Coverage Report

Created: 2025-06-13 06:34

/src/perfetto/buildtools/zstd/lib/compress/zstdmt_compress.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) Meta Platforms, Inc. and affiliates.
3
 * All rights reserved.
4
 *
5
 * This source code is licensed under both the BSD-style license (found in the
6
 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7
 * in the COPYING file in the root directory of this source tree).
8
 * You may select, at your option, one of the above-listed licenses.
9
 */
10
11
12
/* ======   Compiler specifics   ====== */
13
#if defined(_MSC_VER)
14
#  pragma warning(disable : 4204)   /* disable: C4204: non-constant aggregate initializer */
15
#endif
16
17
18
/* ======   Constants   ====== */
19
#define ZSTDMT_OVERLAPLOG_DEFAULT 0
20
21
22
/* ======   Dependencies   ====== */
23
#include "../common/allocations.h"  /* ZSTD_customMalloc, ZSTD_customCalloc, ZSTD_customFree */
24
#include "../common/zstd_deps.h"   /* ZSTD_memcpy, ZSTD_memset, INT_MAX, UINT_MAX */
25
#include "../common/mem.h"         /* MEM_STATIC */
26
#include "../common/pool.h"        /* threadpool */
27
#include "../common/threading.h"   /* mutex */
28
#include "zstd_compress_internal.h"  /* MIN, ERROR, ZSTD_*, ZSTD_highbit32 */
29
#include "zstd_ldm.h"
30
#include "zstdmt_compress.h"
31
32
/* Guards code to support resizing the SeqPool.
33
 * We will want to resize the SeqPool to save memory in the future.
34
 * Until then, comment the code out since it is unused.
35
 */
36
#define ZSTD_RESIZE_SEQPOOL 0
37
38
/* ======   Debug   ====== */
39
#if defined(DEBUGLEVEL) && (DEBUGLEVEL>=2) \
40
    && !defined(_MSC_VER) \
41
    && !defined(__MINGW32__)
42
43
#  include <stdio.h>
44
#  include <unistd.h>
45
#  include <sys/times.h>
46
47
#  define DEBUG_PRINTHEX(l,p,n) {            \
48
    unsigned debug_u;                        \
49
    for (debug_u=0; debug_u<(n); debug_u++)  \
50
        RAWLOG(l, "%02X ", ((const unsigned char*)(p))[debug_u]); \
51
    RAWLOG(l, " \n");                        \
52
}
53
54
static unsigned long long GetCurrentClockTimeMicroseconds(void)
55
{
56
   static clock_t _ticksPerSecond = 0;
57
   if (_ticksPerSecond <= 0) _ticksPerSecond = sysconf(_SC_CLK_TCK);
58
59
   {   struct tms junk; clock_t newTicks = (clock_t) times(&junk);
60
       return ((((unsigned long long)newTicks)*(1000000))/_ticksPerSecond);
61
}  }
62
63
#define MUTEX_WAIT_TIME_DLEVEL 6
64
#define ZSTD_PTHREAD_MUTEX_LOCK(mutex) {          \
65
    if (DEBUGLEVEL >= MUTEX_WAIT_TIME_DLEVEL) {   \
66
        unsigned long long const beforeTime = GetCurrentClockTimeMicroseconds(); \
67
        ZSTD_pthread_mutex_lock(mutex);           \
68
        {   unsigned long long const afterTime = GetCurrentClockTimeMicroseconds(); \
69
            unsigned long long const elapsedTime = (afterTime-beforeTime); \
70
            if (elapsedTime > 1000) {  /* or whatever threshold you like; I'm using 1 millisecond here */ \
71
                DEBUGLOG(MUTEX_WAIT_TIME_DLEVEL, "Thread took %llu microseconds to acquire mutex %s \n", \
72
                   elapsedTime, #mutex);          \
73
        }   }                                     \
74
    } else {                                      \
75
        ZSTD_pthread_mutex_lock(mutex);           \
76
    }                                             \
77
}
78
79
#else
80
81
0
#  define ZSTD_PTHREAD_MUTEX_LOCK(m) ZSTD_pthread_mutex_lock(m)
82
#  define DEBUG_PRINTHEX(l,p,n) {}
83
84
#endif
85
86
87
/* =====   Buffer Pool   ===== */
88
/* a single Buffer Pool can be invoked from multiple threads in parallel */
89
90
typedef struct buffer_s {
91
    void* start;
92
    size_t capacity;
93
} buffer_t;
94
95
static const buffer_t g_nullBuffer = { NULL, 0 };
96
97
typedef struct ZSTDMT_bufferPool_s {
98
    ZSTD_pthread_mutex_t poolMutex;
99
    size_t bufferSize;
100
    unsigned totalBuffers;
101
    unsigned nbBuffers;
102
    ZSTD_customMem cMem;
103
    buffer_t bTable[1];   /* variable size */
104
} ZSTDMT_bufferPool;
105
106
static ZSTDMT_bufferPool* ZSTDMT_createBufferPool(unsigned maxNbBuffers, ZSTD_customMem cMem)
107
0
{
108
0
    ZSTDMT_bufferPool* const bufPool = (ZSTDMT_bufferPool*)ZSTD_customCalloc(
109
0
        sizeof(ZSTDMT_bufferPool) + (maxNbBuffers-1) * sizeof(buffer_t), cMem);
110
0
    if (bufPool==NULL) return NULL;
111
0
    if (ZSTD_pthread_mutex_init(&bufPool->poolMutex, NULL)) {
112
0
        ZSTD_customFree(bufPool, cMem);
113
0
        return NULL;
114
0
    }
115
0
    bufPool->bufferSize = 64 KB;
116
0
    bufPool->totalBuffers = maxNbBuffers;
117
0
    bufPool->nbBuffers = 0;
118
0
    bufPool->cMem = cMem;
119
0
    return bufPool;
120
0
}
121
122
static void ZSTDMT_freeBufferPool(ZSTDMT_bufferPool* bufPool)
123
0
{
124
0
    unsigned u;
125
0
    DEBUGLOG(3, "ZSTDMT_freeBufferPool (address:%08X)", (U32)(size_t)bufPool);
126
0
    if (!bufPool) return;   /* compatibility with free on NULL */
127
0
    for (u=0; u<bufPool->totalBuffers; u++) {
128
0
        DEBUGLOG(4, "free buffer %2u (address:%08X)", u, (U32)(size_t)bufPool->bTable[u].start);
129
0
        ZSTD_customFree(bufPool->bTable[u].start, bufPool->cMem);
130
0
    }
131
0
    ZSTD_pthread_mutex_destroy(&bufPool->poolMutex);
132
0
    ZSTD_customFree(bufPool, bufPool->cMem);
133
0
}
134
135
/* only works at initialization, not during compression */
136
static size_t ZSTDMT_sizeof_bufferPool(ZSTDMT_bufferPool* bufPool)
137
0
{
138
0
    size_t const poolSize = sizeof(*bufPool)
139
0
                          + (bufPool->totalBuffers - 1) * sizeof(buffer_t);
140
0
    unsigned u;
141
0
    size_t totalBufferSize = 0;
142
0
    ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
143
0
    for (u=0; u<bufPool->totalBuffers; u++)
144
0
        totalBufferSize += bufPool->bTable[u].capacity;
145
0
    ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
146
147
0
    return poolSize + totalBufferSize;
148
0
}
149
150
/* ZSTDMT_setBufferSize() :
151
 * all future buffers provided by this buffer pool will have _at least_ this size
152
 * note : it's better for all buffers to have same size,
153
 * as they become freely interchangeable, reducing malloc/free usages and memory fragmentation */
154
static void ZSTDMT_setBufferSize(ZSTDMT_bufferPool* const bufPool, size_t const bSize)
155
0
{
156
0
    ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
157
0
    DEBUGLOG(4, "ZSTDMT_setBufferSize: bSize = %u", (U32)bSize);
158
0
    bufPool->bufferSize = bSize;
159
0
    ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
160
0
}
161
162
163
static ZSTDMT_bufferPool* ZSTDMT_expandBufferPool(ZSTDMT_bufferPool* srcBufPool, unsigned maxNbBuffers)
164
0
{
165
0
    if (srcBufPool==NULL) return NULL;
166
0
    if (srcBufPool->totalBuffers >= maxNbBuffers) /* good enough */
167
0
        return srcBufPool;
168
    /* need a larger buffer pool */
169
0
    {   ZSTD_customMem const cMem = srcBufPool->cMem;
170
0
        size_t const bSize = srcBufPool->bufferSize;   /* forward parameters */
171
0
        ZSTDMT_bufferPool* newBufPool;
172
0
        ZSTDMT_freeBufferPool(srcBufPool);
173
0
        newBufPool = ZSTDMT_createBufferPool(maxNbBuffers, cMem);
174
0
        if (newBufPool==NULL) return newBufPool;
175
0
        ZSTDMT_setBufferSize(newBufPool, bSize);
176
0
        return newBufPool;
177
0
    }
178
0
}
179
180
/** ZSTDMT_getBuffer() :
181
 *  assumption : bufPool must be valid
182
 * @return : a buffer, with start pointer and size
183
 *  note: allocation may fail, in this case, start==NULL and size==0 */
184
static buffer_t ZSTDMT_getBuffer(ZSTDMT_bufferPool* bufPool)
185
0
{
186
0
    size_t const bSize = bufPool->bufferSize;
187
0
    DEBUGLOG(5, "ZSTDMT_getBuffer: bSize = %u", (U32)bufPool->bufferSize);
188
0
    ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
189
0
    if (bufPool->nbBuffers) {   /* try to use an existing buffer */
190
0
        buffer_t const buf = bufPool->bTable[--(bufPool->nbBuffers)];
191
0
        size_t const availBufferSize = buf.capacity;
192
0
        bufPool->bTable[bufPool->nbBuffers] = g_nullBuffer;
193
0
        if ((availBufferSize >= bSize) & ((availBufferSize>>3) <= bSize)) {
194
            /* large enough, but not too much */
195
0
            DEBUGLOG(5, "ZSTDMT_getBuffer: provide buffer %u of size %u",
196
0
                        bufPool->nbBuffers, (U32)buf.capacity);
197
0
            ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
198
0
            return buf;
199
0
        }
200
        /* size conditions not respected : scratch this buffer, create new one */
201
0
        DEBUGLOG(5, "ZSTDMT_getBuffer: existing buffer does not meet size conditions => freeing");
202
0
        ZSTD_customFree(buf.start, bufPool->cMem);
203
0
    }
204
0
    ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
205
    /* create new buffer */
206
0
    DEBUGLOG(5, "ZSTDMT_getBuffer: create a new buffer");
207
0
    {   buffer_t buffer;
208
0
        void* const start = ZSTD_customMalloc(bSize, bufPool->cMem);
209
0
        buffer.start = start;   /* note : start can be NULL if malloc fails ! */
210
0
        buffer.capacity = (start==NULL) ? 0 : bSize;
211
0
        if (start==NULL) {
212
0
            DEBUGLOG(5, "ZSTDMT_getBuffer: buffer allocation failure !!");
213
0
        } else {
214
0
            DEBUGLOG(5, "ZSTDMT_getBuffer: created buffer of size %u", (U32)bSize);
215
0
        }
216
0
        return buffer;
217
0
    }
218
0
}
219
220
#if ZSTD_RESIZE_SEQPOOL
221
/** ZSTDMT_resizeBuffer() :
222
 * assumption : bufPool must be valid
223
 * @return : a buffer that is at least the buffer pool buffer size.
224
 *           If a reallocation happens, the data in the input buffer is copied.
225
 */
226
static buffer_t ZSTDMT_resizeBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buffer)
227
{
228
    size_t const bSize = bufPool->bufferSize;
229
    if (buffer.capacity < bSize) {
230
        void* const start = ZSTD_customMalloc(bSize, bufPool->cMem);
231
        buffer_t newBuffer;
232
        newBuffer.start = start;
233
        newBuffer.capacity = start == NULL ? 0 : bSize;
234
        if (start != NULL) {
235
            assert(newBuffer.capacity >= buffer.capacity);
236
            ZSTD_memcpy(newBuffer.start, buffer.start, buffer.capacity);
237
            DEBUGLOG(5, "ZSTDMT_resizeBuffer: created buffer of size %u", (U32)bSize);
238
            return newBuffer;
239
        }
240
        DEBUGLOG(5, "ZSTDMT_resizeBuffer: buffer allocation failure !!");
241
    }
242
    return buffer;
243
}
244
#endif
245
246
/* store buffer for later re-use, up to pool capacity */
247
static void ZSTDMT_releaseBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buf)
248
0
{
249
0
    DEBUGLOG(5, "ZSTDMT_releaseBuffer");
250
0
    if (buf.start == NULL) return;   /* compatible with release on NULL */
251
0
    ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
252
0
    if (bufPool->nbBuffers < bufPool->totalBuffers) {
253
0
        bufPool->bTable[bufPool->nbBuffers++] = buf;  /* stored for later use */
254
0
        DEBUGLOG(5, "ZSTDMT_releaseBuffer: stored buffer of size %u in slot %u",
255
0
                    (U32)buf.capacity, (U32)(bufPool->nbBuffers-1));
256
0
        ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
257
0
        return;
258
0
    }
259
0
    ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
260
    /* Reached bufferPool capacity (should not happen) */
261
0
    DEBUGLOG(5, "ZSTDMT_releaseBuffer: pool capacity reached => freeing ");
262
0
    ZSTD_customFree(buf.start, bufPool->cMem);
263
0
}
264
265
/* We need 2 output buffers per worker since each dstBuff must be flushed after it is released.
