Coverage Report

Created: 2025-12-14 06:09

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/php-src/Zend/zend_strtod.c
Line
Count
Source
1
/****************************************************************
2
 *
3
 * The author of this software is David M. Gay.
4
 *
5
 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
6
 *
7
 * Permission to use, copy, modify, and distribute this software for any
8
 * purpose without fee is hereby granted, provided that this entire notice
9
 * is included in all copies of any software which is or includes a copy
10
 * or modification of this software and in all copies of the supporting
11
 * documentation for such software.
12
 *
13
 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
14
 * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
15
 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
16
 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
17
 *
18
 ***************************************************************/
19
20
/* Please send bug reports to David M. Gay (dmg at acm dot org,
21
 * with " at " changed at "@" and " dot " changed to ".").  */
22
23
/* On a machine with IEEE extended-precision registers, it is
24
 * necessary to specify double-precision (53-bit) rounding precision
25
 * before invoking strtod or dtoa.  If the machine uses (the equivalent
26
 * of) Intel 80x87 arithmetic, the call
27
 *  _control87(PC_53, MCW_PC);
28
 * does this with many compilers.  Whether this or another call is
29
 * appropriate depends on the compiler; for this to work, it may be
30
 * necessary to #include "float.h" or another system-dependent header
31
 * file.
32
 */
33
34
/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
35
 * (Note that IEEE arithmetic is disabled by gcc's -ffast-math flag.)
36
 *
37
 * This strtod returns a nearest machine number to the input decimal
38
 * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
39
 * broken by the IEEE round-even rule.  Otherwise ties are broken by
40
 * biased rounding (add half and chop).
41
 *
42
 * Inspired loosely by William D. Clinger's paper "How to Read Floating
43
 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
44
 *
45
 * Modifications:
46
 *
47
 *  1. We only require IEEE, IBM, or VAX double-precision
48
 *    arithmetic (not IEEE double-extended).
49
 *  2. We get by with floating-point arithmetic in a case that
50
 *    Clinger missed -- when we're computing d * 10^n
51
 *    for a small integer d and the integer n is not too
52
 *    much larger than 22 (the maximum integer k for which
53
 *    we can represent 10^k exactly), we may be able to
54
 *    compute (d*10^k) * 10^(e-k) with just one roundoff.
55
 *  3. Rather than a bit-at-a-time adjustment of the binary
56
 *    result in the hard case, we use floating-point
57
 *    arithmetic to determine the adjustment to within
58
 *    one bit; only in really hard cases do we need to
59
 *    compute a second residual.
60
 *  4. Because of 3., we don't need a large table of powers of 10
61
 *    for ten-to-e (just some small tables, e.g. of 10^k
62
 *    for 0 <= k <= 22).
63
 */
64
65
/*
66
 * #define IEEE_8087 for IEEE-arithmetic machines where the least
67
 *  significant byte has the lowest address.
68
 * #define IEEE_MC68k for IEEE-arithmetic machines where the most
69
 *  significant byte has the lowest address.
70
 * #define Long int on machines with 32-bit ints and 64-bit longs.
71
 * #define IBM for IBM mainframe-style floating-point arithmetic.
72
 * #define VAX for VAX-style floating-point arithmetic (D_floating).
73
 * #define No_leftright to omit left-right logic in fast floating-point
74
 *  computation of dtoa.  This will cause dtoa modes 4 and 5 to be
75
 *  treated the same as modes 2 and 3 for some inputs.
76
 * #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
77
 *  and strtod and dtoa should round accordingly.  Unless Trust_FLT_ROUNDS
78
 *  is also #defined, fegetround() will be queried for the rounding mode.
79
 *  Note that both FLT_ROUNDS and fegetround() are specified by the C99
80
 *  standard (and are specified to be consistent, with fesetround()
81
 *  affecting the value of FLT_ROUNDS), but that some (Linux) systems
82
 *  do not work correctly in this regard, so using fegetround() is more
83
 *  portable than using FLT_ROUNDS directly.
84
 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
85
 *  and Honor_FLT_ROUNDS is not #defined.
86
 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
87
 *  that use extended-precision instructions to compute rounded
88
 *  products and quotients) with IBM.
89
 * #define ROUND_BIASED for IEEE-format with biased rounding and arithmetic
90
 *  that rounds toward +Infinity.
91
 * #define ROUND_BIASED_without_Round_Up for IEEE-format with biased
92
 *  rounding when the underlying floating-point arithmetic uses
93
 *  unbiased rounding.  This prevent using ordinary floating-point
94
 *  arithmetic when the result could be computed with one rounding error.
95
 * #define Inaccurate_Divide for IEEE-format with correctly rounded
96
 *  products but inaccurate quotients, e.g., for Intel i860.
97
 * #define NO_LONG_LONG on machines that do not have a "long long"
98
 *  integer type (of >= 64 bits).  On such machines, you can
99
 *  #define Just_16 to store 16 bits per 32-bit Long when doing
100
 *  high-precision integer arithmetic.  Whether this speeds things
101
 *  up or slows things down depends on the machine and the number
102
 *  being converted.  If long long is available and the name is
103
 *  something other than "long long", #define Llong to be the name,
104
 *  and if "unsigned Llong" does not work as an unsigned version of
105
 *  Llong, #define #ULLong to be the corresponding unsigned type.
106
 * #define KR_headers for old-style C function headers.
107
 * #define Bad_float_h if your system lacks a float.h or if it does not
108
 *  define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
109
 *  FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
110
 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
111
 *  if memory is available and otherwise does something you deem
112
 *  appropriate.  If MALLOC is undefined, malloc will be invoked
113
 *  directly -- and assumed always to succeed.  Similarly, if you
114
 *  want something other than the system's free() to be called to
115
 *  recycle memory acquired from MALLOC, #define FREE to be the
116
 *  name of the alternate routine.  (FREE or free is only called in
117
 *  pathological cases, e.g., in a dtoa call after a dtoa return in
118
 *  mode 3 with thousands of digits requested.)
119
 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
120
 *  memory allocations from a private pool of memory when possible.
121
 *  When used, the private pool is PRIVATE_MEM bytes long:  2304 bytes,
122
 *  unless #defined to be a different length.  This default length
123
 *  suffices to get rid of MALLOC calls except for unusual cases,
124
 *  such as decimal-to-binary conversion of a very long string of
125
 *  digits.  The longest string dtoa can return is about 751 bytes
126
 *  long.  For conversions by strtod of strings of 800 digits and
127
 *  all dtoa conversions in single-threaded executions with 8-byte
128
 *  pointers, PRIVATE_MEM >= 7400 appears to suffice; with 4-byte
129
 *  pointers, PRIVATE_MEM >= 7112 appears adequate.
130
 * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK
131
 *  #defined automatically on IEEE systems.  On such systems,
132
 *  when INFNAN_CHECK is #defined, strtod checks
133
 *  for Infinity and NaN (case insensitively).  On some systems
134
 *  (e.g., some HP systems), it may be necessary to #define NAN_WORD0
135
 *  appropriately -- to the most significant word of a quiet NaN.
136
 *  (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
137
 *  When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
138
 *  strtod also accepts (case insensitively) strings of the form
139
 *  NaN(x), where x is a string of hexadecimal digits and spaces;
140
 *  if there is only one string of hexadecimal digits, it is taken
141
 *  for the 52 fraction bits of the resulting NaN; if there are two
142
 *  or more strings of hex digits, the first is for the high 20 bits,
143
 *  the second and subsequent for the low 32 bits, with intervening
144
 *  white space ignored; but if this results in none of the 52
145
 *  fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0
146
 *  and NAN_WORD1 are used instead.
147
 * #define MULTIPLE_THREADS if the system offers preemptively scheduled
148
 *  multiple threads.  In this case, you must provide (or suitably
149
 *  #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
150
 *  by FREE_DTOA_LOCK(n) for n = 0 or 1.  (The second lock, accessed
151
 *  in pow5mult, ensures lazy evaluation of only one copy of high
152
 *  powers of 5; omitting this lock would introduce a small
153
 *  probability of wasting memory, but would otherwise be harmless.)
154
 *  You must also invoke freedtoa(s) to free the value s returned by
155
 *  dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
156
 * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that
157
 *  avoids underflows on inputs whose result does not underflow.
158
 *  If you #define NO_IEEE_Scale on a machine that uses IEEE-format
159
 *  floating-point numbers and flushes underflows to zero rather
160
 *  than implementing gradual underflow, then you must also #define
161
 *  Sudden_Underflow.
162
 * #define USE_LOCALE to use the current locale's decimal_point value.
163
 * #define SET_INEXACT if IEEE arithmetic is being used and extra
164
 *  computation should be done to set the inexact flag when the
165
 *  result is inexact and avoid setting inexact when the result
166
 *  is exact.  In this case, dtoa.c must be compiled in
167
 *  an environment, perhaps provided by #include "dtoa.c" in a
168
 *  suitable wrapper, that defines two functions,
169
 *    int get_inexact(void);
170
 *    void clear_inexact(void);
171
 *  such that get_inexact() returns a nonzero value if the
172
 *  inexact bit is already set, and clear_inexact() sets the
173
 *  inexact bit to 0.  When SET_INEXACT is #defined, strtod
174
 *  also does extra computations to set the underflow and overflow
175
 *  flags when appropriate (i.e., when the result is tiny and
176
 *  inexact or when it is a numeric value rounded to +-infinity).
177
 * #define NO_ERRNO if strtod should not assign errno = ERANGE when
178
 *  the result overflows to +-Infinity or underflows to 0.
179
 * #define NO_HEX_FP to omit recognition of hexadecimal floating-point
180
 *  values by strtod.
181
 * #define NO_STRTOD_BIGCOMP (on IEEE-arithmetic systems only for now)
182
 *  to disable logic for "fast" testing of very long input strings
183
 *  to strtod.  This testing proceeds by initially truncating the
184
 *  input string, then if necessary comparing the whole string with
185
 *  a decimal expansion to decide close cases. This logic is only
186
 *  used for input more than STRTOD_DIGLIM digits long (default 40).
187
 */
188
189
#include <zend_operators.h>
190
#include <zend_strtod.h>
191
#include "zend_strtod_int.h"
192
#include "zend_globals.h"
193
194
#ifndef Long
195
131k
#define Long int32_t
196
#endif
197
#ifndef ULong
198
4.36M
#define ULong uint32_t
199
#endif
200
201
#undef Bigint
202
#undef freelist
203
#undef p5s
204
#undef dtoa_result
205
206
3.09M
#define Bigint      _zend_strtod_bigint
207
3.61M
#define freelist    (EG(strtod_state).freelist)
208
18.3k
#define p5s         (EG(strtod_state).p5s)
209
173k
#define dtoa_result (EG(strtod_state).result)
210
211
#ifdef DEBUG
212
static void Bug(const char *message) {
213
  fprintf(stderr, "%s\n", message);
214
}
215
#endif
216
217
#include "stdlib.h"
218
#include "string.h"
219
220
#ifdef USE_LOCALE
221
#include "locale.h"
222
#endif
223
224
#ifdef Honor_FLT_ROUNDS
225
#ifndef Trust_FLT_ROUNDS
226
#include <fenv.h>
227
#endif
228
#endif
229
230
#ifdef MALLOC
231
#ifdef KR_headers
232
extern char *MALLOC();
233
#else
234
extern void *MALLOC(size_t);
235
#endif
236
#else
237
36
#define MALLOC malloc
238
4
#define FREE   free
239
#endif
240
241
#ifndef Omit_Private_Memory
242
#ifndef PRIVATE_MEM
243
#define PRIVATE_MEM 2304
244
#endif
245
#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
246
static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
247
#endif
248
249
#undef IEEE_Arith
250
#undef Avoid_Underflow
251
#ifdef IEEE_MC68k
252
#define IEEE_Arith
253
#endif
254
#ifdef IEEE_8087
255
#define IEEE_Arith
256
#endif
257
258
#ifdef IEEE_Arith
259
#ifndef NO_INFNAN_CHECK
260
#undef INFNAN_CHECK
261
#define INFNAN_CHECK
262
#endif
263
#else
264
#undef INFNAN_CHECK
265
#define NO_STRTOD_BIGCOMP
266
#endif
267
268
#include "errno.h"
269
270
#ifdef Bad_float_h
271
272
#ifdef IEEE_Arith
273
#define DBL_DIG 15
274
#define DBL_MAX_10_EXP 308
275
#define DBL_MAX_EXP 1024
276
#define FLT_RADIX 2
277
#endif /*IEEE_Arith*/
278
279
#ifdef IBM
280
#define DBL_DIG 16
281
#define DBL_MAX_10_EXP 75
282
#define DBL_MAX_EXP 63
283
#define FLT_RADIX 16
284
#define DBL_MAX 7.2370055773322621e+75
285
#endif
286
287
#ifdef VAX
288
#define DBL_DIG 16
289
#define DBL_MAX_10_EXP 38
290
#define DBL_MAX_EXP 127
291
#define FLT_RADIX 2
292
#define DBL_MAX 1.7014118346046923e+38
293
#endif
294
295
#else /* ifndef Bad_float_h */
296
#include "float.h"
297
#endif /* Bad_float_h */
298
299
#ifndef __MATH_H__
300
#include "math.h"
301
#endif
302
303
#ifndef CONST
304
#ifdef KR_headers
305
#define CONST /* blank */
306
#else
307
55.8k
#define CONST const
308
#endif
309
#endif
310
311
#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
312
Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
313
#endif
314
315
typedef union { double d; ULong L[2]; } U;
316
317
#ifdef IEEE_8087
318
532k
#define word0(x) (x)->L[1]
319
221k
#define word1(x) (x)->L[0]
320
#else
321
#define word0(x) (x)->L[0]
322
#define word1(x) (x)->L[1]
323
#endif
324
807k
#define dval(x) (x)->d
325
326
#ifndef STRTOD_DIGLIM
327
22.0k
#define STRTOD_DIGLIM 40
328
#endif
329
330
#ifdef DIGLIM_DEBUG
331
extern int strtod_diglim;
332
#else
333
22.0k
#define strtod_diglim STRTOD_DIGLIM
334
#endif
335
336
/* The following definition of Storeinc is appropriate for MIPS processors.
337
 * An alternative that might be better on some machines is
338
 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
339
 */
340
#if defined(IEEE_8087) + defined(VAX) + defined(__arm__)
341
#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
342
((unsigned short *)a)[0] = (unsigned short)c, a++)
343
#else
344
#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
345
((unsigned short *)a)[1] = (unsigned short)c, a++)
346
#endif
347
348
/* #define P DBL_MANT_DIG */
349
/* Ten_pmax = floor(P*log(2)/log(5)) */
350
/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
351
/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
352
/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
353
354
#ifdef IEEE_Arith
355
66.5k
#define Exp_shift  20
356
84.0k
#define Exp_shift1 20
357
137k
#define Exp_msk1    0x100000
358
#define Exp_msk11   0x100000
359
175k
#define Exp_mask  0x7ff00000
360
245k
#define P 53
361
#define Nbits 53
362
135k
#define Bias 1023
363
#define Emax 1023
364
24.5k
#define Emin (-1022)
365
19.7k
#define Exp_1  0x3ff00000
366
42.0k
#define Exp_11 0x3ff00000
367
47.6k
#define Ebits 11
368
66.4k
#define Frac_mask  0xfffff
369
42.0k
#define Frac_mask1 0xfffff
370
70.8k
#define Ten_pmax 22
371
4.85k
#define Bletch 0x10
372
15.1k
#define Bndry_mask  0xfffff
373
378
#define Bndry_mask1 0xfffff
374
23.2k
#define LSB 1
375
51.5k
#define Sign_bit 0x80000000
376
3.67k
#define Log2P 1
377
#define Tiny0 0
378
8.03k
#define Tiny1 1
379
47.3k
#define Quick_max 14
380
7.07k
#define Int_max 14
381
#ifndef NO_IEEE_Scale
382
#define Avoid_Underflow
383
#ifdef Flush_Denorm /* debugging option */
384
#undef Sudden_Underflow
385
#endif
386
#endif
387
388
#ifndef Flt_Rounds
389
#ifdef FLT_ROUNDS
390
32.8k
#define Flt_Rounds FLT_ROUNDS
391
#else
392
#define Flt_Rounds 1
393
#endif
394
#endif /*Flt_Rounds*/
395
396
#ifdef Honor_FLT_ROUNDS
397
#undef Check_FLT_ROUNDS
398
#define Check_FLT_ROUNDS
399
#else
400
#define Rounding Flt_Rounds
401
#endif
402
403
#else /* ifndef IEEE_Arith */
404
#undef Check_FLT_ROUNDS
405
#undef Honor_FLT_ROUNDS
406
#undef SET_INEXACT
407
#undef  Sudden_Underflow
408
#define Sudden_Underflow
409
#ifdef IBM
410
#undef Flt_Rounds
411
#define Flt_Rounds 0
412
#define Exp_shift  24
413
#define Exp_shift1 24
414
#define Exp_msk1   0x1000000
415
#define Exp_msk11  0x1000000
416
#define Exp_mask  0x7f000000
417
#define P 14
418
#define Nbits 56
419
#define Bias 65
420
#define Emax 248
421
#define Emin (-260)
422
#define Exp_1  0x41000000
423
#define Exp_11 0x41000000
424
#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
425
#define Frac_mask  0xffffff
426
#define Frac_mask1 0xffffff
427
#define Bletch 4
428
#define Ten_pmax 22
429
#define Bndry_mask  0xefffff
430
#define Bndry_mask1 0xffffff
431
#define LSB 1
432
#define Sign_bit 0x80000000
433
#define Log2P 4
434
#define Tiny0 0x100000
435
#define Tiny1 0
436
#define Quick_max 14
437
#define Int_max 15
438
#else /* VAX */
439
#undef Flt_Rounds
440
#define Flt_Rounds 1
441
#define Exp_shift  23
442
#define Exp_shift1 7
443
#define Exp_msk1    0x80
444
#define Exp_msk11   0x800000
445
#define Exp_mask  0x7f80
446
#define P 56
447
#define Nbits 56
448
#define Bias 129
449
#define Emax 126
450
#define Emin (-129)
451
#define Exp_1  0x40800000
452
#define Exp_11 0x4080
453
#define Ebits 8
454
#define Frac_mask  0x7fffff
455
#define Frac_mask1 0xffff007f
456
#define Ten_pmax 24
457
#define Bletch 2
458
#define Bndry_mask  0xffff007f
459
#define Bndry_mask1 0xffff007f
460
#define LSB 0x10000
461
#define Sign_bit 0x8000
462
#define Log2P 1
463
#define Tiny0 0x80
464
#define Tiny1 0
465
#define Quick_max 15
466
#define Int_max 15
467
#endif /* IBM, VAX */
468
#endif /* IEEE_Arith */
469
470
#ifndef IEEE_Arith
471
#define ROUND_BIASED
472
#else
473
#ifdef ROUND_BIASED_without_Round_Up
474
#undef  ROUND_BIASED
475
#define ROUND_BIASED
476
#endif
477
#endif
478
479
#ifdef RND_PRODQUOT
480
#define rounded_product(a,b) a = rnd_prod(a, b)
481
#define rounded_quotient(a,b) a = rnd_quot(a, b)
482
#ifdef KR_headers
483
extern double rnd_prod(), rnd_quot();
484
#else
485
extern double rnd_prod(double, double), rnd_quot(double, double);
486
#endif
487
#else
488
2.63k
#define rounded_product(a,b) a *= b
489
18.3k
#define rounded_quotient(a,b) a /= b
490
#endif
491
492
12
#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
493
8
#define Big1 0xffffffff
494
495
#ifndef Pack_32
496
#define Pack_32
497
#endif
498
499
typedef struct BCinfo BCinfo;
500
 struct
501
BCinfo { int dp0, dp1, dplen, dsign, e0, inexact, nd, nd0, rounding, scale, uflchk; };
502
503
#ifdef KR_headers
504
#define FFFFFFFF ((((unsigned long)0xffff)<<16)|(unsigned long)0xffff)
505
#else
506
5.53M
#define FFFFFFFF 0xffffffffUL
507
#endif
508
509
#ifdef NO_LONG_LONG
510
#undef ULLong
511
#ifdef Just_16
512
#undef Pack_32
513
/* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
514
 * This makes some inner loops simpler and sometimes saves work
515
 * during multiplications, but it often seems to make things slightly
516
 * slower.  Hence the default is now to store 32 bits per Long.
