Coverage Report

Created: 2025-12-14 06:05

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/php-src/Zend/zend_strtod.c
Line
Count
Source
1
/****************************************************************
2
 *
3
 * The author of this software is David M. Gay.
4
 *
5
 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
6
 *
7
 * Permission to use, copy, modify, and distribute this software for any
8
 * purpose without fee is hereby granted, provided that this entire notice
9
 * is included in all copies of any software which is or includes a copy
10
 * or modification of this software and in all copies of the supporting
11
 * documentation for such software.
12
 *
13
 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
14
 * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
15
 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
16
 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
17
 *
18
 ***************************************************************/
19
20
/* Please send bug reports to David M. Gay (dmg at acm dot org,
21
 * with " at " changed at "@" and " dot " changed to ".").  */
22
23
/* On a machine with IEEE extended-precision registers, it is
24
 * necessary to specify double-precision (53-bit) rounding precision
25
 * before invoking strtod or dtoa.  If the machine uses (the equivalent
26
 * of) Intel 80x87 arithmetic, the call
27
 *  _control87(PC_53, MCW_PC);
28
 * does this with many compilers.  Whether this or another call is
29
 * appropriate depends on the compiler; for this to work, it may be
30
 * necessary to #include "float.h" or another system-dependent header
31
 * file.
32
 */
33
34
/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
35
 * (Note that IEEE arithmetic is disabled by gcc's -ffast-math flag.)
36
 *
37
 * This strtod returns a nearest machine number to the input decimal
38
 * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
39
 * broken by the IEEE round-even rule.  Otherwise ties are broken by
40
 * biased rounding (add half and chop).
41
 *
42
 * Inspired loosely by William D. Clinger's paper "How to Read Floating
43
 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
44
 *
45
 * Modifications:
46
 *
47
 *  1. We only require IEEE, IBM, or VAX double-precision
48
 *    arithmetic (not IEEE double-extended).
49
 *  2. We get by with floating-point arithmetic in a case that
50
 *    Clinger missed -- when we're computing d * 10^n
51
 *    for a small integer d and the integer n is not too
52
 *    much larger than 22 (the maximum integer k for which
53
 *    we can represent 10^k exactly), we may be able to
54
 *    compute (d*10^k) * 10^(e-k) with just one roundoff.
55
 *  3. Rather than a bit-at-a-time adjustment of the binary
56
 *    result in the hard case, we use floating-point
57
 *    arithmetic to determine the adjustment to within
58
 *    one bit; only in really hard cases do we need to
59
 *    compute a second residual.
60
 *  4. Because of 3., we don't need a large table of powers of 10
61
 *    for ten-to-e (just some small tables, e.g. of 10^k
62
 *    for 0 <= k <= 22).
63
 */
64
65
/*
66
 * #define IEEE_8087 for IEEE-arithmetic machines where the least
67
 *  significant byte has the lowest address.
68
 * #define IEEE_MC68k for IEEE-arithmetic machines where the most
69
 *  significant byte has the lowest address.
70
 * #define Long int on machines with 32-bit ints and 64-bit longs.
71
 * #define IBM for IBM mainframe-style floating-point arithmetic.
72
 * #define VAX for VAX-style floating-point arithmetic (D_floating).
73
 * #define No_leftright to omit left-right logic in fast floating-point
74
 *  computation of dtoa.  This will cause dtoa modes 4 and 5 to be
75
 *  treated the same as modes 2 and 3 for some inputs.
76
 * #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
77
 *  and strtod and dtoa should round accordingly.  Unless Trust_FLT_ROUNDS
78
 *  is also #defined, fegetround() will be queried for the rounding mode.
79
 *  Note that both FLT_ROUNDS and fegetround() are specified by the C99
80
 *  standard (and are specified to be consistent, with fesetround()
81
 *  affecting the value of FLT_ROUNDS), but that some (Linux) systems
82
 *  do not work correctly in this regard, so using fegetround() is more
83
 *  portable than using FLT_ROUNDS directly.
84
 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
85
 *  and Honor_FLT_ROUNDS is not #defined.
86
 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
87
 *  that use extended-precision instructions to compute rounded
88
 *  products and quotients) with IBM.
89
 * #define ROUND_BIASED for IEEE-format with biased rounding and arithmetic
90
 *  that rounds toward +Infinity.
91
 * #define ROUND_BIASED_without_Round_Up for IEEE-format with biased
92
 *  rounding when the underlying floating-point arithmetic uses
93
 *  unbiased rounding.  This prevent using ordinary floating-point
94
 *  arithmetic when the result could be computed with one rounding error.
95
 * #define Inaccurate_Divide for IEEE-format with correctly rounded
96
 *  products but inaccurate quotients, e.g., for Intel i860.
97
 * #define NO_LONG_LONG on machines that do not have a "long long"
98
 *  integer type (of >= 64 bits).  On such machines, you can
99
 *  #define Just_16 to store 16 bits per 32-bit Long when doing
100
 *  high-precision integer arithmetic.  Whether this speeds things
101
 *  up or slows things down depends on the machine and the number
102
 *  being converted.  If long long is available and the name is
103
 *  something other than "long long", #define Llong to be the name,
104
 *  and if "unsigned Llong" does not work as an unsigned version of
105
 *  Llong, #define #ULLong to be the corresponding unsigned type.
106
 * #define KR_headers for old-style C function headers.
107
 * #define Bad_float_h if your system lacks a float.h or if it does not
108
 *  define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
109
 *  FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
110
 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
111
 *  if memory is available and otherwise does something you deem
112
 *  appropriate.  If MALLOC is undefined, malloc will be invoked
113
 *  directly -- and assumed always to succeed.  Similarly, if you
114
 *  want something other than the system's free() to be called to
115
 *  recycle memory acquired from MALLOC, #define FREE to be the
116
 *  name of the alternate routine.  (FREE or free is only called in
117
 *  pathological cases, e.g., in a dtoa call after a dtoa return in
118
 *  mode 3 with thousands of digits requested.)
119
 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
120
 *  memory allocations from a private pool of memory when possible.
121
 *  When used, the private pool is PRIVATE_MEM bytes long:  2304 bytes,
122
 *  unless #defined to be a different length.  This default length
123
 *  suffices to get rid of MALLOC calls except for unusual cases,
124
 *  such as decimal-to-binary conversion of a very long string of
125
 *  digits.  The longest string dtoa can return is about 751 bytes
126
 *  long.  For conversions by strtod of strings of 800 digits and
127
 *  all dtoa conversions in single-threaded executions with 8-byte
128
 *  pointers, PRIVATE_MEM >= 7400 appears to suffice; with 4-byte
129
 *  pointers, PRIVATE_MEM >= 7112 appears adequate.
130
 * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK
131
 *  #defined automatically on IEEE systems.  On such systems,
132
 *  when INFNAN_CHECK is #defined, strtod checks
133
 *  for Infinity and NaN (case insensitively).  On some systems
134
 *  (e.g., some HP systems), it may be necessary to #define NAN_WORD0
135
 *  appropriately -- to the most significant word of a quiet NaN.
136
 *  (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
137
 *  When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
138
 *  strtod also accepts (case insensitively) strings of the form
139
 *  NaN(x), where x is a string of hexadecimal digits and spaces;
140
 *  if there is only one string of hexadecimal digits, it is taken
141
 *  for the 52 fraction bits of the resulting NaN; if there are two
142
 *  or more strings of hex digits, the first is for the high 20 bits,
143
 *  the second and subsequent for the low 32 bits, with intervening
144
 *  white space ignored; but if this results in none of the 52
145
 *  fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0
146
 *  and NAN_WORD1 are used instead.
147
 * #define MULTIPLE_THREADS if the system offers preemptively scheduled
148
 *  multiple threads.  In this case, you must provide (or suitably
149
 *  #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
150
 *  by FREE_DTOA_LOCK(n) for n = 0 or 1.  (The second lock, accessed
151
 *  in pow5mult, ensures lazy evaluation of only one copy of high
152
 *  powers of 5; omitting this lock would introduce a small
153
 *  probability of wasting memory, but would otherwise be harmless.)
154
 *  You must also invoke freedtoa(s) to free the value s returned by
155
 *  dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
156
 * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that
157
 *  avoids underflows on inputs whose result does not underflow.
158
 *  If you #define NO_IEEE_Scale on a machine that uses IEEE-format
159
 *  floating-point numbers and flushes underflows to zero rather
160
 *  than implementing gradual underflow, then you must also #define
161
 *  Sudden_Underflow.
162
 * #define USE_LOCALE to use the current locale's decimal_point value.
163
 * #define SET_INEXACT if IEEE arithmetic is being used and extra
164
 *  computation should be done to set the inexact flag when the
165
 *  result is inexact and avoid setting inexact when the result
166
 *  is exact.  In this case, dtoa.c must be compiled in
167
 *  an environment, perhaps provided by #include "dtoa.c" in a
168
 *  suitable wrapper, that defines two functions,
169
 *    int get_inexact(void);
170
 *    void clear_inexact(void);
171
 *  such that get_inexact() returns a nonzero value if the
172
 *  inexact bit is already set, and clear_inexact() sets the
173
 *  inexact bit to 0.  When SET_INEXACT is #defined, strtod
174
 *  also does extra computations to set the underflow and overflow
175
 *  flags when appropriate (i.e., when the result is tiny and
176
 *  inexact or when it is a numeric value rounded to +-infinity).
177
 * #define NO_ERRNO if strtod should not assign errno = ERANGE when
178
 *  the result overflows to +-Infinity or underflows to 0.
179
 * #define NO_HEX_FP to omit recognition of hexadecimal floating-point
180
 *  values by strtod.
181
 * #define NO_STRTOD_BIGCOMP (on IEEE-arithmetic systems only for now)
182
 *  to disable logic for "fast" testing of very long input strings
183
 *  to strtod.  This testing proceeds by initially truncating the
184
 *  input string, then if necessary comparing the whole string with
185
 *  a decimal expansion to decide close cases. This logic is only
186
 *  used for input more than STRTOD_DIGLIM digits long (default 40).
187
 */
188
189
#include <zend_operators.h>
190
#include <zend_strtod.h>
191
#include "zend_strtod_int.h"
192
#include "zend_globals.h"
193
194
#ifndef Long
195
66.2k
#define Long int32_t
196
#endif
197
#ifndef ULong
198
8.92M
#define ULong uint32_t
199
#endif
200
201
#undef Bigint
202
#undef freelist
203
#undef p5s
204
#undef dtoa_result
205
206
5.51M
#define Bigint      _zend_strtod_bigint
207
6.91M
#define freelist    (EG(strtod_state).freelist)
208
61.6k
#define p5s         (EG(strtod_state).p5s)
209
265k
#define dtoa_result (EG(strtod_state).result)
210
211
#ifdef DEBUG
212
static void Bug(const char *message) {
213
  fprintf(stderr, "%s\n", message);
214
}
215
#endif
216
217
#include "stdlib.h"
218
#include "string.h"
219
220
#ifdef USE_LOCALE
221
#include "locale.h"
222
#endif
223
224
#ifdef Honor_FLT_ROUNDS
225
#ifndef Trust_FLT_ROUNDS
226
#include <fenv.h>
227
#endif
228
#endif
229
230
#ifdef MALLOC
231
#ifdef KR_headers
232
extern char *MALLOC();
233
#else
234
extern void *MALLOC(size_t);
235
#endif
236
#else
237
33
#define MALLOC malloc
238
0
#define FREE   free
239
#endif
240
241
#ifndef Omit_Private_Memory
242
#ifndef PRIVATE_MEM
243
#define PRIVATE_MEM 2304
244
#endif
245
#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
246
static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
247
#endif
248
249
#undef IEEE_Arith
250
#undef Avoid_Underflow
251
#ifdef IEEE_MC68k
252
#define IEEE_Arith
253
#endif
254
#ifdef IEEE_8087
255
#define IEEE_Arith
256
#endif
257
258
#ifdef IEEE_Arith
259
#ifndef NO_INFNAN_CHECK
260
#undef INFNAN_CHECK
261
#define INFNAN_CHECK
262
#endif
263
#else
264
#undef INFNAN_CHECK
265
#define NO_STRTOD_BIGCOMP
266
#endif
267
268
#include "errno.h"
269
270
#ifdef Bad_float_h
271
272
#ifdef IEEE_Arith
273
#define DBL_DIG 15
274
#define DBL_MAX_10_EXP 308
275
#define DBL_MAX_EXP 1024
276
#define FLT_RADIX 2
277
#endif /*IEEE_Arith*/
278
279
#ifdef IBM
280
#define DBL_DIG 16
281
#define DBL_MAX_10_EXP 75
282
#define DBL_MAX_EXP 63
283
#define FLT_RADIX 16
284
#define DBL_MAX 7.2370055773322621e+75
285
#endif
286
287
#ifdef VAX
288
#define DBL_DIG 16
289
#define DBL_MAX_10_EXP 38
290
#define DBL_MAX_EXP 127
291
#define FLT_RADIX 2
292
#define DBL_MAX 1.7014118346046923e+38
293
#endif
294
295
#else /* ifndef Bad_float_h */
296
#include "float.h"
297
#endif /* Bad_float_h */
298
299
#ifndef __MATH_H__
300
#include "math.h"
301
#endif
302
303
#ifndef CONST
304
#ifdef KR_headers
305
#define CONST /* blank */
306
#else
307
2
#define CONST const
308
#endif
309
#endif
310
311
#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
312
Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
313
#endif
314
315
typedef union { double d; ULong L[2]; } U;
316
317
#ifdef IEEE_8087
318
542k
#define word0(x) (x)->L[1]
319
202k
#define word1(x) (x)->L[0]
320
#else
321
#define word0(x) (x)->L[0]
322
#define word1(x) (x)->L[1]
323
#endif
324
280k
#define dval(x) (x)->d
325
326
#ifndef STRTOD_DIGLIM
327
0
#define STRTOD_DIGLIM 40
328
#endif
329
330
#ifdef DIGLIM_DEBUG
331
extern int strtod_diglim;
332
#else
333
0
#define strtod_diglim STRTOD_DIGLIM
334
#endif
335
336
/* The following definition of Storeinc is appropriate for MIPS processors.
337
 * An alternative that might be better on some machines is
338
 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
339
 */
340
#if defined(IEEE_8087) + defined(VAX) + defined(__arm__)
341
#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
342
((unsigned short *)a)[0] = (unsigned short)c, a++)
343
#else
344
#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
345
((unsigned short *)a)[1] = (unsigned short)c, a++)
346
#endif
347
348
/* #define P DBL_MANT_DIG */
349
/* Ten_pmax = floor(P*log(2)/log(5)) */
350
/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
351
/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
352
/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
353
354
#ifdef IEEE_Arith
355
65.7k
#define Exp_shift  20
356
131k
#define Exp_shift1 20
357
67.0k
#define Exp_msk1    0x100000
358
#define Exp_msk11   0x100000
359
199k
#define Exp_mask  0x7ff00000
360
202k
#define P 53
361
#define Nbits 53
362
143k
#define Bias 1023
363
#define Emax 1023
364
0
#define Emin (-1022)
365
0
#define Exp_1  0x3ff00000
366
59.9k
#define Exp_11 0x3ff00000
367
0
#define Ebits 11
368
65.7k
#define Frac_mask  0xfffff
369
59.9k
#define Frac_mask1 0xfffff
370
10.6k
#define Ten_pmax 22
371
94
#define Bletch 0x10
372
9.00k
#define Bndry_mask  0xfffff
373
0
#define Bndry_mask1 0xfffff
374
0
#define LSB 1
375
72.9k
#define Sign_bit 0x80000000
376
2.38k
#define Log2P 1
377
#define Tiny0 0
378
0
#define Tiny1 1
379
66.0k
#define Quick_max 14
380
8.97k
#define Int_max 14
381
#ifndef NO_IEEE_Scale
382
#define Avoid_Underflow
383
#ifdef Flush_Denorm /* debugging option */
384
#undef Sudden_Underflow
385
#endif
386
#endif
387
388
#ifndef Flt_Rounds
389
#ifdef FLT_ROUNDS
390
2
#define Flt_Rounds FLT_ROUNDS
391
#else
392
#define Flt_Rounds 1
393
#endif
394
#endif /*Flt_Rounds*/
395
396
#ifdef Honor_FLT_ROUNDS
397
#undef Check_FLT_ROUNDS
398
#define Check_FLT_ROUNDS
399
#else
400
#define Rounding Flt_Rounds
401
#endif
402
403
#else /* ifndef IEEE_Arith */
404
#undef Check_FLT_ROUNDS
405
#undef Honor_FLT_ROUNDS
406
#undef SET_INEXACT
407
#undef  Sudden_Underflow
408
#define Sudden_Underflow
409
#ifdef IBM
410
#undef Flt_Rounds
411
#define Flt_Rounds 0
412
#define Exp_shift  24
413
#define Exp_shift1 24
414
#define Exp_msk1   0x1000000
415
#define Exp_msk11  0x1000000
416
#define Exp_mask  0x7f000000
417
#define P 14
418
#define Nbits 56
419
#define Bias 65
420
#define Emax 248
421
#define Emin (-260)
422
#define Exp_1  0x41000000
423
#define Exp_11 0x41000000
424
#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
425
#define Frac_mask  0xffffff
426
#define Frac_mask1 0xffffff
427
#define Bletch 4
428
#define Ten_pmax 22
429
#define Bndry_mask  0xefffff
430
#define Bndry_mask1 0xffffff
431
#define LSB 1
432
#define Sign_bit 0x80000000
433
#define Log2P 4
434
#define Tiny0 0x100000
435
#define Tiny1 0
436
#define Quick_max 14
437
#define Int_max 15
438
#else /* VAX */
439
#undef Flt_Rounds
440
#define Flt_Rounds 1
441
#define Exp_shift  23
442
#define Exp_shift1 7
443
#define Exp_msk1    0x80
444
#define Exp_msk11   0x800000
445
#define Exp_mask  0x7f80
446
#define P 56
447
#define Nbits 56
448
#define Bias 129
449
#define Emax 126
450
#define Emin (-129)
451
#define Exp_1  0x40800000
452
#define Exp_11 0x4080
453
#define Ebits 8
454
#define Frac_mask  0x7fffff
455
#define Frac_mask1 0xffff007f
456
#define Ten_pmax 24
457
#define Bletch 2
458
#define Bndry_mask  0xffff007f
459
#define Bndry_mask1 0xffff007f
460
#define LSB 0x10000
461
#define Sign_bit 0x8000
462
#define Log2P 1
463
#define Tiny0 0x80
464
#define Tiny1 0
465
#define Quick_max 15
466
#define Int_max 15
467
#endif /* IBM, VAX */
468
#endif /* IEEE_Arith */
469
470
#ifndef IEEE_Arith
471
#define ROUND_BIASED
472
#else
473
#ifdef ROUND_BIASED_without_Round_Up
474
#undef  ROUND_BIASED
475
#define ROUND_BIASED
476
#endif
477
#endif
478
479
#ifdef RND_PRODQUOT
480
#define rounded_product(a,b) a = rnd_prod(a, b)
481
#define rounded_quotient(a,b) a = rnd_quot(a, b)
482
#ifdef KR_headers
483
extern double rnd_prod(), rnd_quot();
484
#else
485
extern double rnd_prod(double, double), rnd_quot(double, double);
486
#endif
487
#else
488
0
#define rounded_product(a,b) a *= b
489
2
#define rounded_quotient(a,b) a /= b
490
#endif
491
492
0
#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
493
0
#define Big1 0xffffffff
494
495
#ifndef Pack_32
496
#define Pack_32
497
#endif
498
499
typedef struct BCinfo BCinfo;
500
 struct
501
BCinfo { int dp0, dp1, dplen, dsign, e0, inexact, nd, nd0, rounding, scale, uflchk; };
502
503
#ifdef KR_headers
504
#define FFFFFFFF ((((unsigned long)0xffff)<<16)|(unsigned long)0xffff)
505
#else
506
35.9M
#define FFFFFFFF 0xffffffffUL
507
#endif
508
509
#ifdef NO_LONG_LONG
510
#undef ULLong
511
#ifdef Just_16
512
#undef Pack_32
513
/* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
514
 * This makes some inner loops simpler and sometimes saves work
515
 * during multiplications, but it often seems to make things slightly
516
 * slower.  Hence the default is now to store 32 bits per Long.
