Coverage Report

Created: 2025-12-14 06:09

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/php-src/Zend/zend_strtod.c
Line
Count
Source
1
/****************************************************************
2
 *
3
 * The author of this software is David M. Gay.
4
 *
5
 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
6
 *
7
 * Permission to use, copy, modify, and distribute this software for any
8
 * purpose without fee is hereby granted, provided that this entire notice
9
 * is included in all copies of any software which is or includes a copy
10
 * or modification of this software and in all copies of the supporting
11
 * documentation for such software.
12
 *
13
 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
14
 * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
15
 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
16
 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
17
 *
18
 ***************************************************************/
19
20
/* Please send bug reports to David M. Gay (dmg at acm dot org,
21
 * with " at " changed at "@" and " dot " changed to ".").  */
22
23
/* On a machine with IEEE extended-precision registers, it is
24
 * necessary to specify double-precision (53-bit) rounding precision
25
 * before invoking strtod or dtoa.  If the machine uses (the equivalent
26
 * of) Intel 80x87 arithmetic, the call
27
 *  _control87(PC_53, MCW_PC);
28
 * does this with many compilers.  Whether this or another call is
29
 * appropriate depends on the compiler; for this to work, it may be
30
 * necessary to #include "float.h" or another system-dependent header
31
 * file.
32
 */
33
34
/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
35
 * (Note that IEEE arithmetic is disabled by gcc's -ffast-math flag.)
36
 *
37
 * This strtod returns a nearest machine number to the input decimal
38
 * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
39
 * broken by the IEEE round-even rule.  Otherwise ties are broken by
40
 * biased rounding (add half and chop).
41
 *
42
 * Inspired loosely by William D. Clinger's paper "How to Read Floating
43
 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
44
 *
45
 * Modifications:
46
 *
47
 *  1. We only require IEEE, IBM, or VAX double-precision
48
 *    arithmetic (not IEEE double-extended).
49
 *  2. We get by with floating-point arithmetic in a case that
50
 *    Clinger missed -- when we're computing d * 10^n
51
 *    for a small integer d and the integer n is not too
52
 *    much larger than 22 (the maximum integer k for which
53
 *    we can represent 10^k exactly), we may be able to
54
 *    compute (d*10^k) * 10^(e-k) with just one roundoff.
55
 *  3. Rather than a bit-at-a-time adjustment of the binary
56
 *    result in the hard case, we use floating-point
57
 *    arithmetic to determine the adjustment to within
58
 *    one bit; only in really hard cases do we need to
59
 *    compute a second residual.
60
 *  4. Because of 3., we don't need a large table of powers of 10
61
 *    for ten-to-e (just some small tables, e.g. of 10^k
62
 *    for 0 <= k <= 22).
63
 */
64
65
/*
66
 * #define IEEE_8087 for IEEE-arithmetic machines where the least
67
 *  significant byte has the lowest address.
68
 * #define IEEE_MC68k for IEEE-arithmetic machines where the most
69
 *  significant byte has the lowest address.
70
 * #define Long int on machines with 32-bit ints and 64-bit longs.
71
 * #define IBM for IBM mainframe-style floating-point arithmetic.
72
 * #define VAX for VAX-style floating-point arithmetic (D_floating).
73
 * #define No_leftright to omit left-right logic in fast floating-point
74
 *  computation of dtoa.  This will cause dtoa modes 4 and 5 to be
75
 *  treated the same as modes 2 and 3 for some inputs.
76
 * #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
77
 *  and strtod and dtoa should round accordingly.  Unless Trust_FLT_ROUNDS
78
 *  is also #defined, fegetround() will be queried for the rounding mode.
79
 *  Note that both FLT_ROUNDS and fegetround() are specified by the C99
80
 *  standard (and are specified to be consistent, with fesetround()
81
 *  affecting the value of FLT_ROUNDS), but that some (Linux) systems
82
 *  do not work correctly in this regard, so using fegetround() is more
83
 *  portable than using FLT_ROUNDS directly.
84
 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
85
 *  and Honor_FLT_ROUNDS is not #defined.
86
 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
87
 *  that use extended-precision instructions to compute rounded
88
 *  products and quotients) with IBM.
89
 * #define ROUND_BIASED for IEEE-format with biased rounding and arithmetic
90
 *  that rounds toward +Infinity.
91
 * #define ROUND_BIASED_without_Round_Up for IEEE-format with biased
92
 *  rounding when the underlying floating-point arithmetic uses
93
 *  unbiased rounding.  This prevent using ordinary floating-point
94
 *  arithmetic when the result could be computed with one rounding error.
95
 * #define Inaccurate_Divide for IEEE-format with correctly rounded
96
 *  products but inaccurate quotients, e.g., for Intel i860.
97
 * #define NO_LONG_LONG on machines that do not have a "long long"
98
 *  integer type (of >= 64 bits).  On such machines, you can
99
 *  #define Just_16 to store 16 bits per 32-bit Long when doing
100
 *  high-precision integer arithmetic.  Whether this speeds things
101
 *  up or slows things down depends on the machine and the number
102
 *  being converted.  If long long is available and the name is
103
 *  something other than "long long", #define Llong to be the name,
104
 *  and if "unsigned Llong" does not work as an unsigned version of
105
 *  Llong, #define #ULLong to be the corresponding unsigned type.
106
 * #define KR_headers for old-style C function headers.
107
 * #define Bad_float_h if your system lacks a float.h or if it does not
108
 *  define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
109
 *  FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
110
 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
111
 *  if memory is available and otherwise does something you deem
112
 *  appropriate.  If MALLOC is undefined, malloc will be invoked
113
 *  directly -- and assumed always to succeed.  Similarly, if you
114
 *  want something other than the system's free() to be called to
115
 *  recycle memory acquired from MALLOC, #define FREE to be the
116
 *  name of the alternate routine.  (FREE or free is only called in
117
 *  pathological cases, e.g., in a dtoa call after a dtoa return in
118
 *  mode 3 with thousands of digits requested.)
119
 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
120
 *  memory allocations from a private pool of memory when possible.
121
 *  When used, the private pool is PRIVATE_MEM bytes long:  2304 bytes,
122
 *  unless #defined to be a different length.  This default length
123
 *  suffices to get rid of MALLOC calls except for unusual cases,
124
 *  such as decimal-to-binary conversion of a very long string of
125
 *  digits.  The longest string dtoa can return is about 751 bytes
126
 *  long.  For conversions by strtod of strings of 800 digits and
127
 *  all dtoa conversions in single-threaded executions with 8-byte
128
 *  pointers, PRIVATE_MEM >= 7400 appears to suffice; with 4-byte
129
 *  pointers, PRIVATE_MEM >= 7112 appears adequate.
130
 * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK
131
 *  #defined automatically on IEEE systems.  On such systems,
132
 *  when INFNAN_CHECK is #defined, strtod checks
133
 *  for Infinity and NaN (case insensitively).  On some systems
134
 *  (e.g., some HP systems), it may be necessary to #define NAN_WORD0
135
 *  appropriately -- to the most significant word of a quiet NaN.
136
 *  (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
137
 *  When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
138
 *  strtod also accepts (case insensitively) strings of the form
139
 *  NaN(x), where x is a string of hexadecimal digits and spaces;
140
 *  if there is only one string of hexadecimal digits, it is taken
141
 *  for the 52 fraction bits of the resulting NaN; if there are two
142
 *  or more strings of hex digits, the first is for the high 20 bits,
143
 *  the second and subsequent for the low 32 bits, with intervening
144
 *  white space ignored; but if this results in none of the 52
145
 *  fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0
146
 *  and NAN_WORD1 are used instead.
147
 * #define MULTIPLE_THREADS if the system offers preemptively scheduled
148
 *  multiple threads.  In this case, you must provide (or suitably
149
 *  #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
150
 *  by FREE_DTOA_LOCK(n) for n = 0 or 1.  (The second lock, accessed
151
 *  in pow5mult, ensures lazy evaluation of only one copy of high
152
 *  powers of 5; omitting this lock would introduce a small
153
 *  probability of wasting memory, but would otherwise be harmless.)
154
 *  You must also invoke freedtoa(s) to free the value s returned by
155
 *  dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
156
 * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that
157
 *  avoids underflows on inputs whose result does not underflow.
158
 *  If you #define NO_IEEE_Scale on a machine that uses IEEE-format
159
 *  floating-point numbers and flushes underflows to zero rather
160
 *  than implementing gradual underflow, then you must also #define
161
 *  Sudden_Underflow.
162
 * #define USE_LOCALE to use the current locale's decimal_point value.
163
 * #define SET_INEXACT if IEEE arithmetic is being used and extra
164
 *  computation should be done to set the inexact flag when the
165
 *  result is inexact and avoid setting inexact when the result
166
 *  is exact.  In this case, dtoa.c must be compiled in
167
 *  an environment, perhaps provided by #include "dtoa.c" in a
168
 *  suitable wrapper, that defines two functions,
169
 *    int get_inexact(void);
170
 *    void clear_inexact(void);
171
 *  such that get_inexact() returns a nonzero value if the
172
 *  inexact bit is already set, and clear_inexact() sets the
173
 *  inexact bit to 0.  When SET_INEXACT is #defined, strtod
174
 *  also does extra computations to set the underflow and overflow
175
 *  flags when appropriate (i.e., when the result is tiny and
176
 *  inexact or when it is a numeric value rounded to +-infinity).
177
 * #define NO_ERRNO if strtod should not assign errno = ERANGE when
178
 *  the result overflows to +-Infinity or underflows to 0.
179
 * #define NO_HEX_FP to omit recognition of hexadecimal floating-point
180
 *  values by strtod.
181
 * #define NO_STRTOD_BIGCOMP (on IEEE-arithmetic systems only for now)
182
 *  to disable logic for "fast" testing of very long input strings
183
 *  to strtod.  This testing proceeds by initially truncating the
184
 *  input string, then if necessary comparing the whole string with
185
 *  a decimal expansion to decide close cases. This logic is only
186
 *  used for input more than STRTOD_DIGLIM digits long (default 40).
187
 */
188
189
#include <zend_operators.h>
190
#include <zend_strtod.h>
191
#include "zend_strtod_int.h"
192
#include "zend_globals.h"
193
194
#ifndef Long
195
104k
#define Long int32_t
196
#endif
197
#ifndef ULong
198
3.03M
#define ULong uint32_t
199
#endif
200
201
#undef Bigint
202
#undef freelist
203
#undef p5s
204
#undef dtoa_result
205
206
2.25M
#define Bigint      _zend_strtod_bigint
207
2.65M
#define freelist    (EG(strtod_state).freelist)
208
19.7k
#define p5s         (EG(strtod_state).p5s)
209
127k
#define dtoa_result (EG(strtod_state).result)
210
211
#ifdef DEBUG
212
static void Bug(const char *message) {
213
  fprintf(stderr, "%s\n", message);
214
}
215
#endif
216
217
#include "stdlib.h"
218
#include "string.h"
219
220
#ifdef USE_LOCALE
221
#include "locale.h"
222
#endif
223
224
#ifdef Honor_FLT_ROUNDS
225
#ifndef Trust_FLT_ROUNDS
226
#include <fenv.h>
227
#endif
228
#endif
229
230
#ifdef MALLOC
231
#ifdef KR_headers
232
extern char *MALLOC();
233
#else
234
extern void *MALLOC(size_t);
235
#endif
236
#else
237
36
#define MALLOC malloc
238
3
#define FREE   free
239
#endif
240
241
#ifndef Omit_Private_Memory
242
#ifndef PRIVATE_MEM
243
#define PRIVATE_MEM 2304
244
#endif
245
#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
246
static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
247
#endif
248
249
#undef IEEE_Arith
250
#undef Avoid_Underflow
251
#ifdef IEEE_MC68k
252
#define IEEE_Arith
253
#endif
254
#ifdef IEEE_8087
255
#define IEEE_Arith
256
#endif
257
258
#ifdef IEEE_Arith
259
#ifndef NO_INFNAN_CHECK
260
#undef INFNAN_CHECK
261
#define INFNAN_CHECK
262
#endif
263
#else
264
#undef INFNAN_CHECK
265
#define NO_STRTOD_BIGCOMP
266
#endif
267
268
#include "errno.h"
269
270
#ifdef Bad_float_h
271
272
#ifdef IEEE_Arith
273
#define DBL_DIG 15
274
#define DBL_MAX_10_EXP 308
275
#define DBL_MAX_EXP 1024
276
#define FLT_RADIX 2
277
#endif /*IEEE_Arith*/
278
279
#ifdef IBM
280
#define DBL_DIG 16
281
#define DBL_MAX_10_EXP 75
282
#define DBL_MAX_EXP 63
283
#define FLT_RADIX 16
284
#define DBL_MAX 7.2370055773322621e+75
285
#endif
286
287
#ifdef VAX
288
#define DBL_DIG 16
289
#define DBL_MAX_10_EXP 38
290
#define DBL_MAX_EXP 127
291
#define FLT_RADIX 2
292
#define DBL_MAX 1.7014118346046923e+38
293
#endif
294
295
#else /* ifndef Bad_float_h */
296
#include "float.h"
297
#endif /* Bad_float_h */
298
299
#ifndef __MATH_H__
300
#include "math.h"
301
#endif
302
303
#ifndef CONST
304
#ifdef KR_headers
305
#define CONST /* blank */
306
#else
307
45.7k
#define CONST const
308
#endif
309
#endif
310
311
#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
312
Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
313
#endif
314
315
typedef union { double d; ULong L[2]; } U;
316
317
#ifdef IEEE_8087
318
426k
#define word0(x) (x)->L[1]
319
176k
#define word1(x) (x)->L[0]
320
#else
321
#define word0(x) (x)->L[0]
322
#define word1(x) (x)->L[1]
323
#endif
324
709k
#define dval(x) (x)->d
325
326
#ifndef STRTOD_DIGLIM
327
18.8k
#define STRTOD_DIGLIM 40
328
#endif
329
330
#ifdef DIGLIM_DEBUG
331
extern int strtod_diglim;
332
#else
333
18.8k
#define strtod_diglim STRTOD_DIGLIM
334
#endif
335
336
/* The following definition of Storeinc is appropriate for MIPS processors.
337
 * An alternative that might be better on some machines is
338
 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
339
 */
340
#if defined(IEEE_8087) + defined(VAX) + defined(__arm__)
341
#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
342
((unsigned short *)a)[0] = (unsigned short)c, a++)
343
#else
344
#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
345
((unsigned short *)a)[1] = (unsigned short)c, a++)
346
#endif
347
348
/* #define P DBL_MANT_DIG */
349
/* Ten_pmax = floor(P*log(2)/log(5)) */
350
/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
351
/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
352
/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
353
354
#ifdef IEEE_Arith
355
55.0k
#define Exp_shift  20
356
60.9k
#define Exp_shift1 20
357
122k
#define Exp_msk1    0x100000
358
#define Exp_msk11   0x100000
359
135k
#define Exp_mask  0x7ff00000
360
211k
#define P 53
361
#define Nbits 53
362
110k
#define Bias 1023
363
#define Emax 1023
364
25.1k
#define Emin (-1022)
365
17.5k
#define Exp_1  0x3ff00000
366
30.4k
#define Exp_11 0x3ff00000
367
43.8k
#define Ebits 11
368
54.1k
#define Frac_mask  0xfffff
369
30.4k
#define Frac_mask1 0xfffff
370
48.8k
#define Ten_pmax 22
371
5.05k
#define Bletch 0x10
372
13.1k
#define Bndry_mask  0xfffff
373
657
#define Bndry_mask1 0xfffff
374
21.7k
#define LSB 1
375
39.7k
#define Sign_bit 0x80000000
376
2.04k
#define Log2P 1
377
#define Tiny0 0
378
9.62k
#define Tiny1 1
379
36.1k
#define Quick_max 14
380
7.25k
#define Int_max 14
381
#ifndef NO_IEEE_Scale
382
#define Avoid_Underflow
383
#ifdef Flush_Denorm /* debugging option */
384
#undef Sudden_Underflow
385
#endif
386
#endif
387
388
#ifndef Flt_Rounds
389
#ifdef FLT_ROUNDS
390
25.6k
#define Flt_Rounds FLT_ROUNDS
391
#else
392
#define Flt_Rounds 1
393
#endif
394
#endif /*Flt_Rounds*/
395
396
#ifdef Honor_FLT_ROUNDS
397
#undef Check_FLT_ROUNDS
398
#define Check_FLT_ROUNDS
399
#else
400
#define Rounding Flt_Rounds
401
#endif
402
403
#else /* ifndef IEEE_Arith */
404
#undef Check_FLT_ROUNDS
405
#undef Honor_FLT_ROUNDS
406
#undef SET_INEXACT
407
#undef  Sudden_Underflow
408
#define Sudden_Underflow
409
#ifdef IBM
410
#undef Flt_Rounds
411
#define Flt_Rounds 0
412
#define Exp_shift  24
413
#define Exp_shift1 24
414
#define Exp_msk1   0x1000000
415
#define Exp_msk11  0x1000000
416
#define Exp_mask  0x7f000000
417
#define P 14
418
#define Nbits 56
419
#define Bias 65
420
#define Emax 248
421
#define Emin (-260)
422
#define Exp_1  0x41000000
423
#define Exp_11 0x41000000
424
#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
425
#define Frac_mask  0xffffff
426
#define Frac_mask1 0xffffff
427
#define Bletch 4
428
#define Ten_pmax 22
429
#define Bndry_mask  0xefffff
430
#define Bndry_mask1 0xffffff
431
#define LSB 1
432
#define Sign_bit 0x80000000
433
#define Log2P 4
434
#define Tiny0 0x100000
435
#define Tiny1 0
436
#define Quick_max 14
437
#define Int_max 15
438
#else /* VAX */
439
#undef Flt_Rounds
440
#define Flt_Rounds 1
441
#define Exp_shift  23
442
#define Exp_shift1 7
443
#define Exp_msk1    0x80
444
#define Exp_msk11   0x800000
445
#define Exp_mask  0x7f80
446
#define P 56
447
#define Nbits 56
448
#define Bias 129
449
#define Emax 126
450
#define Emin (-129)
451
#define Exp_1  0x40800000
452
#define Exp_11 0x4080
453
#define Ebits 8
454
#define Frac_mask  0x7fffff
455
#define Frac_mask1 0xffff007f
456
#define Ten_pmax 24
457
#define Bletch 2
458
#define Bndry_mask  0xffff007f
459
#define Bndry_mask1 0xffff007f
460
#define LSB 0x10000
461
#define Sign_bit 0x8000
462
#define Log2P 1
463
#define Tiny0 0x80
464
#define Tiny1 0
465
#define Quick_max 15
466
#define Int_max 15
467
#endif /* IBM, VAX */
468
#endif /* IEEE_Arith */
469
470
#ifndef IEEE_Arith
471
#define ROUND_BIASED
472
#else
473
#ifdef ROUND_BIASED_without_Round_Up
474
#undef  ROUND_BIASED
475
#define ROUND_BIASED
476
#endif
477
#endif
478
479
#ifdef RND_PRODQUOT
480
#define rounded_product(a,b) a = rnd_prod(a, b)
481
#define rounded_quotient(a,b) a = rnd_quot(a, b)
482
#ifdef KR_headers
483
extern double rnd_prod(), rnd_quot();
484
#else
485
extern double rnd_prod(double, double), rnd_quot(double, double);
486
#endif
487
#else
488
1.88k
#define rounded_product(a,b) a *= b
489
15.2k
#define rounded_quotient(a,b) a /= b
490
#endif
491
492
21
#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
493
14
#define Big1 0xffffffff
494
495
#ifndef Pack_32
496
#define Pack_32
497
#endif
498
499
typedef struct BCinfo BCinfo;
500
 struct
501
BCinfo { int dp0, dp1, dplen, dsign, e0, inexact, nd, nd0, rounding, scale, uflchk; };
502
503
#ifdef KR_headers
504
#define FFFFFFFF ((((unsigned long)0xffff)<<16)|(unsigned long)0xffff)
505
#else
506
4.25M
#define FFFFFFFF 0xffffffffUL
507
#endif
508
509
#ifdef NO_LONG_LONG
510
#undef ULLong
511
#ifdef Just_16
512
#undef Pack_32
513
/* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
514
 * This makes some inner loops simpler and sometimes saves work
515
 * during multiplications, but it often seems to make things slightly
516
 * slower.  Hence the default is now to store 32 bits per Long.
