBits = nbBits; |
452 | 0 | dt[uStart+0] = D; |
453 | 0 | dt[uStart+1] = D; |
454 | 0 | uStart += 2; |
455 | 0 | } |
456 | 0 | break; |
457 | 0 | case 4: |
458 | 0 | for (s=0; s<symbolCount; ++s) { |
459 | 0 | U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits); |
460 | 0 | MEM_write64(dt + uStart, D4); |
461 | 0 | uStart += 4; |
462 | 0 | } |
463 | 0 | break; |
464 | 0 | case 8: |
465 | 0 | for (s=0; s<symbolCount; ++s) { |
466 | 0 | U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits); |
467 | 0 | MEM_write64(dt + uStart, D4); |
468 | 0 | MEM_write64(dt + uStart + 4, D4); |
469 | 0 | uStart += 8; |
470 | 0 | } |
471 | 0 | break; |
472 | 0 | default: |
473 | 0 | for (s=0; s<symbolCount; ++s) { |
474 | 0 | U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits); |
475 | 0 | for (u=0; u < length; u += 16) { |
476 | 0 | MEM_write64(dt + uStart + u + 0, D4); |
477 | 0 | MEM_write64(dt + uStart + u + 4, D4); |
478 | 0 | MEM_write64(dt + uStart + u + 8, D4); |
479 | 0 | MEM_write64(dt + uStart + u + 12, D4); |
480 | 0 | } |
481 | 0 | assert(u == length); |
482 | 0 | uStart += length; |
483 | 0 | } |
484 | 0 | break; |
485 | 0 | } |
486 | 0 | symbol += symbolCount; |
487 | 0 | rankStart += symbolCount * length; |
488 | 0 | } |
489 | 0 | } |
490 | 0 | return iSize; |
491 | 0 | } |
492 | | |
493 | | FORCE_INLINE_TEMPLATE BYTE |
494 | | HUF_decodeSymbolX1(BIT_DStream_t* Dstream, const HUF_DEltX1* dt, const U32 dtLog) |
495 | 0 | { |
496 | 0 | size_t const val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */ |
497 | 0 | BYTE const c = dt[val].byte; |
498 | 0 | BIT_skipBits(Dstream, dt[val].nbBits); |
499 | 0 | return c; |
500 | 0 | } |
501 | | |
502 | | #define HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) \ |
503 | 0 | *ptr++ = HUF_decodeSymbolX1(DStreamPtr, dt, dtLog) |
504 | | |
505 | | #define HUF_DECODE_SYMBOLX1_1(ptr, DStreamPtr) \ |
506 | 0 | if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \ |
507 | 0 | HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) |
508 | | |
509 | | #define HUF_DECODE_SYMBOLX1_2(ptr, DStreamPtr) \ |
510 | 0 | if (MEM_64bits()) \ |
511 | 0 | HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) |
512 | | |
513 | | HINT_INLINE size_t |
514 | | HUF_decodeStreamX1(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX1* const dt, const U32 dtLog) |
515 | 0 | { |
516 | 0 | BYTE* const pStart = p; |
517 | | |
518 | | /* up to 4 symbols at a time */ |
519 | 0 | if ((pEnd - p) > 3) { |
520 | 0 | while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-3)) { |
521 | 0 | HUF_DECODE_SYMBOLX1_2(p, bitDPtr); |
522 | 0 | HUF_DECODE_SYMBOLX1_1(p, bitDPtr); |
523 | 0 | HUF_DECODE_SYMBOLX1_2(p, bitDPtr); |
524 | 0 | HUF_DECODE_SYMBOLX1_0(p, bitDPtr); |
525 | 0 | } |
526 | 0 | } else { |
527 | 0 | BIT_reloadDStream(bitDPtr); |
528 | 0 | } |
529 | | |
530 | | /* [0-3] symbols remaining */ |
531 | 0 | if (MEM_32bits()) |
532 | 0 | while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd)) |
533 | 0 | HUF_DECODE_SYMBOLX1_0(p, bitDPtr); |
534 | | |
535 | | /* no more data to retrieve from bitstream, no need to reload */ |
536 | 0 | while (p < pEnd) |
537 | 0 | HUF_DECODE_SYMBOLX1_0(p, bitDPtr); |
538 | |
|
539 | 0 | return (size_t)(pEnd-pStart); |
540 | 0 | } |
541 | | |
542 | | FORCE_INLINE_TEMPLATE size_t |
543 | | HUF_decompress1X1_usingDTable_internal_body( |
544 | | void* dst, size_t dstSize, |
545 | | const void* cSrc, size_t cSrcSize, |
546 | | const HUF_DTable* DTable) |
547 | 0 | { |
548 | 0 | BYTE* op = (BYTE*)dst; |
549 | 0 | BYTE* const oend = op + dstSize; |
550 | 0 | const void* dtPtr = DTable + 1; |
551 | 0 | const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr; |
552 | 0 | BIT_DStream_t bitD; |
553 | 0 | DTableDesc const dtd = HUF_getDTableDesc(DTable); |
554 | 0 | U32 const dtLog = dtd.tableLog; |
555 | |
|
556 | 0 | CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) ); |
557 | |
|
558 | 0 | HUF_decodeStreamX1(op, &bitD, oend, dt, dtLog); |
559 | |
|
560 | 0 | if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected); |
561 | | |
562 | 0 | return dstSize; |
563 | 0 | } |
564 | | |
565 | | /* HUF_decompress4X1_usingDTable_internal_body(): |
566 | | * Conditions : |
567 | | * @dstSize >= 6 |
568 | | */ |
569 | | FORCE_INLINE_TEMPLATE size_t |
570 | | HUF_decompress4X1_usingDTable_internal_body( |
571 | | void* dst, size_t dstSize, |
572 | | const void* cSrc, size_t cSrcSize, |
573 | | const HUF_DTable* DTable) |
574 | 0 | { |
575 | | /* Check */ |
576 | 0 | if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */ |
577 | | |
578 | 0 | { const BYTE* const istart = (const BYTE*) cSrc; |
579 | 0 | BYTE* const ostart = (BYTE*) dst; |
580 | 0 | BYTE* const oend = ostart + dstSize; |
581 | 0 | BYTE* const olimit = oend - 3; |
582 | 0 | const void* const dtPtr = DTable + 1; |
583 | 0 | const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr; |
584 | | |
585 | | /* Init */ |
586 | 0 | BIT_DStream_t bitD1; |
587 | 0 | BIT_DStream_t bitD2; |
588 | 0 | BIT_DStream_t bitD3; |
589 | 0 | BIT_DStream_t bitD4; |
590 | 0 | size_t const length1 = MEM_readLE16(istart); |
591 | 0 | size_t const length2 = MEM_readLE16(istart+2); |
592 | 0 | size_t const length3 = MEM_readLE16(istart+4); |
593 | 0 | size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6); |
594 | 0 | const BYTE* const istart1 = istart + 6; /* jumpTable */ |
595 | 0 | const BYTE* const istart2 = istart1 + length1; |
596 | 0 | const BYTE* const istart3 = istart2 + length2; |
597 | 0 | const BYTE* const istart4 = istart3 + length3; |
598 | 0 | const size_t segmentSize = (dstSize+3) / 4; |
599 | 0 | BYTE* const opStart2 = ostart + segmentSize; |
600 | 0 | BYTE* const opStart3 = opStart2 + segmentSize; |
601 | 0 | BYTE* const opStart4 = opStart3 + segmentSize; |
602 | 0 | BYTE* op1 = ostart; |
603 | 0 | BYTE* op2 = opStart2; |
604 | 0 | BYTE* op3 = opStart3; |
605 | 0 | BYTE* op4 = opStart4; |
606 | 0 | DTableDesc const dtd = HUF_getDTableDesc(DTable); |
607 | 0 | U32 const dtLog = dtd.tableLog; |
608 | 0 | U32 endSignal = 1; |
609 | |
|
610 | 0 | if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */ |
611 | 0 | if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */ |
612 | 0 | if (dstSize < 6) return ERROR(corruption_detected); /* stream 4-split doesn't work */ |
613 | 0 | CHECK_F( BIT_initDStream(&bitD1, istart1, length1) ); |
614 | 0 | CHECK_F( BIT_initDStream(&bitD2, istart2, length2) ); |
615 | 0 | CHECK_F( BIT_initDStream(&bitD3, istart3, length3) ); |
616 | 0 | CHECK_F( BIT_initDStream(&bitD4, istart4, length4) ); |
617 | | |
618 | | /* up to 16 symbols per loop (4 symbols per stream) in 64-bit mode */ |
619 | 0 | if ((size_t)(oend - op4) >= sizeof(size_t)) { |
620 | 0 | for ( ; (endSignal) & (op4 < olimit) ; ) { |
621 | 0 | HUF_DECODE_SYMBOLX1_2(op1, &bitD1); |
622 | 0 | HUF_DECODE_SYMBOLX1_2(op2, &bitD2); |
623 | 0 | HUF_DECODE_SYMBOLX1_2(op3, &bitD3); |
624 | 0 | HUF_DECODE_SYMBOLX1_2(op4, &bitD4); |
625 | 0 | HUF_DECODE_SYMBOLX1_1(op1, &bitD1); |
626 | 0 | HUF_DECODE_SYMBOLX1_1(op2, &bitD2); |
627 | 0 | HUF_DECODE_SYMBOLX1_1(op3, &bitD3); |
628 | 0 | HUF_DECODE_SYMBOLX1_1(op4, &bitD4); |
629 | 0 | HUF_DECODE_SYMBOLX1_2(op1, &bitD1); |
630 | 0 | HUF_DECODE_SYMBOLX1_2(op2, &bitD2); |
631 | 0 | HUF_DECODE_SYMBOLX1_2(op3, &bitD3); |
632 | 0 | HUF_DECODE_SYMBOLX1_2(op4, &bitD4); |
633 | 0 | HUF_DECODE_SYMBOLX1_0(op1, &bitD1); |
634 | 0 | HUF_DECODE_SYMBOLX1_0(op2, &bitD2); |
635 | 0 | HUF_DECODE_SYMBOLX1_0(op3, &bitD3); |
636 | 0 | HUF_DECODE_SYMBOLX1_0(op4, &bitD4); |
637 | 0 | endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished; |
