Coverage Report

Created: 2025-12-14 06:06

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/php-src/Zend/zend_strtod.c
Line
Count
Source
1
/****************************************************************
2
 *
3
 * The author of this software is David M. Gay.
4
 *
5
 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
6
 *
7
 * Permission to use, copy, modify, and distribute this software for any
8
 * purpose without fee is hereby granted, provided that this entire notice
9
 * is included in all copies of any software which is or includes a copy
10
 * or modification of this software and in all copies of the supporting
11
 * documentation for such software.
12
 *
13
 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
14
 * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
15
 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
16
 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
17
 *
18
 ***************************************************************/
19
20
/* Please send bug reports to David M. Gay (dmg at acm dot org,
21
 * with " at " changed at "@" and " dot " changed to ".").  */
22
23
/* On a machine with IEEE extended-precision registers, it is
24
 * necessary to specify double-precision (53-bit) rounding precision
25
 * before invoking strtod or dtoa.  If the machine uses (the equivalent
26
 * of) Intel 80x87 arithmetic, the call
27
 *  _control87(PC_53, MCW_PC);
28
 * does this with many compilers.  Whether this or another call is
29
 * appropriate depends on the compiler; for this to work, it may be
30
 * necessary to #include "float.h" or another system-dependent header
31
 * file.
32
 */
33
34
/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
35
 * (Note that IEEE arithmetic is disabled by gcc's -ffast-math flag.)
36
 *
37
 * This strtod returns a nearest machine number to the input decimal
38
 * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
39
 * broken by the IEEE round-even rule.  Otherwise ties are broken by
40
 * biased rounding (add half and chop).
41
 *
42
 * Inspired loosely by William D. Clinger's paper "How to Read Floating
43
 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
44
 *
45
 * Modifications:
46
 *
47
 *  1. We only require IEEE, IBM, or VAX double-precision
48
 *    arithmetic (not IEEE double-extended).
49
 *  2. We get by with floating-point arithmetic in a case that
50
 *    Clinger missed -- when we're computing d * 10^n
51
 *    for a small integer d and the integer n is not too
52
 *    much larger than 22 (the maximum integer k for which
53
 *    we can represent 10^k exactly), we may be able to
54
 *    compute (d*10^k) * 10^(e-k) with just one roundoff.
55
 *  3. Rather than a bit-at-a-time adjustment of the binary
56
 *    result in the hard case, we use floating-point
57
 *    arithmetic to determine the adjustment to within
58
 *    one bit; only in really hard cases do we need to
59
 *    compute a second residual.
60
 *  4. Because of 3., we don't need a large table of powers of 10
61
 *    for ten-to-e (just some small tables, e.g. of 10^k
62
 *    for 0 <= k <= 22).
63
 */
64
65
/*
66
 * #define IEEE_8087 for IEEE-arithmetic machines where the least
67
 *  significant byte has the lowest address.
68
 * #define IEEE_MC68k for IEEE-arithmetic machines where the most
69
 *  significant byte has the lowest address.
70
 * #define Long int on machines with 32-bit ints and 64-bit longs.
71
 * #define IBM for IBM mainframe-style floating-point arithmetic.
72
 * #define VAX for VAX-style floating-point arithmetic (D_floating).
73
 * #define No_leftright to omit left-right logic in fast floating-point
74
 *  computation of dtoa.  This will cause dtoa modes 4 and 5 to be
75
 *  treated the same as modes 2 and 3 for some inputs.
76
 * #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
77
 *  and strtod and dtoa should round accordingly.  Unless Trust_FLT_ROUNDS
78
 *  is also #defined, fegetround() will be queried for the rounding mode.
79
 *  Note that both FLT_ROUNDS and fegetround() are specified by the C99
80
 *  standard (and are specified to be consistent, with fesetround()
81
 *  affecting the value of FLT_ROUNDS), but that some (Linux) systems
82
 *  do not work correctly in this regard, so using fegetround() is more
83
 *  portable than using FLT_ROUNDS directly.
84
 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
85
 *  and Honor_FLT_ROUNDS is not #defined.
86
 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
87
 *  that use extended-precision instructions to compute rounded
88
 *  products and quotients) with IBM.
89
 * #define ROUND_BIASED for IEEE-format with biased rounding and arithmetic
90
 *  that rounds toward +Infinity.
91
 * #define ROUND_BIASED_without_Round_Up for IEEE-format with biased
92
 *  rounding when the underlying floating-point arithmetic uses
93
 *  unbiased rounding.  This prevent using ordinary floating-point
94
 *  arithmetic when the result could be computed with one rounding error.
95
 * #define Inaccurate_Divide for IEEE-format with correctly rounded
96
 *  products but inaccurate quotients, e.g., for Intel i860.
97
 * #define NO_LONG_LONG on machines that do not have a "long long"
98
 *  integer type (of >= 64 bits).  On such machines, you can
99
 *  #define Just_16 to store 16 bits per 32-bit Long when doing
100
 *  high-precision integer arithmetic.  Whether this speeds things
101
 *  up or slows things down depends on the machine and the number
102
 *  being converted.  If long long is available and the name is
103
 *  something other than "long long", #define Llong to be the name,
104
 *  and if "unsigned Llong" does not work as an unsigned version of
105
 *  Llong, #define #ULLong to be the corresponding unsigned type.
106
 * #define KR_headers for old-style C function headers.
107
 * #define Bad_float_h if your system lacks a float.h or if it does not
108
 *  define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
109
 *  FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
110
 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
111
 *  if memory is available and otherwise does something you deem
112
 *  appropriate.  If MALLOC is undefined, malloc will be invoked
113
 *  directly -- and assumed always to succeed.  Similarly, if you
114
 *  want something other than the system's free() to be called to
115
 *  recycle memory acquired from MALLOC, #define FREE to be the
116
 *  name of the alternate routine.  (FREE or free is only called in
117
 *  pathological cases, e.g., in a dtoa call after a dtoa return in
118
 *  mode 3 with thousands of digits requested.)
119
 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
120
 *  memory allocations from a private pool of memory when possible.
121
 *  When used, the private pool is PRIVATE_MEM bytes long:  2304 bytes,
122
 *  unless #defined to be a different length.  This default length
123
 *  suffices to get rid of MALLOC calls except for unusual cases,
124
 *  such as decimal-to-binary conversion of a very long string of
125
 *  digits.  The longest string dtoa can return is about 751 bytes
126
 *  long.  For conversions by strtod of strings of 800 digits and
127
 *  all dtoa conversions in single-threaded executions with 8-byte
128
 *  pointers, PRIVATE_MEM >= 7400 appears to suffice; with 4-byte
129
 *  pointers, PRIVATE_MEM >= 7112 appears adequate.
130
 * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK
131
 *  #defined automatically on IEEE systems.  On such systems,
132
 *  when INFNAN_CHECK is #defined, strtod checks
133
 *  for Infinity and NaN (case insensitively).  On some systems
134
 *  (e.g., some HP systems), it may be necessary to #define NAN_WORD0
135
 *  appropriately -- to the most significant word of a quiet NaN.
136
 *  (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
137
 *  When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
138
 *  strtod also accepts (case insensitively) strings of the form
139
 *  NaN(x), where x is a string of hexadecimal digits and spaces;
140
 *  if there is only one string of hexadecimal digits, it is taken
141
 *  for the 52 fraction bits of the resulting NaN; if there are two
142
 *  or more strings of hex digits, the first is for the high 20 bits,
143
 *  the second and subsequent for the low 32 bits, with intervening
144
 *  white space ignored; but if this results in none of the 52
145
 *  fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0
146
 *  and NAN_WORD1 are used instead.
147
 * #define MULTIPLE_THREADS if the system offers preemptively scheduled
148
 *  multiple threads.  In this case, you must provide (or suitably
149
 *  #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
150
 *  by FREE_DTOA_LOCK(n) for n = 0 or 1.  (The second lock, accessed
151
 *  in pow5mult, ensures lazy evaluation of only one copy of high
152
 *  powers of 5; omitting this lock would introduce a small
153
 *  probability of wasting memory, but would otherwise be harmless.)
154
 *  You must also invoke freedtoa(s) to free the value s returned by
155
 *  dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
156
 * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that
157
 *  avoids underflows on inputs whose result does not underflow.
158
 *  If you #define NO_IEEE_Scale on a machine that uses IEEE-format
159
 *  floating-point numbers and flushes underflows to zero rather
160
 *  than implementing gradual underflow, then you must also #define
161
 *  Sudden_Underflow.
162
 * #define USE_LOCALE to use the current locale's decimal_point value.
163
 * #define SET_INEXACT if IEEE arithmetic is being used and extra
164
 *  computation should be done to set the inexact flag when the
165
 *  result is inexact and avoid setting inexact when the result
166
 *  is exact.  In this case, dtoa.c must be compiled in
167
 *  an environment, perhaps provided by #include "dtoa.c" in a
168
 *  suitable wrapper, that defines two functions,
169
 *    int get_inexact(void);
170
 *    void clear_inexact(void);
171
 *  such that get_inexact() returns a nonzero value if the
172
 *  inexact bit is already set, and clear_inexact() sets the
173
 *  inexact bit to 0.  When SET_INEXACT is #defined, strtod
174
 *  also does extra computations to set the underflow and overflow
175
 *  flags when appropriate (i.e., when the result is tiny and
176
 *  inexact or when it is a numeric value rounded to +-infinity).
177
 * #define NO_ERRNO if strtod should not assign errno = ERANGE when
178
 *  the result overflows to +-Infinity or underflows to 0.
179
 * #define NO_HEX_FP to omit recognition of hexadecimal floating-point
180
 *  values by strtod.
181
 * #define NO_STRTOD_BIGCOMP (on IEEE-arithmetic systems only for now)
182
 *  to disable logic for "fast" testing of very long input strings
183
 *  to strtod.  This testing proceeds by initially truncating the
184
 *  input string, then if necessary comparing the whole string with
185
 *  a decimal expansion to decide close cases. This logic is only
186
 *  used for input more than STRTOD_DIGLIM digits long (default 40).
187
 */
188
189
#include <zend_operators.h>
190
#include <zend_strtod.h>
191
#include "zend_strtod_int.h"
192
#include "zend_globals.h"
193
194
#ifndef Long
195
604k
#define Long int32_t
196
#endif
197
#ifndef ULong
198
11.0M
#define ULong uint32_t
199
#endif
200
201
#undef Bigint
202
#undef freelist
203
#undef p5s
204
#undef dtoa_result
205
206
9.50M
#define Bigint      _zend_strtod_bigint
207
11.3M
#define freelist    (EG(strtod_state).freelist)
208
263k
#define p5s         (EG(strtod_state).p5s)
209
479k
#define dtoa_result (EG(strtod_state).result)
210
211
#ifdef DEBUG
212
static void Bug(const char *message) {
213
  fprintf(stderr, "%s\n", message);
214
}
215
#endif
216
217
#include "stdlib.h"
218
#include "string.h"
219
220
#ifdef USE_LOCALE
221
#include "locale.h"
222
#endif
223
224
#ifdef Honor_FLT_ROUNDS
225
#ifndef Trust_FLT_ROUNDS
226
#include <fenv.h>
227
#endif
228
#endif
229
230
#ifdef MALLOC
231
#ifdef KR_headers
232
extern char *MALLOC();
233
#else
234
extern void *MALLOC(size_t);
235
#endif
236
#else
237
33
#define MALLOC malloc
238
0
#define FREE   free
239
#endif
240
241
#ifndef Omit_Private_Memory
242
#ifndef PRIVATE_MEM
243
#define PRIVATE_MEM 2304
244
#endif
245
#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
246
static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
247
#endif
248
249
#undef IEEE_Arith
250
#undef Avoid_Underflow
251
#ifdef IEEE_MC68k
252
#define IEEE_Arith
253
#endif
254
#ifdef IEEE_8087
255
#define IEEE_Arith
256
#endif
257
258
#ifdef IEEE_Arith
259
#ifndef NO_INFNAN_CHECK
260
#undef INFNAN_CHECK
261
#define INFNAN_CHECK
262
#endif
263
#else
264
#undef INFNAN_CHECK
265
#define NO_STRTOD_BIGCOMP
266
#endif
267
268
#include "errno.h"
269
270
#ifdef Bad_float_h
271
272
#ifdef IEEE_Arith
273
#define DBL_DIG 15
274
#define DBL_MAX_10_EXP 308
275
#define DBL_MAX_EXP 1024
276
#define FLT_RADIX 2
277
#endif /*IEEE_Arith*/
278
279
#ifdef IBM
280
#define DBL_DIG 16
281
#define DBL_MAX_10_EXP 75
282
#define DBL_MAX_EXP 63
283
#define FLT_RADIX 16
284
#define DBL_MAX 7.2370055773322621e+75
285
#endif
286
287
#ifdef VAX
288
#define DBL_DIG 16
289
#define DBL_MAX_10_EXP 38
290
#define DBL_MAX_EXP 127
291
#define FLT_RADIX 2
292
#define DBL_MAX 1.7014118346046923e+38
293
#endif
294
295
#else /* ifndef Bad_float_h */
296
#include "float.h"
297
#endif /* Bad_float_h */
298
299
#ifndef __MATH_H__
300
#include "math.h"
301
#endif
302
303
#ifndef CONST
304
#ifdef KR_headers
305
#define CONST /* blank */
306
#else
307
259k
#define CONST const
308
#endif
309
#endif
310
311
#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
312
Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
313
#endif
314
315
typedef union { double d; ULong L[2]; } U;
316
317
#ifdef IEEE_8087
318
2.54M
#define word0(x) (x)->L[1]
319
866k
#define word1(x) (x)->L[0]
320
#else
321
#define word0(x) (x)->L[0]
322
#define word1(x) (x)->L[1]
323
#endif
324
8.40M
#define dval(x) (x)->d
325
326
#ifndef STRTOD_DIGLIM
327
148k
#define STRTOD_DIGLIM 40
328
#endif
329
330
#ifdef DIGLIM_DEBUG
331
extern int strtod_diglim;
332
#else
333
148k
#define strtod_diglim STRTOD_DIGLIM
334
#endif
335
336
/* The following definition of Storeinc is appropriate for MIPS processors.