517
 */
518
#endif
519
#else /* long long available */
520
#ifndef Llong
521
#define Llong long long
522
#endif
523
#ifndef ULLong
524
2.09M
#define ULLong unsigned Llong
525
#endif
526
#endif /* NO_LONG_LONG */
527
528
#ifndef MULTIPLE_THREADS
529
#define ACQUIRE_DTOA_LOCK(n)  /*nothing*/
530
#define FREE_DTOA_LOCK(n) /*nothing*/
531
#endif
532
533
1.80M
#define Kmax ZEND_STRTOD_K_MAX
534
535
 struct
536
Bigint {
537
  struct Bigint *next;
538
  int k, maxwds, sign, wds;
539
  ULong x[1];
540
  };
541
542
 typedef struct Bigint Bigint;
543
544
#ifndef Bigint
545
 static Bigint *freelist[Kmax+1];
546
#endif
547
548
static void destroy_freelist(void);
549
static void free_p5s(void);
550
551
#ifdef MULTIPLE_THREADS
552
static MUTEX_T dtoa_mutex;
553
static MUTEX_T pow5mult_mutex;
554
#endif /* ZTS */
555
556
ZEND_API int zend_shutdown_strtod(void) /* {{{ */
557
0
{
558
0
  destroy_freelist();
559
0
  free_p5s();
560
561
0
  return 1;
562
0
}
563
/* }}} */
564
565
 static Bigint *
566
Balloc
567
#ifdef KR_headers
568
  (k) int k;
569
#else
570
  (int k)
571
#endif
572
903k
{
573
903k
  int x;
574
903k
  Bigint *rv;
575
#ifndef Omit_Private_Memory
576
  unsigned int len;
577
#endif
578
579
903k
  ACQUIRE_DTOA_LOCK(0);
580
  /* The k > Kmax case does not need ACQUIRE_DTOA_LOCK(0), */
581
  /* but this case seems very unlikely. */
582
903k
  if (k <= Kmax && (rv = freelist[k]))
583
903k
    freelist[k] = rv->next;
584
36
  else {
585
36
    x = 1 << k;
586
36
#ifdef Omit_Private_Memory
587
36
    rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong));
588
36
    if (!rv) {
589
0
      FREE_DTOA_LOCK(0);
590
0
      zend_error_noreturn(E_ERROR, "Balloc() failed to allocate memory");
591
0
    }
592
#else
593
    len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
594
      /sizeof(double);
595
    if (k <= Kmax && pmem_next - private_mem + len <= PRIVATE_mem) {
596
      rv = (Bigint*)pmem_next;
597
      pmem_next += len;
598
      }
599
    else
600
      rv = (Bigint*)MALLOC(len*sizeof(double));
601
      if (!rv) {
602
        FREE_DTOA_LOCK(0);
603
        zend_error_noreturn(E_ERROR, "Balloc() failed to allocate memory");
604
      }
605
#endif
606
36
    rv->k = k;
607
36
    rv->maxwds = x;
608
36
    }
609
903k
  FREE_DTOA_LOCK(0);
610
903k
  rv->sign = rv->wds = 0;
611
903k
  return rv;
612
903k
  }
613
614
 static void
615
Bfree
616
#ifdef KR_headers
617
  (v) Bigint *v;
618
#else
619
  (Bigint *v)
620
#endif
621
903k
{
622
903k
  if (v) {
623
903k
    if (v->k > Kmax)
624
4
      FREE((void*)v);
625
903k
    else {
626
903k
      ACQUIRE_DTOA_LOCK(0);
627
903k
      v->next = freelist[v->k];
628
903k
      freelist[v->k] = v;
629
903k
      FREE_DTOA_LOCK(0);
630
903k
      }
631
903k
    }
632
903k
  }
633
634
25.3k
#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
635
25.3k
y->wds*sizeof(Long) + 2*sizeof(int))
636
637
 static Bigint *
638
multadd
639
#ifdef KR_headers
640
  (b, m, a) Bigint *b; int m, a;
641
#else
642
  (Bigint *b, int m, int a) /* multiply by m and add a */
643
#endif
644
1.17M
{
645
1.17M
  int i, wds;
646
1.17M
#ifdef ULLong
647
1.17M
  ULong *x;
648
1.17M
  ULLong carry, y;
649
#else
650
  ULong carry, *x, y;
651
#ifdef Pack_32
652
  ULong xi, z;
653
#endif
654
#endif
655
1.17M
  Bigint *b1;
656
657
1.17M
  wds = b->wds;
658
1.17M
  x = b->x;
659
1.17M
  i = 0;
660
1.17M
  carry = a;
661
2.41M
  do {
662
2.41M
#ifdef ULLong
663
2.41M
    y = *x * (ULLong)m + carry;
664
2.41M
    carry = y >> 32;
665
2.41M
    *x++ = y & FFFFFFFF;
666
#else
667
#ifdef Pack_32
668
    xi = *x;
669
    y = (xi & 0xffff) * m + carry;
670
    z = (xi >> 16) * m + (y >> 16);
671
    carry = z >> 16;
672
    *x++ = (z << 16) + (y & 0xffff);
673
#else
674
    y = *x * m + carry;
675
    carry = y >> 16;
676
    *x++ = y & 0xffff;
677
#endif
678
#endif
679
2.41M
    }
680
2.41M
    while(++i < wds);
681
1.17M
  if (carry) {
682
75.7k
    if (wds >= b->maxwds) {
683
1.01k
      b1 = Balloc(b->k+1);
684
1.01k
      Bcopy(b1, b);
685
1.01k
      Bfree(b);
686
1.01k
      b = b1;
687
1.01k
      }
688
75.7k
    b->x[wds++] = carry;
689
75.7k
    b->wds = wds;
690
75.7k
    }
691
1.17M
  return b;
692
1.17M
  }
693
694
 static Bigint *
695
s2b
696
#ifdef KR_headers
697
  (s, nd0, nd, y9, dplen) CONST char *s; int nd0, nd, dplen; ULong y9;
698
#else
699
  (const char *s, int nd0, int nd, ULong y9, int dplen)
700
#endif
701
22.0k
{
702
22.0k
  Bigint *b;
703
22.0k
  int i, k;
704
22.0k
  Long x, y;
705
706
22.0k
  x = (nd + 8) / 9;
707
60.5k
  for(k = 0, y = 1; x > y; y <<= 1, k++) ;
708
22.0k
#ifdef Pack_32
709
22.0k
  b = Balloc(k);
710
22.0k
  b->x[0] = y9;
711
22.0k
  b->wds = 1;
712
#else
713
  b = Balloc(k+1);
714
  b->x[0] = y9 & 0xffff;
715
  b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
716
#endif
717
718
22.0k
  i = 9;
719
22.0k
  if (9 < nd0) {
720
17.9k
    s += 9;
721
303k
    do b = multadd(b, 10, *s++ - '0');
722
303k
      while(++i < nd0);
723
17.9k
    s += dplen;
724
17.9k
    }
725
4.02k
  else
726
4.02k
    s += dplen + 9;
727
52.6k
  for(; i < nd; i++)
728
30.6k
    b = multadd(b, 10, *s++ - '0');
729
22.0k
  return b;
730
22.0k
  }
731
732
 static int
733
hi0bits
734
#ifdef KR_headers
735
  (x) ULong x;
736
#else
737
  (ULong x)
738
#endif
739
57.6k
{
740
57.6k
  int k = 0;
741
742
57.6k
  if (!(x & 0xffff0000)) {
743
46.5k
    k = 16;
744
46.5k
    x <<= 16;
745
46.5k
    }
746
57.6k
  if (!(x & 0xff000000)) {
747
43.4k
    k += 8;
748
43.4k
    x <<= 8;
749
43.4k
    }
750
57.6k
  if (!(x & 0xf0000000)) {
751
27.2k
    k += 4;
752
27.2k
    x <<= 4;
753
27.2k
    }
754
57.6k
  if (!(x & 0xc0000000)) {
755
21.5k
    k += 2;
756
21.5k
    x <<= 2;
757
21.5k
    }
758
57.6k
  if (!(x & 0x80000000)) {
759
41.1k
    k++;
760
41.1k
    if (!(x & 0x40000000))
761
0
      return 32;
762
41.1k
    }
763
57.6k
  return k;
764
57.6k
  }
765
766
 static int
767
lo0bits
768
#ifdef KR_headers
769
  (y) ULong *y;
770
#else
771
  (ULong *y)
772
#endif
773
66.4k
{
774
66.4k
  int k;
775
66.4k
  ULong x = *y;
776
777
66.4k
  if (x & 7) {
778
50.1k
    if (x & 1)
779
20.8k
      return 0;
780
29.2k
    if (x & 2) {
781
21.4k
      *y = x >> 1;
782
21.4k
      return 1;
783
21.4k
      }
784
7.86k
    *y = x >> 2;
785
7.86k
    return 2;
786
29.2k
    }
787
16.3k
  k = 0;
788
16.3k
  if (!(x & 0xffff)) {
789
4.33k
    k = 16;
790
4.33k
    x >>= 16;
791
4.33k
    }
792
16.3k
  if (!(x & 0xff)) {
793
1.63k
    k += 8;
794
1.63k
    x >>= 8;
795
1.63k
    }
796
16.3k
  if (!(x & 0xf)) {
797
12.9k
    k += 4;
798
12.9k
    x >>= 4;
799
12.9k
    }
800
16.3k
  if (!(x & 0x3)) {
801
3.39k
    k += 2;
802
3.39k
    x >>= 2;
803
3.39k
    }
804
16.3k
  if (!(x & 1)) {
805
5.91k
    k++;
806
5.91k
    x >>= 1;
807
5.91k
    if (!x)
808
0
      return 32;
809
5.91k
    }
810
16.3k
  *y = x;
811
16.3k
  return k;
812
16.3k
  }
813
814
 static Bigint *
815
i2b
816
#ifdef KR_headers
817
  (i) int i;
818
#else
819
  (int i)
820
#endif
821
97.6k
{
822
97.6k
  Bigint *b;
823
824
97.6k
  b = Balloc(1);
825
97.6k
  b->x[0] = i;
826
97.6k
  b->wds = 1;
827
97.6k
  return b;
828
97.6k
  }
829
830
 static Bigint *
831
mult
832
#ifdef KR_headers
833
  (a, b) Bigint *a, *b;
834
#else
835
  (Bigint *a, Bigint *b)
836
#endif
837
40.2k
{
838
40.2k
  Bigint *c;
839
40.2k
  int k, wa, wb, wc;
840
40.2k
  ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
841
40.2k
  ULong y;
842
40.2k
#ifdef ULLong
843
40.2k
  ULLong carry, z;
844
#else
845
  ULong carry, z;
846
#ifdef Pack_32
847
  ULong z2;
848
#endif
849
#endif
850
851
40.2k
  if (a->wds < b->wds) {
852
16.5k
    c = a;
853
16.5k
    a = b;
854
16.5k
    b = c;
855
16.5k
    }
856
40.2k
  k = a->k;
857
40.2k
  wa = a->wds;
858
40.2k
  wb = b->wds;
859
40.2k
  wc = wa + wb;
860
40.2k
  if (wc > a->maxwds)
861
21.1k
    k++;
862
40.2k
  c = Balloc(k);
863
201k
  for(x = c->x, xa = x + wc; x < xa; x++)
864
161k
    *x = 0;
865
40.2k
  xa = a->x;
866
40.2k
  xae = xa + wa;
867
40.2k
  xb = b->x;
868
40.2k
  xbe = xb + wb;
869
40.2k
  xc0 = c->x;
870
40.2k
#ifdef ULLong
871
99.0k
  for(; xb < xbe; xc0++) {
872
58.7k
    if ((y = *xb++)) {
873
58.7k
      x = xa;
874
58.7k
      xc = xc0;
875
58.7k
      carry = 0;
876
196k
      do {
877
196k
        z = *x++ * (ULLong)y + *xc + carry;
878
196k
        carry = z >> 32;
879
196k
        *xc++ = z & FFFFFFFF;
880
196k
        }
881
196k
        while(x < xae);
882
58.7k
      *xc = carry;
883
58.7k
      }
884
58.7k
    }
885
#else
886
#ifdef Pack_32
887
  for(; xb < xbe; xb++, xc0++) {
888
    if (y = *xb & 0xffff) {
889
      x = xa;
890
      xc = xc0;
891
      carry = 0;
892
      do {
893
        z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
894
        carry = z >> 16;
895
        z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
896
        carry = z2 >> 16;
897
        Storeinc(xc, z2, z);
898
        }
899
        while(x < xae);
900
      *xc = carry;
901
      }
902
    if (y = *xb >> 16) {
903
      x = xa;
904
      xc = xc0;
905
      carry = 0;
906
      z2 = *xc;
907
      do {
908
        z = (*x & 0xffff) * y + (*xc >> 16) + carry;
909
        carry = z >> 16;
910
        Storeinc(xc, z, z2);
911
        z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
912
        carry = z2 >> 16;
913
        }
914
        while(x < xae);
915
      *xc = z2;
916
      }
917
    }
918
#else
919
  for(; xb < xbe; xc0++) {
920
    if (y = *xb++) {
921
      x = xa;
922
      xc = xc0;
923
      carry = 0;
924
      do {
925
        z = *x++ * y + *xc + carry;
926
        carry = z >> 16;
927
        *xc++ = z & 0xffff;
928
        }
929
        while(x < xae);
930
      *xc = carry;
931
      }
932
    }
933
#endif
934
#endif
935
72.4k
  for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
936
40.2k
  c->wds = wc;
937
40.2k
  return c;
938
40.2k
  }
939
940
#ifndef p5s
941
 static Bigint *p5s;
942
#endif
943
944
 static Bigint *
945
pow5mult
946
#ifdef KR_headers
947
  (b, k) Bigint *b; int k;
948
#else
949
  (Bigint *b, int k)
950
#endif
951
41.2k
{
952
41.2k
  Bigint *b1, *p5, *p51;
953
41.2k
  int i;
954
41.2k
  static const int p05[3] = { 5, 25, 125 };
955
956
41.2k
  if ((i = k & 3))
957
36.6k
    b = multadd(b, p05[i-1], 0);
958
959
41.2k
  if (!(k >>= 2))
960
22.8k
    return b;
961
18.3k
  if (!(p5 = p5s)) {
962
    /* first time */
963
#ifdef MULTIPLE_THREADS
964
    ACQUIRE_DTOA_LOCK(1);
965
    if (!(p5 = p5s)) {
966
      p5 = p5s = i2b(625);
967
      p5->next = 0;
968
      }
969
    FREE_DTOA_LOCK(1);
970
#else
971
1
    p5 = p5s = i2b(625);
972
1
    p5->next = 0;
973
1
#endif
974
1
    }
975
61.9k
  for(;;) {
976
61.9k
    if (k & 1) {
977
33.7k
      b1 = mult(b, p5);
978
33.7k
      Bfree(b);
979
33.7k
      b = b1;
980
33.7k
      }
981
61.9k
    if (!(k >>= 1))
982
18.3k
      break;
983
43.6k
    if (!(p51 = p5->next)) {
984
#ifdef MULTIPLE_THREADS
985
      ACQUIRE_DTOA_LOCK(1);
986
      if (!(p51 = p5->next)) {
987
        p51 = p5->next = mult(p5,p5);
988
        p51->next = 0;
989
        }
990
      FREE_DTOA_LOCK(1);
991
#else
992
6
      p51 = p5->next = mult(p5,p5);
993
6
      p51->next = 0;
994
6
#endif
995
6
      }
996
43.6k
    p5 = p51;
997
43.6k
    }
998
18.3k
  return b;
999
41.2k
  }
1000
1001
 static Bigint *
1002
lshift
1003
#ifdef KR_headers
1004
  (b, k) Bigint *b; int k;
1005
#else
1006
  (Bigint *b, int k)
1007
#endif
1008
166k
{
1009
166k
  int i, k1, n, n1;
1010
166k
  Bigint *b1;
1011
166k
  ULong *x, *x1, *xe, z;
1012
1013
166k
#ifdef Pack_32
1014
166k
  n = k >> 5;
1015
#else
1016
  n = k >> 4;
1017
#endif
1018
166k
  k1 = b->k;
1019
166k
  n1 = n + b->wds + 1;
1020
291k
  for(i = b->maxwds; n1 > i; i <<= 1)
1021
125k
    k1++;
1022
166k
  b1 = Balloc(k1);
1023
166k
  x1 = b1->x;
1024
298k
  for(i = 0; i < n; i++)
1025
131k
    *x1++ = 0;
1026
166k
  x = b->x;
1027
166k
  xe = x + b->wds;
1028
166k
#ifdef Pack_32
1029
166k
  if (k &= 0x1f) {
1030
160k
    k1 = 32 - k;
1031
160k
    z = 0;
1032
254k
    do {
1033
254k
      *x1++ = *x << k | z;
1034
254k
      z = *x++ >> k1;
1035
254k
      }
1036
254k
      while(x < xe);
1037
160k
    if ((*x1 = z))
1038
12.3k
      ++n1;
1039
160k
    }
1040
#else
1041
  if (k &= 0xf) {
1042
    k1 = 16 - k;
1043
    z = 0;
1044
    do {
1045
      *x1++ = *x << k  & 0xffff | z;
1046
      z = *x++ >> k1;
1047
      }
1048
      while(x < xe);
1049
    if (*x1 = z)
1050
      ++n1;
1051
    }
1052
#endif
1053
6.27k
  else do
1054
9.48k
    *x1++ = *x++;
1055
9.48k
    while(x < xe);
1056
166k
  b1->wds = n1 - 1;
1057
166k
  Bfree(b);
1058
166k
  return b1;
1059
166k
  }
1060
1061
 static int
1062
cmp
1063
#ifdef KR_headers
1064
  (a, b) Bigint *a, *b;
1065
#else
1066
  (Bigint *a, Bigint *b)
1067
#endif
1068
1.74M
{
1069
1.74M
  ULong *xa, *xa0, *xb, *xb0;
1070
1.74M
  int i, j;
1071
1072
1.74M
  i = a->wds;
1073
1.74M
  j = b->wds;
1074
#ifdef DEBUG
1075
  if (i > 1 && !a->x[i-1])
1076
    Bug("cmp called with a->x[a->wds-1] == 0");
1077
  if (j > 1 && !b->x[j-1])
1078
    Bug("cmp called with b->x[b->wds-1] == 0");
1079
#endif
1080
1.74M
  if (i -= j)
1081
538k
    return i;
1082
1.21M
  xa0 = a->x;
1083
1.21M
  xa = xa0 + j;
1084
1.21M
  xb0 = b->x;
1085
1.21M
  xb = xb0 + j;
1086
1.25M
  for(;;) {
1087
1.25M
    if (*--xa != *--xb)
1088
1.20M
      return *xa < *xb ? -1 : 1;
1089
45.2k
    if (xa <= xa0)
1090
1.75k
      break;
1091
45.2k
    }
1092
1.75k
  return 0;
1093
1.21M
  }
1094
1095
 static Bigint *
1096
diff
1097
#ifdef KR_headers
1098
  (a, b) Bigint *a, *b;
1099
#else
1100
  (Bigint *a, Bigint *b)
1101
#endif
1102
441k
{
1103
441k
  Bigint *c;
1104
441k
  int i, wa, wb;
1105
441k
  ULong *xa, *xae, *xb, *xbe, *xc;
1106
441k
#ifdef ULLong
1107
441k
  ULLong borrow, y;
1108
#else
1109
  ULong borrow, y;
1110
#ifdef Pack_32
1111
  ULong z;
1112
#endif
1113
#endif
1114
1115
441k
  i = cmp(a,b);
1116
441k
  if (!i) {
1117
937
    c = Balloc(0);
1118
937
    c->wds = 1;
1119
937
    c->x[0] = 0;
1120
937
    return c;
1121
937
    }
1122
440k
  if (i < 0) {
1123
13.8k
    c = a;
1124
13.8k
    a = b;
1125
13.8k
    b = c;
1126
13.8k
    i = 1;
1127
13.8k
    }
1128
426k
  else
1129
426k
    i = 0;
1130
440k
  c = Balloc(a->k);
1131
440k
  c->sign = i;
1132
440k
  wa = a->wds;
1133
440k
  xa = a->x;
1134
440k
  xae = xa + wa;
1135
440k
  wb = b->wds;
1136
440k
  xb = b->x;
1137
440k
  xbe = xb + wb;
1138
440k
  xc = c->x;
1139
440k
  borrow = 0;
1140
440k
#ifdef ULLong
1141
767k
  do {
1142
767k
    y = (ULLong)*xa++ - *xb++ - borrow;
1143
767k
    borrow = y >> 32 & (ULong)1;
1144
767k
    *xc++ = y & FFFFFFFF;
1145
767k
    }
1146
767k
    while(xb < xbe);
1147
707k
  while(xa < xae) {
1148
267k
    y = *xa++ - borrow;
1149
267k
    borrow = y >> 32 & (ULong)1;
1150
267k
    *xc++ = y & FFFFFFFF;
1151
267k
    }
1152
#else
1153
#ifdef Pack_32
1154
  do {
1155
    y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
1156
    borrow = (y & 0x10000) >> 16;
1157
    z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
1158
    borrow = (z & 0x10000) >> 16;
1159
    Storeinc(xc, z, y);
1160
    }
1161
    while(xb < xbe);
1162
  while(xa < xae) {
1163
    y = (*xa & 0xffff) - borrow;
1164
    borrow = (y & 0x10000) >> 16;
1165
    z = (*xa++ >> 16) - borrow;
1166
    borrow = (z & 0x10000) >> 16;
1167
    Storeinc(xc, z, y);
1168
    }
1169
#else
1170
  do {
1171
    y = *xa++ - *xb++ - borrow;
1172
    borrow = (y & 0x10000) >> 16;
1173
    *xc++ = y & 0xffff;
1174
    }
1175
    while(xb < xbe);
1176
  while(xa < xae) {
1177
    y = *xa++ - borrow;
1178
    borrow = (y & 0x10000) >> 16;
1179
    *xc++ = y & 0xffff;
1180
    }
1181
#endif
1182
#endif
1183
477k
  while(!*--xc)
1184
37.4k
    wa--;
1185
440k
  c->wds = wa;
1186
440k
  return c;
1187
441k
  }
1188
1189
 static double
1190
ulp
1191
#ifdef KR_headers
1192
  (x) U *x;
1193
#else
1194
  (U *x)
1195
#endif
1196
9.95k
{
1197
9.95k
  Long L;
1198
9.95k
  U u;
1199
1200
9.95k
  L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
1201
#ifndef Avoid_Underflow
1202
#ifndef Sudden_Underflow
1203
  if (L > 0) {
1204
#endif
1205
#endif
1206
#ifdef IBM
1207
    L |= Exp_msk1 >> 4;