638 | 0 | endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished; |
639 | 0 | endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished; |
640 | 0 | endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished; |
641 | 0 | } |
642 | 0 | } |
643 | | |
644 | | /* check corruption */ |
645 | | /* note : should not be necessary : op# advance in lock step, and we control op4. |
646 | | * but curiously, binary generated by gcc 7.2 & 7.3 with -mbmi2 runs faster when >=1 test is present */ |
647 | 0 | if (op1 > opStart2) return ERROR(corruption_detected); |
648 | 0 | if (op2 > opStart3) return ERROR(corruption_detected); |
649 | 0 | if (op3 > opStart4) return ERROR(corruption_detected); |
650 | | /* note : op4 supposed already verified within main loop */ |
651 | | |
652 | | /* finish bitStreams one by one */ |
653 | 0 | HUF_decodeStreamX1(op1, &bitD1, opStart2, dt, dtLog); |
654 | 0 | HUF_decodeStreamX1(op2, &bitD2, opStart3, dt, dtLog); |
655 | 0 | HUF_decodeStreamX1(op3, &bitD3, opStart4, dt, dtLog); |
656 | 0 | HUF_decodeStreamX1(op4, &bitD4, oend, dt, dtLog); |
657 | | |
658 | | /* check */ |
659 | 0 | { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4); |
660 | 0 | if (!endCheck) return ERROR(corruption_detected); } |
661 | | |
662 | | /* decoded size */ |
663 | 0 | return dstSize; |
664 | 0 | } |
665 | 0 | } |
666 | | |
667 | | #if HUF_NEED_BMI2_FUNCTION |
668 | | static BMI2_TARGET_ATTRIBUTE |
669 | | size_t HUF_decompress4X1_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc, |
670 | | size_t cSrcSize, HUF_DTable const* DTable) { |
671 | | return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable); |
672 | | } |
673 | | #endif |
674 | | |
675 | | static |
676 | | size_t HUF_decompress4X1_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc, |
677 | 0 | size_t cSrcSize, HUF_DTable const* DTable) { |
678 | 0 | return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable); |
679 | 0 | } |
680 | | |
681 | | #if ZSTD_ENABLE_ASM_X86_64_BMI2 |
682 | | |
683 | | HUF_ASM_DECL void HUF_decompress4X1_usingDTable_internal_fast_asm_loop(HUF_DecompressFastArgs* args) ZSTDLIB_HIDDEN; |
684 | | |
685 | | #endif |
686 | | |
687 | | static HUF_FAST_BMI2_ATTRS |
688 | | void HUF_decompress4X1_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs* args) |
689 | 0 | { |
690 | 0 | U64 bits[4]; |
691 | 0 | BYTE const* ip[4]; |
692 | 0 | BYTE* op[4]; |
693 | 0 | U16 const* const dtable = (U16 const*)args->dt; |
694 | 0 | BYTE* const oend = args->oend; |
695 | 0 | BYTE const* const ilimit = args->ilimit; |
696 | | |
697 | | /* Copy the arguments to local variables */ |
698 | 0 | ZSTD_memcpy(&bits, &args->bits, sizeof(bits)); |
699 | 0 | ZSTD_memcpy((void*)(&ip), &args->ip, sizeof(ip)); |
700 | 0 | ZSTD_memcpy(&op, &args->op, sizeof(op)); |
701 | |
|
702 | 0 | assert(MEM_isLittleEndian()); |
703 | 0 | assert(!MEM_32bits()); |
704 | |
|
705 | 0 | for (;;) { |
706 | 0 | BYTE* olimit; |
707 | 0 | int stream; |
708 | 0 | int symbol; |
709 | | |
710 | | /* Assert loop preconditions */ |
711 | | #ifndef NDEBUG |
712 | | for (stream = 0; stream < 4; ++stream) { |
713 | | assert(op[stream] <= (stream == 3 ? oend : op[stream + 1])); |
714 | | assert(ip[stream] >= ilimit); |
715 | | } |
716 | | #endif |
717 | | /* Compute olimit */ |
718 | 0 | { |
719 | | /* Each iteration produces 5 output symbols per stream */ |
720 | 0 | size_t const oiters = (size_t)(oend - op[3]) / 5; |
721 | | /* Each iteration consumes up to 11 bits * 5 = 55 bits < 7 bytes |
722 | | * per stream. |
723 | | */ |
724 | 0 | size_t const iiters = (size_t)(ip[0] - ilimit) / 7; |
725 | | /* We can safely run iters iterations before running bounds checks */ |
726 | 0 | size_t const iters = MIN(oiters, iiters); |
727 | 0 | size_t const symbols = iters * 5; |
728 | | |
729 | | /* We can simply check that op[3] < olimit, instead of checking all |
730 | | * of our bounds, since we can't hit the other bounds until we've run |
731 | | * iters iterations, which only happens when op[3] == olimit. |
732 | | */ |
733 | 0 | olimit = op[3] + symbols; |
734 | | |
735 | | /* Exit fast decoding loop once we get close to the end. */ |
736 | 0 | if (op[3] + 20 > olimit) |
737 | 0 | break; |
738 | | |
739 | | /* Exit the decoding loop if any input pointer has crossed the |
740 | | * previous one. This indicates corruption, and a precondition |
741 | | * to our loop is that ip[i] >= ip[0]. |
742 | | */ |
743 | 0 | for (stream = 1; stream < 4; ++stream) { |
744 | 0 | if (ip[stream] < ip[stream - 1]) |
745 | 0 | goto _out; |
746 | 0 | } |
747 | 0 | } |
748 | | |
749 | | #ifndef NDEBUG |
750 | | for (stream = 1; stream < 4; ++stream) { |
751 | | assert(ip[stream] >= ip[stream - 1]); |
752 | | } |
753 | | #endif |
754 | | |
755 | 0 | do { |
756 | | /* Decode 5 symbols in each of the 4 streams */ |
757 | 0 | for (symbol = 0; symbol < 5; ++symbol) { |
758 | 0 | for (stream = 0; stream < 4; ++stream) { |
759 | 0 | int const index = (int)(bits[stream] >> 53); |
760 | 0 | int const entry = (int)dtable[index]; |
761 | 0 | bits[stream] <<= (entry & 63); |
762 | 0 | op[stream][symbol] = (BYTE)((entry >> 8) & 0xFF); |
763 | 0 | } |
764 | 0 | } |
765 | | /* Reload the bitstreams */ |
766 | 0 | for (stream = 0; stream < 4; ++stream) { |
767 | 0 | int const ctz = ZSTD_countTrailingZeros64(bits[stream]); |
768 | 0 | int const nbBits = ctz & 7; |
769 | 0 | int const nbBytes = ctz >> 3; |
770 | 0 | op[stream] += 5; |
771 | 0 | ip[stream] -= nbBytes; |
772 | 0 | bits[stream] = MEM_read64(ip[stream]) | 1; |
773 | 0 | bits[stream] <<= nbBits; |
774 | 0 | } |
775 | 0 | } while (op[3] < olimit); |
776 | 0 | } |
777 | | |
778 | 0 | _out: |
779 | | |
780 | | /* Save the final values of each of the state variables back to args. */ |
781 | 0 | ZSTD_memcpy(&args->bits, &bits, sizeof(bits)); |
782 | 0 | ZSTD_memcpy((void*)(&args->ip), &ip, sizeof(ip)); |
783 | 0 | ZSTD_memcpy(&args->op, &op, sizeof(op)); |
784 | 0 | } |
785 | | |
786 | | /** |
787 | | * @returns @p dstSize on success (>= 6) |
788 | | * 0 if the fallback implementation should be used |
789 | | * An error if an error occurred |
790 | | */ |
791 | | static HUF_FAST_BMI2_ATTRS |
792 | | size_t |
793 | | HUF_decompress4X1_usingDTable_internal_fast( |
794 | | void* dst, size_t dstSize, |
795 | | const void* cSrc, size_t cSrcSize, |
796 | | const HUF_DTable* DTable, |
797 | | HUF_DecompressFastLoopFn loopFn) |
798 | 0 | { |
799 | 0 | void const* dt = DTable + 1; |
800 | 0 | const BYTE* const iend = (const BYTE*)cSrc + 6; |
801 | 0 | BYTE* const oend = (BYTE*)dst + dstSize; |
802 | 0 | HUF_DecompressFastArgs args; |
803 | 0 | { size_t const ret = HUF_DecompressFastArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable); |
804 | 0 | FORWARD_IF_ERROR(ret, "Failed to init fast loop args"); |
805 | 0 | if (ret == 0) |
806 | 0 | return 0; |
807 | 0 | } |
808 | | |
809 | 0 | assert(args.ip[0] >= args.ilimit); |
810 | 0 | loopFn(&args); |
811 | | |
812 | | /* Our loop guarantees that ip[] >= ilimit and that we haven't |
813 | | * overwritten any op[]. |
814 | | */ |
815 | 0 | assert(args.ip[0] >= iend); |
816 | 0 | assert(args.ip[1] >= iend); |
817 | 0 | assert(args.ip[2] >= iend); |
818 | 0 | assert(args.ip[3] >= iend); |
819 | 0 | assert(args.op[3] <= oend); |
820 | 0 | (void)iend; |
821 | | |
822 | | /* finish bit streams one by one. */ |
823 | 0 | { size_t const segmentSize = (dstSize+3) / 4; |
824 | 0 | BYTE* segmentEnd = (BYTE*)dst; |
825 | 0 | int i; |
826 | 0 | for (i = 0; i < 4; ++i) { |
827 | 0 | BIT_DStream_t bit; |
828 | 0 | if (segmentSize <= (size_t)(oend - segmentEnd)) |