266
 * The 3 additional buffers are as follows:
267
 *   1 buffer for input loading
268
 *   1 buffer for "next input" when submitting current one
269
 *   1 buffer stuck in queue */
270
0
#define BUF_POOL_MAX_NB_BUFFERS(nbWorkers) (2*(nbWorkers) + 3)
271
272
/* After a worker releases its rawSeqStore, it is immediately ready for reuse.
273
 * So we only need one seq buffer per worker. */
274
0
#define SEQ_POOL_MAX_NB_BUFFERS(nbWorkers) (nbWorkers)
275
276
/* =====   Seq Pool Wrapper   ====== */
277
278
typedef ZSTDMT_bufferPool ZSTDMT_seqPool;
279
280
static size_t ZSTDMT_sizeof_seqPool(ZSTDMT_seqPool* seqPool)
281
0
{
282
0
    return ZSTDMT_sizeof_bufferPool(seqPool);
283
0
}
284
285
static rawSeqStore_t bufferToSeq(buffer_t buffer)
286
0
{
287
0
    rawSeqStore_t seq = kNullRawSeqStore;
288
0
    seq.seq = (rawSeq*)buffer.start;
289
0
    seq.capacity = buffer.capacity / sizeof(rawSeq);
290
0
    return seq;
291
0
}
292
293
static buffer_t seqToBuffer(rawSeqStore_t seq)
294
0
{
295
0
    buffer_t buffer;
296
0
    buffer.start = seq.seq;
297
0
    buffer.capacity = seq.capacity * sizeof(rawSeq);
298
0
    return buffer;
299
0
}
300
301
static rawSeqStore_t ZSTDMT_getSeq(ZSTDMT_seqPool* seqPool)
302
0
{
303
0
    if (seqPool->bufferSize == 0) {
304
0
        return kNullRawSeqStore;
305
0
    }
306
0
    return bufferToSeq(ZSTDMT_getBuffer(seqPool));
307
0
}
308
309
#if ZSTD_RESIZE_SEQPOOL
310
static rawSeqStore_t ZSTDMT_resizeSeq(ZSTDMT_seqPool* seqPool, rawSeqStore_t seq)
311
{
312
  return bufferToSeq(ZSTDMT_resizeBuffer(seqPool, seqToBuffer(seq)));
313
}
314
#endif
315
316
static void ZSTDMT_releaseSeq(ZSTDMT_seqPool* seqPool, rawSeqStore_t seq)
317
0
{
318
0
  ZSTDMT_releaseBuffer(seqPool, seqToBuffer(seq));
319
0
}
320
321
static void ZSTDMT_setNbSeq(ZSTDMT_seqPool* const seqPool, size_t const nbSeq)
322
0
{
323
0
  ZSTDMT_setBufferSize(seqPool, nbSeq * sizeof(rawSeq));
324
0
}
325
326
static ZSTDMT_seqPool* ZSTDMT_createSeqPool(unsigned nbWorkers, ZSTD_customMem cMem)
327
0
{
328
0
    ZSTDMT_seqPool* const seqPool = ZSTDMT_createBufferPool(SEQ_POOL_MAX_NB_BUFFERS(nbWorkers), cMem);
329
0
    if (seqPool == NULL) return NULL;
330
0
    ZSTDMT_setNbSeq(seqPool, 0);
331
0
    return seqPool;
332
0
}
333
334
static void ZSTDMT_freeSeqPool(ZSTDMT_seqPool* seqPool)
335
0
{
336
0
    ZSTDMT_freeBufferPool(seqPool);
337
0
}
338
339
static ZSTDMT_seqPool* ZSTDMT_expandSeqPool(ZSTDMT_seqPool* pool, U32 nbWorkers)
340
0
{
341
0
    return ZSTDMT_expandBufferPool(pool, SEQ_POOL_MAX_NB_BUFFERS(nbWorkers));
342
0
}
343
344
345
/* =====   CCtx Pool   ===== */
346
/* a single CCtx Pool can be invoked from multiple threads in parallel */
347
348
typedef struct {
349
    ZSTD_pthread_mutex_t poolMutex;
350
    int totalCCtx;
351
    int availCCtx;
352
    ZSTD_customMem cMem;
353
    ZSTD_CCtx* cctx[1];   /* variable size */
354
} ZSTDMT_CCtxPool;
355
356
/* note : all CCtx borrowed from the pool should be released back to the pool _before_ freeing the pool */
357
static void ZSTDMT_freeCCtxPool(ZSTDMT_CCtxPool* pool)
358
0
{
359
0
    int cid;
360
0
    for (cid=0; cid<pool->totalCCtx; cid++)
361
0
        ZSTD_freeCCtx(pool->cctx[cid]);  /* note : compatible with free on NULL */
362
0
    ZSTD_pthread_mutex_destroy(&pool->poolMutex);
363
0
    ZSTD_customFree(pool, pool->cMem);
364
0
}
365
366
/* ZSTDMT_createCCtxPool() :
367
 * implies nbWorkers >= 1 , checked by caller ZSTDMT_createCCtx() */
368
static ZSTDMT_CCtxPool* ZSTDMT_createCCtxPool(int nbWorkers,
369
                                              ZSTD_customMem cMem)
370
0
{
371
0
    ZSTDMT_CCtxPool* const cctxPool = (ZSTDMT_CCtxPool*) ZSTD_customCalloc(
372
0
        sizeof(ZSTDMT_CCtxPool) + (nbWorkers-1)*sizeof(ZSTD_CCtx*), cMem);
373
0
    assert(nbWorkers > 0);
374
0
    if (!cctxPool) return NULL;
375
0
    if (ZSTD_pthread_mutex_init(&cctxPool->poolMutex, NULL)) {
376
0
        ZSTD_customFree(cctxPool, cMem);
377
0
        return NULL;
378
0
    }
379
0
    cctxPool->cMem = cMem;
380
0
    cctxPool->totalCCtx = nbWorkers;
381
0
    cctxPool->availCCtx = 1;   /* at least one cctx for single-thread mode */
382
0
    cctxPool->cctx[0] = ZSTD_createCCtx_advanced(cMem);
383
0
    if (!cctxPool->cctx[0]) { ZSTDMT_freeCCtxPool(cctxPool); return NULL; }
384
0
    DEBUGLOG(3, "cctxPool created, with %u workers", nbWorkers);
385
0
    return cctxPool;
386
0
}
387
388
static ZSTDMT_CCtxPool* ZSTDMT_expandCCtxPool(ZSTDMT_CCtxPool* srcPool,
389
                                              int nbWorkers)
390
0
{
391
0
    if (srcPool==NULL) return NULL;
392
0
    if (nbWorkers <= srcPool->totalCCtx) return srcPool;   /* good enough */
393
    /* need a larger cctx pool */
394
0
    {   ZSTD_customMem const cMem = srcPool->cMem;
395
0
        ZSTDMT_freeCCtxPool(srcPool);
396
0
        return ZSTDMT_createCCtxPool(nbWorkers, cMem);
397
0
    }
398
0
}
399
400
/* only works during initialization phase, not during compression */
401
static size_t ZSTDMT_sizeof_CCtxPool(ZSTDMT_CCtxPool* cctxPool)
402
0
{
403
0
    ZSTD_pthread_mutex_lock(&cctxPool->poolMutex);
404
0
    {   unsigned const nbWorkers = cctxPool->totalCCtx;
405
0
        size_t const poolSize = sizeof(*cctxPool)
406
0
                                + (nbWorkers-1) * sizeof(ZSTD_CCtx*);
407
0
        unsigned u;
408
0
        size_t totalCCtxSize = 0;
409
0
        for (u=0; u<nbWorkers; u++) {
410
0
            totalCCtxSize += ZSTD_sizeof_CCtx(cctxPool->cctx[u]);
411
0
        }
412
0
        ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
413
0
        assert(nbWorkers > 0);
414
0
        return poolSize + totalCCtxSize;
415
0
    }
416
0
}
417
418
static ZSTD_CCtx* ZSTDMT_getCCtx(ZSTDMT_CCtxPool* cctxPool)
419
0
{
420
0
    DEBUGLOG(5, "ZSTDMT_getCCtx");
421
0
    ZSTD_pthread_mutex_lock(&cctxPool->poolMutex);
422
0
    if (cctxPool->availCCtx) {
423
0
        cctxPool->availCCtx--;
424
0
        {   ZSTD_CCtx* const cctx = cctxPool->cctx[cctxPool->availCCtx];
425
0
            ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
426
0
            return cctx;
427
0
    }   }
428
0
    ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
429
0
    DEBUGLOG(5, "create one more CCtx");
430
0
    return ZSTD_createCCtx_advanced(cctxPool->cMem);   /* note : can be NULL, when creation fails ! */
431
0
}
432
433
static void ZSTDMT_releaseCCtx(ZSTDMT_CCtxPool* pool, ZSTD_CCtx* cctx)
434
0
{
435
0
    if (cctx==NULL) return;   /* compatibility with release on NULL */
436
0
    ZSTD_pthread_mutex_lock(&pool->poolMutex);
437
0
    if (pool->availCCtx < pool->totalCCtx)
438
0
        pool->cctx[pool->availCCtx++] = cctx;
439
0
    else {
440
        /* pool overflow : should not happen, since totalCCtx==nbWorkers */
441
0
        DEBUGLOG(4, "CCtx pool overflow : free cctx");
442
0
        ZSTD_freeCCtx(cctx);
443
0
    }
444
0
    ZSTD_pthread_mutex_unlock(&pool->poolMutex);
445
0
}
446
447
/* ====   Serial State   ==== */
448
449
typedef struct {
450
    void const* start;
451
    size_t size;
452
} range_t;
453
454
typedef struct {
455
    /* All variables in the struct are protected by mutex. */
456
    ZSTD_pthread_mutex_t mutex;
457
    ZSTD_pthread_cond_t cond;
458
    ZSTD_CCtx_params params;
459
    ldmState_t ldmState;
460
    XXH64_state_t xxhState;
461
    unsigned nextJobID;
462
    /* Protects ldmWindow.
463
     * Must be acquired after the main mutex when acquiring both.