517
 */
518
#endif
519
#else /* long long available */
520
#ifndef Llong
521
#define Llong long long
522
#endif
523
#ifndef ULLong
524
1.46M
#define ULLong unsigned Llong
525
#endif
526
#endif /* NO_LONG_LONG */
527
528
#ifndef MULTIPLE_THREADS
529
#define ACQUIRE_DTOA_LOCK(n)  /*nothing*/
530
#define FREE_DTOA_LOCK(n) /*nothing*/
531
#endif
532
533
1.32M
#define Kmax ZEND_STRTOD_K_MAX
534
535
 struct
536
Bigint {
537
  struct Bigint *next;
538
  int k, maxwds, sign, wds;
539
  ULong x[1];
540
  };
541
542
 typedef struct Bigint Bigint;
543
544
#ifndef Bigint
545
 static Bigint *freelist[Kmax+1];
546
#endif
547
548
static void destroy_freelist(void);
549
static void free_p5s(void);
550
551
#ifdef MULTIPLE_THREADS
552
static MUTEX_T dtoa_mutex;
553
static MUTEX_T pow5mult_mutex;
554
#endif /* ZTS */
555
556
ZEND_API int zend_shutdown_strtod(void) /* {{{ */
557
0
{
558
0
  destroy_freelist();
559
0
  free_p5s();
560
561
0
  return 1;
562
0
}
563
/* }}} */
564
565
 static Bigint *
566
Balloc
567
#ifdef KR_headers
568
  (k) int k;
569
#else
570
  (int k)
571
#endif
572
664k
{
573
664k
  int x;
574
664k
  Bigint *rv;
575
#ifndef Omit_Private_Memory
576
  unsigned int len;
577
#endif
578
579
664k
  ACQUIRE_DTOA_LOCK(0);
580
  /* The k > Kmax case does not need ACQUIRE_DTOA_LOCK(0), */
581
  /* but this case seems very unlikely. */
582
664k
  if (k <= Kmax && (rv = freelist[k]))
583
664k
    freelist[k] = rv->next;
584
36
  else {
585
36
    x = 1 << k;
586
36
#ifdef Omit_Private_Memory
587
36
    rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong));
588
36
    if (!rv) {
589
0
      FREE_DTOA_LOCK(0);
590
0
      zend_error_noreturn(E_ERROR, "Balloc() failed to allocate memory");
591
0
    }
592
#else
593
    len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
594
      /sizeof(double);
595
    if (k <= Kmax && pmem_next - private_mem + len <= PRIVATE_mem) {
596
      rv = (Bigint*)pmem_next;
597
      pmem_next += len;
598
      }
599
    else
600
      rv = (Bigint*)MALLOC(len*sizeof(double));
601
      if (!rv) {
602
        FREE_DTOA_LOCK(0);
603
        zend_error_noreturn(E_ERROR, "Balloc() failed to allocate memory");
604
      }
605
#endif
606
36
    rv->k = k;
607
36
    rv->maxwds = x;
608
36
    }
609
664k
  FREE_DTOA_LOCK(0);
610
664k
  rv->sign = rv->wds = 0;
611
664k
  return rv;
612
664k
  }
613
614
 static void
615
Bfree
616
#ifdef KR_headers
617
  (v) Bigint *v;
618
#else
619
  (Bigint *v)
620
#endif
621
664k
{
622
664k
  if (v) {
623
664k
    if (v->k > Kmax)
624
3
      FREE((void*)v);
625
664k
    else {
626
664k
      ACQUIRE_DTOA_LOCK(0);
627
664k
      v->next = freelist[v->k];
628
664k
      freelist[v->k] = v;
629
664k
      FREE_DTOA_LOCK(0);
630
664k
      }
631
664k
    }
632
664k
  }
633
634
23.4k
#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
635
23.4k
y->wds*sizeof(Long) + 2*sizeof(int))
636
637
 static Bigint *
638
multadd
639
#ifdef KR_headers
640
  (b, m, a) Bigint *b; int m, a;
641
#else
642
  (Bigint *b, int m, int a) /* multiply by m and add a */
643
#endif
644
835k
{
645
835k
  int i, wds;
646
835k
#ifdef ULLong
647
835k
  ULong *x;
648
835k
  ULLong carry, y;
649
#else
650
  ULong carry, *x, y;
651
#ifdef Pack_32
652
  ULong xi, z;
653
#endif
654
#endif
655
835k
  Bigint *b1;
656
657
835k
  wds = b->wds;
658
835k
  x = b->x;
659
835k
  i = 0;
660
835k
  carry = a;
661
1.76M
  do {
662
1.76M
#ifdef ULLong
663
1.76M
    y = *x * (ULLong)m + carry;
664
1.76M
    carry = y >> 32;
665
1.76M
    *x++ = y & FFFFFFFF;
666
#else
667
#ifdef Pack_32
668
    xi = *x;
669
    y = (xi & 0xffff) * m + carry;
670
    z = (xi >> 16) * m + (y >> 16);
671
    carry = z >> 16;
672
    *x++ = (z << 16) + (y & 0xffff);
673
#else
674
    y = *x * m + carry;
675
    carry = y >> 16;
676
    *x++ = y & 0xffff;
677
#endif
678
#endif
679
1.76M
    }
680
1.76M
    while(++i < wds);
681
835k
  if (carry) {
682
58.0k
    if (wds >= b->maxwds) {
683
1.15k
      b1 = Balloc(b->k+1);
684
1.15k
      Bcopy(b1, b);
685
1.15k
      Bfree(b);
686
1.15k
      b = b1;
687
1.15k
      }
688
58.0k
    b->x[wds++] = carry;
689
58.0k
    b->wds = wds;
690
58.0k
    }
691
835k
  return b;
692
835k
  }
693
694
 static Bigint *
695
s2b
696
#ifdef KR_headers
697
  (s, nd0, nd, y9, dplen) CONST char *s; int nd0, nd, dplen; ULong y9;
698
#else
699
  (const char *s, int nd0, int nd, ULong y9, int dplen)
700
#endif
701
18.8k
{
702
18.8k
  Bigint *b;
703
18.8k
  int i, k;
704
18.8k
  Long x, y;
705
706
18.8k
  x = (nd + 8) / 9;
707
51.7k
  for(k = 0, y = 1; x > y; y <<= 1, k++) ;
708
18.8k
#ifdef Pack_32
709
18.8k
  b = Balloc(k);
710
18.8k
  b->x[0] = y9;
711
18.8k
  b->wds = 1;
712
#else
713
  b = Balloc(k+1);
714
  b->x[0] = y9 & 0xffff;
715
  b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
716
#endif
717
718
18.8k
  i = 9;
719
18.8k
  if (9 < nd0) {
720
15.9k
    s += 9;
721
265k
    do b = multadd(b, 10, *s++ - '0');
722
265k
      while(++i < nd0);
723
15.9k
    s += dplen;
724
15.9k
    }
725
2.96k
  else
726
2.96k
    s += dplen + 9;
727
40.0k
  for(; i < nd; i++)
728
21.1k
    b = multadd(b, 10, *s++ - '0');
729
18.8k
  return b;
730
18.8k
  }
731
732
 static int
733
hi0bits
734
#ifdef KR_headers
735
  (x) ULong x;
736
#else
737
  (ULong x)
738
#endif
739
43.5k
{
740
43.5k
  int k = 0;
741
742
43.5k
  if (!(x & 0xffff0000)) {
743
32.8k
    k = 16;
744
32.8k
    x <<= 16;
745
32.8k
    }
746
43.5k
  if (!(x & 0xff000000)) {
747
27.2k
    k += 8;
748
27.2k
    x <<= 8;
749
27.2k
    }
750
43.5k
  if (!(x & 0xf0000000)) {
751
17.3k
    k += 4;
752
17.3k
    x <<= 4;
753
17.3k
    }
754
43.5k
  if (!(x & 0xc0000000)) {
755
22.8k
    k += 2;
756
22.8k
    x <<= 2;
757
22.8k
    }
758
43.5k
  if (!(x & 0x80000000)) {
759
31.3k
    k++;
760
31.3k
    if (!(x & 0x40000000))
761
0
      return 32;
762
31.3k
    }
763
43.5k
  return k;
764
43.5k
  }
765
766
 static int
767
lo0bits
768
#ifdef KR_headers
769
  (y) ULong *y;
770
#else
771
  (ULong *y)
772
#endif
773
54.1k
{
774
54.1k
  int k;
775
54.1k
  ULong x = *y;
776
777
54.1k
  if (x & 7) {
778
38.5k
    if (x & 1)
779
18.6k
      return 0;
780
19.8k
    if (x & 2) {
781
12.1k
      *y = x >> 1;
782
12.1k
      return 1;
783
12.1k
      }
784
7.74k
    *y = x >> 2;
785
7.74k
    return 2;
786
19.8k
    }
787
15.6k
  k = 0;
788
15.6k
  if (!(x & 0xffff)) {
789
4.29k
    k = 16;
790
4.29k
    x >>= 16;
791
4.29k
    }
792
15.6k
  if (!(x & 0xff)) {
793
2.15k
    k += 8;
794
2.15k
    x >>= 8;
795
2.15k
    }
796
15.6k
  if (!(x & 0xf)) {
797
11.5k
    k += 4;
798
11.5k
    x >>= 4;
799
11.5k
    }
800
15.6k
  if (!(x & 0x3)) {
801
4.29k
    k += 2;
802
4.29k
    x >>= 2;
803
4.29k
    }
804
15.6k
  if (!(x & 1)) {
805
5.49k
    k++;
806
5.49k
    x >>= 1;
807
5.49k
    if (!x)
808
0
      return 32;
809
5.49k
    }
810
15.6k
  *y = x;
811
15.6k
  return k;
812
15.6k
  }
813
814
 static Bigint *
815
i2b
816
#ifdef KR_headers
817
  (i) int i;
818
#else
819
  (int i)
820
#endif
821
73.0k
{
822
73.0k
  Bigint *b;
823
824
73.0k
  b = Balloc(1);
825
73.0k
  b->x[0] = i;
826
73.0k
  b->wds = 1;
827
73.0k
  return b;
828
73.0k
  }
829
830
 static Bigint *
831
mult
832
#ifdef KR_headers
833
  (a, b) Bigint *a, *b;
834
#else
835
  (Bigint *a, Bigint *b)
836
#endif
837
48.7k
{
838
48.7k
  Bigint *c;
839
48.7k
  int k, wa, wb, wc;
840
48.7k
  ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
841
48.7k
  ULong y;
842
48.7k
#ifdef ULLong
843
48.7k
  ULLong carry, z;
844
#else
845
  ULong carry, z;
846
#ifdef Pack_32
847
  ULong z2;
848
#endif
849
#endif
850
851
48.7k
  if (a->wds < b->wds) {
852
20.4k
    c = a;
853
20.4k
    a = b;
854
20.4k
    b = c;
855
20.4k
    }
856
48.7k
  k = a->k;
857
48.7k
  wa = a->wds;
858
48.7k
  wb = b->wds;
859
48.7k
  wc = wa + wb;
860
48.7k
  if (wc > a->maxwds)
861
25.8k
    k++;
862
48.7k
  c = Balloc(k);
863
307k
  for(x = c->x, xa = x + wc; x < xa; x++)
864
259k
    *x = 0;
865
48.7k
  xa = a->x;
866
48.7k
  xae = xa + wa;
867
48.7k
  xb = b->x;
868
48.7k
  xbe = xb + wb;
869
48.7k
  xc0 = c->x;
870
48.7k
#ifdef ULLong
871
130k
  for(; xb < xbe; xc0++) {
872
81.5k
    if ((y = *xb++)) {
873
81.5k
      x = xa;
874
81.5k
      xc = xc0;
875
81.5k
      carry = 0;
876
441k
      do {
877
441k
        z = *x++ * (ULLong)y + *xc + carry;
878
441k
        carry = z >> 32;
879
441k
        *xc++ = z & FFFFFFFF;
880
441k
        }
881
441k
        while(x < xae);
882
81.5k
      *xc = carry;
883
81.5k
      }
884
81.5k
    }
885
#else
886
#ifdef Pack_32
887
  for(; xb < xbe; xb++, xc0++) {
888
    if (y = *xb & 0xffff) {
889
      x = xa;
890
      xc = xc0;
891
      carry = 0;
892
      do {
893
        z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
894
        carry = z >> 16;
895
        z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
896
        carry = z2 >> 16;
897
        Storeinc(xc, z2, z);
898
        }
899
        while(x < xae);
900
      *xc = carry;
901
      }
902
    if (y = *xb >> 16) {
903
      x = xa;
904
      xc = xc0;
905
      carry = 0;
906
      z2 = *xc;
907
      do {
908
        z = (*x & 0xffff) * y + (*xc >> 16) + carry;
909
        carry = z >> 16;
910
        Storeinc(xc, z, z2);
911
        z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
912
        carry = z2 >> 16;
913
        }
914
        while(x < xae);
915
      *xc = z2;
916
      }
917
    }
918
#else
919
  for(; xb < xbe; xc0++) {
920
    if (y = *xb++) {
921
      x = xa;
922
      xc = xc0;
923
      carry = 0;
924
      do {
925
        z = *x++ * y + *xc + carry;
926
        carry = z >> 16;
927
        *xc++ = z & 0xffff;
928
        }
929
        while(x < xae);
930
      *xc = carry;
931
      }
932
    }
933
#endif
934
#endif
935
85.5k
  for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
936
48.7k
  c->wds = wc;
937
48.7k
  return c;
938
48.7k
  }
939
940
#ifndef p5s
941
 static Bigint *p5s;
942
#endif
943
944
 static Bigint *
945
pow5mult
946
#ifdef KR_headers
947
  (b, k) Bigint *b; int k;
948
#else
949
  (Bigint *b, int k)
950
#endif
951
34.8k
{
952
34.8k
  Bigint *b1, *p5, *p51;
953
34.8k
  int i;
954
34.8k
  static const int p05[3] = { 5, 25, 125 };
955
956
34.8k
  if ((i = k & 3))
957
28.7k
    b = multadd(b, p05[i-1], 0);
958
959
34.8k
  if (!(k >>= 2))
960
15.1k
    return b;
961
19.7k
  if (!(p5 = p5s)) {
962
    /* first time */
963
#ifdef MULTIPLE_THREADS
964
    ACQUIRE_DTOA_LOCK(1);
965
    if (!(p5 = p5s)) {
966
      p5 = p5s = i2b(625);
967
      p5->next = 0;
968
      }
969
    FREE_DTOA_LOCK(1);
970
#else
971
1
    p5 = p5s = i2b(625);
972
1
    p5->next = 0;
973
1
#endif
974
1
    }
975
73.8k
  for(;;) {
976
73.8k
    if (k & 1) {
977
42.9k
      b1 = mult(b, p5);
978
42.9k
      Bfree(b);
979
42.9k
      b = b1;
980
42.9k
      }
981
73.8k
    if (!(k >>= 1))
982
19.7k
      break;
983
54.1k
    if (!(p51 = p5->next)) {
984
#ifdef MULTIPLE_THREADS
985
      ACQUIRE_DTOA_LOCK(1);
986
      if (!(p51 = p5->next)) {
987
        p51 = p5->next = mult(p5,p5);
988
        p51->next = 0;
989
        }
990
      FREE_DTOA_LOCK(1);
991
#else
992
6
      p51 = p5->next = mult(p5,p5);
993
6
      p51->next = 0;
994
6
#endif
995
6
      }
996
54.1k
    p5 = p51;
997
54.1k
    }
998
19.7k
  return b;
999
34.8k
  }
1000
1001
 static Bigint *
1002
lshift
1003
#ifdef KR_headers
1004
  (b, k) Bigint *b; int k;
1005
#else
1006
  (Bigint *b, int k)
1007
#endif
1008
128k
{
1009
128k
  int i, k1, n, n1;
1010
128k
  Bigint *b1;
1011
128k
  ULong *x, *x1, *xe, z;
1012
1013
128k
#ifdef Pack_32
1014
128k
  n = k >> 5;
1015
#else
1016
  n = k >> 4;
1017
#endif
1018
128k
  k1 = b->k;
1019
128k
  n1 = n + b->wds + 1;
1020
234k
  for(i = b->maxwds; n1 > i; i <<= 1)
1021
105k
    k1++;
1022
128k
  b1 = Balloc(k1);
1023
128k
  x1 = b1->x;
1024
286k
  for(i = 0; i < n; i++)
1025
157k
    *x1++ = 0;
1026
128k
  x = b->x;
1027
128k
  xe = x + b->wds;
1028
128k
#ifdef Pack_32
1029
128k
  if (k &= 0x1f) {
1030
125k
    k1 = 32 - k;
1031
125k
    z = 0;
1032
235k
    do {
1033
235k
      *x1++ = *x << k | z;
1034
235k
      z = *x++ >> k1;
1035
235k
      }
1036
235k
      while(x < xe);
1037
125k
    if ((*x1 = z))
1038
11.4k
      ++n1;
1039
125k
    }
1040
#else
1041
  if (k &= 0xf) {
1042
    k1 = 16 - k;
1043
    z = 0;
1044
    do {
1045
      *x1++ = *x << k  & 0xffff | z;
1046
      z = *x++ >> k1;
1047
      }
1048
      while(x < xe);
1049
    if (*x1 = z)
1050
      ++n1;
1051
    }
1052
#endif
1053
2.72k
  else do
1054
3.19k
    *x1++ = *x++;
1055
3.19k
    while(x < xe);
1056
128k
  b1->wds = n1 - 1;
1057
128k
  Bfree(b);
1058
128k
  return b1;
1059
128k
  }
1060
1061
 static int
1062
cmp
1063
#ifdef KR_headers
1064
  (a, b) Bigint *a, *b;
1065
#else
1066
  (Bigint *a, Bigint *b)
1067
#endif
1068
1.13M
{
1069
1.13M
  ULong *xa, *xa0, *xb, *xb0;
1070
1.13M
  int i, j;
1071
1072
1.13M
  i = a->wds;
1073
1.13M
  j = b->wds;
1074
#ifdef DEBUG
1075
  if (i > 1 && !a->x[i-1])
1076
    Bug("cmp called with a->x[a->wds-1] == 0");
1077
  if (j > 1 && !b->x[j-1])
1078
    Bug("cmp called with b->x[b->wds-1] == 0");
1079
#endif
1080
1.13M
  if (i -= j)
1081
343k
    return i;
1082
794k
  xa0 = a->x;
1083
794k
  xa = xa0 + j;
1084
794k
  xb0 = b->x;
1085
794k
  xb = xb0 + j;
1086
831k
  for(;;) {
1087
831k
    if (*--xa != *--xb)
1088
792k
      return *xa < *xb ? -1 : 1;
1089
39.4k
    if (xa <= xa0)
1090
1.75k
      break;
1091
39.4k
    }
1092
1.75k
  return 0;
1093
794k
  }
1094
1095
 static Bigint *
1096
diff
1097
#ifdef KR_headers
1098
  (a, b) Bigint *a, *b;
1099
#else
1100
  (Bigint *a, Bigint *b)
1101
#endif
1102
285k
{
1103
285k
  Bigint *c;
1104
285k
  int i, wa, wb;
1105
285k
  ULong *xa, *xae, *xb, *xbe, *xc;
1106
285k
#ifdef ULLong
1107
285k
  ULLong borrow, y;
1108
#else
1109
  ULong borrow, y;
1110
#ifdef Pack_32
1111
  ULong z;
1112
#endif
1113
#endif
1114
1115
285k
  i = cmp(a,b);
1116
285k
  if (!i) {
1117
637
    c = Balloc(0);
1118
637
    c->wds = 1;
1119
637
    c->x[0] = 0;
1120
637
    return c;
1121
637
    }
1122
285k
  if (i < 0) {
1123
10.5k
    c = a;
1124
10.5k
    a = b;
1125
10.5k
    b = c;
1126
10.5k
    i = 1;
1127
10.5k
    }
1128
274k
  else
1129
274k
    i = 0;
1130
285k
  c = Balloc(a->k);
1131
285k
  c->sign = i;
1132
285k
  wa = a->wds;
1133
285k
  xa = a->x;
1134
285k
  xae = xa + wa;
1135
285k
  wb = b->wds;
1136
285k
  xb = b->x;
1137
285k
  xbe = xb + wb;
1138
285k
  xc = c->x;
1139
285k
  borrow = 0;
1140
285k
#ifdef ULLong
1141
522k
  do {
1142
522k
    y = (ULLong)*xa++ - *xb++ - borrow;
1143
522k
    borrow = y >> 32 & (ULong)1;
1144
522k
    *xc++ = y & FFFFFFFF;
1145
522k
    }
1146
522k
    while(xb < xbe);
1147
455k
  while(xa < xae) {
1148
170k
    y = *xa++ - borrow;
1149
170k
    borrow = y >> 32 & (ULong)1;
1150
170k
    *xc++ = y & FFFFFFFF;
1151
170k
    }
1152
#else
1153
#ifdef Pack_32
1154
  do {
1155
    y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
1156
    borrow = (y & 0x10000) >> 16;
1157
    z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
1158
    borrow = (z & 0x10000) >> 16;
1159
    Storeinc(xc, z, y);
1160
    }
1161
    while(xb < xbe);
1162
  while(xa < xae) {
1163
    y = (*xa & 0xffff) - borrow;
1164
    borrow = (y & 0x10000) >> 16;
1165
    z = (*xa++ >> 16) - borrow;
1166
    borrow = (z & 0x10000) >> 16;
1167
    Storeinc(xc, z, y);
1168
    }
1169
#else
1170
  do {
1171
    y = *xa++ - *xb++ - borrow;
1172
    borrow = (y & 0x10000) >> 16;
1173
    *xc++ = y & 0xffff;
1174
    }
1175
    while(xb < xbe);
1176
  while(xa < xae) {
1177
    y = *xa++ - borrow;
1178
    borrow = (y & 0x10000) >> 16;
1179
    *xc++ = y & 0xffff;
1180
    }
1181
#endif
1182
#endif
1183
319k
  while(!*--xc)
1184
34.0k
    wa--;
1185
285k
  c->wds = wa;
1186
285k
  return c;
1187
285k
  }
1188
1189
 static double
1190
ulp
1191
#ifdef KR_headers
1192
  (x) U *x;
1193
#else
1194
  (U *x)
1195
#endif
1196
8.39k
{
1197
8.39k
  Long L;
1198
8.39k
  U u;
1199
1200
8.39k
  L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
1201
#ifndef Avoid_Underflow
1202
#ifndef Sudden_Underflow
1203
  if (L > 0) {
1204
#endif
1205
#endif
1206
#ifdef IBM
1207
    L |= Exp_msk1 >> 4;
1208