829 | 0 | segmentEnd += segmentSize; |
830 | 0 | else |
831 | 0 | segmentEnd = oend; |
832 | 0 | FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption"); |
833 | | /* Decompress and validate that we've produced exactly the expected length. */ |
834 | 0 | args.op[i] += HUF_decodeStreamX1(args.op[i], &bit, segmentEnd, (HUF_DEltX1 const*)dt, HUF_DECODER_FAST_TABLELOG); |
835 | 0 | if (args.op[i] != segmentEnd) return ERROR(corruption_detected); |
836 | 0 | } |
837 | 0 | } |
838 | | |
839 | | /* decoded size */ |
840 | 0 | assert(dstSize != 0); |
841 | 0 | return dstSize; |
842 | 0 | } |
843 | | |
844 | | HUF_DGEN(HUF_decompress1X1_usingDTable_internal) |
845 | | |
846 | | static size_t HUF_decompress4X1_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc, |
847 | | size_t cSrcSize, HUF_DTable const* DTable, int flags) |
848 | 0 | { |
849 | 0 | HUF_DecompressUsingDTableFn fallbackFn = HUF_decompress4X1_usingDTable_internal_default; |
850 | 0 | HUF_DecompressFastLoopFn loopFn = HUF_decompress4X1_usingDTable_internal_fast_c_loop; |
851 | |
|
852 | | #if DYNAMIC_BMI2 |
853 | | if (flags & HUF_flags_bmi2) { |
854 | | fallbackFn = HUF_decompress4X1_usingDTable_internal_bmi2; |
855 | | # if ZSTD_ENABLE_ASM_X86_64_BMI2 |
856 | | if (!(flags & HUF_flags_disableAsm)) { |
857 | | loopFn = HUF_decompress4X1_usingDTable_internal_fast_asm_loop; |
858 | | } |
859 | | # endif |
860 | | } else { |
861 | | return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable); |
862 | | } |
863 | | #endif |
864 | |
|
865 | | #if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__) |
866 | | if (!(flags & HUF_flags_disableAsm)) { |
867 | | loopFn = HUF_decompress4X1_usingDTable_internal_fast_asm_loop; |
868 | | } |
869 | | #endif |
870 | |
|
871 | 0 | if (!(flags & HUF_flags_disableFast)) { |
872 | 0 | size_t const ret = HUF_decompress4X1_usingDTable_internal_fast(dst, dstSize, cSrc, cSrcSize, DTable, loopFn); |
873 | 0 | if (ret != 0) |
874 | 0 | return ret; |
875 | 0 | } |
876 | 0 | return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable); |
877 | 0 | } |
878 | | |
879 | | static size_t HUF_decompress4X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, |
880 | | const void* cSrc, size_t cSrcSize, |
881 | | void* workSpace, size_t wkspSize, int flags) |
882 | 0 | { |
883 | 0 | const BYTE* ip = (const BYTE*) cSrc; |
884 | |
|
885 | 0 | size_t const hSize = HUF_readDTableX1_wksp(dctx, cSrc, cSrcSize, workSpace, wkspSize, flags); |
886 | 0 | if (HUF_isError(hSize)) return hSize; |
887 | 0 | if (hSize >= cSrcSize) return ERROR(srcSize_wrong); |
888 | 0 | ip += hSize; cSrcSize -= hSize; |
889 | |
|
890 | 0 | return HUF_decompress4X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags); |
891 | 0 | } |
892 | | |
893 | | #endif /* HUF_FORCE_DECOMPRESS_X2 */ |
894 | | |
895 | | |
896 | | #ifndef HUF_FORCE_DECOMPRESS_X1 |
897 | | |
898 | | /* *************************/ |
899 | | /* double-symbols decoding */ |
900 | | /* *************************/ |
901 | | |
902 | | typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX2; /* double-symbols decoding */ |
903 | | typedef struct { BYTE symbol; } sortedSymbol_t; |
904 | | typedef U32 rankValCol_t[HUF_TABLELOG_MAX + 1]; |
905 | | typedef rankValCol_t rankVal_t[HUF_TABLELOG_MAX]; |
906 | | |
907 | | /** |
908 | | * Constructs a HUF_DEltX2 in a U32. |
909 | | */ |
910 | | static U32 HUF_buildDEltX2U32(U32 symbol, U32 nbBits, U32 baseSeq, int level) |
911 | 0 | { |
912 | 0 | U32 seq; |
913 | 0 | DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, sequence) == 0); |
914 | 0 | DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, nbBits) == 2); |
915 | 0 | DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, length) == 3); |
916 | 0 | DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U32)); |
917 | 0 | if (MEM_isLittleEndian()) { |
918 | 0 | seq = level == 1 ? symbol : (baseSeq + (symbol << 8)); |
919 | 0 | return seq + (nbBits << 16) + ((U32)level << 24); |
920 | 0 | } else { |
921 | 0 | seq = level == 1 ? (symbol << 8) : ((baseSeq << 8) + symbol); |
922 | 0 | return (seq << 16) + (nbBits << 8) + (U32)level; |
923 | 0 | } |
924 | 0 | } |
925 | | |
926 | | /** |
927 | | * Constructs a HUF_DEltX2. |
928 | | */ |
929 | | static HUF_DEltX2 HUF_buildDEltX2(U32 symbol, U32 nbBits, U32 baseSeq, int level) |
930 | 0 | { |
931 | 0 | HUF_DEltX2 DElt; |
932 | 0 | U32 const val = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level); |
933 | 0 | DEBUG_STATIC_ASSERT(sizeof(DElt) == sizeof(val)); |
934 | 0 | ZSTD_memcpy(&DElt, &val, sizeof(val)); |
935 | 0 | return DElt; |
936 | 0 | } |
937 | | |
938 | | /** |
939 | | * Constructs 2 HUF_DEltX2s and packs them into a U64. |
940 | | */ |
941 | | static U64 HUF_buildDEltX2U64(U32 symbol, U32 nbBits, U16 baseSeq, int level) |
942 | 0 | { |
943 | 0 | U32 DElt = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level); |
944 | 0 | return (U64)DElt + ((U64)DElt << 32); |
945 | 0 | } |
946 | | |
947 | | /** |
948 | | * Fills the DTable rank with all the symbols from [begin, end) that are each |
949 | | * nbBits long. |
950 | | * |
951 | | * @param DTableRank The start of the rank in the DTable. |
952 | | * @param begin The first symbol to fill (inclusive). |
953 | | * @param end The last symbol to fill (exclusive). |
954 | | * @param nbBits Each symbol is nbBits long. |
955 | | * @param tableLog The table log. |
956 | | * @param baseSeq If level == 1 { 0 } else { the first level symbol } |
957 | | * @param level The level in the table. Must be 1 or 2. |
958 | | */ |
959 | | static void HUF_fillDTableX2ForWeight( |
960 | | HUF_DEltX2* DTableRank, |
961 | | sortedSymbol_t const* begin, sortedSymbol_t const* end, |
962 | | U32 nbBits, U32 tableLog, |
963 | | U16 baseSeq, int const level) |
964 | 0 | { |
965 | 0 | U32 const length = 1U << ((tableLog - nbBits) & 0x1F /* quiet static-analyzer */); |
966 | 0 | const sortedSymbol_t* ptr; |
967 | 0 | assert(level >= 1 && level <= 2); |
968 | 0 | switch (length) { |
969 | 0 | case 1: |
970 | 0 | for (ptr = begin; ptr != end; ++ptr) { |
971 | 0 | HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level); |
972 | 0 | *DTableRank++ = DElt; |
973 | 0 | } |
974 | 0 | break; |
975 | 0 | case 2: |
976 | 0 | for (ptr = begin; ptr != end; ++ptr) { |
977 | 0 | HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level); |
978 | 0 | DTableRank[0] = DElt; |
979 | 0 | DTableRank[1] = DElt; |
980 | 0 | DTableRank += 2; |
981 | 0 | } |
982 | 0 | break; |
983 | 0 | case 4: |
984 | 0 | for (ptr = begin; ptr != end; ++ptr) { |
985 | 0 | U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level); |
986 | 0 | ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2)); |
987 | 0 | ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2)); |
988 | 0 | DTableRank += 4; |
989 | 0 | } |
990 | 0 | break; |
991 | 0 | case 8: |
992 | 0 | for (ptr = begin; ptr != end; ++ptr) { |
993 | 0 | U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level); |
994 | 0 | ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2)); |
995 | 0 | ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2)); |
996 | 0 | ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2)); |
997 | 0 | ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2)); |
998 | 0 | DTableRank += 8; |
999 | 0 | } |
1000 | 0 | break; |
1001 | 0 | default: |
1002 | 0 | for (ptr = begin; ptr != end; ++ptr) { |
1003 | 0 | U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level); |
1004 | 0 | HUF_DEltX2* const DTableRankEnd = DTableRank + length; |
1005 | 0 | for (; DTableRank != DTableRankEnd; DTableRank += 8) { |