464
     */
465
    ZSTD_pthread_mutex_t ldmWindowMutex;
466
    ZSTD_pthread_cond_t ldmWindowCond;  /* Signaled when ldmWindow is updated */
467
    ZSTD_window_t ldmWindow;  /* A thread-safe copy of ldmState.window */
468
} serialState_t;
469
470
static int
471
ZSTDMT_serialState_reset(serialState_t* serialState,
472
                         ZSTDMT_seqPool* seqPool,
473
                         ZSTD_CCtx_params params,
474
                         size_t jobSize,
475
                         const void* dict, size_t const dictSize,
476
                         ZSTD_dictContentType_e dictContentType)
477
0
{
478
    /* Adjust parameters */
479
0
    if (params.ldmParams.enableLdm == ZSTD_ps_enable) {
480
0
        DEBUGLOG(4, "LDM window size = %u KB", (1U << params.cParams.windowLog) >> 10);
481
0
        ZSTD_ldm_adjustParameters(&params.ldmParams, &params.cParams);
482
0
        assert(params.ldmParams.hashLog >= params.ldmParams.bucketSizeLog);
483
0
        assert(params.ldmParams.hashRateLog < 32);
484
0
    } else {
485
0
        ZSTD_memset(&params.ldmParams, 0, sizeof(params.ldmParams));
486
0
    }
487
0
    serialState->nextJobID = 0;
488
0
    if (params.fParams.checksumFlag)
489
0
        XXH64_reset(&serialState->xxhState, 0);
490
0
    if (params.ldmParams.enableLdm == ZSTD_ps_enable) {
491
0
        ZSTD_customMem cMem = params.customMem;
492
0
        unsigned const hashLog = params.ldmParams.hashLog;
493
0
        size_t const hashSize = ((size_t)1 << hashLog) * sizeof(ldmEntry_t);
494
0
        unsigned const bucketLog =
495
0
            params.ldmParams.hashLog - params.ldmParams.bucketSizeLog;
496
0
        unsigned const prevBucketLog =
497
0
            serialState->params.ldmParams.hashLog -
498
0
            serialState->params.ldmParams.bucketSizeLog;
499
0
        size_t const numBuckets = (size_t)1 << bucketLog;
500
        /* Size the seq pool tables */
501
0
        ZSTDMT_setNbSeq(seqPool, ZSTD_ldm_getMaxNbSeq(params.ldmParams, jobSize));
502
        /* Reset the window */
503
0
        ZSTD_window_init(&serialState->ldmState.window);
504
        /* Resize tables and output space if necessary. */
505
0
        if (serialState->ldmState.hashTable == NULL || serialState->params.ldmParams.hashLog < hashLog) {
506
0
            ZSTD_customFree(serialState->ldmState.hashTable, cMem);
507
0
            serialState->ldmState.hashTable = (ldmEntry_t*)ZSTD_customMalloc(hashSize, cMem);
508
0
        }
509
0
        if (serialState->ldmState.bucketOffsets == NULL || prevBucketLog < bucketLog) {
510
0
            ZSTD_customFree(serialState->ldmState.bucketOffsets, cMem);
511
0
            serialState->ldmState.bucketOffsets = (BYTE*)ZSTD_customMalloc(numBuckets, cMem);
512
0
        }
513
0
        if (!serialState->ldmState.hashTable || !serialState->ldmState.bucketOffsets)
514
0
            return 1;
515
        /* Zero the tables */
516
0
        ZSTD_memset(serialState->ldmState.hashTable, 0, hashSize);
517
0
        ZSTD_memset(serialState->ldmState.bucketOffsets, 0, numBuckets);
518
519
        /* Update window state and fill hash table with dict */
520
0
        serialState->ldmState.loadedDictEnd = 0;
521
0
        if (dictSize > 0) {
522
0
            if (dictContentType == ZSTD_dct_rawContent) {
523
0
                BYTE const* const dictEnd = (const BYTE*)dict + dictSize;
524
0
                ZSTD_window_update(&serialState->ldmState.window, dict, dictSize, /* forceNonContiguous */ 0);
525
0
                ZSTD_ldm_fillHashTable(&serialState->ldmState, (const BYTE*)dict, dictEnd, &params.ldmParams);
526
0
                serialState->ldmState.loadedDictEnd = params.forceWindow ? 0 : (U32)(dictEnd - serialState->ldmState.window.base);
527
0
            } else {
528
                /* don't even load anything */
529
0
            }
530
0
        }
531
532
        /* Initialize serialState's copy of ldmWindow. */
533
0
        serialState->ldmWindow = serialState->ldmState.window;
534
0
    }
535
536
0
    serialState->params = params;
537
0
    serialState->params.jobSize = (U32)jobSize;
538
0
    return 0;
539
0
}
540
541
static int ZSTDMT_serialState_init(serialState_t* serialState)
542
0
{
543
0
    int initError = 0;
544
0
    ZSTD_memset(serialState, 0, sizeof(*serialState));
545
0
    initError |= ZSTD_pthread_mutex_init(&serialState->mutex, NULL);
546
0
    initError |= ZSTD_pthread_cond_init(&serialState->cond, NULL);
547
0
    initError |= ZSTD_pthread_mutex_init(&serialState->ldmWindowMutex, NULL);
548
0
    initError |= ZSTD_pthread_cond_init(&serialState->ldmWindowCond, NULL);
549
0
    return initError;
550
0
}
551
552
static void ZSTDMT_serialState_free(serialState_t* serialState)
553
0
{
554
0
    ZSTD_customMem cMem = serialState->params.customMem;
555
0
    ZSTD_pthread_mutex_destroy(&serialState->mutex);
556
0
    ZSTD_pthread_cond_destroy(&serialState->cond);
557
0
    ZSTD_pthread_mutex_destroy(&serialState->ldmWindowMutex);
558
0
    ZSTD_pthread_cond_destroy(&serialState->ldmWindowCond);
559
0
    ZSTD_customFree(serialState->ldmState.hashTable, cMem);
560
0
    ZSTD_customFree(serialState->ldmState.bucketOffsets, cMem);
561
0
}
562
563
static void ZSTDMT_serialState_update(serialState_t* serialState,
564
                                      ZSTD_CCtx* jobCCtx, rawSeqStore_t seqStore,
565
                                      range_t src, unsigned jobID)
566
0
{
567
    /* Wait for our turn */
568
0
    ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex);
569
0
    while (serialState->nextJobID < jobID) {
570
0
        DEBUGLOG(5, "wait for serialState->cond");
571
0
        ZSTD_pthread_cond_wait(&serialState->cond, &serialState->mutex);
572
0
    }
573
    /* A future job may error and skip our job */
574
0
    if (serialState->nextJobID == jobID) {
575
        /* It is now our turn, do any processing necessary */
576
0
        if (serialState->params.ldmParams.enableLdm == ZSTD_ps_enable) {
577
0
            size_t error;
578
0
            assert(seqStore.seq != NULL && seqStore.pos == 0 &&
579
0
                   seqStore.size == 0 && seqStore.capacity > 0);
580
0
            assert(src.size <= serialState->params.jobSize);
581
0
            ZSTD_window_update(&serialState->ldmState.window, src.start, src.size, /* forceNonContiguous */ 0);
582
0
            error = ZSTD_ldm_generateSequences(
583
0
                &serialState->ldmState, &seqStore,
584
0
                &serialState->params.ldmParams, src.start, src.size);
585
            /* We provide a large enough buffer to never fail. */
586
0
            assert(!ZSTD_isError(error)); (void)error;
587
            /* Update ldmWindow to match the ldmState.window and signal the main
588
             * thread if it is waiting for a buffer.
589
             */
590
0
            ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex);
591
0
            serialState->ldmWindow = serialState->ldmState.window;
592
0
            ZSTD_pthread_cond_signal(&serialState->ldmWindowCond);
593
0
            ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex);
594
0
        }
595
0
        if (serialState->params.fParams.checksumFlag && src.size > 0)
596
0
            XXH64_update(&serialState->xxhState, src.start, src.size);
597
0
    }
598
    /* Now it is the next jobs turn */
599
0
    serialState->nextJobID++;
600
0
    ZSTD_pthread_cond_broadcast(&serialState->cond);
601
0
    ZSTD_pthread_mutex_unlock(&serialState->mutex);
602
603
0
    if (seqStore.size > 0) {
604
0
        size_t const err = ZSTD_referenceExternalSequences(
605
0
            jobCCtx, seqStore.seq, seqStore.size);
606
0
        assert(serialState->params.ldmParams.enableLdm == ZSTD_ps_enable);
607
0
        assert(!ZSTD_isError(err));
608
0
        (void)err;
609
0
    }
610
0
}
611
612
static void ZSTDMT_serialState_ensureFinished(serialState_t* serialState,
613
                                              unsigned jobID, size_t cSize)
614
0
{
615
0
    ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex);
616
0
    if (serialState->nextJobID <= jobID) {
617
0
        assert(ZSTD_isError(cSize)); (void)cSize;
618
0
        DEBUGLOG(5, "Skipping past job %u because of error", jobID);
619
0
        serialState->nextJobID = jobID + 1;
620
0
        ZSTD_pthread_cond_broadcast(&serialState->cond);
621
622
0
        ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex);
623
0
        ZSTD_window_clear(&serialState->ldmWindow);
624
0
        ZSTD_pthread_cond_signal(&serialState->ldmWindowCond);
625
0
        ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex);
626
0
    }
627
0
    ZSTD_pthread_mutex_unlock(&serialState->mutex);
628
629
0
}
630
631
632
/* ------------------------------------------ */
633
/* =====          Worker thread         ===== */
634
/* ------------------------------------------ */
635
636
static const range_t kNullRange = { NULL, 0 };
637
638
typedef struct {
639
    size_t   consumed;                   /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx */
640
    size_t   cSize;                      /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx, then set0 by mtctx */
641
    ZSTD_pthread_mutex_t job_mutex;      /* Thread-safe - used by mtctx and worker */
642
    ZSTD_pthread_cond_t job_cond;        /* Thread-safe - used by mtctx and worker */
643
    ZSTDMT_CCtxPool* cctxPool;           /* Thread-safe - used by mtctx and (all) workers */
644
    ZSTDMT_bufferPool* bufPool;          /* Thread-safe - used by mtctx and (all) workers */
645
    ZSTDMT_seqPool* seqPool;             /* Thread-safe - used by mtctx and (all) workers */
646
    serialState_t* serial;               /* Thread-safe - used by mtctx and (all) workers */
647
    buffer_t dstBuff;                    /* set by worker (or mtctx), then read by worker & mtctx, then modified by mtctx => no barrier */
648
    range_t prefix;                      /* set by mtctx, then read by worker & mtctx => no barrier */
649
    range_t src;                         /* set by mtctx, then read by worker & mtctx => no barrier */
650
    unsigned jobID;                      /* set by mtctx, then read by worker => no barrier */
651
    unsigned firstJob;                   /* set by mtctx, then read by worker => no barrier */
652
    unsigned lastJob;                    /* set by mtctx, then read by worker => no barrier */
653
    ZSTD_CCtx_params params;             /* set by mtctx, then read by worker => no barrier */
654
    const ZSTD_CDict* cdict;             /* set by mtctx, then read by worker => no barrier */
655
    unsigned long long fullFrameSize;    /* set by mtctx, then read by worker => no barrier */
656
    size_t   dstFlushed;                 /* used only by mtctx */
657
    unsigned frameChecksumNeeded;        /* used only by mtctx */
658
} ZSTDMT_jobDescription;
659
660
0
#define JOB_ERROR(e) {                          \
661
0
    ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex);   \
662
0
    job->cSize = e;                             \
663
0
    ZSTD_pthread_mutex_unlock(&job->job_mutex); \
664
0
    goto _endJob;                               \
665
0
}
666
667
/* ZSTDMT_compressionJob() is a POOL_function type */
668
static void ZSTDMT_compressionJob(void* jobDescription)
669
0
{
670
0
    ZSTDMT_jobDescription* const job = (ZSTDMT_jobDescription*)jobDescription;
671
0
    ZSTD_CCtx_params jobParams = job->params;   /* do not modify job->params ! copy it, modify the copy */
672
0
    ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(job->cctxPool);
673
0
    rawSeqStore_t rawSeqStore = ZSTDMT_getSeq(job->seqPool);
674
0
    buffer_t dstBuff = job->dstBuff;
675
0
    size_t lastCBlockSize = 0;
676
677
    /* resources */
678
0
    if (cctx==NULL) JOB_ERROR(ERROR(memory_allocation));
679
0
    if (dstBuff.start == NULL) {   /* streaming job : doesn't provide a dstBuffer */
680
0
        dstBuff = ZSTDMT_getBuffer(job->bufPool);
681
0
        if (dstBuff.start==NULL) JOB_ERROR(ERROR(memory_allocation));
682
0
        job->dstBuff = dstBuff;   /* this value can be read in ZSTDMT_flush, when it copies the whole job */
683
0
    }
684
0
    if (jobParams.ldmParams.enableLdm == ZSTD_ps_enable && rawSeqStore.seq == NULL)
685
0
        JOB_ERROR(ERROR(memory_allocation));
686
687
    /* Don't compute the checksum for chunks, since we compute it externally,
688
     * but write it in the header.
689
     */
690
0
    if (job->jobID != 0) jobParams.fParams.checksumFlag = 0;
691
    /* Don't run LDM for the chunks, since we handle it externally */
692
0
    jobParams.ldmParams.enableLdm = ZSTD_ps_disable;
693
    /* Correct nbWorkers to 0. */
694
0
    jobParams.nbWorkers = 0;
695
696
697
    /* init */
698
0
    if (job->cdict) {
699
0
        size_t const initError = ZSTD_compressBegin_advanced_internal(cctx, NULL, 0, ZSTD_dct_auto, ZSTD_dtlm_fast, job->cdict, &jobParams, job->fullFrameSize);
700
0
        assert(job->firstJob);  /* only allowed for first job */
701
0
        if (ZSTD_isError(initError)) JOB_ERROR(initError);
702
0
    } else {  /* srcStart points at reloaded section */
703
0
        U64 const pledgedSrcSize = job->firstJob ? job->fullFrameSize : job->src.size;
704
0
        {   size_t const forceWindowError = ZSTD_CCtxParams_setParameter(&jobParams, ZSTD_c_forceMaxWindow, !job->firstJob);
705
0
            if (ZSTD_isError(forceWindowError)) JOB_ERROR(forceWindowError);
706
0
        }
707
0
        if (!job->firstJob) {
708
0
            size_t const err = ZSTD_CCtxParams_setParameter(&jobParams, ZSTD_c_deterministicRefPrefix, 0);
709
0
            if (ZSTD_isError(err)) JOB_ERROR(err);
710
0
        }
711
0
        {   size_t const initError = ZSTD_compressBegin_advanced_internal(cctx,
712
0
                                        job->prefix.start, job->prefix.size, ZSTD_dct_rawContent, /* load dictionary in "content-only" mode (no header analysis) */
713
0
                                        ZSTD_dtlm_fast,
714
0
                                        NULL, /*cdict*/
715
0
                                        &jobParams, pledgedSrcSize);
716
0
            if (ZSTD_isError(initError)) JOB_ERROR(initError);
717
0
    }   }
718
719
    /* Perform serial step as early as possible, but after CCtx initialization */
720
0
    ZSTDMT_serialState_update(job->serial, cctx, rawSeqStore, job->src, job->jobID);
721
722
0
    if (!job->firstJob) {  /* flush and overwrite frame header when it's not first job */
723
0
        size_t const hSize = ZSTD_compressContinue_public(cctx, dstBuff.start, dstBuff.capacity, job->src.start, 0);
724
0
        if (ZSTD_isError(hSize)) JOB_ERROR(hSize);
725
0
        DEBUGLOG(5, "ZSTDMT_compressionJob: flush and overwrite %u bytes of frame header (not first job)", (U32)hSize);
726
0
        ZSTD_invalidateRepCodes(cctx);
727
0
    }
728
729
    /* compress */
730
0
    {   size_t const chunkSize = 4*ZSTD_BLOCKSIZE_MAX;
731
0
        int const nbChunks = (int)((job->src.size + (chunkSize-1)) / chunkSize);
732
0
        const BYTE* ip = (const BYTE*) job->src.start;
733
0
        BYTE* const ostart = (BYTE*)dstBuff.start;
734
0
        BYTE* op = ostart;
735
0
        BYTE* oend = op + dstBuff.capacity;
736
0
        int chunkNb;
737
0
        if (sizeof(size_t) > sizeof(int)) assert(job->src.size < ((size_t)INT_MAX) * chunkSize);   /* check overflow */
738
0
        DEBUGLOG(5, "ZSTDMT_compressionJob: compress %u bytes in %i blocks", (U32)job->src.size, nbChunks);
739
0
        assert(job->cSize == 0);
740
0
        for (chunkNb = 1; chunkNb < nbChunks; chunkNb++) {
741
0
            size_t const cSize = ZSTD_compressContinue_public(cctx, op, oend-op, ip, chunkSize);
742
0
            if (ZSTD_isError(cSize)) JOB_ERROR(cSize);
743
0
            ip += chunkSize;
744
0
            op += cSize; assert(op < oend);
745
            /* stats */
746
0
            ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex);
747
0
            job->cSize += cSize;
748
0
            job->consumed = chunkSize * chunkNb;
749
0
            DEBUGLOG(5, "ZSTDMT_compressionJob: compress new block : cSize==%u bytes (total: %u)",
750
0
                        (U32)cSize, (U32)job->cSize);
751
0
            ZSTD_pthread_cond_signal(&job->job_cond);   /* warns some more data is ready to be flushed */
752
0
            ZSTD_pthread_mutex_unlock(&job->job_mutex);
753
0
        }
754
        /* last block */
755
0
        assert(chunkSize > 0);
756
0
        assert((chunkSize & (chunkSize - 1)) == 0);  /* chunkSize must be power of 2 for mask==(chunkSize-1) to work */
757
0
        if ((nbChunks > 0) | job->lastJob /*must output a "last block" flag*/ ) {
758
0
            size_t const lastBlockSize1 = job->src.size & (chunkSize-1);
759
0
            size_t const lastBlockSize = ((lastBlockSize1==0) & (job->src.size>=chunkSize)) ? chunkSize : lastBlockSize1;
760
0
            size_t const cSize = (job->lastJob) ?
