Coverage Report

Created: 2025-11-16 06:36

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/perfetto/buildtools/zstd/lib/dictBuilder/cover.c
Line
Count
Source
1
/*
2
 * Copyright (c) Meta Platforms, Inc. and affiliates.
3
 * All rights reserved.
4
 *
5
 * This source code is licensed under both the BSD-style license (found in the
6
 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7
 * in the COPYING file in the root directory of this source tree).
8
 * You may select, at your option, one of the above-listed licenses.
9
 */
10
11
/* *****************************************************************************
12
 * Constructs a dictionary using a heuristic based on the following paper:
13
 *
14
 * Liao, Petri, Moffat, Wirth
15
 * Effective Construction of Relative Lempel-Ziv Dictionaries
16
 * Published in WWW 2016.
17
 *
18
 * Adapted from code originally written by @ot (Giuseppe Ottaviano).
19
 ******************************************************************************/
20
21
/*-*************************************
22
*  Dependencies
23
***************************************/
24
#include <stdio.h>  /* fprintf */
25
#include <stdlib.h> /* malloc, free, qsort */
26
#include <string.h> /* memset */
27
#include <time.h>   /* clock */
28
29
#ifndef ZDICT_STATIC_LINKING_ONLY
30
#  define ZDICT_STATIC_LINKING_ONLY
31
#endif
32
33
#include "../common/mem.h" /* read */
34
#include "../common/pool.h"
35
#include "../common/threading.h"
36
#include "../common/zstd_internal.h" /* includes zstd.h */
37
#include "../common/bits.h" /* ZSTD_highbit32 */
38
#include "../zdict.h"
39
#include "cover.h"
40
41
/*-*************************************
42
*  Constants
43
***************************************/
44
/**
45
* There are 32bit indexes used to ref samples, so limit samples size to 4GB
46
* on 64bit builds.
47
* For 32bit builds we choose 1 GB.
48
* Most 32bit platforms have 2GB user-mode addressable space and we allocate a large
49
* contiguous buffer, so 1GB is already a high limit.
50
*/
51
0
#define COVER_MAX_SAMPLES_SIZE (sizeof(size_t) == 8 ? ((unsigned)-1) : ((unsigned)1 GB))
52
0
#define COVER_DEFAULT_SPLITPOINT 1.0
53
54
/*-*************************************
55
*  Console display
56
***************************************/
57
#ifndef LOCALDISPLAYLEVEL
58
static int g_displayLevel = 0;
59
#endif
60
#undef  DISPLAY
61
#define DISPLAY(...)                                                           \
62
0
  {                                                                            \
63
0
    fprintf(stderr, __VA_ARGS__);                                              \
64
0
    fflush(stderr);                                                            \
65
0
  }
66
#undef  LOCALDISPLAYLEVEL
67
#define LOCALDISPLAYLEVEL(displayLevel, l, ...)                                \
68
0
  if (displayLevel >= l) {                                                     \
69
0
    DISPLAY(__VA_ARGS__);                                                      \
70
0
  } /* 0 : no display;   1: errors;   2: default;  3: details;  4: debug */
71
#undef  DISPLAYLEVEL
72
0
#define DISPLAYLEVEL(l, ...) LOCALDISPLAYLEVEL(g_displayLevel, l, __VA_ARGS__)
73
74
#ifndef LOCALDISPLAYUPDATE
75
static const clock_t g_refreshRate = CLOCKS_PER_SEC * 15 / 100;
76
static clock_t g_time = 0;
77
#endif
78
#undef  LOCALDISPLAYUPDATE
79
#define LOCALDISPLAYUPDATE(displayLevel, l, ...)                               \
80
0
  if (displayLevel >= l) {                                                     \
81
0
    if ((clock() - g_time > g_refreshRate) || (displayLevel >= 4)) {             \
82
0
      g_time = clock();                                                        \
83
0
      DISPLAY(__VA_ARGS__);                                                    \
84
0
    }                                                                          \
85
0
  }
86
#undef  DISPLAYUPDATE
87
0
#define DISPLAYUPDATE(l, ...) LOCALDISPLAYUPDATE(g_displayLevel, l, __VA_ARGS__)
88
89
/*-*************************************
90
* Hash table
91
***************************************
92
* A small specialized hash map for storing activeDmers.
93
* The map does not resize, so if it becomes full it will loop forever.
94
* Thus, the map must be large enough to store every value.
95
* The map implements linear probing and keeps its load less than 0.5.
96
*/
97
98
0
#define MAP_EMPTY_VALUE ((U32)-1)
99
typedef struct COVER_map_pair_t_s {
100
  U32 key;
101
  U32 value;
102
} COVER_map_pair_t;
103
104
typedef struct COVER_map_s {
105
  COVER_map_pair_t *data;
106
  U32 sizeLog;
107
  U32 size;
108
  U32 sizeMask;
109
} COVER_map_t;
110
111
/**
112
 * Clear the map.
113
 */
114
0
static void COVER_map_clear(COVER_map_t *map) {
115
0
  memset(map->data, MAP_EMPTY_VALUE, map->size * sizeof(COVER_map_pair_t));
116
0
}
117
118
/**
119
 * Initializes a map of the given size.
120
 * Returns 1 on success and 0 on failure.
121
 * The map must be destroyed with COVER_map_destroy().
122
 * The map is only guaranteed to be large enough to hold size elements.
123
 */
124
0
static int COVER_map_init(COVER_map_t *map, U32 size) {
125
0
  map->sizeLog = ZSTD_highbit32(size) + 2;
126
0
  map->size = (U32)1 << map->sizeLog;
127
0
  map->sizeMask = map->size - 1;
128
0
  map->data = (COVER_map_pair_t *)malloc(map->size * sizeof(COVER_map_pair_t));
129
0
  if (!map->data) {
130
0
    map->sizeLog = 0;
131
0
    map->size = 0;
132
0
    return 0;
133
0
  }
134
0
  COVER_map_clear(map);
135
0
  return 1;
136
0
}
137
138
/**
139
 * Internal hash function
140
 */
141
static const U32 COVER_prime4bytes = 2654435761U;
142
0
static U32 COVER_map_hash(COVER_map_t *map, U32 key) {
143
0
  return (key * COVER_prime4bytes) >> (32 - map->sizeLog);
144
0
}
145
146
/**
147
 * Helper function that returns the index that a key should be placed into.
148
 */
149
0
static U32 COVER_map_index(COVER_map_t *map, U32 key) {
150
0
  const U32 hash = COVER_map_hash(map, key);
151
0
  U32 i;
152
0
  for (i = hash;; i = (i + 1) & map->sizeMask) {
153
0
    COVER_map_pair_t *pos = &map->data[i];
154
0
    if (pos->value == MAP_EMPTY_VALUE) {
155
0
      return i;
156
0
    }
157
0
    if (pos->key == key) {
158
0
      return i;
159
0
    }
160
0
  }
161
0
}
162
163
/**
164
 * Returns the pointer to the value for key.
165
 * If key is not in the map, it is inserted and the value is set to 0.
166
 * The map must not be full.
167
 */
168
0
static U32 *COVER_map_at(COVER_map_t *map, U32 key) {
169
0
  COVER_map_pair_t *pos = &map->data[COVER_map_index(map, key)];
170
0
  if (pos->value == MAP_EMPTY_VALUE) {
171
0
    pos->key = key;
172
0
    pos->value = 0;
173
0
  }
174
0
  return &pos->value;
175
0
}
176
177
/**
178
 * Deletes key from the map if present.