337
 * An alternative that might be better on some machines is
338
 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
339
 */
340
#if defined(IEEE_8087) + defined(VAX) + defined(__arm__)
341
#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
342
((unsigned short *)a)[0] = (unsigned short)c, a++)
343
#else
344
#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
345
((unsigned short *)a)[1] = (unsigned short)c, a++)
346
#endif
347
348
/* #define P DBL_MANT_DIG */
349
/* Ten_pmax = floor(P*log(2)/log(5)) */
350
/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
351
/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
352
/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
353
354
#ifdef IEEE_Arith
355
368k
#define Exp_shift  20
356
229k
#define Exp_shift1 20
357
929k
#define Exp_msk1    0x100000
358
#define Exp_msk11   0x100000
359
752k
#define Exp_mask  0x7ff00000
360
1.45M
#define P 53
361
#define Nbits 53
362
650k
#define Bias 1023
363
#define Emax 1023
364
254k
#define Emin (-1022)
365
163k
#define Exp_1  0x3ff00000
366
109k
#define Exp_11 0x3ff00000
367
365k
#define Ebits 11
368
349k
#define Frac_mask  0xfffff
369
110k
#define Frac_mask1 0xfffff
370
150k
#define Ten_pmax 22
371
92.2k
#define Bletch 0x10
372
78.8k
#define Bndry_mask  0xfffff
373
7.17k
#define Bndry_mask1 0xfffff
374
191k
#define LSB 1
375
124k
#define Sign_bit 0x80000000
376
893
#define Log2P 1
377
#define Tiny0 0
378
42.3k
#define Tiny1 1
379
222k
#define Quick_max 14
380
29.3k
#define Int_max 14
381
#ifndef NO_IEEE_Scale
382
#define Avoid_Underflow
383
#ifdef Flush_Denorm /* debugging option */
384
#undef Sudden_Underflow
385
#endif
386
#endif
387
388
#ifndef Flt_Rounds
389
#ifdef FLT_ROUNDS
390
148k
#define Flt_Rounds FLT_ROUNDS
391
#else
392
#define Flt_Rounds 1
393
#endif
394
#endif /*Flt_Rounds*/
395
396
#ifdef Honor_FLT_ROUNDS
397
#undef Check_FLT_ROUNDS
398
#define Check_FLT_ROUNDS
399
#else
400
#define Rounding Flt_Rounds
401
#endif
402
403
#else /* ifndef IEEE_Arith */
404
#undef Check_FLT_ROUNDS
405
#undef Honor_FLT_ROUNDS
406
#undef SET_INEXACT
407
#undef  Sudden_Underflow
408
#define Sudden_Underflow
409
#ifdef IBM
410
#undef Flt_Rounds
411
#define Flt_Rounds 0
412
#define Exp_shift  24
413
#define Exp_shift1 24
414
#define Exp_msk1   0x1000000
415
#define Exp_msk11  0x1000000
416
#define Exp_mask  0x7f000000
417
#define P 14
418
#define Nbits 56
419
#define Bias 65
420
#define Emax 248
421
#define Emin (-260)
422
#define Exp_1  0x41000000
423
#define Exp_11 0x41000000
424
#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
425
#define Frac_mask  0xffffff
426
#define Frac_mask1 0xffffff
427
#define Bletch 4
428
#define Ten_pmax 22
429
#define Bndry_mask  0xefffff
430
#define Bndry_mask1 0xffffff
431
#define LSB 1
432
#define Sign_bit 0x80000000
433
#define Log2P 4
434
#define Tiny0 0x100000
435
#define Tiny1 0
436
#define Quick_max 14
437
#define Int_max 15
438
#else /* VAX */
439
#undef Flt_Rounds
440
#define Flt_Rounds 1
441
#define Exp_shift  23
442
#define Exp_shift1 7
443
#define Exp_msk1    0x80
444
#define Exp_msk11   0x800000
445
#define Exp_mask  0x7f80
446
#define P 56
447
#define Nbits 56
448
#define Bias 129
449
#define Emax 126
450
#define Emin (-129)
451
#define Exp_1  0x40800000
452
#define Exp_11 0x4080
453
#define Ebits 8
454
#define Frac_mask  0x7fffff
455
#define Frac_mask1 0xffff007f
456
#define Ten_pmax 24
457
#define Bletch 2
458
#define Bndry_mask  0xffff007f
459
#define Bndry_mask1 0xffff007f
460
#define LSB 0x10000
461
#define Sign_bit 0x8000
462
#define Log2P 1
463
#define Tiny0 0x80
464
#define Tiny1 0
465
#define Quick_max 15
466
#define Int_max 15
467
#endif /* IBM, VAX */
468
#endif /* IEEE_Arith */
469
470
#ifndef IEEE_Arith
471
#define ROUND_BIASED
472
#else
473
#ifdef ROUND_BIASED_without_Round_Up
474
#undef  ROUND_BIASED
475
#define ROUND_BIASED
476
#endif
477
#endif
478
479
#ifdef RND_PRODQUOT
480
#define rounded_product(a,b) a = rnd_prod(a, b)
481
#define rounded_quotient(a,b) a = rnd_quot(a, b)
482
#ifdef KR_headers
483
extern double rnd_prod(), rnd_quot();
484
#else
485
extern double rnd_prod(double, double), rnd_quot(double, double);
486
#endif
487
#else
488
856
#define rounded_product(a,b) a *= b
489
33.8k
#define rounded_quotient(a,b) a /= b
490
#endif
491
492
1.99k
#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
493
1.32k
#define Big1 0xffffffff
494
495
#ifndef Pack_32
496
#define Pack_32
497
#endif
498
499
typedef struct BCinfo BCinfo;
500
 struct
501
BCinfo { int dp0, dp1, dplen, dsign, e0, inexact, nd, nd0, rounding, scale, uflchk; };
502
503
#ifdef KR_headers
504
#define FFFFFFFF ((((unsigned long)0xffff)<<16)|(unsigned long)0xffff)
505
#else
506
44.6M
#define FFFFFFFF 0xffffffffUL
507
#endif
508
509
#ifdef NO_LONG_LONG
510
#undef ULLong
511
#ifdef Just_16
512
#undef Pack_32
513
/* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
514
 * This makes some inner loops simpler and sometimes saves work
515
 * during multiplications, but it often seems to make things slightly
516
 * slower.  Hence the default is now to store 32 bits per Long.
517
 */
518
#endif
519
#else /* long long available */
520
#ifndef Llong
521
#define Llong long long
522
#endif
523
#ifndef ULLong
524
5.89M
#define ULLong unsigned Llong
525
#endif
526
#endif /* NO_LONG_LONG */
527
528
#ifndef MULTIPLE_THREADS
529
#define ACQUIRE_DTOA_LOCK(n)  /*nothing*/
530
#define FREE_DTOA_LOCK(n) /*nothing*/
531
#endif
532
533
5.68M
#define Kmax ZEND_STRTOD_K_MAX
534
535
 struct
536
Bigint {
537
  struct Bigint *next;
538
  int k, maxwds, sign, wds;
539
  ULong x[1];
540
  };
541
542
 typedef struct Bigint Bigint;
543
544
#ifndef Bigint
545
 static Bigint *freelist[Kmax+1];
546
#endif
547
548
static void destroy_freelist(void);
549
static void free_p5s(void);
550
551
#ifdef MULTIPLE_THREADS
552
static MUTEX_T dtoa_mutex;
553
static MUTEX_T pow5mult_mutex;
554
#endif /* ZTS */
555
556
ZEND_API int zend_shutdown_strtod(void) /* {{{ */
557
0
{
558
0
  destroy_freelist();
559
0
  free_p5s();
560
561
0
  return 1;
562
0
}
563
/* }}} */
564
565
 static Bigint *
566
Balloc
567
#ifdef KR_headers
568
  (k) int k;
569
#else
570
  (int k)
571
#endif
572
2.84M
{
573
2.84M
  int x;
574
2.84M
  Bigint *rv;
575
#ifndef Omit_Private_Memory
576
  unsigned int len;
577
#endif
578
579
2.84M
  ACQUIRE_DTOA_LOCK(0);
580
  /* The k > Kmax case does not need ACQUIRE_DTOA_LOCK(0), */
581
  /* but this case seems very unlikely. */
582
2.84M
  if (k <= Kmax && (rv = freelist[k]))
583
2.84M
    freelist[k] = rv->next;
584
33
  else {
585
33
    x = 1 << k;
586
33
#ifdef Omit_Private_Memory
587
33
    rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong));
588
33
    if (!rv) {
589
0
      FREE_DTOA_LOCK(0);
590
0
      zend_error_noreturn(E_ERROR, "Balloc() failed to allocate memory");
591
0
    }
592
#else
593
    len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
594
      /sizeof(double);
595
    if (k <= Kmax && pmem_next - private_mem + len <= PRIVATE_mem) {
596
      rv = (Bigint*)pmem_next;
597
      pmem_next += len;
598
      }
599
    else
600
      rv = (Bigint*)MALLOC(len*sizeof(double));
601
      if (!rv) {
602
        FREE_DTOA_LOCK(0);
603
        zend_error_noreturn(E_ERROR, "Balloc() failed to allocate memory");
604
      }
605
#endif
606
33
    rv->k = k;
607
33
    rv->maxwds = x;
608
33
    }
609
2.84M
  FREE_DTOA_LOCK(0);
610
2.84M
  rv->sign = rv->wds = 0;
611
2.84M
  return rv;
612
2.84M
  }
613
614
 static void
615
Bfree
616
#ifdef KR_headers
617
  (v) Bigint *v;
618
#else
619
  (Bigint *v)
620
#endif
621
2.84M
{
622
2.84M
  if (v) {
623
2.84M
    if (v->k > Kmax)
624
0
      FREE((void*)v);
625
2.84M
    else {
626
2.84M
      ACQUIRE_DTOA_LOCK(0);
627
2.84M
      v->next = freelist[v->k];
628
2.84M
      freelist[v->k] = v;
629
2.84M
      FREE_DTOA_LOCK(0);
630
2.84M
      }
631
2.84M
    }
632
2.84M
  }
633
634
201k
#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
635
201k
y->wds*sizeof(Long) + 2*sizeof(int))
636
637
 static Bigint *
638
multadd
639
#ifdef KR_headers
640
  (b, m, a) Bigint *b; int m, a;
641
#else
642
  (Bigint *b, int m, int a) /* multiply by m and add a */
643
#endif
644
3.33M
{
645
3.33M
  int i, wds;
646
3.33M
#ifdef ULLong
647
3.33M
  ULong *x;
648
3.33M
  ULLong carry, y;
649
#else
650
  ULong carry, *x, y;
651
#ifdef Pack_32
652
  ULong xi, z;
653
#endif
654
#endif
655
3.33M
  Bigint *b1;
656
657
3.33M
  wds = b->wds;
658
3.33M
  x = b->x;
659
3.33M
  i = 0;
660
3.33M
  carry = a;
661
15.3M
  do {
662
15.3M
#ifdef ULLong
663
15.3M
    y = *x * (ULLong)m + carry;
664
15.3M
    carry = y >> 32;
665
15.3M
    *x++ = y & FFFFFFFF;
666
#else
667
#ifdef Pack_32
668
    xi = *x;
669
    y = (xi & 0xffff) * m + carry;
670
    z = (xi >> 16) * m + (y >> 16);
671
    carry = z >> 16;
672
    *x++ = (z << 16) + (y & 0xffff);
673
#else
674
    y = *x * m + carry;
675
    carry = y >> 16;
676
    *x++ = y & 0xffff;
677
#endif
678
#endif
679
15.3M
    }
680
15.3M
    while(++i < wds);
681
3.33M
  if (carry) {
682
263k
    if (wds >= b->maxwds) {
683
9.95k
      b1 = Balloc(b->k+1);
684
9.95k
      Bcopy(b1, b);
685
9.95k
      Bfree(b);
686
9.95k
      b = b1;
687
9.95k
      }
688
263k
    b->x[wds++] = carry;
689
263k
    b->wds = wds;
690
263k
    }
691
3.33M
  return b;
692
3.33M
  }
693
694
 static Bigint *
695
s2b
696
#ifdef KR_headers
697
  (s, nd0, nd, y9, dplen) CONST char *s; int nd0, nd, dplen; ULong y9;
698
#else
699
  (const char *s, int nd0, int nd, ULong y9, int dplen)
700
#endif
701
148k
{
702
148k
  Bigint *b;
703
148k
  int i, k;
704
148k
  Long x, y;
705
706
148k
  x = (nd + 8) / 9;
707
335k
  for(k = 0, y = 1; x > y; y <<= 1, k++) ;
708
148k
#ifdef Pack_32
709
148k
  b = Balloc(k);
710
148k
  b->x[0] = y9;
711
148k
  b->wds = 1;
712
#else
713
  b = Balloc(k+1);
714
  b->x[0] = y9 & 0xffff;
715
  b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
716
#endif
717
718
148k
  i = 9;
719
148k
  if (9 < nd0) {
720
107k
    s += 9;
721
975k
    do b = multadd(b, 10, *s++ - '0');
722
975k
      while(++i < nd0);
723
107k
    s += dplen;
724
107k
    }
725
40.8k
  else
726
40.8k
    s += dplen + 9;
727
801k
  for(; i < nd; i++)
728
653k
    b = multadd(b, 10, *s++ - '0');
729
148k
  return b;
730
148k
  }
731
732
 static int
733
hi0bits
734
#ifdef KR_headers
735
  (x) ULong x;
736
#else
737
  (ULong x)
738
#endif
739
257k
{
740
257k
  int k = 0;
741
742
257k
  if (!(x & 0xffff0000)) {
743
134k
    k = 16;
744
134k
    x <<= 16;
745
134k
    }
746
257k
  if (!(x & 0xff000000)) {
747
85.1k
    k += 8;
748
85.1k
    x <<= 8;
749
85.1k
    }
750
257k
  if (!(x & 0xf0000000)) {
751
136k
    k += 4;
752
136k
    x <<= 4;
753
136k
    }
754
257k
  if (!(x & 0xc0000000)) {
755
112k
    k += 2;
756
112k
    x <<= 2;
757
112k
    }
758
257k
  if (!(x & 0x80000000)) {
759
160k
    k++;
760
160k
    if (!(x & 0x40000000))
761
0
      return 32;
762
160k
    }
763
257k
  return k;
764
257k
  }
765
766
 static int
767
lo0bits
768
#ifdef KR_headers
769
  (y) ULong *y;
770
#else
771
  (ULong *y)
772
#endif
773
349k
{
774
349k
  int k;
775
349k
  ULong x = *y;
776
777
349k
  if (x & 7) {
778
225k
    if (x & 1)
779
158k
      return 0;
780
67.2k
    if (x & 2) {
781
50.1k
      *y = x >> 1;
782
50.1k
      return 1;
783
50.1k
      }
784
17.1k
    *y = x >> 2;
785
17.1k
    return 2;
786
67.2k
    }
787
123k
  k = 0;
788
123k
  if (!(x & 0xffff)) {
789
10.0k
    k = 16;
790
10.0k
    x >>= 16;
791
10.0k
    }
792
123k
  if (!(x & 0xff)) {
793
15.0k
    k += 8;
794
15.0k
    x >>= 8;
795
15.0k
    }
796
123k
  if (!(x & 0xf)) {
797
90.7k
    k += 4;
798
90.7k
    x >>= 4;
799
90.7k
    }
800
123k
  if (!(x & 0x3)) {
801
89.3k
    k += 2;
802
89.3k
    x >>= 2;
803
89.3k
    }
804
123k
  if (!(x & 1)) {
805
33.8k
    k++;
806
33.8k
    x >>= 1;
807
33.8k
    if (!x)
808
0
      return 32;
809
33.8k
    }
810
123k
  *y = x;
811
123k
  return k;
812
123k
  }
813
814
 static Bigint *
815
i2b
816
#ifdef KR_headers
817
  (i) int i;
818
#else
819
  (int i)
820
#endif
821
302k
{
822
302k
  Bigint *b;
823
824
302k
  b = Balloc(1);
825
302k
  b->x[0] = i;
826
302k
  b->wds = 1;
827
302k
  return b;
828
302k
  }
829
830
 static Bigint *
831
mult
832
#ifdef KR_headers
833
  (a, b) Bigint *a, *b;
834
#else
835
  (Bigint *a, Bigint *b)
836
#endif
837
738k
{
838
738k
  Bigint *c;
839
738k
  int k, wa, wb, wc;
840
738k
  ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