517
 */
518
#endif
519
#else /* long long available */
520
#ifndef Llong
521
#define Llong long long
522
#endif
523
#ifndef ULLong
524
4.19M
#define ULLong unsigned Llong
525
#endif
526
#endif /* NO_LONG_LONG */
527
528
#ifndef MULTIPLE_THREADS
529
#define ACQUIRE_DTOA_LOCK(n)  /*nothing*/
530
#define FREE_DTOA_LOCK(n) /*nothing*/
531
#endif
532
533
3.45M
#define Kmax ZEND_STRTOD_K_MAX
534
535
 struct
536
Bigint {
537
  struct Bigint *next;
538
  int k, maxwds, sign, wds;
539
  ULong x[1];
540
  };
541
542
 typedef struct Bigint Bigint;
543
544
#ifndef Bigint
545
 static Bigint *freelist[Kmax+1];
546
#endif
547
548
static void destroy_freelist(void);
549
static void free_p5s(void);
550
551
#ifdef MULTIPLE_THREADS
552
static MUTEX_T dtoa_mutex;
553
static MUTEX_T pow5mult_mutex;
554
#endif /* ZTS */
555
556
ZEND_API int zend_shutdown_strtod(void) /* {{{ */
557
0
{
558
0
  destroy_freelist();
559
0
  free_p5s();
560
561
0
  return 1;
562
0
}
563
/* }}} */
564
565
 static Bigint *
566
Balloc
567
#ifdef KR_headers
568
  (k) int k;
569
#else
570
  (int k)
571
#endif
572
1.72M
{
573
1.72M
  int x;
574
1.72M
  Bigint *rv;
575
#ifndef Omit_Private_Memory
576
  unsigned int len;
577
#endif
578
579
1.72M
  ACQUIRE_DTOA_LOCK(0);
580
  /* The k > Kmax case does not need ACQUIRE_DTOA_LOCK(0), */
581
  /* but this case seems very unlikely. */
582
1.72M
  if (k <= Kmax && (rv = freelist[k]))
583
1.72M
    freelist[k] = rv->next;
584
33
  else {
585
33
    x = 1 << k;
586
33
#ifdef Omit_Private_Memory
587
33
    rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong));
588
33
    if (!rv) {
589
0
      FREE_DTOA_LOCK(0);
590
0
      zend_error_noreturn(E_ERROR, "Balloc() failed to allocate memory");
591
0
    }
592
#else
593
    len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
594
      /sizeof(double);
595
    if (k <= Kmax && pmem_next - private_mem + len <= PRIVATE_mem) {
596
      rv = (Bigint*)pmem_next;
597
      pmem_next += len;
598
      }
599
    else
600
      rv = (Bigint*)MALLOC(len*sizeof(double));
601
      if (!rv) {
602
        FREE_DTOA_LOCK(0);
603
        zend_error_noreturn(E_ERROR, "Balloc() failed to allocate memory");
604
      }
605
#endif
606
33
    rv->k = k;
607
33
    rv->maxwds = x;
608
33
    }
609
1.72M
  FREE_DTOA_LOCK(0);
610
1.72M
  rv->sign = rv->wds = 0;
611
1.72M
  return rv;
612
1.72M
  }
613
614
 static void
615
Bfree
616
#ifdef KR_headers
617
  (v) Bigint *v;
618
#else
619
  (Bigint *v)
620
#endif
621
1.72M
{
622
1.72M
  if (v) {
623
1.72M
    if (v->k > Kmax)
624
0
      FREE((void*)v);
625
1.72M
    else {
626
1.72M
      ACQUIRE_DTOA_LOCK(0);
627
1.72M
      v->next = freelist[v->k];
628
1.72M
      freelist[v->k] = v;
629
1.72M
      FREE_DTOA_LOCK(0);
630
1.72M
      }
631
1.72M
    }
632
1.72M
  }
633
634
45.0k
#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
635
45.0k
y->wds*sizeof(Long) + 2*sizeof(int))
636
637
 static Bigint *
638
multadd
639
#ifdef KR_headers
640
  (b, m, a) Bigint *b; int m, a;
641
#else
642
  (Bigint *b, int m, int a) /* multiply by m and add a */
643
#endif
644
1.96M
{
645
1.96M
  int i, wds;
646
1.96M
#ifdef ULLong
647
1.96M
  ULong *x;
648
1.96M
  ULLong carry, y;
649
#else
650
  ULong carry, *x, y;
651
#ifdef Pack_32
652
  ULong xi, z;
653
#endif
654
#endif
655
1.96M
  Bigint *b1;
656
657
1.96M
  wds = b->wds;
658
1.96M
  x = b->x;
659
1.96M
  i = 0;
660
1.96M
  carry = a;
661
13.4M
  do {
662
13.4M
#ifdef ULLong
663
13.4M
    y = *x * (ULLong)m + carry;
664
13.4M
    carry = y >> 32;
665
13.4M
    *x++ = y & FFFFFFFF;
666
#else
667
#ifdef Pack_32
668
    xi = *x;
669
    y = (xi & 0xffff) * m + carry;
670
    z = (xi >> 16) * m + (y >> 16);
671
    carry = z >> 16;
672
    *x++ = (z << 16) + (y & 0xffff);
673
#else
674
    y = *x * m + carry;
675
    carry = y >> 16;
676
    *x++ = y & 0xffff;
677
#endif
678
#endif
679
13.4M
    }
680
13.4M
    while(++i < wds);
681
1.96M
  if (carry) {
682
63.9k
    if (wds >= b->maxwds) {
683
44.2k
      b1 = Balloc(b->k+1);
684
44.2k
      Bcopy(b1, b);
685
44.2k
      Bfree(b);
686
44.2k
      b = b1;
687
44.2k
      }
688
63.9k
    b->x[wds++] = carry;
689
63.9k
    b->wds = wds;
690
63.9k
    }
691
1.96M
  return b;
692
1.96M
  }
693
694
 static Bigint *
695
s2b
696
#ifdef KR_headers
697
  (s, nd0, nd, y9, dplen) CONST char *s; int nd0, nd, dplen; ULong y9;
698
#else
699
  (const char *s, int nd0, int nd, ULong y9, int dplen)
700
#endif
701
0
{
702
0
  Bigint *b;
703
0
  int i, k;
704
0
  Long x, y;
705
706
0
  x = (nd + 8) / 9;
707
0
  for(k = 0, y = 1; x > y; y <<= 1, k++) ;
708
0
#ifdef Pack_32
709
0
  b = Balloc(k);
710
0
  b->x[0] = y9;
711
0
  b->wds = 1;
712
#else
713
  b = Balloc(k+1);
714
  b->x[0] = y9 & 0xffff;
715
  b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
716
#endif
717
718
0
  i = 9;
719
0
  if (9 < nd0) {
720
0
    s += 9;
721
0
    do b = multadd(b, 10, *s++ - '0');
722
0
      while(++i < nd0);
723
0
    s += dplen;
724
0
    }
725
0
  else
726
0
    s += dplen + 9;
727
0
  for(; i < nd; i++)
728
0
    b = multadd(b, 10, *s++ - '0');
729
0
  return b;
730
0
  }
731
732
 static int
733
hi0bits
734
#ifdef KR_headers
735
  (x) ULong x;
736
#else
737
  (ULong x)
738
#endif
739
70.7k
{
740
70.7k
  int k = 0;
741
742
70.7k
  if (!(x & 0xffff0000)) {
743
63.8k
    k = 16;
744
63.8k
    x <<= 16;
745
63.8k
    }
746
70.7k
  if (!(x & 0xff000000)) {
747
63.4k
    k += 8;
748
63.4k
    x <<= 8;
749
63.4k
    }
750
70.7k
  if (!(x & 0xf0000000)) {
751
61.8k
    k += 4;
752
61.8k
    x <<= 4;
753
61.8k
    }
754
70.7k
  if (!(x & 0xc0000000)) {
755
64.2k
    k += 2;
756
64.2k
    x <<= 2;
757
64.2k
    }
758
70.7k
  if (!(x & 0x80000000)) {
759
61.4k
    k++;
760
61.4k
    if (!(x & 0x40000000))
761
0
      return 32;
762
61.4k
    }
763
70.7k
  return k;
764
70.7k
  }
765
766
 static int
767
lo0bits
768
#ifdef KR_headers
769
  (y) ULong *y;
770
#else
771
  (ULong *y)
772
#endif
773
65.7k
{
774
65.7k
  int k;
775
65.7k
  ULong x = *y;
776
777
65.7k
  if (x & 7) {
778
12.5k
    if (x & 1)
779
5.93k
      return 0;
780
6.58k
    if (x & 2) {
781
5.41k
      *y = x >> 1;
782
5.41k
      return 1;
783
5.41k
      }
784
1.17k
    *y = x >> 2;
785
1.17k
    return 2;
786
6.58k
    }
787
53.2k
  k = 0;
788
53.2k
  if (!(x & 0xffff)) {
789
44.8k
    k = 16;
790
44.8k
    x >>= 16;
791
44.8k
    }
792
53.2k
  if (!(x & 0xff)) {
793
40.8k
    k += 8;
794
40.8k
    x >>= 8;
795
40.8k
    }
796
53.2k
  if (!(x & 0xf)) {
797
45.7k
    k += 4;
798
45.7k
    x >>= 4;
799
45.7k
    }
800
53.2k
  if (!(x & 0x3)) {
801
43.7k
    k += 2;
802
43.7k
    x >>= 2;
803
43.7k
    }
804
53.2k
  if (!(x & 1)) {
805
44.6k
    k++;
806
44.6k
    x >>= 1;
807
44.6k
    if (!x)
808
0
      return 32;
809
44.6k
    }
810
53.2k
  *y = x;
811
53.2k
  return k;
812
53.2k
  }
813
814
 static Bigint *
815
i2b
816
#ifdef KR_headers
817
  (i) int i;
818
#else
819
  (int i)
820
#endif
821
129k
{
822
129k
  Bigint *b;
823
824
129k
  b = Balloc(1);
825
129k
  b->x[0] = i;
826
129k
  b->wds = 1;
827
129k
  return b;
828
129k
  }
829
830
 static Bigint *
831
mult
832
#ifdef KR_headers
833
  (a, b) Bigint *a, *b;
834
#else
835
  (Bigint *a, Bigint *b)
836
#endif
837
197k
{
838
197k
  Bigint *c;
839
197k
  int k, wa, wb, wc;
840
197k
  ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
841
197k
  ULong y;
842
197k
#ifdef ULLong
843
197k
  ULLong carry, z;
844
#else
845
  ULong carry, z;
846
#ifdef Pack_32
847
  ULong z2;
848
#endif
849
#endif
850
851
197k
  if (a->wds < b->wds) {
852
77.6k
    c = a;
853
77.6k
    a = b;
854
77.6k
    b = c;
855
77.6k
    }
856
197k
  k = a->k;
857
197k
  wa = a->wds;
858
197k
  wb = b->wds;
859
197k
  wc = wa + wb;
860
197k
  if (wc > a->maxwds)
861
21.8k
    k++;
862
197k
  c = Balloc(k);
863
1.23M
  for(x = c->x, xa = x + wc; x < xa; x++)
864
1.03M
    *x = 0;
865
197k
  xa = a->x;
866
197k
  xae = xa + wa;
867
197k
  xb = b->x;
868
197k
  xbe = xb + wb;
869
197k
  xc0 = c->x;
870
197k
#ifdef ULLong
871
454k
  for(; xb < xbe; xc0++) {
872
256k
    if ((y = *xb++)) {
873
256k
      x = xa;
874
256k
      xc = xc0;
875
256k
      carry = 0;
876
1.56M
      do {
877
1.56M
        z = *x++ * (ULLong)y + *xc + carry;
878
1.56M
        carry = z >> 32;
879
1.56M
        *xc++ = z & FFFFFFFF;
880
1.56M
        }
881
1.56M
        while(x < xae);
882
256k
      *xc = carry;
883
256k
      }
884
256k
    }
885
#else
886
#ifdef Pack_32
887
  for(; xb < xbe; xb++, xc0++) {
888
    if (y = *xb & 0xffff) {
889
      x = xa;
890
      xc = xc0;
891
      carry = 0;
892
      do {
893
        z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
894
        carry = z >> 16;
895
        z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
896
        carry = z2 >> 16;
897
        Storeinc(xc, z2, z);
898
        }
899
        while(x < xae);
900
      *xc = carry;
901
      }
902
    if (y = *xb >> 16) {
903
      x = xa;
904
      xc = xc0;
905
      carry = 0;
906
      z2 = *xc;
907
      do {
908
        z = (*x & 0xffff) * y + (*xc >> 16) + carry;
909
        carry = z >> 16;
910
        Storeinc(xc, z, z2);
911
        z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
912
        carry = z2 >> 16;
913
        }
914
        while(x < xae);
915
      *xc = z2;
916
      }
917
    }
918
#else
919
  for(; xb < xbe; xc0++) {
920
    if (y = *xb++) {
921
      x = xa;
922
      xc = xc0;
923
      carry = 0;
924
      do {
925
        z = *x++ * y + *xc + carry;
926
        carry = z >> 16;
927
        *xc++ = z & 0xffff;
928
        }
929
        while(x < xae);
930
      *xc = carry;
931
      }
932
    }
933
#endif
934
#endif
935
337k
  for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
936
197k
  c->wds = wc;
937
197k
  return c;
938
197k
  }
939
940
#ifndef p5s
941
 static Bigint *p5s;
942
#endif
943
944
 static Bigint *
945
pow5mult
946
#ifdef KR_headers
947
  (b, k) Bigint *b; int k;
948
#else
949
  (Bigint *b, int k)
950
#endif
951
64.6k
{
952
64.6k
  Bigint *b1, *p5, *p51;
953
64.6k
  int i;
954
64.6k
  static const int p05[3] = { 5, 25, 125 };
955
956
64.6k
  if ((i = k & 3))
957
56.7k
    b = multadd(b, p05[i-1], 0);
958
959
64.6k
  if (!(k >>= 2))
960
3.03k
    return b;
961
61.6k
  if (!(p5 = p5s)) {
962
    /* first time */
963
#ifdef MULTIPLE_THREADS
964
    ACQUIRE_DTOA_LOCK(1);
965
    if (!(p5 = p5s)) {
966
      p5 = p5s = i2b(625);
967
      p5->next = 0;
968
      }
969
    FREE_DTOA_LOCK(1);
970
#else
971
1
    p5 = p5s = i2b(625);
972
1
    p5->next = 0;
973
1
#endif
974
1
    }
975
270k
  for(;;) {
976
270k
    if (k & 1) {
977
142k
      b1 = mult(b, p5);
978
142k
      Bfree(b);
979
142k
      b = b1;
980
142k
      }
981
270k
    if (!(k >>= 1))
982
61.6k
      break;
983
208k
    if (!(p51 = p5->next)) {
984
#ifdef MULTIPLE_THREADS
985
      ACQUIRE_DTOA_LOCK(1);
986
      if (!(p51 = p5->next)) {
987
        p51 = p5->next = mult(p5,p5);
988
        p51->next = 0;
989
        }
990
      FREE_DTOA_LOCK(1);
991
#else
992
6
      p51 = p5->next = mult(p5,p5);
993
6
      p51->next = 0;
994
6
#endif
995
6
      }
996
208k
    p5 = p51;
997
208k
    }
998
61.6k
  return b;
999
64.6k
  }
1000
1001
 static Bigint *
1002
lshift
1003
#ifdef KR_headers
1004
  (b, k) Bigint *b; int k;
1005
#else
1006
  (Bigint *b, int k)
1007
#endif
1008
209k
{
1009
209k
  int i, k1, n, n1;
1010
209k
  Bigint *b1;
1011
209k
  ULong *x, *x1, *xe, z;
1012
1013
209k
#ifdef Pack_32
1014
209k
  n = k >> 5;
1015
#else
1016
  n = k >> 4;
1017
#endif
1018
209k
  k1 = b->k;
1019
209k
  n1 = n + b->wds + 1;
1020
416k
  for(i = b->maxwds; n1 > i; i <<= 1)
1021
206k
    k1++;
1022
209k
  b1 = Balloc(k1);
1023
209k
  x1 = b1->x;
1024
753k
  for(i = 0; i < n; i++)
1025
543k
    *x1++ = 0;
1026
209k
  x = b->x;
1027
209k
  xe = x + b->wds;
1028
209k
#ifdef Pack_32
1029
209k
  if (k &= 0x1f) {
1030
209k
    k1 = 32 - k;
1031
209k
    z = 0;
1032
1.01M
    do {
1033
1.01M
      *x1++ = *x << k | z;
1034
1.01M
      z = *x++ >> k1;
1035
1.01M
      }
1036
1.01M
      while(x < xe);
1037
209k
    if ((*x1 = z))
1038
52.6k
      ++n1;
1039
209k
    }
1040
#else
1041
  if (k &= 0xf) {
1042
    k1 = 16 - k;
1043
    z = 0;
1044
    do {
1045
      *x1++ = *x << k  & 0xffff | z;
1046
      z = *x++ >> k1;
1047
      }
1048
      while(x < xe);
1049
    if (*x1 = z)
1050
      ++n1;
1051
    }
1052
#endif
1053
270
  else do
1054
1.10k
    *x1++ = *x++;
1055
1.10k
    while(x < xe);
1056
209k
  b1->wds = n1 - 1;
1057
209k
  Bfree(b);
1058
209k
  return b1;
1059
209k
  }
1060
1061
 static int
1062
cmp
1063
#ifdef KR_headers
1064
  (a, b) Bigint *a, *b;
1065
#else
1066
  (Bigint *a, Bigint *b)
1067
#endif
1068
4.12M
{
1069
4.12M
  ULong *xa, *xa0, *xb, *xb0;
1070
4.12M
  int i, j;
1071
1072
4.12M
  i = a->wds;
1073
4.12M
  j = b->wds;
1074
#ifdef DEBUG
1075
  if (i > 1 && !a->x[i-1])
1076
    Bug("cmp called with a->x[a->wds-1] == 0");
1077
  if (j > 1 && !b->x[j-1])
1078
    Bug("cmp called with b->x[b->wds-1] == 0");
1079
#endif
1080
4.12M
  if (i -= j)
1081
981k
    return i;
1082
3.14M
  xa0 = a->x;
1083
3.14M
  xa = xa0 + j;
1084
3.14M
  xb0 = b->x;
1085
3.14M
  xb = xb0 + j;
1086
3.14M
  for(;;) {
1087
3.14M
    if (*--xa != *--xb)
1088
3.13M
      return *xa < *xb ? -1 : 1;
1089
8.17k
    if (xa <= xa0)
1090
3.52k
      break;
1091
8.17k
    }
1092
3.52k
  return 0;
1093
3.14M
  }
1094
1095
 static Bigint *
1096
diff
1097
#ifdef KR_headers
1098
  (a, b) Bigint *a, *b;
1099
#else
1100
  (Bigint *a, Bigint *b)
1101
#endif
1102
1.01M
{
1103
1.01M
  Bigint *c;
1104
1.01M
  int i, wa, wb;
1105
1.01M
  ULong *xa, *xae, *xb, *xbe, *xc;
1106
1.01M
#ifdef ULLong
1107
1.01M
  ULLong borrow, y;
1108
#else
1109
  ULong borrow, y;
1110
#ifdef Pack_32
1111
  ULong z;
1112
#endif
1113
#endif
1114
1115
1.01M
  i = cmp(a,b);
1116
1.01M
  if (!i) {
1117
401
    c = Balloc(0);
1118
401
    c->wds = 1;
1119
401
    c->x[0] = 0;
1120
401
    return c;
1121
401
    }
1122
1.01M
  if (i < 0) {
1123
12.8k
    c = a;
1124
12.8k
    a = b;
1125
12.8k
    b = c;
1126
12.8k
    i = 1;
1127
12.8k
    }
1128
1.00M
  else
1129
1.00M
    i = 0;
1130
1.01M
  c = Balloc(a->k);
1131
1.01M
  c->sign = i;
1132
1.01M
  wa = a->wds;
1133
1.01M
  xa = a->x;
1134
1.01M
  xae = xa + wa;
1135
1.01M
  wb = b->wds;
1136
1.01M
  xb = b->x;
1137
1.01M
  xbe = xb + wb;
1138
1.01M
  xc = c->x;
1139
1.01M
  borrow = 0;
1140
1.01M
#ifdef ULLong
1141
6.88M
  do {
1142
6.88M
    y = (ULLong)*xa++ - *xb++ - borrow;
1143
6.88M
    borrow = y >> 32 & (ULong)1;
1144
6.88M
    *xc++ = y & FFFFFFFF;
1145
6.88M
    }
1146
6.88M
    while(xb < xbe);
1147
1.50M
  while(xa < xae) {
1148
489k
    y = *xa++ - borrow;
1149
489k
    borrow = y >> 32 & (ULong)1;
1150
489k
    *xc++ = y & FFFFFFFF;
1151
489k
    }
1152
#else
1153
#ifdef Pack_32
1154
  do {
1155
    y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
1156
    borrow = (y & 0x10000) >> 16;
1157
    z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
1158
    borrow = (z & 0x10000) >> 16;
1159
    Storeinc(xc, z, y);
1160
    }
1161
    while(xb < xbe);
1162
  while(xa < xae) {
1163
    y = (*xa & 0xffff) - borrow;
1164
    borrow = (y & 0x10000) >> 16;
1165
    z = (*xa++ >> 16) - borrow;
1166
    borrow = (z & 0x10000) >> 16;
1167
    Storeinc(xc, z, y);
1168
    }
1169
#else
1170
  do {
1171
    y = *xa++ - *xb++ - borrow;
1172
    borrow = (y & 0x10000) >> 16;
1173
    *xc++ = y & 0xffff;
1174
    }
1175
    while(xb < xbe);
1176
  while(xa < xae) {
1177
    y = *xa++ - borrow;
1178
    borrow = (y & 0x10000) >> 16;
1179
    *xc++ = y & 0xffff;
1180
    }
1181
#endif
1182
#endif
1183
1.01M
  while(!*--xc)
1184
0
    wa--;
1185
1.01M
  c->wds = wa;
1186
1.01M
  return c;
1187
1.01M
  }
1188
1189
 static double
1190
ulp
1191
#ifdef KR_headers
1192
  (x) U *x;
1193
#else
1194
  (U *x)
1195
#endif
1196
0
{
1197
0
  Long L;
1198
0
  U u;
1199
1200
0
  L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
1201
#ifndef Avoid_Underflow
1202
#ifndef Sudden_Underflow
1203
  if (L > 0) {
1204
#endif