179
 */
180
0
static void COVER_map_remove(COVER_map_t *map, U32 key) {
181
0
  U32 i = COVER_map_index(map, key);
182
0
  COVER_map_pair_t *del = &map->data[i];
183
0
  U32 shift = 1;
184
0
  if (del->value == MAP_EMPTY_VALUE) {
185
0
    return;
186
0
  }
187
0
  for (i = (i + 1) & map->sizeMask;; i = (i + 1) & map->sizeMask) {
188
0
    COVER_map_pair_t *const pos = &map->data[i];
189
    /* If the position is empty we are done */
190
0
    if (pos->value == MAP_EMPTY_VALUE) {
191
0
      del->value = MAP_EMPTY_VALUE;
192
0
      return;
193
0
    }
194
    /* If pos can be moved to del do so */
195
0
    if (((i - COVER_map_hash(map, pos->key)) & map->sizeMask) >= shift) {
196
0
      del->key = pos->key;
197
0
      del->value = pos->value;
198
0
      del = pos;
199
0
      shift = 1;
200
0
    } else {
201
0
      ++shift;
202
0
    }
203
0
  }
204
0
}
205
206
/**
207
 * Destroys a map that is inited with COVER_map_init().
208
 */
209
0
static void COVER_map_destroy(COVER_map_t *map) {
210
0
  if (map->data) {
211
0
    free(map->data);
212
0
  }
213
0
  map->data = NULL;
214
0
  map->size = 0;
215
0
}
216
217
/*-*************************************
218
* Context
219
***************************************/
220
221
typedef struct {
222
  const BYTE *samples;
223
  size_t *offsets;
224
  const size_t *samplesSizes;
225
  size_t nbSamples;
226
  size_t nbTrainSamples;
227
  size_t nbTestSamples;
228
  U32 *suffix;
229
  size_t suffixSize;
230
  U32 *freqs;
231
  U32 *dmerAt;
232
  unsigned d;
233
} COVER_ctx_t;
234
235
/* We need a global context for qsort... */
236
static COVER_ctx_t *g_coverCtx = NULL;
237
238
/*-*************************************
239
*  Helper functions
240
***************************************/
241
242
/**
243
 * Returns the sum of the sample sizes.
244
 */
245
0
size_t COVER_sum(const size_t *samplesSizes, unsigned nbSamples) {
246
0
  size_t sum = 0;
247
0
  unsigned i;
248
0
  for (i = 0; i < nbSamples; ++i) {
249
0
    sum += samplesSizes[i];
250
0
  }
251
0
  return sum;
252
0
}
253
254
/**
255
 * Returns -1 if the dmer at lp is less than the dmer at rp.
256
 * Return 0 if the dmers at lp and rp are equal.
257
 * Returns 1 if the dmer at lp is greater than the dmer at rp.
258
 */
259
0
static int COVER_cmp(COVER_ctx_t *ctx, const void *lp, const void *rp) {
260
0
  U32 const lhs = *(U32 const *)lp;
261
0
  U32 const rhs = *(U32 const *)rp;
262
0
  return memcmp(ctx->samples + lhs, ctx->samples + rhs, ctx->d);
263
0
}
264
/**
265
 * Faster version for d <= 8.
266
 */
267
0
static int COVER_cmp8(COVER_ctx_t *ctx, const void *lp, const void *rp) {
268
0
  U64 const mask = (ctx->d == 8) ? (U64)-1 : (((U64)1 << (8 * ctx->d)) - 1);
269
0
  U64 const lhs = MEM_readLE64(ctx->samples + *(U32 const *)lp) & mask;
270
0
  U64 const rhs = MEM_readLE64(ctx->samples + *(U32 const *)rp) & mask;
271
0
  if (lhs < rhs) {
272
0
    return -1;
273
0
  }
274
0
  return (lhs > rhs);
275
0
}
276
277
/**
278
 * Same as COVER_cmp() except ties are broken by pointer value
279
 * NOTE: g_coverCtx must be set to call this function.  A global is required because
280
 * qsort doesn't take an opaque pointer.
281
 */
282
0
static int WIN_CDECL COVER_strict_cmp(const void *lp, const void *rp) {
283
0
  int result = COVER_cmp(g_coverCtx, lp, rp);
284
0
  if (result == 0) {
285
0
    result = lp < rp ? -1 : 1;
286
0
  }
287
0
  return result;
288
0
}
289
/**
290
 * Faster version for d <= 8.
291
 */
292
0
static int WIN_CDECL COVER_strict_cmp8(const void *lp, const void *rp) {
293
0
  int result = COVER_cmp8(g_coverCtx, lp, rp);
294
0
  if (result == 0) {
295
0
    result = lp < rp ? -1 : 1;
296
0
  }
297
0
  return result;
298
0
}
299
300
/**
301
 * Returns the first pointer in [first, last) whose element does not compare
302
 * less than value.  If no such element exists it returns last.
303
 */
304
static const size_t *COVER_lower_bound(const size_t *first, const size_t *last,
305
0
                                       size_t value) {
306
0
  size_t count = last - first;
307
0
  while (count != 0) {
308
0
    size_t step = count / 2;
309
0
    const size_t *ptr = first;
310
0
    ptr += step;
311
0
    if (*ptr < value) {
312
0
      first = ++ptr;
313
0
      count -= step + 1;
314
0
    } else {
315
0
      count = step;
316
0
    }
317
0
  }
318
0
  return first;
319
0
}
320
321
/**
322
 * Generic groupBy function.
323
 * Groups an array sorted by cmp into groups with equivalent values.
324
 * Calls grp for each group.
325
 */
326
static void
327
COVER_groupBy(const void *data, size_t count, size_t size, COVER_ctx_t *ctx,
328
              int (*cmp)(COVER_ctx_t *, const void *, const void *),
329
0
              void (*grp)(COVER_ctx_t *, const void *, const void *)) {
330
0
  const BYTE *ptr = (const BYTE *)data;
331
0
  size_t num = 0;
332
0
  while (num < count) {
333
0
    const BYTE *grpEnd = ptr + size;
334
0
    ++num;
335
0
    while (num < count && cmp(ctx, ptr, grpEnd) == 0) {
336
0
      grpEnd += size;
337
0
      ++num;
338
0
    }
339
0
    grp(ctx, ptr, grpEnd);
340
0
    ptr = grpEnd;
341
0
  }
342
0
}
343
344
/*-*************************************
345
*  Cover functions
346
***************************************/
347
348
/**
349
 * Called on each group of positions with the same dmer.
350
 * Counts the frequency of each dmer and saves it in the suffix array.
351
 * Fills `ctx->dmerAt`.
352
 */
353
static void COVER_group(COVER_ctx_t *ctx, const void *group,
354
0
                        const void *groupEnd) {
355
  /* The group consists of all the positions with the same first d bytes. */
356
0
  const U32 *grpPtr = (const U32 *)group;
357
0
  const U32 *grpEnd = (const U32 *)groupEnd;
358
  /* The dmerId is how we will reference this dmer.
359
   * This allows us to map the whole dmer space to a much smaller space, the
360
   * size of the suffix array.