841
738k
  ULong y;
842
738k
#ifdef ULLong
843
738k
  ULLong carry, z;
844
#else
845
  ULong carry, z;
846
#ifdef Pack_32
847
  ULong z2;
848
#endif
849
#endif
850
851
738k
  if (a->wds < b->wds) {
852
300k
    c = a;
853
300k
    a = b;
854
300k
    b = c;
855
300k
    }
856
738k
  k = a->k;
857
738k
  wa = a->wds;
858
738k
  wb = b->wds;
859
738k
  wc = wa + wb;
860
738k
  if (wc > a->maxwds)
861
261k
    k++;
862
738k
  c = Balloc(k);
863
5.36M
  for(x = c->x, xa = x + wc; x < xa; x++)
864
4.62M
    *x = 0;
865
738k
  xa = a->x;
866
738k
  xae = xa + wa;
867
738k
  xb = b->x;
868
738k
  xbe = xb + wb;
869
738k
  xc0 = c->x;
870
738k
#ifdef ULLong
871
2.12M
  for(; xb < xbe; xc0++) {
872
1.38M
    if ((y = *xb++)) {
873
1.38M
      x = xa;
874
1.38M
      xc = xc0;
875
1.38M
      carry = 0;
876
9.50M
      do {
877
9.50M
        z = *x++ * (ULLong)y + *xc + carry;
878
9.50M
        carry = z >> 32;
879
9.50M
        *xc++ = z & FFFFFFFF;
880
9.50M
        }
881
9.50M
        while(x < xae);
882
1.38M
      *xc = carry;
883
1.38M
      }
884
1.38M
    }
885
#else
886
#ifdef Pack_32
887
  for(; xb < xbe; xb++, xc0++) {
888
    if (y = *xb & 0xffff) {
889
      x = xa;
890
      xc = xc0;
891
      carry = 0;
892
      do {
893
        z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
894
        carry = z >> 16;
895
        z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
896
        carry = z2 >> 16;
897
        Storeinc(xc, z2, z);
898
        }
899
        while(x < xae);
900
      *xc = carry;
901
      }
902
    if (y = *xb >> 16) {
903
      x = xa;
904
      xc = xc0;
905
      carry = 0;
906
      z2 = *xc;
907
      do {
908
        z = (*x & 0xffff) * y + (*xc >> 16) + carry;
909
        carry = z >> 16;
910
        Storeinc(xc, z, z2);
911
        z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
912
        carry = z2 >> 16;
913
        }
914
        while(x < xae);
915
      *xc = z2;
916
      }
917
    }
918
#else
919
  for(; xb < xbe; xc0++) {
920
    if (y = *xb++) {
921
      x = xa;
922
      xc = xc0;
923
      carry = 0;
924
      do {
925
        z = *x++ * y + *xc + carry;
926
        carry = z >> 16;
927
        *xc++ = z & 0xffff;
928
        }
929
        while(x < xae);
930
      *xc = carry;
931
      }
932
    }
933
#endif
934
#endif
935
1.28M
  for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
936
738k
  c->wds = wc;
937
738k
  return c;
938
738k
  }
939
940
#ifndef p5s
941
 static Bigint *p5s;
942
#endif
943
944
 static Bigint *
945
pow5mult
946
#ifdef KR_headers
947
  (b, k) Bigint *b; int k;
948
#else
949
  (Bigint *b, int k)
950
#endif
951
264k
{
952
264k
  Bigint *b1, *p5, *p51;
953
264k
  int i;
954
264k
  static const int p05[3] = { 5, 25, 125 };
955
956
264k
  if ((i = k & 3))
957
183k
    b = multadd(b, p05[i-1], 0);
958
959
264k
  if (!(k >>= 2))
960
1.00k
    return b;
961
263k
  if (!(p5 = p5s)) {
962
    /* first time */
963
#ifdef MULTIPLE_THREADS
964
    ACQUIRE_DTOA_LOCK(1);
965
    if (!(p5 = p5s)) {
966
      p5 = p5s = i2b(625);
967
      p5->next = 0;
968
      }
969
    FREE_DTOA_LOCK(1);
970
#else
971
1
    p5 = p5s = i2b(625);
972
1
    p5->next = 0;
973
1
#endif
974
1
    }
975
1.08M
  for(;;) {
976
1.08M
    if (k & 1) {
977
638k
      b1 = mult(b, p5);
978
638k
      Bfree(b);
979
638k
      b = b1;
980
638k
      }
981
1.08M
    if (!(k >>= 1))
982
263k
      break;
983
824k
    if (!(p51 = p5->next)) {
984
#ifdef MULTIPLE_THREADS
985
      ACQUIRE_DTOA_LOCK(1);
986
      if (!(p51 = p5->next)) {
987
        p51 = p5->next = mult(p5,p5);
988
        p51->next = 0;
989
        }
990
      FREE_DTOA_LOCK(1);
991
#else
992
6
      p51 = p5->next = mult(p5,p5);
993
6
      p51->next = 0;
994
6
#endif
995
6
      }
996
824k
    p5 = p51;
997
824k
    }
998
263k
  return b;
999
264k
  }
1000
1001
 static Bigint *
1002
lshift
1003
#ifdef KR_headers
1004
  (b, k) Bigint *b; int k;
1005
#else
1006
  (Bigint *b, int k)
1007
#endif
1008
681k
{
1009
681k
  int i, k1, n, n1;
1010
681k
  Bigint *b1;
1011
681k
  ULong *x, *x1, *xe, z;
1012
1013
681k
#ifdef Pack_32
1014
681k
  n = k >> 5;
1015
#else
1016
  n = k >> 4;
1017
#endif
1018
681k
  k1 = b->k;
1019
681k
  n1 = n + b->wds + 1;
1020
1.49M
  for(i = b->maxwds; n1 > i; i <<= 1)
1021
810k
    k1++;
1022
681k
  b1 = Balloc(k1);
1023
681k
  x1 = b1->x;
1024
3.12M
  for(i = 0; i < n; i++)
1025
2.44M
    *x1++ = 0;
1026
681k
  x = b->x;
1027
681k
  xe = x + b->wds;
1028
681k
#ifdef Pack_32
1029
681k
  if (k &= 0x1f) {
1030
676k
    k1 = 32 - k;
1031
676k
    z = 0;
1032
2.65M
    do {
1033
2.65M
      *x1++ = *x << k | z;
1034
2.65M
      z = *x++ >> k1;
1035
2.65M
      }
1036
2.65M
      while(x < xe);
1037
676k
    if ((*x1 = z))
1038
147k
      ++n1;
1039
676k
    }
1040
#else
1041
  if (k &= 0xf) {
1042
    k1 = 16 - k;
1043
    z = 0;
1044
    do {
1045
      *x1++ = *x << k  & 0xffff | z;
1046
      z = *x++ >> k1;
1047
      }
1048
      while(x < xe);
1049
    if (*x1 = z)
1050
      ++n1;
1051
    }
1052
#endif
1053
5.27k
  else do
1054
7.80k
    *x1++ = *x++;
1055
7.80k
    while(x < xe);
1056
681k
  b1->wds = n1 - 1;
1057
681k
  Bfree(b);
1058
681k
  return b1;
1059
681k
  }
1060
1061
 static int
1062
cmp
1063
#ifdef KR_headers
1064
  (a, b) Bigint *a, *b;
1065
#else
1066
  (Bigint *a, Bigint *b)
1067
#endif
1068
2.26M
{
1069
2.26M
  ULong *xa, *xa0, *xb, *xb0;
1070
2.26M
  int i, j;
1071
1072
2.26M
  i = a->wds;
1073
2.26M
  j = b->wds;
1074
#ifdef DEBUG
1075
  if (i > 1 && !a->x[i-1])
1076
    Bug("cmp called with a->x[a->wds-1] == 0");
1077
  if (j > 1 && !b->x[j-1])
1078
    Bug("cmp called with b->x[b->wds-1] == 0");
1079
#endif
1080
2.26M
  if (i -= j)
1081
115k
    return i;
1082
2.14M
  xa0 = a->x;
1083
2.14M
  xa = xa0 + j;
1084
2.14M
  xb0 = b->x;
1085
2.14M
  xb = xb0 + j;
1086
2.50M
  for(;;) {
1087
2.50M
    if (*--xa != *--xb)
1088
2.11M
      return *xa < *xb ? -1 : 1;
1089
386k
    if (xa <= xa0)
1090
32.8k
      break;
1091
386k
    }
1092
32.8k
  return 0;
1093
2.14M
  }
1094
1095
 static Bigint *
1096
diff
1097
#ifdef KR_headers
1098
  (a, b) Bigint *a, *b;
1099
#else
1100
  (Bigint *a, Bigint *b)
1101
#endif
1102
297k
{
1103
297k
  Bigint *c;
1104
297k
  int i, wa, wb;
1105
297k
  ULong *xa, *xae, *xb, *xbe, *xc;
1106
297k
#ifdef ULLong
1107
297k
  ULLong borrow, y;
1108
#else
1109
  ULong borrow, y;
1110
#ifdef Pack_32
1111
  ULong z;
1112
#endif
1113
#endif
1114
1115
297k
  i = cmp(a,b);
1116
297k
  if (!i) {
1117
2.65k
    c = Balloc(0);
1118
2.65k
    c->wds = 1;
1119
2.65k
    c->x[0] = 0;
1120
2.65k
    return c;
1121
2.65k
    }
1122
294k
  if (i < 0) {
1123
116k
    c = a;
1124
116k
    a = b;
1125
116k
    b = c;
1126
116k
    i = 1;
1127
116k
    }
1128
178k
  else
1129
178k
    i = 0;
1130
294k
  c = Balloc(a->k);
1131
294k
  c->sign = i;
1132
294k
  wa = a->wds;
1133
294k
  xa = a->x;
1134
294k
  xae = xa + wa;
1135
294k
  wb = b->wds;
1136
294k
  xb = b->x;
1137
294k
  xbe = xb + wb;
1138
294k
  xc = c->x;
1139
294k
  borrow = 0;
1140
294k
#ifdef ULLong
1141
2.63M
  do {
1142
2.63M
    y = (ULLong)*xa++ - *xb++ - borrow;
1143
2.63M
    borrow = y >> 32 & (ULong)1;
1144
2.63M
    *xc++ = y & FFFFFFFF;
1145
2.63M
    }
1146
2.63M
    while(xb < xbe);
1147
344k
  while(xa < xae) {
1148
49.3k
    y = *xa++ - borrow;
1149
49.3k
    borrow = y >> 32 & (ULong)1;
1150
49.3k
    *xc++ = y & FFFFFFFF;
1151
49.3k
    }
1152
#else
1153
#ifdef Pack_32
1154
  do {
1155
    y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
1156
    borrow = (y & 0x10000) >> 16;
1157
    z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
1158
    borrow = (z & 0x10000) >> 16;
1159
    Storeinc(xc, z, y);
1160
    }
1161
    while(xb < xbe);
1162
  while(xa < xae) {
1163
    y = (*xa & 0xffff) - borrow;
1164
    borrow = (y & 0x10000) >> 16;
1165
    z = (*xa++ >> 16) - borrow;
1166
    borrow = (z & 0x10000) >> 16;
1167
    Storeinc(xc, z, y);
1168
    }
1169
#else
1170
  do {
1171
    y = *xa++ - *xb++ - borrow;
1172
    borrow = (y & 0x10000) >> 16;
1173
    *xc++ = y & 0xffff;
1174
    }
1175
    while(xb < xbe);
1176
  while(xa < xae) {
1177
    y = *xa++ - borrow;
1178
    borrow = (y & 0x10000) >> 16;
1179
    *xc++ = y & 0xffff;
1180
    }
1181
#endif
1182
#endif
1183
586k
  while(!*--xc)
1184
291k
    wa--;
1185
294k
  c->wds = wa;
1186
294k
  return c;
1187
297k
  }
1188
1189
 static double
1190
ulp
1191
#ifdef KR_headers
1192
  (x) U *x;
1193
#else
1194
  (U *x)
1195
#endif
1196
76.8k
{
1197
76.8k
  Long L;
1198
76.8k
  U u;
1199
1200
76.8k
  L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
1201
#ifndef Avoid_Underflow
1202
#ifndef Sudden_Underflow
1203
  if (L > 0) {
1204
#endif
1205
#endif
1206
#ifdef IBM
1207
    L |= Exp_msk1 >> 4;
1208
#endif
1209
76.8k
    word0(&u) = L;
1210
76.8k
    word1(&u) = 0;
1211
#ifndef Avoid_Underflow
1212
#ifndef Sudden_Underflow
1213
    }
1214
  else {
1215
    L = -L >> Exp_shift;
1216
    if (L < Exp_shift) {
1217
      word0(&u) = 0x80000 >> L;
1218
      word1(&u) = 0;
1219
      }
1220
    else {
1221
      word0(&u) = 0;
1222
      L -= Exp_shift;
1223
      word1(&u) = L >= 31 ? 1 : 1 << 31 - L;
1224
      }
1225
    }
1226
#endif
1227
#endif
1228
76.8k
  return dval(&u);
1229
76.8k
  }
1230
1231
 static double
1232
b2d
1233
#ifdef KR_headers
1234
  (a, e) Bigint *a; int *e;
1235
#else
1236
  (Bigint *a, int *e)
1237
#endif
1238
150k
{
1239
150k
  ULong *xa, *xa0, w, y, z;
1240
150k
  int k;
1241
150k
  U d;
1242
#ifdef VAX
1243
  ULong d0, d1;
1244
#else
1245
150k
#define d0 word0(&d)
1246
150k
#define d1 word1(&d)
1247
150k
#endif
1248
1249
150k
  xa0 = a->x;
1250
150k
  xa = xa0 + a->wds;
1251
150k
  y = *--xa;
1252
#ifdef DEBUG
1253
  if (!y) Bug("zero y in b2d");
1254
#endif
1255
150k
  k = hi0bits(y);
1256
150k
  *e = 32 - k;
1257
150k
#ifdef Pack_32
1258
150k
  if (k < Ebits) {
1259
31.5k
    d0 = Exp_1 | y >> (Ebits - k);
1260
31.5k
    w = xa > xa0 ? *--xa : 0;
1261
31.5k
    d1 = y << ((32-Ebits) + k) | w >> (Ebits - k);
1262
31.5k
    goto ret_d;
1263
31.5k
    }
1264
119k
  z = xa > xa0 ? *--xa : 0;
1265
119k
  if (k -= Ebits) {
1266
118k
    d0 = Exp_1 | y << k | z >> (32 - k);
1267
118k
    y = xa > xa0 ? *--xa : 0;
1268
118k
    d1 = z << k | y >> (32 - k);
1269
118k
    }
1270
677
  else {
1271
677
    d0 = Exp_1 | y;
1272
677
    d1 = z;
1273
677
    }
1274
#else
1275
  if (k < Ebits + 16) {
1276
    z = xa > xa0 ? *--xa : 0;
1277
    d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
1278
    w = xa > xa0 ? *--xa : 0;
1279
    y = xa > xa0 ? *--xa : 0;
1280
    d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
1281
    goto ret_d;
1282
    }
1283
  z = xa > xa0 ? *--xa : 0;
1284
  w = xa > xa0 ? *--xa : 0;
1285
  k -= Ebits + 16;
1286
  d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
1287
  y = xa > xa0 ? *--xa : 0;
1288
  d1 = w << k + 16 | y << k;
1289
#endif
1290
150k
 ret_d:
1291
#ifdef VAX
1292
  word0(&d) = d0 >> 16 | d0 << 16;
1293
  word1(&d) = d1 >> 16 | d1 << 16;
1294
#else
1295
150k
#undef d0
1296
150k
#undef d1
1297
150k
#endif
1298
150k
  return dval(&d);
1299
119k
  }
1300
1301
 static Bigint *
1302
d2b
1303
#ifdef KR_headers
1304
  (d, e, bits) U *d; int *e, *bits;
1305
#else
1306
  (U *d, int *e, int *bits)
1307
#endif
1308
349k
{
1309
349k
  Bigint *b;
1310
349k
  int de, k;
1311
349k
  ULong *x, y, z;
1312
349k
#ifndef Sudden_Underflow
1313
349k
  int i;
1314
349k
#endif
1315
#ifdef VAX
1316
  ULong d0, d1;
1317
  d0 = word0(d) >> 16 | word0(d) << 16;
1318
  d1 = word1(d) >> 16 | word1(d) << 16;
1319
#else
1320
1.04M
#define d0 word0(d)
1321
349k
#define d1 word1(d)
1322
349k
#endif
1323
1324
349k
#ifdef Pack_32
1325
349k
  b = Balloc(1);
1326
#else
1327
  b = Balloc(2);
1328
#endif
1329
349k
  x = b->x;
1330
1331
349k
  z = d0 & Frac_mask;
1332
349k
  d0 &= 0x7fffffff; /* clear sign bit, which we ignore */
1333
#ifdef Sudden_Underflow
1334
  de = (int)(d0 >> Exp_shift);
1335
#ifndef IBM
1336
  z |= Exp_msk11;
1337
#endif
1338
#else
1339
349k
  if ((de = (int)(d0 >> Exp_shift)))
1340
344k
    z |= Exp_msk1;
1341
349k
#endif
1342
349k
#ifdef Pack_32
1343
349k
  if ((y = d1)) {
1344
332k
    if ((k = lo0bits(&y))) {
1345
175k
      x[0] = y | z << (32 - k);
1346
175k
      z >>= k;
1347
175k
      }
1348
156k
    else
1349
156k
      x[0] = y;
1350
332k
#ifndef Sudden_Underflow
1351
332k
    i =
1352
332k
#endif
1353
332k
        b->wds = (x[1] = z) ? 2 : 1;