#endif
1209
8.39k
    word0(&u) = L;
1210
8.39k
    word1(&u) = 0;
1211
#ifndef Avoid_Underflow
1212
#ifndef Sudden_Underflow
1213
    }
1214
  else {
1215
    L = -L >> Exp_shift;
1216
    if (L < Exp_shift) {
1217
      word0(&u) = 0x80000 >> L;
1218
      word1(&u) = 0;
1219
      }
1220
    else {
1221
      word0(&u) = 0;
1222
      L -= Exp_shift;
1223
      word1(&u) = L >= 31 ? 1 : 1 << 31 - L;
1224
      }
1225
    }
1226
#endif
1227
#endif
1228
8.39k
  return dval(&u);
1229
8.39k
  }
1230
1231
 static double
1232
b2d
1233
#ifdef KR_headers
1234
  (a, e) Bigint *a; int *e;
1235
#else
1236
  (Bigint *a, int *e)
1237
#endif
1238
16.7k
{
1239
16.7k
  ULong *xa, *xa0, w, y, z;
1240
16.7k
  int k;
1241
16.7k
  U d;
1242
#ifdef VAX
1243
  ULong d0, d1;
1244
#else
1245
16.7k
#define d0 word0(&d)
1246
16.7k
#define d1 word1(&d)
1247
16.7k
#endif
1248
1249
16.7k
  xa0 = a->x;
1250
16.7k
  xa = xa0 + a->wds;
1251
16.7k
  y = *--xa;
1252
#ifdef DEBUG
1253
  if (!y) Bug("zero y in b2d");
1254
#endif
1255
16.7k
  k = hi0bits(y);
1256
16.7k
  *e = 32 - k;
1257
16.7k
#ifdef Pack_32
1258
16.7k
  if (k < Ebits) {
1259
5.21k
    d0 = Exp_1 | y >> (Ebits - k);
1260
5.21k
    w = xa > xa0 ? *--xa : 0;
1261
5.21k
    d1 = y << ((32-Ebits) + k) | w >> (Ebits - k);
1262
5.21k
    goto ret_d;
1263
5.21k
    }
1264
11.4k
  z = xa > xa0 ? *--xa : 0;
1265
11.4k
  if (k -= Ebits) {
1266
11.2k
    d0 = Exp_1 | y << k | z >> (32 - k);
1267
11.2k
    y = xa > xa0 ? *--xa : 0;
1268
11.2k
    d1 = z << k | y >> (32 - k);
1269
11.2k
    }
1270
232
  else {
1271
232
    d0 = Exp_1 | y;
1272
232
    d1 = z;
1273
232
    }
1274
#else
1275
  if (k < Ebits + 16) {
1276
    z = xa > xa0 ? *--xa : 0;
1277
    d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
1278
    w = xa > xa0 ? *--xa : 0;
1279
    y = xa > xa0 ? *--xa : 0;
1280
    d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
1281
    goto ret_d;
1282
    }
1283
  z = xa > xa0 ? *--xa : 0;
1284
  w = xa > xa0 ? *--xa : 0;
1285
  k -= Ebits + 16;
1286
  d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
1287
  y = xa > xa0 ? *--xa : 0;
1288
  d1 = w << k + 16 | y << k;
1289
#endif
1290
16.7k
 ret_d:
1291
#ifdef VAX
1292
  word0(&d) = d0 >> 16 | d0 << 16;
1293
  word1(&d) = d1 >> 16 | d1 << 16;
1294
#else
1295
16.7k
#undef d0
1296
16.7k
#undef d1
1297
16.7k
#endif
1298
16.7k
  return dval(&d);
1299
11.4k
  }
1300
1301
 static Bigint *
1302
d2b
1303
#ifdef KR_headers
1304
  (d, e, bits) U *d; int *e, *bits;
1305
#else
1306
  (U *d, int *e, int *bits)
1307
#endif
1308
54.1k
{
1309
54.1k
  Bigint *b;
1310
54.1k
  int de, k;
1311
54.1k
  ULong *x, y, z;
1312
54.1k
#ifndef Sudden_Underflow
1313
54.1k
  int i;
1314
54.1k
#endif
1315
#ifdef VAX
1316
  ULong d0, d1;
1317
  d0 = word0(d) >> 16 | word0(d) << 16;
1318
  d1 = word1(d) >> 16 | word1(d) << 16;
1319
#else
1320
162k
#define d0 word0(d)
1321
54.1k
#define d1 word1(d)
1322
54.1k
#endif
1323
1324
54.1k
#ifdef Pack_32
1325
54.1k
  b = Balloc(1);
1326
#else
1327
  b = Balloc(2);
1328
#endif
1329
54.1k
  x = b->x;
1330
1331
54.1k
  z = d0 & Frac_mask;
1332
54.1k
  d0 &= 0x7fffffff; /* clear sign bit, which we ignore */
1333
#ifdef Sudden_Underflow
1334
  de = (int)(d0 >> Exp_shift);
1335
#ifndef IBM
1336
  z |= Exp_msk11;
1337
#endif
1338
#else
1339
54.1k
  if ((de = (int)(d0 >> Exp_shift)))
1340
54.1k
    z |= Exp_msk1;
1341
54.1k
#endif
1342
54.1k
#ifdef Pack_32
1343
54.1k
  if ((y = d1)) {
1344
51.2k
    if ((k = lo0bits(&y))) {
1345
32.6k
      x[0] = y | z << (32 - k);
1346
32.6k
      z >>= k;
1347
32.6k
      }
1348
18.5k
    else
1349
18.5k
      x[0] = y;
1350
51.2k
#ifndef Sudden_Underflow
1351
51.2k
    i =
1352
51.2k
#endif
1353
51.2k
        b->wds = (x[1] = z) ? 2 : 1;
1354
51.2k
    }
1355
2.95k
  else {
1356
2.95k
    k = lo0bits(&z);
1357
2.95k
    x[0] = z;
1358
2.95k
#ifndef Sudden_Underflow
1359
2.95k
    i =
1360
2.95k
#endif
1361
2.95k
        b->wds = 1;
1362
2.95k
    k += 32;
1363
2.95k
    }
1364
#else
1365
  if (y = d1) {
1366
    if (k = lo0bits(&y))
1367
      if (k >= 16) {
1368
        x[0] = y | z << 32 - k & 0xffff;
1369
        x[1] = z >> k - 16 & 0xffff;
1370
        x[2] = z >> k;
1371
        i = 2;
1372
        }
1373
      else {
1374
        x[0] = y & 0xffff;
1375
        x[1] = y >> 16 | z << 16 - k & 0xffff;
1376
        x[2] = z >> k & 0xffff;
1377
        x[3] = z >> k+16;
1378
        i = 3;
1379
        }
1380
    else {
1381
      x[0] = y & 0xffff;
1382
      x[1] = y >> 16;
1383
      x[2] = z & 0xffff;
1384
      x[3] = z >> 16;
1385
      i = 3;
1386
      }
1387
    }
1388
  else {
1389
#ifdef DEBUG
1390
    if (!z)
1391
      Bug("Zero passed to d2b");
1392
#endif
1393
    k = lo0bits(&z);
1394
    if (k >= 16) {
1395
      x[0] = z;
1396
      i = 0;
1397
      }
1398
    else {
1399
      x[0] = z & 0xffff;
1400
      x[1] = z >> 16;
1401
      i = 1;
1402
      }
1403
    k += 32;
1404
    }
1405
  while(!x[i])
1406
    --i;
1407
  b->wds = i + 1;
1408
#endif
1409
54.1k
#ifndef Sudden_Underflow
1410
54.1k
  if (de) {
1411
54.1k
#endif
1412
#ifdef IBM
1413
    *e = (de - Bias - (P-1) << 2) + k;
1414
    *bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
1415
#else
1416
54.1k
    *e = de - Bias - (P-1) + k;
1417
54.1k
    *bits = P - k;
1418
54.1k
#endif
1419
54.1k
#ifndef Sudden_Underflow
1420
54.1k
    }
1421
0
  else {
1422
0
    *e = de - Bias - (P-1) + 1 + k;
1423
0
#ifdef Pack_32
1424
0
    *bits = 32*i - hi0bits(x[i-1]);
1425
#else
1426
    *bits = (i+2)*16 - hi0bits(x[i]);
1427
#endif
1428
0
    }
1429
54.1k
#endif
1430
54.1k
  return b;
1431
54.1k
  }
1432
#undef d0
1433
#undef d1
1434
1435
 static double
1436
ratio
1437
#ifdef KR_headers
1438
  (a, b) Bigint *a, *b;
1439
#else
1440
  (Bigint *a, Bigint *b)
1441
#endif
1442
8.35k
{
1443
8.35k
  U da, db;
1444
8.35k
  int k, ka, kb;
1445
1446
8.35k
  dval(&da) = b2d(a, &ka);
1447
8.35k
  dval(&db) = b2d(b, &kb);
1448
8.35k
#ifdef Pack_32
1449
8.35k
  k = ka - kb + 32*(a->wds - b->wds);
1450
#else
1451
  k = ka - kb + 16*(a->wds - b->wds);
1452
#endif
1453
#ifdef IBM
1454
  if (k > 0) {
1455
    word0(&da) += (k >> 2)*Exp_msk1;
1456
    if (k &= 3)
1457
      dval(&da) *= 1 << k;
1458
    }
1459
  else {
1460
    k = -k;
1461
    word0(&db) += (k >> 2)*Exp_msk1;
1462
    if (k &= 3)
1463
      dval(&db) *= 1 << k;
1464
    }
1465
#else
1466
8.35k
  if (k > 0)
1467
2.57k
    word0(&da) += k*Exp_msk1;
1468
5.77k
  else {
1469
5.77k
    k = -k;
1470
5.77k
    word0(&db) += k*Exp_msk1;
1471
5.77k
    }
1472
8.35k
#endif
1473
8.35k
  return dval(&da) / dval(&db);
1474
8.35k
  }
1475
1476
 static CONST double
1477
tens[] = {
1478
    1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1479
    1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1480
    1e20, 1e21, 1e22
1481
#ifdef VAX
1482
    , 1e23, 1e24
1483
#endif
1484
    };
1485
1486
 static CONST double
1487
#ifdef IEEE_Arith
1488
bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1489
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
1490
#ifdef Avoid_Underflow
1491
    9007199254740992.*9007199254740992.e-256
1492
    /* = 2^106 * 1e-256 */
1493
#else
1494
    1e-256
1495
#endif
1496
    };
1497
/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
1498
/* flag unnecessarily.  It leads to a song and dance at the end of strtod. */
1499
1.60k
#define Scale_Bit 0x10
1500
1.93k
#define n_bigtens 5
1501
#else
1502
#ifdef IBM
1503
bigtens[] = { 1e16, 1e32, 1e64 };
1504
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 };
1505
#define n_bigtens 3
1506
#else
1507
bigtens[] = { 1e16, 1e32 };
1508
static CONST double tinytens[] = { 1e-16, 1e-32 };
1509
#define n_bigtens 2
1510
#endif
1511
#endif
1512
1513
#undef Need_Hexdig
1514
#ifdef INFNAN_CHECK
1515
#ifndef No_Hex_NaN
1516
#define Need_Hexdig
1517
#endif
1518
#endif
1519
1520
#ifndef Need_Hexdig
1521
#ifndef NO_HEX_FP
1522
#define Need_Hexdig
1523
#endif
1524
#endif
1525
1526
#ifdef Need_Hexdig /*{*/
1527
#if 0
1528
static unsigned char hexdig[256];
1529
1530
 static void
1531
htinit(unsigned char *h, unsigned char *s, int inc)
1532
{
1533
  int i, j;
1534
  for(i = 0; (j = s[i]) !=0; i++)
1535
    h[j] = i + inc;
1536
  }
1537
1538
 static void
1539
hexdig_init(void) /* Use of hexdig_init omitted 20121220 to avoid a */
1540
      /* race condition when multiple threads are used. */
1541
{
1542
#define USC (unsigned char *)
1543
  htinit(hexdig, USC "0123456789", 0x10);
1544
  htinit(hexdig, USC "abcdef", 0x10 + 10);
1545
  htinit(hexdig, USC "ABCDEF", 0x10 + 10);
1546
  }
1547
#else
1548
static const unsigned char hexdig[256] = {
1549
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1550
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1551
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1552
  16,17,18,19,20,21,22,23,24,25,0,0,0,0,0,0,
1553
  0,26,27,28,29,30,31,0,0,0,0,0,0,0,0,0,
1554
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1555
  0,26,27,28,29,30,31,0,0,0,0,0,0,0,0,0,
1556
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1557
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1558
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1559
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1560
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1561
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1562
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1563
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1564
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1565
  };
1566
#endif
1567
#endif /* } Need_Hexdig */
1568
1569
#ifdef INFNAN_CHECK
1570
1571
#ifndef NAN_WORD0
1572
#define NAN_WORD0 0x7ff80000
1573
#endif
1574
1575
#ifndef NAN_WORD1
1576
#define NAN_WORD1 0
1577
#endif
1578
1579
 static int
1580
match
1581
#ifdef KR_headers
1582
  (sp, t) char **sp, *t;
1583
#else
1584
  (const char **sp, const char *t)
1585
#endif
1586
{
1587
  int c, d;
1588
  CONST char *s = *sp;
1589
1590
  while((d = *t++)) {
1591
    if ((c = *++s) >= 'A' && c <= 'Z')
1592
      c += 'a' - 'A';
1593
    if (c != d)
1594
      return 0;
1595
    }
1596
  *sp = s + 1;
1597
  return 1;
1598
  }
1599
1600
#ifndef No_Hex_NaN
1601
 static void
1602
hexnan
1603
#ifdef KR_headers
1604
  (rvp, sp) U *rvp; CONST char **sp;
1605
#else
1606
  (U *rvp, const char **sp)
1607
#endif
1608
{
1609
  ULong c, x[2];
1610
  CONST char *s;
1611
  int c1, havedig, udx0, xshift;
1612
1613
  /**** if (!hexdig['0']) hexdig_init(); ****/
1614
  x[0] = x[1] = 0;
1615
  havedig = xshift = 0;
1616
  udx0 = 1;
1617
  s = *sp;
1618
  /* allow optional initial 0x or 0X */
1619
  while((c = *(CONST unsigned char*)(s+1)) && c <= ' ')
1620
    ++s;
1621
  if (s[1] == '0' && (s[2] == 'x' || s[2] == 'X'))
1622
    s += 2;
1623
  while((c = *(CONST unsigned char*)++s)) {
1624
    if ((c1 = hexdig[c]))
1625
      c  = c1 & 0xf;
1626
    else if (c <= ' ') {
1627
      if (udx0 && havedig) {
1628
        udx0 = 0;
1629
        xshift = 1;
1630
        }
1631
      continue;
1632
      }
1633
#ifdef GDTOA_NON_PEDANTIC_NANCHECK
1634
    else if (/*(*/ c == ')' && havedig) {
1635
      *sp = s + 1;
1636
      break;
1637
      }
1638
    else
1639
      return; /* invalid form: don't change *sp */
1640
#else
1641
    else {
1642
      do {
1643
        if (/*(*/ c == ')') {
1644
          *sp = s + 1;
1645
          break;
1646
          }
1647
        } while((c = *++s));
1648
      break;
1649
      }
1650
#endif
1651
    havedig = 1;
1652
    if (xshift) {
1653
      xshift = 0;
1654
      x[0] = x[1];
1655
      x[1] = 0;
1656
      }
1657
    if (udx0)
1658
      x[0] = (x[0] << 4) | (x[1] >> 28);
1659
    x[1] = (x[1] << 4) | c;
1660
    }
1661
  if ((x[0] &= 0xfffff) || x[1]) {
1662
    word0(rvp) = Exp_mask | x[0];
1663
    word1(rvp) = x[1];
1664
    }
1665
  }
1666
#endif /*No_Hex_NaN*/
1667
#endif /* INFNAN_CHECK */
1668
1669
#ifdef Pack_32
1670
#define ULbits 32
1671
#define kshift 5
1672
26.8k
#define kmask 31
1673
#else
1674
#define ULbits 16
1675
#define kshift 4
1676
#define kmask 15
1677
#endif
1678
1679
#if !defined(NO_HEX_FP) || defined(Honor_FLT_ROUNDS) /*{*/
1680
 static Bigint *
1681
#ifdef KR_headers
1682
increment(b) Bigint *b;
1683
#else
1684
increment(Bigint *b)
1685
#endif
1686
{
1687
  ULong *x, *xe;
1688
  Bigint *b1;
1689
1690
  x = b->x;
1691
  xe = x + b->wds;
1692
  do {
1693
    if (*x < (ULong)0xffffffffL) {
1694
      ++*x;
1695
      return b;
1696
      }
1697
    *x++ = 0;
1698
    } while(x < xe);
1699
  {
1700
    if (b->wds >= b->maxwds) {
1701
      b1 = Balloc(b->k+1);
1702
      Bcopy(b1,b);
1703
      Bfree(b);
1704
      b = b1;
1705
      }
1706
    b->x[b->wds++] = 1;
1707
    }
1708
  return b;
1709
  }
1710
1711
#endif /*}*/
1712
1713
#ifndef NO_HEX_FP /*{*/
1714
1715
 static void
1716
#ifdef KR_headers
1717
rshift(b, k) Bigint *b; int k;
1718
#else
1719
rshift(Bigint *b, int k)
1720
#endif
1721
{
1722
  ULong *x, *x1, *xe, y;
1723
  int n;
1724
1725
  x = x1 = b->x;
1726
  n = k >> kshift;
1727
  if (n < b->wds) {
1728
    xe = x + b->wds;
1729
    x += n;
1730
    if (k &= kmask) {
1731
      n = 32 - k;
1732
      y = *x++ >> k;
1733
      while(x < xe) {
1734
        *x1++ = (y | (*x << n)) & 0xffffffff;
1735
        y = *x++ >> k;
1736
        }
1737
      if ((*x1 = y) !=0)
1738
        x1++;
1739
      }
1740
    else
1741
      while(x < xe)
1742
        *x1++ = *x++;
1743
    }
1744
  if ((b->wds = x1 - b->x) == 0)
1745
    b->x[0] = 0;
1746
  }
1747
1748
 static ULong
1749
#ifdef KR_headers
1750
any_on(b, k) Bigint *b; int k;
1751
#else
1752
any_on(Bigint *b, int k)
1753
#endif
1754
{
1755
  int n, nwds;
1756
  ULong *x, *x0, x1, x2;
1757
1758
  x = b->x;
1759
  nwds = b->wds;
1760
  n = k >> kshift;
1761
  if (n > nwds)
1762
    n = nwds;
1763
  else if (n < nwds && (k &= kmask)) {
1764
    x1 = x2 = x[n];
1765
    x1 >>= k;
1766
    x1 <<= k;
1767
    if (x1 != x2)
1768
      return 1;
1769
    }
1770
  x0 = x;
1771
  x += n;
1772
  while(x > x0)
1773
    if (*--x)
1774
      return 1;
1775
  return 0;
1776
  }
1777
1778
enum {  /* rounding values: same as FLT_ROUNDS */
1779
  Round_zero = 0,
1780
  Round_near = 1,
1781
  Round_up = 2,
1782
  Round_down = 3
1783
  };
1784
1785
 void
1786
#ifdef KR_headers
1787
gethex(sp, rvp, rounding, sign)
1788
  CONST char **sp; U *rvp; int rounding, sign;
1789
#else
1790
gethex( CONST char **sp, U *rvp, int rounding, int sign)
1791
#endif
1792
{
1793
  Bigint *b;
1794
  CONST unsigned char *decpt, *s0, *s, *s1;
1795
  Long e, e1;
1796
  ULong L, lostbits, *x;
1797
  int big, denorm, esign, havedig, k, n, nbits, up, zret;
1798
#ifdef IBM
1799
  int j;
1800
#endif
1801
  enum {
1802
#ifdef IEEE_Arith /*{{*/
1803
    emax = 0x7fe - Bias - P + 1,
1804
    emin = Emin - P + 1
1805
#else /*}{*/
1806
    emin = Emin - P,
1807
#ifdef VAX
1808
    emax = 0x7ff - Bias - P + 1
1809
#endif
1810
#ifdef IBM
1811
    emax = 0x7f - Bias - P
1812
#endif
1813
#endif /*}}*/
1814
    };
1815
#ifdef USE_LOCALE
1816
  int i;
1817
#ifdef NO_LOCALE_CACHE
1818
  const unsigned char *decimalpoint = (unsigned char*)
1819
    localeconv()->decimal_point;
1820
#else
1821
  const unsigned char *decimalpoint;
1822
  static unsigned char *decimalpoint_cache;
1823
  if (!(s0 = decimalpoint_cache)) {
1824
    s0 = (unsigned char*)localeconv()->decimal_point;
1825
    if ((decimalpoint_cache = (unsigned char*)
1826
        MALLOC(strlen((CONST char*)s0) + 1))) {
1827
      strcpy((char*)decimalpoint_cache, (CONST char*)s0);
1828
      s0 = decimalpoint_cache;
1829
      }
1830
    }
1831
  decimalpoint = s0;
1832
#endif
1833
#endif
1834
1835
  /**** if (!hexdig['0']) hexdig_init(); ****/
1836
  havedig = 0;
1837
  s0 = *(CONST unsigned char **)sp + 2;
1838
  while(s0[havedig] == '0')
1839
    havedig++;
1840
  s0 += havedig;
1841
  s = s0;
1842
  decpt = 0;
1843
  zret = 0;
1844
  e = 0;
1845
  if (hexdig[*s])
1846
    havedig++;
1847
  else {
1848
    zret = 1;
1849
#ifdef USE_LOCALE
1850
    for(i = 0; decimalpoint[i]; ++i) {
1851
      if (s[i] != decimalpoint[i])
1852
        goto pcheck;
1853
      }
1854
    decpt = s += i;
1855
#else
1856
    if (*s != '.')