361
   */
362
0
  const U32 dmerId = (U32)(grpPtr - ctx->suffix);
363
  /* Count the number of samples this dmer shows up in */
364
0
  U32 freq = 0;
365
  /* Details */
366
0
  const size_t *curOffsetPtr = ctx->offsets;
367
0
  const size_t *offsetsEnd = ctx->offsets + ctx->nbSamples;
368
  /* Once *grpPtr >= curSampleEnd this occurrence of the dmer is in a
369
   * different sample than the last.
370
   */
371
0
  size_t curSampleEnd = ctx->offsets[0];
372
0
  for (; grpPtr != grpEnd; ++grpPtr) {
373
    /* Save the dmerId for this position so we can get back to it. */
374
0
    ctx->dmerAt[*grpPtr] = dmerId;
375
    /* Dictionaries only help for the first reference to the dmer.
376
     * After that zstd can reference the match from the previous reference.
377
     * So only count each dmer once for each sample it is in.
378
     */
379
0
    if (*grpPtr < curSampleEnd) {
380
0
      continue;
381
0
    }
382
0
    freq += 1;
383
    /* Binary search to find the end of the sample *grpPtr is in.
384
     * In the common case that grpPtr + 1 == grpEnd we can skip the binary
385
     * search because the loop is over.
386
     */
387
0
    if (grpPtr + 1 != grpEnd) {
388
0
      const size_t *sampleEndPtr =
389
0
          COVER_lower_bound(curOffsetPtr, offsetsEnd, *grpPtr);
390
0
      curSampleEnd = *sampleEndPtr;
391
0
      curOffsetPtr = sampleEndPtr + 1;
392
0
    }
393
0
  }
394
  /* At this point we are never going to look at this segment of the suffix
395
   * array again.  We take advantage of this fact to save memory.
396
   * We store the frequency of the dmer in the first position of the group,
397
   * which is dmerId.
398
   */
399
0
  ctx->suffix[dmerId] = freq;
400
0
}
401
402
403
/**
404
 * Selects the best segment in an epoch.
405
 * Segments of are scored according to the function:
406
 *
407
 * Let F(d) be the frequency of dmer d.
408
 * Let S_i be the dmer at position i of segment S which has length k.
409
 *
410
 *     Score(S) = F(S_1) + F(S_2) + ... + F(S_{k-d+1})
411
 *
412
 * Once the dmer d is in the dictionary we set F(d) = 0.
413
 */
414
static COVER_segment_t COVER_selectSegment(const COVER_ctx_t *ctx, U32 *freqs,
415
                                           COVER_map_t *activeDmers, U32 begin,
416
                                           U32 end,
417
0
                                           ZDICT_cover_params_t parameters) {
418
  /* Constants */
419
0
  const U32 k = parameters.k;
420
0
  const U32 d = parameters.d;
421
0
  const U32 dmersInK = k - d + 1;
422
  /* Try each segment (activeSegment) and save the best (bestSegment) */
423
0
  COVER_segment_t bestSegment = {0, 0, 0};
424
0
  COVER_segment_t activeSegment;
425
  /* Reset the activeDmers in the segment */
426
0
  COVER_map_clear(activeDmers);
427
  /* The activeSegment starts at the beginning of the epoch. */
428
0
  activeSegment.begin = begin;
429
0
  activeSegment.end = begin;
430
0
  activeSegment.score = 0;
431
  /* Slide the activeSegment through the whole epoch.
432
   * Save the best segment in bestSegment.
433
   */
434
0
  while (activeSegment.end < end) {
435
    /* The dmerId for the dmer at the next position */
436
0
    U32 newDmer = ctx->dmerAt[activeSegment.end];
437
    /* The entry in activeDmers for this dmerId */
438
0
    U32 *newDmerOcc = COVER_map_at(activeDmers, newDmer);
439
    /* If the dmer isn't already present in the segment add its score. */
440
0
    if (*newDmerOcc == 0) {
441
      /* The paper suggest using the L-0.5 norm, but experiments show that it
442
       * doesn't help.
443
       */
444
0
      activeSegment.score += freqs[newDmer];
445
0
    }
446
    /* Add the dmer to the segment */
447
0
    activeSegment.end += 1;
448
0
    *newDmerOcc += 1;
449
450
    /* If the window is now too large, drop the first position */
451
0
    if (activeSegment.end - activeSegment.begin == dmersInK + 1) {
452
0
      U32 delDmer = ctx->dmerAt[activeSegment.begin];
453
0
      U32 *delDmerOcc = COVER_map_at(activeDmers, delDmer);
454
0
      activeSegment.begin += 1;
455
0
      *delDmerOcc -= 1;
456
      /* If this is the last occurrence of the dmer, subtract its score */
457
0
      if (*delDmerOcc == 0) {
458
0
        COVER_map_remove(activeDmers, delDmer);
459
0
        activeSegment.score -= freqs[delDmer];
460
0
      }
461
0
    }
462
463
    /* If this segment is the best so far save it */
464
0
    if (activeSegment.score > bestSegment.score) {
465
0
      bestSegment = activeSegment;
466
0
    }
467
0
  }
468
0
  {
469
    /* Trim off the zero frequency head and tail from the segment. */
470
0
    U32 newBegin = bestSegment.end;
471
0
    U32 newEnd = bestSegment.begin;
472
0
    U32 pos;
473
0
    for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
474
0
      U32 freq = freqs[ctx->dmerAt[pos]];
475
0
      if (freq != 0) {
476
0
        newBegin = MIN(newBegin, pos);
477
0
        newEnd = pos + 1;
478
0
      }
479
0
    }
480
0
    bestSegment.begin = newBegin;
481
0
    bestSegment.end = newEnd;
482
0
  }
483
0
  {
484
    /* Zero out the frequency of each dmer covered by the chosen segment. */
485
0
    U32 pos;
486
0
    for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
487
0
      freqs[ctx->dmerAt[pos]] = 0;
488
0
    }
489
0
  }
490
0
  return bestSegment;
491
0
}
492
493
/**
494
 * Check the validity of the parameters.
495
 * Returns non-zero if the parameters are valid and 0 otherwise.
496
 */
497
static int COVER_checkParameters(ZDICT_cover_params_t parameters,
498
0
                                 size_t maxDictSize) {
499
  /* k and d are required parameters */
500
0
  if (parameters.d == 0 || parameters.k == 0) {
501
0
    return 0;
502
0
  }
503
  /* k <= maxDictSize */
504
0
  if (parameters.k > maxDictSize) {
505
0
    return 0;
506
0
  }
507
  /* d <= k */
508
0
  if (parameters.d > parameters.k) {
509
0
    return 0;
510
0
  }
511
  /* 0 < splitPoint <= 1 */
512
0
  if (parameters.splitPoint <= 0 || parameters.splitPoint > 1){
513
0
    return 0;
514
0
  }
515
0
  return 1;
516
0
}
517
518
/**
519
 * Clean up a context initialized with `COVER_ctx_init()`.