1354
332k
    }
1355
16.9k
  else {
1356
16.9k
    k = lo0bits(&z);
1357
16.9k
    x[0] = z;
1358
16.9k
#ifndef Sudden_Underflow
1359
16.9k
    i =
1360
16.9k
#endif
1361
16.9k
        b->wds = 1;
1362
16.9k
    k += 32;
1363
16.9k
    }
1364
#else
1365
  if (y = d1) {
1366
    if (k = lo0bits(&y))
1367
      if (k >= 16) {
1368
        x[0] = y | z << 32 - k & 0xffff;
1369
        x[1] = z >> k - 16 & 0xffff;
1370
        x[2] = z >> k;
1371
        i = 2;
1372
        }
1373
      else {
1374
        x[0] = y & 0xffff;
1375
        x[1] = y >> 16 | z << 16 - k & 0xffff;
1376
        x[2] = z >> k & 0xffff;
1377
        x[3] = z >> k+16;
1378
        i = 3;
1379
        }
1380
    else {
1381
      x[0] = y & 0xffff;
1382
      x[1] = y >> 16;
1383
      x[2] = z & 0xffff;
1384
      x[3] = z >> 16;
1385
      i = 3;
1386
      }
1387
    }
1388
  else {
1389
#ifdef DEBUG
1390
    if (!z)
1391
      Bug("Zero passed to d2b");
1392
#endif
1393
    k = lo0bits(&z);
1394
    if (k >= 16) {
1395
      x[0] = z;
1396
      i = 0;
1397
      }
1398
    else {
1399
      x[0] = z & 0xffff;
1400
      x[1] = z >> 16;
1401
      i = 1;
1402
      }
1403
    k += 32;
1404
    }
1405
  while(!x[i])
1406
    --i;
1407
  b->wds = i + 1;
1408
#endif
1409
349k
#ifndef Sudden_Underflow
1410
349k
  if (de) {
1411
344k
#endif
1412
#ifdef IBM
1413
    *e = (de - Bias - (P-1) << 2) + k;
1414
    *bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
1415
#else
1416
344k
    *e = de - Bias - (P-1) + k;
1417
344k
    *bits = P - k;
1418
344k
#endif
1419
344k
#ifndef Sudden_Underflow
1420
344k
    }
1421
5.39k
  else {
1422
5.39k
    *e = de - Bias - (P-1) + 1 + k;
1423
5.39k
#ifdef Pack_32
1424
5.39k
    *bits = 32*i - hi0bits(x[i-1]);
1425
#else
1426
    *bits = (i+2)*16 - hi0bits(x[i]);
1427
#endif
1428
5.39k
    }
1429
349k
#endif
1430
349k
  return b;
1431
349k
  }
1432
#undef d0
1433
#undef d1
1434
1435
 static double
1436
ratio
1437
#ifdef KR_headers
1438
  (a, b) Bigint *a, *b;
1439
#else
1440
  (Bigint *a, Bigint *b)
1441
#endif
1442
75.4k
{
1443
75.4k
  U da, db;
1444
75.4k
  int k, ka, kb;
1445
1446
75.4k
  dval(&da) = b2d(a, &ka);
1447
75.4k
  dval(&db) = b2d(b, &kb);
1448
75.4k
#ifdef Pack_32
1449
75.4k
  k = ka - kb + 32*(a->wds - b->wds);
1450
#else
1451
  k = ka - kb + 16*(a->wds - b->wds);
1452
#endif
1453
#ifdef IBM
1454
  if (k > 0) {
1455
    word0(&da) += (k >> 2)*Exp_msk1;
1456
    if (k &= 3)
1457
      dval(&da) *= 1 << k;
1458
    }
1459
  else {
1460
    k = -k;
1461
    word0(&db) += (k >> 2)*Exp_msk1;
1462
    if (k &= 3)
1463
      dval(&db) *= 1 << k;
1464
    }
1465
#else
1466
75.4k
  if (k > 0)
1467
42.0k
    word0(&da) += k*Exp_msk1;
1468
33.4k
  else {
1469
33.4k
    k = -k;
1470
33.4k
    word0(&db) += k*Exp_msk1;
1471
33.4k
    }
1472
75.4k
#endif
1473
75.4k
  return dval(&da) / dval(&db);
1474
75.4k
  }
1475
1476
 static CONST double
1477
tens[] = {
1478
    1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1479
    1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1480
    1e20, 1e21, 1e22
1481
#ifdef VAX
1482
    , 1e23, 1e24
1483
#endif
1484
    };
1485
1486
 static CONST double
1487
#ifdef IEEE_Arith
1488
bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1489
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
1490
#ifdef Avoid_Underflow
1491
    9007199254740992.*9007199254740992.e-256
1492
    /* = 2^106 * 1e-256 */
1493
#else
1494
    1e-256
1495
#endif
1496
    };
1497
/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
1498
/* flag unnecessarily.  It leads to a song and dance at the end of strtod. */
1499
30.4k
#define Scale_Bit 0x10
1500
31.9k
#define n_bigtens 5
1501
#else
1502
#ifdef IBM
1503
bigtens[] = { 1e16, 1e32, 1e64 };
1504
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 };
1505
#define n_bigtens 3
1506
#else
1507
bigtens[] = { 1e16, 1e32 };
1508
static CONST double tinytens[] = { 1e-16, 1e-32 };
1509
#define n_bigtens 2
1510
#endif
1511
#endif
1512
1513
#undef Need_Hexdig
1514
#ifdef INFNAN_CHECK
1515
#ifndef No_Hex_NaN
1516
#define Need_Hexdig
1517
#endif
1518
#endif
1519
1520
#ifndef Need_Hexdig
1521
#ifndef NO_HEX_FP
1522
#define Need_Hexdig
1523
#endif
1524
#endif
1525
1526
#ifdef Need_Hexdig /*{*/
1527
#if 0
1528
static unsigned char hexdig[256];
1529
1530
 static void
1531
htinit(unsigned char *h, unsigned char *s, int inc)
1532
{
1533
  int i, j;
1534
  for(i = 0; (j = s[i]) !=0; i++)
1535
    h[j] = i + inc;
1536
  }
1537
1538
 static void
1539
hexdig_init(void) /* Use of hexdig_init omitted 20121220 to avoid a */
1540
      /* race condition when multiple threads are used. */
1541
{
1542
#define USC (unsigned char *)
1543
  htinit(hexdig, USC "0123456789", 0x10);
1544
  htinit(hexdig, USC "abcdef", 0x10 + 10);
1545
  htinit(hexdig, USC "ABCDEF", 0x10 + 10);
1546
  }
1547
#else
1548
static const unsigned char hexdig[256] = {
1549
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1550
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1551
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1552
  16,17,18,19,20,21,22,23,24,25,0,0,0,0,0,0,
1553
  0,26,27,28,29,30,31,0,0,0,0,0,0,0,0,0,
1554
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1555
  0,26,27,28,29,30,31,0,0,0,0,0,0,0,0,0,
1556
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1557
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1558
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1559
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1560
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1561
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1562
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1563
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1564
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1565
  };
1566
#endif
1567
#endif /* } Need_Hexdig */
1568
1569
#ifdef INFNAN_CHECK
1570
1571
#ifndef NAN_WORD0
1572
#define NAN_WORD0 0x7ff80000
1573
#endif
1574
1575
#ifndef NAN_WORD1
1576
#define NAN_WORD1 0
1577
#endif
1578
1579
 static int
1580
match
1581
#ifdef KR_headers
1582
  (sp, t) char **sp, *t;
1583
#else
1584
  (const char **sp, const char *t)
1585
#endif
1586
{
1587
  int c, d;
1588
  CONST char *s = *sp;
1589
1590
  while((d = *t++)) {
1591
    if ((c = *++s) >= 'A' && c <= 'Z')
1592
      c += 'a' - 'A';
1593
    if (c != d)
1594
      return 0;
1595
    }
1596
  *sp = s + 1;
1597
  return 1;
1598
  }
1599
1600
#ifndef No_Hex_NaN
1601
 static void
1602
hexnan
1603
#ifdef KR_headers
1604
  (rvp, sp) U *rvp; CONST char **sp;
1605
#else
1606
  (U *rvp, const char **sp)
1607
#endif
1608
{
1609
  ULong c, x[2];
1610
  CONST char *s;
1611
  int c1, havedig, udx0, xshift;
1612
1613
  /**** if (!hexdig['0']) hexdig_init(); ****/
1614
  x[0] = x[1] = 0;
1615
  havedig = xshift = 0;
1616
  udx0 = 1;
1617
  s = *sp;
1618
  /* allow optional initial 0x or 0X */
1619
  while((c = *(CONST unsigned char*)(s+1)) && c <= ' ')
1620
    ++s;
1621
  if (s[1] == '0' && (s[2] == 'x' || s[2] == 'X'))
1622
    s += 2;
1623
  while((c = *(CONST unsigned char*)++s)) {
1624
    if ((c1 = hexdig[c]))
1625
      c  = c1 & 0xf;
1626
    else if (c <= ' ') {
1627
      if (udx0 && havedig) {
1628
        udx0 = 0;
1629
        xshift = 1;
1630
        }
1631
      continue;
1632
      }
1633
#ifdef GDTOA_NON_PEDANTIC_NANCHECK
1634
    else if (/*(*/ c == ')' && havedig) {
1635
      *sp = s + 1;
1636
      break;
1637
      }
1638
    else
1639
      return; /* invalid form: don't change *sp */
1640
#else
1641
    else {
1642
      do {
1643
        if (/*(*/ c == ')') {
1644
          *sp = s + 1;
1645
          break;
1646
          }
1647
        } while((c = *++s));
1648
      break;
1649
      }
1650
#endif
1651
    havedig = 1;
1652
    if (xshift) {
1653
      xshift = 0;
1654
      x[0] = x[1];
1655
      x[1] = 0;
1656
      }
1657
    if (udx0)
1658
      x[0] = (x[0] << 4) | (x[1] >> 28);
1659
    x[1] = (x[1] << 4) | c;
1660
    }
1661
  if ((x[0] &= 0xfffff) || x[1]) {
1662
    word0(rvp) = Exp_mask | x[0];
1663
    word1(rvp) = x[1];
1664
    }
1665
  }
1666
#endif /*No_Hex_NaN*/
1667
#endif /* INFNAN_CHECK */
1668
1669
#ifdef Pack_32
1670
#define ULbits 32
1671
#define kshift 5
1672
101k
#define kmask 31
1673
#else
1674
#define ULbits 16
1675
#define kshift 4
1676
#define kmask 15
1677
#endif
1678
1679
#if !defined(NO_HEX_FP) || defined(Honor_FLT_ROUNDS) /*{*/
1680
 static Bigint *
1681
#ifdef KR_headers
1682
increment(b) Bigint *b;
1683
#else
1684
increment(Bigint *b)
1685
#endif
1686
{
1687
  ULong *x, *xe;
1688
  Bigint *b1;
1689
1690
  x = b->x;
1691
  xe = x + b->wds;
1692
  do {
1693
    if (*x < (ULong)0xffffffffL) {
1694
      ++*x;
1695
      return b;
1696
      }
1697
    *x++ = 0;
1698
    } while(x < xe);
1699
  {
1700
    if (b->wds >= b->maxwds) {
1701
      b1 = Balloc(b->k+1);
1702
      Bcopy(b1,b);
1703
      Bfree(b);
1704
      b = b1;
1705
      }
1706
    b->x[b->wds++] = 1;
1707
    }
1708
  return b;
1709
  }
1710
1711
#endif /*}*/
1712
1713
#ifndef NO_HEX_FP /*{*/
1714
1715
 static void
1716
#ifdef KR_headers
1717
rshift(b, k) Bigint *b; int k;
1718
#else
1719
rshift(Bigint *b, int k)
1720
#endif
1721
{
1722
  ULong *x, *x1, *xe, y;
1723
  int n;
1724
1725
  x = x1 = b->x;
1726
  n = k >> kshift;
1727
  if (n < b->wds) {
1728
    xe = x + b->wds;
1729
    x += n;
1730
    if (k &= kmask) {
1731
      n = 32 - k;
1732
      y = *x++ >> k;
1733
      while(x < xe) {
1734
        *x1++ = (y | (*x << n)) & 0xffffffff;
1735
        y = *x++ >> k;
1736
        }
1737
      if ((*x1 = y) !=0)
1738
        x1++;
1739
      }
1740
    else
1741
      while(x < xe)
1742
        *x1++ = *x++;
1743
    }
1744
  if ((b->wds = x1 - b->x) == 0)
1745
    b->x[0] = 0;
1746
  }
1747
1748
 static ULong
1749
#ifdef KR_headers
1750
any_on(b, k) Bigint *b; int k;
1751
#else
1752
any_on(Bigint *b, int k)
1753
#endif
1754
{
1755
  int n, nwds;
1756
  ULong *x, *x0, x1, x2;
1757
1758
  x = b->x;
1759
  nwds = b->wds;
1760
  n = k >> kshift;
1761
  if (n > nwds)
1762
    n = nwds;
1763
  else if (n < nwds && (k &= kmask)) {
1764
    x1 = x2 = x[n];
1765
    x1 >>= k;
1766
    x1 <<= k;
1767
    if (x1 != x2)
1768
      return 1;
1769
    }
1770
  x0 = x;
1771
  x += n;
1772
  while(x > x0)
1773
    if (*--x)
1774
      return 1;
1775
  return 0;
1776
  }
1777
1778
enum {  /* rounding values: same as FLT_ROUNDS */
1779
  Round_zero = 0,
1780
  Round_near = 1,
1781
  Round_up = 2,
1782
  Round_down = 3
1783
  };
1784
1785
 void
1786
#ifdef KR_headers
1787
gethex(sp, rvp, rounding, sign)
1788
  CONST char **sp; U *rvp; int rounding, sign;
1789
#else
1790
gethex( CONST char **sp, U *rvp, int rounding, int sign)
1791
#endif
1792
{
1793
  Bigint *b;
1794
  CONST unsigned char *decpt, *s0, *s, *s1;
1795
  Long e, e1;
1796
  ULong L, lostbits, *x;
1797
  int big, denorm, esign, havedig, k, n, nbits, up, zret;
1798
#ifdef IBM
1799
  int j;
1800
#endif
1801
  enum {
1802
#ifdef IEEE_Arith /*{{*/
1803
    emax = 0x7fe - Bias - P + 1,
1804
    emin = Emin - P + 1
1805
#else /*}{*/
1806
    emin = Emin - P,
1807
#ifdef VAX
1808
    emax = 0x7ff - Bias - P + 1
1809
#endif
1810
#ifdef IBM
1811
    emax = 0x7f - Bias - P
1812
#endif
1813
#endif /*}}*/
1814
    };
1815
#ifdef USE_LOCALE
1816
  int i;
1817
#ifdef NO_LOCALE_CACHE
1818
  const unsigned char *decimalpoint = (unsigned char*)
1819
    localeconv()->decimal_point;
1820
#else
1821
  const unsigned char *decimalpoint;
1822
  static unsigned char *decimalpoint_cache;
1823
  if (!(s0 = decimalpoint_cache)) {
1824
    s0 = (unsigned char*)localeconv()->decimal_point;
1825
    if ((decimalpoint_cache = (unsigned char*)
1826
        MALLOC(strlen((CONST char*)s0) + 1))) {
1827
      strcpy((char*)decimalpoint_cache, (CONST char*)s0);
1828
      s0 = decimalpoint_cache;
1829
      }
1830
    }
1831
  decimalpoint = s0;
1832
#endif
1833
#endif
1834
1835
  /**** if (!hexdig['0']) hexdig_init(); ****/
1836
  havedig = 0;
1837
  s0 = *(CONST unsigned char **)sp + 2;
1838
  while(s0[havedig] == '0')
1839
    havedig++;
1840
  s0 += havedig;
1841
  s = s0;
1842
  decpt = 0;
1843
  zret = 0;
1844
  e = 0;
1845
  if (hexdig[*s])
1846
    havedig++;
1847
  else {
1848
    zret = 1;
1849
#ifdef USE_LOCALE
1850
    for(i = 0; decimalpoint[i]; ++i) {
1851
      if (s[i] != decimalpoint[i])
1852
        goto pcheck;
1853
      }
1854
    decpt = s += i;
1855
#else
1856
    if (*s != '.')