1208
#endif
1209
9.95k
    word0(&u) = L;
1210
9.95k
    word1(&u) = 0;
1211
#ifndef Avoid_Underflow
1212
#ifndef Sudden_Underflow
1213
    }
1214
  else {
1215
    L = -L >> Exp_shift;
1216
    if (L < Exp_shift) {
1217
      word0(&u) = 0x80000 >> L;
1218
      word1(&u) = 0;
1219
      }
1220
    else {
1221
      word0(&u) = 0;
1222
      L -= Exp_shift;
1223
      word1(&u) = L >= 31 ? 1 : 1 << 31 - L;
1224
      }
1225
    }
1226
#endif
1227
#endif
1228
9.95k
  return dval(&u);
1229
9.95k
  }
1230
1231
 static double
1232
b2d
1233
#ifdef KR_headers
1234
  (a, e) Bigint *a; int *e;
1235
#else
1236
  (Bigint *a, int *e)
1237
#endif
1238
19.6k
{
1239
19.6k
  ULong *xa, *xa0, w, y, z;
1240
19.6k
  int k;
1241
19.6k
  U d;
1242
#ifdef VAX
1243
  ULong d0, d1;
1244
#else
1245
19.6k
#define d0 word0(&d)
1246
19.6k
#define d1 word1(&d)
1247
19.6k
#endif
1248
1249
19.6k
  xa0 = a->x;
1250
19.6k
  xa = xa0 + a->wds;
1251
19.6k
  y = *--xa;
1252
#ifdef DEBUG
1253
  if (!y) Bug("zero y in b2d");
1254
#endif
1255
19.6k
  k = hi0bits(y);
1256
19.6k
  *e = 32 - k;
1257
19.6k
#ifdef Pack_32
1258
19.6k
  if (k < Ebits) {
1259
4.15k
    d0 = Exp_1 | y >> (Ebits - k);
1260
4.15k
    w = xa > xa0 ? *--xa : 0;
1261
4.15k
    d1 = y << ((32-Ebits) + k) | w >> (Ebits - k);
1262
4.15k
    goto ret_d;
1263
4.15k
    }
1264
15.5k
  z = xa > xa0 ? *--xa : 0;
1265
15.5k
  if (k -= Ebits) {
1266
15.2k
    d0 = Exp_1 | y << k | z >> (32 - k);
1267
15.2k
    y = xa > xa0 ? *--xa : 0;
1268
15.2k
    d1 = z << k | y >> (32 - k);
1269
15.2k
    }
1270
237
  else {
1271
237
    d0 = Exp_1 | y;
1272
237
    d1 = z;
1273
237
    }
1274
#else
1275
  if (k < Ebits + 16) {
1276
    z = xa > xa0 ? *--xa : 0;
1277
    d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
1278
    w = xa > xa0 ? *--xa : 0;
1279
    y = xa > xa0 ? *--xa : 0;
1280
    d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
1281
    goto ret_d;
1282
    }
1283
  z = xa > xa0 ? *--xa : 0;
1284
  w = xa > xa0 ? *--xa : 0;
1285
  k -= Ebits + 16;
1286
  d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
1287
  y = xa > xa0 ? *--xa : 0;
1288
  d1 = w << k + 16 | y << k;
1289
#endif
1290
19.6k
 ret_d:
1291
#ifdef VAX
1292
  word0(&d) = d0 >> 16 | d0 << 16;
1293
  word1(&d) = d1 >> 16 | d1 << 16;
1294
#else
1295
19.6k
#undef d0
1296
19.6k
#undef d1
1297
19.6k
#endif
1298
19.6k
  return dval(&d);
1299
15.5k
  }
1300
1301
 static Bigint *
1302
d2b
1303
#ifdef KR_headers
1304
  (d, e, bits) U *d; int *e, *bits;
1305
#else
1306
  (U *d, int *e, int *bits)
1307
#endif
1308
66.4k
{
1309
66.4k
  Bigint *b;
1310
66.4k
  int de, k;
1311
66.4k
  ULong *x, y, z;
1312
66.4k
#ifndef Sudden_Underflow
1313
66.4k
  int i;
1314
66.4k
#endif
1315
#ifdef VAX
1316
  ULong d0, d1;
1317
  d0 = word0(d) >> 16 | word0(d) << 16;
1318
  d1 = word1(d) >> 16 | word1(d) << 16;
1319
#else
1320
199k
#define d0 word0(d)
1321
66.4k
#define d1 word1(d)
1322
66.4k
#endif
1323
1324
66.4k
#ifdef Pack_32
1325
66.4k
  b = Balloc(1);
1326
#else
1327
  b = Balloc(2);
1328
#endif
1329
66.4k
  x = b->x;
1330
1331
66.4k
  z = d0 & Frac_mask;
1332
66.4k
  d0 &= 0x7fffffff; /* clear sign bit, which we ignore */
1333
#ifdef Sudden_Underflow
1334
  de = (int)(d0 >> Exp_shift);
1335
#ifndef IBM
1336
  z |= Exp_msk11;
1337
#endif
1338
#else
1339
66.4k
  if ((de = (int)(d0 >> Exp_shift)))
1340
66.4k
    z |= Exp_msk1;
1341
66.4k
#endif
1342
66.4k
#ifdef Pack_32
1343
66.4k
  if ((y = d1)) {
1344
62.3k
    if ((k = lo0bits(&y))) {
1345
41.6k
      x[0] = y | z << (32 - k);
1346
41.6k
      z >>= k;
1347
41.6k
      }
1348
20.7k
    else
1349
20.7k
      x[0] = y;
1350
62.3k
#ifndef Sudden_Underflow
1351
62.3k
    i =
1352
62.3k
#endif
1353
62.3k
        b->wds = (x[1] = z) ? 2 : 1;
1354
62.3k
    }
1355
4.07k
  else {
1356
4.07k
    k = lo0bits(&z);
1357
4.07k
    x[0] = z;
1358
4.07k
#ifndef Sudden_Underflow
1359
4.07k
    i =
1360
4.07k
#endif
1361
4.07k
        b->wds = 1;
1362
4.07k
    k += 32;
1363
4.07k
    }
1364
#else
1365
  if (y = d1) {
1366
    if (k = lo0bits(&y))
1367
      if (k >= 16) {
1368
        x[0] = y | z << 32 - k & 0xffff;
1369
        x[1] = z >> k - 16 & 0xffff;
1370
        x[2] = z >> k;
1371
        i = 2;
1372
        }
1373
      else {
1374
        x[0] = y & 0xffff;
1375
        x[1] = y >> 16 | z << 16 - k & 0xffff;
1376
        x[2] = z >> k & 0xffff;
1377
        x[3] = z >> k+16;
1378
        i = 3;
1379
        }
1380
    else {
1381
      x[0] = y & 0xffff;
1382
      x[1] = y >> 16;
1383
      x[2] = z & 0xffff;
1384
      x[3] = z >> 16;
1385
      i = 3;
1386
      }
1387
    }
1388
  else {
1389
#ifdef DEBUG
1390
    if (!z)
1391
      Bug("Zero passed to d2b");
1392
#endif
1393
    k = lo0bits(&z);
1394
    if (k >= 16) {
1395
      x[0] = z;
1396
      i = 0;
1397
      }
1398
    else {
1399
      x[0] = z & 0xffff;
1400
      x[1] = z >> 16;
1401
      i = 1;
1402
      }
1403
    k += 32;
1404
    }
1405
  while(!x[i])
1406
    --i;
1407
  b->wds = i + 1;
1408
#endif
1409
66.4k
#ifndef Sudden_Underflow
1410
66.4k
  if (de) {
1411
66.4k
#endif
1412
#ifdef IBM
1413
    *e = (de - Bias - (P-1) << 2) + k;
1414
    *bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
1415
#else
1416
66.4k
    *e = de - Bias - (P-1) + k;
1417
66.4k
    *bits = P - k;
1418
66.4k
#endif
1419
66.4k
#ifndef Sudden_Underflow
1420
66.4k
    }
1421
10
  else {
1422
10
    *e = de - Bias - (P-1) + 1 + k;
1423
10
#ifdef Pack_32
1424
10
    *bits = 32*i - hi0bits(x[i-1]);
1425
#else
1426
    *bits = (i+2)*16 - hi0bits(x[i]);
1427
#endif
1428
10
    }
1429
66.4k
#endif
1430
66.4k
  return b;
1431
66.4k
  }
1432
#undef d0
1433
#undef d1
1434
1435
 static double
1436
ratio
1437
#ifdef KR_headers
1438
  (a, b) Bigint *a, *b;
1439
#else
1440
  (Bigint *a, Bigint *b)
1441
#endif
1442
9.82k
{
1443
9.82k
  U da, db;
1444
9.82k
  int k, ka, kb;
1445
1446
9.82k
  dval(&da) = b2d(a, &ka);
1447
9.82k
  dval(&db) = b2d(b, &kb);
1448
9.82k
#ifdef Pack_32
1449
9.82k
  k = ka - kb + 32*(a->wds - b->wds);
1450
#else
1451
  k = ka - kb + 16*(a->wds - b->wds);
1452
#endif
1453
#ifdef IBM
1454
  if (k > 0) {
1455
    word0(&da) += (k >> 2)*Exp_msk1;
1456
    if (k &= 3)
1457
      dval(&da) *= 1 << k;
1458
    }
1459
  else {
1460
    k = -k;
1461
    word0(&db) += (k >> 2)*Exp_msk1;
1462
    if (k &= 3)
1463
      dval(&db) *= 1 << k;
1464
    }
1465
#else
1466
9.82k
  if (k > 0)
1467
3.62k
    word0(&da) += k*Exp_msk1;
1468
6.20k
  else {
1469
6.20k
    k = -k;
1470
6.20k
    word0(&db) += k*Exp_msk1;
1471
6.20k
    }
1472
9.82k
#endif
1473
9.82k
  return dval(&da) / dval(&db);
1474
9.82k
  }
1475
1476
 static CONST double
1477
tens[] = {
1478
    1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1479
    1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1480
    1e20, 1e21, 1e22
1481
#ifdef VAX
1482
    , 1e23, 1e24
1483
#endif
1484
    };
1485
1486
 static CONST double
1487
#ifdef IEEE_Arith
1488
bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1489
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
1490
#ifdef Avoid_Underflow
1491
    9007199254740992.*9007199254740992.e-256
1492
    /* = 2^106 * 1e-256 */
1493
#else
1494
    1e-256
1495
#endif
1496
    };
1497
/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
1498
/* flag unnecessarily.  It leads to a song and dance at the end of strtod. */
1499
1.73k
#define Scale_Bit 0x10
1500
1.79k
#define n_bigtens 5
1501
#else
1502
#ifdef IBM
1503
bigtens[] = { 1e16, 1e32, 1e64 };
1504
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 };
1505
#define n_bigtens 3
1506
#else
1507
bigtens[] = { 1e16, 1e32 };
1508
static CONST double tinytens[] = { 1e-16, 1e-32 };
1509
#define n_bigtens 2
1510
#endif
1511
#endif
1512
1513
#undef Need_Hexdig
1514
#ifdef INFNAN_CHECK
1515
#ifndef No_Hex_NaN
1516
#define Need_Hexdig
1517
#endif
1518
#endif
1519
1520
#ifndef Need_Hexdig
1521
#ifndef NO_HEX_FP
1522
#define Need_Hexdig
1523
#endif
1524
#endif
1525
1526
#ifdef Need_Hexdig /*{*/
1527
#if 0
1528
static unsigned char hexdig[256];
1529
1530
 static void
1531
htinit(unsigned char *h, unsigned char *s, int inc)
1532
{
1533
  int i, j;
1534
  for(i = 0; (j = s[i]) !=0; i++)
1535
    h[j] = i + inc;
1536
  }
1537
1538
 static void
1539
hexdig_init(void) /* Use of hexdig_init omitted 20121220 to avoid a */
1540
      /* race condition when multiple threads are used. */
1541
{
1542
#define USC (unsigned char *)
1543
  htinit(hexdig, USC "0123456789", 0x10);
1544
  htinit(hexdig, USC "abcdef", 0x10 + 10);
1545
  htinit(hexdig, USC "ABCDEF", 0x10 + 10);
1546
  }
1547
#else
1548
static const unsigned char hexdig[256] = {
1549
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1550
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1551
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1552
  16,17,18,19,20,21,22,23,24,25,0,0,0,0,0,0,
1553
  0,26,27,28,29,30,31,0,0,0,0,0,0,0,0,0,
1554
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1555
  0,26,27,28,29,30,31,0,0,0,0,0,0,0,0,0,
1556
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1557
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1558
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1559
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1560
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1561
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1562
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1563
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1564
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1565
  };
1566
#endif
1567
#endif /* } Need_Hexdig */
1568
1569
#ifdef INFNAN_CHECK
1570
1571
#ifndef NAN_WORD0
1572
#define NAN_WORD0 0x7ff80000
1573
#endif
1574
1575
#ifndef NAN_WORD1
1576
#define NAN_WORD1 0
1577
#endif
1578
1579
 static int
1580
match
1581
#ifdef KR_headers
1582
  (sp, t) char **sp, *t;
1583
#else
1584
  (const char **sp, const char *t)
1585
#endif
1586
{
1587
  int c, d;
1588
  CONST char *s = *sp;
1589
1590
  while((d = *t++)) {
1591
    if ((c = *++s) >= 'A' && c <= 'Z')
1592
      c += 'a' - 'A';
1593
    if (c != d)
1594
      return 0;
1595
    }
1596
  *sp = s + 1;
1597
  return 1;
1598
  }
1599
1600
#ifndef No_Hex_NaN
1601
 static void
1602
hexnan
1603
#ifdef KR_headers
1604
  (rvp, sp) U *rvp; CONST char **sp;
1605
#else
1606
  (U *rvp, const char **sp)
1607
#endif
1608
{
1609
  ULong c, x[2];
1610
  CONST char *s;
1611
  int c1, havedig, udx0, xshift;
1612
1613
  /**** if (!hexdig['0']) hexdig_init(); ****/
1614
  x[0] = x[1] = 0;
1615
  havedig = xshift = 0;
1616
  udx0 = 1;
1617
  s = *sp;
1618
  /* allow optional initial 0x or 0X */
1619
  while((c = *(CONST unsigned char*)(s+1)) && c <= ' ')
1620
    ++s;
1621
  if (s[1] == '0' && (s[2] == 'x' || s[2] == 'X'))
1622
    s += 2;
1623
  while((c = *(CONST unsigned char*)++s)) {
1624
    if ((c1 = hexdig[c]))
1625
      c  = c1 & 0xf;
1626
    else if (c <= ' ') {
1627
      if (udx0 && havedig) {
1628
        udx0 = 0;
1629
        xshift = 1;
1630
        }
1631
      continue;
1632
      }
1633
#ifdef GDTOA_NON_PEDANTIC_NANCHECK
1634
    else if (/*(*/ c == ')' && havedig) {
1635
      *sp = s + 1;
1636
      break;
1637
      }
1638
    else
1639
      return; /* invalid form: don't change *sp */
1640
#else
1641
    else {
1642
      do {
1643
        if (/*(*/ c == ')') {
1644
          *sp = s + 1;
1645
          break;
1646
          }
1647
        } while((c = *++s));
1648
      break;
1649
      }
1650
#endif
1651
    havedig = 1;
1652
    if (xshift) {
1653
      xshift = 0;
1654
      x[0] = x[1];
1655
      x[1] = 0;
1656
      }
1657
    if (udx0)
1658
      x[0] = (x[0] << 4) | (x[1] >> 28);
1659
    x[1] = (x[1] << 4) | c;
1660
    }
1661
  if ((x[0] &= 0xfffff) || x[1]) {
1662
    word0(rvp) = Exp_mask | x[0];
1663
    word1(rvp) = x[1];
1664
    }
1665
  }
1666
#endif /*No_Hex_NaN*/
1667
#endif /* INFNAN_CHECK */
1668
1669
#ifdef Pack_32
1670
#define ULbits 32
1671
#define kshift 5
1672
37.9k
#define kmask 31
1673
#else
1674
#define ULbits 16
1675
#define kshift 4
1676
#define kmask 15
1677
#endif
1678
1679
#if !defined(NO_HEX_FP) || defined(Honor_FLT_ROUNDS) /*{*/
1680
 static Bigint *
1681
#ifdef KR_headers
1682
increment(b) Bigint *b;
1683
#else
1684
increment(Bigint *b)
1685
#endif
1686
{
1687
  ULong *x, *xe;
1688
  Bigint *b1;
1689
1690
  x = b->x;
1691
  xe = x + b->wds;
1692
  do {
1693
    if (*x < (ULong)0xffffffffL) {
1694
      ++*x;
1695
      return b;
1696
      }
1697
    *x++ = 0;
1698
    } while(x < xe);
1699
  {
1700
    if (b->wds >= b->maxwds) {
1701
      b1 = Balloc(b->k+1);
1702
      Bcopy(b1,b);
1703
      Bfree(b);
1704
      b = b1;
1705
      }
1706
    b->x[b->wds++] = 1;
1707
    }
1708
  return b;
1709
  }
1710
1711
#endif /*}*/
1712
1713
#ifndef NO_HEX_FP /*{*/
1714
1715
 static void
1716
#ifdef KR_headers
1717
rshift(b, k) Bigint *b; int k;
1718
#else
1719
rshift(Bigint *b, int k)
1720
#endif
1721
{
1722
  ULong *x, *x1, *xe, y;
1723
  int n;
1724
1725
  x = x1 = b->x;
1726
  n = k >> kshift;
1727
  if (n < b->wds) {
1728
    xe = x + b->wds;
1729
    x += n;
1730
    if (k &= kmask) {
1731
      n = 32 - k;
1732
      y = *x++ >> k;
1733
      while(x < xe) {
1734
        *x1++ = (y | (*x << n)) & 0xffffffff;
1735
        y = *x++ >> k;
1736
        }
1737
      if ((*x1 = y) !=0)
1738
        x1++;
1739
      }
1740
    else
1741
      while(x < xe)
1742
        *x1++ = *x++;
1743
    }
1744
  if ((b->wds = x1 - b->x) == 0)
1745
    b->x[0] = 0;
1746
  }
1747
1748
 static ULong
1749
#ifdef KR_headers
1750
any_on(b, k) Bigint *b; int k;
1751
#else
1752
any_on(Bigint *b, int k)
1753
#endif
1754
{
1755
  int n, nwds;
1756
  ULong *x, *x0, x1, x2;
1757
1758
  x = b->x;
1759
  nwds = b->wds;
1760
  n = k >> kshift;
1761
  if (n > nwds)
1762
    n = nwds;
1763
  else if (n < nwds && (k &= kmask)) {
1764
    x1 = x2 = x[n];
1765
    x1 >>= k;
1766
    x1 <<= k;
1767
    if (x1 != x2)
1768
      return 1;
1769
    }
1770
  x0 = x;
1771
  x += n;
1772
  while(x > x0)
1773
    if (*--x)
1774
      return 1;
1775
  return 0;
1776
  }
1777
1778
enum {  /* rounding values: same as FLT_ROUNDS */
1779
  Round_zero = 0,
1780
  Round_near = 1,
1781
  Round_up = 2,
1782
  Round_down = 3
1783
  };
1784
1785
 void
1786
#ifdef KR_headers
1787
gethex(sp, rvp, rounding, sign)
1788
  CONST char **sp; U *rvp; int rounding, sign;
1789
#else
1790
gethex( CONST char **sp, U *rvp, int rounding, int sign)
1791
#endif
1792
{
1793
  Bigint *b;
1794
  CONST unsigned char *decpt, *s0, *s, *s1;
1795
  Long e, e1;
1796
  ULong L, lostbits, *x;
1797
  int big, denorm, esign, havedig, k, n, nbits, up, zret;
1798
#ifdef IBM
1799
  int j;
1800
#endif
1801
  enum {
1802
#ifdef IEEE_Arith /*{{*/
1803
    emax = 0x7fe - Bias - P + 1,
1804
    emin = Emin - P + 1
1805
#else /*}{*/
1806
    emin = Emin - P,
1807
#ifdef VAX
1808
    emax = 0x7ff - Bias - P + 1
1809
#endif
1810
#ifdef IBM
1811
    emax = 0x7f - Bias - P
1812
#endif
1813
#endif /*}}*/
1814
    };
1815
#ifdef USE_LOCALE
1816
  int i;
1817
#ifdef NO_LOCALE_CACHE
1818
  const unsigned char *decimalpoint = (unsigned char*)
1819
    localeconv()->decimal_point;
1820
#else
1821
  const unsigned char *decimalpoint;
1822
  static unsigned char *decimalpoint_cache;
1823
  if (!(s0 = decimalpoint_cache)) {
1824
    s0 = (unsigned char*)localeconv()->decimal_point;
1825
    if ((decimalpoint_cache = (unsigned char*)
1826
        MALLOC(strlen((CONST char*)s0) + 1))) {
1827
      strcpy((char*)decimalpoint_cache, (CONST char*)s0);
1828
      s0 = decimalpoint_cache;
1829
      }
1830
    }
1831
  decimalpoint = s0;
1832
#endif
1833
#endif
1834
1835
  /**** if (!hexdig['0']) hexdig_init(); ****/
1836
  havedig = 0;
1837
  s0 = *(CONST unsigned char **)sp + 2;
1838
  while(s0[havedig] == '0')
1839
    havedig++;
1840
  s0 += havedig;
1841
  s = s0;
1842
  decpt = 0;
1843
  zret = 0;
1844
  e = 0;
1845
  if (hexdig[*s])
1846
    havedig++;
1847
  else {
1848
    zret = 1;
1849
#ifdef USE_LOCALE
1850
    for(i = 0; decimalpoint[i]; ++i) {
1851
      if (s[i] != decimalpoint[i])
1852
        goto pcheck;
1853
      }
1854
    decpt = s += i;
1855
#else
1856
    if (*s != '.')