761
0
                 ZSTD_compressEnd_public(cctx, op, oend-op, ip, lastBlockSize) :
762
0
                 ZSTD_compressContinue_public(cctx, op, oend-op, ip, lastBlockSize);
763
0
            if (ZSTD_isError(cSize)) JOB_ERROR(cSize);
764
0
            lastCBlockSize = cSize;
765
0
    }   }
766
0
    if (!job->firstJob) {
767
        /* Double check that we don't have an ext-dict, because then our
768
         * repcode invalidation doesn't work.
769
         */
770
0
        assert(!ZSTD_window_hasExtDict(cctx->blockState.matchState.window));
771
0
    }
772
0
    ZSTD_CCtx_trace(cctx, 0);
773
774
0
_endJob:
775
0
    ZSTDMT_serialState_ensureFinished(job->serial, job->jobID, job->cSize);
776
0
    if (job->prefix.size > 0)
777
0
        DEBUGLOG(5, "Finished with prefix: %zx", (size_t)job->prefix.start);
778
0
    DEBUGLOG(5, "Finished with source: %zx", (size_t)job->src.start);
779
    /* release resources */
780
0
    ZSTDMT_releaseSeq(job->seqPool, rawSeqStore);
781
0
    ZSTDMT_releaseCCtx(job->cctxPool, cctx);
782
    /* report */
783
0
    ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex);
784
0
    if (ZSTD_isError(job->cSize)) assert(lastCBlockSize == 0);
785
0
    job->cSize += lastCBlockSize;
786
0
    job->consumed = job->src.size;  /* when job->consumed == job->src.size , compression job is presumed completed */
787
0
    ZSTD_pthread_cond_signal(&job->job_cond);
788
0
    ZSTD_pthread_mutex_unlock(&job->job_mutex);
789
0
}
790
791
792
/* ------------------------------------------ */
793
/* =====   Multi-threaded compression   ===== */
794
/* ------------------------------------------ */
795
796
typedef struct {
797
    range_t prefix;         /* read-only non-owned prefix buffer */
798
    buffer_t buffer;
799
    size_t filled;
800
} inBuff_t;
801
802
typedef struct {
803
  BYTE* buffer;     /* The round input buffer. All jobs get references
804
                     * to pieces of the buffer. ZSTDMT_tryGetInputRange()
805
                     * handles handing out job input buffers, and makes
806
                     * sure it doesn't overlap with any pieces still in use.
807
                     */
808
  size_t capacity;  /* The capacity of buffer. */
809
  size_t pos;       /* The position of the current inBuff in the round
810
                     * buffer. Updated past the end if the inBuff once
811
                     * the inBuff is sent to the worker thread.
812
                     * pos <= capacity.
813
                     */
814
} roundBuff_t;
815
816
static const roundBuff_t kNullRoundBuff = {NULL, 0, 0};
817
818
0
#define RSYNC_LENGTH 32
819
/* Don't create chunks smaller than the zstd block size.
820
 * This stops us from regressing compression ratio too much,
821
 * and ensures our output fits in ZSTD_compressBound().
822
 *
823
 * If this is shrunk < ZSTD_BLOCKSIZELOG_MIN then
824
 * ZSTD_COMPRESSBOUND() will need to be updated.
825
 */
826
0
#define RSYNC_MIN_BLOCK_LOG ZSTD_BLOCKSIZELOG_MAX
827
0
#define RSYNC_MIN_BLOCK_SIZE (1<<RSYNC_MIN_BLOCK_LOG)
828
829
typedef struct {
830
  U64 hash;
831
  U64 hitMask;
832
  U64 primePower;
833
} rsyncState_t;
834
835
struct ZSTDMT_CCtx_s {
836
    POOL_ctx* factory;
837
    ZSTDMT_jobDescription* jobs;
838
    ZSTDMT_bufferPool* bufPool;
839
    ZSTDMT_CCtxPool* cctxPool;
840
    ZSTDMT_seqPool* seqPool;
841
    ZSTD_CCtx_params params;
842
    size_t targetSectionSize;
843
    size_t targetPrefixSize;
844
    int jobReady;        /* 1 => one job is already prepared, but pool has shortage of workers. Don't create a new job. */
845
    inBuff_t inBuff;
846
    roundBuff_t roundBuff;
847
    serialState_t serial;
848
    rsyncState_t rsync;
849
    unsigned jobIDMask;
850
    unsigned doneJobID;
851
    unsigned nextJobID;
852
    unsigned frameEnded;
853
    unsigned allJobsCompleted;
854
    unsigned long long frameContentSize;
855
    unsigned long long consumed;
856
    unsigned long long produced;
857
    ZSTD_customMem cMem;
858
    ZSTD_CDict* cdictLocal;
859
    const ZSTD_CDict* cdict;
860
    unsigned providedFactory: 1;
861
};
862
863
static void ZSTDMT_freeJobsTable(ZSTDMT_jobDescription* jobTable, U32 nbJobs, ZSTD_customMem cMem)
864
0
{
865
0
    U32 jobNb;
866
0
    if (jobTable == NULL) return;
867
0
    for (jobNb=0; jobNb<nbJobs; jobNb++) {
868
0
        ZSTD_pthread_mutex_destroy(&jobTable[jobNb].job_mutex);
869
0
        ZSTD_pthread_cond_destroy(&jobTable[jobNb].job_cond);
870
0
    }
871
0
    ZSTD_customFree(jobTable, cMem);
872
0
}
873
874
/* ZSTDMT_allocJobsTable()
875
 * allocate and init a job table.
876
 * update *nbJobsPtr to next power of 2 value, as size of table */
877
static ZSTDMT_jobDescription* ZSTDMT_createJobsTable(U32* nbJobsPtr, ZSTD_customMem cMem)
878
0
{
879
0
    U32 const nbJobsLog2 = ZSTD_highbit32(*nbJobsPtr) + 1;
880
0
    U32 const nbJobs = 1 << nbJobsLog2;
881
0
    U32 jobNb;
882
0
    ZSTDMT_jobDescription* const jobTable = (ZSTDMT_jobDescription*)
883
0
                ZSTD_customCalloc(nbJobs * sizeof(ZSTDMT_jobDescription), cMem);
884
0
    int initError = 0;
885
0
    if (jobTable==NULL) return NULL;
886
0
    *nbJobsPtr = nbJobs;
887
0
    for (jobNb=0; jobNb<nbJobs; jobNb++) {
888
0
        initError |= ZSTD_pthread_mutex_init(&jobTable[jobNb].job_mutex, NULL);
889
0
        initError |= ZSTD_pthread_cond_init(&jobTable[jobNb].job_cond, NULL);
890
0
    }
891
0
    if (initError != 0) {
892
0
        ZSTDMT_freeJobsTable(jobTable, nbJobs, cMem);
893
0
        return NULL;
894
0
    }
895
0
    return jobTable;
896
0
}
897
898
0
static size_t ZSTDMT_expandJobsTable (ZSTDMT_CCtx* mtctx, U32 nbWorkers) {
899
0
    U32 nbJobs = nbWorkers + 2;
900
0
    if (nbJobs > mtctx->jobIDMask+1) {  /* need more job capacity */
901
0
        ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem);
902
0
        mtctx->jobIDMask = 0;
903
0
        mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, mtctx->cMem);
904
0
        if (mtctx->jobs==NULL) return ERROR(memory_allocation);
905
0
        assert((nbJobs != 0) && ((nbJobs & (nbJobs - 1)) == 0));  /* ensure nbJobs is a power of 2 */
906
0
        mtctx->jobIDMask = nbJobs - 1;
907
0
    }
908
0
    return 0;
909
0
}
910
911
912
/* ZSTDMT_CCtxParam_setNbWorkers():
913
 * Internal use only */
914
static size_t ZSTDMT_CCtxParam_setNbWorkers(ZSTD_CCtx_params* params, unsigned nbWorkers)
915
0
{
916
0
    return ZSTD_CCtxParams_setParameter(params, ZSTD_c_nbWorkers, (int)nbWorkers);
917
0
}
918
919
MEM_STATIC ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced_internal(unsigned nbWorkers, ZSTD_customMem cMem, ZSTD_threadPool* pool)
920
0
{
921
0
    ZSTDMT_CCtx* mtctx;
922
0
    U32 nbJobs = nbWorkers + 2;
923
0
    int initError;
924
0
    DEBUGLOG(3, "ZSTDMT_createCCtx_advanced (nbWorkers = %u)", nbWorkers);
925
0
926
0
    if (nbWorkers < 1) return NULL;
927
0
    nbWorkers = MIN(nbWorkers , ZSTDMT_NBWORKERS_MAX);
928
0
    if ((cMem.customAlloc!=NULL) ^ (cMem.customFree!=NULL))
929
0
        /* invalid custom allocator */
930
0
        return NULL;
931
0
932
0
    mtctx = (ZSTDMT_CCtx*) ZSTD_customCalloc(sizeof(ZSTDMT_CCtx), cMem);
933
0
    if (!mtctx) return NULL;
934
0
    ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers);
935
0
    mtctx->cMem = cMem;
936
0
    mtctx->allJobsCompleted = 1;
937
0
    if (pool != NULL) {
938
0
      mtctx->factory = pool;
939
0
      mtctx->providedFactory = 1;
940
0
    }
941
0
    else {
942
0
      mtctx->factory = POOL_create_advanced(nbWorkers, 0, cMem);
943
0
      mtctx->providedFactory = 0;
944
0
    }
945
0
    mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, cMem);
946
0
    assert(nbJobs > 0); assert((nbJobs & (nbJobs - 1)) == 0);  /* ensure nbJobs is a power of 2 */
947
0
    mtctx->jobIDMask = nbJobs - 1;
948
0
    mtctx->bufPool = ZSTDMT_createBufferPool(BUF_POOL_MAX_NB_BUFFERS(nbWorkers), cMem);
949
0
    mtctx->cctxPool = ZSTDMT_createCCtxPool(nbWorkers, cMem);
950
0
    mtctx->seqPool = ZSTDMT_createSeqPool(nbWorkers, cMem);
951
0
    initError = ZSTDMT_serialState_init(&mtctx->serial);
952
0
    mtctx->roundBuff = kNullRoundBuff;
953
0
    if (!mtctx->factory | !mtctx->jobs | !mtctx->bufPool | !mtctx->cctxPool | !mtctx->seqPool | initError) {
954
0
        ZSTDMT_freeCCtx(mtctx);
955
0
        return NULL;
956
0
    }
957
0
    DEBUGLOG(3, "mt_cctx created, for %u threads", nbWorkers);
958
0
    return mtctx;
959
0
}
960
961
ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbWorkers, ZSTD_customMem cMem, ZSTD_threadPool* pool)
962
0
{
963
#ifdef ZSTD_MULTITHREAD
964
    return ZSTDMT_createCCtx_advanced_internal(nbWorkers, cMem, pool);
965
#else
966
0
    (void)nbWorkers;
967
0
    (void)cMem;
968
0
    (void)pool;
969
0
    return NULL;
970
0
#endif
971
0
}
972
973
974
/* ZSTDMT_releaseAllJobResources() :
975
 * note : ensure all workers are killed first ! */
976
static void ZSTDMT_releaseAllJobResources(ZSTDMT_CCtx* mtctx)
977
0
{
978
0
    unsigned jobID;
979
0
    DEBUGLOG(3, "ZSTDMT_releaseAllJobResources");
980
0
    for (jobID=0; jobID <= mtctx->jobIDMask; jobID++) {
981
        /* Copy the mutex/cond out */
982
0
        ZSTD_pthread_mutex_t const mutex = mtctx->jobs[jobID].job_mutex;
983
0
        ZSTD_pthread_cond_t const cond = mtctx->jobs[jobID].job_cond;
984
985
0
        DEBUGLOG(4, "job%02u: release dst address %08X", jobID, (U32)(size_t)mtctx->jobs[jobID].dstBuff.start);
986
0
        ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[jobID].dstBuff);
987
988
        /* Clear the job description, but keep the mutex/cond */
989
0
        ZSTD_memset(&mtctx->jobs[jobID], 0, sizeof(mtctx->jobs[jobID]));
990
0
        mtctx->jobs[jobID].job_mutex = mutex;
991
0
        mtctx->jobs[jobID].job_cond = cond;
992
0
    }
993
0
    mtctx->inBuff.buffer = g_nullBuffer;
994
0
    mtctx->inBuff.filled = 0;
995
0
    mtctx->allJobsCompleted = 1;
996
0
}
997
998
static void ZSTDMT_waitForAllJobsCompleted(ZSTDMT_CCtx* mtctx)