1857
      goto pcheck;
1858
    decpt = ++s;
1859
#endif
1860
    if (!hexdig[*s])
1861
      goto pcheck;
1862
    while(*s == '0')
1863
      s++;
1864
    if (hexdig[*s])
1865
      zret = 0;
1866
    havedig = 1;
1867
    s0 = s;
1868
    }
1869
  while(hexdig[*s])
1870
    s++;
1871
#ifdef USE_LOCALE
1872
  if (*s == *decimalpoint && !decpt) {
1873
    for(i = 1; decimalpoint[i]; ++i) {
1874
      if (s[i] != decimalpoint[i])
1875
        goto pcheck;
1876
      }
1877
    decpt = s += i;
1878
#else
1879
  if (*s == '.' && !decpt) {
1880
    decpt = ++s;
1881
#endif
1882
    while(hexdig[*s])
1883
      s++;
1884
    }/*}*/
1885
  if (decpt)
1886
    e = -(((Long)(s-decpt)) << 2);
1887
 pcheck:
1888
  s1 = s;
1889
  big = esign = 0;
1890
  switch(*s) {
1891
    case 'p':
1892
    case 'P':
1893
    switch(*++s) {
1894
      case '-':
1895
      esign = 1;
1896
      ZEND_FALLTHROUGH;
1897
      case '+':
1898
      s++;
1899
      }
1900
    if ((n = hexdig[*s]) == 0 || n > 0x19) {
1901
      s = s1;
1902
      break;
1903
      }
1904
    e1 = n - 0x10;
1905
    while((n = hexdig[*++s]) !=0 && n <= 0x19) {
1906
      if (e1 & 0xf8000000)
1907
        big = 1;
1908
      e1 = 10*e1 + n - 0x10;
1909
      }
1910
    if (esign)
1911
      e1 = -e1;
1912
    e += e1;
1913
    }
1914
  *sp = (char*)s;
1915
  if (!havedig)
1916
    *sp = (char*)s0 - 1;
1917
  if (zret)
1918
    goto retz1;
1919
  if (big) {
1920
    if (esign) {
1921
#ifdef IEEE_Arith
1922
      switch(rounding) {
1923
        case Round_up:
1924
        if (sign)
1925
          break;
1926
        goto ret_tiny;
1927
        case Round_down:
1928
        if (!sign)
1929
          break;
1930
        goto ret_tiny;
1931
        }
1932
#endif
1933
      goto retz;
1934
#ifdef IEEE_Arith
1935
 ret_tinyf:
1936
      Bfree(b);
1937
 ret_tiny:
1938
#ifndef NO_ERRNO
1939
      errno = ERANGE;
1940
#endif
1941
      word0(rvp) = 0;
1942
      word1(rvp) = 1;
1943
      return;
1944
#endif /* IEEE_Arith */
1945
      }
1946
    switch(rounding) {
1947
      case Round_near:
1948
      goto ovfl1;
1949
      case Round_up:
1950
      if (!sign)
1951
        goto ovfl1;
1952
      goto ret_big;
1953
      case Round_down:
1954
      if (sign)
1955
        goto ovfl1;
1956
      goto ret_big;
1957
      }
1958
 ret_big:
1959
    word0(rvp) = Big0;
1960
    word1(rvp) = Big1;
1961
    return;
1962
    }
1963
  n = s1 - s0 - 1;
1964
  for(k = 0; n > (1 << (kshift-2)) - 1; n >>= 1)
1965
    k++;
1966
  b = Balloc(k);
1967
  x = b->x;
1968
  n = 0;
1969
  L = 0;
1970
#ifdef USE_LOCALE
1971
  for(i = 0; decimalpoint[i+1]; ++i);
1972
#endif
1973
  while(s1 > s0) {
1974
#ifdef USE_LOCALE
1975
    if (*--s1 == decimalpoint[i]) {
1976
      s1 -= i;
1977
      continue;
1978
      }
1979
#else
1980
    if (*--s1 == '.')
1981
      continue;
1982
#endif
1983
    if (n == ULbits) {
1984
      *x++ = L;
1985
      L = 0;
1986
      n = 0;
1987
      }
1988
    L |= (hexdig[*s1] & 0x0f) << n;
1989
    n += 4;
1990
    }
1991
  *x++ = L;
1992
  b->wds = n = x - b->x;
1993
  n = ULbits*n - hi0bits(L);
1994
  nbits = Nbits;
1995
  lostbits = 0;
1996
  x = b->x;
1997
  if (n > nbits) {
1998
    n -= nbits;
1999
    if (any_on(b,n)) {
2000
      lostbits = 1;
2001
      k = n - 1;
2002
      if (x[k>>kshift] & 1 << (k & kmask)) {
2003
        lostbits = 2;
2004
        if (k > 0 && any_on(b,k))
2005
          lostbits = 3;
2006
        }
2007
      }
2008
    rshift(b, n);
2009
    e += n;
2010
    }
2011
  else if (n < nbits) {
2012
    n = nbits - n;
2013
    b = lshift(b, n);
2014
    e -= n;
2015
    x = b->x;
2016
    }
2017
  if (e > Emax) {
2018
 ovfl:
2019
    Bfree(b);
2020
 ovfl1:
2021
#ifndef NO_ERRNO
2022
    errno = ERANGE;
2023
#endif
2024
    word0(rvp) = Exp_mask;
2025
    word1(rvp) = 0;
2026
    return;
2027
    }
2028
  denorm = 0;
2029
  if (e < emin) {
2030
    denorm = 1;
2031
    n = emin - e;
2032
    if (n >= nbits) {
2033
#ifdef IEEE_Arith /*{*/
2034
      switch (rounding) {
2035
        case Round_near:
2036
        if (n == nbits && (n < 2 || any_on(b,n-1)))
2037
          goto ret_tinyf;
2038
        break;
2039
        case Round_up:
2040
        if (!sign)
2041
          goto ret_tinyf;
2042
        break;
2043
        case Round_down:
2044
        if (sign)
2045
          goto ret_tinyf;
2046
        }
2047
#endif /* } IEEE_Arith */
2048
      Bfree(b);
2049
 retz:
2050
#ifndef NO_ERRNO
2051
      errno = ERANGE;
2052
#endif
2053
 retz1:
2054
      rvp->d = 0.;
2055
      return;
2056
      }
2057
    k = n - 1;
2058
    if (lostbits)
2059
      lostbits = 1;
2060
    else if (k > 0)
2061
      lostbits = any_on(b,k);
2062
    if (x[k>>kshift] & 1 << (k & kmask))
2063
      lostbits |= 2;
2064
    nbits -= n;
2065
    rshift(b,n);
2066
    e = emin;
2067
    }
2068
  if (lostbits) {
2069
    up = 0;
2070
    switch(rounding) {
2071
      case Round_zero:
2072
      break;
2073
      case Round_near:
2074
      if (lostbits & 2
2075
       && (lostbits & 1) | (x[0] & 1))
2076
        up = 1;
2077
      break;
2078
      case Round_up:
2079
      up = 1 - sign;
2080
      break;
2081
      case Round_down:
2082
      up = sign;
2083
      }
2084
    if (up) {
2085
      k = b->wds;
2086
      b = increment(b);
2087
      x = b->x;
2088
      if (denorm) {
2089
#if 0
2090
        if (nbits == Nbits - 1
2091
         && x[nbits >> kshift] & 1 << (nbits & kmask))
2092
          denorm = 0; /* not currently used */
2093
#endif
2094
        }
2095
      else if (b->wds > k
2096
       || ((n = nbits & kmask) !=0
2097
           && hi0bits(x[k-1]) < 32-n)) {
2098
        rshift(b,1);
2099
        if (++e > Emax)
2100
          goto ovfl;
2101
        }
2102
      }
2103
    }
2104
#ifdef IEEE_Arith
2105
  if (denorm)
2106
    word0(rvp) = b->wds > 1 ? b->x[1] & ~0x100000 : 0;
2107
  else
2108
    word0(rvp) = (b->x[1] & ~0x100000) | ((e + 0x3ff + 52) << 20);
2109
  word1(rvp) = b->x[0];
2110
#endif
2111
#ifdef IBM
2112
  if ((j = e & 3)) {
2113
    k = b->x[0] & ((1 << j) - 1);
2114
    rshift(b,j);
2115
    if (k) {
2116
      switch(rounding) {
2117
        case Round_up:
2118
        if (!sign)
2119
          increment(b);
2120
        break;
2121
        case Round_down:
2122
        if (sign)
2123
          increment(b);
2124
        break;
2125
        case Round_near:
2126
        j = 1 << (j-1);
2127
        if (k & j && ((k & (j-1)) | lostbits))
2128
          increment(b);
2129
        }
2130
      }
2131
    }
2132
  e >>= 2;
2133
  word0(rvp) = b->x[1] | ((e + 65 + 13) << 24);
2134
  word1(rvp) = b->x[0];
2135
#endif
2136
#ifdef VAX
2137
  /* The next two lines ignore swap of low- and high-order 2 bytes. */
2138
  /* word0(rvp) = (b->x[1] & ~0x800000) | ((e + 129 + 55) << 23); */
2139
  /* word1(rvp) = b->x[0]; */
2140
  word0(rvp) = ((b->x[1] & ~0x800000) >> 16) | ((e + 129 + 55) << 7) | (b->x[1] << 16);
2141
  word1(rvp) = (b->x[0] >> 16) | (b->x[0] << 16);
2142
#endif
2143
  Bfree(b);
2144
  }
2145
#endif /*!NO_HEX_FP}*/
2146
2147
 static int
2148
#ifdef KR_headers
2149
dshift(b, p2) Bigint *b; int p2;
2150
#else
2151
dshift(Bigint *b, int p2)
2152
#endif
2153
101k
{
2154
101k
  int rv = hi0bits(b->x[b->wds-1]) - 4;
2155
101k
  if (p2 > 0)
2156
54.7k
    rv -= p2;
2157
101k
  return rv & kmask;
2158
101k
  }
2159
2160
 static int
2161
quorem
2162
#ifdef KR_headers
2163
  (b, S) Bigint *b, *S;
2164
#else
2165
  (Bigint *b, Bigint *S)
2166
#endif
2167
1.52M
{
2168
1.52M
  int n;
2169
1.52M
  ULong *bx, *bxe, q, *sx, *sxe;
2170
1.52M
#ifdef ULLong
2171
1.52M
  ULLong borrow, carry, y, ys;
2172
#else
2173
  ULong borrow, carry, y, ys;
2174
#ifdef Pack_32
2175
  ULong si, z, zs;
2176
#endif
2177
#endif
2178
2179
1.52M
  n = S->wds;
2180
#ifdef DEBUG
2181
  /*debug*/ if (b->wds > n)
2182
  /*debug*/ Bug("oversize b in quorem");
2183
#endif
2184
1.52M
  if (b->wds < n)
2185
40.9k
    return 0;
2186
1.48M
  sx = S->x;
2187
1.48M
  sxe = sx + --n;
2188
1.48M
  bx = b->x;
2189
1.48M
  bxe = bx + n;
2190
1.48M
  q = *bxe / (*sxe + 1);  /* ensure q <= true quotient */
2191
#ifdef DEBUG
2192
#ifdef NO_STRTOD_BIGCOMP
2193
  /*debug*/ if (q > 9)
2194
#else
2195
  /* An oversized q is possible when quorem is called from bigcomp and */
2196
  /* the input is near, e.g., twice the smallest denormalized number. */
2197
  /*debug*/ if (q > 15)
2198
#endif
2199
  /*debug*/ Bug("oversized quotient in quorem");
2200
#endif
2201
1.48M
  if (q) {
2202
884k
    borrow = 0;
2203
884k
    carry = 0;
2204
8.42M
    do {
2205
8.42M
#ifdef ULLong
2206
8.42M
      ys = *sx++ * (ULLong)q + carry;
2207
8.42M
      carry = ys >> 32;
2208
8.42M
      y = *bx - (ys & FFFFFFFF) - borrow;
2209
8.42M
      borrow = y >> 32 & (ULong)1;
2210
8.42M
      *bx++ = y & FFFFFFFF;
2211
#else
2212
#ifdef Pack_32
2213
      si = *sx++;
2214
      ys = (si & 0xffff) * q + carry;
2215
      zs = (si >> 16) * q + (ys >> 16);
2216
      carry = zs >> 16;
2217
      y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
2218
      borrow = (y & 0x10000) >> 16;
2219
      z = (*bx >> 16) - (zs & 0xffff) - borrow;
2220
      borrow = (z & 0x10000) >> 16;
2221
      Storeinc(bx, z, y);
2222
#else
2223
      ys = *sx++ * q + carry;
2224
      carry = ys >> 16;
2225
      y = *bx - (ys & 0xffff) - borrow;
2226
      borrow = (y & 0x10000) >> 16;
2227
      *bx++ = y & 0xffff;
2228
#endif
2229
#endif
2230
8.42M
      }
2231
8.42M
      while(sx <= sxe);
2232
884k
    if (!*bxe) {
2233
666
      bx = b->x;
2234
666
      while(--bxe > bx && !*bxe)
2235
0
        --n;
2236
666
      b->wds = n;
2237
666
      }
2238
884k
    }
2239
1.48M
  if (cmp(b, S) >= 0) {
2240
48.7k
    q++;
2241
48.7k
    borrow = 0;
2242
48.7k
    carry = 0;
2243
48.7k
    bx = b->x;
2244
48.7k
    sx = S->x;
2245
129k
    do {
2246
129k
#ifdef ULLong
2247
129k
      ys = *sx++ + carry;
2248
129k
      carry = ys >> 32;
2249
129k
      y = *bx - (ys & FFFFFFFF) - borrow;
2250
129k
      borrow = y >> 32 & (ULong)1;
2251
129k
      *bx++ = y & FFFFFFFF;
2252
#else
2253
#ifdef Pack_32
2254
      si = *sx++;
2255
      ys = (si & 0xffff) + carry;
2256
      zs = (si >> 16) + (ys >> 16);
2257
      carry = zs >> 16;
2258
      y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
2259
      borrow = (y & 0x10000) >> 16;
2260
      z = (*bx >> 16) - (zs & 0xffff) - borrow;
2261
      borrow = (z & 0x10000) >> 16;
2262
      Storeinc(bx, z, y);
2263
#else
2264
      ys = *sx++ + carry;
2265
      carry = ys >> 16;
2266
      y = *bx - (ys & 0xffff) - borrow;
2267
      borrow = (y & 0x10000) >> 16;
2268
      *bx++ = y & 0xffff;
2269
#endif
2270
#endif
2271
129k
      }
2272
129k
      while(sx <= sxe);
2273
48.7k
    bx = b->x;
2274
48.7k
    bxe = bx + n;
2275
48.7k
    if (!*bxe) {
2276
49.6k
      while(--bxe > bx && !*bxe)
2277
1.31k
        --n;
2278
48.3k
      b->wds = n;
2279
48.3k
      }
2280
48.7k
    }
2281
1.48M
  return q;
2282
1.52M
  }
2283
2284
#if defined(Avoid_Underflow) || !defined(NO_STRTOD_BIGCOMP) /*{*/
2285
 static double
2286
sulp
2287
#ifdef KR_headers
2288
  (x, bc) U *x; BCinfo *bc;
2289
#else
2290
  (U *x, BCinfo *bc)
2291
#endif
2292
1.32k
{
2293
1.32k
  U u;
2294
1.32k
  double rv;
2295
1.32k
  int i;
2296
2297
1.32k
  rv = ulp(x);
2298
1.32k
  if (!bc->scale || (i = 2*P + 1 - ((word0(x) & Exp_mask) >> Exp_shift)) <= 0)
2299
1.31k
    return rv; /* Is there an example where i <= 0 ? */
2300
10
  word0(&u) = Exp_1 + (i << Exp_shift);
2301
10
  word1(&u) = 0;
2302
10
  return rv * u.d;
2303
1.32k
  }
2304
#endif /*}*/
2305
2306
#ifndef NO_STRTOD_BIGCOMP
2307
 static void
2308
bigcomp
2309
#ifdef KR_headers
2310
  (rv, s0, bc)
2311
  U *rv; CONST char *s0; BCinfo *bc;
2312
#else
2313
  (U *rv, const char *s0, BCinfo *bc)
2314
#endif
2315
45.3k
{
2316
45.3k
  Bigint *b, *d;
2317
45.3k
  int b2, bbits, d2, dd, dig, dsign, i, j, nd, nd0, p2, p5, speccase;
2318
2319
45.3k
  dsign = bc->dsign;
2320
45.3k
  nd = bc->nd;
2321
45.3k
  nd0 = bc->nd0;
2322
45.3k
  p5 = nd + bc->e0 - 1;
2323
45.3k
  speccase = 0;
2324
45.3k
#ifndef Sudden_Underflow
2325
45.3k
  if (rv->d == 0.) { /* special case: value near underflow-to-zero */
2326
        /* threshold was rounded to zero */
2327
2.22k
    b = i2b(1);
2328
2.22k
    p2 = Emin - P + 1;
2329
2.22k
    bbits = 1;
2330
2.22k
#ifdef Avoid_Underflow
2331
2.22k
    word0(rv) = (P+2) << Exp_shift;
2332
#else
2333
    word1(rv) = 1;
2334
#endif
2335
2.22k
    i = 0;
2336
#ifdef Honor_FLT_ROUNDS
2337
    if (bc->rounding == 1)
2338
#endif
2339
2.22k
      {
2340
2.22k
      speccase = 1;
2341
2.22k
      --p2;
2342
2.22k
      dsign = 0;
2343
2.22k
      goto have_i;
2344
2.22k
      }
2345
2.22k
    }
2346
43.0k
  else
2347
43.0k
#endif
2348
43.0k
    b = d2b(rv, &p2, &bbits);
2349
43.0k
#ifdef Avoid_Underflow
2350
43.0k
  p2 -= bc->scale;
2351
43.0k
#endif
2352
  /* floor(log2(rv)) == bbits - 1 + p2 */
2353
  /* Check for denormal case. */
2354
43.0k
  i = P - bbits;
2355
43.0k
  if (i > (j = P - Emin - 1 + p2)) {
2356
#ifdef Sudden_Underflow
2357
    Bfree(b);
2358
    b = i2b(1);
2359
    p2 = Emin;
2360
    i = P - 1;
2361
#ifdef Avoid_Underflow
2362
    word0(rv) = (1 + bc->scale) << Exp_shift;
2363
#else
2364
    word0(rv) = Exp_msk1;
2365
#endif
2366
    word1(rv) = 0;
2367
#else
2368
804
    i = j;
2369
804
#endif
2370
804
    }
2371
#ifdef Honor_FLT_ROUNDS
2372
  if (bc->rounding != 1) {
2373
    if (i > 0)
2374
      b = lshift(b, i);
2375
    if (dsign)
2376
      b = increment(b);
2377
    }
2378
  else
2379
#endif
2380
43.0k
    {
2381
43.0k
    b = lshift(b, ++i);
2382
43.0k
    b->x[0] |= 1;
2383
43.0k
    }
2384
43.0k
#ifndef Sudden_Underflow
2385
45.3k
 have_i:
2386
45.3k
#endif
2387
45.3k
  p2 -= p5 + i;
2388
45.3k
  d = i2b(1);
2389
  /* Arrange for convenient computation of quotients:
2390
   * shift left if necessary so divisor has 4 leading 0 bits.