520
 */
521
0
static void COVER_ctx_destroy(COVER_ctx_t *ctx) {
522
0
  if (!ctx) {
523
0
    return;
524
0
  }
525
0
  if (ctx->suffix) {
526
0
    free(ctx->suffix);
527
0
    ctx->suffix = NULL;
528
0
  }
529
0
  if (ctx->freqs) {
530
0
    free(ctx->freqs);
531
0
    ctx->freqs = NULL;
532
0
  }
533
0
  if (ctx->dmerAt) {
534
0
    free(ctx->dmerAt);
535
0
    ctx->dmerAt = NULL;
536
0
  }
537
0
  if (ctx->offsets) {
538
0
    free(ctx->offsets);
539
0
    ctx->offsets = NULL;
540
0
  }
541
0
}
542
543
/**
544
 * Prepare a context for dictionary building.
545
 * The context is only dependent on the parameter `d` and can be used multiple
546
 * times.
547
 * Returns 0 on success or error code on error.
548
 * The context must be destroyed with `COVER_ctx_destroy()`.
549
 */
550
static size_t COVER_ctx_init(COVER_ctx_t *ctx, const void *samplesBuffer,
551
                          const size_t *samplesSizes, unsigned nbSamples,
552
0
                          unsigned d, double splitPoint) {
553
0
  const BYTE *const samples = (const BYTE *)samplesBuffer;
554
0
  const size_t totalSamplesSize = COVER_sum(samplesSizes, nbSamples);
555
  /* Split samples into testing and training sets */
556
0
  const unsigned nbTrainSamples = splitPoint < 1.0 ? (unsigned)((double)nbSamples * splitPoint) : nbSamples;
557
0
  const unsigned nbTestSamples = splitPoint < 1.0 ? nbSamples - nbTrainSamples : nbSamples;
558
0
  const size_t trainingSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes, nbTrainSamples) : totalSamplesSize;
559
0
  const size_t testSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes + nbTrainSamples, nbTestSamples) : totalSamplesSize;
560
  /* Checks */
561
0
  if (totalSamplesSize < MAX(d, sizeof(U64)) ||
562
0
      totalSamplesSize >= (size_t)COVER_MAX_SAMPLES_SIZE) {
563
0
    DISPLAYLEVEL(1, "Total samples size is too large (%u MB), maximum size is %u MB\n",
564
0
                 (unsigned)(totalSamplesSize>>20), (COVER_MAX_SAMPLES_SIZE >> 20));
565
0
    return ERROR(srcSize_wrong);
566
0
  }
567
  /* Check if there are at least 5 training samples */
568
0
  if (nbTrainSamples < 5) {
569
0
    DISPLAYLEVEL(1, "Total number of training samples is %u and is invalid.", nbTrainSamples);
570
0
    return ERROR(srcSize_wrong);
571
0
  }
572
  /* Check if there's testing sample */
573
0
  if (nbTestSamples < 1) {
574
0
    DISPLAYLEVEL(1, "Total number of testing samples is %u and is invalid.", nbTestSamples);
575
0
    return ERROR(srcSize_wrong);
576
0
  }
577
  /* Zero the context */
578
0
  memset(ctx, 0, sizeof(*ctx));
579
0
  DISPLAYLEVEL(2, "Training on %u samples of total size %u\n", nbTrainSamples,
580
0
               (unsigned)trainingSamplesSize);
581
0
  DISPLAYLEVEL(2, "Testing on %u samples of total size %u\n", nbTestSamples,
582
0
               (unsigned)testSamplesSize);
583
0
  ctx->samples = samples;
584
0
  ctx->samplesSizes = samplesSizes;
585
0
  ctx->nbSamples = nbSamples;
586
0
  ctx->nbTrainSamples = nbTrainSamples;
587
0
  ctx->nbTestSamples = nbTestSamples;
588
  /* Partial suffix array */
589
0
  ctx->suffixSize = trainingSamplesSize - MAX(d, sizeof(U64)) + 1;
590
0
  ctx->suffix = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
591
  /* Maps index to the dmerID */
592
0
  ctx->dmerAt = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
593
  /* The offsets of each file */
594
0
  ctx->offsets = (size_t *)malloc((nbSamples + 1) * sizeof(size_t));
595
0
  if (!ctx->suffix || !ctx->dmerAt || !ctx->offsets) {
596
0
    DISPLAYLEVEL(1, "Failed to allocate scratch buffers\n");
597
0
    COVER_ctx_destroy(ctx);
598
0
    return ERROR(memory_allocation);
599
0
  }
600
0
  ctx->freqs = NULL;
601
0
  ctx->d = d;
602
603
  /* Fill offsets from the samplesSizes */
604
0
  {
605
0
    U32 i;
606
0
    ctx->offsets[0] = 0;
607
0
    for (i = 1; i <= nbSamples; ++i) {
608
0
      ctx->offsets[i] = ctx->offsets[i - 1] + samplesSizes[i - 1];
609
0
    }
610
0
  }
611
0
  DISPLAYLEVEL(2, "Constructing partial suffix array\n");
612
0
  {
613
    /* suffix is a partial suffix array.
614
     * It only sorts suffixes by their first parameters.d bytes.
615
     * The sort is stable, so each dmer group is sorted by position in input.
616
     */
617
0
    U32 i;
618
0
    for (i = 0; i < ctx->suffixSize; ++i) {
619
0
      ctx->suffix[i] = i;
620
0
    }
621
    /* qsort doesn't take an opaque pointer, so pass as a global.
622
     * On OpenBSD qsort() is not guaranteed to be stable, their mergesort() is.
623
     */
624
0
    g_coverCtx = ctx;
625
#if defined(__OpenBSD__)
626
    mergesort(ctx->suffix, ctx->suffixSize, sizeof(U32),
627
          (ctx->d <= 8 ? &COVER_strict_cmp8 : &COVER_strict_cmp));
628
#else
629
0
    qsort(ctx->suffix, ctx->suffixSize, sizeof(U32),
630
0
          (ctx->d <= 8 ? &COVER_strict_cmp8 : &COVER_strict_cmp));
631
0
#endif
632
0
  }
633
0
  DISPLAYLEVEL(2, "Computing frequencies\n");
634
  /* For each dmer group (group of positions with the same first d bytes):
635
   * 1. For each position we set dmerAt[position] = dmerID.  The dmerID is
636
   *    (groupBeginPtr - suffix).  This allows us to go from position to
637
   *    dmerID so we can look up values in freq.
638
   * 2. We calculate how many samples the dmer occurs in and save it in
639
   *    freqs[dmerId].
640
   */
641
0
  COVER_groupBy(ctx->suffix, ctx->suffixSize, sizeof(U32), ctx,
642
0
                (ctx->d <= 8 ? &COVER_cmp8 : &COVER_cmp), &COVER_group);
643
0
  ctx->freqs = ctx->suffix;
644
0
  ctx->suffix = NULL;
645
0
  return 0;
646
0
}
647
648
void COVER_warnOnSmallCorpus(size_t maxDictSize, size_t nbDmers, int displayLevel)
649
0
{
650
0
  const double ratio = (double)nbDmers / (double)maxDictSize;
651
0
  if (ratio >= 10) {
652
0
      return;
653
0
  }
654
0
  LOCALDISPLAYLEVEL(displayLevel, 1,
655
0
                    "WARNING: The maximum dictionary size %u is too large "
656
0
                    "compared to the source size %u! "
657
0
                    "size(source)/size(dictionary) = %f, but it should be >= "
658
0
                    "10! This may lead to a subpar dictionary! We recommend "
659
0
                    "training on sources at least 10x, and preferably 100x "
660
0
                    "the size of the dictionary! \n", (U32)maxDictSize,
661
0
                    (U32)nbDmers, ratio);
662
0
}
663
664
COVER_epoch_info_t COVER_computeEpochs(U32 maxDictSize,
665
                                       U32 nbDmers, U32 k, U32 passes)
666
0
{
667
0
  const U32 minEpochSize = k * 10;
668
0
  COVER_epoch_info_t epochs;
669
0
  epochs.num = MAX(1, maxDictSize / k / passes);
670
0
  epochs.size = nbDmers / epochs.num;
671
0
  if (epochs.size >= minEpochSize) {
672
0
      assert(epochs.size * epochs.num <= nbDmers);
673
0
      return epochs;
674
0
  }
675
0
  epochs.size = MIN(minEpochSize, nbDmers);
676
0
  epochs.num = nbDmers / epochs.size;
677
0
  assert(epochs.size * epochs.num <= nbDmers);
678
0
  return epochs;
679
0
}
680
681
/**
682
 * Given the prepared context build the dictionary.