1857
      goto pcheck;
1858
    decpt = ++s;
1859
#endif
1860
    if (!hexdig[*s])
1861
      goto pcheck;
1862
    while(*s == '0')
1863
      s++;
1864
    if (hexdig[*s])
1865
      zret = 0;
1866
    havedig = 1;
1867
    s0 = s;
1868
    }
1869
  while(hexdig[*s])
1870
    s++;
1871
#ifdef USE_LOCALE
1872
  if (*s == *decimalpoint && !decpt) {
1873
    for(i = 1; decimalpoint[i]; ++i) {
1874
      if (s[i] != decimalpoint[i])
1875
        goto pcheck;
1876
      }
1877
    decpt = s += i;
1878
#else
1879
  if (*s == '.' && !decpt) {
1880
    decpt = ++s;
1881
#endif
1882
    while(hexdig[*s])
1883
      s++;
1884
    }/*}*/
1885
  if (decpt)
1886
    e = -(((Long)(s-decpt)) << 2);
1887
 pcheck:
1888
  s1 = s;
1889
  big = esign = 0;
1890
  switch(*s) {
1891
    case 'p':
1892
    case 'P':
1893
    switch(*++s) {
1894
      case '-':
1895
      esign = 1;
1896
      ZEND_FALLTHROUGH;
1897
      case '+':
1898
      s++;
1899
      }
1900
    if ((n = hexdig[*s]) == 0 || n > 0x19) {
1901
      s = s1;
1902
      break;
1903
      }
1904
    e1 = n - 0x10;
1905
    while((n = hexdig[*++s]) !=0 && n <= 0x19) {
1906
      if (e1 & 0xf8000000)
1907
        big = 1;
1908
      e1 = 10*e1 + n - 0x10;
1909
      }
1910
    if (esign)
1911
      e1 = -e1;
1912
    e += e1;
1913
    }
1914
  *sp = (char*)s;
1915
  if (!havedig)
1916
    *sp = (char*)s0 - 1;
1917
  if (zret)
1918
    goto retz1;
1919
  if (big) {
1920
    if (esign) {
1921
#ifdef IEEE_Arith
1922
      switch(rounding) {
1923
        case Round_up:
1924
        if (sign)
1925
          break;
1926
        goto ret_tiny;
1927
        case Round_down:
1928
        if (!sign)
1929
          break;
1930
        goto ret_tiny;
1931
        }
1932
#endif
1933
      goto retz;
1934
#ifdef IEEE_Arith
1935
 ret_tinyf:
1936
      Bfree(b);
1937
 ret_tiny:
1938
#ifndef NO_ERRNO
1939
      errno = ERANGE;
1940
#endif
1941
      word0(rvp) = 0;
1942
      word1(rvp) = 1;
1943
      return;
1944
#endif /* IEEE_Arith */
1945
      }
1946
    switch(rounding) {
1947
      case Round_near:
1948
      goto ovfl1;
1949
      case Round_up:
1950
      if (!sign)
1951
        goto ovfl1;
1952
      goto ret_big;
1953
      case Round_down:
1954
      if (sign)
1955
        goto ovfl1;
1956
      goto ret_big;
1957
      }
1958
 ret_big:
1959
    word0(rvp) = Big0;
1960
    word1(rvp) = Big1;
1961
    return;
1962
    }
1963
  n = s1 - s0 - 1;
1964
  for(k = 0; n > (1 << (kshift-2)) - 1; n >>= 1)
1965
    k++;
1966
  b = Balloc(k);
1967
  x = b->x;
1968
  n = 0;
1969
  L = 0;
1970
#ifdef USE_LOCALE
1971
  for(i = 0; decimalpoint[i+1]; ++i);
1972
#endif
1973
  while(s1 > s0) {
1974
#ifdef USE_LOCALE
1975
    if (*--s1 == decimalpoint[i]) {
1976
      s1 -= i;
1977
      continue;
1978
      }
1979
#else
1980
    if (*--s1 == '.')
1981
      continue;
1982
#endif
1983
    if (n == ULbits) {
1984
      *x++ = L;
1985
      L = 0;
1986
      n = 0;
1987
      }
1988
    L |= (hexdig[*s1] & 0x0f) << n;
1989
    n += 4;
1990
    }
1991
  *x++ = L;
1992
  b->wds = n = x - b->x;
1993
  n = ULbits*n - hi0bits(L);
1994
  nbits = Nbits;
1995
  lostbits = 0;
1996
  x = b->x;
1997
  if (n > nbits) {
1998
    n -= nbits;
1999
    if (any_on(b,n)) {
2000
      lostbits = 1;
2001
      k = n - 1;
2002
      if (x[k>>kshift] & 1 << (k & kmask)) {
2003
        lostbits = 2;
2004
        if (k > 0 && any_on(b,k))
2005
          lostbits = 3;
2006
        }
2007
      }
2008
    rshift(b, n);
2009
    e += n;
2010
    }
2011
  else if (n < nbits) {
2012
    n = nbits - n;
2013
    b = lshift(b, n);
2014
    e -= n;
2015
    x = b->x;
2016
    }
2017
  if (e > Emax) {
2018
 ovfl:
2019
    Bfree(b);
2020
 ovfl1:
2021
#ifndef NO_ERRNO
2022
    errno = ERANGE;
2023
#endif
2024
    word0(rvp) = Exp_mask;
2025
    word1(rvp) = 0;
2026
    return;
2027
    }
2028
  denorm = 0;
2029
  if (e < emin) {
2030
    denorm = 1;
2031
    n = emin - e;
2032
    if (n >= nbits) {
2033
#ifdef IEEE_Arith /*{*/
2034
      switch (rounding) {
2035
        case Round_near:
2036
        if (n == nbits && (n < 2 || any_on(b,n-1)))
2037
          goto ret_tinyf;
2038
        break;
2039
        case Round_up:
2040
        if (!sign)
2041
          goto ret_tinyf;
2042
        break;
2043
        case Round_down:
2044
        if (sign)
2045
          goto ret_tinyf;
2046
        }
2047
#endif /* } IEEE_Arith */
2048
      Bfree(b);
2049
 retz:
2050
#ifndef NO_ERRNO
2051
      errno = ERANGE;
2052
#endif
2053
 retz1:
2054
      rvp->d = 0.;
2055
      return;
2056
      }
2057
    k = n - 1;
2058
    if (lostbits)
2059
      lostbits = 1;
2060
    else if (k > 0)
2061
      lostbits = any_on(b,k);
2062
    if (x[k>>kshift] & 1 << (k & kmask))
2063
      lostbits |= 2;
2064
    nbits -= n;
2065
    rshift(b,n);
2066
    e = emin;
2067
    }
2068
  if (lostbits) {
2069
    up = 0;
2070
    switch(rounding) {
2071
      case Round_zero:
2072
      break;
2073
      case Round_near:
2074
      if (lostbits & 2
2075
       && (lostbits & 1) | (x[0] & 1))
2076
        up = 1;
2077
      break;
2078
      case Round_up:
2079
      up = 1 - sign;
2080
      break;
2081
      case Round_down:
2082
      up = sign;
2083
      }
2084
    if (up) {
2085
      k = b->wds;
2086
      b = increment(b);
2087
      x = b->x;
2088
      if (denorm) {
2089
#if 0
2090
        if (nbits == Nbits - 1
2091
         && x[nbits >> kshift] & 1 << (nbits & kmask))
2092
          denorm = 0; /* not currently used */
2093
#endif
2094
        }
2095
      else if (b->wds > k
2096
       || ((n = nbits & kmask) !=0
2097
           && hi0bits(x[k-1]) < 32-n)) {
2098
        rshift(b,1);
2099
        if (++e > Emax)
2100
          goto ovfl;
2101
        }
2102
      }
2103
    }
2104
#ifdef IEEE_Arith
2105
  if (denorm)
2106
    word0(rvp) = b->wds > 1 ? b->x[1] & ~0x100000 : 0;
2107
  else
2108
    word0(rvp) = (b->x[1] & ~0x100000) | ((e + 0x3ff + 52) << 20);
2109
  word1(rvp) = b->x[0];
2110
#endif
2111
#ifdef IBM
2112
  if ((j = e & 3)) {
2113
    k = b->x[0] & ((1 << j) - 1);
2114
    rshift(b,j);
2115
    if (k) {
2116
      switch(rounding) {
2117
        case Round_up:
2118
        if (!sign)
2119
          increment(b);
2120
        break;
2121
        case Round_down:
2122
        if (sign)
2123
          increment(b);
2124
        break;
2125
        case Round_near:
2126
        j = 1 << (j-1);
2127
        if (k & j && ((k & (j-1)) | lostbits))
2128
          increment(b);
2129
        }
2130
      }
2131
    }
2132
  e >>= 2;
2133
  word0(rvp) = b->x[1] | ((e + 65 + 13) << 24);
2134
  word1(rvp) = b->x[0];
2135
#endif
2136
#ifdef VAX
2137
  /* The next two lines ignore swap of low- and high-order 2 bytes. */
2138
  /* word0(rvp) = (b->x[1] & ~0x800000) | ((e + 129 + 55) << 23); */
2139
  /* word1(rvp) = b->x[0]; */
2140
  word0(rvp) = ((b->x[1] & ~0x800000) >> 16) | ((e + 129 + 55) << 7) | (b->x[1] << 16);
2141
  word1(rvp) = (b->x[0] >> 16) | (b->x[0] << 16);
2142
#endif
2143
  Bfree(b);
2144
  }
2145
#endif /*!NO_HEX_FP}*/
2146
2147
 static int
2148
#ifdef KR_headers
2149
dshift(b, p2) Bigint *b; int p2;
2150
#else
2151
dshift(Bigint *b, int p2)
2152
#endif
2153
26.8k
{
2154
26.8k
  int rv = hi0bits(b->x[b->wds-1]) - 4;
2155
26.8k
  if (p2 > 0)
2156
23.9k
    rv -= p2;
2157
26.8k
  return rv & kmask;
2158
26.8k
  }
2159
2160
 static int
2161
quorem
2162
#ifdef KR_headers
2163
  (b, S) Bigint *b, *S;
2164
#else
2165
  (Bigint *b, Bigint *S)
2166
#endif
2167
298k
{
2168
298k
  int n;
2169
298k
  ULong *bx, *bxe, q, *sx, *sxe;
2170
298k
#ifdef ULLong
2171
298k
  ULLong borrow, carry, y, ys;
2172
#else
2173
  ULong borrow, carry, y, ys;
2174
#ifdef Pack_32
2175
  ULong si, z, zs;
2176
#endif
2177
#endif
2178
2179
298k
  n = S->wds;
2180
#ifdef DEBUG
2181
  /*debug*/ if (b->wds > n)
2182
  /*debug*/ Bug("oversize b in quorem");
2183
#endif
2184
298k
  if (b->wds < n)
2185
1.24k
    return 0;
2186
297k
  sx = S->x;
2187
297k
  sxe = sx + --n;
2188
297k
  bx = b->x;
2189
297k
  bxe = bx + n;
2190
297k
  q = *bxe / (*sxe + 1);  /* ensure q <= true quotient */
2191
#ifdef DEBUG
2192
#ifdef NO_STRTOD_BIGCOMP
2193
  /*debug*/ if (q > 9)
2194
#else
2195
  /* An oversized q is possible when quorem is called from bigcomp and */
2196
  /* the input is near, e.g., twice the smallest denormalized number. */
2197
  /*debug*/ if (q > 15)
2198
#endif
2199
  /*debug*/ Bug("oversized quotient in quorem");
2200
#endif
2201
297k
  if (q) {
2202
269k
    borrow = 0;
2203
269k
    carry = 0;
2204
656k
    do {
2205
656k
#ifdef ULLong
2206
656k
      ys = *sx++ * (ULLong)q + carry;
2207
656k
      carry = ys >> 32;
2208
656k
      y = *bx - (ys & FFFFFFFF) - borrow;
2209
656k
      borrow = y >> 32 & (ULong)1;
2210
656k
      *bx++ = y & FFFFFFFF;
2211
#else
2212
#ifdef Pack_32
2213
      si = *sx++;
2214
      ys = (si & 0xffff) * q + carry;
2215
      zs = (si >> 16) * q + (ys >> 16);
2216
      carry = zs >> 16;
2217
      y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
2218
      borrow = (y & 0x10000) >> 16;
2219
      z = (*bx >> 16) - (zs & 0xffff) - borrow;
2220
      borrow = (z & 0x10000) >> 16;
2221
      Storeinc(bx, z, y);
2222
#else
2223
      ys = *sx++ * q + carry;
2224
      carry = ys >> 16;
2225
      y = *bx - (ys & 0xffff) - borrow;
2226
      borrow = (y & 0x10000) >> 16;
2227
      *bx++ = y & 0xffff;
2228
#endif
2229
#endif
2230
656k
      }
2231
656k
      while(sx <= sxe);
2232
269k
    if (!*bxe) {
2233
15
      bx = b->x;
2234
15
      while(--bxe > bx && !*bxe)
2235
0
        --n;
2236
15
      b->wds = n;
2237
15
      }
2238
269k
    }
2239
297k
  if (cmp(b, S) >= 0) {
2240
7.62k
    q++;
2241
7.62k
    borrow = 0;
2242
7.62k
    carry = 0;
2243
7.62k
    bx = b->x;
2244
7.62k
    sx = S->x;
2245
18.9k
    do {
2246
18.9k
#ifdef ULLong
2247
18.9k
      ys = *sx++ + carry;
2248
18.9k
      carry = ys >> 32;
2249
18.9k
      y = *bx - (ys & FFFFFFFF) - borrow;
2250
18.9k
      borrow = y >> 32 & (ULong)1;
2251
18.9k
      *bx++ = y & FFFFFFFF;
2252
#else
2253
#ifdef Pack_32
2254
      si = *sx++;
2255
      ys = (si & 0xffff) + carry;
2256
      zs = (si >> 16) + (ys >> 16);
2257
      carry = zs >> 16;
2258
      y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
2259
      borrow = (y & 0x10000) >> 16;
2260
      z = (*bx >> 16) - (zs & 0xffff) - borrow;
2261
      borrow = (z & 0x10000) >> 16;
2262
      Storeinc(bx, z, y);
2263
#else
2264
      ys = *sx++ + carry;
2265
      carry = ys >> 16;
2266
      y = *bx - (ys & 0xffff) - borrow;
2267
      borrow = (y & 0x10000) >> 16;
2268
      *bx++ = y & 0xffff;
2269
#endif
2270
#endif
2271
18.9k
      }
2272
18.9k
      while(sx <= sxe);
2273
7.62k
    bx = b->x;
2274
7.62k
    bxe = bx + n;
2275
7.62k
    if (!*bxe) {
2276
3.41k
      while(--bxe > bx && !*bxe)
2277
9
        --n;
2278
3.40k
      b->wds = n;
2279
3.40k
      }
2280
7.62k
    }
2281
297k
  return q;
2282
298k
  }
2283
2284
#if defined(Avoid_Underflow) || !defined(NO_STRTOD_BIGCOMP) /*{*/
2285
 static double
2286
sulp
2287
#ifdef KR_headers
2288
  (x, bc) U *x; BCinfo *bc;
2289
#else
2290
  (U *x, BCinfo *bc)
2291
#endif
2292
45
{
2293
45
  U u;
2294
45
  double rv;
2295
45
  int i;
2296
2297
45
  rv = ulp(x);
2298
45
  if (!bc->scale || (i = 2*P + 1 - ((word0(x) & Exp_mask) >> Exp_shift)) <= 0)
2299
45
    return rv; /* Is there an example where i <= 0 ? */
2300
0
  word0(&u) = Exp_1 + (i << Exp_shift);
2301
0
  word1(&u) = 0;
2302
0
  return rv * u.d;
2303
45
  }
2304
#endif /*}*/
2305
2306
#ifndef NO_STRTOD_BIGCOMP
2307
 static void
2308
bigcomp
2309
#ifdef KR_headers
2310
  (rv, s0, bc)
2311
  U *rv; CONST char *s0; BCinfo *bc;
2312
#else
2313
  (U *rv, const char *s0, BCinfo *bc)
2314
#endif
2315
1.98k
{
2316
1.98k
  Bigint *b, *d;
2317
1.98k
  int b2, bbits, d2, dd, dig, dsign, i, j, nd, nd0, p2, p5, speccase;
2318
2319
1.98k
  dsign = bc->dsign;
2320
1.98k
  nd = bc->nd;
2321
1.98k
  nd0 = bc->nd0;
2322
1.98k
  p5 = nd + bc->e0 - 1;
2323
1.98k
  speccase = 0;
2324
1.98k
#ifndef Sudden_Underflow
2325
1.98k
  if (rv->d == 0.) { /* special case: value near underflow-to-zero */
2326
        /* threshold was rounded to zero */
2327
0
    b = i2b(1);
2328
0
    p2 = Emin - P + 1;
2329
0
    bbits = 1;
2330
0
#ifdef Avoid_Underflow
2331
0
    word0(rv) = (P+2) << Exp_shift;
2332
#else
2333
    word1(rv) = 1;
2334
#endif
2335
0
    i = 0;
2336
#ifdef Honor_FLT_ROUNDS
2337
    if (bc->rounding == 1)
2338
#endif
2339
0
      {
2340
0
      speccase = 1;
2341
0
      --p2;
2342
0
      dsign = 0;
2343
0
      goto have_i;
2344
0
      }
2345
0
    }
2346
1.98k
  else
2347
1.98k
#endif
2348
1.98k
    b = d2b(rv, &p2, &bbits);
2349
1.98k
#ifdef Avoid_Underflow
2350
1.98k
  p2 -= bc->scale;
2351
1.98k
#endif
2352
  /* floor(log2(rv)) == bbits - 1 + p2 */
2353
  /* Check for denormal case. */
2354
1.98k
  i = P - bbits;
2355
1.98k
  if (i > (j = P - Emin - 1 + p2)) {
2356
#ifdef Sudden_Underflow
2357
    Bfree(b);
2358
    b = i2b(1);
2359
    p2 = Emin;
2360
    i = P - 1;
2361
#ifdef Avoid_Underflow
2362
    word0(rv) = (1 + bc->scale) << Exp_shift;
2363
#else
2364
    word0(rv) = Exp_msk1;
2365
#endif
2366
    word1(rv) = 0;
2367
#else
2368
0
    i = j;
2369
0
#endif
2370
0
    }
2371
#ifdef Honor_FLT_ROUNDS
2372
  if (bc->rounding != 1) {
2373
    if (i > 0)
2374
      b = lshift(b, i);
2375
    if (dsign)
2376
      b = increment(b);
2377
    }
2378
  else
2379
#endif
2380
1.98k
    {
2381
1.98k
    b = lshift(b, ++i);
2382
1.98k
    b->x[0] |= 1;
2383
1.98k
    }
2384
1.98k
#ifndef Sudden_Underflow
2385
1.98k
 have_i:
2386
1.98k
#endif
2387
1.98k
  p2 -= p5 + i;
2388
1.98k
  d = i2b(1);
2389
  /* Arrange for convenient computation of quotients:
2390
   * shift left if necessary so divisor has 4 leading 0 bits.