2391
   */
2392
45.3k
  if (p5 > 0)
2393
39.6k
    d = pow5mult(d, p5);
2394
5.65k
  else if (p5 < 0)
2395
5.17k
    b = pow5mult(b, -p5);
2396
45.3k
  if (p2 > 0) {
2397
23.5k
    b2 = p2;
2398
23.5k
    d2 = 0;
2399
23.5k
    }
2400
21.8k
  else {
2401
21.8k
    b2 = 0;
2402
21.8k
    d2 = -p2;
2403
21.8k
    }
2404
45.3k
  i = dshift(d, d2);
2405
45.3k
  if ((b2 += i) > 0)
2406
44.3k
    b = lshift(b, b2);
2407
45.3k
  if ((d2 += i) > 0)
2408
44.7k
    d = lshift(d, d2);
2409
2410
  /* Now b/d = exactly half-way between the two floating-point values */
2411
  /* on either side of the input string.  Compute first digit of b/d. */
2412
2413
45.3k
  if (!(dig = quorem(b,d))) {
2414
0
    b = multadd(b, 10, 0);  /* very unlikely */
2415
0
    dig = quorem(b,d);
2416
0
    }
2417
2418
  /* Compare b/d with s0 */
2419
2420
667k
  for(i = 0; i < nd0; ) {
2421
648k
    if ((dd = s0[i++] - '0' - dig))
2422
25.6k
      goto ret;
2423
622k
    if (!b->x[0] && b->wds == 1) {
2424
581
      if (i < nd)
2425
515
        dd = 1;
2426
581
      goto ret;
2427
581
      }
2428
622k
    b = multadd(b, 10, 0);
2429
622k
    dig = quorem(b,d);
2430
622k
    }
2431
83.2k
  for(j = bc->dp1; i++ < nd;) {
2432
81.9k
    if ((dd = s0[j++] - '0' - dig))
2433
17.6k
      goto ret;
2434
64.2k
    if (!b->x[0] && b->wds == 1) {
2435
18
      if (i < nd)
2436
18
        dd = 1;
2437
18
      goto ret;
2438
18
      }
2439
64.2k
    b = multadd(b, 10, 0);
2440
64.2k
    dig = quorem(b,d);
2441
64.2k
    }
2442
1.35k
  if (dig > 0 || b->x[0] || b->wds > 1)
2443
1.35k
    dd = -1;
2444
45.3k
 ret:
2445
45.3k
  Bfree(b);
2446
45.3k
  Bfree(d);
2447
#ifdef Honor_FLT_ROUNDS
2448
  if (bc->rounding != 1) {
2449
    if (dd < 0) {
2450
      if (bc->rounding == 0) {
2451
        if (!dsign)
2452
          goto retlow1;
2453
        }
2454
      else if (dsign)
2455
        goto rethi1;
2456
      }
2457
    else if (dd > 0) {
2458
      if (bc->rounding == 0) {
2459
        if (dsign)
2460
          goto rethi1;
2461
        goto ret1;
2462
        }
2463
      if (!dsign)
2464
        goto rethi1;
2465
      dval(rv) += 2.*sulp(rv,bc);
2466
      }
2467
    else {
2468
      bc->inexact = 0;
2469
      if (dsign)
2470
        goto rethi1;
2471
      }
2472
    }
2473
  else
2474
#endif
2475
45.3k
  if (speccase) {
2476
2.22k
    if (dd <= 0)
2477
2.22k
      rv->d = 0.;
2478
2.22k
    }
2479
43.0k
  else if (dd < 0) {
2480
42.3k
    if (!dsign)  /* does not happen for round-near */
2481
0
retlow1:
2482
0
      dval(rv) -= sulp(rv,bc);
2483
42.3k
    }
2484
723
  else if (dd > 0) {
2485
657
    if (dsign) {
2486
723
 rethi1:
2487
723
      dval(rv) += sulp(rv,bc);
2488
723
      }
2489
657
    }
2490
66
  else {
2491
    /* Exact half-way case:  apply round-even rule. */
2492
66
    if ((j = ((word0(rv) & Exp_mask) >> Exp_shift) - bc->scale) <= 0) {
2493
0
      i = 1 - j;
2494
0
      if (i <= 31) {
2495
0
        if (word1(rv) & (0x1 << i))
2496
0
          goto odd;
2497
0
        }
2498
0
      else if (word0(rv) & (0x1 << (i-32)))
2499
0
        goto odd;
2500
0
      }
2501
66
    else if (word1(rv) & 1) {
2502
66
 odd:
2503
66
      if (dsign)
2504
66
        goto rethi1;
2505
0
      goto retlow1;
2506
66
      }
2507
66
    }
2508
2509
#ifdef Honor_FLT_ROUNDS
2510
 ret1:
2511
#endif
2512
45.3k
  return;
2513
45.3k
  }
2514
#endif /* NO_STRTOD_BIGCOMP */
2515
2516
ZEND_API double
2517
zend_strtod
2518
#ifdef KR_headers
2519
  (s00, se) CONST char *s00; char **se;
2520
#else
2521
  (const char *s00, const char **se)
2522
#endif
2523
259k
{
2524
259k
  int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, e, e1;
2525
259k
  int esign, i, j, k, nd, nd0, nf, nz, nz0, nz1, sign;
2526
259k
  CONST char *s, *s0, *s1;
2527
259k
  volatile double aadj, aadj1;
2528
259k
  Long L;
2529
259k
  U aadj2, adj, rv, rv0;
2530
259k
  ULong y, z;
2531
259k
  BCinfo bc;
2532
259k
  Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
2533
259k
#ifdef Avoid_Underflow
2534
259k
  ULong Lsb, Lsb1;
2535
259k
#endif
2536
#ifdef SET_INEXACT
2537
  int oldinexact;
2538
#endif
2539
259k
#ifndef NO_STRTOD_BIGCOMP
2540
259k
  int req_bigcomp = 0;
2541
259k
#endif
2542
#ifdef Honor_FLT_ROUNDS /*{*/
2543
#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
2544
  bc.rounding = Flt_Rounds;
2545
#else /*}{*/
2546
  bc.rounding = 1;
2547
  switch(fegetround()) {
2548
    case FE_TOWARDZERO: bc.rounding = 0; break;
2549
    case FE_UPWARD: bc.rounding = 2; break;
2550
    case FE_DOWNWARD: bc.rounding = 3;
2551
    }
2552
#endif /*}}*/
2553
#endif /*}*/
2554
#ifdef USE_LOCALE
2555
  CONST char *s2;
2556
#endif
2557
2558
259k
  sign = nz0 = nz1 = nz = bc.dplen = bc.uflchk = 0;
2559
259k
  dval(&rv) = 0.;
2560
259k
  for(s = s00;;s++) switch(*s) {
2561
7.60k
    case '-':
2562
7.60k
      sign = 1;
2563
7.60k
      ZEND_FALLTHROUGH;
2564
11.7k
    case '+':
2565
11.7k
      if (*++s)
2566
11.7k
        goto break2;
2567
1
      ZEND_FALLTHROUGH;
2568
4
    case 0:
2569
4
      goto ret0;
2570
83
    case '\t':
2571
207
    case '\n':
2572
333
    case '\v':
2573
433
    case '\f':
2574
536
    case '\r':
2575
671
    case ' ':
2576
671
      continue;
2577
247k
    default:
2578
247k
      goto break2;
2579
259k
    }
2580
259k
 break2:
2581
259k
  if (*s == '0') {
2582
#ifndef NO_HEX_FP /*{*/
2583
    switch(s[1]) {
2584
      case 'x':
2585
      case 'X':
2586
#ifdef Honor_FLT_ROUNDS
2587
      gethex(&s, &rv, bc.rounding, sign);
2588
#else
2589
      gethex(&s, &rv, 1, sign);
2590
#endif
2591
      goto ret;
2592
      }
2593
#endif /*}*/
2594
85.2k
    nz0 = 1;
2595
771k
    while(*++s == '0') ;
2596
85.2k
    if (!*s)
2597
1
      goto ret;
2598
85.2k
    }
2599
259k
  s0 = s;
2600
259k
  y = z = 0;
2601
10.7M
  for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
2602
10.4M
    if (nd < 9)
2603
1.50M
      y = 10*y + c - '0';
2604
8.95M
    else if (nd < DBL_DIG + 2)
2605
882k
      z = 10*z + c - '0';
2606
259k
  nd0 = nd;
2607
259k
  bc.dp0 = bc.dp1 = s - s0;
2608
1.40M
  for(s1 = s; s1 > s0 && *--s1 == '0'; )
2609
1.14M
    ++nz1;
2610
#ifdef USE_LOCALE
2611
  s1 = localeconv()->decimal_point;
2612
  if (c == *s1) {
2613
    c = '.';
2614
    if (*++s1) {
2615
      s2 = s;
2616
      for(;;) {
2617
        if (*++s2 != *s1) {
2618
          c = 0;
2619
          break;
2620
          }
2621
        if (!*++s1) {
2622
          s = s2;
2623
          break;
2624
          }
2625
        }
2626
      }
2627
    }
2628
#endif
2629
259k
  if (c == '.') {
2630
122k
    c = *++s;
2631
122k
    bc.dp1 = s - s0;
2632
122k
    bc.dplen = bc.dp1 - bc.dp0;
2633
122k
    if (!nd) {
2634
9.52M
      for(; c == '0'; c = *++s)
2635
9.50M
        nz++;
2636
22.5k
      if (c > '0' && c <= '9') {
2637
18.3k
        bc.dp0 = s0 - s;
2638
18.3k
        bc.dp1 = bc.dp0 + bc.dplen;
2639
18.3k
        s0 = s;
2640
18.3k
        nf += nz;
2641
18.3k
        nz = 0;
2642
18.3k
        goto have_dig;
2643
18.3k
        }
2644
4.21k
      goto dig_done;
2645
22.5k
      }
2646
7.86M
    for(; c >= '0' && c <= '9'; c = *++s) {
2647
7.76M
 have_dig:
2648
7.76M
      nz++;
2649
7.76M
      if (c -= '0') {
2650
1.09M
        nf += nz;
2651
7.71M
        for(i = 1; i < nz; i++)
2652
6.61M
          if (nd++ < 9)
2653
93.3k
            y *= 10;
2654
6.52M
          else if (nd <= DBL_DIG + 2)
2655
199k
            z *= 10;
2656
1.09M
        if (nd++ < 9)
2657
169k
          y = 10*y + c;
2658
927k
        else if (nd <= DBL_DIG + 2)
2659
146k
          z = 10*z + c;
2660
1.09M
        nz = nz1 = 0;
2661
1.09M
        }
2662
7.76M
      }
2663
99.6k
    }
2664
259k
 dig_done:
2665
259k
  if (nd < 0) {
2666
    /* overflow */
2667
0
    nd = DBL_DIG + 2;
2668
0
  }
2669
259k
  if (nf < 0) {
2670
    /* overflow */
2671
0
    nf = DBL_DIG + 2;
2672
0
  }
2673
259k
  e = 0;
2674
259k
  if (c == 'e' || c == 'E') {
2675
31.5k
    if (!nd && !nz && !nz0) {
2676
1
      goto ret0;
2677
1
      }
2678
31.5k
    s00 = s;
2679
31.5k
    esign = 0;
2680
31.5k
    switch(c = *++s) {
2681
16.4k
      case '-':
2682
16.4k
        esign = 1;
2683
16.4k
        ZEND_FALLTHROUGH;
2684
16.4k
      case '+':
2685
16.4k
        c = *++s;
2686
31.5k
      }
2687
31.5k
    if (c >= '0' && c <= '9') {
2688
1.14M
      while(c == '0')
2689
1.11M
        c = *++s;
2690
30.9k
      if (c > '0' && c <= '9') {
2691
27.2k
        L = c - '0';
2692
27.2k
        s1 = s;
2693
302k
        while((c = *++s) >= '0' && c <= '9')
2694
275k
          L = (Long) (10*(ULong)L + (c - '0'));
2695
27.2k
        if (s - s1 > 8 || L > 19999)
2696
          /* Avoid confusion from exponents
2697
           * so large that e might overflow.