999
0
{
1000
0
    DEBUGLOG(4, "ZSTDMT_waitForAllJobsCompleted");
1001
0
    while (mtctx->doneJobID < mtctx->nextJobID) {
1002
0
        unsigned const jobID = mtctx->doneJobID & mtctx->jobIDMask;
1003
0
        ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[jobID].job_mutex);
1004
0
        while (mtctx->jobs[jobID].consumed < mtctx->jobs[jobID].src.size) {
1005
0
            DEBUGLOG(4, "waiting for jobCompleted signal from job %u", mtctx->doneJobID);   /* we want to block when waiting for data to flush */
1006
0
            ZSTD_pthread_cond_wait(&mtctx->jobs[jobID].job_cond, &mtctx->jobs[jobID].job_mutex);
1007
0
        }
1008
0
        ZSTD_pthread_mutex_unlock(&mtctx->jobs[jobID].job_mutex);
1009
0
        mtctx->doneJobID++;
1010
0
    }
1011
0
}
1012
1013
size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx)
1014
0
{
1015
0
    if (mtctx==NULL) return 0;   /* compatible with free on NULL */
1016
0
    if (!mtctx->providedFactory)
1017
0
        POOL_free(mtctx->factory);   /* stop and free worker threads */
1018
0
    ZSTDMT_releaseAllJobResources(mtctx);  /* release job resources into pools first */
1019
0
    ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem);
1020
0
    ZSTDMT_freeBufferPool(mtctx->bufPool);
1021
0
    ZSTDMT_freeCCtxPool(mtctx->cctxPool);
1022
0
    ZSTDMT_freeSeqPool(mtctx->seqPool);
1023
0
    ZSTDMT_serialState_free(&mtctx->serial);
1024
0
    ZSTD_freeCDict(mtctx->cdictLocal);
1025
0
    if (mtctx->roundBuff.buffer)
1026
0
        ZSTD_customFree(mtctx->roundBuff.buffer, mtctx->cMem);
1027
0
    ZSTD_customFree(mtctx, mtctx->cMem);
1028
0
    return 0;
1029
0
}
1030
1031
size_t ZSTDMT_sizeof_CCtx(ZSTDMT_CCtx* mtctx)
1032
0
{
1033
0
    if (mtctx == NULL) return 0;   /* supports sizeof NULL */
1034
0
    return sizeof(*mtctx)
1035
0
            + POOL_sizeof(mtctx->factory)
1036
0
            + ZSTDMT_sizeof_bufferPool(mtctx->bufPool)
1037
0
            + (mtctx->jobIDMask+1) * sizeof(ZSTDMT_jobDescription)
1038
0
            + ZSTDMT_sizeof_CCtxPool(mtctx->cctxPool)
1039
0
            + ZSTDMT_sizeof_seqPool(mtctx->seqPool)
1040
0
            + ZSTD_sizeof_CDict(mtctx->cdictLocal)
1041
0
            + mtctx->roundBuff.capacity;
1042
0
}
1043
1044
1045
/* ZSTDMT_resize() :
1046
 * @return : error code if fails, 0 on success */
1047
static size_t ZSTDMT_resize(ZSTDMT_CCtx* mtctx, unsigned nbWorkers)
1048
0
{
1049
0
    if (POOL_resize(mtctx->factory, nbWorkers)) return ERROR(memory_allocation);
1050
0
    FORWARD_IF_ERROR( ZSTDMT_expandJobsTable(mtctx, nbWorkers) , "");
1051
0
    mtctx->bufPool = ZSTDMT_expandBufferPool(mtctx->bufPool, BUF_POOL_MAX_NB_BUFFERS(nbWorkers));
1052
0
    if (mtctx->bufPool == NULL) return ERROR(memory_allocation);
1053
0
    mtctx->cctxPool = ZSTDMT_expandCCtxPool(mtctx->cctxPool, nbWorkers);
1054
0
    if (mtctx->cctxPool == NULL) return ERROR(memory_allocation);
1055
0
    mtctx->seqPool = ZSTDMT_expandSeqPool(mtctx->seqPool, nbWorkers);
1056
0
    if (mtctx->seqPool == NULL) return ERROR(memory_allocation);
1057
0
    ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers);
1058
0
    return 0;
1059
0
}
1060
1061
1062
/*! ZSTDMT_updateCParams_whileCompressing() :
1063
 *  Updates a selected set of compression parameters, remaining compatible with currently active frame.
1064
 *  New parameters will be applied to next compression job. */
1065
void ZSTDMT_updateCParams_whileCompressing(ZSTDMT_CCtx* mtctx, const ZSTD_CCtx_params* cctxParams)
1066
0
{
1067
0
    U32 const saved_wlog = mtctx->params.cParams.windowLog;   /* Do not modify windowLog while compressing */
1068
0
    int const compressionLevel = cctxParams->compressionLevel;
1069
0
    DEBUGLOG(5, "ZSTDMT_updateCParams_whileCompressing (level:%i)",
1070
0
                compressionLevel);
1071
0
    mtctx->params.compressionLevel = compressionLevel;
1072
0
    {   ZSTD_compressionParameters cParams = ZSTD_getCParamsFromCCtxParams(cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, 0, ZSTD_cpm_noAttachDict);
1073
0
        cParams.windowLog = saved_wlog;
1074
0
        mtctx->params.cParams = cParams;
1075
0
    }
1076
0
}
1077
1078
/* ZSTDMT_getFrameProgression():
1079
 * tells how much data has been consumed (input) and produced (output) for current frame.
1080
 * able to count progression inside worker threads.
1081
 * Note : mutex will be acquired during statistics collection inside workers. */
1082
ZSTD_frameProgression ZSTDMT_getFrameProgression(ZSTDMT_CCtx* mtctx)
1083
0
{
1084
0
    ZSTD_frameProgression fps;
1085
0
    DEBUGLOG(5, "ZSTDMT_getFrameProgression");
1086
0
    fps.ingested = mtctx->consumed + mtctx->inBuff.filled;
1087
0
    fps.consumed = mtctx->consumed;
1088
0
    fps.produced = fps.flushed = mtctx->produced;
1089
0
    fps.currentJobID = mtctx->nextJobID;
1090
0
    fps.nbActiveWorkers = 0;
1091
0
    {   unsigned jobNb;
1092
0
        unsigned lastJobNb = mtctx->nextJobID + mtctx->jobReady; assert(mtctx->jobReady <= 1);
1093
0
        DEBUGLOG(6, "ZSTDMT_getFrameProgression: jobs: from %u to <%u (jobReady:%u)",
1094
0
                    mtctx->doneJobID, lastJobNb, mtctx->jobReady)
1095
0
        for (jobNb = mtctx->doneJobID ; jobNb < lastJobNb ; jobNb++) {
1096
0
            unsigned const wJobID = jobNb & mtctx->jobIDMask;
1097
0
            ZSTDMT_jobDescription* jobPtr = &mtctx->jobs[wJobID];
1098
0
            ZSTD_pthread_mutex_lock(&jobPtr->job_mutex);
1099
0
            {   size_t const cResult = jobPtr->cSize;
1100
0
                size_t const produced = ZSTD_isError(cResult) ? 0 : cResult;
1101
0
                size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed;
1102
0
                assert(flushed <= produced);
1103
0
                fps.ingested += jobPtr->src.size;
1104
0
                fps.consumed += jobPtr->consumed;
1105
0
                fps.produced += produced;
1106
0
                fps.flushed  += flushed;
1107
0
                fps.nbActiveWorkers += (jobPtr->consumed < jobPtr->src.size);
1108
0
            }
1109
0
            ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
1110
0
        }
1111
0
    }
1112
0
    return fps;
1113
0
}
1114
1115
1116
size_t ZSTDMT_toFlushNow(ZSTDMT_CCtx* mtctx)
1117
0
{
1118
0
    size_t toFlush;
1119
0
    unsigned const jobID = mtctx->doneJobID;
1120
0
    assert(jobID <= mtctx->nextJobID);
1121
0
    if (jobID == mtctx->nextJobID) return 0;   /* no active job => nothing to flush */
1122
1123
    /* look into oldest non-fully-flushed job */
1124
0
    {   unsigned const wJobID = jobID & mtctx->jobIDMask;
1125
0
        ZSTDMT_jobDescription* const jobPtr = &mtctx->jobs[wJobID];
1126
0
        ZSTD_pthread_mutex_lock(&jobPtr->job_mutex);
1127
0
        {   size_t const cResult = jobPtr->cSize;
1128
0
            size_t const produced = ZSTD_isError(cResult) ? 0 : cResult;
1129
0
            size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed;
1130
0
            assert(flushed <= produced);
1131
0
            assert(jobPtr->consumed <= jobPtr->src.size);
1132
0
            toFlush = produced - flushed;
1133
            /* if toFlush==0, nothing is available to flush.
1134
             * However, jobID is expected to still be active:
1135
             * if jobID was already completed and fully flushed,
1136
             * ZSTDMT_flushProduced() should have already moved onto next job.
1137
             * Therefore, some input has not yet been consumed. */
1138
0
            if (toFlush==0) {
1139
0
                assert(jobPtr->consumed < jobPtr->src.size);
1140
0
            }
1141
0
        }
1142
0
        ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
1143
0
    }
1144
1145
0
    return toFlush;
1146
0
}
1147
1148
1149
/* ------------------------------------------ */
1150
/* =====   Multi-threaded compression   ===== */
1151
/* ------------------------------------------ */
1152
1153
static unsigned ZSTDMT_computeTargetJobLog(const ZSTD_CCtx_params* params)
1154
0
{
1155
0
    unsigned jobLog;
1156
0
    if (params->ldmParams.enableLdm == ZSTD_ps_enable) {
1157
        /* In Long Range Mode, the windowLog is typically oversized.
1158
         * In which case, it's preferable to determine the jobSize
1159
         * based on cycleLog instead. */
1160
0
        jobLog = MAX(21, ZSTD_cycleLog(params->cParams.chainLog, params->cParams.strategy) + 3);
1161
0
    } else {
1162
0
        jobLog = MAX(20, params->cParams.windowLog + 2);
1163
0
    }
1164
0
    return MIN(jobLog, (unsigned)ZSTDMT_JOBLOG_MAX);
1165
0
}
1166
1167
static int ZSTDMT_overlapLog_default(ZSTD_strategy strat)
1168
0
{
1169
0
    switch(strat)
1170
0
    {
1171
0
        case ZSTD_btultra2:
1172
0
            return 9;
1173
0
        case ZSTD_btultra:
1174
0
        case ZSTD_btopt:
1175
0
            return 8;
1176
0
        case ZSTD_btlazy2:
1177
0
        case ZSTD_lazy2:
1178
0
            return 7;
1179
0
        case ZSTD_lazy:
1180
0
        case ZSTD_greedy:
1181
0
        case ZSTD_dfast:
1182
0
        case ZSTD_fast:
1183
0
        default:;
1184
0
    }
1185
0
    return 6;
1186
0
}
1187
1188
static int ZSTDMT_overlapLog(int ovlog, ZSTD_strategy strat)
1189
0
{
1190
0
    assert(0 <= ovlog && ovlog <= 9);
1191
0
    if (ovlog == 0) return ZSTDMT_overlapLog_default(strat);
1192
0
    return ovlog;
1193
0
}
1194
1195
static size_t ZSTDMT_computeOverlapSize(const ZSTD_CCtx_params* params)
1196
0
{
1197
0
    int const overlapRLog = 9 - ZSTDMT_overlapLog(params->overlapLog, params->cParams.strategy);
1198
0
    int ovLog = (overlapRLog >= 8) ? 0 : (params->cParams.windowLog - overlapRLog);
1199
0
    assert(0 <= overlapRLog && overlapRLog <= 8);
1200
0
    if (params->ldmParams.enableLdm == ZSTD_ps_enable) {
1201
        /* In Long Range Mode, the windowLog is typically oversized.
1202
         * In which case, it's preferable to determine the jobSize
1203
         * based on chainLog instead.