1006 | 0 | ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2)); |
1007 | 0 | ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2)); |
1008 | 0 | ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2)); |
1009 | 0 | ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2)); |
1010 | 0 | } |
1011 | 0 | } |
1012 | 0 | break; |
1013 | 0 | } |
1014 | 0 | } |
1015 | | |
1016 | | /* HUF_fillDTableX2Level2() : |
1017 | | * `rankValOrigin` must be a table of at least (HUF_TABLELOG_MAX + 1) U32 */ |
1018 | | static void HUF_fillDTableX2Level2(HUF_DEltX2* DTable, U32 targetLog, const U32 consumedBits, |
1019 | | const U32* rankVal, const int minWeight, const int maxWeight1, |
1020 | | const sortedSymbol_t* sortedSymbols, U32 const* rankStart, |
1021 | | U32 nbBitsBaseline, U16 baseSeq) |
1022 | 0 | { |
1023 | | /* Fill skipped values (all positions up to rankVal[minWeight]). |
1024 | | * These are positions only get a single symbol because the combined weight |
1025 | | * is too large. |
1026 | | */ |
1027 | 0 | if (minWeight>1) { |
1028 | 0 | U32 const length = 1U << ((targetLog - consumedBits) & 0x1F /* quiet static-analyzer */); |
1029 | 0 | U64 const DEltX2 = HUF_buildDEltX2U64(baseSeq, consumedBits, /* baseSeq */ 0, /* level */ 1); |
1030 | 0 | int const skipSize = rankVal[minWeight]; |
1031 | 0 | assert(length > 1); |
1032 | 0 | assert((U32)skipSize < length); |
1033 | 0 | switch (length) { |
1034 | 0 | case 2: |
1035 | 0 | assert(skipSize == 1); |
1036 | 0 | ZSTD_memcpy(DTable, &DEltX2, sizeof(DEltX2)); |
1037 | 0 | break; |
1038 | 0 | case 4: |
1039 | 0 | assert(skipSize <= 4); |
1040 | 0 | ZSTD_memcpy(DTable + 0, &DEltX2, sizeof(DEltX2)); |
1041 | 0 | ZSTD_memcpy(DTable + 2, &DEltX2, sizeof(DEltX2)); |
1042 | 0 | break; |
1043 | 0 | default: |
1044 | 0 | { |
1045 | 0 | int i; |
1046 | 0 | for (i = 0; i < skipSize; i += 8) { |
1047 | 0 | ZSTD_memcpy(DTable + i + 0, &DEltX2, sizeof(DEltX2)); |
1048 | 0 | ZSTD_memcpy(DTable + i + 2, &DEltX2, sizeof(DEltX2)); |
1049 | 0 | ZSTD_memcpy(DTable + i + 4, &DEltX2, sizeof(DEltX2)); |
1050 | 0 | ZSTD_memcpy(DTable + i + 6, &DEltX2, sizeof(DEltX2)); |
1051 | 0 | } |
1052 | 0 | } |
1053 | 0 | } |
1054 | 0 | } |
1055 | | |
1056 | | /* Fill each of the second level symbols by weight. */ |
1057 | 0 | { |
1058 | 0 | int w; |
1059 | 0 | for (w = minWeight; w < maxWeight1; ++w) { |
1060 | 0 | int const begin = rankStart[w]; |
1061 | 0 | int const end = rankStart[w+1]; |
1062 | 0 | U32 const nbBits = nbBitsBaseline - w; |
1063 | 0 | U32 const totalBits = nbBits + consumedBits; |
1064 | 0 | HUF_fillDTableX2ForWeight( |
1065 | 0 | DTable + rankVal[w], |
1066 | 0 | sortedSymbols + begin, sortedSymbols + end, |
1067 | 0 | totalBits, targetLog, |
1068 | 0 | baseSeq, /* level */ 2); |
1069 | 0 | } |
1070 | 0 | } |
1071 | 0 | } |
1072 | | |
1073 | | static void HUF_fillDTableX2(HUF_DEltX2* DTable, const U32 targetLog, |
1074 | | const sortedSymbol_t* sortedList, |
1075 | | const U32* rankStart, rankValCol_t* rankValOrigin, const U32 maxWeight, |
1076 | | const U32 nbBitsBaseline) |
1077 | 0 | { |
1078 | 0 | U32* const rankVal = rankValOrigin[0]; |
1079 | 0 | const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */ |
1080 | 0 | const U32 minBits = nbBitsBaseline - maxWeight; |
1081 | 0 | int w; |
1082 | 0 | int const wEnd = (int)maxWeight + 1; |
1083 | | |
1084 | | /* Fill DTable in order of weight. */ |
1085 | 0 | for (w = 1; w < wEnd; ++w) { |
1086 | 0 | int const begin = (int)rankStart[w]; |
1087 | 0 | int const end = (int)rankStart[w+1]; |
1088 | 0 | U32 const nbBits = nbBitsBaseline - w; |
1089 | |
|
1090 | 0 | if (targetLog-nbBits >= minBits) { |
1091 | | /* Enough room for a second symbol. */ |
1092 | 0 | int start = rankVal[w]; |
1093 | 0 | U32 const length = 1U << ((targetLog - nbBits) & 0x1F /* quiet static-analyzer */); |
1094 | 0 | int minWeight = nbBits + scaleLog; |
1095 | 0 | int s; |
1096 | 0 | if (minWeight < 1) minWeight = 1; |
1097 | | /* Fill the DTable for every symbol of weight w. |
1098 | | * These symbols get at least 1 second symbol. |
1099 | | */ |
1100 | 0 | for (s = begin; s != end; ++s) { |
1101 | 0 | HUF_fillDTableX2Level2( |
1102 | 0 | DTable + start, targetLog, nbBits, |
1103 | 0 | rankValOrigin[nbBits], minWeight, wEnd, |
1104 | 0 | sortedList, rankStart, |
1105 | 0 | nbBitsBaseline, sortedList[s].symbol); |
1106 | 0 | start += length; |
1107 | 0 | } |
1108 | 0 | } else { |
1109 | | /* Only a single symbol. */ |
1110 | 0 | HUF_fillDTableX2ForWeight( |
1111 | 0 | DTable + rankVal[w], |
1112 | 0 | sortedList + begin, sortedList + end, |
1113 | 0 | nbBits, targetLog, |
1114 | 0 | /* baseSeq */ 0, /* level */ 1); |
1115 | 0 | } |
1116 | 0 | } |
1117 | 0 | } |
1118 | | |
1119 | | typedef struct { |
1120 | | rankValCol_t rankVal[HUF_TABLELOG_MAX]; |
1121 | | U32 rankStats[HUF_TABLELOG_MAX + 1]; |
1122 | | U32 rankStart0[HUF_TABLELOG_MAX + 3]; |
1123 | | sortedSymbol_t sortedSymbol[HUF_SYMBOLVALUE_MAX + 1]; |
1124 | | BYTE weightList[HUF_SYMBOLVALUE_MAX + 1]; |
1125 | | U32 calleeWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32]; |
1126 | | } HUF_ReadDTableX2_Workspace; |
1127 | | |
1128 | | size_t HUF_readDTableX2_wksp(HUF_DTable* DTable, |
1129 | | const void* src, size_t srcSize, |
1130 | | void* workSpace, size_t wkspSize, int flags) |
1131 | 0 | { |
1132 | 0 | U32 tableLog, maxW, nbSymbols; |
1133 | 0 | DTableDesc dtd = HUF_getDTableDesc(DTable); |
1134 | 0 | U32 maxTableLog = dtd.maxTableLog; |
1135 | 0 | size_t iSize; |
1136 | 0 | void* dtPtr = DTable+1; /* force compiler to avoid strict-aliasing */ |
1137 | 0 | HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr; |
1138 | 0 | U32 *rankStart; |
1139 | |
|
1140 | 0 | HUF_ReadDTableX2_Workspace* const wksp = (HUF_ReadDTableX2_Workspace*)workSpace; |
1141 | |
|
1142 | 0 | if (sizeof(*wksp) > wkspSize) return ERROR(GENERIC); |
1143 | | |
1144 | 0 | rankStart = wksp->rankStart0 + 1; |
1145 | 0 | ZSTD_memset(wksp->rankStats, 0, sizeof(wksp->rankStats)); |
1146 | 0 | ZSTD_memset(wksp->rankStart0, 0, sizeof(wksp->rankStart0)); |
1147 | |
|
1148 | 0 | DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(HUF_DTable)); /* if compiler fails here, assertion is wrong */ |
1149 | 0 | if (maxTableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge); |
1150 | | /* ZSTD_memset(weightList, 0, sizeof(weightList)); */ /* is not necessary, even though some analyzer complain ... */ |
1151 | | |
1152 | 0 | iSize = HUF_readStats_wksp(wksp->weightList, HUF_SYMBOLVALUE_MAX + 1, wksp->rankStats, &nbSymbols, &tableLog, src, srcSize, wksp->calleeWksp, sizeof(wksp->calleeWksp), flags); |
1153 | 0 | if (HUF_isError(iSize)) return iSize; |
1154 | | |
1155 | | /* check result */ |
1156 | 0 | if (tableLog > maxTableLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */ |
1157 | 0 | if (tableLog <= HUF_DECODER_FAST_TABLELOG && maxTableLog > HUF_DECODER_FAST_TABLELOG) maxTableLog = HUF_DECODER_FAST_TABLELOG; |
1158 | | |
1159 | | /* find maxWeight */ |
1160 | 0 | for (maxW = tableLog; wksp->rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */ |
1161 | | |
1162 | | /* Get start index of each weight */ |
1163 | 0 | { U32 w, nextRankStart = 0; |
1164 | 0 | for (w=1; w<maxW+1; w++) { |
1165 | 0 | U32 curr = nextRankStart; |
1166 | 0 | nextRankStart += wksp->rankStats[w]; |
1167 | 0 | rankStart[w] = curr; |
1168 | 0 | } |
1169 | 0 | rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/ |
1170 | 0 | rankStart[maxW+1] = nextRankStart; |
1171 | 0 | } |
1172 | | |
1173 | | /* sort symbols by weight */ |
1174 | 0 | { U32 s; |
1175 | 0 | for (s=0; s<nbSymbols; s++) { |
1176 | 0 | U32 const w = wksp->weightList[s]; |