2391
   */
2392
1.98k
  if (p5 > 0)
2393
1.89k
    d = pow5mult(d, p5);
2394
87
  else if (p5 < 0)
2395
72
    b = pow5mult(b, -p5);
2396
1.98k
  if (p2 > 0) {
2397
1.70k
    b2 = p2;
2398
1.70k
    d2 = 0;
2399
1.70k
    }
2400
277
  else {
2401
277
    b2 = 0;
2402
277
    d2 = -p2;
2403
277
    }
2404
1.98k
  i = dshift(d, d2);
2405
1.98k
  if ((b2 += i) > 0)
2406
1.98k
    b = lshift(b, b2);
2407
1.98k
  if ((d2 += i) > 0)
2408
1.87k
    d = lshift(d, d2);
2409
2410
  /* Now b/d = exactly half-way between the two floating-point values */
2411
  /* on either side of the input string.  Compute first digit of b/d. */
2412
2413
1.98k
  if (!(dig = quorem(b,d))) {
2414
0
    b = multadd(b, 10, 0);  /* very unlikely */
2415
0
    dig = quorem(b,d);
2416
0
    }
2417
2418
  /* Compare b/d with s0 */
2419
2420
26.8k
  for(i = 0; i < nd0; ) {
2421
26.6k
    if ((dd = s0[i++] - '0' - dig))
2422
1.77k
      goto ret;
2423
24.8k
    if (!b->x[0] && b->wds == 1) {
2424
0
      if (i < nd)
2425
0
        dd = 1;
2426
0
      goto ret;
2427
0
      }
2428
24.8k
    b = multadd(b, 10, 0);
2429
24.8k
    dig = quorem(b,d);
2430
24.8k
    }
2431
1.64k
  for(j = bc->dp1; i++ < nd;) {
2432
1.64k
    if ((dd = s0[j++] - '0' - dig))
2433
205
      goto ret;
2434
1.44k
    if (!b->x[0] && b->wds == 1) {
2435
0
      if (i < nd)
2436
0
        dd = 1;
2437
0
      goto ret;
2438
0
      }
2439
1.44k
    b = multadd(b, 10, 0);
2440
1.44k
    dig = quorem(b,d);
2441
1.44k
    }
2442
0
  if (dig > 0 || b->x[0] || b->wds > 1)
2443
0
    dd = -1;
2444
1.98k
 ret:
2445
1.98k
  Bfree(b);
2446
1.98k
  Bfree(d);
2447
#ifdef Honor_FLT_ROUNDS
2448
  if (bc->rounding != 1) {
2449
    if (dd < 0) {
2450
      if (bc->rounding == 0) {
2451
        if (!dsign)
2452
          goto retlow1;
2453
        }
2454
      else if (dsign)
2455
        goto rethi1;
2456
      }
2457
    else if (dd > 0) {
2458
      if (bc->rounding == 0) {
2459
        if (dsign)
2460
          goto rethi1;
2461
        goto ret1;
2462
        }
2463
      if (!dsign)
2464
        goto rethi1;
2465
      dval(rv) += 2.*sulp(rv,bc);
2466
      }
2467
    else {
2468
      bc->inexact = 0;
2469
      if (dsign)
2470
        goto rethi1;
2471
      }
2472
    }
2473
  else
2474
#endif
2475
1.98k
  if (speccase) {
2476
0
    if (dd <= 0)
2477
0
      rv->d = 0.;
2478
0
    }
2479
1.98k
  else if (dd < 0) {
2480
1.94k
    if (!dsign)  /* does not happen for round-near */
2481
0
retlow1:
2482
0
      dval(rv) -= sulp(rv,bc);
2483
1.94k
    }
2484
42
  else if (dd > 0) {
2485
42
    if (dsign) {
2486
42
 rethi1:
2487
42
      dval(rv) += sulp(rv,bc);
2488
42
      }
2489
42
    }
2490
0
  else {
2491
    /* Exact half-way case:  apply round-even rule. */
2492
0
    if ((j = ((word0(rv) & Exp_mask) >> Exp_shift) - bc->scale) <= 0) {
2493
0
      i = 1 - j;
2494
0
      if (i <= 31) {
2495
0
        if (word1(rv) & (0x1 << i))
2496
0
          goto odd;
2497
0
        }
2498
0
      else if (word0(rv) & (0x1 << (i-32)))
2499
0
        goto odd;
2500
0
      }
2501
0
    else if (word1(rv) & 1) {
2502
0
 odd:
2503
0
      if (dsign)
2504
0
        goto rethi1;
2505
0
      goto retlow1;
2506
0
      }
2507
0
    }
2508
2509
#ifdef Honor_FLT_ROUNDS
2510
 ret1:
2511
#endif
2512
1.98k
  return;
2513
1.98k
  }
2514
#endif /* NO_STRTOD_BIGCOMP */
2515
2516
ZEND_API double
2517
zend_strtod
2518
#ifdef KR_headers
2519
  (s00, se) CONST char *s00; char **se;
2520
#else
2521
  (const char *s00, const char **se)
2522
#endif
2523
45.7k
{
2524
45.7k
  int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, e, e1;
2525
45.7k
  int esign, i, j, k, nd, nd0, nf, nz, nz0, nz1, sign;
2526
45.7k
  CONST char *s, *s0, *s1;
2527
45.7k
  volatile double aadj, aadj1;
2528
45.7k
  Long L;
2529
45.7k
  U aadj2, adj, rv, rv0;
2530
45.7k
  ULong y, z;
2531
45.7k
  BCinfo bc;
2532
45.7k
  Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
2533
45.7k
#ifdef Avoid_Underflow
2534
45.7k
  ULong Lsb, Lsb1;
2535
45.7k
#endif
2536
#ifdef SET_INEXACT
2537
  int oldinexact;
2538
#endif
2539
45.7k
#ifndef NO_STRTOD_BIGCOMP
2540
45.7k
  int req_bigcomp = 0;
2541
45.7k
#endif
2542
#ifdef Honor_FLT_ROUNDS /*{*/
2543
#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
2544
  bc.rounding = Flt_Rounds;
2545
#else /*}{*/
2546
  bc.rounding = 1;
2547
  switch(fegetround()) {
2548
    case FE_TOWARDZERO: bc.rounding = 0; break;
2549
    case FE_UPWARD: bc.rounding = 2; break;
2550
    case FE_DOWNWARD: bc.rounding = 3;
2551
    }
2552
#endif /*}}*/
2553
#endif /*}*/
2554
#ifdef USE_LOCALE
2555
  CONST char *s2;
2556
#endif
2557
2558
45.7k
  sign = nz0 = nz1 = nz = bc.dplen = bc.uflchk = 0;
2559
45.7k
  dval(&rv) = 0.;
2560
45.7k
  for(s = s00;;s++) switch(*s) {
2561
2.90k
    case '-':
2562
2.90k
      sign = 1;
2563
2.90k
      ZEND_FALLTHROUGH;
2564
2.91k
    case '+':
2565
2.91k
      if (*++s)
2566
2.91k
        goto break2;
2567
0
      ZEND_FALLTHROUGH;
2568
0
    case 0:
2569
0
      goto ret0;
2570
0
    case '\t':
2571
0
    case '\n':
2572
0
    case '\v':
2573
0
    case '\f':
2574
0
    case '\r':
2575
0
    case ' ':
2576
0
      continue;
2577
42.8k
    default:
2578
42.8k
      goto break2;
2579
45.7k
    }
2580
45.7k
 break2:
2581
45.7k
  if (*s == '0') {
2582
#ifndef NO_HEX_FP /*{*/
2583
    switch(s[1]) {
2584
      case 'x':
2585
      case 'X':
2586
#ifdef Honor_FLT_ROUNDS
2587
      gethex(&s, &rv, bc.rounding, sign);
2588
#else
2589
      gethex(&s, &rv, 1, sign);
2590
#endif
2591
      goto ret;
2592
      }
2593
#endif /*}*/
2594
9.23k
    nz0 = 1;
2595
24.3k
    while(*++s == '0') ;
2596
9.23k
    if (!*s)
2597
4
      goto ret;
2598
9.23k
    }
2599
45.7k
  s0 = s;
2600
45.7k
  y = z = 0;
2601
95.2M
  for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
2602
95.1M
    if (nd < 9)
2603
200k
      y = 10*y + c - '0';
2604
94.9M
    else if (nd < DBL_DIG + 2)
2605
135k
      z = 10*z + c - '0';
2606
45.7k
  nd0 = nd;
2607
45.7k
  bc.dp0 = bc.dp1 = s - s0;
2608
82.1k
  for(s1 = s; s1 > s0 && *--s1 == '0'; )
2609
36.3k
    ++nz1;
2610
#ifdef USE_LOCALE
2611
  s1 = localeconv()->decimal_point;
2612
  if (c == *s1) {
2613
    c = '.';
2614
    if (*++s1) {
2615
      s2 = s;
2616
      for(;;) {
2617
        if (*++s2 != *s1) {
2618
          c = 0;
2619
          break;
2620
          }
2621
        if (!*++s1) {
2622
          s = s2;
2623
          break;
2624
          }
2625
        }
2626
      }
2627
    }
2628
#endif
2629
45.7k
  if (c == '.') {
2630
27.9k
    c = *++s;
2631
27.9k
    bc.dp1 = s - s0;
2632
27.9k
    bc.dplen = bc.dp1 - bc.dp0;
2633
27.9k
    if (!nd) {
2634
19.4k
      for(; c == '0'; c = *++s)
2635
7.00k
        nz++;
2636
12.4k
      if (c > '0' && c <= '9') {
2637
9.73k
        bc.dp0 = s0 - s;
2638
9.73k
        bc.dp1 = bc.dp0 + bc.dplen;
2639
9.73k
        s0 = s;
2640
9.73k
        nf += nz;
2641
9.73k
        nz = 0;
2642
9.73k
        goto have_dig;
2643
9.73k
        }
2644
2.71k
      goto dig_done;
2645
12.4k
      }
2646
158k
    for(; c >= '0' && c <= '9'; c = *++s) {
2647
143k
 have_dig:
2648
143k
      nz++;
2649
143k
      if (c -= '0') {
2650
124k
        nf += nz;
2651
140k
        for(i = 1; i < nz; i++)
2652
15.9k
          if (nd++ < 9)
2653
4.95k
            y *= 10;
2654
10.9k
          else if (nd <= DBL_DIG + 2)
2655
2.69k
            z *= 10;
2656
124k
        if (nd++ < 9)
2657
55.6k
          y = 10*y + c;
2658
69.0k
        else if (nd <= DBL_DIG + 2)
2659
28.6k
          z = 10*z + c;
2660
124k
        nz = nz1 = 0;
2661
124k
        }
2662
143k
      }
2663
15.5k
    }
2664
45.7k
 dig_done:
2665
45.7k
  if (nd < 0) {
2666
    /* overflow */
2667
0
    nd = DBL_DIG + 2;
2668
0
  }
2669
45.7k
  if (nf < 0) {
2670
    /* overflow */
2671
0
    nf = DBL_DIG + 2;
2672
0
  }
2673
45.7k
  e = 0;
2674
45.7k
  if (c == 'e' || c == 'E') {
2675
7.82k
    if (!nd && !nz && !nz0) {
2676
0
      goto ret0;
2677
0
      }
2678
7.82k
    s00 = s;
2679
7.82k
    esign = 0;
2680
7.82k
    switch(c = *++s) {
2681
2.24k
      case '-':
2682
2.24k
        esign = 1;
2683
2.24k
        ZEND_FALLTHROUGH;
2684
6.05k
      case '+':
2685
6.05k
        c = *++s;
2686
7.82k
      }
2687
7.82k
    if (c >= '0' && c <= '9') {
2688
8.19k
      while(c == '0')
2689
677
        c = *++s;
2690
7.51k
      if (c > '0' && c <= '9') {
2691
7.12k
        L = c - '0';
2692
7.12k
        s1 = s;
2693
21.3k
        while((c = *++s) >= '0' && c <= '9')
2694
14.2k
          L = (Long) (10*(ULong)L + (c - '0'));
2695
7.12k
        if (s - s1 > 8 || L > 19999)
2696
          /* Avoid confusion from exponents
2697
           * so large that e might overflow.
2698
           */
2699
768
          e = 19999; /* safe for 16 bit ints */
2700
6.35k
        else
2701
6.35k
          e = (int)L;
2702
7.12k
        if (esign)
2703
2.24k
          e = -e;
2704
7.12k
        }
2705
393
      else
2706
393
        e = 0;
2707
7.51k
      }
2708
303
    else
2709
303
      s = s00;
2710
7.82k
    }
2711
45.7k
  if (!nd) {
2712
3.66k
    if (!nz && !nz0) {
2713
#ifdef INFNAN_CHECK
2714
      /* Check for Nan and Infinity */
2715
      if (!bc.dplen)
2716
       switch(c) {
2717
        case 'i':
2718
        case 'I':
2719
        if (match(&s,"nf")) {
2720
          --s;
2721
          if (!match(&s,"inity"))
2722
            ++s;
2723
          word0(&rv) = 0x7ff00000;
2724
          word1(&rv) = 0;
2725
          goto ret;
2726
          }
2727
        break;
2728
        case 'n':
2729
        case 'N':
2730
        if (match(&s, "an")) {
2731
          word0(&rv) = NAN_WORD0;
2732
          word1(&rv) = NAN_WORD1;
2733
#ifndef No_Hex_NaN
2734
          if (*s == '(') /*)*/
2735
            hexnan(&rv, &s);
2736
#endif
2737
          goto ret;
2738
          }
2739
        }
2740
#endif /* INFNAN_CHECK */
2741
520
 ret0:
2742
520
      s = s00;
2743
520
      sign = 0;
2744
520
      }
2745
3.66k
    goto ret;
2746
3.66k
    }
2747
42.1k
  bc.e0 = e1 = e -= nf;
2748
2749
  /* Now we have nd0 digits, starting at s0, followed by a
2750
   * decimal point, followed by nd-nd0 digits.  The number we're
2751
   * after is the integer represented by those digits times
2752
   * 10**e */
2753
2754
42.1k
  if (!nd0)
2755
9.73k
    nd0 = nd;
2756
42.1k
  k = nd < DBL_DIG + 2 ? nd : DBL_DIG + 2;
2757
42.1k
  dval(&rv) = y;
2758
42.1k
  if (k > 9) {
2759
#ifdef SET_INEXACT
2760
    if (k > DBL_DIG)
2761
      oldinexact = get_inexact();
2762
#endif
2763
22.9k
    dval(&rv) = tens[k - 9] * dval(&rv) + z;
2764
22.9k
    }
2765
42.1k
  bd0 = 0;
2766
42.1k
  if (nd <= DBL_DIG
2767
23.9k
#ifndef RND_PRODQUOT
2768
23.9k
#ifndef Honor_FLT_ROUNDS
2769
23.9k
    && Flt_Rounds == 1
2770
42.1k
#endif
2771
42.1k
#endif
2772
42.1k
      ) {
2773
23.9k
    if (!e)
2774
4.21k
      goto ret;
2775
19.7k
#ifndef ROUND_BIASED_without_Round_Up
2776
19.7k
    if (e > 0) {
2777
3.18k
      if (e <= Ten_pmax) {
2778
#ifdef VAX
2779
        goto vax_ovfl_check;
2780
#else
2781
#ifdef Honor_FLT_ROUNDS
2782
        /* round correctly FLT_ROUNDS = 2 or 3 */
2783
        if (sign) {
2784
          rv.d = -rv.d;
2785
          sign = 0;
2786
          }
2787
#endif
2788
1.80k
        /* rv = */ rounded_product(dval(&rv), tens[e]);
2789
1.80k
        goto ret;
2790
1.80k
#endif
2791
1.80k
        }
2792
1.38k
      i = DBL_DIG - nd;
2793
1.38k
      if (e <= Ten_pmax + i) {
2794
        /* A fancier test would sometimes let us do
2795
         * this for larger i values.
2796
         */
2797
#ifdef Honor_FLT_ROUNDS
2798
        /* round correctly FLT_ROUNDS = 2 or 3 */
2799
        if (sign) {
2800
          rv.d = -rv.d;
2801
          sign = 0;
2802
          }
2803
#endif
2804
82
        e -= i;
2805
82
        dval(&rv) *= tens[i];
2806
#ifdef VAX
2807
        /* VAX exponent range is so narrow we must
2808
         * worry about overflow here...
2809
         */
2810
 vax_ovfl_check:
2811
        word0(&rv) -= P*Exp_msk1;
2812
        /* rv = */ rounded_product(dval(&rv), tens[e]);
2813
        if ((word0(&rv) & Exp_mask)
2814
         > Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
2815
          goto ovfl;
2816
        word0(&rv) += P*Exp_msk1;
2817
#else
2818
82
        /* rv = */ rounded_product(dval(&rv), tens[e]);
2819
82
#endif
2820
82
        goto ret;
2821
82
        }
2822
1.38k
      }
2823
16.5k
#ifndef Inaccurate_Divide
2824
16.5k
    else if (e >= -Ten_pmax) {
2825
#ifdef Honor_FLT_ROUNDS
2826
      /* round correctly FLT_ROUNDS = 2 or 3 */
2827
      if (sign) {
2828
        rv.d = -rv.d;
2829
        sign = 0;
2830
        }
2831
#endif
2832
15.2k
      /* rv = */ rounded_quotient(dval(&rv), tens[-e]);
2833
15.2k
      goto ret;
2834
15.2k
      }
2835
19.7k
#endif
2836
19.7k
#endif /* ROUND_BIASED_without_Round_Up */
2837
19.7k
    }
2838
20.7k
  e1 += nd - k;
2839
2840
20.7k
#ifdef IEEE_Arith
2841
#ifdef SET_INEXACT
2842
  bc.inexact = 1;
2843
  if (k <= DBL_DIG)
2844
    oldinexact = get_inexact();
2845
#endif
2846
20.7k
#ifdef Avoid_Underflow
2847
20.7k
  bc.scale = 0;
2848
20.7k
#endif
2849
#ifdef Honor_FLT_ROUNDS
2850
  if (bc.rounding >= 2) {
2851
    if (sign)
2852
      bc.rounding = bc.rounding == 2 ? 0 : 2;
2853
    else
2854
      if (bc.rounding != 2)
2855
        bc.rounding = 0;
2856
    }
2857
#endif
2858
20.7k
#endif /*IEEE_Arith*/
2859
2860
  /* Get starting approximation = rv * 10**e1 */
2861
2862
20.7k
  if (e1 > 0) {
2863
17.1k
    if ((i = e1 & 15))
2864
16.5k
      dval(&rv) *= tens[i];
2865
17.1k
    if (e1 &= ~15) {
2866
10.1k
      if (e1 > DBL_MAX_10_EXP) {
2867
1.59k
 ovfl:
2868
        /* Can't trust HUGE_VAL */
2869
1.59k
#ifdef IEEE_Arith
2870
#ifdef Honor_FLT_ROUNDS
2871
        switch(bc.rounding) {
2872
          case 0: /* toward 0 */
2873
          case 3: /* toward -infinity */
2874
          word0(&rv) = Big0;
2875
          word1(&rv) = Big1;
2876
          break;
2877
          default:
2878
          word0(&rv) = Exp_mask;
2879
          word1(&rv) = 0;
2880
          }
2881
#else /*Honor_FLT_ROUNDS*/
2882
1.59k
        word0(&rv) = Exp_mask;
2883
1.59k
        word1(&rv) = 0;
2884
1.59k
#endif /*Honor_FLT_ROUNDS*/
2885
#ifdef SET_INEXACT
2886
        /* set overflow bit */
2887
        dval(&rv0) = 1e300;
2888
        dval(&rv0) *= dval(&rv0);
2889
#endif
2890
#else /*IEEE_Arith*/
2891
        word0(&rv) = Big0;
2892
        word1(&rv) = Big1;
2893
#endif /*IEEE_Arith*/
2894
1.90k
 range_err:
2895
1.90k
        if (bd0) {
2896
7
          Bfree(bb);
2897
7
          Bfree(bd);
2898
7
          Bfree(bs);
2899
7
          Bfree(bd0);
2900
7
          Bfree(delta);
2901
7
          }
2902
#ifndef NO_ERRNO
2903
        errno = ERANGE;
2904
#endif
2905
1.90k
        goto ret;
2906
1.59k
        }
2907
8.58k
      e1 >>= 4;
2908
15.0k
      for(j = 0; e1 > 1; j++, e1 >>= 1)
2909
6.49k
        if (e1 & 1)
2910
3.14k
          dval(&rv) *= bigtens[j];
2911
    /* The last multiplication could overflow. */
2912
8.58k
      word0(&rv) -= P*Exp_msk1;
2913
8.58k
      dval(&rv) *= bigtens[j];
2914
8.58k
      if ((z = word0(&rv) & Exp_mask)
2915
8.58k
       > Exp_msk1*(DBL_MAX_EXP+Bias-P))
2916
59
        goto ovfl;
2917
8.52k
      if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
2918
        /* set to largest number */
2919
        /* (Can't trust DBL_MAX) */
2920
7
        word0(&rv) = Big0;
2921
7
        word1(&rv) = Big1;
2922
7
        }
2923
8.51k
      else
2924
8.51k
        word0(&rv) += P*Exp_msk1;
2925
8.52k
      }
2926
17.1k
    }
2927
3.65k
  else if (e1 < 0) {
2928
2.98k
    e1 = -e1;
2929
2.98k
    if ((i = e1 & 15))
2930
2.87k
      dval(&rv) /= tens[i];
2931
2.98k
    if (e1 >>= 4) {
2932
1.90k
      if (e1 >= 1 << n_bigtens)
2933
293
        goto undfl;
2934
1.60k
#ifdef Avoid_Underflow
2935
1.60k
      if (e1 & Scale_Bit)
2936
868
        bc.scale = 2*P;
2937
6.94k
      for(j = 0; e1 > 0; j++, e1 >>= 1)
2938
5.33k
        if (e1 & 1)
2939
3.40k
          dval(&rv) *= tinytens[j];
2940
1.60k
      if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask)
2941
868
            >> Exp_shift)) > 0) {
2942
        /* scaled rv is denormal; clear j low bits */
2943
866
        if (j >= 32) {
2944
13
          if (j > 54)
2945
13
            goto undfl;
2946
0
          word1(&rv) = 0;
2947
0
          if (j >= 53)
2948
0
           word0(&rv) = (P+2)*Exp_msk1;
2949
0
          else
2950
0
           word0(&rv) &= 0xffffffff << (j-32);
2951
0
          }
2952
853
        else
2953
853
          word1(&rv) &= 0xffffffff << j;
2954
866
        }
2955
#else
2956
      for(j = 0; e1 > 1; j++, e1 >>= 1)
2957
        if (e1 & 1)
2958
          dval(&rv) *= tinytens[j];
2959
      /* The last multiplication could underflow. */
2960
      dval(&rv0) = dval(&rv);
2961
      dval(&rv) *= tinytens[j];
2962
      if (!dval(&rv)) {
2963
        dval(&rv) = 2.*dval(&rv0);
2964
        dval(&rv) *= tinytens[j];
2965
#endif
2966
1.59k
        if (!dval(&rv)) {
2967
306
 undfl:
2968
306
          dval(&rv) = 0.;
2969
306
          goto range_err;
2970
0
          }
2971
#ifndef Avoid_Underflow
2972
        word0(&rv) = Tiny0;
2973
        word1(&rv) = Tiny1;
2974
        /* The refinement below will clean
2975
         * this approximation up.