1204
         * Then, ovLog becomes a fraction of the jobSize, rather than windowSize */
1205
0
        ovLog = MIN(params->cParams.windowLog, ZSTDMT_computeTargetJobLog(params) - 2)
1206
0
                - overlapRLog;
1207
0
    }
1208
0
    assert(0 <= ovLog && ovLog <= ZSTD_WINDOWLOG_MAX);
1209
0
    DEBUGLOG(4, "overlapLog : %i", params->overlapLog);
1210
0
    DEBUGLOG(4, "overlap size : %i", 1 << ovLog);
1211
0
    return (ovLog==0) ? 0 : (size_t)1 << ovLog;
1212
0
}
1213
1214
/* ====================================== */
1215
/* =======      Streaming API     ======= */
1216
/* ====================================== */
1217
1218
size_t ZSTDMT_initCStream_internal(
1219
        ZSTDMT_CCtx* mtctx,
1220
        const void* dict, size_t dictSize, ZSTD_dictContentType_e dictContentType,
1221
        const ZSTD_CDict* cdict, ZSTD_CCtx_params params,
1222
        unsigned long long pledgedSrcSize)
1223
0
{
1224
0
    DEBUGLOG(4, "ZSTDMT_initCStream_internal (pledgedSrcSize=%u, nbWorkers=%u, cctxPool=%u)",
1225
0
                (U32)pledgedSrcSize, params.nbWorkers, mtctx->cctxPool->totalCCtx);
1226
1227
    /* params supposed partially fully validated at this point */
1228
0
    assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams)));
1229
0
    assert(!((dict) && (cdict)));  /* either dict or cdict, not both */
1230
1231
    /* init */
1232
0
    if (params.nbWorkers != mtctx->params.nbWorkers)
1233
0
        FORWARD_IF_ERROR( ZSTDMT_resize(mtctx, params.nbWorkers) , "");
1234
1235
0
    if (params.jobSize != 0 && params.jobSize < ZSTDMT_JOBSIZE_MIN) params.jobSize = ZSTDMT_JOBSIZE_MIN;
1236
0
    if (params.jobSize > (size_t)ZSTDMT_JOBSIZE_MAX) params.jobSize = (size_t)ZSTDMT_JOBSIZE_MAX;
1237
1238
0
    DEBUGLOG(4, "ZSTDMT_initCStream_internal: %u workers", params.nbWorkers);
1239
1240
0
    if (mtctx->allJobsCompleted == 0) {   /* previous compression not correctly finished */
1241
0
        ZSTDMT_waitForAllJobsCompleted(mtctx);
1242
0
        ZSTDMT_releaseAllJobResources(mtctx);
1243
0
        mtctx->allJobsCompleted = 1;
1244
0
    }
1245
1246
0
    mtctx->params = params;
1247
0
    mtctx->frameContentSize = pledgedSrcSize;
1248
0
    if (dict) {
1249
0
        ZSTD_freeCDict(mtctx->cdictLocal);
1250
0
        mtctx->cdictLocal = ZSTD_createCDict_advanced(dict, dictSize,
1251
0
                                                    ZSTD_dlm_byCopy, dictContentType, /* note : a loadPrefix becomes an internal CDict */
1252
0
                                                    params.cParams, mtctx->cMem);
1253
0
        mtctx->cdict = mtctx->cdictLocal;
1254
0
        if (mtctx->cdictLocal == NULL) return ERROR(memory_allocation);
1255
0
    } else {
1256
0
        ZSTD_freeCDict(mtctx->cdictLocal);
1257
0
        mtctx->cdictLocal = NULL;
1258
0
        mtctx->cdict = cdict;
1259
0
    }
1260
1261
0
    mtctx->targetPrefixSize = ZSTDMT_computeOverlapSize(&params);
1262
0
    DEBUGLOG(4, "overlapLog=%i => %u KB", params.overlapLog, (U32)(mtctx->targetPrefixSize>>10));
1263
0
    mtctx->targetSectionSize = params.jobSize;
1264
0
    if (mtctx->targetSectionSize == 0) {
1265
0
        mtctx->targetSectionSize = 1ULL << ZSTDMT_computeTargetJobLog(&params);
1266
0
    }
1267
0
    assert(mtctx->targetSectionSize <= (size_t)ZSTDMT_JOBSIZE_MAX);
1268
1269
0
    if (params.rsyncable) {
1270
        /* Aim for the targetsectionSize as the average job size. */
1271
0
        U32 const jobSizeKB = (U32)(mtctx->targetSectionSize >> 10);
1272
0
        U32 const rsyncBits = (assert(jobSizeKB >= 1), ZSTD_highbit32(jobSizeKB) + 10);
1273
        /* We refuse to create jobs < RSYNC_MIN_BLOCK_SIZE bytes, so make sure our
1274
         * expected job size is at least 4x larger. */
1275
0
        assert(rsyncBits >= RSYNC_MIN_BLOCK_LOG + 2);
1276
0
        DEBUGLOG(4, "rsyncLog = %u", rsyncBits);
1277
0
        mtctx->rsync.hash = 0;
1278
0
        mtctx->rsync.hitMask = (1ULL << rsyncBits) - 1;
1279
0
        mtctx->rsync.primePower = ZSTD_rollingHash_primePower(RSYNC_LENGTH);
1280
0
    }
1281
0
    if (mtctx->targetSectionSize < mtctx->targetPrefixSize) mtctx->targetSectionSize = mtctx->targetPrefixSize;  /* job size must be >= overlap size */
1282
0
    DEBUGLOG(4, "Job Size : %u KB (note : set to %u)", (U32)(mtctx->targetSectionSize>>10), (U32)params.jobSize);
1283
0
    DEBUGLOG(4, "inBuff Size : %u KB", (U32)(mtctx->targetSectionSize>>10));
1284
0
    ZSTDMT_setBufferSize(mtctx->bufPool, ZSTD_compressBound(mtctx->targetSectionSize));
1285
0
    {
1286
        /* If ldm is enabled we need windowSize space. */
1287
0
        size_t const windowSize = mtctx->params.ldmParams.enableLdm == ZSTD_ps_enable ? (1U << mtctx->params.cParams.windowLog) : 0;
1288
        /* Two buffers of slack, plus extra space for the overlap
1289
         * This is the minimum slack that LDM works with. One extra because
1290
         * flush might waste up to targetSectionSize-1 bytes. Another extra
1291
         * for the overlap (if > 0), then one to fill which doesn't overlap
1292
         * with the LDM window.
1293
         */
1294
0
        size_t const nbSlackBuffers = 2 + (mtctx->targetPrefixSize > 0);
1295
0
        size_t const slackSize = mtctx->targetSectionSize * nbSlackBuffers;
1296
        /* Compute the total size, and always have enough slack */
1297
0
        size_t const nbWorkers = MAX(mtctx->params.nbWorkers, 1);
1298
0
        size_t const sectionsSize = mtctx->targetSectionSize * nbWorkers;
1299
0
        size_t const capacity = MAX(windowSize, sectionsSize) + slackSize;
1300
0
        if (mtctx->roundBuff.capacity < capacity) {
1301
0
            if (mtctx->roundBuff.buffer)
1302
0
                ZSTD_customFree(mtctx->roundBuff.buffer, mtctx->cMem);
1303
0
            mtctx->roundBuff.buffer = (BYTE*)ZSTD_customMalloc(capacity, mtctx->cMem);
1304
0
            if (mtctx->roundBuff.buffer == NULL) {
1305
0
                mtctx->roundBuff.capacity = 0;
1306
0
                return ERROR(memory_allocation);
1307
0
            }
1308
0
            mtctx->roundBuff.capacity = capacity;
1309
0
        }
1310
0
    }
1311
0
    DEBUGLOG(4, "roundBuff capacity : %u KB", (U32)(mtctx->roundBuff.capacity>>10));
1312
0
    mtctx->roundBuff.pos = 0;
1313
0
    mtctx->inBuff.buffer = g_nullBuffer;
1314
0
    mtctx->inBuff.filled = 0;
1315
0
    mtctx->inBuff.prefix = kNullRange;
1316
0
    mtctx->doneJobID = 0;
1317
0
    mtctx->nextJobID = 0;
1318
0
    mtctx->frameEnded = 0;
1319
0
    mtctx->allJobsCompleted = 0;
1320
0
    mtctx->consumed = 0;
1321
0
    mtctx->produced = 0;
1322
0
    if (ZSTDMT_serialState_reset(&mtctx->serial, mtctx->seqPool, params, mtctx->targetSectionSize,
1323
0
                                 dict, dictSize, dictContentType))
1324
0
        return ERROR(memory_allocation);
1325
0
    return 0;
1326
0
}
1327
1328
1329
/* ZSTDMT_writeLastEmptyBlock()
1330
 * Write a single empty block with an end-of-frame to finish a frame.
1331
 * Job must be created from streaming variant.
1332
 * This function is always successful if expected conditions are fulfilled.
1333
 */
1334
static void ZSTDMT_writeLastEmptyBlock(ZSTDMT_jobDescription* job)
1335
0
{
1336
0
    assert(job->lastJob == 1);
1337
0
    assert(job->src.size == 0);   /* last job is empty -> will be simplified into a last empty block */
1338
0
    assert(job->firstJob == 0);   /* cannot be first job, as it also needs to create frame header */
1339
0
    assert(job->dstBuff.start == NULL);   /* invoked from streaming variant only (otherwise, dstBuff might be user's output) */
1340
0
    job->dstBuff = ZSTDMT_getBuffer(job->bufPool);
1341
0
    if (job->dstBuff.start == NULL) {
1342
0
      job->cSize = ERROR(memory_allocation);
1343
0
      return;
1344
0
    }
1345
0
    assert(job->dstBuff.capacity >= ZSTD_blockHeaderSize);   /* no buffer should ever be that small */
1346
0
    job->src = kNullRange;
1347
0
    job->cSize = ZSTD_writeLastEmptyBlock(job->dstBuff.start, job->dstBuff.capacity);
1348
0
    assert(!ZSTD_isError(job->cSize));
1349
0
    assert(job->consumed == 0);
1350
0
}
1351
1352
static size_t ZSTDMT_createCompressionJob(ZSTDMT_CCtx* mtctx, size_t srcSize, ZSTD_EndDirective endOp)
1353
0
{
1354
0
    unsigned const jobID = mtctx->nextJobID & mtctx->jobIDMask;
1355
0
    int const endFrame = (endOp == ZSTD_e_end);
1356
1357
0
    if (mtctx->nextJobID > mtctx->doneJobID + mtctx->jobIDMask) {
1358
0
        DEBUGLOG(5, "ZSTDMT_createCompressionJob: will not create new job : table is full");
1359
0
        assert((mtctx->nextJobID & mtctx->jobIDMask) == (mtctx->doneJobID & mtctx->jobIDMask));
1360
0
        return 0;
1361
0
    }
1362
1363
0
    if (!mtctx->jobReady) {
1364
0
        BYTE const* src = (BYTE const*)mtctx->inBuff.buffer.start;
1365
0
        DEBUGLOG(5, "ZSTDMT_createCompressionJob: preparing job %u to compress %u bytes with %u preload ",
1366
0
                    mtctx->nextJobID, (U32)srcSize, (U32)mtctx->inBuff.prefix.size);
1367
0
        mtctx->jobs[jobID].src.start = src;
1368
0
        mtctx->jobs[jobID].src.size = srcSize;
1369
0
        assert(mtctx->inBuff.filled >= srcSize);
1370
0
        mtctx->jobs[jobID].prefix = mtctx->inBuff.prefix;
1371
0
        mtctx->jobs[jobID].consumed = 0;
1372
0
        mtctx->jobs[jobID].cSize = 0;
1373
0
        mtctx->jobs[jobID].params = mtctx->params;
1374
0
        mtctx->jobs[jobID].cdict = mtctx->nextJobID==0 ? mtctx->cdict : NULL;
1375
0
        mtctx->jobs[jobID].fullFrameSize = mtctx->frameContentSize;
1376
0
        mtctx->jobs[jobID].dstBuff = g_nullBuffer;
1377
0
        mtctx->jobs[jobID].cctxPool = mtctx->cctxPool;
1378
0
        mtctx->jobs[jobID].bufPool = mtctx->bufPool;
1379
0
        mtctx->jobs[jobID].seqPool = mtctx->seqPool;
1380
0
        mtctx->jobs[jobID].serial = &mtctx->serial;
1381
0
        mtctx->jobs[jobID].jobID = mtctx->nextJobID;
1382
0
        mtctx->jobs[jobID].firstJob = (mtctx->nextJobID==0);
1383
0
        mtctx->jobs[jobID].lastJob = endFrame;
1384
0
        mtctx->jobs[jobID].frameChecksumNeeded = mtctx->params.fParams.checksumFlag && endFrame && (mtctx->nextJobID>0);
1385
0
        mtctx->jobs[jobID].dstFlushed = 0;
1386
1387
        /* Update the round buffer pos and clear the input buffer to be reset */
1388
0
        mtctx->roundBuff.pos += srcSize;
1389
0
        mtctx->inBuff.buffer = g_nullBuffer;
1390
0
        mtctx->inBuff.filled = 0;
1391
        /* Set the prefix */
1392
0
        if (!endFrame) {
1393
0
            size_t const newPrefixSize = MIN(srcSize, mtctx->targetPrefixSize);
1394
0
            mtctx->inBuff.prefix.start = src + srcSize - newPrefixSize;
1395
0
            mtctx->inBuff.prefix.size = newPrefixSize;
1396
0
        } else {   /* endFrame==1 => no need for another input buffer */
1397
0
            mtctx->inBuff.prefix = kNullRange;
1398
0
            mtctx->frameEnded = endFrame;
1399
0
            if (mtctx->nextJobID == 0) {
1400
                /* single job exception : checksum is already calculated directly within worker thread */
1401
0
                mtctx->params.fParams.checksumFlag = 0;
1402
0
        }   }
1403
1404
0
        if ( (srcSize == 0)
1405
0
          && (mtctx->nextJobID>0)/*single job must also write frame header*/ ) {
1406
0
            DEBUGLOG(5, "ZSTDMT_createCompressionJob: creating a last empty block to end frame");
1407
0
            assert(endOp == ZSTD_e_end);  /* only possible case : need to end the frame with an empty last block */
1408
0
            ZSTDMT_writeLastEmptyBlock(mtctx->jobs + jobID);
1409
0
            mtctx->nextJobID++;
1410
0
            return 0;
1411
0
        }
1412
0
    }
1413
1414
0
    DEBUGLOG(5, "ZSTDMT_createCompressionJob: posting job %u : %u bytes  (end:%u, jobNb == %u (mod:%u))",
1415
0
                mtctx->nextJobID,
1416
0
                (U32)mtctx->jobs[jobID].src.size,
1417
0
                mtctx->jobs[jobID].lastJob,
1418
0
                mtctx->nextJobID,
1419
0
                jobID);
1420
0
    if (POOL_tryAdd(mtctx->factory, ZSTDMT_compressionJob, &mtctx->jobs[jobID])) {
1421
0
        mtctx->nextJobID++;
1422
0
        mtctx->jobReady = 0;
1423
0
    } else {
1424
0
        DEBUGLOG(5, "ZSTDMT_createCompressionJob: no worker available for job %u", mtctx->nextJobID);
1425
0
        mtctx->jobReady = 1;
1426
0
    }
1427
0
    return 0;
1428
0
}
1429
1430
1431
/*! ZSTDMT_flushProduced() :
1432
 *  flush whatever data has been produced but not yet flushed in current job.