1177 | 0 | U32 const r = rankStart[w]++; |
1178 | 0 | wksp->sortedSymbol[r].symbol = (BYTE)s; |
1179 | 0 | } |
1180 | 0 | rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */ |
1181 | 0 | } |
1182 | | |
1183 | | /* Build rankVal */ |
1184 | 0 | { U32* const rankVal0 = wksp->rankVal[0]; |
1185 | 0 | { int const rescale = (maxTableLog-tableLog) - 1; /* tableLog <= maxTableLog */ |
1186 | 0 | U32 nextRankVal = 0; |
1187 | 0 | U32 w; |
1188 | 0 | for (w=1; w<maxW+1; w++) { |
1189 | 0 | U32 curr = nextRankVal; |
1190 | 0 | nextRankVal += wksp->rankStats[w] << (w+rescale); |
1191 | 0 | rankVal0[w] = curr; |
1192 | 0 | } } |
1193 | 0 | { U32 const minBits = tableLog+1 - maxW; |
1194 | 0 | U32 consumed; |
1195 | 0 | for (consumed = minBits; consumed < maxTableLog - minBits + 1; consumed++) { |
1196 | 0 | U32* const rankValPtr = wksp->rankVal[consumed]; |
1197 | 0 | U32 w; |
1198 | 0 | for (w = 1; w < maxW+1; w++) { |
1199 | 0 | rankValPtr[w] = rankVal0[w] >> consumed; |
1200 | 0 | } } } } |
1201 | |
|
1202 | 0 | HUF_fillDTableX2(dt, maxTableLog, |
1203 | 0 | wksp->sortedSymbol, |
1204 | 0 | wksp->rankStart0, wksp->rankVal, maxW, |
1205 | 0 | tableLog+1); |
1206 | |
|
1207 | 0 | dtd.tableLog = (BYTE)maxTableLog; |
1208 | 0 | dtd.tableType = 1; |
1209 | 0 | ZSTD_memcpy(DTable, &dtd, sizeof(dtd)); |
1210 | 0 | return iSize; |
1211 | 0 | } |
1212 | | |
1213 | | |
1214 | | FORCE_INLINE_TEMPLATE U32 |
1215 | | HUF_decodeSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog) |
1216 | 0 | { |
1217 | 0 | size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */ |
1218 | 0 | ZSTD_memcpy(op, &dt[val].sequence, 2); |
1219 | 0 | BIT_skipBits(DStream, dt[val].nbBits); |
1220 | 0 | return dt[val].length; |
1221 | 0 | } |
1222 | | |
1223 | | FORCE_INLINE_TEMPLATE U32 |
1224 | | HUF_decodeLastSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog) |
1225 | 0 | { |
1226 | 0 | size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */ |
1227 | 0 | ZSTD_memcpy(op, &dt[val].sequence, 1); |
1228 | 0 | if (dt[val].length==1) { |
1229 | 0 | BIT_skipBits(DStream, dt[val].nbBits); |
1230 | 0 | } else { |
1231 | 0 | if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) { |
1232 | 0 | BIT_skipBits(DStream, dt[val].nbBits); |
1233 | 0 | if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8)) |
1234 | | /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */ |
1235 | 0 | DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); |
1236 | 0 | } |
1237 | 0 | } |
1238 | 0 | return 1; |
1239 | 0 | } |
1240 | | |
1241 | | #define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \ |
1242 | 0 | ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog) |
1243 | | |
1244 | | #define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \ |
1245 | 0 | if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \ |
1246 | 0 | ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog) |
1247 | | |
1248 | | #define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \ |
1249 | 0 | if (MEM_64bits()) \ |
1250 | 0 | ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog) |
1251 | | |
1252 | | HINT_INLINE size_t |
1253 | | HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, |
1254 | | const HUF_DEltX2* const dt, const U32 dtLog) |
1255 | 0 | { |
1256 | 0 | BYTE* const pStart = p; |
1257 | | |
1258 | | /* up to 8 symbols at a time */ |
1259 | 0 | if ((size_t)(pEnd - p) >= sizeof(bitDPtr->bitContainer)) { |
1260 | 0 | if (dtLog <= 11 && MEM_64bits()) { |
1261 | | /* up to 10 symbols at a time */ |
1262 | 0 | while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-9)) { |
1263 | 0 | HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
1264 | 0 | HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
1265 | 0 | HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
1266 | 0 | HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
1267 | 0 | HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
1268 | 0 | } |
1269 | 0 | } else { |
1270 | | /* up to 8 symbols at a time */ |
1271 | 0 | while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-(sizeof(bitDPtr->bitContainer)-1))) { |
1272 | 0 | HUF_DECODE_SYMBOLX2_2(p, bitDPtr); |
1273 | 0 | HUF_DECODE_SYMBOLX2_1(p, bitDPtr); |
1274 | 0 | HUF_DECODE_SYMBOLX2_2(p, bitDPtr); |
1275 | 0 | HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
1276 | 0 | } |
1277 | 0 | } |
1278 | 0 | } else { |
1279 | 0 | BIT_reloadDStream(bitDPtr); |
1280 | 0 | } |
1281 | | |
1282 | | /* closer to end : up to 2 symbols at a time */ |
1283 | 0 | if ((size_t)(pEnd - p) >= 2) { |
1284 | 0 | while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p <= pEnd-2)) |
1285 | 0 | HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
1286 | |
|
1287 | 0 | while (p <= pEnd-2) |
1288 | 0 | HUF_DECODE_SYMBOLX2_0(p, bitDPtr); /* no need to reload : reached the end of DStream */ |
1289 | 0 | } |
1290 | |
|
1291 | 0 | if (p < pEnd) |
1292 | 0 | p += HUF_decodeLastSymbolX2(p, bitDPtr, dt, dtLog); |
1293 | |
|
1294 | 0 | return p-pStart; |
1295 | 0 | } |
1296 | | |
1297 | | FORCE_INLINE_TEMPLATE size_t |
1298 | | HUF_decompress1X2_usingDTable_internal_body( |
1299 | | void* dst, size_t dstSize, |
1300 | | const void* cSrc, size_t cSrcSize, |
1301 | | const HUF_DTable* DTable) |
1302 | 0 | { |
1303 | 0 | BIT_DStream_t bitD; |
1304 | | |
1305 | | /* Init */ |
1306 | 0 | CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) ); |
1307 | | |
1308 | | /* decode */ |
1309 | 0 | { BYTE* const ostart = (BYTE*) dst; |
1310 | 0 | BYTE* const oend = ostart + dstSize; |
1311 | 0 | const void* const dtPtr = DTable+1; /* force compiler to not use strict-aliasing */ |
1312 | 0 | const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr; |
1313 | 0 | DTableDesc const dtd = HUF_getDTableDesc(DTable); |
1314 | 0 | HUF_decodeStreamX2(ostart, &bitD, oend, dt, dtd.tableLog); |
1315 | 0 | } |
1316 | | |
1317 | | /* check */ |
1318 | 0 | if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected); |
1319 | | |
1320 | | /* decoded size */ |
1321 | 0 | return dstSize; |
1322 | 0 | } |
1323 | | |
1324 | | /* HUF_decompress4X2_usingDTable_internal_body(): |
1325 | | * Conditions: |
1326 | | * @dstSize >= 6 |
1327 | | */ |
1328 | | FORCE_INLINE_TEMPLATE size_t |
1329 | | HUF_decompress4X2_usingDTable_internal_body( |
1330 | | void* dst, size_t dstSize, |
1331 | | const void* cSrc, size_t cSrcSize, |
1332 | | const HUF_DTable* DTable) |
1333 | 0 | { |
1334 | 0 | if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */ |
1335 | | |
1336 | 0 | { const BYTE* const istart = (const BYTE*) cSrc; |
1337 | 0 | BYTE* const ostart = (BYTE*) dst; |
1338 | 0 | BYTE* const oend = ostart + dstSize; |
1339 | 0 | BYTE* const olimit = oend - (sizeof(size_t)-1); |
1340 | 0 | const void* const dtPtr = DTable+1; |
1341 | 0 | const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr; |
1342 | | |
1343 | | /* Init */ |
1344 | 0 | BIT_DStream_t bitD1; |
1345 | 0 | BIT_DStream_t bitD2; |
1346 | 0 | BIT_DStream_t bitD3; |
1347 | 0 | BIT_DStream_t bitD4; |
1348 | 0 | size_t const length1 = MEM_readLE16(istart); |
1349 | 0 | size_t const length2 = MEM_readLE16(istart+2); |
1350 | 0 | size_t const length3 = MEM_readLE16(istart+4); |
1351 | 0 | size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6); |
1352 | 0 | const BYTE* const istart1 = istart + 6; /* jumpTable */ |
1353 | 0 | const BYTE* const istart2 = istart1 + length1; |
1354 | 0 | const BYTE* const istart3 = istart2 + length2; |
1355 | 0 | const BYTE* const istart4 = istart3 + length3; |
1356 | 0 | size_t const segmentSize = (dstSize+3) / 4; |
1357 | 0 | BYTE* const opStart2 = ostart + segmentSize; |