1205
#endif
1206
#ifdef IBM
1207
    L |= Exp_msk1 >> 4;
1208
#endif
1209
0
    word0(&u) = L;
1210
0
    word1(&u) = 0;
1211
#ifndef Avoid_Underflow
1212
#ifndef Sudden_Underflow
1213
    }
1214
  else {
1215
    L = -L >> Exp_shift;
1216
    if (L < Exp_shift) {
1217
      word0(&u) = 0x80000 >> L;
1218
      word1(&u) = 0;
1219
      }
1220
    else {
1221
      word0(&u) = 0;
1222
      L -= Exp_shift;
1223
      word1(&u) = L >= 31 ? 1 : 1 << 31 - L;
1224
      }
1225
    }
1226
#endif
1227
#endif
1228
0
  return dval(&u);
1229
0
  }
1230
1231
 static double
1232
b2d
1233
#ifdef KR_headers
1234
  (a, e) Bigint *a; int *e;
1235
#else
1236
  (Bigint *a, int *e)
1237
#endif
1238
0
{
1239
0
  ULong *xa, *xa0, w, y, z;
1240
0
  int k;
1241
0
  U d;
1242
#ifdef VAX
1243
  ULong d0, d1;
1244
#else
1245
0
#define d0 word0(&d)
1246
0
#define d1 word1(&d)
1247
0
#endif
1248
1249
0
  xa0 = a->x;
1250
0
  xa = xa0 + a->wds;
1251
0
  y = *--xa;
1252
#ifdef DEBUG
1253
  if (!y) Bug("zero y in b2d");
1254
#endif
1255
0
  k = hi0bits(y);
1256
0
  *e = 32 - k;
1257
0
#ifdef Pack_32
1258
0
  if (k < Ebits) {
1259
0
    d0 = Exp_1 | y >> (Ebits - k);
1260
0
    w = xa > xa0 ? *--xa : 0;
1261
0
    d1 = y << ((32-Ebits) + k) | w >> (Ebits - k);
1262
0
    goto ret_d;
1263
0
    }
1264
0
  z = xa > xa0 ? *--xa : 0;
1265
0
  if (k -= Ebits) {
1266
0
    d0 = Exp_1 | y << k | z >> (32 - k);
1267
0
    y = xa > xa0 ? *--xa : 0;
1268
0
    d1 = z << k | y >> (32 - k);
1269
0
    }
1270
0
  else {
1271
0
    d0 = Exp_1 | y;
1272
0
    d1 = z;
1273
0
    }
1274
#else
1275
  if (k < Ebits + 16) {
1276
    z = xa > xa0 ? *--xa : 0;
1277
    d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
1278
    w = xa > xa0 ? *--xa : 0;
1279
    y = xa > xa0 ? *--xa : 0;
1280
    d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
1281
    goto ret_d;
1282
    }
1283
  z = xa > xa0 ? *--xa : 0;
1284
  w = xa > xa0 ? *--xa : 0;
1285
  k -= Ebits + 16;
1286
  d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
1287
  y = xa > xa0 ? *--xa : 0;
1288
  d1 = w << k + 16 | y << k;
1289
#endif
1290
0
 ret_d:
1291
#ifdef VAX
1292
  word0(&d) = d0 >> 16 | d0 << 16;
1293
  word1(&d) = d1 >> 16 | d1 << 16;
1294
#else
1295
0
#undef d0
1296
0
#undef d1
1297
0
#endif
1298
0
  return dval(&d);
1299
0
  }
1300
1301
 static Bigint *
1302
d2b
1303
#ifdef KR_headers
1304
  (d, e, bits) U *d; int *e, *bits;
1305
#else
1306
  (U *d, int *e, int *bits)
1307
#endif
1308
65.7k
{
1309
65.7k
  Bigint *b;
1310
65.7k
  int de, k;
1311
65.7k
  ULong *x, y, z;
1312
65.7k
#ifndef Sudden_Underflow
1313
65.7k
  int i;
1314
65.7k
#endif
1315
#ifdef VAX
1316
  ULong d0, d1;
1317
  d0 = word0(d) >> 16 | word0(d) << 16;
1318
  d1 = word1(d) >> 16 | word1(d) << 16;
1319
#else
1320
197k
#define d0 word0(d)
1321
65.7k
#define d1 word1(d)
1322
65.7k
#endif
1323
1324
65.7k
#ifdef Pack_32
1325
65.7k
  b = Balloc(1);
1326
#else
1327
  b = Balloc(2);
1328
#endif
1329
65.7k
  x = b->x;
1330
1331
65.7k
  z = d0 & Frac_mask;
1332
65.7k
  d0 &= 0x7fffffff; /* clear sign bit, which we ignore */
1333
#ifdef Sudden_Underflow
1334
  de = (int)(d0 >> Exp_shift);
1335
#ifndef IBM
1336
  z |= Exp_msk11;
1337
#endif
1338
#else
1339
65.7k
  if ((de = (int)(d0 >> Exp_shift)))
1340
59.9k
    z |= Exp_msk1;
1341
65.7k
#endif
1342
65.7k
#ifdef Pack_32
1343
65.7k
  if ((y = d1)) {
1344
56.0k
    if ((k = lo0bits(&y))) {
1345
52.5k
      x[0] = y | z << (32 - k);
1346
52.5k
      z >>= k;
1347
52.5k
      }
1348
3.51k
    else
1349
3.51k
      x[0] = y;
1350
56.0k
#ifndef Sudden_Underflow
1351
56.0k
    i =
1352
56.0k
#endif
1353
56.0k
        b->wds = (x[1] = z) ? 2 : 1;
1354
56.0k
    }
1355
9.72k
  else {
1356
9.72k
    k = lo0bits(&z);
1357
9.72k
    x[0] = z;
1358
9.72k
#ifndef Sudden_Underflow
1359
9.72k
    i =
1360
9.72k
#endif
1361
9.72k
        b->wds = 1;
1362
9.72k
    k += 32;
1363
9.72k
    }
1364
#else
1365
  if (y = d1) {
1366
    if (k = lo0bits(&y))
1367
      if (k >= 16) {
1368
        x[0] = y | z << 32 - k & 0xffff;
1369
        x[1] = z >> k - 16 & 0xffff;
1370
        x[2] = z >> k;
1371
        i = 2;
1372
        }
1373
      else {
1374
        x[0] = y & 0xffff;
1375
        x[1] = y >> 16 | z << 16 - k & 0xffff;
1376
        x[2] = z >> k & 0xffff;
1377
        x[3] = z >> k+16;
1378
        i = 3;
1379
        }
1380
    else {
1381
      x[0] = y & 0xffff;
1382
      x[1] = y >> 16;
1383
      x[2] = z & 0xffff;
1384
      x[3] = z >> 16;
1385
      i = 3;
1386
      }
1387
    }
1388
  else {
1389
#ifdef DEBUG
1390
    if (!z)
1391
      Bug("Zero passed to d2b");
1392
#endif
1393
    k = lo0bits(&z);
1394
    if (k >= 16) {
1395
      x[0] = z;
1396
      i = 0;
1397
      }
1398
    else {
1399
      x[0] = z & 0xffff;
1400
      x[1] = z >> 16;
1401
      i = 1;
1402
      }
1403
    k += 32;
1404
    }
1405
  while(!x[i])
1406
    --i;
1407
  b->wds = i + 1;
1408
#endif
1409
65.7k
#ifndef Sudden_Underflow
1410
65.7k
  if (de) {
1411
59.9k
#endif
1412
#ifdef IBM
1413
    *e = (de - Bias - (P-1) << 2) + k;
1414
    *bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
1415
#else
1416
59.9k
    *e = de - Bias - (P-1) + k;
1417
59.9k
    *bits = P - k;
1418
59.9k
#endif
1419
59.9k
#ifndef Sudden_Underflow
1420
59.9k
    }
1421
5.77k
  else {
1422
5.77k
    *e = de - Bias - (P-1) + 1 + k;
1423
5.77k
#ifdef Pack_32
1424
5.77k
    *bits = 32*i - hi0bits(x[i-1]);
1425
#else
1426
    *bits = (i+2)*16 - hi0bits(x[i]);
1427
#endif
1428
5.77k
    }
1429
65.7k
#endif
1430
65.7k
  return b;
1431
65.7k
  }
1432
#undef d0
1433
#undef d1
1434
1435
 static double
1436
ratio
1437
#ifdef KR_headers
1438
  (a, b) Bigint *a, *b;
1439
#else
1440
  (Bigint *a, Bigint *b)
1441
#endif
1442
0
{
1443
0
  U da, db;
1444
0
  int k, ka, kb;
1445
1446
0
  dval(&da) = b2d(a, &ka);
1447
0
  dval(&db) = b2d(b, &kb);
1448
0
#ifdef Pack_32
1449
0
  k = ka - kb + 32*(a->wds - b->wds);
1450
#else
1451
  k = ka - kb + 16*(a->wds - b->wds);
1452
#endif
1453
#ifdef IBM
1454
  if (k > 0) {
1455
    word0(&da) += (k >> 2)*Exp_msk1;
1456
    if (k &= 3)
1457
      dval(&da) *= 1 << k;
1458
    }
1459
  else {
1460
    k = -k;
1461
    word0(&db) += (k >> 2)*Exp_msk1;
1462
    if (k &= 3)
1463
      dval(&db) *= 1 << k;
1464
    }
1465
#else
1466
0
  if (k > 0)
1467
0
    word0(&da) += k*Exp_msk1;
1468
0
  else {
1469
0
    k = -k;
1470
0
    word0(&db) += k*Exp_msk1;
1471
0
    }
1472
0
#endif
1473
0
  return dval(&da) / dval(&db);
1474
0
  }
1475
1476
 static CONST double
1477
tens[] = {
1478
    1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1479
    1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1480
    1e20, 1e21, 1e22
1481
#ifdef VAX
1482
    , 1e23, 1e24
1483
#endif
1484
    };
1485
1486
 static CONST double
1487
#ifdef IEEE_Arith
1488
bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1489
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
1490
#ifdef Avoid_Underflow
1491
    9007199254740992.*9007199254740992.e-256
1492
    /* = 2^106 * 1e-256 */
1493
#else
1494
    1e-256
1495
#endif
1496
    };
1497
/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
1498
/* flag unnecessarily.  It leads to a song and dance at the end of strtod. */
1499
0
#define Scale_Bit 0x10
1500
0
#define n_bigtens 5
1501
#else
1502
#ifdef IBM
1503
bigtens[] = { 1e16, 1e32, 1e64 };
1504
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 };
1505
#define n_bigtens 3
1506
#else
1507
bigtens[] = { 1e16, 1e32 };
1508
static CONST double tinytens[] = { 1e-16, 1e-32 };
1509
#define n_bigtens 2
1510
#endif
1511
#endif
1512
1513
#undef Need_Hexdig
1514
#ifdef INFNAN_CHECK
1515
#ifndef No_Hex_NaN
1516
#define Need_Hexdig
1517
#endif
1518
#endif
1519
1520
#ifndef Need_Hexdig
1521
#ifndef NO_HEX_FP
1522
#define Need_Hexdig
1523
#endif
1524
#endif
1525
1526
#ifdef Need_Hexdig /*{*/
1527
#if 0
1528
static unsigned char hexdig[256];
1529
1530
 static void
1531
htinit(unsigned char *h, unsigned char *s, int inc)
1532
{
1533
  int i, j;
1534
  for(i = 0; (j = s[i]) !=0; i++)
1535
    h[j] = i + inc;
1536
  }
1537
1538
 static void
1539
hexdig_init(void) /* Use of hexdig_init omitted 20121220 to avoid a */
1540
      /* race condition when multiple threads are used. */
1541
{
1542
#define USC (unsigned char *)
1543
  htinit(hexdig, USC "0123456789", 0x10);
1544
  htinit(hexdig, USC "abcdef", 0x10 + 10);
1545
  htinit(hexdig, USC "ABCDEF", 0x10 + 10);
1546
  }
1547
#else
1548
static const unsigned char hexdig[256] = {
1549
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1550
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1551
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1552
  16,17,18,19,20,21,22,23,24,25,0,0,0,0,0,0,
1553
  0,26,27,28,29,30,31,0,0,0,0,0,0,0,0,0,
1554
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1555
  0,26,27,28,29,30,31,0,0,0,0,0,0,0,0,0,
1556
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1557
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1558
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1559
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1560
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1561
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1562
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1563
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1564
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1565
  };
1566
#endif
1567
#endif /* } Need_Hexdig */
1568
1569
#ifdef INFNAN_CHECK
1570
1571
#ifndef NAN_WORD0
1572
#define NAN_WORD0 0x7ff80000
1573
#endif
1574
1575
#ifndef NAN_WORD1
1576
#define NAN_WORD1 0
1577
#endif
1578
1579
 static int
1580
match
1581
#ifdef KR_headers
1582
  (sp, t) char **sp, *t;
1583
#else
1584
  (const char **sp, const char *t)
1585
#endif
1586
{
1587
  int c, d;
1588
  CONST char *s = *sp;
1589
1590
  while((d = *t++)) {
1591
    if ((c = *++s) >= 'A' && c <= 'Z')
1592
      c += 'a' - 'A';
1593
    if (c != d)
1594
      return 0;
1595
    }
1596
  *sp = s + 1;
1597
  return 1;
1598
  }
1599
1600
#ifndef No_Hex_NaN
1601
 static void
1602
hexnan
1603
#ifdef KR_headers
1604
  (rvp, sp) U *rvp; CONST char **sp;
1605
#else
1606
  (U *rvp, const char **sp)
1607
#endif
1608
{
1609
  ULong c, x[2];
1610
  CONST char *s;
1611
  int c1, havedig, udx0, xshift;
1612
1613
  /**** if (!hexdig['0']) hexdig_init(); ****/
1614
  x[0] = x[1] = 0;
1615
  havedig = xshift = 0;
1616
  udx0 = 1;
1617
  s = *sp;
1618
  /* allow optional initial 0x or 0X */
1619
  while((c = *(CONST unsigned char*)(s+1)) && c <= ' ')
1620
    ++s;
1621
  if (s[1] == '0' && (s[2] == 'x' || s[2] == 'X'))
1622
    s += 2;
1623
  while((c = *(CONST unsigned char*)++s)) {
1624
    if ((c1 = hexdig[c]))
1625
      c  = c1 & 0xf;
1626
    else if (c <= ' ') {
1627
      if (udx0 && havedig) {
1628
        udx0 = 0;
1629
        xshift = 1;
1630
        }
1631
      continue;
1632
      }
1633
#ifdef GDTOA_NON_PEDANTIC_NANCHECK
1634
    else if (/*(*/ c == ')' && havedig) {
1635
      *sp = s + 1;
1636
      break;
1637
      }
1638
    else
1639
      return; /* invalid form: don't change *sp */
1640
#else
1641
    else {
1642
      do {
1643
        if (/*(*/ c == ')') {
1644
          *sp = s + 1;
1645
          break;
1646
          }
1647
        } while((c = *++s));
1648
      break;
1649
      }
1650
#endif
1651
    havedig = 1;
1652
    if (xshift) {
1653
      xshift = 0;
1654
      x[0] = x[1];
1655
      x[1] = 0;
1656
      }
1657
    if (udx0)
1658
      x[0] = (x[0] << 4) | (x[1] >> 28);
1659
    x[1] = (x[1] << 4) | c;
1660
    }
1661
  if ((x[0] &= 0xfffff) || x[1]) {
1662
    word0(rvp) = Exp_mask | x[0];
1663
    word1(rvp) = x[1];
1664
    }
1665
  }
1666
#endif /*No_Hex_NaN*/
1667
#endif /* INFNAN_CHECK */
1668
1669
#ifdef Pack_32
1670
#define ULbits 32
1671
#define kshift 5
1672
64.9k
#define kmask 31
1673
#else
1674
#define ULbits 16
1675
#define kshift 4
1676
#define kmask 15
1677
#endif
1678
1679
#if !defined(NO_HEX_FP) || defined(Honor_FLT_ROUNDS) /*{*/
1680
 static Bigint *
1681
#ifdef KR_headers
1682
increment(b) Bigint *b;
1683
#else
1684
increment(Bigint *b)
1685
#endif
1686
{
1687
  ULong *x, *xe;
1688
  Bigint *b1;
1689
1690
  x = b->x;
1691
  xe = x + b->wds;
1692
  do {
1693
    if (*x < (ULong)0xffffffffL) {
1694
      ++*x;
1695
      return b;
1696
      }
1697
    *x++ = 0;
1698
    } while(x < xe);
1699
  {
1700
    if (b->wds >= b->maxwds) {
1701
      b1 = Balloc(b->k+1);
1702
      Bcopy(b1,b);
1703
      Bfree(b);
1704
      b = b1;
1705
      }
1706
    b->x[b->wds++] = 1;
1707
    }
1708
  return b;
1709
  }
1710
1711
#endif /*}*/
1712
1713
#ifndef NO_HEX_FP /*{*/
1714
1715
 static void
1716
#ifdef KR_headers
1717
rshift(b, k) Bigint *b; int k;
1718
#else
1719
rshift(Bigint *b, int k)
1720
#endif
1721
{
1722
  ULong *x, *x1, *xe, y;
1723
  int n;
1724
1725
  x = x1 = b->x;
1726
  n = k >> kshift;
1727
  if (n < b->wds) {
1728
    xe = x + b->wds;
1729
    x += n;
1730
    if (k &= kmask) {
1731
      n = 32 - k;
1732
      y = *x++ >> k;
1733
      while(x < xe) {
1734
        *x1++ = (y | (*x << n)) & 0xffffffff;
1735
        y = *x++ >> k;
1736
        }
1737
      if ((*x1 = y) !=0)
1738
        x1++;
1739
      }
1740
    else
1741
      while(x < xe)
1742
        *x1++ = *x++;
1743
    }
1744
  if ((b->wds = x1 - b->x) == 0)
1745
    b->x[0] = 0;
1746
  }
1747
1748
 static ULong
1749
#ifdef KR_headers
1750
any_on(b, k) Bigint *b; int k;
1751
#else
1752
any_on(Bigint *b, int k)
1753
#endif
1754
{
1755
  int n, nwds;
1756
  ULong *x, *x0, x1, x2;
1757
1758
  x = b->x;
1759
  nwds = b->wds;
1760
  n = k >> kshift;
1761
  if (n > nwds)
1762
    n = nwds;
1763
  else if (n < nwds && (k &= kmask)) {
1764
    x1 = x2 = x[n];
1765
    x1 >>= k;
1766
    x1 <<= k;
1767
    if (x1 != x2)
1768
      return 1;
1769
    }
1770
  x0 = x;
1771
  x += n;
1772
  while(x > x0)
1773
    if (*--x)
1774
      return 1;
1775
  return 0;
1776
  }
1777
1778
enum {  /* rounding values: same as FLT_ROUNDS */
1779
  Round_zero = 0,
1780
  Round_near = 1,
1781
  Round_up = 2,
1782
  Round_down = 3
1783
  };
1784
1785
 void
1786
#ifdef KR_headers
1787
gethex(sp, rvp, rounding, sign)
1788
  CONST char **sp; U *rvp; int rounding, sign;
1789
#else
1790
gethex( CONST char **sp, U *rvp, int rounding, int sign)
1791
#endif
1792
{
1793
  Bigint *b;
1794
  CONST unsigned char *decpt, *s0, *s, *s1;
1795
  Long e, e1;
1796
  ULong L, lostbits, *x;
1797
  int big, denorm, esign, havedig, k, n, nbits, up, zret;
1798
#ifdef IBM
1799
  int j;
1800
#endif
1801
  enum {
1802
#ifdef IEEE_Arith /*{{*/
1803
    emax = 0x7fe - Bias - P + 1,
1804
    emin = Emin - P + 1
1805
#else /*}{*/
1806
    emin = Emin - P,
1807
#ifdef VAX
1808
    emax = 0x7ff - Bias - P + 1
1809
#endif
1810
#ifdef IBM
1811
    emax = 0x7f - Bias - P
1812
#endif
1813
#endif /*}}*/
1814
    };
1815
#ifdef USE_LOCALE
1816
  int i;
1817
#ifdef NO_LOCALE_CACHE
1818
  const unsigned char *decimalpoint = (unsigned char*)
1819
    localeconv()->decimal_point;
1820
#else
1821
  const unsigned char *decimalpoint;
1822
  static unsigned char *decimalpoint_cache;
1823
  if (!(s0 = decimalpoint_cache)) {
1824
    s0 = (unsigned char*)localeconv()->decimal_point;
1825
    if ((decimalpoint_cache = (unsigned char*)
1826
        MALLOC(strlen((CONST char*)s0) + 1))) {
1827
      strcpy((char*)decimalpoint_cache, (CONST char*)s0);
1828
      s0 = decimalpoint_cache;
1829
      }
1830
    }
1831
  decimalpoint = s0;
1832
#endif
1833
#endif
1834
1835
  /**** if (!hexdig['0']) hexdig_init(); ****/
1836
  havedig = 0;
1837
  s0 = *(CONST unsigned char **)sp + 2;
1838
  while(s0[havedig] == '0')
1839
    havedig++;
1840
  s0 += havedig;
1841
  s = s0;
1842
  decpt = 0;
1843
  zret = 0;
1844
  e = 0;
1845
  if (hexdig[*s])
1846
    havedig++;
1847
  else {
1848
    zret = 1;
1849
#ifdef USE_LOCALE
1850
    for(i = 0; decimalpoint[i]; ++i) {
1851
      if (s[i] != decimalpoint[i])
1852
        goto pcheck;
1853
      }
1854
    decpt = s += i;
1855
#else
1856
    if (*s != '.')