1433
 *  move to next job if current one is fully flushed.
1434
 * `output` : `pos` will be updated with amount of data flushed .
1435
 * `blockToFlush` : if >0, the function will block and wait if there is no data available to flush .
1436
 * @return : amount of data remaining within internal buffer, 0 if no more, 1 if unknown but > 0, or an error code */
1437
static size_t ZSTDMT_flushProduced(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, unsigned blockToFlush, ZSTD_EndDirective end)
1438
0
{
1439
0
    unsigned const wJobID = mtctx->doneJobID & mtctx->jobIDMask;
1440
0
    DEBUGLOG(5, "ZSTDMT_flushProduced (blocking:%u , job %u <= %u)",
1441
0
                blockToFlush, mtctx->doneJobID, mtctx->nextJobID);
1442
0
    assert(output->size >= output->pos);
1443
1444
0
    ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex);
1445
0
    if (  blockToFlush
1446
0
      && (mtctx->doneJobID < mtctx->nextJobID) ) {
1447
0
        assert(mtctx->jobs[wJobID].dstFlushed <= mtctx->jobs[wJobID].cSize);
1448
0
        while (mtctx->jobs[wJobID].dstFlushed == mtctx->jobs[wJobID].cSize) {  /* nothing to flush */
1449
0
            if (mtctx->jobs[wJobID].consumed == mtctx->jobs[wJobID].src.size) {
1450
0
                DEBUGLOG(5, "job %u is completely consumed (%u == %u) => don't wait for cond, there will be none",
1451
0
                            mtctx->doneJobID, (U32)mtctx->jobs[wJobID].consumed, (U32)mtctx->jobs[wJobID].src.size);
1452
0
                break;
1453
0
            }
1454
0
            DEBUGLOG(5, "waiting for something to flush from job %u (currently flushed: %u bytes)",
1455
0
                        mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed);
1456
0
            ZSTD_pthread_cond_wait(&mtctx->jobs[wJobID].job_cond, &mtctx->jobs[wJobID].job_mutex);  /* block when nothing to flush but some to come */
1457
0
    }   }
1458
1459
    /* try to flush something */
1460
0
    {   size_t cSize = mtctx->jobs[wJobID].cSize;                  /* shared */
1461
0
        size_t const srcConsumed = mtctx->jobs[wJobID].consumed;   /* shared */
1462
0
        size_t const srcSize = mtctx->jobs[wJobID].src.size;       /* read-only, could be done after mutex lock, but no-declaration-after-statement */
1463
0
        ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
1464
0
        if (ZSTD_isError(cSize)) {
1465
0
            DEBUGLOG(5, "ZSTDMT_flushProduced: job %u : compression error detected : %s",
1466
0
                        mtctx->doneJobID, ZSTD_getErrorName(cSize));
1467
0
            ZSTDMT_waitForAllJobsCompleted(mtctx);
1468
0
            ZSTDMT_releaseAllJobResources(mtctx);
1469
0
            return cSize;
1470
0
        }
1471
        /* add frame checksum if necessary (can only happen once) */
1472
0
        assert(srcConsumed <= srcSize);
1473
0
        if ( (srcConsumed == srcSize)   /* job completed -> worker no longer active */
1474
0
          && mtctx->jobs[wJobID].frameChecksumNeeded ) {
1475
0
            U32 const checksum = (U32)XXH64_digest(&mtctx->serial.xxhState);
1476
0
            DEBUGLOG(4, "ZSTDMT_flushProduced: writing checksum : %08X \n", checksum);
1477
0
            MEM_writeLE32((char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].cSize, checksum);
1478
0
            cSize += 4;
1479
0
            mtctx->jobs[wJobID].cSize += 4;  /* can write this shared value, as worker is no longer active */
1480
0
            mtctx->jobs[wJobID].frameChecksumNeeded = 0;
1481
0
        }
1482
1483
0
        if (cSize > 0) {   /* compression is ongoing or completed */
1484
0
            size_t const toFlush = MIN(cSize - mtctx->jobs[wJobID].dstFlushed, output->size - output->pos);
1485
0
            DEBUGLOG(5, "ZSTDMT_flushProduced: Flushing %u bytes from job %u (completion:%u/%u, generated:%u)",
1486
0
                        (U32)toFlush, mtctx->doneJobID, (U32)srcConsumed, (U32)srcSize, (U32)cSize);
1487
0
            assert(mtctx->doneJobID < mtctx->nextJobID);
1488
0
            assert(cSize >= mtctx->jobs[wJobID].dstFlushed);
1489
0
            assert(mtctx->jobs[wJobID].dstBuff.start != NULL);
1490
0
            if (toFlush > 0) {
1491
0
                ZSTD_memcpy((char*)output->dst + output->pos,
1492
0
                    (const char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].dstFlushed,
1493
0
                    toFlush);
1494
0
            }
1495
0
            output->pos += toFlush;
1496
0
            mtctx->jobs[wJobID].dstFlushed += toFlush;  /* can write : this value is only used by mtctx */
1497
1498
0
            if ( (srcConsumed == srcSize)    /* job is completed */
1499
0
              && (mtctx->jobs[wJobID].dstFlushed == cSize) ) {   /* output buffer fully flushed => free this job position */
1500
0
                DEBUGLOG(5, "Job %u completed (%u bytes), moving to next one",
1501
0
                        mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed);
1502
0
                ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[wJobID].dstBuff);
1503
0
                DEBUGLOG(5, "dstBuffer released");
1504
0
                mtctx->jobs[wJobID].dstBuff = g_nullBuffer;
1505
0
                mtctx->jobs[wJobID].cSize = 0;   /* ensure this job slot is considered "not started" in future check */
1506
0
                mtctx->consumed += srcSize;
1507
0
                mtctx->produced += cSize;
1508
0
                mtctx->doneJobID++;
1509
0
        }   }
1510
1511
        /* return value : how many bytes left in buffer ; fake it to 1 when unknown but >0 */
1512
0
        if (cSize > mtctx->jobs[wJobID].dstFlushed) return (cSize - mtctx->jobs[wJobID].dstFlushed);
1513
0
        if (srcSize > srcConsumed) return 1;   /* current job not completely compressed */
1514
0
    }
1515
0
    if (mtctx->doneJobID < mtctx->nextJobID) return 1;   /* some more jobs ongoing */
1516
0
    if (mtctx->jobReady) return 1;      /* one job is ready to push, just not yet in the list */
1517
0
    if (mtctx->inBuff.filled > 0) return 1;   /* input is not empty, and still needs to be converted into a job */
1518
0
    mtctx->allJobsCompleted = mtctx->frameEnded;   /* all jobs are entirely flushed => if this one is last one, frame is completed */
1519
0
    if (end == ZSTD_e_end) return !mtctx->frameEnded;  /* for ZSTD_e_end, question becomes : is frame completed ? instead of : are internal buffers fully flushed ? */
1520
0
    return 0;   /* internal buffers fully flushed */
1521
0
}
1522
1523
/**
1524
 * Returns the range of data used by the earliest job that is not yet complete.
1525
 * If the data of the first job is broken up into two segments, we cover both
1526
 * sections.
1527
 */
1528
static range_t ZSTDMT_getInputDataInUse(ZSTDMT_CCtx* mtctx)
1529
0
{
1530
0
    unsigned const firstJobID = mtctx->doneJobID;
1531
0
    unsigned const lastJobID = mtctx->nextJobID;
1532
0
    unsigned jobID;
1533
1534
0
    for (jobID = firstJobID; jobID < lastJobID; ++jobID) {
1535
0
        unsigned const wJobID = jobID & mtctx->jobIDMask;
1536
0
        size_t consumed;
1537
1538
0
        ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex);
1539
0
        consumed = mtctx->jobs[wJobID].consumed;
1540
0
        ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
1541
1542
0
        if (consumed < mtctx->jobs[wJobID].src.size) {
1543
0
            range_t range = mtctx->jobs[wJobID].prefix;
1544
0
            if (range.size == 0) {
1545
                /* Empty prefix */
1546
0
                range = mtctx->jobs[wJobID].src;
1547
0
            }
1548
            /* Job source in multiple segments not supported yet */
1549
0
            assert(range.start <= mtctx->jobs[wJobID].src.start);
1550
0
            return range;
1551
0
        }
1552
0
    }
1553
0
    return kNullRange;
1554
0
}
1555
1556
/**
1557
 * Returns non-zero iff buffer and range overlap.
1558
 */
1559
static int ZSTDMT_isOverlapped(buffer_t buffer, range_t range)
1560
0
{
1561
0
    BYTE const* const bufferStart = (BYTE const*)buffer.start;
1562
0
    BYTE const* const rangeStart = (BYTE const*)range.start;
1563
1564
0
    if (rangeStart == NULL || bufferStart == NULL)
1565
0
        return 0;
1566
1567
0
    {
1568
0
        BYTE const* const bufferEnd = bufferStart + buffer.capacity;
1569
0
        BYTE const* const rangeEnd = rangeStart + range.size;
1570
1571
        /* Empty ranges cannot overlap */
1572
0
        if (bufferStart == bufferEnd || rangeStart == rangeEnd)
1573
0
            return 0;
1574
1575
0
        return bufferStart < rangeEnd && rangeStart < bufferEnd;
1576
0
    }
1577
0
}
1578
1579
static int ZSTDMT_doesOverlapWindow(buffer_t buffer, ZSTD_window_t window)
1580
0
{
1581
0
    range_t extDict;
1582
0
    range_t prefix;
1583
1584
0
    DEBUGLOG(5, "ZSTDMT_doesOverlapWindow");
1585
0
    extDict.start = window.dictBase + window.lowLimit;
1586
0
    extDict.size = window.dictLimit - window.lowLimit;
1587
1588
0
    prefix.start = window.base + window.dictLimit;
1589
0
    prefix.size = window.nextSrc - (window.base + window.dictLimit);
1590
0
    DEBUGLOG(5, "extDict [0x%zx, 0x%zx)",
1591
0
                (size_t)extDict.start,
1592
0
                (size_t)extDict.start + extDict.size);
1593
0
    DEBUGLOG(5, "prefix  [0x%zx, 0x%zx)",
1594
0
                (size_t)prefix.start,
1595
0
                (size_t)prefix.start + prefix.size);
1596
1597
0
    return ZSTDMT_isOverlapped(buffer, extDict)
1598
0
        || ZSTDMT_isOverlapped(buffer, prefix);
1599
0
}
1600
1601
static void ZSTDMT_waitForLdmComplete(ZSTDMT_CCtx* mtctx, buffer_t buffer)
1602
0
{
1603
0
    if (mtctx->params.ldmParams.enableLdm == ZSTD_ps_enable) {
1604
0
        ZSTD_pthread_mutex_t* mutex = &mtctx->serial.ldmWindowMutex;
1605
0
        DEBUGLOG(5, "ZSTDMT_waitForLdmComplete");
1606
0
        DEBUGLOG(5, "source  [0x%zx, 0x%zx)",
1607
0
                    (size_t)buffer.start,
1608
0
                    (size_t)buffer.start + buffer.capacity);
1609
0
        ZSTD_PTHREAD_MUTEX_LOCK(mutex);
1610
0
        while (ZSTDMT_doesOverlapWindow(buffer, mtctx->serial.ldmWindow)) {
1611
0
            DEBUGLOG(5, "Waiting for LDM to finish...");
1612
0
            ZSTD_pthread_cond_wait(&mtctx->serial.ldmWindowCond, mutex);
1613
0
        }
1614
0
        DEBUGLOG(6, "Done waiting for LDM to finish");
1615
0
        ZSTD_pthread_mutex_unlock(mutex);
1616
0
    }
1617
0
}
1618
1619
/**
1620
 * Attempts to set the inBuff to the next section to fill.
1621
 * If any part of the new section is still in use we give up.
1622
 * Returns non-zero if the buffer is filled.
1623
 */
1624
static int ZSTDMT_tryGetInputRange(ZSTDMT_CCtx* mtctx)
1625
0
{
1626
0
    range_t const inUse = ZSTDMT_getInputDataInUse(mtctx);
1627
0
    size_t const spaceLeft = mtctx->roundBuff.capacity - mtctx->roundBuff.pos;
1628
0
    size_t const target = mtctx->targetSectionSize;
1629
0
    buffer_t buffer;
1630
1631
0
    DEBUGLOG(5, "ZSTDMT_tryGetInputRange");
1632
0
    assert(mtctx->inBuff.buffer.start == NULL);
1633
0
    assert(mtctx->roundBuff.capacity >= target);
1634
1635
0
    if (spaceLeft < target) {
1636
        /* ZSTD_invalidateRepCodes() doesn't work for extDict variants.