1857
      goto pcheck;
1858
    decpt = ++s;
1859
#endif
1860
    if (!hexdig[*s])
1861
      goto pcheck;
1862
    while(*s == '0')
1863
      s++;
1864
    if (hexdig[*s])
1865
      zret = 0;
1866
    havedig = 1;
1867
    s0 = s;
1868
    }
1869
  while(hexdig[*s])
1870
    s++;
1871
#ifdef USE_LOCALE
1872
  if (*s == *decimalpoint && !decpt) {
1873
    for(i = 1; decimalpoint[i]; ++i) {
1874
      if (s[i] != decimalpoint[i])
1875
        goto pcheck;
1876
      }
1877
    decpt = s += i;
1878
#else
1879
  if (*s == '.' && !decpt) {
1880
    decpt = ++s;
1881
#endif
1882
    while(hexdig[*s])
1883
      s++;
1884
    }/*}*/
1885
  if (decpt)
1886
    e = -(((Long)(s-decpt)) << 2);
1887
 pcheck:
1888
  s1 = s;
1889
  big = esign = 0;
1890
  switch(*s) {
1891
    case 'p':
1892
    case 'P':
1893
    switch(*++s) {
1894
      case '-':
1895
      esign = 1;
1896
      ZEND_FALLTHROUGH;
1897
      case '+':
1898
      s++;
1899
      }
1900
    if ((n = hexdig[*s]) == 0 || n > 0x19) {
1901
      s = s1;
1902
      break;
1903
      }
1904
    e1 = n - 0x10;
1905
    while((n = hexdig[*++s]) !=0 && n <= 0x19) {
1906
      if (e1 & 0xf8000000)
1907
        big = 1;
1908
      e1 = 10*e1 + n - 0x10;
1909
      }
1910
    if (esign)
1911
      e1 = -e1;
1912
    e += e1;
1913
    }
1914
  *sp = (char*)s;
1915
  if (!havedig)
1916
    *sp = (char*)s0 - 1;
1917
  if (zret)
1918
    goto retz1;
1919
  if (big) {
1920
    if (esign) {
1921
#ifdef IEEE_Arith
1922
      switch(rounding) {
1923
        case Round_up:
1924
        if (sign)
1925
          break;
1926
        goto ret_tiny;
1927
        case Round_down:
1928
        if (!sign)
1929
          break;
1930
        goto ret_tiny;
1931
        }
1932
#endif
1933
      goto retz;
1934
#ifdef IEEE_Arith
1935
 ret_tinyf:
1936
      Bfree(b);
1937
 ret_tiny:
1938
#ifndef NO_ERRNO
1939
      errno = ERANGE;
1940
#endif
1941
      word0(rvp) = 0;
1942
      word1(rvp) = 1;
1943
      return;
1944
#endif /* IEEE_Arith */
1945
      }
1946
    switch(rounding) {
1947
      case Round_near:
1948
      goto ovfl1;
1949
      case Round_up:
1950
      if (!sign)
1951
        goto ovfl1;
1952
      goto ret_big;
1953
      case Round_down:
1954
      if (sign)
1955
        goto ovfl1;
1956
      goto ret_big;
1957
      }
1958
 ret_big:
1959
    word0(rvp) = Big0;
1960
    word1(rvp) = Big1;
1961
    return;
1962
    }
1963
  n = s1 - s0 - 1;
1964
  for(k = 0; n > (1 << (kshift-2)) - 1; n >>= 1)
1965
    k++;
1966
  b = Balloc(k);
1967
  x = b->x;
1968
  n = 0;
1969
  L = 0;
1970
#ifdef USE_LOCALE
1971
  for(i = 0; decimalpoint[i+1]; ++i);
1972
#endif
1973
  while(s1 > s0) {
1974
#ifdef USE_LOCALE
1975
    if (*--s1 == decimalpoint[i]) {
1976
      s1 -= i;
1977
      continue;
1978
      }
1979
#else
1980
    if (*--s1 == '.')
1981
      continue;
1982
#endif
1983
    if (n == ULbits) {
1984
      *x++ = L;
1985
      L = 0;
1986
      n = 0;
1987
      }
1988
    L |= (hexdig[*s1] & 0x0f) << n;
1989
    n += 4;
1990
    }
1991
  *x++ = L;
1992
  b->wds = n = x - b->x;
1993
  n = ULbits*n - hi0bits(L);
1994
  nbits = Nbits;
1995
  lostbits = 0;
1996
  x = b->x;
1997
  if (n > nbits) {
1998
    n -= nbits;
1999
    if (any_on(b,n)) {
2000
      lostbits = 1;
2001
      k = n - 1;
2002
      if (x[k>>kshift] & 1 << (k & kmask)) {
2003
        lostbits = 2;
2004
        if (k > 0 && any_on(b,k))
2005
          lostbits = 3;
2006
        }
2007
      }
2008
    rshift(b, n);
2009
    e += n;
2010
    }
2011
  else if (n < nbits) {
2012
    n = nbits - n;
2013
    b = lshift(b, n);
2014
    e -= n;
2015
    x = b->x;
2016
    }
2017
  if (e > Emax) {
2018
 ovfl:
2019
    Bfree(b);
2020
 ovfl1:
2021
#ifndef NO_ERRNO
2022
    errno = ERANGE;
2023
#endif
2024
    word0(rvp) = Exp_mask;
2025
    word1(rvp) = 0;
2026
    return;
2027
    }
2028
  denorm = 0;
2029
  if (e < emin) {
2030
    denorm = 1;
2031
    n = emin - e;
2032
    if (n >= nbits) {
2033
#ifdef IEEE_Arith /*{*/
2034
      switch (rounding) {
2035
        case Round_near:
2036
        if (n == nbits && (n < 2 || any_on(b,n-1)))
2037
          goto ret_tinyf;
2038
        break;
2039
        case Round_up:
2040
        if (!sign)
2041
          goto ret_tinyf;
2042
        break;
2043
        case Round_down:
2044
        if (sign)
2045
          goto ret_tinyf;
2046
        }
2047
#endif /* } IEEE_Arith */
2048
      Bfree(b);
2049
 retz:
2050
#ifndef NO_ERRNO
2051
      errno = ERANGE;
2052
#endif
2053
 retz1:
2054
      rvp->d = 0.;
2055
      return;
2056
      }
2057
    k = n - 1;
2058
    if (lostbits)
2059
      lostbits = 1;
2060
    else if (k > 0)
2061
      lostbits = any_on(b,k);
2062
    if (x[k>>kshift] & 1 << (k & kmask))
2063
      lostbits |= 2;
2064
    nbits -= n;
2065
    rshift(b,n);
2066
    e = emin;
2067
    }
2068
  if (lostbits) {
2069
    up = 0;
2070
    switch(rounding) {
2071
      case Round_zero:
2072
      break;
2073
      case Round_near:
2074
      if (lostbits & 2
2075
       && (lostbits & 1) | (x[0] & 1))
2076
        up = 1;
2077
      break;
2078
      case Round_up:
2079
      up = 1 - sign;
2080
      break;
2081
      case Round_down:
2082
      up = sign;
2083
      }
2084
    if (up) {
2085
      k = b->wds;
2086
      b = increment(b);
2087
      x = b->x;
2088
      if (denorm) {
2089
#if 0
2090
        if (nbits == Nbits - 1
2091
         && x[nbits >> kshift] & 1 << (nbits & kmask))
2092
          denorm = 0; /* not currently used */
2093
#endif
2094
        }
2095
      else if (b->wds > k
2096
       || ((n = nbits & kmask) !=0
2097
           && hi0bits(x[k-1]) < 32-n)) {
2098
        rshift(b,1);
2099
        if (++e > Emax)
2100
          goto ovfl;
2101
        }
2102
      }
2103
    }
2104
#ifdef IEEE_Arith
2105
  if (denorm)
2106
    word0(rvp) = b->wds > 1 ? b->x[1] & ~0x100000 : 0;
2107
  else
2108
    word0(rvp) = (b->x[1] & ~0x100000) | ((e + 0x3ff + 52) << 20);
2109
  word1(rvp) = b->x[0];
2110
#endif
2111
#ifdef IBM
2112
  if ((j = e & 3)) {
2113
    k = b->x[0] & ((1 << j) - 1);
2114
    rshift(b,j);
2115
    if (k) {
2116
      switch(rounding) {
2117
        case Round_up:
2118
        if (!sign)
2119
          increment(b);
2120
        break;
2121
        case Round_down:
2122
        if (sign)
2123
          increment(b);
2124
        break;
2125
        case Round_near:
2126
        j = 1 << (j-1);
2127
        if (k & j && ((k & (j-1)) | lostbits))
2128
          increment(b);
2129
        }
2130
      }
2131
    }
2132
  e >>= 2;
2133
  word0(rvp) = b->x[1] | ((e + 65 + 13) << 24);
2134
  word1(rvp) = b->x[0];
2135
#endif
2136
#ifdef VAX
2137
  /* The next two lines ignore swap of low- and high-order 2 bytes. */
2138
  /* word0(rvp) = (b->x[1] & ~0x800000) | ((e + 129 + 55) << 23); */
2139
  /* word1(rvp) = b->x[0]; */
2140
  word0(rvp) = ((b->x[1] & ~0x800000) >> 16) | ((e + 129 + 55) << 7) | (b->x[1] << 16);
2141
  word1(rvp) = (b->x[0] >> 16) | (b->x[0] << 16);
2142
#endif
2143
  Bfree(b);
2144
  }
2145
#endif /*!NO_HEX_FP}*/
2146
2147
 static int
2148
#ifdef KR_headers
2149
dshift(b, p2) Bigint *b; int p2;
2150
#else
2151
dshift(Bigint *b, int p2)
2152
#endif
2153
37.9k
{
2154
37.9k
  int rv = hi0bits(b->x[b->wds-1]) - 4;
2155
37.9k
  if (p2 > 0)
2156
34.4k
    rv -= p2;
2157
37.9k
  return rv & kmask;
2158
37.9k
  }
2159
2160
 static int
2161
quorem
2162
#ifdef KR_headers
2163
  (b, S) Bigint *b, *S;
2164
#else
2165
  (Bigint *b, Bigint *S)
2166
#endif
2167
442k
{
2168
442k
  int n;
2169
442k
  ULong *bx, *bxe, q, *sx, *sxe;
2170
442k
#ifdef ULLong
2171
442k
  ULLong borrow, carry, y, ys;
2172
#else
2173
  ULong borrow, carry, y, ys;
2174
#ifdef Pack_32
2175
  ULong si, z, zs;
2176
#endif
2177
#endif
2178
2179
442k
  n = S->wds;
2180
#ifdef DEBUG
2181
  /*debug*/ if (b->wds > n)
2182
  /*debug*/ Bug("oversize b in quorem");
2183
#endif
2184
442k
  if (b->wds < n)
2185
1.80k
    return 0;
2186
440k
  sx = S->x;
2187
440k
  sxe = sx + --n;
2188
440k
  bx = b->x;
2189
440k
  bxe = bx + n;
2190
440k
  q = *bxe / (*sxe + 1);  /* ensure q <= true quotient */
2191
#ifdef DEBUG
2192
#ifdef NO_STRTOD_BIGCOMP
2193
  /*debug*/ if (q > 9)
2194
#else
2195
  /* An oversized q is possible when quorem is called from bigcomp and */
2196
  /* the input is near, e.g., twice the smallest denormalized number. */
2197
  /*debug*/ if (q > 15)
2198
#endif
2199
  /*debug*/ Bug("oversized quotient in quorem");
2200
#endif
2201
440k
  if (q) {
2202
391k
    borrow = 0;
2203
391k
    carry = 0;
2204
926k
    do {
2205
926k
#ifdef ULLong
2206
926k
      ys = *sx++ * (ULLong)q + carry;
2207
926k
      carry = ys >> 32;
2208
926k
      y = *bx - (ys & FFFFFFFF) - borrow;
2209
926k
      borrow = y >> 32 & (ULong)1;
2210
926k
      *bx++ = y & FFFFFFFF;
2211
#else
2212
#ifdef Pack_32
2213
      si = *sx++;
2214
      ys = (si & 0xffff) * q + carry;
2215
      zs = (si >> 16) * q + (ys >> 16);
2216
      carry = zs >> 16;
2217
      y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
2218
      borrow = (y & 0x10000) >> 16;
2219
      z = (*bx >> 16) - (zs & 0xffff) - borrow;
2220
      borrow = (z & 0x10000) >> 16;
2221
      Storeinc(bx, z, y);
2222
#else
2223
      ys = *sx++ * q + carry;
2224
      carry = ys >> 16;
2225
      y = *bx - (ys & 0xffff) - borrow;
2226
      borrow = (y & 0x10000) >> 16;
2227
      *bx++ = y & 0xffff;
2228
#endif
2229
#endif
2230
926k
      }
2231
926k
      while(sx <= sxe);
2232
391k
    if (!*bxe) {
2233
10
      bx = b->x;
2234
10
      while(--bxe > bx && !*bxe)
2235
0
        --n;
2236
10
      b->wds = n;
2237
10
      }
2238
391k
    }
2239
440k
  if (cmp(b, S) >= 0) {
2240
8.45k
    q++;
2241
8.45k
    borrow = 0;
2242
8.45k
    carry = 0;
2243
8.45k
    bx = b->x;
2244
8.45k
    sx = S->x;
2245
17.8k
    do {
2246
17.8k
#ifdef ULLong
2247
17.8k
      ys = *sx++ + carry;
2248
17.8k
      carry = ys >> 32;
2249
17.8k
      y = *bx - (ys & FFFFFFFF) - borrow;
2250
17.8k
      borrow = y >> 32 & (ULong)1;
2251
17.8k
      *bx++ = y & FFFFFFFF;
2252
#else
2253
#ifdef Pack_32
2254
      si = *sx++;
2255
      ys = (si & 0xffff) + carry;
2256
      zs = (si >> 16) + (ys >> 16);
2257
      carry = zs >> 16;
2258
      y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
2259
      borrow = (y & 0x10000) >> 16;
2260
      z = (*bx >> 16) - (zs & 0xffff) - borrow;
2261
      borrow = (z & 0x10000) >> 16;
2262
      Storeinc(bx, z, y);
2263
#else
2264
      ys = *sx++ + carry;
2265
      carry = ys >> 16;
2266
      y = *bx - (ys & 0xffff) - borrow;
2267
      borrow = (y & 0x10000) >> 16;
2268
      *bx++ = y & 0xffff;
2269
#endif
2270
#endif
2271
17.8k
      }
2272
17.8k
      while(sx <= sxe);
2273
8.45k
    bx = b->x;
2274
8.45k
    bxe = bx + n;
2275
8.45k
    if (!*bxe) {
2276
3.10k
      while(--bxe > bx && !*bxe)
2277
0
        --n;
2278
3.10k
      b->wds = n;
2279
3.10k
      }
2280
8.45k
    }
2281
440k
  return q;
2282
442k
  }
2283
2284
#if defined(Avoid_Underflow) || !defined(NO_STRTOD_BIGCOMP) /*{*/
2285
 static double
2286
sulp
2287
#ifdef KR_headers
2288
  (x, bc) U *x; BCinfo *bc;
2289
#else
2290
  (U *x, BCinfo *bc)
2291
#endif
2292
128
{
2293
128
  U u;
2294
128
  double rv;
2295
128
  int i;
2296
2297
128
  rv = ulp(x);
2298
128
  if (!bc->scale || (i = 2*P + 1 - ((word0(x) & Exp_mask) >> Exp_shift)) <= 0)
2299
128
    return rv; /* Is there an example where i <= 0 ? */
2300
0
  word0(&u) = Exp_1 + (i << Exp_shift);
2301
0
  word1(&u) = 0;
2302
0
  return rv * u.d;
2303
128
  }
2304
#endif /*}*/
2305
2306
#ifndef NO_STRTOD_BIGCOMP
2307
 static void
2308
bigcomp
2309
#ifdef KR_headers
2310
  (rv, s0, bc)
2311
  U *rv; CONST char *s0; BCinfo *bc;
2312
#else
2313
  (U *rv, const char *s0, BCinfo *bc)
2314
#endif
2315
1.21k
{
2316
1.21k
  Bigint *b, *d;
2317
1.21k
  int b2, bbits, d2, dd, dig, dsign, i, j, nd, nd0, p2, p5, speccase;
2318
2319
1.21k
  dsign = bc->dsign;
2320
1.21k
  nd = bc->nd;
2321
1.21k
  nd0 = bc->nd0;
2322
1.21k
  p5 = nd + bc->e0 - 1;
2323
1.21k
  speccase = 0;
2324
1.21k
#ifndef Sudden_Underflow
2325
1.21k
  if (rv->d == 0.) { /* special case: value near underflow-to-zero */
2326
        /* threshold was rounded to zero */
2327
26
    b = i2b(1);
2328
26
    p2 = Emin - P + 1;
2329
26
    bbits = 1;
2330
26
#ifdef Avoid_Underflow
2331
26
    word0(rv) = (P+2) << Exp_shift;
2332
#else
2333
    word1(rv) = 1;
2334
#endif
2335
26
    i = 0;
2336
#ifdef Honor_FLT_ROUNDS
2337
    if (bc->rounding == 1)
2338
#endif
2339
26
      {
2340
26
      speccase = 1;
2341
26
      --p2;
2342
26
      dsign = 0;
2343
26
      goto have_i;
2344
26
      }
2345
26
    }
2346
1.19k
  else
2347
1.19k
#endif
2348
1.19k
    b = d2b(rv, &p2, &bbits);
2349
1.19k
#ifdef Avoid_Underflow
2350
1.19k
  p2 -= bc->scale;
2351
1.19k
#endif
2352
  /* floor(log2(rv)) == bbits - 1 + p2 */
2353
  /* Check for denormal case. */
2354
1.19k
  i = P - bbits;
2355
1.19k
  if (i > (j = P - Emin - 1 + p2)) {
2356
#ifdef Sudden_Underflow
2357
    Bfree(b);
2358
    b = i2b(1);
2359
    p2 = Emin;
2360
    i = P - 1;
2361
#ifdef Avoid_Underflow
2362
    word0(rv) = (1 + bc->scale) << Exp_shift;
2363
#else
2364
    word0(rv) = Exp_msk1;
2365
#endif
2366
    word1(rv) = 0;
2367
#else
2368
0
    i = j;
2369
0
#endif
2370
0
    }
2371
#ifdef Honor_FLT_ROUNDS
2372
  if (bc->rounding != 1) {
2373
    if (i > 0)
2374
      b = lshift(b, i);
2375
    if (dsign)
2376
      b = increment(b);
2377
    }
2378
  else
2379
#endif
2380
1.19k
    {
2381
1.19k
    b = lshift(b, ++i);
2382
1.19k
    b->x[0] |= 1;
2383
1.19k
    }
2384
1.19k
#ifndef Sudden_Underflow
2385
1.21k
 have_i:
2386
1.21k
#endif
2387
1.21k
  p2 -= p5 + i;
2388
1.21k
  d = i2b(1);
2389
  /* Arrange for convenient computation of quotients:
2390
   * shift left if necessary so divisor has 4 leading 0 bits.