2976
         */
2977
        }
2978
#endif
2979
1.59k
      }
2980
2.98k
    }
2981
2982
  /* Now the hard part -- adjusting rv to the correct value.*/
2983
2984
  /* Put digits into bd: true value = bd * 10^e */
2985
2986
18.8k
  bc.nd = nd - nz1;
2987
18.8k
#ifndef NO_STRTOD_BIGCOMP
2988
18.8k
  bc.nd0 = nd0; /* Only needed if nd > strtod_diglim, but done here */
2989
      /* to silence an erroneous warning about bc.nd0 */
2990
      /* possibly not being initialized. */
2991
18.8k
  if (nd > strtod_diglim) {
2992
    /* ASSERT(strtod_diglim >= 18); 18 == one more than the */
2993
    /* minimum number of decimal digits to distinguish double values */
2994
    /* in IEEE arithmetic. */
2995
3.22k
    i = j = 18;
2996
3.22k
    if (i > nd0)
2997
284
      j += bc.dplen;
2998
13.1k
    for(;;) {
2999
13.1k
      if (--j < bc.dp1 && j >= bc.dp0)
3000
72
        j = bc.dp0 - 1;
3001
13.1k
      if (s0[j] != '0')
3002
3.22k
        break;
3003
9.90k
      --i;
3004
9.90k
      }
3005
3.22k
    e += nd - i;
3006
3.22k
    nd = i;
3007
3.22k
    if (nd0 > nd)
3008
2.95k
      nd0 = nd;
3009
3.22k
    if (nd < 9) { /* must recompute y */
3010
701
      y = 0;
3011
4.03k
      for(i = 0; i < nd0; ++i)
3012
3.33k
        y = 10*y + s0[i] - '0';
3013
734
      for(j = bc.dp1; i < nd; ++i)
3014
33
        y = 10*y + s0[j++] - '0';
3015
701
      }
3016
3.22k
    }
3017
18.8k
#endif
3018
18.8k
  bd0 = s2b(s0, nd0, nd, y, bc.dplen);
3019
3020
21.7k
  for(;;) {
3021
21.7k
    bd = Balloc(bd0->k);
3022
21.7k
    Bcopy(bd, bd0);
3023
21.7k
    bb = d2b(&rv, &bbe, &bbbits); /* rv = bb * 2^bbe */
3024
21.7k
    bs = i2b(1);
3025
3026
21.7k
    if (e >= 0) {
3027
18.1k
      bb2 = bb5 = 0;
3028
18.1k
      bd2 = bd5 = e;
3029
18.1k
      }
3030
3.59k
    else {
3031
3.59k
      bb2 = bb5 = -e;
3032
3.59k
      bd2 = bd5 = 0;
3033
3.59k
      }
3034
21.7k
    if (bbe >= 0)
3035
18.4k
      bb2 += bbe;
3036
3.31k
    else
3037
3.31k
      bd2 -= bbe;
3038
21.7k
    bs2 = bb2;
3039
#ifdef Honor_FLT_ROUNDS
3040
    if (bc.rounding != 1)
3041
      bs2++;
3042
#endif
3043
21.7k
#ifdef Avoid_Underflow
3044
21.7k
    Lsb = LSB;
3045
21.7k
    Lsb1 = 0;
3046
21.7k
    j = bbe - bc.scale;
3047
21.7k
    i = j + bbbits - 1; /* logb(rv) */
3048
21.7k
    j = P + 1 - bbbits;
3049
21.7k
    if (i < Emin) { /* denormal */
3050
1.49k
      i = Emin - i;
3051
1.49k
      j -= i;
3052
1.49k
      if (i < 32)
3053
1.49k
        Lsb <<= i;
3054
0
      else if (i < 52)
3055
0
        Lsb1 = Lsb << (i-32);
3056
0
      else
3057
0
        Lsb1 = Exp_mask;
3058
1.49k
      }
3059
#else /*Avoid_Underflow*/
3060
#ifdef Sudden_Underflow
3061
#ifdef IBM
3062
    j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
3063
#else
3064
    j = P + 1 - bbbits;
3065
#endif
3066
#else /*Sudden_Underflow*/
3067
    j = bbe;
3068
    i = j + bbbits - 1; /* logb(rv) */
3069
    if (i < Emin) /* denormal */
3070
      j += P - Emin;
3071
    else
3072
      j = P + 1 - bbbits;
3073
#endif /*Sudden_Underflow*/
3074
#endif /*Avoid_Underflow*/
3075
21.7k
    bb2 += j;
3076
21.7k
    bd2 += j;
3077
21.7k
#ifdef Avoid_Underflow
3078
21.7k
    bd2 += bc.scale;
3079
21.7k
#endif
3080
21.7k
    i = bb2 < bd2 ? bb2 : bd2;
3081
21.7k
    if (i > bs2)
3082
3.58k
      i = bs2;
3083
21.7k
    if (i > 0) {
3084
21.4k
      bb2 -= i;
3085
21.4k
      bd2 -= i;
3086
21.4k
      bs2 -= i;
3087
21.4k
      }
3088
21.7k
    if (bb5 > 0) {
3089
3.59k
      bs = pow5mult(bs, bb5);
3090
3.59k
      bb1 = mult(bs, bb);
3091
3.59k
      Bfree(bb);
3092
3.59k
      bb = bb1;
3093
3.59k
      }
3094
21.7k
    if (bb2 > 0)
3095
21.7k
      bb = lshift(bb, bb2);
3096
21.7k
    if (bd5 > 0)
3097
5.74k
      bd = pow5mult(bd, bd5);
3098
21.7k
    if (bd2 > 0)
3099
3.58k
      bd = lshift(bd, bd2);
3100
21.7k
    if (bs2 > 0)
3101
18.1k
      bs = lshift(bs, bs2);
3102
21.7k
    delta = diff(bb, bd);
3103
21.7k
    bc.dsign = delta->sign;
3104
21.7k
    delta->sign = 0;
3105
21.7k
    i = cmp(delta, bs);
3106
21.7k
#ifndef NO_STRTOD_BIGCOMP /*{*/
3107
21.7k
    if (bc.nd > nd && i <= 0) {
3108
2.97k
      if (bc.dsign) {
3109
        /* Must use bigcomp(). */
3110
1.98k
        req_bigcomp = 1;
3111
1.98k
        break;
3112
1.98k
        }
3113
#ifdef Honor_FLT_ROUNDS
3114
      if (bc.rounding != 1) {
3115
        if (i < 0) {
3116
          req_bigcomp = 1;
3117
          break;
3118
          }
3119
        }
3120
      else
3121
#endif
3122
993
        i = -1; /* Discarded digits make delta smaller. */
3123
993
      }
3124
19.7k
#endif /*}*/
3125
#ifdef Honor_FLT_ROUNDS /*{*/
3126
    if (bc.rounding != 1) {
3127
      if (i < 0) {
3128
        /* Error is less than an ulp */
3129
        if (!delta->x[0] && delta->wds <= 1) {
3130
          /* exact */
3131
#ifdef SET_INEXACT
3132
          bc.inexact = 0;
3133
#endif
3134
          break;
3135
          }
3136
        if (bc.rounding) {
3137
          if (bc.dsign) {
3138
            adj.d = 1.;
3139
            goto apply_adj;
3140
            }
3141
          }
3142
        else if (!bc.dsign) {
3143
          adj.d = -1.;
3144
          if (!word1(&rv)
3145
           && !(word0(&rv) & Frac_mask)) {
3146
            y = word0(&rv) & Exp_mask;
3147
#ifdef Avoid_Underflow
3148
            if (!bc.scale || y > 2*P*Exp_msk1)
3149
#else
3150
            if (y)
3151
#endif
3152
              {
3153
              delta = lshift(delta,Log2P);
3154
              if (cmp(delta, bs) <= 0)
3155
              adj.d = -0.5;
3156
              }
3157
            }
3158
 apply_adj:
3159
#ifdef Avoid_Underflow /*{*/
3160
          if (bc.scale && (y = word0(&rv) & Exp_mask)
3161
            <= 2*P*Exp_msk1)
3162
            word0(&adj) += (2*P+1)*Exp_msk1 - y;
3163
#else
3164
#ifdef Sudden_Underflow
3165
          if ((word0(&rv) & Exp_mask) <=
3166
              P*Exp_msk1) {
3167
            word0(&rv) += P*Exp_msk1;
3168
            dval(&rv) += adj.d*ulp(dval(&rv));
3169
            word0(&rv) -= P*Exp_msk1;
3170
            }
3171
          else
3172
#endif /*Sudden_Underflow*/
3173
#endif /*Avoid_Underflow}*/
3174
          dval(&rv) += adj.d*ulp(&rv);
3175
          }
3176
        break;
3177
        }
3178
      adj.d = ratio(delta, bs);
3179
      if (adj.d < 1.)
3180
        adj.d = 1.;
3181
      if (adj.d <= 0x7ffffffe) {
3182
        /* adj = rounding ? ceil(adj) : floor(adj); */
3183
        y = adj.d;
3184
        if (y != adj.d) {
3185
          if (!((bc.rounding>>1) ^ bc.dsign))
3186
            y++;
3187
          adj.d = y;
3188
          }
3189
        }
3190
#ifdef Avoid_Underflow /*{*/
3191
      if (bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1)
3192
        word0(&adj) += (2*P+1)*Exp_msk1 - y;
3193
#else
3194
#ifdef Sudden_Underflow
3195
      if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) {
3196
        word0(&rv) += P*Exp_msk1;
3197
        adj.d *= ulp(dval(&rv));
3198
        if (bc.dsign)
3199
          dval(&rv) += adj.d;
3200
        else
3201
          dval(&rv) -= adj.d;
3202
        word0(&rv) -= P*Exp_msk1;
3203
        goto cont;
3204
        }
3205
#endif /*Sudden_Underflow*/
3206
#endif /*Avoid_Underflow}*/
3207
      adj.d *= ulp(&rv);
3208
      if (bc.dsign) {
3209
        if (word0(&rv) == Big0 && word1(&rv) == Big1)
3210
          goto ovfl;
3211
        dval(&rv) += adj.d;
3212
        }
3213
      else
3214
        dval(&rv) -= adj.d;
3215
      goto cont;
3216
      }
3217
#endif /*}Honor_FLT_ROUNDS*/
3218
3219
19.7k
    if (i < 0) {
3220
      /* Error is less than half an ulp -- check for
3221
       * special case of mantissa a power of two.
3222
       */
3223
10.7k
      if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask
3224
607
#ifdef IEEE_Arith /*{*/
3225
607
#ifdef Avoid_Underflow
3226
607
       || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1
3227
#else
3228
       || (word0(&rv) & Exp_mask) <= Exp_msk1
3229
#endif
3230
10.7k
#endif /*}*/
3231
10.7k
        ) {
3232
#ifdef SET_INEXACT
3233
        if (!delta->x[0] && delta->wds <= 1)
3234
          bc.inexact = 0;
3235
#endif
3236
10.1k
        break;
3237
10.1k
        }
3238
605
      if (!delta->x[0] && delta->wds <= 1) {
3239
        /* exact result */
3240
#ifdef SET_INEXACT
3241
        bc.inexact = 0;
3242
#endif
3243
276
        break;
3244
276
        }
3245
329
      delta = lshift(delta,Log2P);
3246
329
      if (cmp(delta, bs) > 0)
3247
45
        goto drop_down;
3248
284
      break;
3249
329
      }
3250
8.95k
    if (i == 0) {
3251
      /* exactly half-way between */
3252
604
      if (bc.dsign) {
3253
204
        if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
3254
0
         &&  word1(&rv) == (
3255
0
#ifdef Avoid_Underflow
3256
0
      (bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1)
3257
0
    ? (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
3258
0
#endif
3259
0
               0xffffffff)) {
3260
          /*boundary case -- increment exponent*/
3261
0
          if (word0(&rv) == Big0 && word1(&rv) == Big1)
3262
0
            goto ovfl;
3263
0
          word0(&rv) = (word0(&rv) & Exp_mask)
3264
0
            + Exp_msk1
3265
#ifdef IBM
3266
            | Exp_msk1 >> 4
3267
#endif
3268
0
            ;
3269
0
          word1(&rv) = 0;
3270
0
#ifdef Avoid_Underflow
3271
0
          bc.dsign = 0;
3272
0
#endif
3273
0
          break;
3274
0
          }
3275
204
        }
3276
400
      else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) {
3277
45
 drop_down:
3278
        /* boundary case -- decrement exponent */
3279
#ifdef Sudden_Underflow /*{{*/
3280
        L = word0(&rv) & Exp_mask;
3281
#ifdef IBM
3282
        if (L <  Exp_msk1)
3283
#else
3284
#ifdef Avoid_Underflow
3285
        if (L <= (bc.scale ? (2*P+1)*Exp_msk1 : Exp_msk1))
3286
#else
3287
        if (L <= Exp_msk1)
3288
#endif /*Avoid_Underflow*/
3289
#endif /*IBM*/
3290
          {
3291
          if (bc.nd >nd) {
3292
            bc.uflchk = 1;
3293
            break;
3294
            }
3295
          goto undfl;
3296
          }
3297
        L -= Exp_msk1;
3298
#else /*Sudden_Underflow}{*/
3299
45
#ifdef Avoid_Underflow
3300
45
        if (bc.scale) {
3301
0
          L = word0(&rv) & Exp_mask;
3302
0
          if (L <= (2*P+1)*Exp_msk1) {
3303
0
            if (L > (P+2)*Exp_msk1)
3304
              /* round even ==> */
3305
              /* accept rv */
3306
0
              break;
3307
            /* rv = smallest denormal */
3308
0
            if (bc.nd >nd) {
3309
0
              bc.uflchk = 1;
3310
0
              break;
3311
0
              }
3312
0
            goto undfl;
3313
0
            }
3314
0
          }
3315
45
#endif /*Avoid_Underflow*/
3316
45
        L = (word0(&rv) & Exp_mask) - Exp_msk1;
3317
45
#endif /*Sudden_Underflow}}*/
3318
45
        word0(&rv) = L | Bndry_mask1;
3319
45
        word1(&rv) = 0xffffffff;
3320
#ifdef IBM
3321
        goto cont;
3322
#else
3323
45
#ifndef NO_STRTOD_BIGCOMP
3324
45
        if (bc.nd > nd)
3325
0
          goto cont;
3326
45
#endif
3327
45
        break;
3328
45
#endif
3329
45
        }
3330
604
#ifndef ROUND_BIASED
3331
604
#ifdef Avoid_Underflow
3332
604
      if (Lsb1) {
3333
0
        if (!(word0(&rv) & Lsb1))
3334
0
          break;
3335
0
        }
3336
604
      else if (!(word1(&rv) & Lsb))
3337
601
        break;
3338
#else
3339
      if (!(word1(&rv) & LSB))
3340
        break;
3341
#endif
3342
3
#endif
3343
3
      if (bc.dsign)
3344
3
#ifdef Avoid_Underflow
3345
3
        dval(&rv) += sulp(&rv, &bc);
3346
#else
3347
        dval(&rv) += ulp(&rv);
3348
#endif
3349
0
#ifndef ROUND_BIASED
3350
0
      else {
3351
0
#ifdef Avoid_Underflow
3352
0
        dval(&rv) -= sulp(&rv, &bc);
3353
#else
3354
        dval(&rv) -= ulp(&rv);
3355
#endif
3356
0
#ifndef Sudden_Underflow
3357
0
        if (!dval(&rv)) {
3358
0
          if (bc.nd >nd) {
3359
0
            bc.uflchk = 1;
3360
0
            break;
3361
0
            }
3362
0
          goto undfl;
3363
0
          }
3364
0
#endif
3365
0
        }
3366
3
#ifdef Avoid_Underflow
3367
3
      bc.dsign = 1 - bc.dsign;
3368
3
#endif
3369
3
#endif
3370
3
      break;
3371
3
      }
3372
8.35k
    if ((aadj = ratio(delta, bs)) <= 2.) {
3373
6.59k
      if (bc.dsign)
3374
1.77k
        aadj = aadj1 = 1.;
3375
4.81k
      else if (word1(&rv) || word0(&rv) & Bndry_mask) {
3376
4.81k
#ifndef Sudden_Underflow
3377
4.81k
        if (word1(&rv) == Tiny1 && !word0(&rv)) {
3378
0
          if (bc.nd >nd) {
3379
0
            bc.uflchk = 1;
3380
0
            break;
3381
0
            }
3382
0
          goto undfl;
3383
0
          }
3384
4.81k
#endif
3385
4.81k
        aadj = 1.;
3386
4.81k
        aadj1 = -1.;
3387
4.81k
        }
3388
0
      else {
3389
        /* special case -- power of FLT_RADIX to be */
3390
        /* rounded down... */
3391
3392
0
        if (aadj < 2./FLT_RADIX)
3393
0
          aadj = 1./FLT_RADIX;
3394
0
        else
3395
0
          aadj *= 0.5;
3396
0
        aadj1 = -aadj;
3397
0
        }
3398
6.59k
      }
3399
1.75k
    else {
3400
1.75k
      aadj *= 0.5;
3401
1.75k
      aadj1 = bc.dsign ? aadj : -aadj;
3402
#ifdef Check_FLT_ROUNDS
3403
      switch(bc.rounding) {
3404
        case 2: /* towards +infinity */
3405
          aadj1 -= 0.5;
3406
          break;
3407
        case 0: /* towards 0 */
3408
        case 3: /* towards -infinity */
3409
          aadj1 += 0.5;
3410
        }
3411
#else
3412
1.75k
      if (Flt_Rounds == 0)
3413
0
        aadj1 += 0.5;
3414
1.75k
#endif /*Check_FLT_ROUNDS*/
3415
1.75k
      }
3416
8.35k
    y = word0(&rv) & Exp_mask;
3417
3418
    /* Check for overflow */
3419
3420
8.35k
    if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
3421
7
      dval(&rv0) = dval(&rv);
3422
7
      word0(&rv) -= P*Exp_msk1;
3423
7
      adj.d = aadj1 * ulp(&rv);
3424
7
      dval(&rv) += adj.d;
3425
7
      if ((word0(&rv) & Exp_mask) >=
3426
7
          Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
3427
7
        if (word0(&rv0) == Big0 && word1(&rv0) == Big1)
3428
7
          goto ovfl;
3429
0
        word0(&rv) = Big0;
3430
0
        word1(&rv) = Big1;
3431
0
        goto cont;
3432
7
        }
3433
0
      else
3434
0
        word0(&rv) += P*Exp_msk1;
3435
7
      }
3436
8.34k
    else {
3437
8.34k
#ifdef Avoid_Underflow
3438
8.34k
      if (bc.scale && y <= 2*P*Exp_msk1) {
3439
647
        if (aadj <= 0x7fffffff) {
3440
647
          if ((z = aadj) <= 0)
3441
0
            z = 1;
3442
647
          aadj = z;
3443
647
          aadj1 = bc.dsign ? aadj : -aadj;
3444
647
          }
3445
647
        dval(&aadj2) = aadj1;
3446
647
        word0(&aadj2) += (2*P+1)*Exp_msk1 - y;
3447
647
        aadj1 = dval(&aadj2);
3448
647
        adj.d = aadj1 * ulp(&rv);
3449
647
        dval(&rv) += adj.d;
3450
647
        if (rv.d == 0.)
3451
#ifdef NO_STRTOD_BIGCOMP
3452
          goto undfl;
3453
#else
3454
0
          {
3455
0
          req_bigcomp = 1;
3456
0
          break;
3457
0
          }
3458
647
#endif
3459
647
        }
3460
7.69k
      else {
3461
7.69k
        adj.d = aadj1 * ulp(&rv);
3462
7.69k
        dval(&rv) += adj.d;
3463
7.69k
        }
3464
#else
3465
#ifdef Sudden_Underflow
3466
      if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) {
3467
        dval(&rv0) = dval(&rv);
3468
        word0(&rv) += P*Exp_msk1;
3469
        adj.d = aadj1 * ulp(&rv);
3470
        dval(&rv) += adj.d;
3471
#ifdef IBM
3472
        if ((word0(&rv) & Exp_mask) <  P*Exp_msk1)
3473
#else
3474
        if ((word0(&rv) & Exp_mask) <= P*Exp_msk1)
3475
#endif
3476
          {
3477
          if (word0(&rv0) == Tiny0
3478
           && word1(&rv0) == Tiny1) {
3479
            if (bc.nd >nd) {
3480
              bc.uflchk = 1;
3481
              break;
3482
              }
3483
            goto undfl;
3484
            }
3485
          word0(&rv) = Tiny0;
3486
          word1(&rv) = Tiny1;
3487
          goto cont;
3488
          }
3489
        else
3490
          word0(&rv) -= P*Exp_msk1;
3491
        }
3492
      else {
3493
        adj.d = aadj1 * ulp(&rv);
3494
        dval(&rv) += adj.d;
3495
        }
3496
#else /*Sudden_Underflow*/
3497
      /* Compute adj so that the IEEE rounding rules will
3498
       * correctly round rv + adj in some half-way cases.
3499
       * If rv * ulp(rv) is denormalized (i.e.,
3500
       * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
3501
       * trouble from bits lost to denormalization;
3502
       * example: 1.2e-307 .
3503
       */
3504
      if (y <= (P-1)*Exp_msk1 && aadj > 1.) {
3505
        aadj1 = (double)(int)(aadj + 0.5);
3506
        if (!bc.dsign)
3507
          aadj1 = -aadj1;
3508
        }
3509
      adj.d = aadj1 * ulp(&rv);
3510
      dval(&rv) += adj.d;
3511
#endif /*Sudden_Underflow*/
3512
#endif /*Avoid_Underflow*/
3513
8.34k
      }
3514
8.34k
    z = word0(&rv) & Exp_mask;
3515
8.34k
#ifndef SET_INEXACT
3516
8.34k
    if (bc.nd == nd) {
3517
6.15k
#ifdef Avoid_Underflow
3518
6.15k
    if (!bc.scale)
3519
5.50k
#endif
3520
5.50k
    if (y == z) {
3521
      /* Can we stop now? */
3522
5.50k
      L = (Long)aadj;
3523
5.50k
      aadj -= L;
3524
      /* The tolerances below are conservative. */
3525
5.50k
      if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
3526
5.49k
        if (aadj < .4999999 || aadj > .5000001)
3527
5.49k
          break;
3528
5.49k
        }
3529
16
      else if (aadj < .4999999/FLT_RADIX)
3530
16
        break;
3531
5.50k
      }
3532
6.15k
    }
3533
2.83k
#endif
3534
2.83k
 cont:
3535
2.83k
    Bfree(bb);
3536
2.83k
    Bfree(bd);
3537
2.83k
    Bfree(bs);
3538
2.83k
    Bfree(delta);
3539
2.83k
    }
3540
18.8k
  Bfree(bb);
3541
18.8k
  Bfree(bd);
3542
18.8k
  Bfree(bs);
3543
18.8k
  Bfree(bd0);
3544
18.8k
  Bfree(delta);
3545
18.8k
#ifndef NO_STRTOD_BIGCOMP
3546
18.8k
  if (req_bigcomp) {
3547
1.98k
    bd0 = 0;
3548
1.98k
    bc.e0 += nz1;
3549
1.98k
    bigcomp(&rv, s0, &bc);
3550
1.98k
    y = word0(&rv) & Exp_mask;
3551
1.98k
    if (y == Exp_mask)
3552
0
      goto ovfl;
3553
1.98k
    if (y == 0 && rv.d == 0.)