1637
         * Simply copy the prefix to the beginning in that case.
1638
         */
1639
0
        BYTE* const start = (BYTE*)mtctx->roundBuff.buffer;
1640
0
        size_t const prefixSize = mtctx->inBuff.prefix.size;
1641
1642
0
        buffer.start = start;
1643
0
        buffer.capacity = prefixSize;
1644
0
        if (ZSTDMT_isOverlapped(buffer, inUse)) {
1645
0
            DEBUGLOG(5, "Waiting for buffer...");
1646
0
            return 0;
1647
0
        }
1648
0
        ZSTDMT_waitForLdmComplete(mtctx, buffer);
1649
0
        ZSTD_memmove(start, mtctx->inBuff.prefix.start, prefixSize);
1650
0
        mtctx->inBuff.prefix.start = start;
1651
0
        mtctx->roundBuff.pos = prefixSize;
1652
0
    }
1653
0
    buffer.start = mtctx->roundBuff.buffer + mtctx->roundBuff.pos;
1654
0
    buffer.capacity = target;
1655
1656
0
    if (ZSTDMT_isOverlapped(buffer, inUse)) {
1657
0
        DEBUGLOG(5, "Waiting for buffer...");
1658
0
        return 0;
1659
0
    }
1660
0
    assert(!ZSTDMT_isOverlapped(buffer, mtctx->inBuff.prefix));
1661
1662
0
    ZSTDMT_waitForLdmComplete(mtctx, buffer);
1663
1664
0
    DEBUGLOG(5, "Using prefix range [%zx, %zx)",
1665
0
                (size_t)mtctx->inBuff.prefix.start,
1666
0
                (size_t)mtctx->inBuff.prefix.start + mtctx->inBuff.prefix.size);
1667
0
    DEBUGLOG(5, "Using source range [%zx, %zx)",
1668
0
                (size_t)buffer.start,
1669
0
                (size_t)buffer.start + buffer.capacity);
1670
1671
1672
0
    mtctx->inBuff.buffer = buffer;
1673
0
    mtctx->inBuff.filled = 0;
1674
0
    assert(mtctx->roundBuff.pos + buffer.capacity <= mtctx->roundBuff.capacity);
1675
0
    return 1;
1676
0
}
1677
1678
typedef struct {
1679
  size_t toLoad;  /* The number of bytes to load from the input. */
1680
  int flush;      /* Boolean declaring if we must flush because we found a synchronization point. */
1681
} syncPoint_t;
1682
1683
/**
1684
 * Searches through the input for a synchronization point. If one is found, we
1685
 * will instruct the caller to flush, and return the number of bytes to load.
1686
 * Otherwise, we will load as many bytes as possible and instruct the caller
1687
 * to continue as normal.
1688
 */
1689
static syncPoint_t
1690
findSynchronizationPoint(ZSTDMT_CCtx const* mtctx, ZSTD_inBuffer const input)
1691
0
{
1692
0
    BYTE const* const istart = (BYTE const*)input.src + input.pos;
1693
0
    U64 const primePower = mtctx->rsync.primePower;
1694
0
    U64 const hitMask = mtctx->rsync.hitMask;
1695
1696
0
    syncPoint_t syncPoint;
1697
0
    U64 hash;
1698
0
    BYTE const* prev;
1699
0
    size_t pos;
1700
1701
0
    syncPoint.toLoad = MIN(input.size - input.pos, mtctx->targetSectionSize - mtctx->inBuff.filled);
1702
0
    syncPoint.flush = 0;
1703
0
    if (!mtctx->params.rsyncable)
1704
        /* Rsync is disabled. */
1705
0
        return syncPoint;
1706
0
    if (mtctx->inBuff.filled + input.size - input.pos < RSYNC_MIN_BLOCK_SIZE)
1707
        /* We don't emit synchronization points if it would produce too small blocks.
1708
         * We don't have enough input to find a synchronization point, so don't look.
1709
         */
1710
0
        return syncPoint;
1711
0
    if (mtctx->inBuff.filled + syncPoint.toLoad < RSYNC_LENGTH)
1712
        /* Not enough to compute the hash.
1713
         * We will miss any synchronization points in this RSYNC_LENGTH byte
1714
         * window. However, since it depends only in the internal buffers, if the
1715
         * state is already synchronized, we will remain synchronized.
1716
         * Additionally, the probability that we miss a synchronization point is
1717
         * low: RSYNC_LENGTH / targetSectionSize.
1718
         */
1719
0
        return syncPoint;
1720
    /* Initialize the loop variables. */
1721
0
    if (mtctx->inBuff.filled < RSYNC_MIN_BLOCK_SIZE) {
1722
        /* We don't need to scan the first RSYNC_MIN_BLOCK_SIZE positions
1723
         * because they can't possibly be a sync point. So we can start
1724
         * part way through the input buffer.
1725
         */
1726
0
        pos = RSYNC_MIN_BLOCK_SIZE - mtctx->inBuff.filled;
1727
0
        if (pos >= RSYNC_LENGTH) {
1728
0
            prev = istart + pos - RSYNC_LENGTH;
1729
0
            hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH);
1730
0
        } else {
1731
0
            assert(mtctx->inBuff.filled >= RSYNC_LENGTH);
1732
0
            prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH;
1733
0
            hash = ZSTD_rollingHash_compute(prev + pos, (RSYNC_LENGTH - pos));
1734
0
            hash = ZSTD_rollingHash_append(hash, istart, pos);
1735
0
        }
1736
0
    } else {
1737
        /* We have enough bytes buffered to initialize the hash,
1738
         * and have processed enough bytes to find a sync point.
1739
         * Start scanning at the beginning of the input.
1740
         */
1741
0
        assert(mtctx->inBuff.filled >= RSYNC_MIN_BLOCK_SIZE);
1742
0
        assert(RSYNC_MIN_BLOCK_SIZE >= RSYNC_LENGTH);
1743
0
        pos = 0;
1744
0
        prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH;
1745
0
        hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH);
1746
0
        if ((hash & hitMask) == hitMask) {
1747
            /* We're already at a sync point so don't load any more until
1748
             * we're able to flush this sync point.
1749
             * This likely happened because the job table was full so we
1750
             * couldn't add our job.
1751
             */
1752
0
            syncPoint.toLoad = 0;
1753
0
            syncPoint.flush = 1;
1754
0
            return syncPoint;
1755
0
        }
1756
0
    }
1757
    /* Starting with the hash of the previous RSYNC_LENGTH bytes, roll
1758
     * through the input. If we hit a synchronization point, then cut the
1759
     * job off, and tell the compressor to flush the job. Otherwise, load
1760
     * all the bytes and continue as normal.
1761
     * If we go too long without a synchronization point (targetSectionSize)
1762
     * then a block will be emitted anyways, but this is okay, since if we
1763
     * are already synchronized we will remain synchronized.
1764
     */
1765
0
    assert(pos < RSYNC_LENGTH || ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash);
1766
0
    for (; pos < syncPoint.toLoad; ++pos) {
1767
0
        BYTE const toRemove = pos < RSYNC_LENGTH ? prev[pos] : istart[pos - RSYNC_LENGTH];
1768
        /* This assert is very expensive, and Debian compiles with asserts enabled.
1769
         * So disable it for now. We can get similar coverage by checking it at the
1770
         * beginning & end of the loop.
1771
         * assert(pos < RSYNC_LENGTH || ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash);
1772
         */
1773
0
        hash = ZSTD_rollingHash_rotate(hash, toRemove, istart[pos], primePower);
1774
0
        assert(mtctx->inBuff.filled + pos >= RSYNC_MIN_BLOCK_SIZE);
1775
0
        if ((hash & hitMask) == hitMask) {
1776
0
            syncPoint.toLoad = pos + 1;
1777
0
            syncPoint.flush = 1;
1778
0
            ++pos; /* for assert */
1779
0
            break;
1780
0
        }
1781
0
    }
1782
0
    assert(pos < RSYNC_LENGTH || ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash);
1783
0
    return syncPoint;
1784
0
}
1785
1786
size_t ZSTDMT_nextInputSizeHint(const ZSTDMT_CCtx* mtctx)
1787
0
{
1788
0
    size_t hintInSize = mtctx->targetSectionSize - mtctx->inBuff.filled;
1789
0
    if (hintInSize==0) hintInSize = mtctx->targetSectionSize;
1790
0
    return hintInSize;
1791
0
}
1792
1793
/** ZSTDMT_compressStream_generic() :
1794
 *  internal use only - exposed to be invoked from zstd_compress.c
1795
 *  assumption : output and input are valid (pos <= size)
1796
 * @return : minimum amount of data remaining to flush, 0 if none */
1797
size_t ZSTDMT_compressStream_generic(ZSTDMT_CCtx* mtctx,
1798
                                     ZSTD_outBuffer* output,
1799
                                     ZSTD_inBuffer* input,
1800
                                     ZSTD_EndDirective endOp)
1801
0
{
1802
0
    unsigned forwardInputProgress = 0;
1803
0
    DEBUGLOG(5, "ZSTDMT_compressStream_generic (endOp=%u, srcSize=%u)",
1804
0
                (U32)endOp, (U32)(input->size - input->pos));
1805
0
    assert(output->pos <= output->size);
1806
0
    assert(input->pos  <= input->size);
1807
1808
0
    if ((mtctx->frameEnded) && (endOp==ZSTD_e_continue)) {
1809
        /* current frame being ended. Only flush/end are allowed */
1810
0
        return ERROR(stage_wrong);
1811
0
    }
1812
1813
    /* fill input buffer */
1814
0
    if ( (!mtctx->jobReady)
1815
0
      && (input->size > input->pos) ) {   /* support NULL input */
1816
0
        if (mtctx->inBuff.buffer.start == NULL) {
1817
0
            assert(mtctx->inBuff.filled == 0); /* Can't fill an empty buffer */
1818
0
            if (!ZSTDMT_tryGetInputRange(mtctx)) {
1819
                /* It is only possible for this operation to fail if there are
1820
                 * still compression jobs ongoing.
1821
                 */
1822
0
                DEBUGLOG(5, "ZSTDMT_tryGetInputRange failed");
1823
0
                assert(mtctx->doneJobID != mtctx->nextJobID);
1824
0
            } else
1825
0
                DEBUGLOG(5, "ZSTDMT_tryGetInputRange completed successfully : mtctx->inBuff.buffer.start = %p", mtctx->inBuff.buffer.start);
1826
0
        }
1827
0
        if (mtctx->inBuff.buffer.start != NULL) {
1828
0
            syncPoint_t const syncPoint = findSynchronizationPoint(mtctx, *input);
1829
0
            if (syncPoint.flush && endOp == ZSTD_e_continue) {
1830
0
                endOp = ZSTD_e_flush;
1831
0
            }
1832
0
            assert(mtctx->inBuff.buffer.capacity >= mtctx->targetSectionSize);
1833
0
            DEBUGLOG(5, "ZSTDMT_compressStream_generic: adding %u bytes on top of %u to buffer of size %u",
1834
0
                        (U32)syncPoint.toLoad, (U32)mtctx->inBuff.filled, (U32)mtctx->targetSectionSize);
1835
0
            ZSTD_memcpy((char*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled, (const char*)input->src + input->pos, syncPoint.toLoad);
1836
0
            input->pos += syncPoint.toLoad;
1837
0
            mtctx->inBuff.filled += syncPoint.toLoad;
1838
0
            forwardInputProgress = syncPoint.toLoad>0;
1839
0
        }
1840
0
    }
1841
0
    if ((input->pos < input->size) && (endOp == ZSTD_e_end)) {
1842
        /* Can't end yet because the input is not fully consumed.
1843
            * We are in one of these cases:
1844
            * - mtctx->inBuff is NULL & empty: we couldn't get an input buffer so don't create a new job.
1845
            * - We filled the input buffer: flush this job but don't end the frame.
1846
            * - We hit a synchronization point: flush this job but don't end the frame.
1847
            */
1848
0
        assert(mtctx->inBuff.filled == 0 || mtctx->inBuff.filled == mtctx->targetSectionSize || mtctx->params.rsyncable);
1849
0
        endOp = ZSTD_e_flush;
1850
0
    }
1851
1852
0
    if ( (mtctx->jobReady)
1853
0
      || (mtctx->inBuff.filled >= mtctx->targetSectionSize)  /* filled enough : let's compress */
1854
0
      || ((endOp != ZSTD_e_continue) && (mtctx->inBuff.filled > 0))  /* something to flush : let's go */
1855
0
      || ((endOp == ZSTD_e_end) && (!mtctx->frameEnded)) ) {   /* must finish the frame with a zero-size block */
1856
0
        size_t const jobSize = mtctx->inBuff.filled;
1857
0
        assert(mtctx->inBuff.filled <= mtctx->targetSectionSize);
1858
0
        FORWARD_IF_ERROR( ZSTDMT_createCompressionJob(mtctx, jobSize, endOp) , "");
1859
0
    }
1860
1861
    /* check for potential compressed data ready to be flushed */
1862
0
    {   size_t const remainingToFlush = ZSTDMT_flushProduced(mtctx, output, !forwardInputProgress, endOp); /* block if there was no forward input progress */
1863
0
        if (input->pos < input->size) return MAX(remainingToFlush, 1);  /* input not consumed : do not end flush yet */
1864
0
        DEBUGLOG(5, "end of ZSTDMT_compressStream_generic: remainingToFlush = %u", (U32)remainingToFlush);
1865
0
        return remainingToFlush;
1866
0
    }
1867
0
}