683
 */
684
static size_t COVER_buildDictionary(const COVER_ctx_t *ctx, U32 *freqs,
685
                                    COVER_map_t *activeDmers, void *dictBuffer,
686
                                    size_t dictBufferCapacity,
687
0
                                    ZDICT_cover_params_t parameters) {
688
0
  BYTE *const dict = (BYTE *)dictBuffer;
689
0
  size_t tail = dictBufferCapacity;
690
  /* Divide the data into epochs. We will select one segment from each epoch. */
691
0
  const COVER_epoch_info_t epochs = COVER_computeEpochs(
692
0
      (U32)dictBufferCapacity, (U32)ctx->suffixSize, parameters.k, 4);
693
0
  const size_t maxZeroScoreRun = MAX(10, MIN(100, epochs.num >> 3));
694
0
  size_t zeroScoreRun = 0;
695
0
  size_t epoch;
696
0
  DISPLAYLEVEL(2, "Breaking content into %u epochs of size %u\n",
697
0
                (U32)epochs.num, (U32)epochs.size);
698
  /* Loop through the epochs until there are no more segments or the dictionary
699
   * is full.
700
   */
701
0
  for (epoch = 0; tail > 0; epoch = (epoch + 1) % epochs.num) {
702
0
    const U32 epochBegin = (U32)(epoch * epochs.size);
703
0
    const U32 epochEnd = epochBegin + epochs.size;
704
0
    size_t segmentSize;
705
    /* Select a segment */
706
0
    COVER_segment_t segment = COVER_selectSegment(
707
0
        ctx, freqs, activeDmers, epochBegin, epochEnd, parameters);
708
    /* If the segment covers no dmers, then we are out of content.
709
     * There may be new content in other epochs, for continue for some time.
710
     */
711
0
    if (segment.score == 0) {
712
0
      if (++zeroScoreRun >= maxZeroScoreRun) {
713
0
          break;
714
0
      }
715
0
      continue;
716
0
    }
717
0
    zeroScoreRun = 0;
718
    /* Trim the segment if necessary and if it is too small then we are done */
719
0
    segmentSize = MIN(segment.end - segment.begin + parameters.d - 1, tail);
720
0
    if (segmentSize < parameters.d) {
721
0
      break;
722
0
    }
723
    /* We fill the dictionary from the back to allow the best segments to be
724
     * referenced with the smallest offsets.
725
     */
726
0
    tail -= segmentSize;
727
0
    memcpy(dict + tail, ctx->samples + segment.begin, segmentSize);
728
0
    DISPLAYUPDATE(
729
0
        2, "\r%u%%       ",
730
0
        (unsigned)(((dictBufferCapacity - tail) * 100) / dictBufferCapacity));
731
0
  }
732
0
  DISPLAYLEVEL(2, "\r%79s\r", "");
733
0
  return tail;
734
0
}
735
736
ZDICTLIB_API size_t ZDICT_trainFromBuffer_cover(
737
    void *dictBuffer, size_t dictBufferCapacity,
738
    const void *samplesBuffer, const size_t *samplesSizes, unsigned nbSamples,
739
    ZDICT_cover_params_t parameters)
740
0
{
741
0
  BYTE* const dict = (BYTE*)dictBuffer;
742
0
  COVER_ctx_t ctx;
743
0
  COVER_map_t activeDmers;
744
0
  parameters.splitPoint = 1.0;
745
  /* Initialize global data */
746
0
  g_displayLevel = (int)parameters.zParams.notificationLevel;
747
  /* Checks */
748
0
  if (!COVER_checkParameters(parameters, dictBufferCapacity)) {
749
0
    DISPLAYLEVEL(1, "Cover parameters incorrect\n");
750
0
    return ERROR(parameter_outOfBound);
751
0
  }
752
0
  if (nbSamples == 0) {
753
0
    DISPLAYLEVEL(1, "Cover must have at least one input file\n");
754
0
    return ERROR(srcSize_wrong);
755
0
  }
756
0
  if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
757
0
    DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
758
0
                 ZDICT_DICTSIZE_MIN);
759
0
    return ERROR(dstSize_tooSmall);
760
0
  }
761
  /* Initialize context and activeDmers */
762
0
  {
763
0
    size_t const initVal = COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples,
764
0
                      parameters.d, parameters.splitPoint);
765
0
    if (ZSTD_isError(initVal)) {
766
0
      return initVal;
767
0
    }
768
0
  }
769
0
  COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.suffixSize, g_displayLevel);
770
0
  if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) {
771
0
    DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n");
772
0
    COVER_ctx_destroy(&ctx);
773
0
    return ERROR(memory_allocation);
774
0
  }
775
776
0
  DISPLAYLEVEL(2, "Building dictionary\n");
777
0
  {
778
0
    const size_t tail =
779
0
        COVER_buildDictionary(&ctx, ctx.freqs, &activeDmers, dictBuffer,
780
0
                              dictBufferCapacity, parameters);
781
0
    const size_t dictionarySize = ZDICT_finalizeDictionary(
782
0
        dict, dictBufferCapacity, dict + tail, dictBufferCapacity - tail,
783
0
        samplesBuffer, samplesSizes, nbSamples, parameters.zParams);
784
0
    if (!ZSTD_isError(dictionarySize)) {
785
0
      DISPLAYLEVEL(2, "Constructed dictionary of size %u\n",
786
0
                   (unsigned)dictionarySize);
787
0
    }
788
0
    COVER_ctx_destroy(&ctx);
789
0
    COVER_map_destroy(&activeDmers);
790
0
    return dictionarySize;
791
0
  }
792
0
}
793
794
795
796
size_t COVER_checkTotalCompressedSize(const ZDICT_cover_params_t parameters,
797
                                    const size_t *samplesSizes, const BYTE *samples,
798
                                    size_t *offsets,
799
                                    size_t nbTrainSamples, size_t nbSamples,
800
0
                                    BYTE *const dict, size_t dictBufferCapacity) {
801
0
  size_t totalCompressedSize = ERROR(GENERIC);
802
  /* Pointers */
803
0
  ZSTD_CCtx *cctx;
804
0
  ZSTD_CDict *cdict;
805
0
  void *dst;
806
  /* Local variables */
807
0
  size_t dstCapacity;
808
0
  size_t i;
809
  /* Allocate dst with enough space to compress the maximum sized sample */
810
0
  {
811
0
    size_t maxSampleSize = 0;
812
0
    i = parameters.splitPoint < 1.0 ? nbTrainSamples : 0;
813
0
    for (; i < nbSamples; ++i) {
814
0
      maxSampleSize = MAX(samplesSizes[i], maxSampleSize);
815
0
    }
816
0
    dstCapacity = ZSTD_compressBound(maxSampleSize);
817
0
    dst = malloc(dstCapacity);
818
0
  }
819
  /* Create the cctx and cdict */
820
0
  cctx = ZSTD_createCCtx();
821
0
  cdict = ZSTD_createCDict(dict, dictBufferCapacity,
822
0
                           parameters.zParams.compressionLevel);
823
0
  if (!dst || !cctx || !cdict) {
824
0
    goto _compressCleanup;
825
0
  }
826
  /* Compress each sample and sum their sizes (or error) */
827
0
  totalCompressedSize = dictBufferCapacity;
828
0
  i = parameters.splitPoint < 1.0 ? nbTrainSamples : 0;
829
0
  for (; i < nbSamples; ++i) {
830
0
    const size_t size = ZSTD_compress_usingCDict(
831
0
        cctx, dst, dstCapacity, samples + offsets[i],
832
0
        samplesSizes[i], cdict);
833
0
    if (ZSTD_isError(size)) {
834
0
      totalCompressedSize = size;
835
0
      goto _compressCleanup;
836
0
    }
837
0
    totalCompressedSize += size;
838
0
  }
839
0
_compressCleanup:
840
0
  ZSTD_freeCCtx(cctx);
841
0
  ZSTD_freeCDict(cdict);
842
0
  if (dst) {
843
0
    free(dst);
844
0
  }
845
0
  return totalCompressedSize;
846
0
}
847
848
849
/**
850
 * Initialize the `COVER_best_t`.