2698
           */
2699
1.03k
          e = 19999; /* safe for 16 bit ints */
2700
26.1k
        else
2701
26.1k
          e = (int)L;
2702
27.2k
        if (esign)
2703
16.3k
          e = -e;
2704
27.2k
        }
2705
3.75k
      else
2706
3.75k
        e = 0;
2707
30.9k
      }
2708
568
    else
2709
568
      s = s00;
2710
31.5k
    }
2711
259k
  if (!nd) {
2712
4.81k
    if (!nz && !nz0) {
2713
#ifdef INFNAN_CHECK
2714
      /* Check for Nan and Infinity */
2715
      if (!bc.dplen)
2716
       switch(c) {
2717
        case 'i':
2718
        case 'I':
2719
        if (match(&s,"nf")) {
2720
          --s;
2721
          if (!match(&s,"inity"))
2722
            ++s;
2723
          word0(&rv) = 0x7ff00000;
2724
          word1(&rv) = 0;
2725
          goto ret;
2726
          }
2727
        break;
2728
        case 'n':
2729
        case 'N':
2730
        if (match(&s, "an")) {
2731
          word0(&rv) = NAN_WORD0;
2732
          word1(&rv) = NAN_WORD1;
2733
#ifndef No_Hex_NaN
2734
          if (*s == '(') /*)*/
2735
            hexnan(&rv, &s);
2736
#endif
2737
          goto ret;
2738
          }
2739
        }
2740
#endif /* INFNAN_CHECK */
2741
18
 ret0:
2742
18
      s = s00;
2743
18
      sign = 0;
2744
18
      }
2745
4.81k
    goto ret;
2746
4.81k
    }
2747
254k
  bc.e0 = e1 = e -= nf;
2748
2749
  /* Now we have nd0 digits, starting at s0, followed by a
2750
   * decimal point, followed by nd-nd0 digits.  The number we're
2751
   * after is the integer represented by those digits times
2752
   * 10**e */
2753
2754
254k
  if (!nd0)
2755
18.3k
    nd0 = nd;
2756
254k
  k = nd < DBL_DIG + 2 ? nd : DBL_DIG + 2;
2757
254k
  dval(&rv) = y;
2758
254k
  if (k > 9) {
2759
#ifdef SET_INEXACT
2760
    if (k > DBL_DIG)
2761
      oldinexact = get_inexact();
2762
#endif
2763
164k
    dval(&rv) = tens[k - 9] * dval(&rv) + z;
2764
164k
    }
2765
254k
  bd0 = 0;
2766
254k
  if (nd <= DBL_DIG
2767
113k
#ifndef RND_PRODQUOT
2768
113k
#ifndef Honor_FLT_ROUNDS
2769
113k
    && Flt_Rounds == 1
2770
254k
#endif
2771
254k
#endif
2772
254k
      ) {
2773
113k
    if (!e)
2774
64.2k
      goto ret;
2775
48.9k
#ifndef ROUND_BIASED_without_Round_Up
2776
48.9k
    if (e > 0) {
2777
3.42k
      if (e <= Ten_pmax) {
2778
#ifdef VAX
2779
        goto vax_ovfl_check;
2780
#else
2781
#ifdef Honor_FLT_ROUNDS
2782
        /* round correctly FLT_ROUNDS = 2 or 3 */
2783
        if (sign) {
2784
          rv.d = -rv.d;
2785
          sign = 0;
2786
          }
2787
#endif
2788
839
        /* rv = */ rounded_product(dval(&rv), tens[e]);
2789
839
        goto ret;
2790
839
#endif
2791
839
        }
2792
2.58k
      i = DBL_DIG - nd;
2793
2.58k
      if (e <= Ten_pmax + i) {
2794
        /* A fancier test would sometimes let us do
2795
         * this for larger i values.
2796
         */
2797
#ifdef Honor_FLT_ROUNDS
2798
        /* round correctly FLT_ROUNDS = 2 or 3 */
2799
        if (sign) {
2800
          rv.d = -rv.d;
2801
          sign = 0;
2802
          }
2803
#endif
2804
17
        e -= i;
2805
17
        dval(&rv) *= tens[i];
2806
#ifdef VAX
2807
        /* VAX exponent range is so narrow we must
2808
         * worry about overflow here...
2809
         */
2810
 vax_ovfl_check:
2811
        word0(&rv) -= P*Exp_msk1;
2812
        /* rv = */ rounded_product(dval(&rv), tens[e]);
2813
        if ((word0(&rv) & Exp_mask)
2814
         > Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
2815
          goto ovfl;
2816
        word0(&rv) += P*Exp_msk1;
2817
#else
2818
17
        /* rv = */ rounded_product(dval(&rv), tens[e]);
2819
17
#endif
2820
17
        goto ret;
2821
17
        }
2822
2.58k
      }
2823
45.4k
#ifndef Inaccurate_Divide
2824
45.4k
    else if (e >= -Ten_pmax) {
2825
#ifdef Honor_FLT_ROUNDS
2826
      /* round correctly FLT_ROUNDS = 2 or 3 */
2827
      if (sign) {
2828
        rv.d = -rv.d;
2829
        sign = 0;
2830
        }
2831
#endif
2832
33.8k
      /* rv = */ rounded_quotient(dval(&rv), tens[-e]);
2833
33.8k
      goto ret;
2834
33.8k
      }
2835
48.9k
#endif
2836
48.9k
#endif /* ROUND_BIASED_without_Round_Up */
2837
48.9k
    }
2838
155k
  e1 += nd - k;
2839
2840
155k
#ifdef IEEE_Arith
2841
#ifdef SET_INEXACT
2842
  bc.inexact = 1;
2843
  if (k <= DBL_DIG)
2844
    oldinexact = get_inexact();
2845
#endif
2846
155k
#ifdef Avoid_Underflow
2847
155k
  bc.scale = 0;
2848
155k
#endif
2849
#ifdef Honor_FLT_ROUNDS
2850
  if (bc.rounding >= 2) {
2851
    if (sign)
2852
      bc.rounding = bc.rounding == 2 ? 0 : 2;
2853
    else
2854
      if (bc.rounding != 2)
2855
        bc.rounding = 0;
2856
    }
2857
#endif
2858
155k
#endif /*IEEE_Arith*/
2859
2860
  /* Get starting approximation = rv * 10**e1 */
2861
2862
155k
  if (e1 > 0) {
2863
78.0k
    if ((i = e1 & 15))
2864
76.4k
      dval(&rv) *= tens[i];
2865
78.0k
    if (e1 &= ~15) {
2866
55.3k
      if (e1 > DBL_MAX_10_EXP) {
2867
6.11k
 ovfl:
2868
        /* Can't trust HUGE_VAL */
2869
6.11k
#ifdef IEEE_Arith
2870
#ifdef Honor_FLT_ROUNDS
2871
        switch(bc.rounding) {
2872
          case 0: /* toward 0 */
2873
          case 3: /* toward -infinity */
2874
          word0(&rv) = Big0;
2875
          word1(&rv) = Big1;
2876
          break;
2877
          default:
2878
          word0(&rv) = Exp_mask;
2879
          word1(&rv) = 0;
2880
          }
2881
#else /*Honor_FLT_ROUNDS*/
2882
6.11k
        word0(&rv) = Exp_mask;
2883
6.11k
        word1(&rv) = 0;
2884
6.11k
#endif /*Honor_FLT_ROUNDS*/
2885
#ifdef SET_INEXACT
2886
        /* set overflow bit */
2887
        dval(&rv0) = 1e300;
2888
        dval(&rv0) *= dval(&rv0);
2889
#endif
2890
#else /*IEEE_Arith*/
2891
        word0(&rv) = Big0;
2892
        word1(&rv) = Big1;
2893
#endif /*IEEE_Arith*/
2894
9.66k
 range_err:
2895
9.66k
        if (bd0) {
2896
660
          Bfree(bb);
2897
660
          Bfree(bd);
2898
660
          Bfree(bs);
2899
660
          Bfree(bd0);
2900
660
          Bfree(delta);
2901
660
          }
2902
#ifndef NO_ERRNO
2903
        errno = ERANGE;
2904
#endif
2905
9.66k
        goto ret;
2906
6.11k
        }
2907
52.1k
      e1 >>= 4;
2908
171k
      for(j = 0; e1 > 1; j++, e1 >>= 1)
2909
119k
        if (e1 & 1)
2910
50.3k
          dval(&rv) *= bigtens[j];
2911
    /* The last multiplication could overflow. */
2912
52.1k
      word0(&rv) -= P*Exp_msk1;
2913
52.1k
      dval(&rv) *= bigtens[j];
2914
52.1k
      if ((z = word0(&rv) & Exp_mask)
2915
52.1k
       > Exp_msk1*(DBL_MAX_EXP+Bias-P))
2916
2.27k
        goto ovfl;
2917
49.9k
      if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
2918
        /* set to largest number */
2919
        /* (Can't trust DBL_MAX) */
2920
660
        word0(&rv) = Big0;
2921
660
        word1(&rv) = Big1;
2922
660
        }
2923
49.2k
      else
2924
49.2k
        word0(&rv) += P*Exp_msk1;
2925
49.9k
      }
2926
78.0k
    }
2927
77.1k
  else if (e1 < 0) {
2928
74.8k
    e1 = -e1;
2929
74.8k
    if ((i = e1 & 15))
2930
69.6k
      dval(&rv) /= tens[i];
2931
74.8k
    if (e1 >>= 4) {
2932
30.9k
      if (e1 >= 1 << n_bigtens)
2933
533
        goto undfl;
2934
30.4k
#ifdef Avoid_Underflow
2935
30.4k
      if (e1 & Scale_Bit)
2936
15.7k
        bc.scale = 2*P;
2937
146k
      for(j = 0; e1 > 0; j++, e1 >>= 1)
2938
115k
        if (e1 & 1)
2939
68.0k
          dval(&rv) *= tinytens[j];
2940
30.4k
      if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask)
2941
15.7k
            >> Exp_shift)) > 0) {
2942
        /* scaled rv is denormal; clear j low bits */
2943
12.7k
        if (j >= 32) {
2944
6.42k
          if (j > 54)
2945
800
            goto undfl;
2946
5.62k
          word1(&rv) = 0;
2947
5.62k
          if (j >= 53)
2948
2.30k
           word0(&rv) = (P+2)*Exp_msk1;
2949
3.32k
          else
2950
3.32k
           word0(&rv) &= 0xffffffff << (j-32);
2951
5.62k
          }
2952
6.32k
        else
2953
6.32k
          word1(&rv) &= 0xffffffff << j;
2954
12.7k
        }
2955
#else
2956
      for(j = 0; e1 > 1; j++, e1 >>= 1)
2957
        if (e1 & 1)
2958
          dval(&rv) *= tinytens[j];
2959
      /* The last multiplication could underflow. */
2960
      dval(&rv0) = dval(&rv);
2961
      dval(&rv) *= tinytens[j];
2962
      if (!dval(&rv)) {
2963
        dval(&rv) = 2.*dval(&rv0);
2964
        dval(&rv) *= tinytens[j];
2965
#endif
2966
29.6k
        if (!dval(&rv)) {
2967
3.55k
 undfl:
2968
3.55k
          dval(&rv) = 0.;
2969
3.55k
          goto range_err;
2970
0
          }
2971
#ifndef Avoid_Underflow
2972
        word0(&rv) = Tiny0;
2973
        word1(&rv) = Tiny1;
2974
        /* The refinement below will clean
2975
         * this approximation up.
2976
         */
2977
        }
2978
#endif
2979
29.6k
      }
2980
74.8k
    }
2981
2982
  /* Now the hard part -- adjusting rv to the correct value.*/
2983
2984
  /* Put digits into bd: true value = bd * 10^e */
2985
2986
148k
  bc.nd = nd - nz1;
2987
148k
#ifndef NO_STRTOD_BIGCOMP
2988
148k
  bc.nd0 = nd0; /* Only needed if nd > strtod_diglim, but done here */
2989
      /* to silence an erroneous warning about bc.nd0 */
2990
      /* possibly not being initialized. */
2991
148k
  if (nd > strtod_diglim) {
2992
    /* ASSERT(strtod_diglim >= 18); 18 == one more than the */
2993
    /* minimum number of decimal digits to distinguish double values */
2994
    /* in IEEE arithmetic. */
2995
67.7k
    i = j = 18;
2996
67.7k
    if (i > nd0)
2997
19.0k
      j += bc.dplen;
2998
398k
    for(;;) {
2999
398k
      if (--j < bc.dp1 && j >= bc.dp0)
3000
1.65k
        j = bc.dp0 - 1;
3001
398k
      if (s0[j] != '0')
3002
67.7k
        break;
3003
331k
      --i;
3004
331k
      }
3005
67.7k
    e += nd - i;
3006
67.7k
    nd = i;
3007
67.7k
    if (nd0 > nd)
3008
48.6k
      nd0 = nd;
3009
67.7k
    if (nd < 9) { /* must recompute y */
3010
20.5k
      y = 0;
3011
79.1k
      for(i = 0; i < nd0; ++i)
3012
58.6k
        y = 10*y + s0[i] - '0';
3013
24.1k
      for(j = bc.dp1; i < nd; ++i)
3014
3.59k
        y = 10*y + s0[j++] - '0';
3015
20.5k
      }
3016
67.7k
    }
3017
148k
#endif
3018
148k
  bd0 = s2b(s0, nd0, nd, y, bc.dplen);
3019
3020
191k
  for(;;) {
3021
191k
    bd = Balloc(bd0->k);
3022
191k
    Bcopy(bd, bd0);
3023
191k
    bb = d2b(&rv, &bbe, &bbbits); /* rv = bb * 2^bbe */
3024
191k
    bs = i2b(1);
3025
3026
191k
    if (e >= 0) {
3027
91.2k
      bb2 = bb5 = 0;
3028
91.2k
      bd2 = bd5 = e;
3029
91.2k
      }
3030
100k
    else {
3031
100k
      bb2 = bb5 = -e;
3032
100k
      bd2 = bd5 = 0;
3033
100k
      }
3034
191k
    if (bbe >= 0)
3035
104k
      bb2 += bbe;
3036
87.2k
    else
3037
87.2k
      bd2 -= bbe;
3038
191k
    bs2 = bb2;
3039
#ifdef Honor_FLT_ROUNDS
3040
    if (bc.rounding != 1)
3041
      bs2++;
3042
#endif
3043
191k
#ifdef Avoid_Underflow
3044
191k
    Lsb = LSB;
3045
191k
    Lsb1 = 0;
3046
191k
    j = bbe - bc.scale;
3047
191k
    i = j + bbbits - 1; /* logb(rv) */
3048
191k
    j = P + 1 - bbbits;
3049
191k
    if (i < Emin) { /* denormal */
3050
17.4k
      i = Emin - i;
3051
17.4k
      j -= i;
3052
17.4k
      if (i < 32)
3053
9.52k
        Lsb <<= i;
3054
7.88k
      else if (i < 52)
3055
5.48k
        Lsb1 = Lsb << (i-32);
3056
2.40k
      else
3057
2.40k
        Lsb1 = Exp_mask;
3058
17.4k
      }
3059
#else /*Avoid_Underflow*/
3060
#ifdef Sudden_Underflow
3061
#ifdef IBM
3062
    j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
3063
#else
3064
    j = P + 1 - bbbits;
3065
#endif
3066
#else /*Sudden_Underflow*/
3067
    j = bbe;
3068
    i = j + bbbits - 1; /* logb(rv) */
3069
    if (i < Emin) /* denormal */
3070
      j += P - Emin;
3071
    else
3072
      j = P + 1 - bbbits;
3073
#endif /*Sudden_Underflow*/
3074
#endif /*Avoid_Underflow*/
3075
191k
    bb2 += j;
3076
191k
    bd2 += j;
3077
191k
#ifdef Avoid_Underflow
3078
191k
    bd2 += bc.scale;
3079
191k
#endif
3080
191k
    i = bb2 < bd2 ? bb2 : bd2;
3081
191k
    if (i > bs2)
3082
75.0k
      i = bs2;
3083
191k
    if (i > 0) {
3084
191k
      bb2 -= i;
3085
191k
      bd2 -= i;
3086
191k
      bs2 -= i;
3087
191k
      }
3088
191k
    if (bb5 > 0) {
3089
100k
      bs = pow5mult(bs, bb5);
3090
100k
      bb1 = mult(bs, bb);
3091
100k
      Bfree(bb);
3092
100k
      bb = bb1;
3093
100k
      }
3094
191k
    if (bb2 > 0)
3095
191k
      bb = lshift(bb, bb2);
3096
191k
    if (bd5 > 0)
3097
63.1k
      bd = pow5mult(bd, bd5);
3098
191k
    if (bd2 > 0)
3099
75.0k
      bd = lshift(bd, bd2);
3100
191k
    if (bs2 > 0)
3101
111k
      bs = lshift(bs, bs2);
3102
191k
    delta = diff(bb, bd);
3103
191k
    bc.dsign = delta->sign;
3104
191k
    delta->sign = 0;
3105
191k
    i = cmp(delta, bs);
3106
191k
#ifndef NO_STRTOD_BIGCOMP /*{*/
3107
191k
    if (bc.nd > nd && i <= 0) {
3108
66.0k
      if (bc.dsign) {
3109
        /* Must use bigcomp(). */
3110
43.0k
        req_bigcomp = 1;
3111
43.0k
        break;
3112
43.0k
        }
3113
#ifdef Honor_FLT_ROUNDS
3114
      if (bc.rounding != 1) {
3115
        if (i < 0) {
3116
          req_bigcomp = 1;
3117
          break;
3118
          }
3119
        }
3120
      else
3121
#endif
3122
22.9k
        i = -1; /* Discarded digits make delta smaller. */
3123
22.9k
      }
3124
148k
#endif /*}*/
3125
#ifdef Honor_FLT_ROUNDS /*{*/
3126
    if (bc.rounding != 1) {
3127
      if (i < 0) {
3128
        /* Error is less than an ulp */
3129
        if (!delta->x[0] && delta->wds <= 1) {
3130
          /* exact */
3131
#ifdef SET_INEXACT
3132
          bc.inexact = 0;
3133
#endif
3134
          break;
3135
          }
3136
        if (bc.rounding) {
3137
          if (bc.dsign) {
3138
            adj.d = 1.;
3139
            goto apply_adj;
3140
            }
3141
          }
3142
        else if (!bc.dsign) {
3143
          adj.d = -1.;
3144
          if (!word1(&rv)
3145
           && !(word0(&rv) & Frac_mask)) {
3146
            y = word0(&rv) & Exp_mask;
3147
#ifdef Avoid_Underflow
3148
            if (!bc.scale || y > 2*P*Exp_msk1)
3149
#else
3150
            if (y)
3151
#endif
3152
              {
3153
              delta = lshift(delta,Log2P);
3154
              if (cmp(delta, bs) <= 0)
3155
              adj.d = -0.5;
3156
              }
3157
            }
3158
 apply_adj:
3159
#ifdef Avoid_Underflow /*{*/
3160
          if (bc.scale && (y = word0(&rv) & Exp_mask)
3161
            <= 2*P*Exp_msk1)
3162
            word0(&adj) += (2*P+1)*Exp_msk1 - y;
3163
#else
3164
#ifdef Sudden_Underflow
3165
          if ((word0(&rv) & Exp_mask) <=
3166
              P*Exp_msk1) {
3167
            word0(&rv) += P*Exp_msk1;
3168
            dval(&rv) += adj.d*ulp(dval(&rv));
3169
            word0(&rv) -= P*Exp_msk1;
3170
            }
3171
          else
3172
#endif /*Sudden_Underflow*/
3173
#endif /*Avoid_Underflow}*/
3174
          dval(&rv) += adj.d*ulp(&rv);
3175
          }
3176
        break;
3177
        }
3178
      adj.d = ratio(delta, bs);
3179
      if (adj.d < 1.)