3554
0
      goto undfl;
3555
1.98k
    }
3556
18.8k
#endif
3557
#ifdef SET_INEXACT
3558
  if (bc.inexact) {
3559
    if (!oldinexact) {
3560
      word0(&rv0) = Exp_1 + (70 << Exp_shift);
3561
      word1(&rv0) = 0;
3562
      dval(&rv0) += 1.;
3563
      }
3564
    }
3565
  else if (!oldinexact)
3566
    clear_inexact();
3567
#endif
3568
18.8k
#ifdef Avoid_Underflow
3569
18.8k
  if (bc.scale) {
3570
855
    word0(&rv0) = Exp_1 - 2*P*Exp_msk1;
3571
855
    word1(&rv0) = 0;
3572
855
    dval(&rv) *= dval(&rv0);
3573
#ifndef NO_ERRNO
3574
    /* try to avoid the bug of testing an 8087 register value */
3575
#ifdef IEEE_Arith
3576
    if (!(word0(&rv) & Exp_mask))
3577
#else
3578
    if (word0(&rv) == 0 && word1(&rv) == 0)
3579
#endif
3580
      errno = ERANGE;
3581
#endif
3582
855
    }
3583
18.8k
#endif /* Avoid_Underflow */
3584
#ifdef SET_INEXACT
3585
  if (bc.inexact && !(word0(&rv) & Exp_mask)) {
3586
    /* set underflow bit */
3587
    dval(&rv0) = 1e-300;
3588
    dval(&rv0) *= dval(&rv0);
3589
    }
3590
#endif
3591
45.7k
 ret:
3592
45.7k
  if (se)
3593
44.7k
    *se = (char *)s;
3594
45.7k
  return sign ? -dval(&rv) : dval(&rv);
3595
18.8k
  }
3596
3597
#if !defined(MULTIPLE_THREADS) && !defined(dtoa_result)
3598
 ZEND_TLS char *dtoa_result;
3599
#endif
3600
3601
 static char *
3602
#ifdef KR_headers
3603
rv_alloc(i) int i;
3604
#else
3605
rv_alloc(int i)
3606
#endif
3607
31.9k
{
3608
3609
31.9k
  int j, k, *r;
3610
31.9k
  size_t rem;
3611
3612
31.9k
  rem = sizeof(Bigint) - sizeof(ULong) - sizeof(int);
3613
3614
3615
31.9k
  j = sizeof(ULong);
3616
31.9k
  if (i > ((INT_MAX >> 2) + rem))
3617
3
    i = (INT_MAX >> 2) + rem;
3618
31.9k
  for(k = 0;
3619
31.9k
    rem + j <= (size_t)i; j <<= 1)
3620
87
      k++;
3621
3622
31.9k
  r = (int*)Balloc(k);
3623
31.9k
  *r = k;
3624
31.9k
  return
3625
31.9k
#ifndef MULTIPLE_THREADS
3626
31.9k
  dtoa_result =
3627
31.9k
#endif
3628
31.9k
    (char *)(r+1);
3629
31.9k
  }
3630
3631
 static char *
3632
#ifdef KR_headers
3633
nrv_alloc(s, rve, n) char *s, **rve; int n;
3634
#else
3635
nrv_alloc(const char *s, char **rve, int n)
3636
#endif
3637
1.44k
{
3638
1.44k
  char *rv, *t;
3639
3640
1.44k
  t = rv = rv_alloc(n);
3641
10.7k
  while((*t = *s++)) t++;
3642
1.44k
  if (rve)
3643
0
    *rve = t;
3644
1.44k
  return rv;
3645
1.44k
  }
3646
3647
/* freedtoa(s) must be used to free values s returned by dtoa
3648
 * when MULTIPLE_THREADS is #defined.  It should be used in all cases,
3649
 * but for consistency with earlier versions of dtoa, it is optional
3650
 * when MULTIPLE_THREADS is not defined.
3651
 */
3652
3653
ZEND_API void
3654
#ifdef KR_headers
3655
zend_freedtoa(s) char *s;
3656
#else
3657
zend_freedtoa(char *s)
3658
#endif
3659
31.9k
{
3660
31.9k
  Bigint *b = (Bigint *)((int *)s - 1);
3661
31.9k
  b->maxwds = 1 << (b->k = *(int*)b);
3662
31.9k
  Bfree(b);
3663
31.9k
#ifndef MULTIPLE_THREADS
3664
31.9k
  if (s == dtoa_result)
3665
31.9k
    dtoa_result = 0;
3666
31.9k
#endif
3667
31.9k
  }
3668
3669
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
3670
 *
3671
 * Inspired by "How to Print Floating-Point Numbers Accurately" by
3672
 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
3673
 *
3674
 * Modifications:
3675
 *  1. Rather than iterating, we use a simple numeric overestimate
3676
 *     to determine k = floor(log10(d)).  We scale relevant
3677
 *     quantities using O(log2(k)) rather than O(k) multiplications.
3678
 *  2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
3679
 *     try to generate digits strictly left to right.  Instead, we
3680
 *     compute with fewer bits and propagate the carry if necessary
3681
 *     when rounding the final digit up.  This is often faster.
3682
 *  3. Under the assumption that input will be rounded nearest,
3683
 *     mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
3684
 *     That is, we allow equality in stopping tests when the
3685
 *     round-nearest rule will give the same floating-point value
3686
 *     as would satisfaction of the stopping test with strict
3687
 *     inequality.
3688
 *  4. We remove common factors of powers of 2 from relevant
3689
 *     quantities.
3690
 *  5. When converting floating-point integers less than 1e16,
3691
 *     we use floating-point arithmetic rather than resorting
3692
 *     to multiple-precision integers.
3693
 *  6. When asked to produce fewer than 15 digits, we first try
3694
 *     to get by with floating-point arithmetic; we resort to
3695
 *     multiple-precision integer arithmetic only if we cannot
3696
 *     guarantee that the floating-point calculation has given
3697
 *     the correctly rounded result.  For k requested digits and
3698
 *     "uniformly" distributed input, the probability is
3699
 *     something like 10^(k-15) that we must resort to the Long
3700
 *     calculation.
3701
 */
3702
3703
ZEND_API char *zend_dtoa(double dd, int mode, int ndigits, int *decpt, bool *sign, char **rve)
3704
31.9k
{
3705
 /* Arguments ndigits, decpt, sign are similar to those
3706
  of ecvt and fcvt; trailing zeros are suppressed from
3707
  the returned string.  If not null, *rve is set to point
3708
  to the end of the return value.  If d is +-Infinity or NaN,
3709
  then *decpt is set to 9999.
3710
3711
  mode:
3712
    0 ==> shortest string that yields d when read in
3713
      and rounded to nearest.
3714
    1 ==> like 0, but with Steele & White stopping rule;
3715
      e.g. with IEEE P754 arithmetic , mode 0 gives
3716
      1e23 whereas mode 1 gives 9.999999999999999e22.
3717
    2 ==> max(1,ndigits) significant digits.  This gives a
3718
      return value similar to that of ecvt, except
3719
      that trailing zeros are suppressed.
3720
    3 ==> through ndigits past the decimal point.  This
3721
      gives a return value similar to that from fcvt,
3722
      except that trailing zeros are suppressed, and
3723
      ndigits can be negative.
3724
    4,5 ==> similar to 2 and 3, respectively, but (in
3725
      round-nearest mode) with the tests of mode 0 to
3726
      possibly return a shorter string that rounds to d.
3727
      With IEEE arithmetic and compilation with
3728
      -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
3729
      as modes 2 and 3 when FLT_ROUNDS != 1.
3730
    6-9 ==> Debugging modes similar to mode - 4:  don't try
3731
      fast floating-point estimate (if applicable).
3732
3733
    Values of mode other than 0-9 are treated as mode 0.
3734
3735
    Sufficient space is allocated to the return value
3736
    to hold the suppressed trailing zeros.
3737
  */
3738
3739
31.9k
  int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1,
3740
31.9k
    j, j1 = 0, k, k0, k_check, leftright, m2, m5, s2, s5,
3741
31.9k
    spec_case = 0, try_quick;
3742
31.9k
  Long L;
3743
31.9k
#ifndef Sudden_Underflow
3744
31.9k
  int denorm;
3745
31.9k
  ULong x;
3746
31.9k
#endif
3747
31.9k
  Bigint *b, *b1, *delta, *mlo, *mhi, *S;
3748
31.9k
  U d2, eps, u;
3749
31.9k
  double ds;
3750
31.9k
  char *s, *s0;
3751
31.9k
#ifndef No_leftright
3752
31.9k
#ifdef IEEE_Arith
3753
31.9k
  U eps1;
3754
31.9k
#endif
3755
31.9k
#endif
3756
#ifdef SET_INEXACT
3757
  int inexact, oldinexact;
3758
#endif
3759
#ifdef Honor_FLT_ROUNDS /*{*/
3760
  int Rounding;
3761
#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
3762
  Rounding = Flt_Rounds;
3763
#else /*}{*/
3764
  Rounding = 1;
3765
  switch(fegetround()) {
3766
    case FE_TOWARDZERO: Rounding = 0; break;
3767
    case FE_UPWARD: Rounding = 2; break;
3768
    case FE_DOWNWARD: Rounding = 3;
3769
    }
3770
#endif /*}}*/
3771
#endif /*}*/
3772
3773
31.9k
#ifndef MULTIPLE_THREADS
3774
31.9k
  if (dtoa_result) {
3775
0
    zend_freedtoa(dtoa_result);
3776
0
    dtoa_result = 0;
3777
0
    }
3778
31.9k
#endif
3779
3780
31.9k
  u.d = dd;
3781
31.9k
  if (word0(&u) & Sign_bit) {
3782
    /* set sign for everything, including 0's and NaNs */
3783
7.86k
    *sign = 1;
3784
7.86k
    word0(&u) &= ~Sign_bit; /* clear sign bit */
3785
7.86k
    }
3786
24.0k
  else
3787
24.0k
    *sign = 0;
3788
3789
31.9k
#if defined(IEEE_Arith) + defined(VAX)
3790
31.9k
#ifdef IEEE_Arith
3791
31.9k
  if ((word0(&u) & Exp_mask) == Exp_mask)
3792
#else
3793
  if (word0(&u)  == 0x8000)
3794
#endif
3795
1.15k
    {
3796
    /* Infinity or NaN */
3797
1.15k
    *decpt = 9999;
3798
1.15k
#ifdef IEEE_Arith
3799
1.15k
    if (!word1(&u) && !(word0(&u) & 0xfffff))
3800
1.11k
      return nrv_alloc("Infinity", rve, 8);
3801
36
#endif
3802
36
    return nrv_alloc("NaN", rve, 3);
3803
1.15k
    }
3804
30.7k
#endif
3805
#ifdef IBM
3806
  dval(&u) += 0; /* normalize */
3807
#endif
3808
30.7k
  if (!dval(&u)) {
3809
296
    *decpt = 1;
3810
296
    return nrv_alloc("0", rve, 1);
3811
296
    }
3812
3813
#ifdef SET_INEXACT
3814
  try_quick = oldinexact = get_inexact();
3815
  inexact = 1;
3816
#endif
3817
#ifdef Honor_FLT_ROUNDS
3818
  if (Rounding >= 2) {
3819
    if (*sign)
3820
      Rounding = Rounding == 2 ? 0 : 2;
3821
    else
3822
      if (Rounding != 2)
3823
        Rounding = 0;
3824
    }
3825
#endif
3826
3827
30.4k
  b = d2b(&u, &be, &bbits);
3828
#ifdef Sudden_Underflow
3829
  i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
3830
#else
3831
30.4k
  if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
3832
30.4k
#endif
3833
30.4k
    dval(&d2) = dval(&u);
3834
30.4k
    word0(&d2) &= Frac_mask1;
3835
30.4k
    word0(&d2) |= Exp_11;
3836
#ifdef IBM
3837
    if (j = 11 - hi0bits(word0(&d2) & Frac_mask))
3838
      dval(&d2) /= 1 << j;
3839
#endif
3840
3841
    /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
3842
     * log10(x)  =  log(x) / log(10)
3843
     *    ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
3844
     * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
3845
     *
3846
     * This suggests computing an approximation k to log10(d) by
3847
     *
3848
     * k = (i - Bias)*0.301029995663981
3849
     *  + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
3850
     *
3851
     * We want k to be too large rather than too small.
3852
     * The error in the first-order Taylor series approximation
3853
     * is in our favor, so we just round up the constant enough
3854
     * to compensate for any error in the multiplication of
3855
     * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
3856
     * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
3857
     * adding 1e-13 to the constant term more than suffices.
3858
     * Hence we adjust the constant term to 0.1760912590558.
3859
     * (We could get a more accurate k by invoking log10,
3860
     *  but this is probably not worthwhile.)
3861
     */
3862
3863
30.4k
    i -= Bias;
3864
#ifdef IBM
3865
    i <<= 2;
3866
    i += j;
3867
#endif
3868
30.4k
#ifndef Sudden_Underflow
3869
30.4k
    denorm = 0;
3870
30.4k
    }
3871
0
  else {
3872
    /* d is denormalized */
3873
3874
0
    i = bbits + be + (Bias + (P-1) - 1);
3875
0
    x = i > 32  ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)
3876
0
          : word1(&u) << (32 - i);
3877
0
    dval(&d2) = x;
3878
0
    word0(&d2) -= 31*Exp_msk1; /* adjust exponent */
3879
0
    i -= (Bias + (P-1) - 1) + 1;
3880
0
    denorm = 1;
3881
0
    }
3882
30.4k
#endif
3883
30.4k
  ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
3884
30.4k
  k = (int)ds;
3885
30.4k
  if (ds < 0. && ds != k)
3886
2.67k
    k--; /* want k = floor(ds) */
3887
30.4k
  k_check = 1;
3888
30.4k
  if (k >= 0 && k <= Ten_pmax) {
3889
24.9k
    if (dval(&u) < tens[k])
3890
157
      k--;
3891
24.9k
    k_check = 0;
3892
24.9k
    }
3893
30.4k
  j = bbits - i - 1;
3894
30.4k
  if (j >= 0) {
3895
19.2k
    b2 = 0;
3896
19.2k
    s2 = j;
3897
19.2k
    }
3898
11.2k
  else {
3899
11.2k
    b2 = -j;
3900
11.2k
    s2 = 0;
3901
11.2k
    }
3902
30.4k
  if (k >= 0) {
3903
27.7k
    b5 = 0;
3904
27.7k
    s5 = k;
3905
27.7k
    s2 += k;
3906
27.7k
    }
3907
2.67k
  else {
3908
2.67k
    b2 -= k;
3909
2.67k
    b5 = -k;
3910
2.67k
    s5 = 0;
3911
2.67k
    }
3912
30.4k
  if (mode < 0 || mode > 9)
3913
0
    mode = 0;
3914
3915
30.4k
#ifndef SET_INEXACT
3916
#ifdef Check_FLT_ROUNDS
3917
  try_quick = Rounding == 1;
3918
#else
3919
30.4k
  try_quick = 1;
3920
30.4k
#endif
3921
30.4k
#endif /*SET_INEXACT*/
3922
3923
30.4k
  if (mode > 5) {
3924
0
    mode -= 4;
3925
0
    try_quick = 0;
3926
0
    }
3927
30.4k
  leftright = 1;
3928
30.4k
  ilim = ilim1 = -1;  /* Values for cases 0 and 1; done here to */
3929
        /* silence erroneous "gcc -Wall" warning. */
3930
30.4k
  switch(mode) {
3931
24.7k
    case 0:
3932
24.7k
    case 1:
3933
24.7k
      i = 18;
3934
24.7k
      ndigits = 0;
3935
24.7k
      break;
3936
5.46k
    case 2:
3937
5.46k
      leftright = 0;
3938
5.46k
      ZEND_FALLTHROUGH;
3939
5.46k
    case 4:
3940
5.46k
      if (ndigits <= 0)
3941
0
        ndigits = 1;
3942
5.46k
      ilim = ilim1 = i = ndigits;
3943
5.46k
      break;
3944
264
    case 3:
3945
264
      leftright = 0;
3946
264
      ZEND_FALLTHROUGH;
3947
264
    case 5:
3948
264
      i = ndigits + k + 1;
3949
264
      ilim = i;
3950
264
      ilim1 = i - 1;
3951
264
      if (i <= 0)
3952
0
        i = 1;
3953
30.4k
    }
3954
30.4k
  s = s0 = rv_alloc(i);
3955
3956
#ifdef Honor_FLT_ROUNDS
3957
  if (mode > 1 && Rounding != 1)
3958
    leftright = 0;
3959
#endif
3960
3961
30.4k
  if (ilim >= 0 && ilim <= Quick_max && try_quick) {
3962
3963
    /* Try to get by with floating-point arithmetic. */
3964
3965
5.56k
    i = 0;
3966
5.56k
    dval(&d2) = dval(&u);
3967
5.56k
    k0 = k;
3968
5.56k
    ilim0 = ilim;
3969
5.56k
    ieps = 2; /* conservative */
3970
5.56k
    if (k > 0) {
3971
5.02k
      ds = tens[k&0xf];
3972
5.02k
      j = k >> 4;
3973
5.02k
      if (j & Bletch) {
3974
        /* prevent overflows */
3975
31
        j &= Bletch - 1;
3976
31
        dval(&u) /= bigtens[n_bigtens-1];
3977
31
        ieps++;
3978
31
        }
3979
11.6k
      for(; j; j >>= 1, i++)
3980
6.61k
        if (j & 1) {
3981
5.38k
          ieps++;
3982
5.38k
          ds *= bigtens[i];
3983
5.38k
          }
3984
5.02k
      dval(&u) /= ds;
3985
5.02k
      }
3986
536
    else if ((j1 = -k)) {
3987
436
      dval(&u) *= tens[j1 & 0xf];
3988
499
      for(j = j1 >> 4; j; j >>= 1, i++)
3989
63
        if (j & 1) {
3990
45
          ieps++;
3991
45
          dval(&u) *= bigtens[i];
3992
45
          }
3993
436
      }
3994
5.56k
    if (k_check && dval(&u) < 1. && ilim > 0) {
3995
98
      if (ilim1 <= 0)
3996
0
        goto fast_failed;
3997
98
      ilim = ilim1;
3998
98
      k--;
3999
98
      dval(&u) *= 10.;
4000
98
      ieps++;
4001
98
      }
4002
5.56k
    dval(&eps) = ieps*dval(&u) + 7.;
4003
5.56k
    word0(&eps) -= (P-1)*Exp_msk1;
4004
5.56k
    if (ilim == 0) {
4005
0
      S = mhi = 0;
4006
0
      dval(&u) -= 5.;
4007
0
      if (dval(&u) > dval(&eps))
4008
0
        goto one_digit;
4009
0
      if (dval(&u) < -dval(&eps))
4010
0
        goto no_digits;
4011
0
      goto fast_failed;
4012
0
      }
4013
5.56k
#ifndef No_leftright
4014
5.56k
    if (leftright) {
4015
      /* Use Steele & White method of only
4016
       * generating digits needed.