1857
      goto pcheck;
1858
    decpt = ++s;
1859
#endif
1860
    if (!hexdig[*s])
1861
      goto pcheck;
1862
    while(*s == '0')
1863
      s++;
1864
    if (hexdig[*s])
1865
      zret = 0;
1866
    havedig = 1;
1867
    s0 = s;
1868
    }
1869
  while(hexdig[*s])
1870
    s++;
1871
#ifdef USE_LOCALE
1872
  if (*s == *decimalpoint && !decpt) {
1873
    for(i = 1; decimalpoint[i]; ++i) {
1874
      if (s[i] != decimalpoint[i])
1875
        goto pcheck;
1876
      }
1877
    decpt = s += i;
1878
#else
1879
  if (*s == '.' && !decpt) {
1880
    decpt = ++s;
1881
#endif
1882
    while(hexdig[*s])
1883
      s++;
1884
    }/*}*/
1885
  if (decpt)
1886
    e = -(((Long)(s-decpt)) << 2);
1887
 pcheck:
1888
  s1 = s;
1889
  big = esign = 0;
1890
  switch(*s) {
1891
    case 'p':
1892
    case 'P':
1893
    switch(*++s) {
1894
      case '-':
1895
      esign = 1;
1896
      ZEND_FALLTHROUGH;
1897
      case '+':
1898
      s++;
1899
      }
1900
    if ((n = hexdig[*s]) == 0 || n > 0x19) {
1901
      s = s1;
1902
      break;
1903
      }
1904
    e1 = n - 0x10;
1905
    while((n = hexdig[*++s]) !=0 && n <= 0x19) {
1906
      if (e1 & 0xf8000000)
1907
        big = 1;
1908
      e1 = 10*e1 + n - 0x10;
1909
      }
1910
    if (esign)
1911
      e1 = -e1;
1912
    e += e1;
1913
    }
1914
  *sp = (char*)s;
1915
  if (!havedig)
1916
    *sp = (char*)s0 - 1;
1917
  if (zret)
1918
    goto retz1;
1919
  if (big) {
1920
    if (esign) {
1921
#ifdef IEEE_Arith
1922
      switch(rounding) {
1923
        case Round_up:
1924
        if (sign)
1925
          break;
1926
        goto ret_tiny;
1927
        case Round_down:
1928
        if (!sign)
1929
          break;
1930
        goto ret_tiny;
1931
        }
1932
#endif
1933
      goto retz;
1934
#ifdef IEEE_Arith
1935
 ret_tinyf:
1936
      Bfree(b);
1937
 ret_tiny:
1938
#ifndef NO_ERRNO
1939
      errno = ERANGE;
1940
#endif
1941
      word0(rvp) = 0;
1942
      word1(rvp) = 1;
1943
      return;
1944
#endif /* IEEE_Arith */
1945
      }
1946
    switch(rounding) {
1947
      case Round_near:
1948
      goto ovfl1;
1949
      case Round_up:
1950
      if (!sign)
1951
        goto ovfl1;
1952
      goto ret_big;
1953
      case Round_down:
1954
      if (sign)
1955
        goto ovfl1;
1956
      goto ret_big;
1957
      }
1958
 ret_big:
1959
    word0(rvp) = Big0;
1960
    word1(rvp) = Big1;
1961
    return;
1962
    }
1963
  n = s1 - s0 - 1;
1964
  for(k = 0; n > (1 << (kshift-2)) - 1; n >>= 1)
1965
    k++;
1966
  b = Balloc(k);
1967
  x = b->x;
1968
  n = 0;
1969
  L = 0;
1970
#ifdef USE_LOCALE
1971
  for(i = 0; decimalpoint[i+1]; ++i);
1972
#endif
1973
  while(s1 > s0) {
1974
#ifdef USE_LOCALE
1975
    if (*--s1 == decimalpoint[i]) {
1976
      s1 -= i;
1977
      continue;
1978
      }
1979
#else
1980
    if (*--s1 == '.')
1981
      continue;
1982
#endif
1983
    if (n == ULbits) {
1984
      *x++ = L;
1985
      L = 0;
1986
      n = 0;
1987
      }
1988
    L |= (hexdig[*s1] & 0x0f) << n;
1989
    n += 4;
1990
    }
1991
  *x++ = L;
1992
  b->wds = n = x - b->x;
1993
  n = ULbits*n - hi0bits(L);
1994
  nbits = Nbits;
1995
  lostbits = 0;
1996
  x = b->x;
1997
  if (n > nbits) {
1998
    n -= nbits;
1999
    if (any_on(b,n)) {
2000
      lostbits = 1;
2001
      k = n - 1;
2002
      if (x[k>>kshift] & 1 << (k & kmask)) {
2003
        lostbits = 2;
2004
        if (k > 0 && any_on(b,k))
2005
          lostbits = 3;
2006
        }
2007
      }
2008
    rshift(b, n);
2009
    e += n;
2010
    }
2011
  else if (n < nbits) {
2012
    n = nbits - n;
2013
    b = lshift(b, n);
2014
    e -= n;
2015
    x = b->x;
2016
    }
2017
  if (e > Emax) {
2018
 ovfl:
2019
    Bfree(b);
2020
 ovfl1:
2021
#ifndef NO_ERRNO
2022
    errno = ERANGE;
2023
#endif
2024
    word0(rvp) = Exp_mask;
2025
    word1(rvp) = 0;
2026
    return;
2027
    }
2028
  denorm = 0;
2029
  if (e < emin) {
2030
    denorm = 1;
2031
    n = emin - e;
2032
    if (n >= nbits) {
2033
#ifdef IEEE_Arith /*{*/
2034
      switch (rounding) {
2035
        case Round_near:
2036
        if (n == nbits && (n < 2 || any_on(b,n-1)))
2037
          goto ret_tinyf;
2038
        break;
2039
        case Round_up:
2040
        if (!sign)
2041
          goto ret_tinyf;
2042
        break;
2043
        case Round_down:
2044
        if (sign)
2045
          goto ret_tinyf;
2046
        }
2047
#endif /* } IEEE_Arith */
2048
      Bfree(b);
2049
 retz:
2050
#ifndef NO_ERRNO
2051
      errno = ERANGE;
2052
#endif
2053
 retz1:
2054
      rvp->d = 0.;
2055
      return;
2056
      }
2057
    k = n - 1;
2058
    if (lostbits)
2059
      lostbits = 1;
2060
    else if (k > 0)
2061
      lostbits = any_on(b,k);
2062
    if (x[k>>kshift] & 1 << (k & kmask))
2063
      lostbits |= 2;
2064
    nbits -= n;
2065
    rshift(b,n);
2066
    e = emin;
2067
    }
2068
  if (lostbits) {
2069
    up = 0;
2070
    switch(rounding) {
2071
      case Round_zero:
2072
      break;
2073
      case Round_near:
2074
      if (lostbits & 2
2075
       && (lostbits & 1) | (x[0] & 1))
2076
        up = 1;
2077
      break;
2078
      case Round_up:
2079
      up = 1 - sign;
2080
      break;
2081
      case Round_down:
2082
      up = sign;
2083
      }
2084
    if (up) {
2085
      k = b->wds;
2086
      b = increment(b);
2087
      x = b->x;
2088
      if (denorm) {
2089
#if 0
2090
        if (nbits == Nbits - 1
2091
         && x[nbits >> kshift] & 1 << (nbits & kmask))
2092
          denorm = 0; /* not currently used */
2093
#endif
2094
        }
2095
      else if (b->wds > k
2096
       || ((n = nbits & kmask) !=0
2097
           && hi0bits(x[k-1]) < 32-n)) {
2098
        rshift(b,1);
2099
        if (++e > Emax)
2100
          goto ovfl;
2101
        }
2102
      }
2103
    }
2104
#ifdef IEEE_Arith
2105
  if (denorm)
2106
    word0(rvp) = b->wds > 1 ? b->x[1] & ~0x100000 : 0;
2107
  else
2108
    word0(rvp) = (b->x[1] & ~0x100000) | ((e + 0x3ff + 52) << 20);
2109
  word1(rvp) = b->x[0];
2110
#endif
2111
#ifdef IBM
2112
  if ((j = e & 3)) {
2113
    k = b->x[0] & ((1 << j) - 1);
2114
    rshift(b,j);
2115
    if (k) {
2116
      switch(rounding) {
2117
        case Round_up:
2118
        if (!sign)
2119
          increment(b);
2120
        break;
2121
        case Round_down:
2122
        if (sign)
2123
          increment(b);
2124
        break;
2125
        case Round_near:
2126
        j = 1 << (j-1);
2127
        if (k & j && ((k & (j-1)) | lostbits))
2128
          increment(b);
2129
        }
2130
      }
2131
    }
2132
  e >>= 2;
2133
  word0(rvp) = b->x[1] | ((e + 65 + 13) << 24);
2134
  word1(rvp) = b->x[0];
2135
#endif
2136
#ifdef VAX
2137
  /* The next two lines ignore swap of low- and high-order 2 bytes. */
2138
  /* word0(rvp) = (b->x[1] & ~0x800000) | ((e + 129 + 55) << 23); */
2139
  /* word1(rvp) = b->x[0]; */
2140
  word0(rvp) = ((b->x[1] & ~0x800000) >> 16) | ((e + 129 + 55) << 7) | (b->x[1] << 16);
2141
  word1(rvp) = (b->x[0] >> 16) | (b->x[0] << 16);
2142
#endif
2143
  Bfree(b);
2144
  }
2145
#endif /*!NO_HEX_FP}*/
2146
2147
 static int
2148
#ifdef KR_headers
2149
dshift(b, p2) Bigint *b; int p2;
2150
#else
2151
dshift(Bigint *b, int p2)
2152
#endif
2153
64.9k
{
2154
64.9k
  int rv = hi0bits(b->x[b->wds-1]) - 4;
2155
64.9k
  if (p2 > 0)
2156
58.6k
    rv -= p2;
2157
64.9k
  return rv & kmask;
2158
64.9k
  }
2159
2160
 static int
2161
quorem
2162
#ifdef KR_headers
2163
  (b, S) Bigint *b, *S;
2164
#else
2165
  (Bigint *b, Bigint *S)
2166
#endif
2167
1.01M
{
2168
1.01M
  int n;
2169
1.01M
  ULong *bx, *bxe, q, *sx, *sxe;
2170
1.01M
#ifdef ULLong
2171
1.01M
  ULLong borrow, carry, y, ys;
2172
#else
2173
  ULong borrow, carry, y, ys;
2174
#ifdef Pack_32
2175
  ULong si, z, zs;
2176
#endif
2177
#endif
2178
2179
1.01M
  n = S->wds;
2180
#ifdef DEBUG
2181
  /*debug*/ if (b->wds > n)
2182
  /*debug*/ Bug("oversize b in quorem");
2183
#endif
2184
1.01M
  if (b->wds < n)
2185
799
    return 0;
2186
1.01M
  sx = S->x;
2187
1.01M
  sxe = sx + --n;
2188
1.01M
  bx = b->x;
2189
1.01M
  bxe = bx + n;
2190
1.01M
  q = *bxe / (*sxe + 1);  /* ensure q <= true quotient */
2191
#ifdef DEBUG
2192
#ifdef NO_STRTOD_BIGCOMP
2193
  /*debug*/ if (q > 9)
2194
#else
2195
  /* An oversized q is possible when quorem is called from bigcomp and */
2196
  /* the input is near, e.g., twice the smallest denormalized number. */
2197
  /*debug*/ if (q > 15)
2198
#endif
2199
  /*debug*/ Bug("oversized quotient in quorem");
2200
#endif
2201
1.01M
  if (q) {
2202
928k
    borrow = 0;
2203
928k
    carry = 0;
2204
6.77M
    do {
2205
6.77M
#ifdef ULLong
2206
6.77M
      ys = *sx++ * (ULLong)q + carry;
2207
6.77M
      carry = ys >> 32;
2208
6.77M
      y = *bx - (ys & FFFFFFFF) - borrow;
2209
6.77M
      borrow = y >> 32 & (ULong)1;
2210
6.77M
      *bx++ = y & FFFFFFFF;
2211
#else
2212
#ifdef Pack_32
2213
      si = *sx++;
2214
      ys = (si & 0xffff) * q + carry;
2215
      zs = (si >> 16) * q + (ys >> 16);
2216
      carry = zs >> 16;
2217
      y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
2218
      borrow = (y & 0x10000) >> 16;
2219
      z = (*bx >> 16) - (zs & 0xffff) - borrow;
2220
      borrow = (z & 0x10000) >> 16;
2221
      Storeinc(bx, z, y);
2222
#else
2223
      ys = *sx++ * q + carry;
2224
      carry = ys >> 16;
2225
      y = *bx - (ys & 0xffff) - borrow;
2226
      borrow = (y & 0x10000) >> 16;
2227
      *bx++ = y & 0xffff;
2228
#endif
2229
#endif
2230
6.77M
      }
2231
6.77M
      while(sx <= sxe);
2232
928k
    if (!*bxe) {
2233
449
      bx = b->x;
2234
449
      while(--bxe > bx && !*bxe)
2235
0
        --n;
2236
449
      b->wds = n;
2237
449
      }
2238
928k
    }
2239
1.01M
  if (cmp(b, S) >= 0) {
2240
2.18k
    q++;
2241
2.18k
    borrow = 0;
2242
2.18k
    carry = 0;
2243
2.18k
    bx = b->x;
2244
2.18k
    sx = S->x;
2245
7.09k
    do {
2246
7.09k
#ifdef ULLong
2247
7.09k
      ys = *sx++ + carry;
2248
7.09k
      carry = ys >> 32;
2249
7.09k
      y = *bx - (ys & FFFFFFFF) - borrow;
2250
7.09k
      borrow = y >> 32 & (ULong)1;
2251
7.09k
      *bx++ = y & FFFFFFFF;
2252
#else
2253
#ifdef Pack_32
2254
      si = *sx++;
2255
      ys = (si & 0xffff) + carry;
2256
      zs = (si >> 16) + (ys >> 16);
2257
      carry = zs >> 16;
2258
      y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
2259
      borrow = (y & 0x10000) >> 16;
2260
      z = (*bx >> 16) - (zs & 0xffff) - borrow;
2261
      borrow = (z & 0x10000) >> 16;
2262
      Storeinc(bx, z, y);
2263
#else
2264
      ys = *sx++ + carry;
2265
      carry = ys >> 16;
2266
      y = *bx - (ys & 0xffff) - borrow;
2267
      borrow = (y & 0x10000) >> 16;
2268
      *bx++ = y & 0xffff;
2269
#endif
2270
#endif
2271
7.09k
      }
2272
7.09k
      while(sx <= sxe);
2273
2.18k
    bx = b->x;
2274
2.18k
    bxe = bx + n;
2275
2.18k
    if (!*bxe) {
2276
2.05k
      while(--bxe > bx && !*bxe)
2277
248
        --n;
2278
1.81k
      b->wds = n;
2279
1.81k
      }
2280
2.18k
    }
2281
1.01M
  return q;
2282
1.01M
  }
2283
2284
#if defined(Avoid_Underflow) || !defined(NO_STRTOD_BIGCOMP) /*{*/
2285
 static double
2286
sulp
2287
#ifdef KR_headers
2288
  (x, bc) U *x; BCinfo *bc;
2289
#else
2290
  (U *x, BCinfo *bc)
2291
#endif
2292
0
{
2293
0
  U u;
2294
0
  double rv;
2295
0
  int i;
2296
2297
0
  rv = ulp(x);
2298
0
  if (!bc->scale || (i = 2*P + 1 - ((word0(x) & Exp_mask) >> Exp_shift)) <= 0)
2299
0
    return rv; /* Is there an example where i <= 0 ? */
2300
0
  word0(&u) = Exp_1 + (i << Exp_shift);
2301
0
  word1(&u) = 0;
2302
0
  return rv * u.d;
2303
0
  }
2304
#endif /*}*/
2305
2306
#ifndef NO_STRTOD_BIGCOMP
2307
 static void
2308
bigcomp
2309
#ifdef KR_headers
2310
  (rv, s0, bc)
2311
  U *rv; CONST char *s0; BCinfo *bc;
2312
#else
2313
  (U *rv, const char *s0, BCinfo *bc)
2314
#endif
2315
0
{
2316
0
  Bigint *b, *d;
2317
0
  int b2, bbits, d2, dd, dig, dsign, i, j, nd, nd0, p2, p5, speccase;
2318
2319
0
  dsign = bc->dsign;
2320
0
  nd = bc->nd;
2321
0
  nd0 = bc->nd0;
2322
0
  p5 = nd + bc->e0 - 1;
2323
0
  speccase = 0;
2324
0
#ifndef Sudden_Underflow
2325
0
  if (rv->d == 0.) { /* special case: value near underflow-to-zero */
2326
        /* threshold was rounded to zero */
2327
0
    b = i2b(1);
2328
0
    p2 = Emin - P + 1;
2329
0
    bbits = 1;
2330
0
#ifdef Avoid_Underflow
2331
0
    word0(rv) = (P+2) << Exp_shift;
2332
#else
2333
    word1(rv) = 1;
2334
#endif
2335
0
    i = 0;
2336
#ifdef Honor_FLT_ROUNDS
2337
    if (bc->rounding == 1)
2338
#endif
2339
0
      {
2340
0
      speccase = 1;
2341
0
      --p2;
2342
0
      dsign = 0;
2343
0
      goto have_i;
2344
0
      }
2345
0
    }
2346
0
  else
2347
0
#endif
2348
0
    b = d2b(rv, &p2, &bbits);
2349
0
#ifdef Avoid_Underflow
2350
0
  p2 -= bc->scale;
2351
0
#endif
2352
  /* floor(log2(rv)) == bbits - 1 + p2 */
2353
  /* Check for denormal case. */
2354
0
  i = P - bbits;
2355
0
  if (i > (j = P - Emin - 1 + p2)) {
2356
#ifdef Sudden_Underflow
2357
    Bfree(b);
2358
    b = i2b(1);
2359
    p2 = Emin;
2360
    i = P - 1;
2361
#ifdef Avoid_Underflow
2362
    word0(rv) = (1 + bc->scale) << Exp_shift;
2363
#else
2364
    word0(rv) = Exp_msk1;
2365
#endif
2366
    word1(rv) = 0;
2367
#else
2368
0
    i = j;
2369
0
#endif
2370
0
    }
2371
#ifdef Honor_FLT_ROUNDS
2372
  if (bc->rounding != 1) {
2373
    if (i > 0)
2374
      b = lshift(b, i);
2375
    if (dsign)
2376
      b = increment(b);
2377
    }
2378
  else
2379
#endif
2380
0
    {
2381
0
    b = lshift(b, ++i);
2382
0
    b->x[0] |= 1;
2383
0
    }
2384
0
#ifndef Sudden_Underflow
2385
0
 have_i:
2386
0
#endif
2387
0
  p2 -= p5 + i;
2388
0
  d = i2b(1);
2389
  /* Arrange for convenient computation of quotients:
2390
   * shift left if necessary so divisor has 4 leading 0 bits.