1358 | 0 | BYTE* const opStart3 = opStart2 + segmentSize; |
1359 | 0 | BYTE* const opStart4 = opStart3 + segmentSize; |
1360 | 0 | BYTE* op1 = ostart; |
1361 | 0 | BYTE* op2 = opStart2; |
1362 | 0 | BYTE* op3 = opStart3; |
1363 | 0 | BYTE* op4 = opStart4; |
1364 | 0 | U32 endSignal = 1; |
1365 | 0 | DTableDesc const dtd = HUF_getDTableDesc(DTable); |
1366 | 0 | U32 const dtLog = dtd.tableLog; |
1367 | |
|
1368 | 0 | if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */ |
1369 | 0 | if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */ |
1370 | 0 | if (dstSize < 6) return ERROR(corruption_detected); /* stream 4-split doesn't work */ |
1371 | 0 | CHECK_F( BIT_initDStream(&bitD1, istart1, length1) ); |
1372 | 0 | CHECK_F( BIT_initDStream(&bitD2, istart2, length2) ); |
1373 | 0 | CHECK_F( BIT_initDStream(&bitD3, istart3, length3) ); |
1374 | 0 | CHECK_F( BIT_initDStream(&bitD4, istart4, length4) ); |
1375 | | |
1376 | | /* 16-32 symbols per loop (4-8 symbols per stream) */ |
1377 | 0 | if ((size_t)(oend - op4) >= sizeof(size_t)) { |
1378 | 0 | for ( ; (endSignal) & (op4 < olimit); ) { |
1379 | 0 | #if defined(__clang__) && (defined(__x86_64__) || defined(__i386__)) |
1380 | 0 | HUF_DECODE_SYMBOLX2_2(op1, &bitD1); |
1381 | 0 | HUF_DECODE_SYMBOLX2_1(op1, &bitD1); |
1382 | 0 | HUF_DECODE_SYMBOLX2_2(op1, &bitD1); |
1383 | 0 | HUF_DECODE_SYMBOLX2_0(op1, &bitD1); |
1384 | 0 | HUF_DECODE_SYMBOLX2_2(op2, &bitD2); |
1385 | 0 | HUF_DECODE_SYMBOLX2_1(op2, &bitD2); |
1386 | 0 | HUF_DECODE_SYMBOLX2_2(op2, &bitD2); |
1387 | 0 | HUF_DECODE_SYMBOLX2_0(op2, &bitD2); |
1388 | 0 | endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished; |
1389 | 0 | endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished; |
1390 | 0 | HUF_DECODE_SYMBOLX2_2(op3, &bitD3); |
1391 | 0 | HUF_DECODE_SYMBOLX2_1(op3, &bitD3); |
1392 | 0 | HUF_DECODE_SYMBOLX2_2(op3, &bitD3); |
1393 | 0 | HUF_DECODE_SYMBOLX2_0(op3, &bitD3); |
1394 | 0 | HUF_DECODE_SYMBOLX2_2(op4, &bitD4); |
1395 | 0 | HUF_DECODE_SYMBOLX2_1(op4, &bitD4); |
1396 | 0 | HUF_DECODE_SYMBOLX2_2(op4, &bitD4); |
1397 | 0 | HUF_DECODE_SYMBOLX2_0(op4, &bitD4); |
1398 | 0 | endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished; |
1399 | 0 | endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished; |
1400 | | #else |
1401 | | HUF_DECODE_SYMBOLX2_2(op1, &bitD1); |
1402 | | HUF_DECODE_SYMBOLX2_2(op2, &bitD2); |
1403 | | HUF_DECODE_SYMBOLX2_2(op3, &bitD3); |
1404 | | HUF_DECODE_SYMBOLX2_2(op4, &bitD4); |
1405 | | HUF_DECODE_SYMBOLX2_1(op1, &bitD1); |
1406 | | HUF_DECODE_SYMBOLX2_1(op2, &bitD2); |
1407 | | HUF_DECODE_SYMBOLX2_1(op3, &bitD3); |
1408 | | HUF_DECODE_SYMBOLX2_1(op4, &bitD4); |
1409 | | HUF_DECODE_SYMBOLX2_2(op1, &bitD1); |
1410 | | HUF_DECODE_SYMBOLX2_2(op2, &bitD2); |
1411 | | HUF_DECODE_SYMBOLX2_2(op3, &bitD3); |
1412 | | HUF_DECODE_SYMBOLX2_2(op4, &bitD4); |
1413 | | HUF_DECODE_SYMBOLX2_0(op1, &bitD1); |
1414 | | HUF_DECODE_SYMBOLX2_0(op2, &bitD2); |
1415 | | HUF_DECODE_SYMBOLX2_0(op3, &bitD3); |
1416 | | HUF_DECODE_SYMBOLX2_0(op4, &bitD4); |
1417 | | endSignal = (U32)LIKELY((U32) |
1418 | | (BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished) |
1419 | | & (BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished) |
1420 | | & (BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished) |
1421 | | & (BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished)); |
1422 | | #endif |
1423 | 0 | } |
1424 | 0 | } |
1425 | | |
1426 | | /* check corruption */ |
1427 | 0 | if (op1 > opStart2) return ERROR(corruption_detected); |
1428 | 0 | if (op2 > opStart3) return ERROR(corruption_detected); |
1429 | 0 | if (op3 > opStart4) return ERROR(corruption_detected); |
1430 | | /* note : op4 already verified within main loop */ |
1431 | | |
1432 | | /* finish bitStreams one by one */ |
1433 | 0 | HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog); |
1434 | 0 | HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog); |
1435 | 0 | HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog); |
1436 | 0 | HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog); |
1437 | | |
1438 | | /* check */ |
1439 | 0 | { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4); |
1440 | 0 | if (!endCheck) return ERROR(corruption_detected); } |
1441 | | |
1442 | | /* decoded size */ |
1443 | 0 | return dstSize; |
1444 | 0 | } |
1445 | 0 | } |
1446 | | |
1447 | | #if HUF_NEED_BMI2_FUNCTION |
1448 | | static BMI2_TARGET_ATTRIBUTE |
1449 | | size_t HUF_decompress4X2_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc, |
1450 | | size_t cSrcSize, HUF_DTable const* DTable) { |
1451 | | return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable); |
1452 | | } |
1453 | | #endif |
1454 | | |
1455 | | static |
1456 | | size_t HUF_decompress4X2_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc, |
1457 | 0 | size_t cSrcSize, HUF_DTable const* DTable) { |
1458 | 0 | return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable); |
1459 | 0 | } |
1460 | | |
1461 | | #if ZSTD_ENABLE_ASM_X86_64_BMI2 |
1462 | | |
1463 | | HUF_ASM_DECL void HUF_decompress4X2_usingDTable_internal_fast_asm_loop(HUF_DecompressFastArgs* args) ZSTDLIB_HIDDEN; |
1464 | | |
1465 | | #endif |
1466 | | |
1467 | | static HUF_FAST_BMI2_ATTRS |
1468 | | void HUF_decompress4X2_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs* args) |
1469 | 0 | { |
1470 | 0 | U64 bits[4]; |
1471 | 0 | BYTE const* ip[4]; |
1472 | 0 | BYTE* op[4]; |
1473 | 0 | BYTE* oend[4]; |
1474 | 0 | HUF_DEltX2 const* const dtable = (HUF_DEltX2 const*)args->dt; |
1475 | 0 | BYTE const* const ilimit = args->ilimit; |
1476 | | |
1477 | | /* Copy the arguments to local registers. */ |
1478 | 0 | ZSTD_memcpy(&bits, &args->bits, sizeof(bits)); |
1479 | 0 | ZSTD_memcpy((void*)(&ip), &args->ip, sizeof(ip)); |
1480 | 0 | ZSTD_memcpy(&op, &args->op, sizeof(op)); |
1481 | |
|
1482 | 0 | oend[0] = op[1]; |
1483 | 0 | oend[1] = op[2]; |
1484 | 0 | oend[2] = op[3]; |
1485 | 0 | oend[3] = args->oend; |
1486 | |
|
1487 | 0 | assert(MEM_isLittleEndian()); |
1488 | 0 | assert(!MEM_32bits()); |
1489 | |
|
1490 | 0 | for (;;) { |
1491 | 0 | BYTE* olimit; |
1492 | 0 | int stream; |
1493 | 0 | int symbol; |
1494 | | |
1495 | | /* Assert loop preconditions */ |
1496 | | #ifndef NDEBUG |
1497 | | for (stream = 0; stream < 4; ++stream) { |
1498 | | assert(op[stream] <= oend[stream]); |
1499 | | assert(ip[stream] >= ilimit); |
1500 | | } |
1501 | | #endif |
1502 | | /* Compute olimit */ |
1503 | 0 | { |
1504 | | /* Each loop does 5 table lookups for each of the 4 streams. |
1505 | | * Each table lookup consumes up to 11 bits of input, and produces |
1506 | | * up to 2 bytes of output. |
1507 | | */ |
1508 | | /* We can consume up to 7 bytes of input per iteration per stream. |
1509 | | * We also know that each input pointer is >= ip[0]. So we can run |
1510 | | * iters loops before running out of input. |
1511 | | */ |
1512 | 0 | size_t iters = (size_t)(ip[0] - ilimit) / 7; |
1513 | | /* Each iteration can produce up to 10 bytes of output per stream. |
1514 | | * Each output stream my advance at different rates. So take the |
1515 | | * minimum number of safe iterations among all the output streams. |
1516 | | */ |
1517 | 0 | for (stream = 0; stream < 4; ++stream) { |
1518 | 0 | size_t const oiters = (size_t)(oend[stream] - op[stream]) / 10; |
1519 | 0 | iters = MIN(iters, oiters); |
1520 | 0 | } |
1521 | | |
1522 | | /* Each iteration produces at least 5 output symbols. So until |
1523 | | * op[3] crosses olimit, we know we haven't executed iters |
1524 | | * iterations yet. This saves us maintaining an iters counter, |