2391
   */
2392
1.21k
  if (p5 > 0)
2393
1.09k
    d = pow5mult(d, p5);
2394
127
  else if (p5 < 0)
2395
98
    b = pow5mult(b, -p5);
2396
1.21k
  if (p2 > 0) {
2397
842
    b2 = p2;
2398
842
    d2 = 0;
2399
842
    }
2400
376
  else {
2401
376
    b2 = 0;
2402
376
    d2 = -p2;
2403
376
    }
2404
1.21k
  i = dshift(d, d2);
2405
1.21k
  if ((b2 += i) > 0)
2406
1.21k
    b = lshift(b, b2);
2407
1.21k
  if ((d2 += i) > 0)
2408
1.19k
    d = lshift(d, d2);
2409
2410
  /* Now b/d = exactly half-way between the two floating-point values */
2411
  /* on either side of the input string.  Compute first digit of b/d. */
2412
2413
1.21k
  if (!(dig = quorem(b,d))) {
2414
0
    b = multadd(b, 10, 0);  /* very unlikely */
2415
0
    dig = quorem(b,d);
2416
0
    }
2417
2418
  /* Compare b/d with s0 */
2419
2420
16.6k
  for(i = 0; i < nd0; ) {
2421
16.3k
    if ((dd = s0[i++] - '0' - dig))
2422
916
      goto ret;
2423
15.4k
    if (!b->x[0] && b->wds == 1) {
2424
0
      if (i < nd)
2425
0
        dd = 1;
2426
0
      goto ret;
2427
0
      }
2428
15.4k
    b = multadd(b, 10, 0);
2429
15.4k
    dig = quorem(b,d);
2430
15.4k
    }
2431
3.80k
  for(j = bc->dp1; i++ < nd;) {
2432
3.77k
    if ((dd = s0[j++] - '0' - dig))
2433
276
      goto ret;
2434
3.50k
    if (!b->x[0] && b->wds == 1) {
2435
0
      if (i < nd)
2436
0
        dd = 1;
2437
0
      goto ret;
2438
0
      }
2439
3.50k
    b = multadd(b, 10, 0);
2440
3.50k
    dig = quorem(b,d);
2441
3.50k
    }
2442
26
  if (dig > 0 || b->x[0] || b->wds > 1)
2443
26
    dd = -1;
2444
1.21k
 ret:
2445
1.21k
  Bfree(b);
2446
1.21k
  Bfree(d);
2447
#ifdef Honor_FLT_ROUNDS
2448
  if (bc->rounding != 1) {
2449
    if (dd < 0) {
2450
      if (bc->rounding == 0) {
2451
        if (!dsign)
2452
          goto retlow1;
2453
        }
2454
      else if (dsign)
2455
        goto rethi1;
2456
      }
2457
    else if (dd > 0) {
2458
      if (bc->rounding == 0) {
2459
        if (dsign)
2460
          goto rethi1;
2461
        goto ret1;
2462
        }
2463
      if (!dsign)
2464
        goto rethi1;
2465
      dval(rv) += 2.*sulp(rv,bc);
2466
      }
2467
    else {
2468
      bc->inexact = 0;
2469
      if (dsign)
2470
        goto rethi1;
2471
      }
2472
    }
2473
  else
2474
#endif
2475
1.21k
  if (speccase) {
2476
26
    if (dd <= 0)
2477
26
      rv->d = 0.;
2478
26
    }
2479
1.19k
  else if (dd < 0) {
2480
1.18k
    if (!dsign)  /* does not happen for round-near */
2481
0
retlow1:
2482
0
      dval(rv) -= sulp(rv,bc);
2483
1.18k
    }
2484
4
  else if (dd > 0) {
2485
4
    if (dsign) {
2486
4
 rethi1:
2487
4
      dval(rv) += sulp(rv,bc);
2488
4
      }
2489
4
    }
2490
0
  else {
2491
    /* Exact half-way case:  apply round-even rule. */
2492
0
    if ((j = ((word0(rv) & Exp_mask) >> Exp_shift) - bc->scale) <= 0) {
2493
0
      i = 1 - j;
2494
0
      if (i <= 31) {
2495
0
        if (word1(rv) & (0x1 << i))
2496
0
          goto odd;
2497
0
        }
2498
0
      else if (word0(rv) & (0x1 << (i-32)))
2499
0
        goto odd;
2500
0
      }
2501
0
    else if (word1(rv) & 1) {
2502
0
 odd:
2503
0
      if (dsign)
2504
0
        goto rethi1;
2505
0
      goto retlow1;
2506
0
      }
2507
0
    }
2508
2509
#ifdef Honor_FLT_ROUNDS
2510
 ret1:
2511
#endif
2512
1.21k
  return;
2513
1.21k
  }
2514
#endif /* NO_STRTOD_BIGCOMP */
2515
2516
ZEND_API double
2517
zend_strtod
2518
#ifdef KR_headers
2519
  (s00, se) CONST char *s00; char **se;
2520
#else
2521
  (const char *s00, const char **se)
2522
#endif
2523
55.8k
{
2524
55.8k
  int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, e, e1;
2525
55.8k
  int esign, i, j, k, nd, nd0, nf, nz, nz0, nz1, sign;
2526
55.8k
  CONST char *s, *s0, *s1;
2527
55.8k
  volatile double aadj, aadj1;
2528
55.8k
  Long L;
2529
55.8k
  U aadj2, adj, rv, rv0;
2530
55.8k
  ULong y, z;
2531
55.8k
  BCinfo bc;
2532
55.8k
  Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
2533
55.8k
#ifdef Avoid_Underflow
2534
55.8k
  ULong Lsb, Lsb1;
2535
55.8k
#endif
2536
#ifdef SET_INEXACT
2537
  int oldinexact;
2538
#endif
2539
55.8k
#ifndef NO_STRTOD_BIGCOMP
2540
55.8k
  int req_bigcomp = 0;
2541
55.8k
#endif
2542
#ifdef Honor_FLT_ROUNDS /*{*/
2543
#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
2544
  bc.rounding = Flt_Rounds;
2545
#else /*}{*/
2546
  bc.rounding = 1;
2547
  switch(fegetround()) {
2548
    case FE_TOWARDZERO: bc.rounding = 0; break;
2549
    case FE_UPWARD: bc.rounding = 2; break;
2550
    case FE_DOWNWARD: bc.rounding = 3;
2551
    }
2552
#endif /*}}*/
2553
#endif /*}*/
2554
#ifdef USE_LOCALE
2555
  CONST char *s2;
2556
#endif
2557
2558
55.8k
  sign = nz0 = nz1 = nz = bc.dplen = bc.uflchk = 0;
2559
55.8k
  dval(&rv) = 0.;
2560
55.8k
  for(s = s00;;s++) switch(*s) {
2561
127
    case '-':
2562
127
      sign = 1;
2563
127
      ZEND_FALLTHROUGH;
2564
141
    case '+':
2565
141
      if (*++s)
2566
141
        goto break2;
2567
0
      ZEND_FALLTHROUGH;
2568
0
    case 0:
2569
0
      goto ret0;
2570
0
    case '\t':
2571
0
    case '\n':
2572
0
    case '\v':
2573
0
    case '\f':
2574
0
    case '\r':
2575
0
    case ' ':
2576
0
      continue;
2577
55.6k
    default:
2578
55.6k
      goto break2;
2579
55.8k
    }
2580
55.8k
 break2:
2581
55.8k
  if (*s == '0') {
2582
#ifndef NO_HEX_FP /*{*/
2583
    switch(s[1]) {
2584
      case 'x':
2585
      case 'X':
2586
#ifdef Honor_FLT_ROUNDS
2587
      gethex(&s, &rv, bc.rounding, sign);
2588
#else
2589
      gethex(&s, &rv, 1, sign);
2590
#endif
2591
      goto ret;
2592
      }
2593
#endif /*}*/
2594
1.56k
    nz0 = 1;
2595
17.5k
    while(*++s == '0') ;
2596
1.56k
    if (!*s)
2597
4
      goto ret;
2598
1.56k
    }
2599
55.8k
  s0 = s;
2600
55.8k
  y = z = 0;
2601
778k
  for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
2602
722k
    if (nd < 9)
2603
260k
      y = 10*y + c - '0';
2604
462k
    else if (nd < DBL_DIG + 2)
2605
143k
      z = 10*z + c - '0';
2606
55.8k
  nd0 = nd;
2607
55.8k
  bc.dp0 = bc.dp1 = s - s0;
2608
85.5k
  for(s1 = s; s1 > s0 && *--s1 == '0'; )
2609
29.7k
    ++nz1;
2610
#ifdef USE_LOCALE
2611
  s1 = localeconv()->decimal_point;
2612
  if (c == *s1) {
2613
    c = '.';
2614
    if (*++s1) {
2615
      s2 = s;
2616
      for(;;) {
2617
        if (*++s2 != *s1) {
2618
          c = 0;
2619
          break;
2620
          }
2621
        if (!*++s1) {
2622
          s = s2;
2623
          break;
2624
          }
2625
        }
2626
      }
2627
    }
2628
#endif
2629
55.8k
  if (c == '.') {
2630
30.8k
    c = *++s;
2631
30.8k
    bc.dp1 = s - s0;
2632
30.8k
    bc.dplen = bc.dp1 - bc.dp0;
2633
30.8k
    if (!nd) {
2634
23.5k
      for(; c == '0'; c = *++s)
2635
10.2k
        nz++;
2636
13.3k
      if (c > '0' && c <= '9') {
2637
7.80k
        bc.dp0 = s0 - s;
2638
7.80k
        bc.dp1 = bc.dp0 + bc.dplen;
2639
7.80k
        s0 = s;
2640
7.80k
        nf += nz;
2641
7.80k
        nz = 0;
2642
7.80k
        goto have_dig;
2643
7.80k
        }
2644
5.50k
      goto dig_done;
2645
13.3k
      }
2646
200k
    for(; c >= '0' && c <= '9'; c = *++s) {
2647
182k
 have_dig:
2648
182k
      nz++;
2649
182k
      if (c -= '0') {
2650
164k
        nf += nz;
2651
179k
        for(i = 1; i < nz; i++)
2652
15.0k
          if (nd++ < 9)
2653
5.97k
            y *= 10;
2654
9.06k
          else if (nd <= DBL_DIG + 2)
2655
2.98k
            z *= 10;
2656
164k
        if (nd++ < 9)
2657
87.4k
          y = 10*y + c;
2658
77.0k
        else if (nd <= DBL_DIG + 2)
2659
58.0k
          z = 10*z + c;
2660
164k
        nz = nz1 = 0;
2661
164k
        }
2662
182k
      }
2663
17.5k
    }
2664
55.8k
 dig_done:
2665
55.8k
  if (nd < 0) {
2666
    /* overflow */
2667
0
    nd = DBL_DIG + 2;
2668
0
  }
2669
55.8k
  if (nf < 0) {
2670
    /* overflow */
2671
0
    nf = DBL_DIG + 2;
2672
0
  }
2673
55.8k
  e = 0;
2674
55.8k
  if (c == 'e' || c == 'E') {
2675
9.60k
    if (!nd && !nz && !nz0) {
2676
2
      goto ret0;
2677
2
      }
2678
9.59k
    s00 = s;
2679
9.59k
    esign = 0;
2680
9.59k
    switch(c = *++s) {
2681
467
      case '-':
2682
467
        esign = 1;
2683
467
        ZEND_FALLTHROUGH;
2684
1.64k
      case '+':
2685
1.64k
        c = *++s;
2686
9.59k
      }
2687
9.59k
    if (c >= '0' && c <= '9') {
2688
11.4k
      while(c == '0')
2689
2.07k
        c = *++s;
2690
9.39k
      if (c > '0' && c <= '9') {
2691
9.19k
        L = c - '0';
2692
9.19k
        s1 = s;
2693
54.7k
        while((c = *++s) >= '0' && c <= '9')
2694
45.5k
          L = (Long) (10*(ULong)L + (c - '0'));
2695
9.19k
        if (s - s1 > 8 || L > 19999)
2696
          /* Avoid confusion from exponents
2697
           * so large that e might overflow.
2698
           */
2699
3.72k
          e = 19999; /* safe for 16 bit ints */
2700
5.47k
        else
2701
5.47k
          e = (int)L;
2702
9.19k
        if (esign)
2703
449
          e = -e;
2704
9.19k
        }
2705
197
      else
2706
197
        e = 0;
2707
9.39k
      }
2708
202
    else
2709
202
      s = s00;
2710
9.59k
    }
2711
55.8k
  if (!nd) {
2712
6.13k
    if (!nz && !nz0) {
2713
#ifdef INFNAN_CHECK
2714
      /* Check for Nan and Infinity */
2715
      if (!bc.dplen)
2716
       switch(c) {
2717
        case 'i':
2718
        case 'I':
2719
        if (match(&s,"nf")) {
2720
          --s;
2721
          if (!match(&s,"inity"))
2722
            ++s;
2723
          word0(&rv) = 0x7ff00000;
2724
          word1(&rv) = 0;
2725
          goto ret;
2726
          }
2727
        break;
2728
        case 'n':
2729
        case 'N':
2730
        if (match(&s, "an")) {
2731
          word0(&rv) = NAN_WORD0;
2732
          word1(&rv) = NAN_WORD1;
2733
#ifndef No_Hex_NaN
2734
          if (*s == '(') /*)*/
2735
            hexnan(&rv, &s);
2736
#endif
2737
          goto ret;
2738
          }
2739
        }
2740
#endif /* INFNAN_CHECK */
2741
372
 ret0:
2742
372
      s = s00;
2743
372
      sign = 0;
2744
372
      }
2745
6.13k
    goto ret;
2746
6.13k
    }
2747
49.6k
  bc.e0 = e1 = e -= nf;
2748
2749
  /* Now we have nd0 digits, starting at s0, followed by a
2750
   * decimal point, followed by nd-nd0 digits.  The number we're
2751
   * after is the integer represented by those digits times
2752
   * 10**e */
2753
2754
49.6k
  if (!nd0)
2755
7.80k
    nd0 = nd;
2756
49.6k
  k = nd < DBL_DIG + 2 ? nd : DBL_DIG + 2;
2757
49.6k
  dval(&rv) = y;
2758
49.6k
  if (k > 9) {
2759
#ifdef SET_INEXACT
2760
    if (k > DBL_DIG)
2761
      oldinexact = get_inexact();
2762
#endif
2763
32.7k
    dval(&rv) = tens[k - 9] * dval(&rv) + z;
2764
32.7k
    }
2765
49.6k
  bd0 = 0;
2766
49.6k
  if (nd <= DBL_DIG
2767
29.5k
#ifndef RND_PRODQUOT
2768
29.5k
#ifndef Honor_FLT_ROUNDS
2769
29.5k
    && Flt_Rounds == 1
2770
49.6k
#endif
2771
49.6k
#endif
2772
49.6k
      ) {
2773
29.5k
    if (!e)
2774
2.65k
      goto ret;
2775
26.9k
#ifndef ROUND_BIASED_without_Round_Up
2776
26.9k
    if (e > 0) {
2777
8.18k
      if (e <= Ten_pmax) {
2778
#ifdef VAX
2779
        goto vax_ovfl_check;
2780
#else
2781
#ifdef Honor_FLT_ROUNDS
2782
        /* round correctly FLT_ROUNDS = 2 or 3 */
2783
        if (sign) {
2784
          rv.d = -rv.d;
2785
          sign = 0;
2786
          }
2787
#endif
2788
2.55k
        /* rv = */ rounded_product(dval(&rv), tens[e]);
2789
2.55k
        goto ret;
2790
2.55k
#endif
2791
2.55k
        }
2792
5.62k
      i = DBL_DIG - nd;
2793
5.62k
      if (e <= Ten_pmax + i) {
2794
        /* A fancier test would sometimes let us do
2795
         * this for larger i values.
2796
         */
2797
#ifdef Honor_FLT_ROUNDS
2798
        /* round correctly FLT_ROUNDS = 2 or 3 */
2799
        if (sign) {
2800
          rv.d = -rv.d;
2801
          sign = 0;
2802
          }
2803
#endif
2804
73
        e -= i;
2805
73
        dval(&rv) *= tens[i];
2806
#ifdef VAX
2807
        /* VAX exponent range is so narrow we must
2808
         * worry about overflow here...
2809
         */
2810
 vax_ovfl_check:
2811
        word0(&rv) -= P*Exp_msk1;
2812
        /* rv = */ rounded_product(dval(&rv), tens[e]);
2813
        if ((word0(&rv) & Exp_mask)
2814
         > Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
2815
          goto ovfl;
2816
        word0(&rv) += P*Exp_msk1;
2817
#else
2818
73
        /* rv = */ rounded_product(dval(&rv), tens[e]);
2819
73
#endif
2820
73
        goto ret;
2821
73
        }
2822
5.62k
      }
2823
18.7k
#ifndef Inaccurate_Divide
2824
18.7k
    else if (e >= -Ten_pmax) {
2825
#ifdef Honor_FLT_ROUNDS
2826
      /* round correctly FLT_ROUNDS = 2 or 3 */
2827
      if (sign) {
2828
        rv.d = -rv.d;
2829
        sign = 0;
2830
        }
2831
#endif
2832
18.3k
      /* rv = */ rounded_quotient(dval(&rv), tens[-e]);
2833
18.3k
      goto ret;
2834
18.3k
      }
2835
26.9k
#endif
2836
26.9k
#endif /* ROUND_BIASED_without_Round_Up */
2837
26.9k
    }
2838
26.0k
  e1 += nd - k;
2839
2840
26.0k
#ifdef IEEE_Arith
2841
#ifdef SET_INEXACT
2842
  bc.inexact = 1;
2843
  if (k <= DBL_DIG)
2844
    oldinexact = get_inexact();
2845
#endif
2846
26.0k
#ifdef Avoid_Underflow
2847
26.0k
  bc.scale = 0;
2848
26.0k
#endif
2849
#ifdef Honor_FLT_ROUNDS
2850
  if (bc.rounding >= 2) {
2851
    if (sign)
2852
      bc.rounding = bc.rounding == 2 ? 0 : 2;
2853
    else
2854
      if (bc.rounding != 2)
2855
        bc.rounding = 0;
2856
    }
2857
#endif
2858
26.0k
#endif /*IEEE_Arith*/
2859
2860
  /* Get starting approximation = rv * 10**e1 */
2861
2862
26.0k
  if (e1 > 0) {
2863
22.9k
    if ((i = e1 & 15))
2864
22.6k
      dval(&rv) *= tens[i];
2865
22.9k
    if (e1 &= ~15) {
2866
12.4k
      if (e1 > DBL_MAX_10_EXP) {
2867
3.97k
 ovfl:
2868
        /* Can't trust HUGE_VAL */
2869
3.97k
#ifdef IEEE_Arith
2870
#ifdef Honor_FLT_ROUNDS
2871
        switch(bc.rounding) {
2872
          case 0: /* toward 0 */
2873
          case 3: /* toward -infinity */
2874
          word0(&rv) = Big0;
2875
          word1(&rv) = Big1;
2876
          break;
2877
          default:
2878
          word0(&rv) = Exp_mask;
2879
          word1(&rv) = 0;
2880
          }
2881
#else /*Honor_FLT_ROUNDS*/
2882
3.97k
        word0(&rv) = Exp_mask;
2883
3.97k
        word1(&rv) = 0;
2884
3.97k
#endif /*Honor_FLT_ROUNDS*/
2885
#ifdef SET_INEXACT
2886
        /* set overflow bit */
2887
        dval(&rv0) = 1e300;
2888
        dval(&rv0) *= dval(&rv0);
2889
#endif
2890
#else /*IEEE_Arith*/
2891
        word0(&rv) = Big0;
2892
        word1(&rv) = Big1;
2893
#endif /*IEEE_Arith*/
2894
4.01k
 range_err:
2895
4.01k
        if (bd0) {
2896
4
          Bfree(bb);
2897
4
          Bfree(bd);
2898
4
          Bfree(bs);
2899
4
          Bfree(bd0);
2900
4
          Bfree(delta);
2901
4
          }
2902
#ifndef NO_ERRNO
2903
        errno = ERANGE;
2904
#endif
2905
4.01k
        goto ret;
2906
3.97k
        }
2907
8.49k
      e1 >>= 4;
2908
13.9k
      for(j = 0; e1 > 1; j++, e1 >>= 1)
2909
5.48k
        if (e1 & 1)
2910
2.68k
          dval(&rv) *= bigtens[j];
2911
    /* The last multiplication could overflow. */
2912
8.49k
      word0(&rv) -= P*Exp_msk1;
2913
8.49k
      dval(&rv) *= bigtens[j];
2914
8.49k
      if ((z = word0(&rv) & Exp_mask)
2915
8.49k
       > Exp_msk1*(DBL_MAX_EXP+Bias-P))
2916
44
        goto ovfl;
2917
8.45k
      if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
2918
        /* set to largest number */
2919
        /* (Can't trust DBL_MAX) */
2920
4
        word0(&rv) = Big0;
2921
4
        word1(&rv) = Big1;
2922
4
        }
2923
8.44k
      else
2924
8.44k
        word0(&rv) += P*Exp_msk1;
2925
8.45k
      }
2926
22.9k
    }
2927
3.02k
  else if (e1 < 0) {
2928
2.96k
    e1 = -e1;
2929
2.96k
    if ((i = e1 & 15))
2930
1.71k
      dval(&rv) /= tens[i];
2931
2.96k
    if (e1 >>= 4) {
2932
1.74k
      if (e1 >= 1 << n_bigtens)
2933
16
        goto undfl;
2934
1.73k
#ifdef Avoid_Underflow
2935
1.73k
      if (e1 & Scale_Bit)
2936
80
        bc.scale = 2*P;
2937
4.38k
      for(j = 0; e1 > 0; j++, e1 >>= 1)
2938
2.65k
        if (e1 & 1)
2939
2.00k
          dval(&rv) *= tinytens[j];
2940
1.73k
      if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask)
2941
80
            >> Exp_shift)) > 0) {
2942
        /* scaled rv is denormal; clear j low bits */
2943
72
        if (j >= 32) {
2944
52
          if (j > 54)
2945
0
            goto undfl;
2946
52
          word1(&rv) = 0;
2947
52
          if (j >= 53)
2948
30
           word0(&rv) = (P+2)*Exp_msk1;
2949
22
          else
2950
22
           word0(&rv) &= 0xffffffff << (j-32);
2951
52
          }
2952
20
        else
2953
20
          word1(&rv) &= 0xffffffff << j;
2954
72
        }
2955
#else
2956
      for(j = 0; e1 > 1; j++, e1 >>= 1)
2957
        if (e1 & 1)
2958
          dval(&rv) *= tinytens[j];
2959
      /* The last multiplication could underflow. */
2960
      dval(&rv0) = dval(&rv);
2961
      dval(&rv) *= tinytens[j];
2962
      if (!dval(&rv)) {
2963
        dval(&rv) = 2.*dval(&rv0);
2964
        dval(&rv) *= tinytens[j];
2965
#endif
2966
1.73k
        if (!dval(&rv)) {
2967
42
 undfl:
2968
42
          dval(&rv) = 0.;
2969
42
          goto range_err;
2970
0
          }
2971
#ifndef Avoid_Underflow
2972
        word0(&rv) = Tiny0;
2973
        word1(&rv) = Tiny1;
2974
        /* The refinement below will clean
2975
         * this approximation up.