2391
   */
2392
0
  if (p5 > 0)
2393
0
    d = pow5mult(d, p5);
2394
0
  else if (p5 < 0)
2395
0
    b = pow5mult(b, -p5);
2396
0
  if (p2 > 0) {
2397
0
    b2 = p2;
2398
0
    d2 = 0;
2399
0
    }
2400
0
  else {
2401
0
    b2 = 0;
2402
0
    d2 = -p2;
2403
0
    }
2404
0
  i = dshift(d, d2);
2405
0
  if ((b2 += i) > 0)
2406
0
    b = lshift(b, b2);
2407
0
  if ((d2 += i) > 0)
2408
0
    d = lshift(d, d2);
2409
2410
  /* Now b/d = exactly half-way between the two floating-point values */
2411
  /* on either side of the input string.  Compute first digit of b/d. */
2412
2413
0
  if (!(dig = quorem(b,d))) {
2414
0
    b = multadd(b, 10, 0);  /* very unlikely */
2415
0
    dig = quorem(b,d);
2416
0
    }
2417
2418
  /* Compare b/d with s0 */
2419
2420
0
  for(i = 0; i < nd0; ) {
2421
0
    if ((dd = s0[i++] - '0' - dig))
2422
0
      goto ret;
2423
0
    if (!b->x[0] && b->wds == 1) {
2424
0
      if (i < nd)
2425
0
        dd = 1;
2426
0
      goto ret;
2427
0
      }
2428
0
    b = multadd(b, 10, 0);
2429
0
    dig = quorem(b,d);
2430
0
    }
2431
0
  for(j = bc->dp1; i++ < nd;) {
2432
0
    if ((dd = s0[j++] - '0' - dig))
2433
0
      goto ret;
2434
0
    if (!b->x[0] && b->wds == 1) {
2435
0
      if (i < nd)
2436
0
        dd = 1;
2437
0
      goto ret;
2438
0
      }
2439
0
    b = multadd(b, 10, 0);
2440
0
    dig = quorem(b,d);
2441
0
    }
2442
0
  if (dig > 0 || b->x[0] || b->wds > 1)
2443
0
    dd = -1;
2444
0
 ret:
2445
0
  Bfree(b);
2446
0
  Bfree(d);
2447
#ifdef Honor_FLT_ROUNDS
2448
  if (bc->rounding != 1) {
2449
    if (dd < 0) {
2450
      if (bc->rounding == 0) {
2451
        if (!dsign)
2452
          goto retlow1;
2453
        }
2454
      else if (dsign)
2455
        goto rethi1;
2456
      }
2457
    else if (dd > 0) {
2458
      if (bc->rounding == 0) {
2459
        if (dsign)
2460
          goto rethi1;
2461
        goto ret1;
2462
        }
2463
      if (!dsign)
2464
        goto rethi1;
2465
      dval(rv) += 2.*sulp(rv,bc);
2466
      }
2467
    else {
2468
      bc->inexact = 0;
2469
      if (dsign)
2470
        goto rethi1;
2471
      }
2472
    }
2473
  else
2474
#endif
2475
0
  if (speccase) {
2476
0
    if (dd <= 0)
2477
0
      rv->d = 0.;
2478
0
    }
2479
0
  else if (dd < 0) {
2480
0
    if (!dsign) /* does not happen for round-near */
2481
0
retlow1:
2482
0
      dval(rv) -= sulp(rv,bc);
2483
0
    }
2484
0
  else if (dd > 0) {
2485
0
    if (dsign) {
2486
0
 rethi1:
2487
0
      dval(rv) += sulp(rv,bc);
2488
0
      }
2489
0
    }
2490
0
  else {
2491
    /* Exact half-way case:  apply round-even rule. */
2492
0
    if ((j = ((word0(rv) & Exp_mask) >> Exp_shift) - bc->scale) <= 0) {
2493
0
      i = 1 - j;
2494
0
      if (i <= 31) {
2495
0
        if (word1(rv) & (0x1 << i))
2496
0
          goto odd;
2497
0
        }
2498
0
      else if (word0(rv) & (0x1 << (i-32)))
2499
0
        goto odd;
2500
0
      }
2501
0
    else if (word1(rv) & 1) {
2502
0
 odd:
2503
0
      if (dsign)
2504
0
        goto rethi1;
2505
0
      goto retlow1;
2506
0
      }
2507
0
    }
2508
2509
#ifdef Honor_FLT_ROUNDS
2510
 ret1:
2511
#endif
2512
0
  return;
2513
0
  }
2514
#endif /* NO_STRTOD_BIGCOMP */
2515
2516
ZEND_API double
2517
zend_strtod
2518
#ifdef KR_headers
2519
  (s00, se) CONST char *s00; char **se;
2520
#else
2521
  (const char *s00, const char **se)
2522
#endif
2523
2
{
2524
2
  int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, e, e1;
2525
2
  int esign, i, j, k, nd, nd0, nf, nz, nz0, nz1, sign;
2526
2
  CONST char *s, *s0, *s1;
2527
2
  volatile double aadj, aadj1;
2528
2
  Long L;
2529
2
  U aadj2, adj, rv, rv0;
2530
2
  ULong y, z;
2531
2
  BCinfo bc;
2532
2
  Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
2533
2
#ifdef Avoid_Underflow
2534
2
  ULong Lsb, Lsb1;
2535
2
#endif
2536
#ifdef SET_INEXACT
2537
  int oldinexact;
2538
#endif
2539
2
#ifndef NO_STRTOD_BIGCOMP
2540
2
  int req_bigcomp = 0;
2541
2
#endif
2542
#ifdef Honor_FLT_ROUNDS /*{*/
2543
#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
2544
  bc.rounding = Flt_Rounds;
2545
#else /*}{*/
2546
  bc.rounding = 1;
2547
  switch(fegetround()) {
2548
    case FE_TOWARDZERO: bc.rounding = 0; break;
2549
    case FE_UPWARD: bc.rounding = 2; break;
2550
    case FE_DOWNWARD: bc.rounding = 3;
2551
    }
2552
#endif /*}}*/
2553
#endif /*}*/
2554
#ifdef USE_LOCALE
2555
  CONST char *s2;
2556
#endif
2557
2558
2
  sign = nz0 = nz1 = nz = bc.dplen = bc.uflchk = 0;
2559
2
  dval(&rv) = 0.;
2560
2
  for(s = s00;;s++) switch(*s) {
2561
0
    case '-':
2562
0
      sign = 1;
2563
0
      ZEND_FALLTHROUGH;
2564
0
    case '+':
2565
0
      if (*++s)
2566
0
        goto break2;
2567
0
      ZEND_FALLTHROUGH;
2568
0
    case 0:
2569
0
      goto ret0;
2570
0
    case '\t':
2571
0
    case '\n':
2572
0
    case '\v':
2573
0
    case '\f':
2574
0
    case '\r':
2575
0
    case ' ':
2576
0
      continue;
2577
2
    default:
2578
2
      goto break2;
2579
2
    }
2580
2
 break2:
2581
2
  if (*s == '0') {
2582
#ifndef NO_HEX_FP /*{*/
2583
    switch(s[1]) {
2584
      case 'x':
2585
      case 'X':
2586
#ifdef Honor_FLT_ROUNDS
2587
      gethex(&s, &rv, bc.rounding, sign);
2588
#else
2589
      gethex(&s, &rv, 1, sign);
2590
#endif
2591
      goto ret;
2592
      }
2593
#endif /*}*/
2594
2
    nz0 = 1;
2595
2
    while(*++s == '0') ;
2596
2
    if (!*s)
2597
0
      goto ret;
2598
2
    }
2599
2
  s0 = s;
2600
2
  y = z = 0;
2601
2
  for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
2602
0
    if (nd < 9)
2603
0
      y = 10*y + c - '0';
2604
0
    else if (nd < DBL_DIG + 2)
2605
0
      z = 10*z + c - '0';
2606
2
  nd0 = nd;
2607
2
  bc.dp0 = bc.dp1 = s - s0;
2608
2
  for(s1 = s; s1 > s0 && *--s1 == '0'; )
2609
0
    ++nz1;
2610
#ifdef USE_LOCALE
2611
  s1 = localeconv()->decimal_point;
2612
  if (c == *s1) {
2613
    c = '.';
2614
    if (*++s1) {
2615
      s2 = s;
2616
      for(;;) {
2617
        if (*++s2 != *s1) {
2618
          c = 0;
2619
          break;
2620
          }
2621
        if (!*++s1) {
2622
          s = s2;
2623
          break;
2624
          }
2625
        }
2626
      }
2627
    }
2628
#endif
2629
2
  if (c == '.') {
2630
2
    c = *++s;
2631
2
    bc.dp1 = s - s0;
2632
2
    bc.dplen = bc.dp1 - bc.dp0;
2633
2
    if (!nd) {
2634
6
      for(; c == '0'; c = *++s)
2635
4
        nz++;
2636
2
      if (c > '0' && c <= '9') {
2637
2
        bc.dp0 = s0 - s;
2638
2
        bc.dp1 = bc.dp0 + bc.dplen;
2639
2
        s0 = s;
2640
2
        nf += nz;
2641
2
        nz = 0;
2642
2
        goto have_dig;
2643
2
        }
2644
0
      goto dig_done;
2645
2
      }
2646
2
    for(; c >= '0' && c <= '9'; c = *++s) {
2647
2
 have_dig:
2648
2
      nz++;
2649
2
      if (c -= '0') {
2650
2
        nf += nz;
2651
2
        for(i = 1; i < nz; i++)
2652
0
          if (nd++ < 9)
2653
0
            y *= 10;
2654
0
          else if (nd <= DBL_DIG + 2)
2655
0
            z *= 10;
2656
2
        if (nd++ < 9)
2657
2
          y = 10*y + c;
2658
0
        else if (nd <= DBL_DIG + 2)
2659
0
          z = 10*z + c;
2660
2
        nz = nz1 = 0;
2661
2
        }
2662
2
      }
2663
0
    }
2664
2
 dig_done:
2665
2
  if (nd < 0) {
2666
    /* overflow */
2667
0
    nd = DBL_DIG + 2;
2668
0
  }
2669
2
  if (nf < 0) {
2670
    /* overflow */
2671
0
    nf = DBL_DIG + 2;
2672
0
  }
2673
2
  e = 0;
2674
2
  if (c == 'e' || c == 'E') {
2675
0
    if (!nd && !nz && !nz0) {
2676
0
      goto ret0;
2677
0
      }
2678
0
    s00 = s;
2679
0
    esign = 0;
2680
0
    switch(c = *++s) {
2681
0
      case '-':
2682
0
        esign = 1;
2683
0
        ZEND_FALLTHROUGH;
2684
0
      case '+':
2685
0
        c = *++s;
2686
0
      }
2687
0
    if (c >= '0' && c <= '9') {
2688
0
      while(c == '0')
2689
0
        c = *++s;
2690
0
      if (c > '0' && c <= '9') {
2691
0
        L = c - '0';
2692
0
        s1 = s;
2693
0
        while((c = *++s) >= '0' && c <= '9')
2694
0
          L = (Long) (10*(ULong)L + (c - '0'));
2695
0
        if (s - s1 > 8 || L > 19999)
2696
          /* Avoid confusion from exponents
2697
           * so large that e might overflow.
2698
           */
2699
0
          e = 19999; /* safe for 16 bit ints */
2700
0
        else
2701
0
          e = (int)L;
2702
0
        if (esign)
2703
0
          e = -e;
2704
0
        }
2705
0
      else
2706
0
        e = 0;
2707
0
      }
2708
0
    else
2709
0
      s = s00;
2710
0
    }
2711
2
  if (!nd) {
2712
0
    if (!nz && !nz0) {
2713
#ifdef INFNAN_CHECK
2714
      /* Check for Nan and Infinity */
2715
      if (!bc.dplen)
2716
       switch(c) {
2717
        case 'i':
2718
        case 'I':
2719
        if (match(&s,"nf")) {
2720
          --s;
2721
          if (!match(&s,"inity"))
2722
            ++s;
2723
          word0(&rv) = 0x7ff00000;
2724
          word1(&rv) = 0;
2725
          goto ret;
2726
          }
2727
        break;
2728
        case 'n':
2729
        case 'N':
2730
        if (match(&s, "an")) {
2731
          word0(&rv) = NAN_WORD0;
2732
          word1(&rv) = NAN_WORD1;
2733
#ifndef No_Hex_NaN
2734
          if (*s == '(') /*)*/
2735
            hexnan(&rv, &s);
2736
#endif
2737
          goto ret;
2738
          }
2739
        }
2740
#endif /* INFNAN_CHECK */
2741
0
 ret0:
2742
0
      s = s00;
2743
0
      sign = 0;
2744
0
      }
2745
0
    goto ret;
2746
0
    }
2747
2
  bc.e0 = e1 = e -= nf;
2748
2749
  /* Now we have nd0 digits, starting at s0, followed by a
2750
   * decimal point, followed by nd-nd0 digits.  The number we're
2751
   * after is the integer represented by those digits times
2752
   * 10**e */
2753
2754
2
  if (!nd0)
2755
2
    nd0 = nd;
2756
2
  k = nd < DBL_DIG + 2 ? nd : DBL_DIG + 2;
2757
2
  dval(&rv) = y;
2758
2
  if (k > 9) {
2759
#ifdef SET_INEXACT
2760
    if (k > DBL_DIG)
2761
      oldinexact = get_inexact();
2762
#endif
2763
0
    dval(&rv) = tens[k - 9] * dval(&rv) + z;
2764
0
    }
2765
2
  bd0 = 0;
2766
2
  if (nd <= DBL_DIG
2767
2
#ifndef RND_PRODQUOT
2768
2
#ifndef Honor_FLT_ROUNDS
2769
2
    && Flt_Rounds == 1
2770
2
#endif
2771
2
#endif
2772
2
      ) {
2773
2
    if (!e)
2774
0
      goto ret;
2775
2
#ifndef ROUND_BIASED_without_Round_Up
2776
2
    if (e > 0) {
2777
0
      if (e <= Ten_pmax) {
2778
#ifdef VAX
2779
        goto vax_ovfl_check;
2780
#else
2781
#ifdef Honor_FLT_ROUNDS
2782
        /* round correctly FLT_ROUNDS = 2 or 3 */
2783
        if (sign) {
2784
          rv.d = -rv.d;
2785
          sign = 0;
2786
          }
2787
#endif
2788
0
        /* rv = */ rounded_product(dval(&rv), tens[e]);
2789
0
        goto ret;
2790
0
#endif
2791
0
        }
2792
0
      i = DBL_DIG - nd;
2793
0
      if (e <= Ten_pmax + i) {
2794
        /* A fancier test would sometimes let us do
2795
         * this for larger i values.
2796
         */
2797
#ifdef Honor_FLT_ROUNDS
2798
        /* round correctly FLT_ROUNDS = 2 or 3 */
2799
        if (sign) {
2800
          rv.d = -rv.d;
2801
          sign = 0;
2802
          }
2803
#endif
2804
0
        e -= i;
2805
0
        dval(&rv) *= tens[i];
2806
#ifdef VAX
2807
        /* VAX exponent range is so narrow we must
2808
         * worry about overflow here...
2809
         */
2810
 vax_ovfl_check:
2811
        word0(&rv) -= P*Exp_msk1;
2812
        /* rv = */ rounded_product(dval(&rv), tens[e]);
2813
        if ((word0(&rv) & Exp_mask)
2814
         > Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
2815
          goto ovfl;
2816
        word0(&rv) += P*Exp_msk1;
2817
#else
2818
0
        /* rv = */ rounded_product(dval(&rv), tens[e]);
2819
0
#endif
2820
0
        goto ret;
2821
0
        }
2822
0
      }
2823
2
#ifndef Inaccurate_Divide
2824
2
    else if (e >= -Ten_pmax) {
2825
#ifdef Honor_FLT_ROUNDS
2826
      /* round correctly FLT_ROUNDS = 2 or 3 */
2827
      if (sign) {
2828
        rv.d = -rv.d;
2829
        sign = 0;
2830
        }
2831
#endif
2832
2
      /* rv = */ rounded_quotient(dval(&rv), tens[-e]);
2833
2
      goto ret;
2834
2
      }
2835
2
#endif
2836
2
#endif /* ROUND_BIASED_without_Round_Up */
2837
2
    }
2838
0
  e1 += nd - k;
2839
2840
0
#ifdef IEEE_Arith
2841
#ifdef SET_INEXACT
2842
  bc.inexact = 1;
2843
  if (k <= DBL_DIG)
2844
    oldinexact = get_inexact();
2845
#endif
2846
0
#ifdef Avoid_Underflow
2847
0
  bc.scale = 0;
2848
0
#endif
2849
#ifdef Honor_FLT_ROUNDS
2850
  if (bc.rounding >= 2) {
2851
    if (sign)
2852
      bc.rounding = bc.rounding == 2 ? 0 : 2;
2853
    else
2854
      if (bc.rounding != 2)
2855
        bc.rounding = 0;
2856
    }
2857
#endif
2858
0
#endif /*IEEE_Arith*/
2859
2860
  /* Get starting approximation = rv * 10**e1 */
2861
2862
0
  if (e1 > 0) {
2863
0
    if ((i = e1 & 15))
2864
0
      dval(&rv) *= tens[i];
2865
0
    if (e1 &= ~15) {
2866
0
      if (e1 > DBL_MAX_10_EXP) {
2867
0
 ovfl:
2868
        /* Can't trust HUGE_VAL */
2869
0
#ifdef IEEE_Arith
2870
#ifdef Honor_FLT_ROUNDS
2871
        switch(bc.rounding) {
2872
          case 0: /* toward 0 */
2873
          case 3: /* toward -infinity */
2874
          word0(&rv) = Big0;
2875
          word1(&rv) = Big1;
2876
          break;
2877
          default:
2878
          word0(&rv) = Exp_mask;
2879
          word1(&rv) = 0;
2880
          }
2881
#else /*Honor_FLT_ROUNDS*/
2882
0
        word0(&rv) = Exp_mask;
2883
0
        word1(&rv) = 0;
2884
0
#endif /*Honor_FLT_ROUNDS*/
2885
#ifdef SET_INEXACT
2886
        /* set overflow bit */
2887
        dval(&rv0) = 1e300;
2888
        dval(&rv0) *= dval(&rv0);
2889
#endif
2890
#else /*IEEE_Arith*/
2891
        word0(&rv) = Big0;
2892
        word1(&rv) = Big1;
2893
#endif /*IEEE_Arith*/
2894
0
 range_err:
2895
0
        if (bd0) {
2896
0
          Bfree(bb);
2897
0
          Bfree(bd);
2898
0
          Bfree(bs);
2899
0
          Bfree(bd0);
2900
0
          Bfree(delta);
2901
0
          }
2902
#ifndef NO_ERRNO
2903
        errno = ERANGE;
2904
#endif
2905
0
        goto ret;
2906
0
        }
2907
0
      e1 >>= 4;
2908
0
      for(j = 0; e1 > 1; j++, e1 >>= 1)
2909
0
        if (e1 & 1)
2910
0
          dval(&rv) *= bigtens[j];
2911
    /* The last multiplication could overflow. */
2912
0
      word0(&rv) -= P*Exp_msk1;
2913
0
      dval(&rv) *= bigtens[j];
2914
0
      if ((z = word0(&rv) & Exp_mask)
2915
0
       > Exp_msk1*(DBL_MAX_EXP+Bias-P))
2916
0
        goto ovfl;
2917
0
      if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
2918
        /* set to largest number */
2919
        /* (Can't trust DBL_MAX) */
2920
0
        word0(&rv) = Big0;
2921
0
        word1(&rv) = Big1;
2922
0
        }
2923
0
      else
2924
0
        word0(&rv) += P*Exp_msk1;
2925
0
      }
2926
0
    }
2927
0
  else if (e1 < 0) {
2928
0
    e1 = -e1;
2929
0
    if ((i = e1 & 15))
2930
0
      dval(&rv) /= tens[i];
2931
0
    if (e1 >>= 4) {
2932
0
      if (e1 >= 1 << n_bigtens)
2933
0
        goto undfl;
2934
0
#ifdef Avoid_Underflow
2935
0
      if (e1 & Scale_Bit)
2936
0
        bc.scale = 2*P;
2937
0
      for(j = 0; e1 > 0; j++, e1 >>= 1)
2938
0
        if (e1 & 1)
2939
0
          dval(&rv) *= tinytens[j];
2940
0
      if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask)
2941
0
            >> Exp_shift)) > 0) {
2942
        /* scaled rv is denormal; clear j low bits */
2943
0
        if (j >= 32) {
2944
0
          if (j > 54)
2945
0
            goto undfl;
2946
0
          word1(&rv) = 0;
2947
0
          if (j >= 53)
2948
0
           word0(&rv) = (P+2)*Exp_msk1;
2949
0
          else
2950
0
           word0(&rv) &= 0xffffffff << (j-32);
2951
0
          }
2952
0
        else
2953
0
          word1(&rv) &= 0xffffffff << j;
2954
0
        }
2955
#else
2956
      for(j = 0; e1 > 1; j++, e1 >>= 1)
2957
        if (e1 & 1)
2958
          dval(&rv) *= tinytens[j];
2959
      /* The last multiplication could underflow. */
2960
      dval(&rv0) = dval(&rv);
2961
      dval(&rv) *= tinytens[j];
2962
      if (!dval(&rv)) {
2963
        dval(&rv) = 2.*dval(&rv0);
2964
        dval(&rv) *= tinytens[j];
2965
#endif
2966
0
        if (!dval(&rv)) {
2967
0
 undfl:
2968
0
          dval(&rv) = 0.;
2969
0
          goto range_err;
2970
0
          }
2971
#ifndef Avoid_Underflow
2972
        word0(&rv) = Tiny0;
2973
        word1(&rv) = Tiny1;
2974
        /* The refinement below will clean
2975
         * this approximation up.