1525 | | * at the expense of computing the remaining # of iterations |
1526 | | * more frequently. |
1527 | | */ |
1528 | 0 | olimit = op[3] + (iters * 5); |
1529 | | |
1530 | | /* Exit the fast decoding loop if we are too close to the end. */ |
1531 | 0 | if (op[3] + 10 > olimit) |
1532 | 0 | break; |
1533 | | |
1534 | | /* Exit the decoding loop if any input pointer has crossed the |
1535 | | * previous one. This indicates corruption, and a precondition |
1536 | | * to our loop is that ip[i] >= ip[0]. |
1537 | | */ |
1538 | 0 | for (stream = 1; stream < 4; ++stream) { |
1539 | 0 | if (ip[stream] < ip[stream - 1]) |
1540 | 0 | goto _out; |
1541 | 0 | } |
1542 | 0 | } |
1543 | | |
1544 | | #ifndef NDEBUG |
1545 | | for (stream = 1; stream < 4; ++stream) { |
1546 | | assert(ip[stream] >= ip[stream - 1]); |
1547 | | } |
1548 | | #endif |
1549 | | |
1550 | 0 | do { |
1551 | | /* Do 5 table lookups for each of the first 3 streams */ |
1552 | 0 | for (symbol = 0; symbol < 5; ++symbol) { |
1553 | 0 | for (stream = 0; stream < 3; ++stream) { |
1554 | 0 | int const index = (int)(bits[stream] >> 53); |
1555 | 0 | HUF_DEltX2 const entry = dtable[index]; |
1556 | 0 | MEM_write16(op[stream], entry.sequence); |
1557 | 0 | bits[stream] <<= (entry.nbBits); |
1558 | 0 | op[stream] += (entry.length); |
1559 | 0 | } |
1560 | 0 | } |
1561 | | /* Do 1 table lookup from the final stream */ |
1562 | 0 | { |
1563 | 0 | int const index = (int)(bits[3] >> 53); |
1564 | 0 | HUF_DEltX2 const entry = dtable[index]; |
1565 | 0 | MEM_write16(op[3], entry.sequence); |
1566 | 0 | bits[3] <<= (entry.nbBits); |
1567 | 0 | op[3] += (entry.length); |
1568 | 0 | } |
1569 | | /* Do 4 table lookups from the final stream & reload bitstreams */ |
1570 | 0 | for (stream = 0; stream < 4; ++stream) { |
1571 | | /* Do a table lookup from the final stream. |
1572 | | * This is interleaved with the reloading to reduce register |
1573 | | * pressure. This shouldn't be necessary, but compilers can |
1574 | | * struggle with codegen with high register pressure. |
1575 | | */ |
1576 | 0 | { |
1577 | 0 | int const index = (int)(bits[3] >> 53); |
1578 | 0 | HUF_DEltX2 const entry = dtable[index]; |
1579 | 0 | MEM_write16(op[3], entry.sequence); |
1580 | 0 | bits[3] <<= (entry.nbBits); |
1581 | 0 | op[3] += (entry.length); |
1582 | 0 | } |
1583 | | /* Reload the bistreams. The final bitstream must be reloaded |
1584 | | * after the 5th symbol was decoded. |
1585 | | */ |
1586 | 0 | { |
1587 | 0 | int const ctz = ZSTD_countTrailingZeros64(bits[stream]); |
1588 | 0 | int const nbBits = ctz & 7; |
1589 | 0 | int const nbBytes = ctz >> 3; |
1590 | 0 | ip[stream] -= nbBytes; |
1591 | 0 | bits[stream] = MEM_read64(ip[stream]) | 1; |
1592 | 0 | bits[stream] <<= nbBits; |
1593 | 0 | } |
1594 | 0 | } |
1595 | 0 | } while (op[3] < olimit); |
1596 | 0 | } |
1597 | | |
1598 | 0 | _out: |
1599 | | |
1600 | | /* Save the final values of each of the state variables back to args. */ |
1601 | 0 | ZSTD_memcpy(&args->bits, &bits, sizeof(bits)); |
1602 | 0 | ZSTD_memcpy((void*)(&args->ip), &ip, sizeof(ip)); |
1603 | 0 | ZSTD_memcpy(&args->op, &op, sizeof(op)); |
1604 | 0 | } |
1605 | | |
1606 | | |
1607 | | static HUF_FAST_BMI2_ATTRS size_t |
1608 | | HUF_decompress4X2_usingDTable_internal_fast( |
1609 | | void* dst, size_t dstSize, |
1610 | | const void* cSrc, size_t cSrcSize, |
1611 | | const HUF_DTable* DTable, |
1612 | 0 | HUF_DecompressFastLoopFn loopFn) { |
1613 | 0 | void const* dt = DTable + 1; |
1614 | 0 | const BYTE* const iend = (const BYTE*)cSrc + 6; |
1615 | 0 | BYTE* const oend = (BYTE*)dst + dstSize; |
1616 | 0 | HUF_DecompressFastArgs args; |
1617 | 0 | { |
1618 | 0 | size_t const ret = HUF_DecompressFastArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable); |
1619 | 0 | FORWARD_IF_ERROR(ret, "Failed to init asm args"); |
1620 | 0 | if (ret == 0) |
1621 | 0 | return 0; |
1622 | 0 | } |
1623 | | |
1624 | 0 | assert(args.ip[0] >= args.ilimit); |
1625 | 0 | loopFn(&args); |
1626 | | |
1627 | | /* note : op4 already verified within main loop */ |
1628 | 0 | assert(args.ip[0] >= iend); |
1629 | 0 | assert(args.ip[1] >= iend); |
1630 | 0 | assert(args.ip[2] >= iend); |
1631 | 0 | assert(args.ip[3] >= iend); |
1632 | 0 | assert(args.op[3] <= oend); |
1633 | 0 | (void)iend; |
1634 | | |
1635 | | /* finish bitStreams one by one */ |
1636 | 0 | { |
1637 | 0 | size_t const segmentSize = (dstSize+3) / 4; |
1638 | 0 | BYTE* segmentEnd = (BYTE*)dst; |
1639 | 0 | int i; |
1640 | 0 | for (i = 0; i < 4; ++i) { |
1641 | 0 | BIT_DStream_t bit; |
1642 | 0 | if (segmentSize <= (size_t)(oend - segmentEnd)) |
1643 | 0 | segmentEnd += segmentSize; |
1644 | 0 | else |
1645 | 0 | segmentEnd = oend; |
1646 | 0 | FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption"); |
1647 | 0 | args.op[i] += HUF_decodeStreamX2(args.op[i], &bit, segmentEnd, (HUF_DEltX2 const*)dt, HUF_DECODER_FAST_TABLELOG); |
1648 | 0 | if (args.op[i] != segmentEnd) |
1649 | 0 | return ERROR(corruption_detected); |
1650 | 0 | } |
1651 | 0 | } |
1652 | | |
1653 | | /* decoded size */ |
1654 | 0 | return dstSize; |
1655 | 0 | } |
1656 | | |
1657 | | static size_t HUF_decompress4X2_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc, |
1658 | | size_t cSrcSize, HUF_DTable const* DTable, int flags) |
1659 | 0 | { |
1660 | 0 | HUF_DecompressUsingDTableFn fallbackFn = HUF_decompress4X2_usingDTable_internal_default; |
1661 | 0 | HUF_DecompressFastLoopFn loopFn = HUF_decompress4X2_usingDTable_internal_fast_c_loop; |
1662 | |
|
1663 | | #if DYNAMIC_BMI2 |
1664 | | if (flags & HUF_flags_bmi2) { |
1665 | | fallbackFn = HUF_decompress4X2_usingDTable_internal_bmi2; |
1666 | | # if ZSTD_ENABLE_ASM_X86_64_BMI2 |
1667 | | if (!(flags & HUF_flags_disableAsm)) { |
1668 | | loopFn = HUF_decompress4X2_usingDTable_internal_fast_asm_loop; |
1669 | | } |
1670 | | # endif |
1671 | | } else { |
1672 | | return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable); |
1673 | | } |
1674 | | #endif |
1675 | |
|
1676 | | #if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__) |
1677 | | if (!(flags & HUF_flags_disableAsm)) { |
1678 | | loopFn = HUF_decompress4X2_usingDTable_internal_fast_asm_loop; |
1679 | | } |
1680 | | #endif |
1681 | |
|
1682 | 0 | if (!(flags & HUF_flags_disableFast)) { |
1683 | 0 | size_t const ret = HUF_decompress4X2_usingDTable_internal_fast(dst, dstSize, cSrc, cSrcSize, DTable, loopFn); |
1684 | 0 | if (ret != 0) |
1685 | 0 | return ret; |
1686 | 0 | } |
1687 | 0 | return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable); |
1688 | 0 | } |
1689 | | |
1690 | | HUF_DGEN(HUF_decompress1X2_usingDTable_internal) |
1691 | | |
1692 | | size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize, |
1693 | | const void* cSrc, size_t cSrcSize, |
1694 | | void* workSpace, size_t wkspSize, int flags) |
1695 | 0 | { |
1696 | 0 | const BYTE* ip = (const BYTE*) cSrc; |
1697 | |
|
1698 | 0 | size_t const hSize = HUF_readDTableX2_wksp(DCtx, cSrc, cSrcSize, |
1699 | 0 | workSpace, wkspSize, flags); |
1700 | 0 | if (HUF_isError(hSize)) return hSize; |
1701 | 0 | if (hSize >= cSrcSize) return ERROR(srcSize_wrong); |
1702 | 0 | ip += hSize; cSrcSize -= hSize; |
1703 | |
|
1704 | 0 | return HUF_decompress1X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, flags); |
1705 | 0 | } |
1706 | | |
1707 | | static size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, |
1708 | | const void* cSrc, size_t cSrcSize, |
1709 | | void* workSpace, size_t wkspSize, int flags) |
1710 | 0 | { |
1711 | 0 | const BYTE* ip = (const BYTE*) cSrc; |
1712 | |
|
1713 | 0 | size_t hSize = HUF_readDTableX2_wksp(dctx, cSrc, cSrcSize, |