2976
         */
2977
        }
2978
#endif
2979
1.73k
      }
2980
2.96k
    }
2981
2982
  /* Now the hard part -- adjusting rv to the correct value.*/
2983
2984
  /* Put digits into bd: true value = bd * 10^e */
2985
2986
22.0k
  bc.nd = nd - nz1;
2987
22.0k
#ifndef NO_STRTOD_BIGCOMP
2988
22.0k
  bc.nd0 = nd0; /* Only needed if nd > strtod_diglim, but done here */
2989
      /* to silence an erroneous warning about bc.nd0 */
2990
      /* possibly not being initialized. */
2991
22.0k
  if (nd > strtod_diglim) {
2992
    /* ASSERT(strtod_diglim >= 18); 18 == one more than the */
2993
    /* minimum number of decimal digits to distinguish double values */
2994
    /* in IEEE arithmetic. */
2995
2.23k
    i = j = 18;
2996
2.23k
    if (i > nd0)
2997
321
      j += bc.dplen;
2998
9.83k
    for(;;) {
2999
9.83k
      if (--j < bc.dp1 && j >= bc.dp0)
3000
8
        j = bc.dp0 - 1;
3001
9.83k
      if (s0[j] != '0')
3002
2.23k
        break;
3003
7.60k
      --i;
3004
7.60k
      }
3005
2.23k
    e += nd - i;
3006
2.23k
    nd = i;
3007
2.23k
    if (nd0 > nd)
3008
1.91k
      nd0 = nd;
3009
2.23k
    if (nd < 9) { /* must recompute y */
3010
579
      y = 0;
3011
3.43k
      for(i = 0; i < nd0; ++i)
3012
2.85k
        y = 10*y + s0[i] - '0';
3013
767
      for(j = bc.dp1; i < nd; ++i)
3014
188
        y = 10*y + s0[j++] - '0';
3015
579
      }
3016
2.23k
    }
3017
22.0k
#endif
3018
22.0k
  bd0 = s2b(s0, nd0, nd, y, bc.dplen);
3019
3020
23.2k
  for(;;) {
3021
23.2k
    bd = Balloc(bd0->k);
3022
23.2k
    Bcopy(bd, bd0);
3023
23.2k
    bb = d2b(&rv, &bbe, &bbbits); /* rv = bb * 2^bbe */
3024
23.2k
    bs = i2b(1);
3025
3026
23.2k
    if (e >= 0) {
3027
20.2k
      bb2 = bb5 = 0;
3028
20.2k
      bd2 = bd5 = e;
3029
20.2k
      }
3030
3.02k
    else {
3031
3.02k
      bb2 = bb5 = -e;
3032
3.02k
      bd2 = bd5 = 0;
3033
3.02k
      }
3034
23.2k
    if (bbe >= 0)
3035
20.3k
      bb2 += bbe;
3036
2.85k
    else
3037
2.85k
      bd2 -= bbe;
3038
23.2k
    bs2 = bb2;
3039
#ifdef Honor_FLT_ROUNDS
3040
    if (bc.rounding != 1)
3041
      bs2++;
3042
#endif
3043
23.2k
#ifdef Avoid_Underflow
3044
23.2k
    Lsb = LSB;
3045
23.2k
    Lsb1 = 0;
3046
23.2k
    j = bbe - bc.scale;
3047
23.2k
    i = j + bbbits - 1; /* logb(rv) */
3048
23.2k
    j = P + 1 - bbbits;
3049
23.2k
    if (i < Emin) { /* denormal */
3050
78
      i = Emin - i;
3051
78
      j -= i;
3052
78
      if (i < 32)
3053
26
        Lsb <<= i;
3054
52
      else if (i < 52)
3055
22
        Lsb1 = Lsb << (i-32);
3056
30
      else
3057
30
        Lsb1 = Exp_mask;
3058
78
      }
3059
#else /*Avoid_Underflow*/
3060
#ifdef Sudden_Underflow
3061
#ifdef IBM
3062
    j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
3063
#else
3064
    j = P + 1 - bbbits;
3065
#endif
3066
#else /*Sudden_Underflow*/
3067
    j = bbe;
3068
    i = j + bbbits - 1; /* logb(rv) */
3069
    if (i < Emin) /* denormal */
3070
      j += P - Emin;
3071
    else
3072
      j = P + 1 - bbbits;
3073
#endif /*Sudden_Underflow*/
3074
#endif /*Avoid_Underflow*/
3075
23.2k
    bb2 += j;
3076
23.2k
    bd2 += j;
3077
23.2k
#ifdef Avoid_Underflow
3078
23.2k
    bd2 += bc.scale;
3079
23.2k
#endif
3080
23.2k
    i = bb2 < bd2 ? bb2 : bd2;
3081
23.2k
    if (i > bs2)
3082
2.94k
      i = bs2;
3083
23.2k
    if (i > 0) {
3084
23.2k
      bb2 -= i;
3085
23.2k
      bd2 -= i;
3086
23.2k
      bs2 -= i;
3087
23.2k
      }
3088
23.2k
    if (bb5 > 0) {
3089
3.02k
      bs = pow5mult(bs, bb5);
3090
3.02k
      bb1 = mult(bs, bb);
3091
3.02k
      Bfree(bb);
3092
3.02k
      bb = bb1;
3093
3.02k
      }
3094
23.2k
    if (bb2 > 0)
3095
23.2k
      bb = lshift(bb, bb2);
3096
23.2k
    if (bd5 > 0)
3097
5.00k
      bd = pow5mult(bd, bd5);
3098
23.2k
    if (bd2 > 0)
3099
2.94k
      bd = lshift(bd, bd2);
3100
23.2k
    if (bs2 > 0)
3101
20.3k
      bs = lshift(bs, bs2);
3102
23.2k
    delta = diff(bb, bd);
3103
23.2k
    bc.dsign = delta->sign;
3104
23.2k
    delta->sign = 0;
3105
23.2k
    i = cmp(delta, bs);
3106
23.2k
#ifndef NO_STRTOD_BIGCOMP /*{*/
3107
23.2k
    if (bc.nd > nd && i <= 0) {
3108
1.92k
      if (bc.dsign) {
3109
        /* Must use bigcomp(). */
3110
1.19k
        req_bigcomp = 1;
3111
1.19k
        break;
3112
1.19k
        }
3113
#ifdef Honor_FLT_ROUNDS
3114
      if (bc.rounding != 1) {
3115
        if (i < 0) {
3116
          req_bigcomp = 1;
3117
          break;
3118
          }
3119
        }
3120
      else
3121
#endif
3122
729
        i = -1; /* Discarded digits make delta smaller. */
3123
729
      }
3124
22.0k
#endif /*}*/
3125
#ifdef Honor_FLT_ROUNDS /*{*/
3126
    if (bc.rounding != 1) {
3127
      if (i < 0) {
3128
        /* Error is less than an ulp */
3129
        if (!delta->x[0] && delta->wds <= 1) {
3130
          /* exact */
3131
#ifdef SET_INEXACT
3132
          bc.inexact = 0;
3133
#endif
3134
          break;
3135
          }
3136
        if (bc.rounding) {
3137
          if (bc.dsign) {
3138
            adj.d = 1.;
3139
            goto apply_adj;
3140
            }
3141
          }
3142
        else if (!bc.dsign) {
3143
          adj.d = -1.;
3144
          if (!word1(&rv)
3145
           && !(word0(&rv) & Frac_mask)) {
3146
            y = word0(&rv) & Exp_mask;
3147
#ifdef Avoid_Underflow
3148
            if (!bc.scale || y > 2*P*Exp_msk1)
3149
#else
3150
            if (y)
3151
#endif
3152
              {
3153
              delta = lshift(delta,Log2P);
3154
              if (cmp(delta, bs) <= 0)
3155
              adj.d = -0.5;
3156
              }
3157
            }
3158
 apply_adj:
3159
#ifdef Avoid_Underflow /*{*/
3160
          if (bc.scale && (y = word0(&rv) & Exp_mask)
3161
            <= 2*P*Exp_msk1)
3162
            word0(&adj) += (2*P+1)*Exp_msk1 - y;
3163
#else
3164
#ifdef Sudden_Underflow
3165
          if ((word0(&rv) & Exp_mask) <=
3166
              P*Exp_msk1) {
3167
            word0(&rv) += P*Exp_msk1;
3168
            dval(&rv) += adj.d*ulp(dval(&rv));
3169
            word0(&rv) -= P*Exp_msk1;
3170
            }
3171
          else
3172
#endif /*Sudden_Underflow*/
3173
#endif /*Avoid_Underflow}*/
3174
          dval(&rv) += adj.d*ulp(&rv);
3175
          }
3176
        break;
3177
        }
3178
      adj.d = ratio(delta, bs);
3179
      if (adj.d < 1.)
3180
        adj.d = 1.;
3181
      if (adj.d <= 0x7ffffffe) {
3182
        /* adj = rounding ? ceil(adj) : floor(adj); */
3183
        y = adj.d;
3184
        if (y != adj.d) {
3185
          if (!((bc.rounding>>1) ^ bc.dsign))
3186
            y++;
3187
          adj.d = y;
3188
          }
3189
        }
3190
#ifdef Avoid_Underflow /*{*/
3191
      if (bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1)
3192
        word0(&adj) += (2*P+1)*Exp_msk1 - y;
3193
#else
3194
#ifdef Sudden_Underflow
3195
      if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) {
3196
        word0(&rv) += P*Exp_msk1;
3197
        adj.d *= ulp(dval(&rv));
3198
        if (bc.dsign)
3199
          dval(&rv) += adj.d;
3200
        else
3201
          dval(&rv) -= adj.d;
3202
        word0(&rv) -= P*Exp_msk1;
3203
        goto cont;
3204
        }
3205
#endif /*Sudden_Underflow*/
3206
#endif /*Avoid_Underflow}*/
3207
      adj.d *= ulp(&rv);
3208
      if (bc.dsign) {
3209
        if (word0(&rv) == Big0 && word1(&rv) == Big1)
3210
          goto ovfl;
3211
        dval(&rv) += adj.d;
3212
        }
3213
      else
3214
        dval(&rv) -= adj.d;
3215
      goto cont;
3216
      }
3217
#endif /*}Honor_FLT_ROUNDS*/
3218
3219
22.0k
    if (i < 0) {
3220
      /* Error is less than half an ulp -- check for
3221
       * special case of mantissa a power of two.
3222
       */
3223
11.8k
      if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask
3224
1.28k
#ifdef IEEE_Arith /*{*/
3225
1.28k
#ifdef Avoid_Underflow
3226
1.28k
       || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1
3227
#else
3228
       || (word0(&rv) & Exp_mask) <= Exp_msk1
3229
#endif
3230
11.8k
#endif /*}*/
3231
11.8k
        ) {
3232
#ifdef SET_INEXACT
3233
        if (!delta->x[0] && delta->wds <= 1)
3234
          bc.inexact = 0;
3235
#endif
3236
10.6k
        break;
3237
10.6k
        }
3238
1.27k
      if (!delta->x[0] && delta->wds <= 1) {
3239
        /* exact result */
3240
#ifdef SET_INEXACT
3241
        bc.inexact = 0;
3242
#endif
3243
887
        break;
3244
887
        }
3245
391
      delta = lshift(delta,Log2P);
3246
391
      if (cmp(delta, bs) > 0)
3247
0
        goto drop_down;
3248
391
      break;
3249
391
      }
3250
10.1k
    if (i == 0) {
3251
      /* exactly half-way between */
3252
326
      if (bc.dsign) {
3253
126
        if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
3254
0
         &&  word1(&rv) == (
3255
0
#ifdef Avoid_Underflow
3256
0
      (bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1)
3257
0
    ? (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
3258
0
#endif
3259
0
               0xffffffff)) {
3260
          /*boundary case -- increment exponent*/
3261
0
          if (word0(&rv) == Big0 && word1(&rv) == Big1)
3262
0
            goto ovfl;
3263
0
          word0(&rv) = (word0(&rv) & Exp_mask)
3264
0
            + Exp_msk1
3265
#ifdef IBM
3266
            | Exp_msk1 >> 4
3267
#endif
3268
0
            ;
3269
0
          word1(&rv) = 0;
3270
0
#ifdef Avoid_Underflow
3271
0
          bc.dsign = 0;
3272
0
#endif
3273
0
          break;
3274
0
          }
3275
126
        }
3276
200
      else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) {
3277
0
 drop_down:
3278
        /* boundary case -- decrement exponent */
3279
#ifdef Sudden_Underflow /*{{*/
3280
        L = word0(&rv) & Exp_mask;
3281
#ifdef IBM
3282
        if (L <  Exp_msk1)
3283
#else
3284
#ifdef Avoid_Underflow
3285
        if (L <= (bc.scale ? (2*P+1)*Exp_msk1 : Exp_msk1))
3286
#else
3287
        if (L <= Exp_msk1)
3288
#endif /*Avoid_Underflow*/
3289
#endif /*IBM*/
3290
          {
3291
          if (bc.nd >nd) {
3292
            bc.uflchk = 1;
3293
            break;
3294
            }
3295
          goto undfl;
3296
          }
3297
        L -= Exp_msk1;
3298
#else /*Sudden_Underflow}{*/
3299
0
#ifdef Avoid_Underflow
3300
0
        if (bc.scale) {
3301
0
          L = word0(&rv) & Exp_mask;
3302
0
          if (L <= (2*P+1)*Exp_msk1) {
3303
0
            if (L > (P+2)*Exp_msk1)
3304
              /* round even ==> */
3305
              /* accept rv */
3306
0
              break;
3307
            /* rv = smallest denormal */
3308
0
            if (bc.nd >nd) {
3309
0
              bc.uflchk = 1;
3310
0
              break;
3311
0
              }
3312
0
            goto undfl;
3313
0
            }
3314
0
          }
3315
0
#endif /*Avoid_Underflow*/
3316
0
        L = (word0(&rv) & Exp_mask) - Exp_msk1;
3317
0
#endif /*Sudden_Underflow}}*/
3318
0
        word0(&rv) = L | Bndry_mask1;
3319
0
        word1(&rv) = 0xffffffff;
3320
#ifdef IBM
3321
        goto cont;
3322
#else
3323
0
#ifndef NO_STRTOD_BIGCOMP
3324
0
        if (bc.nd > nd)
3325
0
          goto cont;
3326
0
#endif
3327
0
        break;
3328
0
#endif
3329
0
        }
3330
326
#ifndef ROUND_BIASED
3331
326
#ifdef Avoid_Underflow
3332
326
      if (Lsb1) {
3333
0
        if (!(word0(&rv) & Lsb1))
3334
0
          break;
3335
0
        }
3336
326
      else if (!(word1(&rv) & Lsb))
3337
202
        break;
3338
#else
3339
      if (!(word1(&rv) & LSB))
3340
        break;
3341
#endif
3342
124
#endif
3343
124
      if (bc.dsign)
3344
122
#ifdef Avoid_Underflow
3345
122
        dval(&rv) += sulp(&rv, &bc);
3346
#else
3347
        dval(&rv) += ulp(&rv);
3348
#endif
3349
2
#ifndef ROUND_BIASED
3350
2
      else {
3351
2
#ifdef Avoid_Underflow
3352
2
        dval(&rv) -= sulp(&rv, &bc);
3353
#else
3354
        dval(&rv) -= ulp(&rv);
3355
#endif
3356
2
#ifndef Sudden_Underflow
3357
2
        if (!dval(&rv)) {
3358
0
          if (bc.nd >nd) {
3359
0
            bc.uflchk = 1;
3360
0
            break;
3361
0
            }
3362
0
          goto undfl;
3363
0
          }
3364
2
#endif
3365
2
        }
3366
124
#ifdef Avoid_Underflow
3367
124
      bc.dsign = 1 - bc.dsign;
3368
124
#endif
3369
124
#endif
3370
124
      break;
3371
124
      }
3372
9.82k
    if ((aadj = ratio(delta, bs)) <= 2.) {
3373
6.50k
      if (bc.dsign)
3374
2.46k
        aadj = aadj1 = 1.;
3375
4.04k
      else if (word1(&rv) || word0(&rv) & Bndry_mask) {
3376
4.01k
#ifndef Sudden_Underflow
3377
4.01k
        if (word1(&rv) == Tiny1 && !word0(&rv)) {
3378
0
          if (bc.nd >nd) {
3379
0
            bc.uflchk = 1;
3380
0
            break;
3381
0
            }
3382
0
          goto undfl;
3383
0
          }
3384
4.01k
#endif
3385
4.01k
        aadj = 1.;
3386
4.01k
        aadj1 = -1.;
3387
4.01k
        }
3388
26
      else {
3389
        /* special case -- power of FLT_RADIX to be */
3390
        /* rounded down... */
3391
3392
26
        if (aadj < 2./FLT_RADIX)
3393
0
          aadj = 1./FLT_RADIX;
3394
26
        else
3395
26
          aadj *= 0.5;
3396
26
        aadj1 = -aadj;
3397
26
        }
3398
6.50k
      }
3399
3.31k
    else {
3400
3.31k
      aadj *= 0.5;
3401
3.31k
      aadj1 = bc.dsign ? aadj : -aadj;
3402
#ifdef Check_FLT_ROUNDS
3403
      switch(bc.rounding) {
3404
        case 2: /* towards +infinity */
3405
          aadj1 -= 0.5;
3406
          break;
3407
        case 0: /* towards 0 */
3408
        case 3: /* towards -infinity */
3409
          aadj1 += 0.5;
3410
        }
3411
#else
3412
3.31k
      if (Flt_Rounds == 0)
3413
0
        aadj1 += 0.5;
3414
3.31k
#endif /*Check_FLT_ROUNDS*/
3415
3.31k
      }
3416
9.82k
    y = word0(&rv) & Exp_mask;
3417
3418
    /* Check for overflow */
3419
3420
9.82k
    if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
3421
4
      dval(&rv0) = dval(&rv);
3422
4
      word0(&rv) -= P*Exp_msk1;
3423
4
      adj.d = aadj1 * ulp(&rv);
3424
4
      dval(&rv) += adj.d;
3425
4
      if ((word0(&rv) & Exp_mask) >=
3426
4
          Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
3427
4
        if (word0(&rv0) == Big0 && word1(&rv0) == Big1)
3428
4
          goto ovfl;
3429
0
        word0(&rv) = Big0;
3430
0
        word1(&rv) = Big1;
3431
0
        goto cont;
3432
4
        }
3433
0
      else
3434
0
        word0(&rv) += P*Exp_msk1;
3435
4
      }
3436
9.82k
    else {
3437
9.82k
#ifdef Avoid_Underflow
3438
9.82k
      if (bc.scale && y <= 2*P*Exp_msk1) {
3439
34
        if (aadj <= 0x7fffffff) {
3440
34
          if ((z = aadj) <= 0)
3441
26
            z = 1;
3442
34
          aadj = z;
3443
34
          aadj1 = bc.dsign ? aadj : -aadj;
3444
34
          }
3445
34
        dval(&aadj2) = aadj1;
3446
34
        word0(&aadj2) += (2*P+1)*Exp_msk1 - y;
3447
34
        aadj1 = dval(&aadj2);
3448
34
        adj.d = aadj1 * ulp(&rv);
3449
34
        dval(&rv) += adj.d;
3450
34
        if (rv.d == 0.)
3451
#ifdef NO_STRTOD_BIGCOMP
3452
          goto undfl;
3453
#else
3454
26
          {
3455
26
          req_bigcomp = 1;
3456
26
          break;
3457
26
          }
3458
34
#endif
3459
34
        }
3460
9.78k
      else {
3461
9.78k
        adj.d = aadj1 * ulp(&rv);
3462
9.78k
        dval(&rv) += adj.d;
3463
9.78k
        }
3464
#else
3465
#ifdef Sudden_Underflow
3466
      if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) {
3467
        dval(&rv0) = dval(&rv);
3468
        word0(&rv) += P*Exp_msk1;
3469
        adj.d = aadj1 * ulp(&rv);
3470
        dval(&rv) += adj.d;
3471
#ifdef IBM
3472
        if ((word0(&rv) & Exp_mask) <  P*Exp_msk1)
3473
#else
3474
        if ((word0(&rv) & Exp_mask) <= P*Exp_msk1)
3475
#endif
3476
          {
3477
          if (word0(&rv0) == Tiny0
3478
           && word1(&rv0) == Tiny1) {
3479
            if (bc.nd >nd) {
3480
              bc.uflchk = 1;
3481
              break;
3482
              }
3483
            goto undfl;
3484
            }
3485
          word0(&rv) = Tiny0;
3486
          word1(&rv) = Tiny1;
3487
          goto cont;
3488
          }
3489
        else
3490
          word0(&rv) -= P*Exp_msk1;
3491
        }
3492
      else {
3493
        adj.d = aadj1 * ulp(&rv);
3494
        dval(&rv) += adj.d;
3495
        }
3496
#else /*Sudden_Underflow*/
3497
      /* Compute adj so that the IEEE rounding rules will
3498
       * correctly round rv + adj in some half-way cases.
3499
       * If rv * ulp(rv) is denormalized (i.e.,
3500
       * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
3501
       * trouble from bits lost to denormalization;
3502
       * example: 1.2e-307 .
3503
       */
3504
      if (y <= (P-1)*Exp_msk1 && aadj > 1.) {
3505
        aadj1 = (double)(int)(aadj + 0.5);
3506
        if (!bc.dsign)
3507
          aadj1 = -aadj1;
3508
        }
3509
      adj.d = aadj1 * ulp(&rv);
3510
      dval(&rv) += adj.d;
3511
#endif /*Sudden_Underflow*/
3512
#endif /*Avoid_Underflow*/
3513
9.82k
      }
3514
9.79k
    z = word0(&rv) & Exp_mask;
3515
9.79k
#ifndef SET_INEXACT
3516
9.79k
    if (bc.nd == nd) {
3517
8.58k
#ifdef Avoid_Underflow
3518
8.58k
    if (!bc.scale)
3519
8.57k
#endif
3520
8.57k
    if (y == z) {
3521
      /* Can we stop now? */
3522
8.57k
      L = (Long)aadj;
3523
8.57k
      aadj -= L;
3524
      /* The tolerances below are conservative. */
3525
8.57k
      if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
3526
8.56k
        if (aadj < .4999999 || aadj > .5000001)
3527
8.56k
          break;
3528
8.56k
        }
3529
2
      else if (aadj < .4999999/FLT_RADIX)
3530
2
        break;
3531
8.57k
      }
3532
8.58k
    }
3533
1.22k
#endif
3534
1.22k
 cont:
3535
1.22k
    Bfree(bb);
3536
1.22k
    Bfree(bd);
3537
1.22k
    Bfree(bs);
3538
1.22k
    Bfree(delta);
3539
1.22k
    }
3540
22.0k
  Bfree(bb);
3541
22.0k
  Bfree(bd);
3542
22.0k
  Bfree(bs);
3543
22.0k
  Bfree(bd0);
3544
22.0k
  Bfree(delta);
3545
22.0k
#ifndef NO_STRTOD_BIGCOMP
3546
22.0k
  if (req_bigcomp) {
3547
1.21k
    bd0 = 0;
3548
1.21k
    bc.e0 += nz1;
3549
1.21k
    bigcomp(&rv, s0, &bc);
3550
1.21k
    y = word0(&rv) & Exp_mask;
3551
1.21k
    if (y == Exp_mask)
3552
0
      goto ovfl;
3553
1.21k
    if (y == 0 && rv.d == 0.)