2976
         */
2977
        }
2978
#endif
2979
0
      }
2980
0
    }
2981
2982
  /* Now the hard part -- adjusting rv to the correct value.*/
2983
2984
  /* Put digits into bd: true value = bd * 10^e */
2985
2986
0
  bc.nd = nd - nz1;
2987
0
#ifndef NO_STRTOD_BIGCOMP
2988
0
  bc.nd0 = nd0; /* Only needed if nd > strtod_diglim, but done here */
2989
      /* to silence an erroneous warning about bc.nd0 */
2990
      /* possibly not being initialized. */
2991
0
  if (nd > strtod_diglim) {
2992
    /* ASSERT(strtod_diglim >= 18); 18 == one more than the */
2993
    /* minimum number of decimal digits to distinguish double values */
2994
    /* in IEEE arithmetic. */
2995
0
    i = j = 18;
2996
0
    if (i > nd0)
2997
0
      j += bc.dplen;
2998
0
    for(;;) {
2999
0
      if (--j < bc.dp1 && j >= bc.dp0)
3000
0
        j = bc.dp0 - 1;
3001
0
      if (s0[j] != '0')
3002
0
        break;
3003
0
      --i;
3004
0
      }
3005
0
    e += nd - i;
3006
0
    nd = i;
3007
0
    if (nd0 > nd)
3008
0
      nd0 = nd;
3009
0
    if (nd < 9) { /* must recompute y */
3010
0
      y = 0;
3011
0
      for(i = 0; i < nd0; ++i)
3012
0
        y = 10*y + s0[i] - '0';
3013
0
      for(j = bc.dp1; i < nd; ++i)
3014
0
        y = 10*y + s0[j++] - '0';
3015
0
      }
3016
0
    }
3017
0
#endif
3018
0
  bd0 = s2b(s0, nd0, nd, y, bc.dplen);
3019
3020
0
  for(;;) {
3021
0
    bd = Balloc(bd0->k);
3022
0
    Bcopy(bd, bd0);
3023
0
    bb = d2b(&rv, &bbe, &bbbits); /* rv = bb * 2^bbe */
3024
0
    bs = i2b(1);
3025
3026
0
    if (e >= 0) {
3027
0
      bb2 = bb5 = 0;
3028
0
      bd2 = bd5 = e;
3029
0
      }
3030
0
    else {
3031
0
      bb2 = bb5 = -e;
3032
0
      bd2 = bd5 = 0;
3033
0
      }
3034
0
    if (bbe >= 0)
3035
0
      bb2 += bbe;
3036
0
    else
3037
0
      bd2 -= bbe;
3038
0
    bs2 = bb2;
3039
#ifdef Honor_FLT_ROUNDS
3040
    if (bc.rounding != 1)
3041
      bs2++;
3042
#endif
3043
0
#ifdef Avoid_Underflow
3044
0
    Lsb = LSB;
3045
0
    Lsb1 = 0;
3046
0
    j = bbe - bc.scale;
3047
0
    i = j + bbbits - 1; /* logb(rv) */
3048
0
    j = P + 1 - bbbits;
3049
0
    if (i < Emin) { /* denormal */
3050
0
      i = Emin - i;
3051
0
      j -= i;
3052
0
      if (i < 32)
3053
0
        Lsb <<= i;
3054
0
      else if (i < 52)
3055
0
        Lsb1 = Lsb << (i-32);
3056
0
      else
3057
0
        Lsb1 = Exp_mask;
3058
0
      }
3059
#else /*Avoid_Underflow*/
3060
#ifdef Sudden_Underflow
3061
#ifdef IBM
3062
    j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
3063
#else
3064
    j = P + 1 - bbbits;
3065
#endif
3066
#else /*Sudden_Underflow*/
3067
    j = bbe;
3068
    i = j + bbbits - 1; /* logb(rv) */
3069
    if (i < Emin) /* denormal */
3070
      j += P - Emin;
3071
    else
3072
      j = P + 1 - bbbits;
3073
#endif /*Sudden_Underflow*/
3074
#endif /*Avoid_Underflow*/
3075
0
    bb2 += j;
3076
0
    bd2 += j;
3077
0
#ifdef Avoid_Underflow
3078
0
    bd2 += bc.scale;
3079
0
#endif
3080
0
    i = bb2 < bd2 ? bb2 : bd2;
3081
0
    if (i > bs2)
3082
0
      i = bs2;
3083
0
    if (i > 0) {
3084
0
      bb2 -= i;
3085
0
      bd2 -= i;
3086
0
      bs2 -= i;
3087
0
      }
3088
0
    if (bb5 > 0) {
3089
0
      bs = pow5mult(bs, bb5);
3090
0
      bb1 = mult(bs, bb);
3091
0
      Bfree(bb);
3092
0
      bb = bb1;
3093
0
      }
3094
0
    if (bb2 > 0)
3095
0
      bb = lshift(bb, bb2);
3096
0
    if (bd5 > 0)
3097
0
      bd = pow5mult(bd, bd5);
3098
0
    if (bd2 > 0)
3099
0
      bd = lshift(bd, bd2);
3100
0
    if (bs2 > 0)
3101
0
      bs = lshift(bs, bs2);
3102
0
    delta = diff(bb, bd);
3103
0
    bc.dsign = delta->sign;
3104
0
    delta->sign = 0;
3105
0
    i = cmp(delta, bs);
3106
0
#ifndef NO_STRTOD_BIGCOMP /*{*/
3107
0
    if (bc.nd > nd && i <= 0) {
3108
0
      if (bc.dsign) {
3109
        /* Must use bigcomp(). */
3110
0
        req_bigcomp = 1;
3111
0
        break;
3112
0
        }
3113
#ifdef Honor_FLT_ROUNDS
3114
      if (bc.rounding != 1) {
3115
        if (i < 0) {
3116
          req_bigcomp = 1;
3117
          break;
3118
          }
3119
        }
3120
      else
3121
#endif
3122
0
        i = -1; /* Discarded digits make delta smaller. */
3123
0
      }
3124
0
#endif /*}*/
3125
#ifdef Honor_FLT_ROUNDS /*{*/
3126
    if (bc.rounding != 1) {
3127
      if (i < 0) {
3128
        /* Error is less than an ulp */
3129
        if (!delta->x[0] && delta->wds <= 1) {
3130
          /* exact */
3131
#ifdef SET_INEXACT
3132
          bc.inexact = 0;
3133
#endif
3134
          break;
3135
          }
3136
        if (bc.rounding) {
3137
          if (bc.dsign) {
3138
            adj.d = 1.;
3139
            goto apply_adj;
3140
            }
3141
          }
3142
        else if (!bc.dsign) {
3143
          adj.d = -1.;
3144
          if (!word1(&rv)
3145
           && !(word0(&rv) & Frac_mask)) {
3146
            y = word0(&rv) & Exp_mask;
3147
#ifdef Avoid_Underflow
3148
            if (!bc.scale || y > 2*P*Exp_msk1)
3149
#else
3150
            if (y)
3151
#endif
3152
              {
3153
              delta = lshift(delta,Log2P);
3154
              if (cmp(delta, bs) <= 0)
3155
              adj.d = -0.5;
3156
              }
3157
            }
3158
 apply_adj:
3159
#ifdef Avoid_Underflow /*{*/
3160
          if (bc.scale && (y = word0(&rv) & Exp_mask)
3161
            <= 2*P*Exp_msk1)
3162
            word0(&adj) += (2*P+1)*Exp_msk1 - y;
3163
#else
3164
#ifdef Sudden_Underflow
3165
          if ((word0(&rv) & Exp_mask) <=
3166
              P*Exp_msk1) {
3167
            word0(&rv) += P*Exp_msk1;
3168
            dval(&rv) += adj.d*ulp(dval(&rv));
3169
            word0(&rv) -= P*Exp_msk1;
3170
            }
3171
          else
3172
#endif /*Sudden_Underflow*/
3173
#endif /*Avoid_Underflow}*/
3174
          dval(&rv) += adj.d*ulp(&rv);
3175
          }
3176
        break;
3177
        }
3178
      adj.d = ratio(delta, bs);
3179
      if (adj.d < 1.)
3180
        adj.d = 1.;
3181
      if (adj.d <= 0x7ffffffe) {
3182
        /* adj = rounding ? ceil(adj) : floor(adj); */
3183
        y = adj.d;
3184
        if (y != adj.d) {
3185
          if (!((bc.rounding>>1) ^ bc.dsign))
3186
            y++;
3187
          adj.d = y;
3188
          }
3189
        }
3190
#ifdef Avoid_Underflow /*{*/
3191
      if (bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1)
3192
        word0(&adj) += (2*P+1)*Exp_msk1 - y;
3193
#else
3194
#ifdef Sudden_Underflow
3195
      if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) {
3196
        word0(&rv) += P*Exp_msk1;
3197
        adj.d *= ulp(dval(&rv));
3198
        if (bc.dsign)
3199
          dval(&rv) += adj.d;
3200
        else
3201
          dval(&rv) -= adj.d;
3202
        word0(&rv) -= P*Exp_msk1;
3203
        goto cont;
3204
        }
3205
#endif /*Sudden_Underflow*/
3206
#endif /*Avoid_Underflow}*/
3207
      adj.d *= ulp(&rv);
3208
      if (bc.dsign) {
3209
        if (word0(&rv) == Big0 && word1(&rv) == Big1)
3210
          goto ovfl;
3211
        dval(&rv) += adj.d;
3212
        }
3213
      else
3214
        dval(&rv) -= adj.d;
3215
      goto cont;
3216
      }
3217
#endif /*}Honor_FLT_ROUNDS*/
3218
3219
0
    if (i < 0) {
3220
      /* Error is less than half an ulp -- check for
3221
       * special case of mantissa a power of two.
3222
       */
3223
0
      if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask
3224
0
#ifdef IEEE_Arith /*{*/
3225
0
#ifdef Avoid_Underflow
3226
0
       || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1
3227
#else
3228
       || (word0(&rv) & Exp_mask) <= Exp_msk1
3229
#endif
3230
0
#endif /*}*/
3231
0
        ) {
3232
#ifdef SET_INEXACT
3233
        if (!delta->x[0] && delta->wds <= 1)
3234
          bc.inexact = 0;
3235
#endif
3236
0
        break;
3237
0
        }
3238
0
      if (!delta->x[0] && delta->wds <= 1) {
3239
        /* exact result */
3240
#ifdef SET_INEXACT
3241
        bc.inexact = 0;
3242
#endif
3243
0
        break;
3244
0
        }
3245
0
      delta = lshift(delta,Log2P);
3246
0
      if (cmp(delta, bs) > 0)
3247
0
        goto drop_down;
3248
0
      break;
3249
0
      }
3250
0
    if (i == 0) {
3251
      /* exactly half-way between */
3252
0
      if (bc.dsign) {
3253
0
        if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
3254
0
         &&  word1(&rv) == (
3255
0
#ifdef Avoid_Underflow
3256
0
      (bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1)
3257
0
    ? (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
3258
0
#endif
3259
0
               0xffffffff)) {
3260
          /*boundary case -- increment exponent*/
3261
0
          if (word0(&rv) == Big0 && word1(&rv) == Big1)
3262
0
            goto ovfl;
3263
0
          word0(&rv) = (word0(&rv) & Exp_mask)
3264
0
            + Exp_msk1
3265
#ifdef IBM
3266
            | Exp_msk1 >> 4
3267
#endif
3268
0
            ;
3269
0
          word1(&rv) = 0;
3270
0
#ifdef Avoid_Underflow
3271
0
          bc.dsign = 0;
3272
0
#endif
3273
0
          break;
3274
0
          }
3275
0
        }
3276
0
      else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) {
3277
0
 drop_down:
3278
        /* boundary case -- decrement exponent */
3279
#ifdef Sudden_Underflow /*{{*/
3280
        L = word0(&rv) & Exp_mask;
3281
#ifdef IBM
3282
        if (L <  Exp_msk1)
3283
#else
3284
#ifdef Avoid_Underflow
3285
        if (L <= (bc.scale ? (2*P+1)*Exp_msk1 : Exp_msk1))
3286
#else
3287
        if (L <= Exp_msk1)
3288
#endif /*Avoid_Underflow*/
3289
#endif /*IBM*/
3290
          {
3291
          if (bc.nd >nd) {
3292
            bc.uflchk = 1;
3293
            break;
3294
            }
3295
          goto undfl;
3296
          }
3297
        L -= Exp_msk1;
3298
#else /*Sudden_Underflow}{*/
3299
0
#ifdef Avoid_Underflow
3300
0
        if (bc.scale) {
3301
0
          L = word0(&rv) & Exp_mask;
3302
0
          if (L <= (2*P+1)*Exp_msk1) {
3303
0
            if (L > (P+2)*Exp_msk1)
3304
              /* round even ==> */
3305
              /* accept rv */
3306
0
              break;
3307
            /* rv = smallest denormal */
3308
0
            if (bc.nd >nd) {
3309
0
              bc.uflchk = 1;
3310
0
              break;
3311
0
              }
3312
0
            goto undfl;
3313
0
            }
3314
0
          }
3315
0
#endif /*Avoid_Underflow*/
3316
0
        L = (word0(&rv) & Exp_mask) - Exp_msk1;
3317
0
#endif /*Sudden_Underflow}}*/
3318
0
        word0(&rv) = L | Bndry_mask1;
3319
0
        word1(&rv) = 0xffffffff;
3320
#ifdef IBM
3321
        goto cont;
3322
#else
3323
0
#ifndef NO_STRTOD_BIGCOMP
3324
0
        if (bc.nd > nd)
3325
0
          goto cont;
3326
0
#endif
3327
0
        break;
3328
0
#endif
3329
0
        }
3330
0
#ifndef ROUND_BIASED
3331
0
#ifdef Avoid_Underflow
3332
0
      if (Lsb1) {
3333
0
        if (!(word0(&rv) & Lsb1))
3334
0
          break;
3335
0
        }
3336
0
      else if (!(word1(&rv) & Lsb))
3337
0
        break;
3338
#else
3339
      if (!(word1(&rv) & LSB))
3340
        break;
3341
#endif
3342
0
#endif
3343
0
      if (bc.dsign)
3344
0
#ifdef Avoid_Underflow
3345
0
        dval(&rv) += sulp(&rv, &bc);
3346
#else
3347
        dval(&rv) += ulp(&rv);
3348
#endif
3349
0
#ifndef ROUND_BIASED
3350
0
      else {
3351
0
#ifdef Avoid_Underflow
3352
0
        dval(&rv) -= sulp(&rv, &bc);
3353
#else
3354
        dval(&rv) -= ulp(&rv);
3355
#endif
3356
0
#ifndef Sudden_Underflow
3357
0
        if (!dval(&rv)) {
3358
0
          if (bc.nd >nd) {
3359
0
            bc.uflchk = 1;
3360
0
            break;
3361
0
            }
3362
0
          goto undfl;
3363
0
          }
3364
0
#endif
3365
0
        }
3366
0
#ifdef Avoid_Underflow
3367
0
      bc.dsign = 1 - bc.dsign;
3368
0
#endif
3369
0
#endif
3370
0
      break;
3371
0
      }
3372
0
    if ((aadj = ratio(delta, bs)) <= 2.) {
3373
0
      if (bc.dsign)
3374
0
        aadj = aadj1 = 1.;
3375
0
      else if (word1(&rv) || word0(&rv) & Bndry_mask) {
3376
0
#ifndef Sudden_Underflow
3377
0
        if (word1(&rv) == Tiny1 && !word0(&rv)) {
3378
0
          if (bc.nd >nd) {
3379
0
            bc.uflchk = 1;
3380
0
            break;
3381
0
            }
3382
0
          goto undfl;
3383
0
          }
3384
0
#endif
3385
0
        aadj = 1.;
3386
0
        aadj1 = -1.;
3387
0
        }
3388
0
      else {
3389
        /* special case -- power of FLT_RADIX to be */
3390
        /* rounded down... */
3391
3392
0
        if (aadj < 2./FLT_RADIX)
3393
0
          aadj = 1./FLT_RADIX;
3394
0
        else
3395
0
          aadj *= 0.5;
3396
0
        aadj1 = -aadj;
3397
0
        }
3398
0
      }
3399
0
    else {
3400
0
      aadj *= 0.5;
3401
0
      aadj1 = bc.dsign ? aadj : -aadj;
3402
#ifdef Check_FLT_ROUNDS
3403
      switch(bc.rounding) {
3404
        case 2: /* towards +infinity */
3405
          aadj1 -= 0.5;
3406
          break;
3407
        case 0: /* towards 0 */
3408
        case 3: /* towards -infinity */
3409
          aadj1 += 0.5;
3410
        }
3411
#else
3412
0
      if (Flt_Rounds == 0)
3413
0
        aadj1 += 0.5;
3414
0
#endif /*Check_FLT_ROUNDS*/
3415
0
      }
3416
0
    y = word0(&rv) & Exp_mask;
3417
3418
    /* Check for overflow */
3419
3420
0
    if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
3421
0
      dval(&rv0) = dval(&rv);
3422
0
      word0(&rv) -= P*Exp_msk1;
3423
0
      adj.d = aadj1 * ulp(&rv);
3424
0
      dval(&rv) += adj.d;
3425
0
      if ((word0(&rv) & Exp_mask) >=
3426
0
          Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
3427
0
        if (word0(&rv0) == Big0 && word1(&rv0) == Big1)
3428
0
          goto ovfl;
3429
0
        word0(&rv) = Big0;
3430
0
        word1(&rv) = Big1;
3431
0
        goto cont;
3432
0
        }
3433
0
      else
3434
0
        word0(&rv) += P*Exp_msk1;
3435
0
      }
3436
0
    else {
3437
0
#ifdef Avoid_Underflow
3438
0
      if (bc.scale && y <= 2*P*Exp_msk1) {
3439
0
        if (aadj <= 0x7fffffff) {
3440
0
          if ((z = aadj) <= 0)
3441
0
            z = 1;
3442
0
          aadj = z;
3443
0
          aadj1 = bc.dsign ? aadj : -aadj;
3444
0
          }
3445
0
        dval(&aadj2) = aadj1;
3446
0
        word0(&aadj2) += (2*P+1)*Exp_msk1 - y;
3447
0
        aadj1 = dval(&aadj2);
3448
0
        adj.d = aadj1 * ulp(&rv);
3449
0
        dval(&rv) += adj.d;
3450
0
        if (rv.d == 0.)
3451
#ifdef NO_STRTOD_BIGCOMP
3452
          goto undfl;
3453
#else
3454
0
          {
3455
0
          req_bigcomp = 1;
3456
0
          break;
3457
0
          }
3458
0
#endif
3459
0
        }
3460
0
      else {
3461
0
        adj.d = aadj1 * ulp(&rv);
3462
0
        dval(&rv) += adj.d;
3463
0
        }
3464
#else
3465
#ifdef Sudden_Underflow
3466
      if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) {
3467
        dval(&rv0) = dval(&rv);
3468
        word0(&rv) += P*Exp_msk1;
3469
        adj.d = aadj1 * ulp(&rv);
3470
        dval(&rv) += adj.d;
3471
#ifdef IBM
3472
        if ((word0(&rv) & Exp_mask) <  P*Exp_msk1)
3473
#else
3474
        if ((word0(&rv) & Exp_mask) <= P*Exp_msk1)
3475
#endif
3476
          {
3477
          if (word0(&rv0) == Tiny0
3478
           && word1(&rv0) == Tiny1) {
3479
            if (bc.nd >nd) {
3480
              bc.uflchk = 1;
3481
              break;
3482
              }
3483
            goto undfl;
3484
            }
3485
          word0(&rv) = Tiny0;
3486
          word1(&rv) = Tiny1;
3487
          goto cont;
3488
          }
3489
        else
3490
          word0(&rv) -= P*Exp_msk1;
3491
        }
3492
      else {
3493
        adj.d = aadj1 * ulp(&rv);
3494
        dval(&rv) += adj.d;
3495
        }
3496
#else /*Sudden_Underflow*/
3497
      /* Compute adj so that the IEEE rounding rules will
3498
       * correctly round rv + adj in some half-way cases.
3499
       * If rv * ulp(rv) is denormalized (i.e.,
3500
       * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
3501
       * trouble from bits lost to denormalization;
3502
       * example: 1.2e-307 .
3503
       */
3504
      if (y <= (P-1)*Exp_msk1 && aadj > 1.) {
3505
        aadj1 = (double)(int)(aadj + 0.5);
3506
        if (!bc.dsign)
3507
          aadj1 = -aadj1;
3508
        }
3509
      adj.d = aadj1 * ulp(&rv);
3510
      dval(&rv) += adj.d;
3511
#endif /*Sudden_Underflow*/
3512
#endif /*Avoid_Underflow*/
3513
0
      }
3514
0
    z = word0(&rv) & Exp_mask;
3515
0
#ifndef SET_INEXACT
3516
0
    if (bc.nd == nd) {
3517
0
#ifdef Avoid_Underflow
3518
0
    if (!bc.scale)
3519
0
#endif
3520
0
    if (y == z) {
3521
      /* Can we stop now? */
3522
0
      L = (Long)aadj;
3523
0
      aadj -= L;
3524
      /* The tolerances below are conservative. */
3525
0
      if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
3526
0
        if (aadj < .4999999 || aadj > .5000001)
3527
0
          break;
3528
0
        }
3529
0
      else if (aadj < .4999999/FLT_RADIX)
3530
0
        break;
3531
0
      }
3532
0
    }
3533
0
#endif
3534
0
 cont:
3535
0
    Bfree(bb);
3536
0
    Bfree(bd);
3537
0
    Bfree(bs);
3538
0
    Bfree(delta);
3539
0
    }
3540
0
  Bfree(bb);
3541
0
  Bfree(bd);
3542
0
  Bfree(bs);
3543
0
  Bfree(bd0);
3544
0
  Bfree(delta);
3545
0
#ifndef NO_STRTOD_BIGCOMP
3546
0
  if (req_bigcomp) {
3547
0
    bd0 = 0;
3548
0
    bc.e0 += nz1;
3549
0
    bigcomp(&rv, s0, &bc);
3550
0
    y = word0(&rv) & Exp_mask;
3551
0
    if (y == Exp_mask)
3552
0
      goto ovfl;
3553
0
    if (y == 0 && rv.d == 0.)