1714 | 0 | workSpace, wkspSize, flags); |
1715 | 0 | if (HUF_isError(hSize)) return hSize; |
1716 | 0 | if (hSize >= cSrcSize) return ERROR(srcSize_wrong); |
1717 | 0 | ip += hSize; cSrcSize -= hSize; |
1718 | |
|
1719 | 0 | return HUF_decompress4X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags); |
1720 | 0 | } |
1721 | | |
1722 | | #endif /* HUF_FORCE_DECOMPRESS_X1 */ |
1723 | | |
1724 | | |
1725 | | /* ***********************************/ |
1726 | | /* Universal decompression selectors */ |
1727 | | /* ***********************************/ |
1728 | | |
1729 | | |
1730 | | #if !defined(HUF_FORCE_DECOMPRESS_X1) && !defined(HUF_FORCE_DECOMPRESS_X2) |
1731 | | typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t; |
1732 | | static const algo_time_t algoTime[16 /* Quantization */][2 /* single, double */] = |
1733 | | { |
1734 | | /* single, double, quad */ |
1735 | | {{0,0}, {1,1}}, /* Q==0 : impossible */ |
1736 | | {{0,0}, {1,1}}, /* Q==1 : impossible */ |
1737 | | {{ 150,216}, { 381,119}}, /* Q == 2 : 12-18% */ |
1738 | | {{ 170,205}, { 514,112}}, /* Q == 3 : 18-25% */ |
1739 | | {{ 177,199}, { 539,110}}, /* Q == 4 : 25-32% */ |
1740 | | {{ 197,194}, { 644,107}}, /* Q == 5 : 32-38% */ |
1741 | | {{ 221,192}, { 735,107}}, /* Q == 6 : 38-44% */ |
1742 | | {{ 256,189}, { 881,106}}, /* Q == 7 : 44-50% */ |
1743 | | {{ 359,188}, {1167,109}}, /* Q == 8 : 50-56% */ |
1744 | | {{ 582,187}, {1570,114}}, /* Q == 9 : 56-62% */ |
1745 | | {{ 688,187}, {1712,122}}, /* Q ==10 : 62-69% */ |
1746 | | {{ 825,186}, {1965,136}}, /* Q ==11 : 69-75% */ |
1747 | | {{ 976,185}, {2131,150}}, /* Q ==12 : 75-81% */ |
1748 | | {{1180,186}, {2070,175}}, /* Q ==13 : 81-87% */ |
1749 | | {{1377,185}, {1731,202}}, /* Q ==14 : 87-93% */ |
1750 | | {{1412,185}, {1695,202}}, /* Q ==15 : 93-99% */ |
1751 | | }; |
1752 | | #endif |
1753 | | |
1754 | | /** HUF_selectDecoder() : |
1755 | | * Tells which decoder is likely to decode faster, |
1756 | | * based on a set of pre-computed metrics. |
1757 | | * @return : 0==HUF_decompress4X1, 1==HUF_decompress4X2 . |
1758 | | * Assumption : 0 < dstSize <= 128 KB */ |
1759 | | U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize) |
1760 | 0 | { |
1761 | 0 | assert(dstSize > 0); |
1762 | 0 | assert(dstSize <= 128*1024); |
1763 | | #if defined(HUF_FORCE_DECOMPRESS_X1) |
1764 | | (void)dstSize; |
1765 | | (void)cSrcSize; |
1766 | | return 0; |
1767 | | #elif defined(HUF_FORCE_DECOMPRESS_X2) |
1768 | | (void)dstSize; |
1769 | | (void)cSrcSize; |
1770 | | return 1; |
1771 | | #else |
1772 | | /* decoder timing evaluation */ |
1773 | 0 | { U32 const Q = (cSrcSize >= dstSize) ? 15 : (U32)(cSrcSize * 16 / dstSize); /* Q < 16 */ |
1774 | 0 | U32 const D256 = (U32)(dstSize >> 8); |
1775 | 0 | U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256); |
1776 | 0 | U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256); |
1777 | 0 | DTime1 += DTime1 >> 5; /* small advantage to algorithm using less memory, to reduce cache eviction */ |
1778 | 0 | return DTime1 < DTime0; |
1779 | 0 | } |
1780 | 0 | #endif |
1781 | 0 | } |
1782 | | |
1783 | | size_t HUF_decompress1X_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, |
1784 | | const void* cSrc, size_t cSrcSize, |
1785 | | void* workSpace, size_t wkspSize, int flags) |
1786 | 0 | { |
1787 | | /* validation checks */ |
1788 | 0 | if (dstSize == 0) return ERROR(dstSize_tooSmall); |
1789 | 0 | if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */ |
1790 | 0 | if (cSrcSize == dstSize) { ZSTD_memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */ |
1791 | 0 | if (cSrcSize == 1) { ZSTD_memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */ |
1792 | | |
1793 | 0 | { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize); |
1794 | | #if defined(HUF_FORCE_DECOMPRESS_X1) |
1795 | | (void)algoNb; |
1796 | | assert(algoNb == 0); |
1797 | | return HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc, |
1798 | | cSrcSize, workSpace, wkspSize, flags); |
1799 | | #elif defined(HUF_FORCE_DECOMPRESS_X2) |
1800 | | (void)algoNb; |
1801 | | assert(algoNb == 1); |
1802 | | return HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc, |
1803 | | cSrcSize, workSpace, wkspSize, flags); |
1804 | | #else |
1805 | 0 | return algoNb ? HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc, |
1806 | 0 | cSrcSize, workSpace, wkspSize, flags): |
1807 | 0 | HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc, |
1808 | 0 | cSrcSize, workSpace, wkspSize, flags); |
1809 | 0 | #endif |
1810 | 0 | } |
1811 | 0 | } |
1812 | | |
1813 | | |
1814 | | size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int flags) |
1815 | 0 | { |
1816 | 0 | DTableDesc const dtd = HUF_getDTableDesc(DTable); |
1817 | | #if defined(HUF_FORCE_DECOMPRESS_X1) |
1818 | | (void)dtd; |
1819 | | assert(dtd.tableType == 0); |
1820 | | return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags); |
1821 | | #elif defined(HUF_FORCE_DECOMPRESS_X2) |
1822 | | (void)dtd; |
1823 | | assert(dtd.tableType == 1); |
1824 | | return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags); |
1825 | | #else |
1826 | 0 | return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags) : |
1827 | 0 | HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags); |
1828 | 0 | #endif |
1829 | 0 | } |
1830 | | |
1831 | | #ifndef HUF_FORCE_DECOMPRESS_X2 |
1832 | | size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags) |
1833 | 0 | { |
1834 | 0 | const BYTE* ip = (const BYTE*) cSrc; |
1835 | |
|
1836 | 0 | size_t const hSize = HUF_readDTableX1_wksp(dctx, cSrc, cSrcSize, workSpace, wkspSize, flags); |
1837 | 0 | if (HUF_isError(hSize)) return hSize; |
1838 | 0 | if (hSize >= cSrcSize) return ERROR(srcSize_wrong); |
1839 | 0 | ip += hSize; cSrcSize -= hSize; |
1840 | |
|
1841 | 0 | return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags); |
1842 | 0 | } |
1843 | | #endif |
1844 | | |
1845 | | size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int flags) |
1846 | 0 | { |
1847 | 0 | DTableDesc const dtd = HUF_getDTableDesc(DTable); |
1848 | | #if defined(HUF_FORCE_DECOMPRESS_X1) |
1849 | | (void)dtd; |
1850 | | assert(dtd.tableType == 0); |
1851 | | return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags); |
1852 | | #elif defined(HUF_FORCE_DECOMPRESS_X2) |
1853 | | (void)dtd; |
1854 | | assert(dtd.tableType == 1); |
1855 | | return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags); |
1856 | | #else |
1857 | 0 | return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags) : |
1858 | 0 | HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags); |
1859 | 0 | #endif |
1860 | 0 | } |
1861 | | |
1862 | | size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags) |
1863 | 0 | { |
1864 | | /* validation checks */ |
1865 | 0 | if (dstSize == 0) return ERROR(dstSize_tooSmall); |
1866 | 0 | if (cSrcSize == 0) return ERROR(corruption_detected); |
1867 | | |
1868 | 0 | { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize); |
1869 | | #if defined(HUF_FORCE_DECOMPRESS_X1) |
1870 | | (void)algoNb; |
1871 | | assert(algoNb == 0); |
1872 | | return HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags); |
1873 | | #elif defined(HUF_FORCE_DECOMPRESS_X2) |
1874 | | (void)algoNb; |
1875 | | assert(algoNb == 1); |
1876 | | return HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags); |
1877 | | #else |
1878 | 0 | return algoNb ? HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags) : |
1879 | 0 | HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags); |
1880 | 0 | #endif |
1881 | 0 | } |
1882 | 0 | } |