3554
26
      goto undfl;
3555
1.21k
    }
3556
21.9k
#endif
3557
#ifdef SET_INEXACT
3558
  if (bc.inexact) {
3559
    if (!oldinexact) {
3560
      word0(&rv0) = Exp_1 + (70 << Exp_shift);
3561
      word1(&rv0) = 0;
3562
      dval(&rv0) += 1.;
3563
      }
3564
    }
3565
  else if (!oldinexact)
3566
    clear_inexact();
3567
#endif
3568
21.9k
#ifdef Avoid_Underflow
3569
21.9k
  if (bc.scale) {
3570
54
    word0(&rv0) = Exp_1 - 2*P*Exp_msk1;
3571
54
    word1(&rv0) = 0;
3572
54
    dval(&rv) *= dval(&rv0);
3573
#ifndef NO_ERRNO
3574
    /* try to avoid the bug of testing an 8087 register value */
3575
#ifdef IEEE_Arith
3576
    if (!(word0(&rv) & Exp_mask))
3577
#else
3578
    if (word0(&rv) == 0 && word1(&rv) == 0)
3579
#endif
3580
      errno = ERANGE;
3581
#endif
3582
54
    }
3583
21.9k
#endif /* Avoid_Underflow */
3584
#ifdef SET_INEXACT
3585
  if (bc.inexact && !(word0(&rv) & Exp_mask)) {
3586
    /* set underflow bit */
3587
    dval(&rv0) = 1e-300;
3588
    dval(&rv0) *= dval(&rv0);
3589
    }
3590
#endif
3591
55.8k
 ret:
3592
55.8k
  if (se)
3593
55.2k
    *se = (char *)s;
3594
55.8k
  return sign ? -dval(&rv) : dval(&rv);
3595
21.9k
  }
3596
3597
#if !defined(MULTIPLE_THREADS) && !defined(dtoa_result)
3598
 ZEND_TLS char *dtoa_result;
3599
#endif
3600
3601
 static char *
3602
#ifdef KR_headers
3603
rv_alloc(i) int i;
3604
#else
3605
rv_alloc(int i)
3606
#endif
3607
43.3k
{
3608
3609
43.3k
  int j, k, *r;
3610
43.3k
  size_t rem;
3611
3612
43.3k
  rem = sizeof(Bigint) - sizeof(ULong) - sizeof(int);
3613
3614
3615
43.3k
  j = sizeof(ULong);
3616
43.3k
  if (i > ((INT_MAX >> 2) + rem))
3617
4
    i = (INT_MAX >> 2) + rem;
3618
43.3k
  for(k = 0;
3619
43.4k
    rem + j <= (size_t)i; j <<= 1)
3620
112
      k++;
3621
3622
43.3k
  r = (int*)Balloc(k);
3623
43.3k
  *r = k;
3624
43.3k
  return
3625
43.3k
#ifndef MULTIPLE_THREADS
3626
43.3k
  dtoa_result =
3627
43.3k
#endif
3628
43.3k
    (char *)(r+1);
3629
43.3k
  }
3630
3631
 static char *
3632
#ifdef KR_headers
3633
nrv_alloc(s, rve, n) char *s, **rve; int n;
3634
#else
3635
nrv_alloc(const char *s, char **rve, int n)
3636
#endif
3637
1.33k
{
3638
1.33k
  char *rv, *t;
3639
3640
1.33k
  t = rv = rv_alloc(n);
3641
10.9k
  while((*t = *s++)) t++;
3642
1.33k
  if (rve)
3643
0
    *rve = t;
3644
1.33k
  return rv;
3645
1.33k
  }
3646
3647
/* freedtoa(s) must be used to free values s returned by dtoa
3648
 * when MULTIPLE_THREADS is #defined.  It should be used in all cases,
3649
 * but for consistency with earlier versions of dtoa, it is optional
3650
 * when MULTIPLE_THREADS is not defined.
3651
 */
3652
3653
ZEND_API void
3654
#ifdef KR_headers
3655
zend_freedtoa(s) char *s;
3656
#else
3657
zend_freedtoa(char *s)
3658
#endif
3659
43.3k
{
3660
43.3k
  Bigint *b = (Bigint *)((int *)s - 1);
3661
43.3k
  b->maxwds = 1 << (b->k = *(int*)b);
3662
43.3k
  Bfree(b);
3663
43.3k
#ifndef MULTIPLE_THREADS
3664
43.3k
  if (s == dtoa_result)
3665
43.3k
    dtoa_result = 0;
3666
43.3k
#endif
3667
43.3k
  }
3668
3669
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
3670
 *
3671
 * Inspired by "How to Print Floating-Point Numbers Accurately" by
3672
 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
3673
 *
3674
 * Modifications:
3675
 *  1. Rather than iterating, we use a simple numeric overestimate
3676
 *     to determine k = floor(log10(d)).  We scale relevant
3677
 *     quantities using O(log2(k)) rather than O(k) multiplications.
3678
 *  2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
3679
 *     try to generate digits strictly left to right.  Instead, we
3680
 *     compute with fewer bits and propagate the carry if necessary
3681
 *     when rounding the final digit up.  This is often faster.
3682
 *  3. Under the assumption that input will be rounded nearest,
3683
 *     mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
3684
 *     That is, we allow equality in stopping tests when the
3685
 *     round-nearest rule will give the same floating-point value
3686
 *     as would satisfaction of the stopping test with strict
3687
 *     inequality.
3688
 *  4. We remove common factors of powers of 2 from relevant
3689
 *     quantities.
3690
 *  5. When converting floating-point integers less than 1e16,
3691
 *     we use floating-point arithmetic rather than resorting
3692
 *     to multiple-precision integers.
3693
 *  6. When asked to produce fewer than 15 digits, we first try
3694
 *     to get by with floating-point arithmetic; we resort to
3695
 *     multiple-precision integer arithmetic only if we cannot
3696
 *     guarantee that the floating-point calculation has given
3697
 *     the correctly rounded result.  For k requested digits and
3698
 *     "uniformly" distributed input, the probability is
3699
 *     something like 10^(k-15) that we must resort to the Long
3700
 *     calculation.
3701
 */
3702
3703
ZEND_API char *zend_dtoa(double dd, int mode, int ndigits, int *decpt, bool *sign, char **rve)
3704
43.3k
{
3705
 /* Arguments ndigits, decpt, sign are similar to those
3706
  of ecvt and fcvt; trailing zeros are suppressed from
3707
  the returned string.  If not null, *rve is set to point
3708
  to the end of the return value.  If d is +-Infinity or NaN,
3709
  then *decpt is set to 9999.
3710
3711
  mode:
3712
    0 ==> shortest string that yields d when read in
3713
      and rounded to nearest.
3714
    1 ==> like 0, but with Steele & White stopping rule;
3715
      e.g. with IEEE P754 arithmetic , mode 0 gives
3716
      1e23 whereas mode 1 gives 9.999999999999999e22.
3717
    2 ==> max(1,ndigits) significant digits.  This gives a
3718
      return value similar to that of ecvt, except
3719
      that trailing zeros are suppressed.
3720
    3 ==> through ndigits past the decimal point.  This
3721
      gives a return value similar to that from fcvt,
3722
      except that trailing zeros are suppressed, and
3723
      ndigits can be negative.
3724
    4,5 ==> similar to 2 and 3, respectively, but (in
3725
      round-nearest mode) with the tests of mode 0 to
3726
      possibly return a shorter string that rounds to d.
3727
      With IEEE arithmetic and compilation with
3728
      -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
3729
      as modes 2 and 3 when FLT_ROUNDS != 1.
3730
    6-9 ==> Debugging modes similar to mode - 4:  don't try
3731
      fast floating-point estimate (if applicable).
3732
3733
    Values of mode other than 0-9 are treated as mode 0.
3734
3735
    Sufficient space is allocated to the return value
3736
    to hold the suppressed trailing zeros.
3737
  */
3738
3739
43.3k
  int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1,
3740
43.3k
    j, j1 = 0, k, k0, k_check, leftright, m2, m5, s2, s5,
3741
43.3k
    spec_case = 0, try_quick;
3742
43.3k
  Long L;
3743
43.3k
#ifndef Sudden_Underflow
3744
43.3k
  int denorm;
3745
43.3k
  ULong x;
3746
43.3k
#endif
3747
43.3k
  Bigint *b, *b1, *delta, *mlo, *mhi, *S;
3748
43.3k
  U d2, eps, u;
3749
43.3k
  double ds;
3750
43.3k
  char *s, *s0;
3751
43.3k
#ifndef No_leftright
3752
43.3k
#ifdef IEEE_Arith
3753
43.3k
  U eps1;
3754
43.3k
#endif
3755
43.3k
#endif
3756
#ifdef SET_INEXACT
3757
  int inexact, oldinexact;
3758
#endif
3759
#ifdef Honor_FLT_ROUNDS /*{*/
3760
  int Rounding;
3761
#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
3762
  Rounding = Flt_Rounds;
3763
#else /*}{*/
3764
  Rounding = 1;
3765
  switch(fegetround()) {
3766
    case FE_TOWARDZERO: Rounding = 0; break;
3767
    case FE_UPWARD: Rounding = 2; break;
3768
    case FE_DOWNWARD: Rounding = 3;
3769
    }
3770
#endif /*}}*/
3771
#endif /*}*/
3772
3773
43.3k
#ifndef MULTIPLE_THREADS
3774
43.3k
  if (dtoa_result) {
3775
0
    zend_freedtoa(dtoa_result);
3776
0
    dtoa_result = 0;
3777
0
    }
3778
43.3k
#endif
3779
3780
43.3k
  u.d = dd;
3781
43.3k
  if (word0(&u) & Sign_bit) {
3782
    /* set sign for everything, including 0's and NaNs */
3783
8.17k
    *sign = 1;
3784
8.17k
    word0(&u) &= ~Sign_bit; /* clear sign bit */
3785
8.17k
    }
3786
35.1k
  else
3787
35.1k
    *sign = 0;
3788
3789
43.3k
#if defined(IEEE_Arith) + defined(VAX)
3790
43.3k
#ifdef IEEE_Arith
3791
43.3k
  if ((word0(&u) & Exp_mask) == Exp_mask)
3792
#else
3793
  if (word0(&u)  == 0x8000)
3794
#endif
3795
1.19k
    {
3796
    /* Infinity or NaN */
3797
1.19k
    *decpt = 9999;
3798
1.19k
#ifdef IEEE_Arith
3799
1.19k
    if (!word1(&u) && !(word0(&u) & 0xfffff))
3800
1.18k
      return nrv_alloc("Infinity", rve, 8);
3801
14
#endif
3802
14
    return nrv_alloc("NaN", rve, 3);
3803
1.19k
    }
3804
42.1k
#endif
3805
#ifdef IBM
3806
  dval(&u) += 0; /* normalize */
3807
#endif
3808
42.1k
  if (!dval(&u)) {
3809
141
    *decpt = 1;
3810
141
    return nrv_alloc("0", rve, 1);
3811
141
    }
3812
3813
#ifdef SET_INEXACT
3814
  try_quick = oldinexact = get_inexact();
3815
  inexact = 1;
3816
#endif
3817
#ifdef Honor_FLT_ROUNDS
3818
  if (Rounding >= 2) {
3819
    if (*sign)
3820
      Rounding = Rounding == 2 ? 0 : 2;
3821
    else
3822
      if (Rounding != 2)
3823
        Rounding = 0;
3824
    }
3825
#endif
3826
3827
42.0k
  b = d2b(&u, &be, &bbits);
3828
#ifdef Sudden_Underflow
3829
  i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
3830
#else
3831
42.0k
  if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
3832
42.0k
#endif
3833
42.0k
    dval(&d2) = dval(&u);
3834
42.0k
    word0(&d2) &= Frac_mask1;
3835
42.0k
    word0(&d2) |= Exp_11;
3836
#ifdef IBM
3837
    if (j = 11 - hi0bits(word0(&d2) & Frac_mask))
3838
      dval(&d2) /= 1 << j;
3839
#endif
3840
3841
    /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
3842
     * log10(x)  =  log(x) / log(10)
3843
     *    ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
3844
     * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
3845
     *
3846
     * This suggests computing an approximation k to log10(d) by
3847
     *
3848
     * k = (i - Bias)*0.301029995663981
3849
     *  + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
3850
     *
3851
     * We want k to be too large rather than too small.
3852
     * The error in the first-order Taylor series approximation
3853
     * is in our favor, so we just round up the constant enough
3854
     * to compensate for any error in the multiplication of
3855
     * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
3856
     * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
3857
     * adding 1e-13 to the constant term more than suffices.
3858
     * Hence we adjust the constant term to 0.1760912590558.
3859
     * (We could get a more accurate k by invoking log10,
3860
     *  but this is probably not worthwhile.)
3861
     */
3862
3863
42.0k
    i -= Bias;
3864
#ifdef IBM
3865
    i <<= 2;
3866
    i += j;
3867
#endif
3868
42.0k
#ifndef Sudden_Underflow
3869
42.0k
    denorm = 0;
3870
42.0k
    }
3871
10
  else {
3872
    /* d is denormalized */
3873
3874
10
    i = bbits + be + (Bias + (P-1) - 1);
3875
10
    x = i > 32  ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)
3876
10
          : word1(&u) << (32 - i);
3877
10
    dval(&d2) = x;
3878
10
    word0(&d2) -= 31*Exp_msk1; /* adjust exponent */
3879
10
    i -= (Bias + (P-1) - 1) + 1;
3880
10
    denorm = 1;
3881
10
    }
3882
42.0k
#endif
3883
42.0k
  ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
3884
42.0k
  k = (int)ds;
3885
42.0k
  if (ds < 0. && ds != k)
3886
3.70k
    k--; /* want k = floor(ds) */
3887
42.0k
  k_check = 1;
3888
42.0k
  if (k >= 0 && k <= Ten_pmax) {
3889
31.6k
    if (dval(&u) < tens[k])
3890
87
      k--;
3891
31.6k
    k_check = 0;
3892
31.6k
    }
3893
42.0k
  j = bbits - i - 1;
3894
42.0k
  if (j >= 0) {
3895
30.6k
    b2 = 0;
3896
30.6k
    s2 = j;
3897
30.6k
    }
3898
11.3k
  else {
3899
11.3k
    b2 = -j;
3900
11.3k
    s2 = 0;
3901
11.3k
    }
3902
42.0k
  if (k >= 0) {
3903
38.3k
    b5 = 0;
3904
38.3k
    s5 = k;
3905
38.3k
    s2 += k;
3906
38.3k
    }
3907
3.70k
  else {
3908
3.70k
    b2 -= k;
3909
3.70k
    b5 = -k;
3910
3.70k
    s5 = 0;
3911
3.70k
    }
3912
42.0k
  if (mode < 0 || mode > 9)
3913
0
    mode = 0;
3914
3915
42.0k
#ifndef SET_INEXACT
3916
#ifdef Check_FLT_ROUNDS
3917
  try_quick = Rounding == 1;
3918
#else
3919
42.0k
  try_quick = 1;
3920
42.0k
#endif
3921
42.0k
#endif /*SET_INEXACT*/
3922
3923
42.0k
  if (mode > 5) {
3924
0
    mode -= 4;
3925
0
    try_quick = 0;
3926
0
    }
3927
42.0k
  leftright = 1;
3928
42.0k
  ilim = ilim1 = -1;  /* Values for cases 0 and 1; done here to */
3929
        /* silence erroneous "gcc -Wall" warning. */
3930
42.0k
  switch(mode) {
3931
36.7k
    case 0:
3932
36.7k
    case 1:
3933
36.7k
      i = 18;
3934
36.7k
      ndigits = 0;
3935
36.7k
      break;
3936
5.16k
    case 2:
3937
5.16k
      leftright = 0;
3938
5.16k
      ZEND_FALLTHROUGH;
3939
5.16k
    case 4:
3940
5.16k
      if (ndigits <= 0)
3941
0
        ndigits = 1;
3942
5.16k
      ilim = ilim1 = i = ndigits;
3943
5.16k
      break;
3944
146
    case 3:
3945
146
      leftright = 0;
3946
146
      ZEND_FALLTHROUGH;
3947
146
    case 5:
3948
146
      i = ndigits + k + 1;
3949
146
      ilim = i;
3950
146
      ilim1 = i - 1;
3951
146
      if (i <= 0)
3952
0
        i = 1;
3953
42.0k
    }
3954
42.0k
  s = s0 = rv_alloc(i);
3955
3956
#ifdef Honor_FLT_ROUNDS
3957
  if (mode > 1 && Rounding != 1)
3958
    leftright = 0;
3959
#endif
3960
3961
42.0k
  if (ilim >= 0 && ilim <= Quick_max && try_quick) {
3962
3963
    /* Try to get by with floating-point arithmetic. */
3964
3965
5.20k
    i = 0;
3966
5.20k
    dval(&d2) = dval(&u);
3967
5.20k
    k0 = k;
3968
5.20k
    ilim0 = ilim;
3969
5.20k
    ieps = 2; /* conservative */
3970
5.20k
    if (k > 0) {
3971
4.80k
      ds = tens[k&0xf];
3972
4.80k
      j = k >> 4;
3973
4.80k
      if (j & Bletch) {
3974
        /* prevent overflows */
3975
47
        j &= Bletch - 1;
3976
47
        dval(&u) /= bigtens[n_bigtens-1];
3977
47
        ieps++;
3978
47
        }
3979
10.0k
      for(; j; j >>= 1, i++)
3980
5.29k
        if (j & 1) {
3981
4.73k
          ieps++;
3982
4.73k
          ds *= bigtens[i];
3983
4.73k
          }
3984
4.80k
      dval(&u) /= ds;
3985
4.80k
      }
3986
395
    else if ((j1 = -k)) {
3987
172
      dval(&u) *= tens[j1 & 0xf];
3988
312
      for(j = j1 >> 4; j; j >>= 1, i++)
3989
140
        if (j & 1) {
3990
90
          ieps++;
3991
90
          dval(&u) *= bigtens[i];
3992
90
          }
3993
172
      }
3994
5.20k
    if (k_check && dval(&u) < 1. && ilim > 0) {
3995
53
      if (ilim1 <= 0)
3996
0
        goto fast_failed;
3997
53
      ilim = ilim1;
3998
53
      k--;
3999
53
      dval(&u) *= 10.;
4000
53
      ieps++;
4001
53
      }
4002
5.20k
    dval(&eps) = ieps*dval(&u) + 7.;
4003
5.20k
    word0(&eps) -= (P-1)*Exp_msk1;
4004
5.20k
    if (ilim == 0) {
4005
0
      S = mhi = 0;
4006
0
      dval(&u) -= 5.;
4007
0
      if (dval(&u) > dval(&eps))
4008
0
        goto one_digit;
4009
0
      if (dval(&u) < -dval(&eps))
4010
0
        goto no_digits;
4011
0
      goto fast_failed;
4012
0
      }
4013
5.20k
#ifndef No_leftright
4014
5.20k
    if (leftright) {
4015
      /* Use Steele & White method of only
4016
       * generating digits needed.