4017
       */
4018
0
      dval(&eps) = 0.5/tens[ilim-1] - dval(&eps);
4019
0
#ifdef IEEE_Arith
4020
0
      if (k0 < 0 && j1 >= 307) {
4021
0
        eps1.d = 1.01e256; /* 1.01 allows roundoff in the next few lines */
4022
0
        word0(&eps1) -= Exp_msk1 * (Bias+P-1);
4023
0
        dval(&eps1) *= tens[j1 & 0xf];
4024
0
        for(i = 0, j = (j1-256) >> 4; j; j >>= 1, i++)
4025
0
          if (j & 1)
4026
0
            dval(&eps1) *= bigtens[i];
4027
0
        if (eps.d < eps1.d)
4028
0
          eps.d = eps1.d;
4029
0
        }
4030
0
#endif
4031
0
      for(i = 0;;) {
4032
0
        L = dval(&u);
4033
0
        dval(&u) -= L;
4034
0
        *s++ = '0' + (int)L;
4035
0
        if (1. - dval(&u) < dval(&eps))
4036
0
          goto bump_up;
4037
0
        if (dval(&u) < dval(&eps))
4038
0
          goto ret1;
4039
0
        if (++i >= ilim)
4040
0
          break;
4041
0
        dval(&eps) *= 10.;
4042
0
        dval(&u) *= 10.;
4043
0
        }
4044
0
      }
4045
5.56k
    else {
4046
5.56k
#endif
4047
      /* Generate ilim digits, then fix them up. */
4048
5.56k
      dval(&eps) *= tens[ilim-1];
4049
74.9k
      for(i = 1;; i++, dval(&u) *= 10.) {
4050
74.9k
        L = (Long)(dval(&u));
4051
74.9k
        if (!(dval(&u) -= L))
4052
189
          ilim = i;
4053
74.9k
        *s++ = '0' + (int)L;
4054
74.9k
        if (i == ilim) {
4055
5.56k
          if (dval(&u) > 0.5 + dval(&eps))
4056
2.29k
            goto bump_up;
4057
3.26k
          else if (dval(&u) < 0.5 - dval(&eps)) {
4058
4.91k
            while(*--s == '0');
4059
2.92k
            s++;
4060
2.92k
            goto ret1;
4061
2.92k
            }
4062
337
          break;
4063
5.56k
          }
4064
74.9k
        }
4065
5.56k
#ifndef No_leftright
4066
5.56k
      }
4067
337
#endif
4068
337
 fast_failed:
4069
337
    s = s0;
4070
337
    dval(&u) = dval(&d2);
4071
337
    k = k0;
4072
337
    ilim = ilim0;
4073
337
    }
4074
4075
  /* Do we have a "small" integer? */
4076
4077
25.2k
  if (be >= 0 && k <= Int_max) {
4078
    /* Yes. */
4079
354
    ds = tens[k];
4080
354
    if (ndigits < 0 && ilim <= 0) {
4081
0
      S = mhi = 0;
4082
0
      if (ilim < 0 || dval(&u) <= 5*ds)
4083
0
        goto no_digits;
4084
0
      goto one_digit;
4085
0
      }
4086
1.01k
    for(i = 1;; i++, dval(&u) *= 10.) {
4087
1.01k
      L = (Long)(dval(&u) / ds);
4088
1.01k
      dval(&u) -= L*ds;
4089
#ifdef Check_FLT_ROUNDS
4090
      /* If FLT_ROUNDS == 2, L will usually be high by 1 */
4091
      if (dval(&u) < 0) {
4092
        L--;
4093
        dval(&u) += ds;
4094
        }
4095
#endif
4096
1.01k
      *s++ = '0' + (int)L;
4097
1.01k
      if (!dval(&u)) {
4098
#ifdef SET_INEXACT
4099
        inexact = 0;
4100
#endif
4101
354
        break;
4102
354
        }
4103
665
      if (i == ilim) {
4104
#ifdef Honor_FLT_ROUNDS
4105
        if (mode > 1)
4106
        switch(Rounding) {
4107
          case 0: goto ret1;
4108
          case 2: goto bump_up;
4109
          }
4110
#endif
4111
0
        dval(&u) += dval(&u);
4112
#ifdef ROUND_BIASED
4113
        if (dval(&u) >= ds)
4114
#else
4115
0
        if (dval(&u) > ds || (dval(&u) == ds && L & 1))
4116
0
#endif
4117
0
          {
4118
2.29k
 bump_up:
4119
4.75k
          while(*--s == '9')
4120
2.53k
            if (s == s0) {
4121
75
              k++;
4122
75
              *s = '0';
4123
75
              break;
4124
75
              }
4125
2.29k
          ++*s++;
4126
2.29k
          }
4127
2.29k
        break;
4128
0
        }
4129
665
      }
4130
2.64k
    goto ret1;
4131
354
    }
4132
4133
24.8k
  m2 = b2;
4134
24.8k
  m5 = b5;
4135
24.8k
  mhi = mlo = 0;
4136
24.8k
  if (leftright) {
4137
24.4k
    i =
4138
24.4k
#ifndef Sudden_Underflow
4139
24.4k
      denorm ? be + (Bias + (P-1) - 1 + 1) :
4140
24.4k
#endif
4141
#ifdef IBM
4142
      1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
4143
#else
4144
24.4k
      1 + P - bbits;
4145
24.4k
#endif
4146
24.4k
    b2 += i;
4147
24.4k
    s2 += i;
4148
24.4k
    mhi = i2b(1);
4149
24.4k
    }
4150
24.8k
  if (m2 > 0 && s2 > 0) {
4151
9.15k
    i = m2 < s2 ? m2 : s2;
4152
9.15k
    b2 -= i;
4153
9.15k
    m2 -= i;
4154
9.15k
    s2 -= i;
4155
9.15k
    }
4156
24.8k
  if (b5 > 0) {
4157
2.25k
    if (leftright) {
4158
2.23k
      if (m5 > 0) {
4159
2.23k
        mhi = pow5mult(mhi, m5);
4160
2.23k
        b1 = mult(mhi, b);
4161
2.23k
        Bfree(b);
4162
2.23k
        b = b1;
4163
2.23k
        }
4164
2.23k
      if ((j = b5 - m5))
4165
0
        b = pow5mult(b, j);
4166
2.23k
      }
4167
16
    else
4168
16
      b = pow5mult(b, b5);
4169
2.25k
    }
4170
24.8k
  S = i2b(1);
4171
24.8k
  if (s5 > 0)
4172
21.3k
    S = pow5mult(S, s5);
4173
4174
  /* Check for special case that d is a normalized power of 2. */
4175
4176
24.8k
  spec_case = 0;
4177
24.8k
  if ((mode < 2 || leftright)
4178
#ifdef Honor_FLT_ROUNDS
4179
      && Rounding == 1
4180
#endif
4181
24.8k
        ) {
4182
24.4k
    if (!word1(&u) && !(word0(&u) & Bndry_mask)
4183
573
#ifndef Sudden_Underflow
4184
573
     && word0(&u) & (Exp_mask & ~Exp_msk1)
4185
24.4k
#endif
4186
24.4k
        ) {
4187
      /* The special case */
4188
573
      b2 += Log2P;
4189
573
      s2 += Log2P;
4190
573
      spec_case = 1;
4191
573
      }
4192
24.4k
    }
4193
4194
  /* Arrange for convenient computation of quotients:
4195
   * shift left if necessary so divisor has 4 leading 0 bits.
4196
   *
4197
   * Perhaps we should just compute leading 28 bits of S once
4198
   * and for all and pass them and a shift to quorem, so it
4199
   * can do shifts and ORs to compute the numerator for q.
4200
   */
4201
24.8k
  i = dshift(S, s2);
4202
24.8k
  b2 += i;
4203
24.8k
  m2 += i;
4204
24.8k
  s2 += i;
4205
24.8k
  if (b2 > 0)
4206
24.8k
    b = lshift(b, b2);
4207
24.8k
  if (s2 > 0)
4208
24.8k
    S = lshift(S, s2);
4209
24.8k
  if (k_check) {
4210
3.53k
    if (cmp(b,S) < 0) {
4211
47
      k--;
4212
47
      b = multadd(b, 10, 0);  /* we botched the k estimate */
4213
47
      if (leftright)
4214
36
        mhi = multadd(mhi, 10, 0);
4215
47
      ilim = ilim1;
4216
47
      }
4217
3.53k
    }
4218
24.8k
  if (ilim <= 0 && (mode == 3 || mode == 5)) {
4219
0
    if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
4220
      /* no digits, fcvt style */
4221
0
 no_digits:
4222
0
      k = -1 - ndigits;
4223
0
      goto ret;
4224
0
      }
4225
0
 one_digit:
4226
0
    *s++ = '1';
4227
0
    k++;
4228
0
    goto ret;
4229
0
    }
4230
24.8k
  if (leftright) {
4231
24.4k
    if (m2 > 0)
4232
24.4k
      mhi = lshift(mhi, m2);
4233
4234
    /* Compute mlo -- check for special case
4235
     * that d is a normalized power of 2.
4236
     */
4237
4238
24.4k
    mlo = mhi;
4239
24.4k
    if (spec_case) {
4240
573
      mhi = Balloc(mhi->k);
4241
573
      Bcopy(mhi, mlo);
4242
573
      mhi = lshift(mhi, Log2P);
4243
573
      }
4244
4245
264k
    for(i = 1;;i++) {
4246
264k
      dig = quorem(b,S) + '0';
4247
      /* Do we yet have the shortest decimal string
4248
       * that will round to d?
4249
       */
4250
264k
      j = cmp(b, mlo);
4251
264k
      delta = diff(S, mhi);
4252
264k
      j1 = delta->sign ? 1 : cmp(b, delta);
4253
264k
      Bfree(delta);
4254
264k
#ifndef ROUND_BIASED
4255
264k
      if (j1 == 0 && mode != 1 && !(word1(&u) & 1)
4256
#ifdef Honor_FLT_ROUNDS
4257
        && Rounding >= 1
4258
#endif
4259
264k
                   ) {
4260
9
        if (dig == '9')
4261
0
          goto round_9_up;
4262
9
        if (j > 0)
4263
0
          dig++;
4264
#ifdef SET_INEXACT
4265
        else if (!b->x[0] && b->wds <= 1)
4266
          inexact = 0;
4267
#endif
4268
9
        *s++ = dig;
4269
9
        goto ret;
4270
9
        }
4271
264k
#endif
4272
264k
      if (j < 0 || (j == 0 && mode != 1
4273
0
#ifndef ROUND_BIASED
4274
0
              && !(word1(&u) & 1)
4275
245k
#endif
4276
245k
          )) {
4277
18.4k
        if (!b->x[0] && b->wds <= 1) {
4278
#ifdef SET_INEXACT
4279
          inexact = 0;
4280
#endif
4281
427
          goto accept_dig;
4282
427
          }
4283
#ifdef Honor_FLT_ROUNDS
4284
        if (mode > 1)
4285
         switch(Rounding) {
4286
          case 0: goto accept_dig;
4287
          case 2: goto keep_dig;
4288
          }
4289
#endif /*Honor_FLT_ROUNDS*/
4290
18.0k
        if (j1 > 0) {
4291
3.43k
          b = lshift(b, 1);
4292
3.43k
          j1 = cmp(b, S);
4293
#ifdef ROUND_BIASED
4294
          if (j1 >= 0 /*)*/
4295
#else
4296
3.43k
          if ((j1 > 0 || (j1 == 0 && dig & 1))
4297
1.60k
#endif
4298
1.60k
          && dig++ == '9')
4299
0
            goto round_9_up;
4300
3.43k
          }
4301
18.4k
 accept_dig:
4302
18.4k
        *s++ = dig;
4303
18.4k
        goto ret;
4304
18.0k
        }
4305
245k
      if (j1 > 0) {
4306
#ifdef Honor_FLT_ROUNDS
4307
        if (!Rounding)
4308
          goto accept_dig;
4309
#endif
4310
5.98k
        if (dig == '9') { /* possible if i == 1 */
4311
6
 round_9_up:
4312
6
          *s++ = '9';
4313
6
          goto roundoff;
4314
6
          }
4315
5.97k
        *s++ = dig + 1;
4316
5.97k
        goto ret;
4317
5.98k
        }
4318
#ifdef Honor_FLT_ROUNDS
4319
 keep_dig:
4320
#endif
4321
239k
      *s++ = dig;
4322
239k
      if (i == ilim)
4323
0
        break;
4324
239k
      b = multadd(b, 10, 0);
4325
239k
      if (mlo == mhi)
4326
231k
        mlo = mhi = multadd(mhi, 10, 0);
4327
8.51k
      else {
4328
8.51k
        mlo = multadd(mlo, 10, 0);
4329
8.51k
        mhi = multadd(mhi, 10, 0);
4330
8.51k
        }
4331
239k
      }
4332
24.4k
    }
4333
406
  else
4334
5.78k
    for(i = 1;; i++) {
4335
5.78k
      *s++ = dig = quorem(b,S) + '0';
4336
5.78k
      if (!b->x[0] && b->wds <= 1) {
4337
#ifdef SET_INEXACT
4338
        inexact = 0;
4339
#endif
4340
3
        goto ret;
4341
3
        }
4342
5.78k
      if (i >= ilim)
4343
403
        break;
4344
5.37k
      b = multadd(b, 10, 0);
4345
5.37k
      }
4346
4347
  /* Round off last digit */
4348
4349
#ifdef Honor_FLT_ROUNDS
4350
  switch(Rounding) {
4351
    case 0: goto trimzeros;
4352
    case 2: goto roundoff;
4353
    }
4354
#endif
4355
403
  b = lshift(b, 1);
4356
403
  j = cmp(b, S);
4357
#ifdef ROUND_BIASED
4358
  if (j >= 0)
4359
#else
4360
403
  if (j > 0 || (j == 0 && dig & 1))
4361
199
#endif
4362
199
    {
4363
205
 roundoff:
4364
211
    while(*--s == '9')
4365
12
      if (s == s0) {
4366
6
        k++;
4367
6
        *s++ = '1';
4368
6
        goto ret;
4369
6
        }
4370
199
    ++*s++;
4371
199
    }
4372
204
  else {
4373
#ifdef Honor_FLT_ROUNDS
4374
 trimzeros:
4375
#endif
4376
246
    while(*--s == '0');
4377
204
    s++;
4378
204
    }
4379
24.8k
 ret:
4380
24.8k
  Bfree(S);
4381
24.8k
  if (mhi) {
4382
24.4k
    if (mlo && mlo != mhi)
4383
573
      Bfree(mlo);
4384
24.4k
    Bfree(mhi);
4385
24.4k
    }
4386
30.4k
 ret1:
4387
#ifdef SET_INEXACT
4388
  if (inexact) {
4389
    if (!oldinexact) {
4390
      word0(&u) = Exp_1 + (70 << Exp_shift);
4391
      word1(&u) = 0;
4392
      dval(&u) += 1.;
4393
      }
4394
    }
4395
  else if (!oldinexact)
4396
    clear_inexact();
4397
#endif
4398
30.4k
  Bfree(b);
4399
30.4k
  *s = 0;
4400
30.4k
  *decpt = k + 1;
4401
30.4k
  if (rve)
4402
264
    *rve = s;
4403
30.4k
  return s0;
4404
24.8k
  }
4405
4406
ZEND_API double zend_hex_strtod(const char *str, const char **endptr)
4407
537
{
4408
537
  const char *s = str;
4409
537
  char c;
4410
537
  int any = 0;
4411
537
  double value = 0;
4412
4413
537
  if (*s == '0' && (s[1] == 'x' || s[1] == 'X')) {
4414
0
    s += 2;
4415
0
  }
4416
4417
10.8k
  while ((c = *s++)) {
4418
10.8k
    if (c >= '0' && c <= '9') {
4419
9.37k
      c -= '0';
4420
9.37k
    } else if (c >= 'A' && c <= 'F') {
4421
380
      c -= 'A' - 10;
4422
1.08k
    } else if (c >= 'a' && c <= 'f') {
4423
552
      c -= 'a' - 10;
4424
552
    } else {
4425
537
      break;
4426
537
    }
4427
4428
10.3k
    any = 1;
4429
10.3k
    value = value * 16 + c;
4430
10.3k
  }
4431
4432
537
  if (endptr != NULL) {
4433
537
    *endptr = any ? s - 1 : str;
4434
537
  }
4435
4436
537
  return value;
4437
537
}
4438
4439
ZEND_API double zend_oct_strtod(const char *str, const char **endptr)
4440
143
{
4441
143
  const char *s = str;
4442
143
  char c;
4443
143
  double value = 0;
4444
143
  int any = 0;
4445
4446
143
  if (str[0] == '\0') {
4447
0
    if (endptr != NULL) {
4448
0
      *endptr = str;
4449
0
    }
4450
0
    return 0.0;
4451
0
  }
4452
4453
5.38k
  while ((c = *s++)) {
4454
5.37k
    if (c < '0' || c > '7') {
4455
      /* break and return the current value if the number is not well-formed
4456
       * that's what Linux strtol() does
4457
       */
4458
125
      break;
4459
125
    }
4460
5.24k
    value = value * 8 + c - '0';
4461
5.24k
    any = 1;
4462
5.24k
  }
4463
4464
143
  if (endptr != NULL) {
4465
143
    *endptr = any ? s - 1 : str;
4466
143
  }
4467
4468
143
  return value;
4469
143
}
4470
4471
ZEND_API double zend_bin_strtod(const char *str, const char **endptr)
4472
17
{
4473
17
  const char *s = str;
4474
17
  char    c;
4475
17
  double    value = 0;
4476
17
  int     any = 0;
4477
4478
17
  if ('0' == *s && ('b' == s[1] || 'B' == s[1])) {
4479
0
    s += 2;
4480
0
  }
4481
4482
1.12k
  while ((c = *s++)) {
4483
    /*
4484
     * Verify the validity of the current character as a base-2 digit.  In
4485
     * the event that an invalid digit is found, halt the conversion and
4486
     * return the portion which has been converted thus far.
4487
     */
4488
1.12k
    if ('0' == c || '1' == c)
4489
1.11k
      value = value * 2 + c - '0';
4490
17
    else
4491
17
      break;
4492
4493
1.11k
    any = 1;
4494
1.11k
  }
4495
4496
  /*
4497
   * As with many strtoX implementations, should the subject sequence be
4498
   * empty or not well-formed, no conversion is performed and the original
4499
   * value of str is stored in *endptr, provided that endptr is not a null
4500
   * pointer.
4501
   */
4502
17
  if (NULL != endptr) {
4503
17
    *endptr = (char *)(any ? s - 1 : str);
4504
17
  }
4505
4506
17
  return value;
4507
17
}
4508
4509
ZEND_API char *zend_gcvt(double value, int ndigit, char dec_point, char exponent, char *buf)
4510
31.6k
{
4511
31.6k
  char *digits, *dst, *src;
4512
31.6k
  int i, decpt;
4513
31.6k
  bool sign;
4514
31.6k
  int mode = ndigit >= 0 ? 2 : 0;
4515
4516
31.6k
  if (mode == 0) {
4517
24.8k
    ndigit = 17;
4518
24.8k
  }
4519
31.6k
  digits = zend_dtoa(value, mode, ndigit, &decpt, &sign, NULL);
4520
31.6k
  if (decpt == 9999) {
4521
    /*
4522
     * Infinity or NaN, convert to inf or nan with sign.
4523
     * We assume the buffer is at least ndigit long.
4524
     */
4525
1.15k
    snprintf(buf, ndigit + 1, "%s%s", (sign && *digits == 'I') ? "-" : "", *digits == 'I' ? "INF" : "NAN");
4526
1.15k
    zend_freedtoa(digits);
4527
1.15k
    return (buf);
4528
1.15k
  }
4529
4530
30.4k
  dst = buf;
4531
30.4k
  if (sign) {
4532
7.70k
    *dst++ = '-';
4533
7.70k
  }
4534
4535
30.4k
  if ((decpt >= 0 && decpt > ndigit) || decpt < -3) { /* use E-style */
4536
    /* exponential format (e.g. 1.2345e+13) */
4537
11.4k
    if (--decpt < 0) {
4538
512
      sign = true;
4539
512
      decpt = -decpt;
4540
10.9k
    } else {
4541
10.9k
      sign = false;
4542
10.9k
    }
4543
11.4k
    src = digits;
4544
11.4k
    *dst++ = *src++;
4545
11.4k
    *dst++ = dec_point;
4546
11.4k
    if (*src == '\0') {
4547
216
      *dst++ = '0';
4548
11.2k
    } else {
4549
159k
      do {
4550
159k
        *dst++ = *src++;
4551
159k
      } while (*src != '\0');
4552
11.2k
    }
4553
11.4k
    *dst++ = exponent;
4554
11.4k
    if (sign) {
4555
512
      *dst++ = '-';
4556
10.9k
    } else {
4557
10.9k
      *dst++ = '+';
4558
10.9k
    }
4559
11.4k
    if (decpt < 10) {
4560
110
      *dst++ = '0' + decpt;
4561
110
      *dst = '\0';
4562
11.3k
    } else {
4563
      /* XXX - optimize */
4564
11.3k
      int n;
4565
23.3k
      for (n = decpt, i = 0; (n /= 10) != 0; i++);
4566
11.3k
      dst[i + 1] = '\0';
4567
34.6k
      while (decpt != 0) {
4568
23.3k
        dst[i--] = '0' + decpt % 10;
4569
23.3k
        decpt /= 10;
4570
23.3k
      }
4571
11.3k
    }
4572
19.0k
  } else if (decpt < 0) {
4573
    /* standard format 0. */
4574
496
    *dst++ = '0';   /* zero before decimal point */
4575
496
    *dst++ = dec_point;
4576
672
    do {
4577
672
      *dst++ = '0';
4578
672
    } while (++decpt < 0);
4579
496
    src = digits;
4580
7.72k
    while (*src != '\0') {
4581
7.22k
      *dst++ = *src++;
4582
7.22k
    }
4583
496
    *dst = '\0';
4584
18.5k
  } else {
4585
    /* standard format */
4586
85.4k
    for (i = 0, src = digits; i < decpt; i++) {
4587
66.9k
      if (*src != '\0') {
4588
66.6k
        *dst++ = *src++;
4589
66.6k
      } else {
4590
340
        *dst++ = '0';
4591
340
      }
4592
66.9k
    }
4593
18.5k
    if (*src != '\0') {
4594
17.7k
      if (src == digits) {
4595
1.58k
        *dst++ = '0';   /* zero before decimal point */
4596
1.58k
      }
4597
17.7k
      *dst++ = dec_point;
4598
107k
      for (i = decpt; digits[i] != '\0'; i++) {
4599
89.8k
        *dst++ = digits[i];
4600
89.8k
      }
4601
17.7k
    }
4602
18.5k
    *dst = '\0';
4603
18.5k
  }
4604
30.4k
  zend_freedtoa(digits);
4605
30.4k
  return (buf);
4606
31.6k
}
4607
4608
static void destroy_freelist(void)
4609
0
{
4610
0
  int i;
4611
0
  Bigint *tmp;
4612
4613
0
  ACQUIRE_DTOA_LOCK(0)
4614
0
  for (i = 0; i <= Kmax; i++) {
4615
0
    Bigint **listp = &freelist[i];
4616
0
    while ((tmp = *listp) != NULL) {
4617
0
      *listp = tmp->next;
4618
0
      FREE(tmp);
4619
0
    }
4620
0
    freelist[i] = NULL;
4621
0
  }
4622
0
  FREE_DTOA_LOCK(0)
4623
0
}
4624
4625
static void free_p5s(void)
4626
0
{
4627
0
  Bigint **listp, *tmp;
4628
4629
0
  ACQUIRE_DTOA_LOCK(1)
4630
0
  listp = &p5s;
4631
0
  while ((tmp = *listp) != NULL) {
4632
0
    *listp = tmp->next;
4633
0
    FREE(tmp);
4634
0
  }
4635
0
  p5s = NULL;
4636
0
  FREE_DTOA_LOCK(1)
4637
0
}