3554
0
      goto undfl;
3555
0
    }
3556
0
#endif
3557
#ifdef SET_INEXACT
3558
  if (bc.inexact) {
3559
    if (!oldinexact) {
3560
      word0(&rv0) = Exp_1 + (70 << Exp_shift);
3561
      word1(&rv0) = 0;
3562
      dval(&rv0) += 1.;
3563
      }
3564
    }
3565
  else if (!oldinexact)
3566
    clear_inexact();
3567
#endif
3568
0
#ifdef Avoid_Underflow
3569
0
  if (bc.scale) {
3570
0
    word0(&rv0) = Exp_1 - 2*P*Exp_msk1;
3571
0
    word1(&rv0) = 0;
3572
0
    dval(&rv) *= dval(&rv0);
3573
#ifndef NO_ERRNO
3574
    /* try to avoid the bug of testing an 8087 register value */
3575
#ifdef IEEE_Arith
3576
    if (!(word0(&rv) & Exp_mask))
3577
#else
3578
    if (word0(&rv) == 0 && word1(&rv) == 0)
3579
#endif
3580
      errno = ERANGE;
3581
#endif
3582
0
    }
3583
0
#endif /* Avoid_Underflow */
3584
#ifdef SET_INEXACT
3585
  if (bc.inexact && !(word0(&rv) & Exp_mask)) {
3586
    /* set underflow bit */
3587
    dval(&rv0) = 1e-300;
3588
    dval(&rv0) *= dval(&rv0);
3589
    }
3590
#endif
3591
2
 ret:
3592
2
  if (se)
3593
0
    *se = (char *)s;
3594
2
  return sign ? -dval(&rv) : dval(&rv);
3595
0
  }
3596
3597
#if !defined(MULTIPLE_THREADS) && !defined(dtoa_result)
3598
 ZEND_TLS char *dtoa_result;
3599
#endif
3600
3601
 static char *
3602
#ifdef KR_headers
3603
rv_alloc(i) int i;
3604
#else
3605
rv_alloc(int i)
3606
#endif
3607
66.2k
{
3608
3609
66.2k
  int j, k, *r;
3610
66.2k
  size_t rem;
3611
3612
66.2k
  rem = sizeof(Bigint) - sizeof(ULong) - sizeof(int);
3613
3614
3615
66.2k
  j = sizeof(ULong);
3616
66.2k
  if (i > ((INT_MAX >> 2) + rem))
3617
0
    i = (INT_MAX >> 2) + rem;
3618
66.2k
  for(k = 0;
3619
66.3k
    rem + j <= (size_t)i; j <<= 1)
3620
49
      k++;
3621
3622
66.2k
  r = (int*)Balloc(k);
3623
66.2k
  *r = k;
3624
66.2k
  return
3625
66.2k
#ifndef MULTIPLE_THREADS
3626
66.2k
  dtoa_result =
3627
66.2k
#endif
3628
66.2k
    (char *)(r+1);
3629
66.2k
  }
3630
3631
 static char *
3632
#ifdef KR_headers
3633
nrv_alloc(s, rve, n) char *s, **rve; int n;
3634
#else
3635
nrv_alloc(const char *s, char **rve, int n)
3636
#endif
3637
514
{
3638
514
  char *rv, *t;
3639
3640
514
  t = rv = rv_alloc(n);
3641
1.02k
  while((*t = *s++)) t++;
3642
514
  if (rve)
3643
0
    *rve = t;
3644
514
  return rv;
3645
514
  }
3646
3647
/* freedtoa(s) must be used to free values s returned by dtoa
3648
 * when MULTIPLE_THREADS is #defined.  It should be used in all cases,
3649
 * but for consistency with earlier versions of dtoa, it is optional
3650
 * when MULTIPLE_THREADS is not defined.
3651
 */
3652
3653
ZEND_API void
3654
#ifdef KR_headers
3655
zend_freedtoa(s) char *s;
3656
#else
3657
zend_freedtoa(char *s)
3658
#endif
3659
66.2k
{
3660
66.2k
  Bigint *b = (Bigint *)((int *)s - 1);
3661
66.2k
  b->maxwds = 1 << (b->k = *(int*)b);
3662
66.2k
  Bfree(b);
3663
66.2k
#ifndef MULTIPLE_THREADS
3664
66.2k
  if (s == dtoa_result)
3665
66.2k
    dtoa_result = 0;
3666
66.2k
#endif
3667
66.2k
  }
3668
3669
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
3670
 *
3671
 * Inspired by "How to Print Floating-Point Numbers Accurately" by
3672
 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
3673
 *
3674
 * Modifications:
3675
 *  1. Rather than iterating, we use a simple numeric overestimate
3676
 *     to determine k = floor(log10(d)).  We scale relevant
3677
 *     quantities using O(log2(k)) rather than O(k) multiplications.
3678
 *  2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
3679
 *     try to generate digits strictly left to right.  Instead, we
3680
 *     compute with fewer bits and propagate the carry if necessary
3681
 *     when rounding the final digit up.  This is often faster.
3682
 *  3. Under the assumption that input will be rounded nearest,
3683
 *     mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
3684
 *     That is, we allow equality in stopping tests when the
3685
 *     round-nearest rule will give the same floating-point value
3686
 *     as would satisfaction of the stopping test with strict
3687
 *     inequality.
3688
 *  4. We remove common factors of powers of 2 from relevant
3689
 *     quantities.
3690
 *  5. When converting floating-point integers less than 1e16,
3691
 *     we use floating-point arithmetic rather than resorting
3692
 *     to multiple-precision integers.
3693
 *  6. When asked to produce fewer than 15 digits, we first try
3694
 *     to get by with floating-point arithmetic; we resort to
3695
 *     multiple-precision integer arithmetic only if we cannot
3696
 *     guarantee that the floating-point calculation has given
3697
 *     the correctly rounded result.  For k requested digits and
3698
 *     "uniformly" distributed input, the probability is
3699
 *     something like 10^(k-15) that we must resort to the Long
3700
 *     calculation.
3701
 */
3702
3703
ZEND_API char *zend_dtoa(double dd, int mode, int ndigits, int *decpt, bool *sign, char **rve)
3704
66.2k
{
3705
 /* Arguments ndigits, decpt, sign are similar to those
3706
  of ecvt and fcvt; trailing zeros are suppressed from
3707
  the returned string.  If not null, *rve is set to point
3708
  to the end of the return value.  If d is +-Infinity or NaN,
3709
  then *decpt is set to 9999.
3710
3711
  mode:
3712
    0 ==> shortest string that yields d when read in
3713
      and rounded to nearest.
3714
    1 ==> like 0, but with Steele & White stopping rule;
3715
      e.g. with IEEE P754 arithmetic , mode 0 gives
3716
      1e23 whereas mode 1 gives 9.999999999999999e22.
3717
    2 ==> max(1,ndigits) significant digits.  This gives a
3718
      return value similar to that of ecvt, except
3719
      that trailing zeros are suppressed.
3720
    3 ==> through ndigits past the decimal point.  This
3721
      gives a return value similar to that from fcvt,
3722
      except that trailing zeros are suppressed, and
3723
      ndigits can be negative.
3724
    4,5 ==> similar to 2 and 3, respectively, but (in
3725
      round-nearest mode) with the tests of mode 0 to
3726
      possibly return a shorter string that rounds to d.
3727
      With IEEE arithmetic and compilation with
3728
      -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
3729
      as modes 2 and 3 when FLT_ROUNDS != 1.
3730
    6-9 ==> Debugging modes similar to mode - 4:  don't try
3731
      fast floating-point estimate (if applicable).
3732
3733
    Values of mode other than 0-9 are treated as mode 0.
3734
3735
    Sufficient space is allocated to the return value
3736
    to hold the suppressed trailing zeros.
3737
  */
3738
3739
66.2k
  int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1,
3740
66.2k
    j, j1 = 0, k, k0, k_check, leftright, m2, m5, s2, s5,
3741
66.2k
    spec_case = 0, try_quick;
3742
66.2k
  Long L;
3743
66.2k
#ifndef Sudden_Underflow
3744
66.2k
  int denorm;
3745
66.2k
  ULong x;
3746
66.2k
#endif
3747
66.2k
  Bigint *b, *b1, *delta, *mlo, *mhi, *S;
3748
66.2k
  U d2, eps, u;
3749
66.2k
  double ds;
3750
66.2k
  char *s, *s0;
3751
66.2k
#ifndef No_leftright
3752
66.2k
#ifdef IEEE_Arith
3753
66.2k
  U eps1;
3754
66.2k
#endif
3755
66.2k
#endif
3756
#ifdef SET_INEXACT
3757
  int inexact, oldinexact;
3758
#endif
3759
#ifdef Honor_FLT_ROUNDS /*{*/
3760
  int Rounding;
3761
#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
3762
  Rounding = Flt_Rounds;
3763
#else /*}{*/
3764
  Rounding = 1;
3765
  switch(fegetround()) {
3766
    case FE_TOWARDZERO: Rounding = 0; break;
3767
    case FE_UPWARD: Rounding = 2; break;
3768
    case FE_DOWNWARD: Rounding = 3;
3769
    }
3770
#endif /*}}*/
3771
#endif /*}*/
3772
3773
66.2k
#ifndef MULTIPLE_THREADS
3774
66.2k
  if (dtoa_result) {
3775
0
    zend_freedtoa(dtoa_result);
3776
0
    dtoa_result = 0;
3777
0
    }
3778
66.2k
#endif
3779
3780
66.2k
  u.d = dd;
3781
66.2k
  if (word0(&u) & Sign_bit) {
3782
    /* set sign for everything, including 0's and NaNs */
3783
6.73k
    *sign = 1;
3784
6.73k
    word0(&u) &= ~Sign_bit; /* clear sign bit */
3785
6.73k
    }
3786
59.5k
  else
3787
59.5k
    *sign = 0;
3788
3789
66.2k
#if defined(IEEE_Arith) + defined(VAX)
3790
66.2k
#ifdef IEEE_Arith
3791
66.2k
  if ((word0(&u) & Exp_mask) == Exp_mask)
3792
#else
3793
  if (word0(&u)  == 0x8000)
3794
#endif
3795
0
    {
3796
    /* Infinity or NaN */
3797
0
    *decpt = 9999;
3798
0
#ifdef IEEE_Arith
3799
0
    if (!word1(&u) && !(word0(&u) & 0xfffff))
3800
0
      return nrv_alloc("Infinity", rve, 8);
3801
0
#endif
3802
0
    return nrv_alloc("NaN", rve, 3);
3803
0
    }
3804
66.2k
#endif
3805
#ifdef IBM
3806
  dval(&u) += 0; /* normalize */
3807
#endif
3808
66.2k
  if (!dval(&u)) {
3809
514
    *decpt = 1;
3810
514
    return nrv_alloc("0", rve, 1);
3811
514
    }
3812
3813
#ifdef SET_INEXACT
3814
  try_quick = oldinexact = get_inexact();
3815
  inexact = 1;
3816
#endif
3817
#ifdef Honor_FLT_ROUNDS
3818
  if (Rounding >= 2) {
3819
    if (*sign)
3820
      Rounding = Rounding == 2 ? 0 : 2;
3821
    else
3822
      if (Rounding != 2)
3823
        Rounding = 0;
3824
    }
3825
#endif
3826
3827
65.7k
  b = d2b(&u, &be, &bbits);
3828
#ifdef Sudden_Underflow
3829
  i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
3830
#else
3831
65.7k
  if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
3832
59.9k
#endif
3833
59.9k
    dval(&d2) = dval(&u);
3834
59.9k
    word0(&d2) &= Frac_mask1;
3835
59.9k
    word0(&d2) |= Exp_11;
3836
#ifdef IBM
3837
    if (j = 11 - hi0bits(word0(&d2) & Frac_mask))
3838
      dval(&d2) /= 1 << j;
3839
#endif
3840
3841
    /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
3842
     * log10(x)  =  log(x) / log(10)
3843
     *    ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
3844
     * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
3845
     *
3846
     * This suggests computing an approximation k to log10(d) by
3847
     *
3848
     * k = (i - Bias)*0.301029995663981
3849
     *  + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
3850
     *
3851
     * We want k to be too large rather than too small.
3852
     * The error in the first-order Taylor series approximation
3853
     * is in our favor, so we just round up the constant enough
3854
     * to compensate for any error in the multiplication of
3855
     * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
3856
     * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
3857
     * adding 1e-13 to the constant term more than suffices.
3858
     * Hence we adjust the constant term to 0.1760912590558.
3859
     * (We could get a more accurate k by invoking log10,
3860
     *  but this is probably not worthwhile.)
3861
     */
3862
3863
59.9k
    i -= Bias;
3864
#ifdef IBM
3865
    i <<= 2;
3866
    i += j;
3867
#endif
3868
59.9k
#ifndef Sudden_Underflow
3869
59.9k
    denorm = 0;
3870
59.9k
    }
3871
5.77k
  else {
3872
    /* d is denormalized */
3873
3874
5.77k
    i = bbits + be + (Bias + (P-1) - 1);
3875
5.77k
    x = i > 32  ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)
3876
5.77k
          : word1(&u) << (32 - i);
3877
5.77k
    dval(&d2) = x;
3878
5.77k
    word0(&d2) -= 31*Exp_msk1; /* adjust exponent */
3879
5.77k
    i -= (Bias + (P-1) - 1) + 1;
3880
5.77k
    denorm = 1;
3881
5.77k
    }
3882
65.7k
#endif
3883
65.7k
  ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
3884
65.7k
  k = (int)ds;
3885
65.7k
  if (ds < 0. && ds != k)
3886
55.1k
    k--; /* want k = floor(ds) */
3887
65.7k
  k_check = 1;
3888
65.7k
  if (k >= 0 && k <= Ten_pmax) {
3889
4.07k
    if (dval(&u) < tens[k])
3890
286
      k--;
3891
4.07k
    k_check = 0;
3892
4.07k
    }
3893
65.7k
  j = bbits - i - 1;
3894
65.7k
  if (j >= 0) {
3895
56.8k
    b2 = 0;
3896
56.8k
    s2 = j;
3897
56.8k
    }
3898
8.89k
  else {
3899
8.89k
    b2 = -j;
3900
8.89k
    s2 = 0;
3901
8.89k
    }
3902
65.7k
  if (k >= 0) {
3903
10.6k
    b5 = 0;
3904
10.6k
    s5 = k;
3905
10.6k
    s2 += k;
3906
10.6k
    }
3907
55.1k
  else {
3908
55.1k
    b2 -= k;
3909
55.1k
    b5 = -k;
3910
55.1k
    s5 = 0;
3911
55.1k
    }
3912
65.7k
  if (mode < 0 || mode > 9)
3913
0
    mode = 0;
3914
3915
65.7k
#ifndef SET_INEXACT
3916
#ifdef Check_FLT_ROUNDS
3917
  try_quick = Rounding == 1;
3918
#else
3919
65.7k
  try_quick = 1;
3920
65.7k
#endif
3921
65.7k
#endif /*SET_INEXACT*/
3922
3923
65.7k
  if (mode > 5) {
3924
0
    mode -= 4;
3925
0
    try_quick = 0;
3926
0
    }
3927
65.7k
  leftright = 1;
3928
65.7k
  ilim = ilim1 = -1;  /* Values for cases 0 and 1; done here to */
3929
        /* silence erroneous "gcc -Wall" warning. */
3930
65.7k
  switch(mode) {
3931
65.3k
    case 0:
3932
65.3k
    case 1:
3933
65.3k
      i = 18;
3934
65.3k
      ndigits = 0;
3935
65.3k
      break;
3936
0
    case 2:
3937
0
      leftright = 0;
3938
0
      ZEND_FALLTHROUGH;
3939
0
    case 4:
3940
0
      if (ndigits <= 0)
3941
0
        ndigits = 1;
3942
0
      ilim = ilim1 = i = ndigits;
3943
0
      break;
3944
437
    case 3:
3945
437
      leftright = 0;
3946
437
      ZEND_FALLTHROUGH;
3947
437
    case 5:
3948
437
      i = ndigits + k + 1;
3949
437
      ilim = i;
3950
437
      ilim1 = i - 1;
3951
437
      if (i <= 0)
3952
124
        i = 1;
3953
65.7k
    }
3954
65.7k
  s = s0 = rv_alloc(i);
3955
3956
#ifdef Honor_FLT_ROUNDS
3957
  if (mode > 1 && Rounding != 1)
3958
    leftright = 0;
3959
#endif
3960
3961
65.7k
  if (ilim >= 0 && ilim <= Quick_max && try_quick) {
3962
3963
    /* Try to get by with floating-point arithmetic. */
3964
3965
289
    i = 0;
3966
289
    dval(&d2) = dval(&u);
3967
289
    k0 = k;
3968
289
    ilim0 = ilim;
3969
289
    ieps = 2; /* conservative */
3970
289
    if (k > 0) {
3971
94
      ds = tens[k&0xf];
3972
94
      j = k >> 4;
3973
94
      if (j & Bletch) {
3974
        /* prevent overflows */
3975
0
        j &= Bletch - 1;
3976
0
        dval(&u) /= bigtens[n_bigtens-1];
3977
0
        ieps++;
3978
0
        }
3979
94
      for(; j; j >>= 1, i++)
3980
0
        if (j & 1) {
3981
0
          ieps++;
3982
0
          ds *= bigtens[i];
3983
0
          }
3984
94
      dval(&u) /= ds;
3985
94
      }
3986
195
    else if ((j1 = -k)) {
3987
87
      dval(&u) *= tens[j1 & 0xf];
3988
87
      for(j = j1 >> 4; j; j >>= 1, i++)
3989
0
        if (j & 1) {
3990
0
          ieps++;
3991
0
          dval(&u) *= bigtens[i];
3992
0
          }
3993
87
      }
3994
289
    if (k_check && dval(&u) < 1. && ilim > 0) {
3995
23
      if (ilim1 <= 0)
3996
21
        goto fast_failed;
3997
2
      ilim = ilim1;
3998
2
      k--;
3999
2
      dval(&u) *= 10.;
4000
2
      ieps++;
4001
2
      }
4002
268
    dval(&eps) = ieps*dval(&u) + 7.;
4003
268
    word0(&eps) -= (P-1)*Exp_msk1;
4004
268
    if (ilim == 0) {
4005
20
      S = mhi = 0;
4006
20
      dval(&u) -= 5.;
4007
20
      if (dval(&u) > dval(&eps))
4008
8
        goto one_digit;
4009
12
      if (dval(&u) < -dval(&eps))
4010
12
        goto no_digits;
4011
0
      goto fast_failed;
4012
12
      }
4013
248
#ifndef No_leftright
4014
248
    if (leftright) {
4015
      /* Use Steele & White method of only
4016
       * generating digits needed.