4017
       */
4018
0
      dval(&eps) = 0.5/tens[ilim-1] - dval(&eps);
4019
0
#ifdef IEEE_Arith
4020
0
      if (k0 < 0 && j1 >= 307) {
4021
0
        eps1.d = 1.01e256; /* 1.01 allows roundoff in the next few lines */
4022
0
        word0(&eps1) -= Exp_msk1 * (Bias+P-1);
4023
0
        dval(&eps1) *= tens[j1 & 0xf];
4024
0
        for(i = 0, j = (j1-256) >> 4; j; j >>= 1, i++)
4025
0
          if (j & 1)
4026
0
            dval(&eps1) *= bigtens[i];
4027
0
        if (eps.d < eps1.d)
4028
0
          eps.d = eps1.d;
4029
0
        }
4030
0
#endif
4031
0
      for(i = 0;;) {
4032
0
        L = dval(&u);
4033
0
        dval(&u) -= L;
4034
0
        *s++ = '0' + (int)L;
4035
0
        if (1. - dval(&u) < dval(&eps))
4036
0
          goto bump_up;
4037
0
        if (dval(&u) < dval(&eps))
4038
0
          goto ret1;
4039
0
        if (++i >= ilim)
4040
0
          break;
4041
0
        dval(&eps) *= 10.;
4042
0
        dval(&u) *= 10.;
4043
0
        }
4044
0
      }
4045
5.20k
    else {
4046
5.20k
#endif
4047
      /* Generate ilim digits, then fix them up. */
4048
5.20k
      dval(&eps) *= tens[ilim-1];
4049
71.1k
      for(i = 1;; i++, dval(&u) *= 10.) {
4050
71.1k
        L = (Long)(dval(&u));
4051
71.1k
        if (!(dval(&u) -= L))
4052
105
          ilim = i;
4053
71.1k
        *s++ = '0' + (int)L;
4054
71.1k
        if (i == ilim) {
4055
5.20k
          if (dval(&u) > 0.5 + dval(&eps))
4056
4.04k
            goto bump_up;
4057
1.15k
          else if (dval(&u) < 0.5 - dval(&eps)) {
4058
2.42k
            while(*--s == '0');
4059
916
            s++;
4060
916
            goto ret1;
4061
916
            }
4062
241
          break;
4063
5.20k
          }
4064
71.1k
        }
4065
5.20k
#ifndef No_leftright
4066
5.20k
      }
4067
241
#endif
4068
241
 fast_failed:
4069
241
    s = s0;
4070
241
    dval(&u) = dval(&d2);
4071
241
    k = k0;
4072
241
    ilim = ilim0;
4073
241
    }
4074
4075
  /* Do we have a "small" integer? */
4076
4077
37.0k
  if (be >= 0 && k <= Int_max) {
4078
    /* Yes. */
4079
307
    ds = tens[k];
4080
307
    if (ndigits < 0 && ilim <= 0) {
4081
0
      S = mhi = 0;
4082
0
      if (ilim < 0 || dval(&u) <= 5*ds)
4083
0
        goto no_digits;
4084
0
      goto one_digit;
4085
0
      }
4086
1.34k
    for(i = 1;; i++, dval(&u) *= 10.) {
4087
1.34k
      L = (Long)(dval(&u) / ds);
4088
1.34k
      dval(&u) -= L*ds;
4089
#ifdef Check_FLT_ROUNDS
4090
      /* If FLT_ROUNDS == 2, L will usually be high by 1 */
4091
      if (dval(&u) < 0) {
4092
        L--;
4093
        dval(&u) += ds;
4094
        }
4095
#endif
4096
1.34k
      *s++ = '0' + (int)L;
4097
1.34k
      if (!dval(&u)) {
4098
#ifdef SET_INEXACT
4099
        inexact = 0;
4100
#endif
4101
303
        break;
4102
303
        }
4103
1.04k
      if (i == ilim) {
4104
#ifdef Honor_FLT_ROUNDS
4105
        if (mode > 1)
4106
        switch(Rounding) {
4107
          case 0: goto ret1;
4108
          case 2: goto bump_up;
4109
          }
4110
#endif
4111
4
        dval(&u) += dval(&u);
4112
#ifdef ROUND_BIASED
4113
        if (dval(&u) >= ds)
4114
#else
4115
4
        if (dval(&u) > ds || (dval(&u) == ds && L & 1))
4116
0
#endif
4117
0
          {
4118
4.04k
 bump_up:
4119
6.27k
          while(*--s == '9')
4120
2.25k
            if (s == s0) {
4121
26
              k++;
4122
26
              *s = '0';
4123
26
              break;
4124
26
              }
4125
4.04k
          ++*s++;
4126
4.04k
          }
4127
4.05k
        break;
4128
4
        }
4129
1.04k
      }
4130
4.35k
    goto ret1;
4131
307
    }
4132
4133
36.7k
  m2 = b2;
4134
36.7k
  m5 = b5;
4135
36.7k
  mhi = mlo = 0;
4136
36.7k
  if (leftright) {
4137
36.4k
    i =
4138
36.4k
#ifndef Sudden_Underflow
4139
36.4k
      denorm ? be + (Bias + (P-1) - 1 + 1) :
4140
36.4k
#endif
4141
#ifdef IBM
4142
      1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
4143
#else
4144
36.4k
      1 + P - bbits;
4145
36.4k
#endif
4146
36.4k
    b2 += i;
4147
36.4k
    s2 += i;
4148
36.4k
    mhi = i2b(1);
4149
36.4k
    }
4150
36.7k
  if (m2 > 0 && s2 > 0) {
4151
10.3k
    i = m2 < s2 ? m2 : s2;
4152
10.3k
    b2 -= i;
4153
10.3k
    m2 -= i;
4154
10.3k
    s2 -= i;
4155
10.3k
    }
4156
36.7k
  if (b5 > 0) {
4157
3.55k
    if (leftright) {
4158
3.52k
      if (m5 > 0) {
4159
3.52k
        mhi = pow5mult(mhi, m5);
4160
3.52k
        b1 = mult(mhi, b);
4161
3.52k
        Bfree(b);
4162
3.52k
        b = b1;
4163
3.52k
        }
4164
3.52k
      if ((j = b5 - m5))
4165
0
        b = pow5mult(b, j);
4166
3.52k
      }
4167
28
    else
4168
28
      b = pow5mult(b, b5);
4169
3.55k
    }
4170
36.7k
  S = i2b(1);
4171
36.7k
  if (s5 > 0)
4172
28.4k
    S = pow5mult(S, s5);
4173
4174
  /* Check for special case that d is a normalized power of 2. */
4175
4176
36.7k
  spec_case = 0;
4177
36.7k
  if ((mode < 2 || leftright)
4178
#ifdef Honor_FLT_ROUNDS
4179
      && Rounding == 1
4180
#endif
4181
36.7k
        ) {
4182
36.4k
    if (!word1(&u) && !(word0(&u) & Bndry_mask)
4183
1.09k
#ifndef Sudden_Underflow
4184
1.09k
     && word0(&u) & (Exp_mask & ~Exp_msk1)
4185
36.4k
#endif
4186
36.4k
        ) {
4187
      /* The special case */
4188
1.09k
      b2 += Log2P;
4189
1.09k
      s2 += Log2P;
4190
1.09k
      spec_case = 1;
4191
1.09k
      }
4192
36.4k
    }
4193
4194
  /* Arrange for convenient computation of quotients:
4195
   * shift left if necessary so divisor has 4 leading 0 bits.
4196
   *
4197
   * Perhaps we should just compute leading 28 bits of S once
4198
   * and for all and pass them and a shift to quorem, so it
4199
   * can do shifts and ORs to compute the numerator for q.
4200
   */
4201
36.7k
  i = dshift(S, s2);
4202
36.7k
  b2 += i;
4203
36.7k
  m2 += i;
4204
36.7k
  s2 += i;
4205
36.7k
  if (b2 > 0)
4206
36.7k
    b = lshift(b, b2);
4207
36.7k
  if (s2 > 0)
4208
36.7k
    S = lshift(S, s2);
4209
36.7k
  if (k_check) {
4210
6.46k
    if (cmp(b,S) < 0) {
4211
75
      k--;
4212
75
      b = multadd(b, 10, 0);  /* we botched the k estimate */
4213
75
      if (leftright)
4214
65
        mhi = multadd(mhi, 10, 0);
4215
75
      ilim = ilim1;
4216
75
      }
4217
6.46k
    }
4218
36.7k
  if (ilim <= 0 && (mode == 3 || mode == 5)) {
4219
0
    if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
4220
      /* no digits, fcvt style */
4221
0
 no_digits:
4222
0
      k = -1 - ndigits;
4223
0
      goto ret;
4224
0
      }
4225
0
 one_digit:
4226
0
    *s++ = '1';
4227
0
    k++;
4228
0
    goto ret;
4229
0
    }
4230
36.7k
  if (leftright) {
4231
36.4k
    if (m2 > 0)
4232
36.1k
      mhi = lshift(mhi, m2);
4233
4234
    /* Compute mlo -- check for special case
4235
     * that d is a normalized power of 2.
4236
     */
4237
4238
36.4k
    mlo = mhi;
4239
36.4k
    if (spec_case) {
4240
1.09k
      mhi = Balloc(mhi->k);
4241
1.09k
      Bcopy(mhi, mlo);
4242
1.09k
      mhi = lshift(mhi, Log2P);
4243
1.09k
      }
4244
4245
418k
    for(i = 1;;i++) {
4246
418k
      dig = quorem(b,S) + '0';
4247
      /* Do we yet have the shortest decimal string
4248
       * that will round to d?
4249
       */
4250
418k
      j = cmp(b, mlo);
4251
418k
      delta = diff(S, mhi);
4252
418k
      j1 = delta->sign ? 1 : cmp(b, delta);
4253
418k
      Bfree(delta);
4254
418k
#ifndef ROUND_BIASED
4255
418k
      if (j1 == 0 && mode != 1 && !(word1(&u) & 1)
4256
#ifdef Honor_FLT_ROUNDS
4257
        && Rounding >= 1
4258
#endif
4259
418k
                   ) {
4260
12
        if (dig == '9')
4261
2
          goto round_9_up;
4262
10
        if (j > 0)
4263
10
          dig++;
4264
#ifdef SET_INEXACT
4265
        else if (!b->x[0] && b->wds <= 1)
4266
          inexact = 0;
4267
#endif
4268
10
        *s++ = dig;
4269
10
        goto ret;
4270
12
        }
4271
418k
#endif
4272
418k
      if (j < 0 || (j == 0 && mode != 1
4273
3
#ifndef ROUND_BIASED
4274
3
              && !(word1(&u) & 1)
4275
393k
#endif
4276
393k
          )) {
4277
24.8k
        if (!b->x[0] && b->wds <= 1) {
4278
#ifdef SET_INEXACT
4279
          inexact = 0;
4280
#endif
4281
443
          goto accept_dig;
4282
443
          }
4283
#ifdef Honor_FLT_ROUNDS
4284
        if (mode > 1)
4285
         switch(Rounding) {
4286
          case 0: goto accept_dig;
4287
          case 2: goto keep_dig;
4288
          }
4289
#endif /*Honor_FLT_ROUNDS*/
4290
24.4k
        if (j1 > 0) {
4291
5.19k
          b = lshift(b, 1);
4292
5.19k
          j1 = cmp(b, S);
4293
#ifdef ROUND_BIASED
4294
          if (j1 >= 0 /*)*/
4295
#else
4296
5.19k
          if ((j1 > 0 || (j1 == 0 && dig & 1))
4297
2.60k
#endif
4298
2.60k
          && dig++ == '9')
4299
0
            goto round_9_up;
4300
5.19k
          }
4301
24.8k
 accept_dig:
4302
24.8k
        *s++ = dig;
4303
24.8k
        goto ret;
4304
24.4k
        }
4305
393k
      if (j1 > 0) {
4306
#ifdef Honor_FLT_ROUNDS
4307
        if (!Rounding)
4308
          goto accept_dig;
4309
#endif
4310
11.6k
        if (dig == '9') { /* possible if i == 1 */
4311
32
 round_9_up:
4312
32
          *s++ = '9';
4313
32
          goto roundoff;
4314
30
          }
4315
11.5k
        *s++ = dig + 1;
4316
11.5k
        goto ret;
4317
11.6k
        }
4318
#ifdef Honor_FLT_ROUNDS
4319
 keep_dig:
4320
#endif
4321
381k
      *s++ = dig;
4322
381k
      if (i == ilim)
4323
0
        break;
4324
381k
      b = multadd(b, 10, 0);
4325
381k
      if (mlo == mhi)
4326
364k
        mlo = mhi = multadd(mhi, 10, 0);
4327
16.6k
      else {
4328
16.6k
        mlo = multadd(mlo, 10, 0);
4329
16.6k
        mhi = multadd(mhi, 10, 0);
4330
16.6k
        }
4331
381k
      }
4332
36.4k
    }
4333
297
  else
4334
4.30k
    for(i = 1;; i++) {
4335
4.30k
      *s++ = dig = quorem(b,S) + '0';
4336
4.30k
      if (!b->x[0] && b->wds <= 1) {
4337
#ifdef SET_INEXACT
4338
        inexact = 0;
4339
#endif
4340
10
        goto ret;
4341
10
        }
4342
4.29k
      if (i >= ilim)
4343
287
        break;
4344
4.00k
      b = multadd(b, 10, 0);
4345
4.00k
      }
4346
4347
  /* Round off last digit */
4348
4349
#ifdef Honor_FLT_ROUNDS
4350
  switch(Rounding) {
4351
    case 0: goto trimzeros;
4352
    case 2: goto roundoff;
4353
    }
4354
#endif
4355
287
  b = lshift(b, 1);
4356
287
  j = cmp(b, S);
4357
#ifdef ROUND_BIASED
4358
  if (j >= 0)
4359
#else
4360
287
  if (j > 0 || (j == 0 && dig & 1))
4361
210
#endif
4362
210
    {
4363
242
 roundoff:
4364
320
    while(*--s == '9')
4365
110
      if (s == s0) {
4366
32
        k++;
4367
32
        *s++ = '1';
4368
32
        goto ret;
4369
32
        }
4370
210
    ++*s++;
4371
210
    }
4372
77
  else {
4373
#ifdef Honor_FLT_ROUNDS
4374
 trimzeros:
4375
#endif
4376
97
    while(*--s == '0');
4377
77
    s++;
4378
77
    }
4379
36.7k
 ret:
4380
36.7k
  Bfree(S);
4381
36.7k
  if (mhi) {
4382
36.4k
    if (mlo && mlo != mhi)
4383
1.09k
      Bfree(mlo);
4384
36.4k
    Bfree(mhi);
4385
36.4k
    }
4386
42.0k
 ret1:
4387
#ifdef SET_INEXACT
4388
  if (inexact) {
4389
    if (!oldinexact) {
4390
      word0(&u) = Exp_1 + (70 << Exp_shift);
4391
      word1(&u) = 0;
4392
      dval(&u) += 1.;
4393
      }
4394
    }
4395
  else if (!oldinexact)
4396
    clear_inexact();
4397
#endif
4398
42.0k
  Bfree(b);
4399
42.0k
  *s = 0;
4400
42.0k
  *decpt = k + 1;
4401
42.0k
  if (rve)
4402
146
    *rve = s;
4403
42.0k
  return s0;
4404
36.7k
  }
4405
4406
ZEND_API double zend_hex_strtod(const char *str, const char **endptr)
4407
309
{
4408
309
  const char *s = str;
4409
309
  char c;
4410
309
  int any = 0;
4411
309
  double value = 0;
4412
4413
309
  if (*s == '0' && (s[1] == 'x' || s[1] == 'X')) {
4414
0
    s += 2;
4415
0
  }
4416
4417
5.74k
  while ((c = *s++)) {
4418
5.74k
    if (c >= '0' && c <= '9') {
4419
5.28k
      c -= '0';
4420
5.28k
    } else if (c >= 'A' && c <= 'F') {
4421
142
      c -= 'A' - 10;
4422
315
    } else if (c >= 'a' && c <= 'f') {
4423
6
      c -= 'a' - 10;
4424
309
    } else {
4425
309
      break;
4426
309
    }
4427
4428
5.43k
    any = 1;
4429
5.43k
    value = value * 16 + c;
4430
5.43k
  }
4431
4432
309
  if (endptr != NULL) {
4433
309
    *endptr = any ? s - 1 : str;
4434
309
  }
4435
4436
309
  return value;
4437
309
}
4438
4439
ZEND_API double zend_oct_strtod(const char *str, const char **endptr)
4440
324
{
4441
324
  const char *s = str;
4442
324
  char c;
4443
324
  double value = 0;
4444
324
  int any = 0;
4445
4446
324
  if (str[0] == '\0') {
4447
0
    if (endptr != NULL) {
4448
0
      *endptr = str;
4449
0
    }
4450
0
    return 0.0;
4451
0
  }
4452
4453
16.8k
  while ((c = *s++)) {
4454
16.8k
    if (c < '0' || c > '7') {
4455
      /* break and return the current value if the number is not well-formed
4456
       * that's what Linux strtol() does
4457
       */
4458
304
      break;
4459
304
    }
4460
16.5k
    value = value * 8 + c - '0';
4461
16.5k
    any = 1;
4462
16.5k
  }
4463
4464
324
  if (endptr != NULL) {
4465
324
    *endptr = any ? s - 1 : str;
4466
324
  }
4467
4468
324
  return value;
4469
324
}
4470
4471
ZEND_API double zend_bin_strtod(const char *str, const char **endptr)
4472
34
{
4473
34
  const char *s = str;
4474
34
  char    c;
4475
34
  double    value = 0;
4476
34
  int     any = 0;
4477
4478
34
  if ('0' == *s && ('b' == s[1] || 'B' == s[1])) {
4479
0
    s += 2;
4480
0
  }
4481
4482
2.23k
  while ((c = *s++)) {
4483
    /*
4484
     * Verify the validity of the current character as a base-2 digit.  In
4485
     * the event that an invalid digit is found, halt the conversion and
4486
     * return the portion which has been converted thus far.
4487
     */
4488
2.23k
    if ('0' == c || '1' == c)
4489
2.20k
      value = value * 2 + c - '0';
4490
34
    else
4491
34
      break;
4492
4493
2.20k
    any = 1;
4494
2.20k
  }
4495
4496
  /*
4497
   * As with many strtoX implementations, should the subject sequence be
4498
   * empty or not well-formed, no conversion is performed and the original
4499
   * value of str is stored in *endptr, provided that endptr is not a null
4500
   * pointer.
4501
   */
4502
34
  if (NULL != endptr) {
4503
34
    *endptr = (char *)(any ? s - 1 : str);
4504
34
  }
4505
4506
34
  return value;
4507
34
}
4508
4509
ZEND_API char *zend_gcvt(double value, int ndigit, char dec_point, char exponent, char *buf)
4510
43.2k
{
4511
43.2k
  char *digits, *dst, *src;
4512
43.2k
  int i, decpt;
4513
43.2k
  bool sign;
4514
43.2k
  int mode = ndigit >= 0 ? 2 : 0;
4515
4516
43.2k
  if (mode == 0) {
4517
36.8k
    ndigit = 17;
4518
36.8k
  }
4519
43.2k
  digits = zend_dtoa(value, mode, ndigit, &decpt, &sign, NULL);
4520
43.2k
  if (decpt == 9999) {
4521
    /*
4522
     * Infinity or NaN, convert to inf or nan with sign.
4523
     * We assume the buffer is at least ndigit long.
4524
     */
4525
1.19k
    snprintf(buf, ndigit + 1, "%s%s", (sign && *digits == 'I') ? "-" : "", *digits == 'I' ? "INF" : "NAN");
4526
1.19k
    zend_freedtoa(digits);
4527
1.19k
    return (buf);
4528
1.19k
  }
4529
4530
42.0k
  dst = buf;
4531
42.0k
  if (sign) {
4532
8.11k
    *dst++ = '-';
4533
8.11k
  }
4534
4535
42.0k
  if ((decpt >= 0 && decpt > ndigit) || decpt < -3) { /* use E-style */
4536
    /* exponential format (e.g. 1.2345e+13) */
4537
12.0k
    if (--decpt < 0) {
4538
974
      sign = true;
4539
974
      decpt = -decpt;
4540
11.0k
    } else {
4541
11.0k
      sign = false;
4542
11.0k
    }
4543
12.0k
    src = digits;
4544
12.0k
    *dst++ = *src++;
4545
12.0k
    *dst++ = dec_point;
4546
12.0k
    if (*src == '\0') {
4547
103
      *dst++ = '0';
4548
11.9k
    } else {
4549
170k
      do {
4550
170k
        *dst++ = *src++;
4551
170k
      } while (*src != '\0');
4552
11.9k
    }
4553
12.0k
    *dst++ = exponent;
4554
12.0k
    if (sign) {
4555
974
      *dst++ = '-';
4556
11.0k
    } else {
4557
11.0k
      *dst++ = '+';
4558
11.0k
    }
4559
12.0k
    if (decpt < 10) {
4560
175
      *dst++ = '0' + decpt;
4561
175
      *dst = '\0';
4562
11.8k
    } else {
4563
      /* XXX - optimize */
4564
11.8k
      int n;
4565
24.2k
      for (n = decpt, i = 0; (n /= 10) != 0; i++);
4566
11.8k
      dst[i + 1] = '\0';
4567
36.0k
      while (decpt != 0) {
4568
24.2k
        dst[i--] = '0' + decpt % 10;
4569
24.2k
        decpt /= 10;
4570
24.2k
      }
4571
11.8k
    }
4572
29.9k
  } else if (decpt < 0) {
4573
    /* standard format 0. */
4574
513
    *dst++ = '0';   /* zero before decimal point */
4575
513
    *dst++ = dec_point;
4576
860
    do {
4577
860
      *dst++ = '0';
4578
860
    } while (++decpt < 0);
4579
513
    src = digits;
4580
8.57k
    while (*src != '\0') {
4581
8.06k
      *dst++ = *src++;
4582
8.06k
    }
4583
513
    *dst = '\0';
4584
29.4k
  } else {
4585
    /* standard format */
4586
130k
    for (i = 0, src = digits; i < decpt; i++) {
4587
100k
      if (*src != '\0') {
4588
100k
        *dst++ = *src++;
4589
100k
      } else {
4590
340
        *dst++ = '0';
4591
340
      }
4592
100k
    }
4593
29.4k
    if (*src != '\0') {
4594
28.8k
      if (src == digits) {
4595
2.17k
        *dst++ = '0';   /* zero before decimal point */
4596
2.17k
      }
4597
28.8k
      *dst++ = dec_point;
4598
223k
      for (i = decpt; digits[i] != '\0'; i++) {
4599
194k
        *dst++ = digits[i];
4600
194k
      }
4601
28.8k
    }
4602
29.4k
    *dst = '\0';
4603
29.4k
  }
4604
42.0k
  zend_freedtoa(digits);
4605
42.0k
  return (buf);
4606
43.2k
}
4607
4608
static void destroy_freelist(void)
4609
0
{
4610
0
  int i;
4611
0
  Bigint *tmp;
4612
4613
0
  ACQUIRE_DTOA_LOCK(0)
4614
0
  for (i = 0; i <= Kmax; i++) {
4615
0
    Bigint **listp = &freelist[i];
4616
0
    while ((tmp = *listp) != NULL) {
4617
0
      *listp = tmp->next;
4618
0
      FREE(tmp);
4619
0
    }
4620
0
    freelist[i] = NULL;
4621
0
  }
4622
0
  FREE_DTOA_LOCK(0)
4623
0
}
4624
4625
static void free_p5s(void)
4626
0
{
4627
0
  Bigint **listp, *tmp;
4628
4629
0
  ACQUIRE_DTOA_LOCK(1)
4630
0
  listp = &p5s;
4631
0
  while ((tmp = *listp) != NULL) {
4632
0
    *listp = tmp->next;
4633
0
    FREE(tmp);
4634
0
  }
4635
0
  p5s = NULL;
4636
0
  FREE_DTOA_LOCK(1)
4637
0
}