851
 */
852
0
void COVER_best_init(COVER_best_t *best) {
853
0
  if (best==NULL) return; /* compatible with init on NULL */
854
0
  (void)ZSTD_pthread_mutex_init(&best->mutex, NULL);
855
0
  (void)ZSTD_pthread_cond_init(&best->cond, NULL);
856
0
  best->liveJobs = 0;
857
0
  best->dict = NULL;
858
0
  best->dictSize = 0;
859
0
  best->compressedSize = (size_t)-1;
860
0
  memset(&best->parameters, 0, sizeof(best->parameters));
861
0
}
862
863
/**
864
 * Wait until liveJobs == 0.
865
 */
866
0
void COVER_best_wait(COVER_best_t *best) {
867
0
  if (!best) {
868
0
    return;
869
0
  }
870
0
  ZSTD_pthread_mutex_lock(&best->mutex);
871
0
  while (best->liveJobs != 0) {
872
0
    ZSTD_pthread_cond_wait(&best->cond, &best->mutex);
873
0
  }
874
0
  ZSTD_pthread_mutex_unlock(&best->mutex);
875
0
}
876
877
/**
878
 * Call COVER_best_wait() and then destroy the COVER_best_t.
879
 */
880
0
void COVER_best_destroy(COVER_best_t *best) {
881
0
  if (!best) {
882
0
    return;
883
0
  }
884
0
  COVER_best_wait(best);
885
0
  if (best->dict) {
886
0
    free(best->dict);
887
0
  }
888
0
  ZSTD_pthread_mutex_destroy(&best->mutex);
889
0
  ZSTD_pthread_cond_destroy(&best->cond);
890
0
}
891
892
/**
893
 * Called when a thread is about to be launched.
894
 * Increments liveJobs.
895
 */
896
0
void COVER_best_start(COVER_best_t *best) {
897
0
  if (!best) {
898
0
    return;
899
0
  }
900
0
  ZSTD_pthread_mutex_lock(&best->mutex);
901
0
  ++best->liveJobs;
902
0
  ZSTD_pthread_mutex_unlock(&best->mutex);
903
0
}
904
905
/**
906
 * Called when a thread finishes executing, both on error or success.
907
 * Decrements liveJobs and signals any waiting threads if liveJobs == 0.
908
 * If this dictionary is the best so far save it and its parameters.
909
 */
910
void COVER_best_finish(COVER_best_t *best, ZDICT_cover_params_t parameters,
911
0
                              COVER_dictSelection_t selection) {
912
0
  void* dict = selection.dictContent;
913
0
  size_t compressedSize = selection.totalCompressedSize;
914
0
  size_t dictSize = selection.dictSize;
915
0
  if (!best) {
916
0
    return;
917
0
  }
918
0
  {
919
0
    size_t liveJobs;
920
0
    ZSTD_pthread_mutex_lock(&best->mutex);
921
0
    --best->liveJobs;
922
0
    liveJobs = best->liveJobs;
923
    /* If the new dictionary is better */
924
0
    if (compressedSize < best->compressedSize) {
925
      /* Allocate space if necessary */
926
0
      if (!best->dict || best->dictSize < dictSize) {
927
0
        if (best->dict) {
928
0
          free(best->dict);
929
0
        }
930
0
        best->dict = malloc(dictSize);
931
0
        if (!best->dict) {
932
0
          best->compressedSize = ERROR(GENERIC);
933
0
          best->dictSize = 0;
934
0
          ZSTD_pthread_cond_signal(&best->cond);
935
0
          ZSTD_pthread_mutex_unlock(&best->mutex);
936
0
          return;
937
0
        }
938
0
      }
939
      /* Save the dictionary, parameters, and size */
940
0
      if (dict) {
941
0
        memcpy(best->dict, dict, dictSize);
942
0
        best->dictSize = dictSize;
943
0
        best->parameters = parameters;
944
0
        best->compressedSize = compressedSize;
945
0
      }
946
0
    }
947
0
    if (liveJobs == 0) {
948
0
      ZSTD_pthread_cond_broadcast(&best->cond);
949
0
    }
950
0
    ZSTD_pthread_mutex_unlock(&best->mutex);
951
0
  }
952
0
}
953
954
static COVER_dictSelection_t setDictSelection(BYTE* buf, size_t s, size_t csz)
955
0
{
956
0
    COVER_dictSelection_t ds;
957
0
    ds.dictContent = buf;
958
0
    ds.dictSize = s;
959
0
    ds.totalCompressedSize = csz;
960
0
    return ds;
961
0
}
962
963
0
COVER_dictSelection_t COVER_dictSelectionError(size_t error) {
964
0
    return setDictSelection(NULL, 0, error);
965
0
}
966
967
0
unsigned COVER_dictSelectionIsError(COVER_dictSelection_t selection) {
968
0
  return (ZSTD_isError(selection.totalCompressedSize) || !selection.dictContent);
969
0
}
970
971
0
void COVER_dictSelectionFree(COVER_dictSelection_t selection){
972
0
  free(selection.dictContent);
973
0
}
974
975
COVER_dictSelection_t COVER_selectDict(BYTE* customDictContent, size_t dictBufferCapacity,
976
        size_t dictContentSize, const BYTE* samplesBuffer, const size_t* samplesSizes, unsigned nbFinalizeSamples,
977
0
        size_t nbCheckSamples, size_t nbSamples, ZDICT_cover_params_t params, size_t* offsets, size_t totalCompressedSize) {
978
979
0
  size_t largestDict = 0;
980
0
  size_t largestCompressed = 0;
981
0
  BYTE* customDictContentEnd = customDictContent + dictContentSize;
982
983
0
  BYTE * largestDictbuffer = (BYTE *)malloc(dictBufferCapacity);
984
0
  BYTE * candidateDictBuffer = (BYTE *)malloc(dictBufferCapacity);
985
0
  double regressionTolerance = ((double)params.shrinkDictMaxRegression / 100.0) + 1.00;
986
987
0
  if (!largestDictbuffer || !candidateDictBuffer) {
988
0
    free(largestDictbuffer);
989
0
    free(candidateDictBuffer);
990
0
    return COVER_dictSelectionError(dictContentSize);
991
0
  }
992
993
  /* Initial dictionary size and compressed size */
994
0
  memcpy(largestDictbuffer, customDictContent, dictContentSize);
995
0
  dictContentSize = ZDICT_finalizeDictionary(
996
0
    largestDictbuffer, dictBufferCapacity, customDictContent, dictContentSize,
997
0
    samplesBuffer, samplesSizes, nbFinalizeSamples, params.zParams);
998
999
0
  if (ZDICT_isError(dictContentSize)) {
1000
0
    free(largestDictbuffer);
1001
0
    free(candidateDictBuffer);
1002
0
    return COVER_dictSelectionError(dictContentSize);
1003
0
  }
1004
1005
0
  totalCompressedSize = COVER_checkTotalCompressedSize(params, samplesSizes,
1006
0