4017
       */
4018
0
      dval(&eps) = 0.5/tens[ilim-1] - dval(&eps);
4019
0
#ifdef IEEE_Arith
4020
0
      if (k0 < 0 && j1 >= 307) {
4021
0
        eps1.d = 1.01e256; /* 1.01 allows roundoff in the next few lines */
4022
0
        word0(&eps1) -= Exp_msk1 * (Bias+P-1);
4023
0
        dval(&eps1) *= tens[j1 & 0xf];
4024
0
        for(i = 0, j = (j1-256) >> 4; j; j >>= 1, i++)
4025
0
          if (j & 1)
4026
0
            dval(&eps1) *= bigtens[i];
4027
0
        if (eps.d < eps1.d)
4028
0
          eps.d = eps1.d;
4029
0
        }
4030
0
#endif
4031
0
      for(i = 0;;) {
4032
0
        L = dval(&u);
4033
0
        dval(&u) -= L;
4034
0
        *s++ = '0' + (int)L;
4035
0
        if (1. - dval(&u) < dval(&eps))
4036
0
          goto bump_up;
4037
0
        if (dval(&u) < dval(&eps))
4038
0
          goto ret1;
4039
0
        if (++i >= ilim)
4040
0
          break;
4041
0
        dval(&eps) *= 10.;
4042
0
        dval(&u) *= 10.;
4043
0
        }
4044
0
      }
4045
248
    else {
4046
248
#endif
4047
      /* Generate ilim digits, then fix them up. */
4048
248
      dval(&eps) *= tens[ilim-1];
4049
918
      for(i = 1;; i++, dval(&u) *= 10.) {
4050
918
        L = (Long)(dval(&u));
4051
918
        if (!(dval(&u) -= L))
4052
101
          ilim = i;
4053
918
        *s++ = '0' + (int)L;
4054
918
        if (i == ilim) {
4055
248
          if (dval(&u) > 0.5 + dval(&eps))
4056
67
            goto bump_up;
4057
181
          else if (dval(&u) < 0.5 - dval(&eps)) {
4058
254
            while(*--s == '0');
4059
161
            s++;
4060
161
            goto ret1;
4061
161
            }
4062
20
          break;
4063
248
          }
4064
918
        }
4065
248
#ifndef No_leftright
4066
248
      }
4067
20
#endif
4068
41
 fast_failed:
4069
41
    s = s0;
4070
41
    dval(&u) = dval(&d2);
4071
41
    k = k0;
4072
41
    ilim = ilim0;
4073
41
    }
4074
4075
  /* Do we have a "small" integer? */
4076
4077
65.5k
  if (be >= 0 && k <= Int_max) {
4078
    /* Yes. */
4079
507
    ds = tens[k];
4080
507
    if (ndigits < 0 && ilim <= 0) {
4081
0
      S = mhi = 0;
4082
0
      if (ilim < 0 || dval(&u) <= 5*ds)
4083
0
        goto no_digits;
4084
0
      goto one_digit;
4085
0
      }
4086
3.43k
    for(i = 1;; i++, dval(&u) *= 10.) {
4087
3.43k
      L = (Long)(dval(&u) / ds);
4088
3.43k
      dval(&u) -= L*ds;
4089
#ifdef Check_FLT_ROUNDS
4090
      /* If FLT_ROUNDS == 2, L will usually be high by 1 */
4091
      if (dval(&u) < 0) {
4092
        L--;
4093
        dval(&u) += ds;
4094
        }
4095
#endif
4096
3.43k
      *s++ = '0' + (int)L;
4097
3.43k
      if (!dval(&u)) {
4098
#ifdef SET_INEXACT
4099
        inexact = 0;
4100
#endif
4101
507
        break;
4102
507
        }
4103
2.92k
      if (i == ilim) {
4104
#ifdef Honor_FLT_ROUNDS
4105
        if (mode > 1)
4106
        switch(Rounding) {
4107
          case 0: goto ret1;
4108
          case 2: goto bump_up;
4109
          }
4110
#endif
4111
0
        dval(&u) += dval(&u);
4112
#ifdef ROUND_BIASED
4113
        if (dval(&u) >= ds)
4114
#else
4115
0
        if (dval(&u) > ds || (dval(&u) == ds && L & 1))
4116
0
#endif
4117
0
          {
4118
67
 bump_up:
4119
173
          while(*--s == '9')
4120
119
            if (s == s0) {
4121
13
              k++;
4122
13
              *s = '0';
4123
13
              break;
4124
13
              }
4125
67
          ++*s++;
4126
67
          }
4127
67
        break;
4128
0
        }
4129
2.92k
      }
4130
574
    goto ret1;
4131
507
    }
4132
4133
64.9k
  m2 = b2;
4134
64.9k
  m5 = b5;
4135
64.9k
  mhi = mlo = 0;
4136
64.9k
  if (leftright) {
4137
64.8k
    i =
4138
64.8k
#ifndef Sudden_Underflow
4139
64.8k
      denorm ? be + (Bias + (P-1) - 1 + 1) :
4140
64.8k
#endif
4141
#ifdef IBM
4142
      1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
4143
#else
4144
64.8k
      1 + P - bbits;
4145
64.8k
#endif
4146
64.8k
    b2 += i;
4147
64.8k
    s2 += i;
4148
64.8k
    mhi = i2b(1);
4149
64.8k
    }
4150
64.9k
  if (m2 > 0 && s2 > 0) {
4151
63.5k
    i = m2 < s2 ? m2 : s2;
4152
63.5k
    b2 -= i;
4153
63.5k
    m2 -= i;
4154
63.5k
    s2 -= i;
4155
63.5k
    }
4156
64.9k
  if (b5 > 0) {
4157
55.0k
    if (leftright) {
4158
54.9k
      if (m5 > 0) {
4159
54.9k
        mhi = pow5mult(mhi, m5);
4160
54.9k
        b1 = mult(mhi, b);
4161
54.9k
        Bfree(b);
4162
54.9k
        b = b1;
4163
54.9k
        }
4164
54.9k
      if ((j = b5 - m5))
4165
0
        b = pow5mult(b, j);
4166
54.9k
      }
4167
132
    else
4168
132
      b = pow5mult(b, b5);
4169
55.0k
    }
4170
64.9k
  S = i2b(1);
4171
64.9k
  if (s5 > 0)
4172
9.57k
    S = pow5mult(S, s5);
4173
4174
  /* Check for special case that d is a normalized power of 2. */
4175
4176
64.9k
  spec_case = 0;
4177
64.9k
  if ((mode < 2 || leftright)
4178
#ifdef Honor_FLT_ROUNDS
4179
      && Rounding == 1
4180
#endif
4181
64.9k
        ) {
4182
64.8k
    if (!word1(&u) && !(word0(&u) & Bndry_mask)
4183
1.00k
#ifndef Sudden_Underflow
4184
1.00k
     && word0(&u) & (Exp_mask & ~Exp_msk1)
4185
64.8k
#endif
4186
64.8k
        ) {
4187
      /* The special case */
4188
795
      b2 += Log2P;
4189
795
      s2 += Log2P;
4190
795
      spec_case = 1;
4191
795
      }
4192
64.8k
    }
4193
4194
  /* Arrange for convenient computation of quotients:
4195
   * shift left if necessary so divisor has 4 leading 0 bits.
4196
   *
4197
   * Perhaps we should just compute leading 28 bits of S once
4198
   * and for all and pass them and a shift to quorem, so it
4199
   * can do shifts and ORs to compute the numerator for q.
4200
   */
4201
64.9k
  i = dshift(S, s2);
4202
64.9k
  b2 += i;
4203
64.9k
  m2 += i;
4204
64.9k
  s2 += i;
4205
64.9k
  if (b2 > 0)
4206
64.9k
    b = lshift(b, b2);
4207
64.9k
  if (s2 > 0)
4208
64.2k
    S = lshift(S, s2);
4209
64.9k
  if (k_check) {
4210
61.6k
    if (cmp(b,S) < 0) {
4211
1.04k
      k--;
4212
1.04k
      b = multadd(b, 10, 0);  /* we botched the k estimate */
4213
1.04k
      if (leftright)
4214
1.02k
        mhi = multadd(mhi, 10, 0);
4215
1.04k
      ilim = ilim1;
4216
1.04k
      }
4217
61.6k
    }
4218
64.9k
  if (ilim <= 0 && (mode == 3 || mode == 5)) {
4219
125
    if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
4220
      /* no digits, fcvt style */
4221
116
 no_digits:
4222
116
      k = -1 - ndigits;
4223
116
      goto ret;
4224
104
      }
4225
29
 one_digit:
4226
29
    *s++ = '1';
4227
29
    k++;
4228
29
    goto ret;
4229
125
    }
4230
64.8k
  if (leftright) {
4231
64.8k
    if (m2 > 0)
4232
63.6k
      mhi = lshift(mhi, m2);
4233
4234
    /* Compute mlo -- check for special case
4235
     * that d is a normalized power of 2.
4236
     */
4237
4238
64.8k
    mlo = mhi;
4239
64.8k
    if (spec_case) {
4240
795
      mhi = Balloc(mhi->k);
4241
795
      Bcopy(mhi, mlo);
4242
795
      mhi = lshift(mhi, Log2P);
4243
795
      }
4244
4245
1.01M
    for(i = 1;;i++) {
4246
1.01M
      dig = quorem(b,S) + '0';
4247
      /* Do we yet have the shortest decimal string
4248
       * that will round to d?
4249
       */
4250
1.01M
      j = cmp(b, mlo);
4251
1.01M
      delta = diff(S, mhi);
4252
1.01M
      j1 = delta->sign ? 1 : cmp(b, delta);
4253
1.01M
      Bfree(delta);
4254
1.01M
#ifndef ROUND_BIASED
4255
1.01M
      if (j1 == 0 && mode != 1 && !(word1(&u) & 1)
4256
#ifdef Honor_FLT_ROUNDS
4257
        && Rounding >= 1
4258
#endif
4259
1.01M
                   ) {
4260
480
        if (dig == '9')
4261
0
          goto round_9_up;
4262
480
        if (j > 0)
4263
201
          dig++;
4264
#ifdef SET_INEXACT
4265
        else if (!b->x[0] && b->wds <= 1)
4266
          inexact = 0;
4267
#endif
4268
480
        *s++ = dig;
4269
480
        goto ret;
4270
480
        }
4271
1.01M
#endif
4272
1.01M
      if (j < 0 || (j == 0 && mode != 1
4273
424
#ifndef ROUND_BIASED
4274
424
              && !(word1(&u) & 1)
4275
994k
#endif
4276
994k
          )) {
4277
19.5k
        if (!b->x[0] && b->wds <= 1) {
4278
#ifdef SET_INEXACT
4279
          inexact = 0;
4280
#endif
4281
1.04k
          goto accept_dig;
4282
1.04k
          }
4283
#ifdef Honor_FLT_ROUNDS
4284
        if (mode > 1)
4285
         switch(Rounding) {
4286
          case 0: goto accept_dig;
4287
          case 2: goto keep_dig;
4288
          }
4289
#endif /*Honor_FLT_ROUNDS*/
4290
18.4k
        if (j1 > 0) {
4291
16.2k
          b = lshift(b, 1);
4292
16.2k
          j1 = cmp(b, S);
4293
#ifdef ROUND_BIASED
4294
          if (j1 >= 0 /*)*/
4295
#else
4296
16.2k
          if ((j1 > 0 || (j1 == 0 && dig & 1))
4297
4.87k
#endif
4298
4.87k
          && dig++ == '9')
4299
361
            goto round_9_up;
4300
16.2k
          }
4301
19.1k
 accept_dig:
4302
19.1k
        *s++ = dig;
4303
19.1k
        goto ret;
4304
18.4k
        }
4305
994k
      if (j1 > 0) {
4306
#ifdef Honor_FLT_ROUNDS
4307
        if (!Rounding)
4308
          goto accept_dig;
4309
#endif
4310
44.7k
        if (dig == '9') { /* possible if i == 1 */
4311
571
 round_9_up:
4312
571
          *s++ = '9';
4313
571
          goto roundoff;
4314
210
          }
4315
44.5k
        *s++ = dig + 1;
4316
44.5k
        goto ret;
4317
44.7k
        }
4318
#ifdef Honor_FLT_ROUNDS
4319
 keep_dig:
4320
#endif
4321
949k
      *s++ = dig;
4322
949k
      if (i == ilim)
4323
0
        break;
4324
949k
      b = multadd(b, 10, 0);
4325
949k
      if (mlo == mhi)
4326
939k
        mlo = mhi = multadd(mhi, 10, 0);
4327
9.93k
      else {
4328
9.93k
        mlo = multadd(mlo, 10, 0);
4329
9.93k
        mhi = multadd(mhi, 10, 0);
4330
9.93k
        }
4331
949k
      }
4332
64.8k
    }
4333
60
  else
4334
1.26k
    for(i = 1;; i++) {
4335
1.26k
      *s++ = dig = quorem(b,S) + '0';
4336
1.26k
      if (!b->x[0] && b->wds <= 1) {
4337
#ifdef SET_INEXACT
4338
        inexact = 0;
4339
#endif
4340
40
        goto ret;
4341
40
        }
4342
1.22k
      if (i >= ilim)
4343
20
        break;
4344
1.20k
      b = multadd(b, 10, 0);
4345
1.20k
      }
4346
4347
  /* Round off last digit */
4348
4349
#ifdef Honor_FLT_ROUNDS
4350
  switch(Rounding) {
4351
    case 0: goto trimzeros;
4352
    case 2: goto roundoff;
4353
    }
4354
#endif
4355
20
  b = lshift(b, 1);
4356
20
  j = cmp(b, S);
4357
#ifdef ROUND_BIASED
4358
  if (j >= 0)
4359
#else
4360
20
  if (j > 0 || (j == 0 && dig & 1))
4361
8
#endif
4362
8
    {
4363
579
 roundoff:
4364
579
    while(*--s == '9')
4365
571
      if (s == s0) {
4366
571
        k++;
4367
571
        *s++ = '1';
4368
571
        goto ret;
4369
571
        }
4370
8
    ++*s++;
4371
8
    }
4372
12
  else {
4373
#ifdef Honor_FLT_ROUNDS
4374
 trimzeros:
4375
#endif
4376
12
    while(*--s == '0');
4377
12
    s++;
4378
12
    }
4379
65.0k
 ret:
4380
65.0k
  Bfree(S);
4381
65.0k
  if (mhi) {
4382
64.8k
    if (mlo && mlo != mhi)
4383
795
      Bfree(mlo);
4384
64.8k
    Bfree(mhi);
4385
64.8k
    }
4386
65.7k
 ret1:
4387
#ifdef SET_INEXACT
4388
  if (inexact) {
4389
    if (!oldinexact) {
4390
      word0(&u) = Exp_1 + (70 << Exp_shift);
4391
      word1(&u) = 0;
4392
      dval(&u) += 1.;
4393
      }
4394
    }
4395
  else if (!oldinexact)
4396
    clear_inexact();
4397
#endif
4398
65.7k
  Bfree(b);
4399
65.7k
  *s = 0;
4400
65.7k
  *decpt = k + 1;
4401
65.7k
  if (rve)
4402
437
    *rve = s;
4403
65.7k
  return s0;
4404
65.0k
  }
4405
4406
ZEND_API double zend_hex_strtod(const char *str, const char **endptr)
4407
0
{
4408
0
  const char *s = str;
4409
0
  char c;
4410
0
  int any = 0;
4411
0
  double value = 0;
4412
4413
0
  if (*s == '0' && (s[1] == 'x' || s[1] == 'X')) {
4414
0
    s += 2;
4415
0
  }
4416
4417
0
  while ((c = *s++)) {
4418
0
    if (c >= '0' && c <= '9') {
4419
0
      c -= '0';
4420
0
    } else if (c >= 'A' && c <= 'F') {
4421
0
      c -= 'A' - 10;
4422
0
    } else if (c >= 'a' && c <= 'f') {
4423
0
      c -= 'a' - 10;
4424
0
    } else {
4425
0
      break;
4426
0
    }
4427
4428
0
    any = 1;
4429
0
    value = value * 16 + c;
4430
0
  }
4431
4432
0
  if (endptr != NULL) {
4433
0
    *endptr = any ? s - 1 : str;
4434
0
  }
4435
4436
0
  return value;
4437
0
}
4438
4439
ZEND_API double zend_oct_strtod(const char *str, const char **endptr)
4440
0
{
4441
0
  const char *s = str;
4442
0
  char c;
4443
0
  double value = 0;
4444
0
  int any = 0;
4445
4446
0
  if (str[0] == '\0') {
4447
0
    if (endptr != NULL) {
4448
0
      *endptr = str;
4449
0
    }
4450
0
    return 0.0;
4451
0
  }
4452
4453
0
  while ((c = *s++)) {
4454
0
    if (c < '0' || c > '7') {
4455
      /* break and return the current value if the number is not well-formed
4456
       * that's what Linux strtol() does
4457
       */
4458
0
      break;
4459
0
    }
4460
0
    value = value * 8 + c - '0';
4461
0
    any = 1;
4462
0
  }
4463
4464
0
  if (endptr != NULL) {
4465
0
    *endptr = any ? s - 1 : str;
4466
0
  }
4467
4468
0
  return value;
4469
0
}
4470
4471
ZEND_API double zend_bin_strtod(const char *str, const char **endptr)
4472
0
{
4473
0
  const char *s = str;
4474
0
  char    c;
4475
0
  double    value = 0;
4476
0
  int     any = 0;
4477
4478
0
  if ('0' == *s && ('b' == s[1] || 'B' == s[1])) {
4479
0
    s += 2;
4480
0
  }
4481
4482
0
  while ((c = *s++)) {
4483
    /*
4484
     * Verify the validity of the current character as a base-2 digit.  In
4485
     * the event that an invalid digit is found, halt the conversion and
4486
     * return the portion which has been converted thus far.
4487
     */
4488
0
    if ('0' == c || '1' == c)
4489
0
      value = value * 2 + c - '0';
4490
0
    else
4491
0
      break;
4492
4493
0
    any = 1;
4494
0
  }
4495
4496
  /*
4497
   * As with many strtoX implementations, should the subject sequence be
4498
   * empty or not well-formed, no conversion is performed and the original
4499
   * value of str is stored in *endptr, provided that endptr is not a null
4500
   * pointer.
4501
   */
4502
0
  if (NULL != endptr) {
4503
0
    *endptr = (char *)(any ? s - 1 : str);
4504
0
  }
4505
4506
0
  return value;
4507
0
}
4508
4509
ZEND_API char *zend_gcvt(double value, int ndigit, char dec_point, char exponent, char *buf)
4510
65.8k
{
4511
65.8k
  char *digits, *dst, *src;
4512
65.8k
  int i, decpt;
4513
65.8k
  bool sign;
4514
65.8k
  int mode = ndigit >= 0 ? 2 : 0;
4515
4516
65.8k
  if (mode == 0) {
4517
65.8k
    ndigit = 17;
4518
65.8k
  }
4519
65.8k
  digits = zend_dtoa(value, mode, ndigit, &decpt, &sign, NULL);
4520
65.8k
  if (decpt == 9999) {
4521
    /*
4522
     * Infinity or NaN, convert to inf or nan with sign.
4523
     * We assume the buffer is at least ndigit long.
4524
     */
4525
0
    snprintf(buf, ndigit + 1, "%s%s", (sign && *digits == 'I') ? "-" : "", *digits == 'I' ? "INF" : "NAN");
4526
0
    zend_freedtoa(digits);
4527
0
    return (buf);
4528
0
  }
4529
4530
65.8k
  dst = buf;
4531
65.8k
  if (sign) {
4532
6.69k
    *dst++ = '-';
4533
6.69k
  }
4534
4535
65.8k
  if ((decpt >= 0 && decpt > ndigit) || decpt < -3) { /* use E-style */
4536
    /* exponential format (e.g. 1.2345e+13) */
4537
60.0k
    if (--decpt < 0) {
4538
52.5k
      sign = true;
4539
52.5k
      decpt = -decpt;
4540
52.5k
    } else {
4541
7.50k
      sign = false;
4542
7.50k
    }
4543
60.0k
    src = digits;
4544
60.0k
    *dst++ = *src++;
4545
60.0k
    *dst++ = dec_point;
4546
60.0k
    if (*src == '\0') {
4547
587
      *dst++ = '0';
4548
59.4k
    } else {
4549
880k
      do {
4550
880k
        *dst++ = *src++;
4551
880k
      } while (*src != '\0');
4552
59.4k
    }
4553
60.0k
    *dst++ = exponent;
4554
60.0k
    if (sign) {
4555
52.5k
      *dst++ = '-';
4556
52.5k
    } else {
4557
7.50k
      *dst++ = '+';
4558
7.50k
    }
4559
60.0k
    if (decpt < 10) {
4560
1.71k
      *dst++ = '0' + decpt;
4561
1.71k
      *dst = '\0';
4562
58.3k
    } else {
4563
      /* XXX - optimize */
4564
58.3k
      int n;
4565
129k
      for (n = decpt, i = 0; (n /= 10) != 0; i++);
4566
58.3k
      dst[i + 1] = '\0';
4567
187k
      while (decpt != 0) {
4568
129k
        dst[i--] = '0' + decpt % 10;
4569
129k
        decpt /= 10;
4570
129k
      }
4571
58.3k
    }
4572
60.0k
  } else if (decpt < 0) {
4573
    /* standard format 0. */
4574
584
    *dst++ = '0';   /* zero before decimal point */
4575
584
    *dst++ = dec_point;
4576
1.34k
    do {
4577
1.34k
      *dst++ = '0';
4578
1.34k
    } while (++decpt < 0);
4579
584
    src = digits;
4580
8.76k
    while (*src != '\0') {
4581
8.18k
      *dst++ = *src++;
4582
8.18k
    }
4583
584
    *dst = '\0';
4584
5.18k
  } else {
4585
    /* standard format */
4586
29.5k
    for (i = 0, src = digits; i < decpt; i++) {
4587
24.3k
      if (*src != '\0') {
4588
23.7k
        *dst++ = *src++;
4589
23.7k
      } else {
4590
615
        *dst++ = '0';
4591
615
      }
4592
24.3k
    }
4593
5.18k
    if (*src != '\0') {
4594
3.24k
      if (src == digits) {
4595
1.80k
        *dst++ = '0';   /* zero before decimal point */
4596
1.80k
      }
4597
3.24k
      *dst++ = dec_point;
4598
49.2k
      for (i = decpt; digits[i] != '\0'; i++) {
4599
46.0k
        *dst++ = digits[i];
4600
46.0k
      }
4601
3.24k
    }
4602
5.18k
    *dst = '\0';
4603
5.18k
  }
4604
65.8k
  zend_freedtoa(digits);
4605
65.8k
  return (buf);
4606
65.8k
}
4607
4608
static void destroy_freelist(void)
4609
0
{
4610
0
  int i;
4611
0
  Bigint *tmp;
4612
4613
0
  ACQUIRE_DTOA_LOCK(0)
4614
0
  for (i = 0; i <= Kmax; i++) {
4615
0
    Bigint **listp = &freelist[i];
4616
0
    while ((tmp = *listp) != NULL) {
4617
0
      *listp = tmp->next;
4618
0
      FREE(tmp);
4619
0
    }
4620
0
    freelist[i] = NULL;
4621
0
  }
4622
0
  FREE_DTOA_LOCK(0)
4623
0
}
4624
4625
static void free_p5s(void)
4626
0
{
4627
0
  Bigint **listp, *tmp;
4628
4629
0
  ACQUIRE_DTOA_LOCK(1)
4630
0
  listp = &p5s;
4631
0
  while ((tmp = *listp) != NULL) {
4632
0
    *listp = tmp->next;
4633
0
    FREE(tmp);
4634
0
  }
4635
0
  p5s = NULL;
4636
0
  FREE_DTOA_LOCK(1)
4637
0
}