                                                       samplesBuffer, offsets,
1007
0
                                                       nbCheckSamples, nbSamples,
1008
0
                                                       largestDictbuffer, dictContentSize);
1009
1010
0
  if (ZSTD_isError(totalCompressedSize)) {
1011
0
    free(largestDictbuffer);
1012
0
    free(candidateDictBuffer);
1013
0
    return COVER_dictSelectionError(totalCompressedSize);
1014
0
  }
1015
1016
0
  if (params.shrinkDict == 0) {
1017
0
    free(candidateDictBuffer);
1018
0
    return setDictSelection(largestDictbuffer, dictContentSize, totalCompressedSize);
1019
0
  }
1020
1021
0
  largestDict = dictContentSize;
1022
0
  largestCompressed = totalCompressedSize;
1023
0
  dictContentSize = ZDICT_DICTSIZE_MIN;
1024
1025
  /* Largest dict is initially at least ZDICT_DICTSIZE_MIN */
1026
0
  while (dictContentSize < largestDict) {
1027
0
    memcpy(candidateDictBuffer, largestDictbuffer, largestDict);
1028
0
    dictContentSize = ZDICT_finalizeDictionary(
1029
0
      candidateDictBuffer, dictBufferCapacity, customDictContentEnd - dictContentSize, dictContentSize,
1030
0
      samplesBuffer, samplesSizes, nbFinalizeSamples, params.zParams);
1031
1032
0
    if (ZDICT_isError(dictContentSize)) {
1033
0
      free(largestDictbuffer);
1034
0
      free(candidateDictBuffer);
1035
0
      return COVER_dictSelectionError(dictContentSize);
1036
1037
0
    }
1038
1039
0
    totalCompressedSize = COVER_checkTotalCompressedSize(params, samplesSizes,
1040
0
                                                         samplesBuffer, offsets,
1041
0
                                                         nbCheckSamples, nbSamples,
1042
0
                                                         candidateDictBuffer, dictContentSize);
1043
1044
0
    if (ZSTD_isError(totalCompressedSize)) {
1045
0
      free(largestDictbuffer);
1046
0
      free(candidateDictBuffer);
1047
0
      return COVER_dictSelectionError(totalCompressedSize);
1048
0
    }
1049
1050
0
    if ((double)totalCompressedSize <= (double)largestCompressed * regressionTolerance) {
1051
0
      free(largestDictbuffer);
1052
0
      return setDictSelection( candidateDictBuffer, dictContentSize, totalCompressedSize );
1053
0
    }
1054
0
    dictContentSize *= 2;
1055
0
  }
1056
0
  dictContentSize = largestDict;
1057
0
  totalCompressedSize = largestCompressed;
1058
0
  free(candidateDictBuffer);
1059
0
  return setDictSelection( largestDictbuffer, dictContentSize, totalCompressedSize );
1060
0
}
1061
1062
/**
1063
 * Parameters for COVER_tryParameters().
1064
 */
1065
typedef struct COVER_tryParameters_data_s {
1066
  const COVER_ctx_t *ctx;
1067
  COVER_best_t *best;
1068
  size_t dictBufferCapacity;
1069
  ZDICT_cover_params_t parameters;
1070
} COVER_tryParameters_data_t;
1071
1072
/**
1073
 * Tries a set of parameters and updates the COVER_best_t with the results.
1074
 * This function is thread safe if zstd is compiled with multithreaded support.
1075
 * It takes its parameters as an *OWNING* opaque pointer to support threading.
1076
 */
1077
static void COVER_tryParameters(void *opaque)
1078
0
{
1079
  /* Save parameters as local variables */
1080
0
  COVER_tryParameters_data_t *const data = (COVER_tryParameters_data_t*)opaque;
1081
0
  const COVER_ctx_t *const ctx = data->ctx;
1082
0
  const ZDICT_cover_params_t parameters = data->parameters;
1083
0
  size_t dictBufferCapacity = data->dictBufferCapacity;
1084
0
  size_t totalCompressedSize = ERROR(GENERIC);
1085
  /* Allocate space for hash table, dict, and freqs */
1086
0
  COVER_map_t activeDmers;
1087
0
  BYTE* const dict = (BYTE*)malloc(dictBufferCapacity);
1088
0
  COVER_dictSelection_t selection = COVER_dictSelectionError(ERROR(GENERIC));
1089
0
  U32* const freqs = (U32*)malloc(ctx->suffixSize * sizeof(U32));
1090
0
  if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) {
1091
0
    DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n");
1092
0
    goto _cleanup;
1093
0
  }
1094
0
  if (!dict || !freqs) {
1095
0
    DISPLAYLEVEL(1, "Failed to allocate buffers: out of memory\n");
1096
0
    goto _cleanup;
1097
0
  }
1098
  /* Copy the frequencies because we need to modify them */
1099
0
  memcpy(freqs, ctx->freqs, ctx->suffixSize * sizeof(U32));
1100
  /* Build the dictionary */
1101
0
  {
1102
0
    const size_t tail = COVER_buildDictionary(ctx, freqs, &activeDmers, dict,
1103
0
                                              dictBufferCapacity, parameters);
1104
0
    selection = COVER_selectDict(dict + tail, dictBufferCapacity, dictBufferCapacity - tail,
1105
0
        ctx->samples, ctx->samplesSizes, (unsigned)ctx->nbTrainSamples, ctx->nbTrainSamples, ctx->nbSamples, parameters, ctx->offsets,
1106
0
        totalCompressedSize);
1107
1108
0
    if (COVER_dictSelectionIsError(selection)) {
1109
0
      DISPLAYLEVEL(1, "Failed to select dictionary\n");
1110
0
      goto _cleanup;
1111
0
    }
1112
0
  }
1113
0
_cleanup:
1114
0
  free(dict);
1115
0
  COVER_best_finish(data->best, parameters, selection);
1116
0
  free(data);
1117
0
  COVER_map_destroy(&activeDmers);
1118
0
  COVER_dictSelectionFree(selection);
1119
0
  free(freqs);
1120
0
}
1121
1122
ZDICTLIB_API size_t ZDICT_optimizeTrainFromBuffer_cover(
1123
    void* dictBuffer, size_t dictBufferCapacity, const void* samplesBuffer,
1124
    const size_t* samplesSizes, unsigned nbSamples,
1125
    ZDICT_cover_params_t* parameters)
1126
0
{
1127
  /* constants */
1128
0
  const unsigned nbThreads = parameters->nbThreads;
1129
0
  const double splitPoint =
1130
0
      parameters->splitPoint <= 0.0 ? COVER_DEFAULT_SPLITPOINT : parameters->splitPoint;
1131
0
  const unsigned kMinD = parameters->d == 0 ? 6 : parameters->d;
1132
0
  const unsigned kMaxD = parameters->d == 0 ? 8 : parameters->d;
1133
0
  const unsigned kMinK = parameters->k == 0 ? 50 : parameters->k;
1134
0
  const unsigned kMaxK = parameters->k == 0 ? 2000 : parameters->k;
1135
0
  const unsigned kSteps = parameters->steps == 0 ? 40 : parameters->steps;
1136
0
  const unsigned kStepSize = MAX((kMaxK - kMinK) / kSteps, 1);
1137
0
  const unsigned kIterations =
1138
0
      (1 + (kMaxD - kMinD) / 2) * (1 + (kMaxK - kMinK) / kStepSize);
1139
0
  const unsigned shrinkDict = 0;
1140
  /* Local variables */
1141
0
  const int displayLevel = parameters->zParams.notificationLevel;
1142
0
  unsigned iteration = 1;
1143
0
  unsigned d;
1144
0
  unsigned k;
1145
0
  COVER_best_t best;
1146
0
  POOL_ctx *pool = NULL;
1147
0
  int warned = 0;
1148
1149
  /* Checks */
1150
0
  if (splitPoint <= 0 || splitPoint > 1) {
1151
0
    LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n");
1152
0
    return ERROR(parameter_outOfBound);
1153
0
  }
1154
0
  if (kMinK < kMaxD || kMaxK < kMinK) {
1155
0
    LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n");
1156
0
    return ERROR(parameter_outOfBound);
1157
0
  }
1158
0
  if (nbSamples == 0) {
1159
0
    DISPLAYLEVEL(1, "Cover must have at least one input file\n");
1160
0
    return ERROR(srcSize_wrong);
1161
0
  }
1162
0
  if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
1163
0
    DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
1164
0
                 ZDICT_DICTSIZE_MIN);
1165
0
    return ERROR(dstSize_tooSmall);
1166
0
  }
1167
0
  if (nbThreads > 1) {
1168
0
    pool = POOL_create(nbThreads, 1);
1169
0
    if (!pool) {
1170
0
      return ERROR(memory_allocation);
1171
0
    }
1172
0
  }
1173
  /* Initialization */
1174
0
  COVER_best_init(&best);
1175
  /* Turn down global display level to clean up display at level 2 and below */
1176
0
  g_displayLevel = displayLevel == 0 ? 0 : displayLevel - 1;
1177
  /* Loop through d first because each new value needs a new context */
1178
0
  LOCALDISPLAYLEVEL(displayLevel, 2, "Trying %u different sets of parameters\n",
1179
0
                    kIterations);
1180
0
  for (d = kMinD; d <= kMaxD; d += 2) {
1181
    /* Initialize the context for this value of d */
1182
0
    COVER_ctx_t ctx;
1183
0
    LOCALDISPLAYLEVEL(displayLevel, 3, "d=%u\n", d);
1184
0
    {
1185
0
      const size_t initVal = COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples, d, splitPoint);
1186
0
      if (ZSTD_isError(initVal)) {
1187
0
        LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to initialize context\n");
1188
0
        COVER_best_destroy(&best);
1189
0
        POOL_free(pool);
1190
0
        return initVal;
1191
0
      }
1192
0
    }
1193
0
    if (!warned) {
1194
0
      COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.suffixSize, displayLevel);
1195
0
      warned = 1;
1196
0
    }
1197
    /* Loop through k reusing the same context */
1198
0
    for (k = kMinK; k <= kMaxK; k += kStepSize) {
1199
      /* Prepare the arguments */
1200
0
      COVER_tryParameters_data_t *data = (COVER_tryParameters_data_t *)malloc(
1201
0
          sizeof(COVER_tryParameters_data_t));
1202
0
      LOCALDISPLAYLEVEL(displayLevel, 3, "k=%u\n", k);
1203
0
      if (!data) {
1204
0
        LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to allocate parameters\n");
1205
0
        COVER_best_destroy(&best);
1206
0
        COVER_ctx_destroy(&ctx);
1207
0
        POOL_free(pool);
1208
0
        return ERROR(memory_allocation);
1209
0
      }
1210
0
      data->ctx = &ctx;
1211
0
      data->best = &best;
1212
0
      data->dictBufferCapacity = dictBufferCapacity;
1213
0
      data->parameters = *parameters;
1214
0
      data->parameters.k = k;
1215
0
      data->parameters.d = d;
1216
0
      data->parameters.splitPoint = splitPoint;
1217
0
      data->parameters.steps = kSteps;
1218
0
      data->parameters.shrinkDict = shrinkDict;
1219
0
      data->parameters.zParams.notificationLevel = g_displayLevel;
1220
      /* Check the parameters */
1221
0
      if (!COVER_checkParameters(data->parameters, dictBufferCapacity)) {
1222
0
        DISPLAYLEVEL(1, "Cover parameters incorrect\n");
1223
0
        free(data);
1224
0
        continue;
1225
0
      }
1226
      /* Call the function and pass ownership of data to it */
1227
0
      COVER_best_start(&best);
1228
0
      if (pool) {
1229
0
        POOL_add(pool, &COVER_tryParameters, data);
1230
0
      } else {
1231
0
        COVER_tryParameters(data);
1232
0
      }
1233
      /* Print status */
1234
0
      LOCALDISPLAYUPDATE(displayLevel, 2, "\r%u%%       ",
1235
0
                         (unsigned)((iteration * 100) / kIterations));
1236
0
      ++iteration;
1237
0
    }
1238
0
    COVER_best_wait(&best);
1239
0
    COVER_ctx_destroy(&ctx);
1240
0
  }
1241
0
  LOCALDISPLAYLEVEL(displayLevel, 2, "\r%79s\r", "");
1242
  /* Fill the output buffer and parameters with output of the best parameters */
1243
0
  {
1244
0
    const size_t dictSize = best.dictSize;
1245
0
    if (ZSTD_isError(best.compressedSize)) {
1246
0
      const size_t compressedSize = best.compressedSize;
1247
0
      COVER_best_destroy(&best);
1248
0
      POOL_free(pool);
1249
0
      return compressedSize;
1250
0
    }
1251
0
    *parameters = best.parameters;
1252
0
    memcpy(dictBuffer, best.dict, dictSize);
1253
0
    COVER_best_destroy(&best);
1254
0
    POOL_free(pool);
1255
0
    return dictSize;
1256
0
  }
1257
0
}