3180
        adj.d = 1.;
3181
      if (adj.d <= 0x7ffffffe) {
3182
        /* adj = rounding ? ceil(adj) : floor(adj); */
3183
        y = adj.d;
3184
        if (y != adj.d) {
3185
          if (!((bc.rounding>>1) ^ bc.dsign))
3186
            y++;
3187
          adj.d = y;
3188
          }
3189
        }
3190
#ifdef Avoid_Underflow /*{*/
3191
      if (bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1)
3192
        word0(&adj) += (2*P+1)*Exp_msk1 - y;
3193
#else
3194
#ifdef Sudden_Underflow
3195
      if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) {
3196
        word0(&rv) += P*Exp_msk1;
3197
        adj.d *= ulp(dval(&rv));
3198
        if (bc.dsign)
3199
          dval(&rv) += adj.d;
3200
        else
3201
          dval(&rv) -= adj.d;
3202
        word0(&rv) -= P*Exp_msk1;
3203
        goto cont;
3204
        }
3205
#endif /*Sudden_Underflow*/
3206
#endif /*Avoid_Underflow}*/
3207
      adj.d *= ulp(&rv);
3208
      if (bc.dsign) {
3209
        if (word0(&rv) == Big0 && word1(&rv) == Big1)
3210
          goto ovfl;
3211
        dval(&rv) += adj.d;
3212
        }
3213
      else
3214
        dval(&rv) -= adj.d;
3215
      goto cont;
3216
      }
3217
#endif /*}Honor_FLT_ROUNDS*/
3218
3219
148k
    if (i < 0) {
3220
      /* Error is less than half an ulp -- check for
3221
       * special case of mantissa a power of two.
3222
       */
3223
70.1k
      if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask
3224
2.85k
#ifdef IEEE_Arith /*{*/
3225
2.85k
#ifdef Avoid_Underflow
3226
2.85k
       || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1
3227
#else
3228
       || (word0(&rv) & Exp_mask) <= Exp_msk1
3229
#endif
3230
70.1k
#endif /*}*/
3231
70.1k
        ) {
3232
#ifdef SET_INEXACT
3233
        if (!delta->x[0] && delta->wds <= 1)
3234
          bc.inexact = 0;
3235
#endif
3236
67.8k
        break;
3237
67.8k
        }
3238
2.31k
      if (!delta->x[0] && delta->wds <= 1) {
3239
        /* exact result */
3240
#ifdef SET_INEXACT
3241
        bc.inexact = 0;
3242
#endif
3243
1.44k
        break;
3244
1.44k
        }
3245
872
      delta = lshift(delta,Log2P);
3246
872
      if (cmp(delta, bs) > 0)
3247
673
        goto drop_down;
3248
199
      break;
3249
872
      }
3250
78.6k
    if (i == 0) {
3251
      /* exactly half-way between */
3252
3.13k
      if (bc.dsign) {
3253
2.16k
        if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
3254
1.42k
         &&  word1(&rv) == (
3255
1.42k
#ifdef Avoid_Underflow
3256
1.42k
      (bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1)
3257
1.42k
    ? (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
3258
1.42k
#endif
3259
1.42k
               0xffffffff)) {
3260
          /*boundary case -- increment exponent*/
3261
6
          if (word0(&rv) == Big0 && word1(&rv) == Big1)
3262
0
            goto ovfl;
3263
6
          word0(&rv) = (word0(&rv) & Exp_mask)
3264
6
            + Exp_msk1
3265
#ifdef IBM
3266
            | Exp_msk1 >> 4
3267
#endif
3268
6
            ;
3269
6
          word1(&rv) = 0;
3270
6
#ifdef Avoid_Underflow
3271
6
          bc.dsign = 0;
3272
6
#endif
3273
6
          break;
3274
6
          }
3275
2.16k
        }
3276
962
      else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) {
3277
673
 drop_down:
3278
        /* boundary case -- decrement exponent */
3279
#ifdef Sudden_Underflow /*{{*/
3280
        L = word0(&rv) & Exp_mask;
3281
#ifdef IBM
3282
        if (L <  Exp_msk1)
3283
#else
3284
#ifdef Avoid_Underflow
3285
        if (L <= (bc.scale ? (2*P+1)*Exp_msk1 : Exp_msk1))
3286
#else
3287
        if (L <= Exp_msk1)
3288
#endif /*Avoid_Underflow*/
3289
#endif /*IBM*/
3290
          {
3291
          if (bc.nd >nd) {
3292
            bc.uflchk = 1;
3293
            break;
3294
            }
3295
          goto undfl;
3296
          }
3297
        L -= Exp_msk1;
3298
#else /*Sudden_Underflow}{*/
3299
673
#ifdef Avoid_Underflow
3300
673
        if (bc.scale) {
3301
0
          L = word0(&rv) & Exp_mask;
3302
0
          if (L <= (2*P+1)*Exp_msk1) {
3303
0
            if (L > (P+2)*Exp_msk1)
3304
              /* round even ==> */
3305
              /* accept rv */
3306
0
              break;
3307
            /* rv = smallest denormal */
3308
0
            if (bc.nd >nd) {
3309
0
              bc.uflchk = 1;
3310
0
              break;
3311
0
              }
3312
0
            goto undfl;
3313
0
            }
3314
0
          }
3315
673
#endif /*Avoid_Underflow*/
3316
673
        L = (word0(&rv) & Exp_mask) - Exp_msk1;
3317
673
#endif /*Sudden_Underflow}}*/
3318
673
        word0(&rv) = L | Bndry_mask1;
3319
673
        word1(&rv) = 0xffffffff;
3320
#ifdef IBM
3321
        goto cont;
3322
#else
3323
673
#ifndef NO_STRTOD_BIGCOMP
3324
673
        if (bc.nd > nd)
3325
370
          goto cont;
3326
303
#endif
3327
303
        break;
3328
673
#endif
3329
673
        }
3330
3.12k
#ifndef ROUND_BIASED
3331
3.12k
#ifdef Avoid_Underflow
3332
3.12k
      if (Lsb1) {
3333
0
        if (!(word0(&rv) & Lsb1))
3334
0
          break;
3335
0
        }
3336
3.12k
      else if (!(word1(&rv) & Lsb))
3337
2.52k
        break;
3338
#else
3339
      if (!(word1(&rv) & LSB))
3340
        break;
3341
#endif
3342
602
#endif
3343
602
      if (bc.dsign)
3344
149
#ifdef Avoid_Underflow
3345
149
        dval(&rv) += sulp(&rv, &bc);
3346
#else
3347
        dval(&rv) += ulp(&rv);
3348
#endif
3349
453
#ifndef ROUND_BIASED
3350
453
      else {
3351
453
#ifdef Avoid_Underflow
3352
453
        dval(&rv) -= sulp(&rv, &bc);
3353
#else
3354
        dval(&rv) -= ulp(&rv);
3355
#endif
3356
453
#ifndef Sudden_Underflow
3357
453
        if (!dval(&rv)) {
3358
0
          if (bc.nd >nd) {
3359
0
            bc.uflchk = 1;
3360
0
            break;
3361
0
            }
3362
0
          goto undfl;
3363
0
          }
3364
453
#endif
3365
453
        }
3366
602
#ifdef Avoid_Underflow
3367
602
      bc.dsign = 1 - bc.dsign;
3368
602
#endif
3369
602
#endif
3370
602
      break;
3371
602
      }
3372
75.4k
    if ((aadj = ratio(delta, bs)) <= 2.) {
3373
40.5k
      if (bc.dsign)
3374
17.1k
        aadj = aadj1 = 1.;
3375
23.4k
      else if (word1(&rv) || word0(&rv) & Bndry_mask) {
3376
21.1k
#ifndef Sudden_Underflow
3377
21.1k
        if (word1(&rv) == Tiny1 && !word0(&rv)) {
3378
0
          if (bc.nd >nd) {
3379
0
            bc.uflchk = 1;
3380
0
            break;
3381
0
            }
3382
0
          goto undfl;
3383
0
          }
3384
21.1k
#endif
3385
21.1k
        aadj = 1.;
3386
21.1k
        aadj1 = -1.;
3387
21.1k
        }
3388
2.22k
      else {
3389
        /* special case -- power of FLT_RADIX to be */
3390
        /* rounded down... */
3391
3392
2.22k
        if (aadj < 2./FLT_RADIX)
3393
0
          aadj = 1./FLT_RADIX;
3394
2.22k
        else
3395
2.22k
          aadj *= 0.5;
3396
2.22k
        aadj1 = -aadj;
3397
2.22k
        }
3398
40.5k
      }
3399
34.9k
    else {
3400
34.9k
      aadj *= 0.5;
3401
34.9k
      aadj1 = bc.dsign ? aadj : -aadj;
3402
#ifdef Check_FLT_ROUNDS
3403
      switch(bc.rounding) {
3404
        case 2: /* towards +infinity */
3405
          aadj1 -= 0.5;
3406
          break;
3407
        case 0: /* towards 0 */
3408
        case 3: /* towards -infinity */
3409
          aadj1 += 0.5;
3410
        }
3411
#else
3412
34.9k
      if (Flt_Rounds == 0)
3413
0
        aadj1 += 0.5;
3414
34.9k
#endif /*Check_FLT_ROUNDS*/
3415
34.9k
      }
3416
75.4k
    y = word0(&rv) & Exp_mask;
3417
3418
    /* Check for overflow */
3419
3420
75.4k
    if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
3421
1.78k
      dval(&rv0) = dval(&rv);
3422
1.78k
      word0(&rv) -= P*Exp_msk1;
3423
1.78k
      adj.d = aadj1 * ulp(&rv);
3424
1.78k
      dval(&rv) += adj.d;
3425
1.78k
      if ((word0(&rv) & Exp_mask) >=
3426
1.78k
          Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
3427
660
        if (word0(&rv0) == Big0 && word1(&rv0) == Big1)
3428
660
          goto ovfl;
3429
0
        word0(&rv) = Big0;
3430
0
        word1(&rv) = Big1;
3431
0
        goto cont;
3432
660
        }
3433
1.12k
      else
3434
1.12k
        word0(&rv) += P*Exp_msk1;
3435
1.78k
      }
3436
73.7k
    else {
3437
73.7k
#ifdef Avoid_Underflow
3438
73.7k
      if (bc.scale && y <= 2*P*Exp_msk1) {
3439
7.68k
        if (aadj <= 0x7fffffff) {
3440
7.68k
          if ((z = aadj) <= 0)
3441
2.22k
            z = 1;
3442
7.68k
          aadj = z;
3443
7.68k
          aadj1 = bc.dsign ? aadj : -aadj;
3444
7.68k
          }
3445
7.68k
        dval(&aadj2) = aadj1;
3446
7.68k
        word0(&aadj2) += (2*P+1)*Exp_msk1 - y;
3447
7.68k
        aadj1 = dval(&aadj2);
3448
7.68k
        adj.d = aadj1 * ulp(&rv);
3449
7.68k
        dval(&rv) += adj.d;
3450
7.68k
        if (rv.d == 0.)
3451
#ifdef NO_STRTOD_BIGCOMP
3452
          goto undfl;
3453
#else
3454
2.22k
          {
3455
2.22k
          req_bigcomp = 1;
3456
2.22k
          break;
3457
2.22k
          }
3458
7.68k
#endif
3459
7.68k
        }
3460
66.0k
      else {
3461
66.0k
        adj.d = aadj1 * ulp(&rv);
3462
66.0k
        dval(&rv) += adj.d;
3463
66.0k
        }
3464
#else
3465
#ifdef Sudden_Underflow
3466
      if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) {
3467
        dval(&rv0) = dval(&rv);
3468
        word0(&rv) += P*Exp_msk1;
3469
        adj.d = aadj1 * ulp(&rv);
3470
        dval(&rv) += adj.d;
3471
#ifdef IBM
3472
        if ((word0(&rv) & Exp_mask) <  P*Exp_msk1)
3473
#else
3474
        if ((word0(&rv) & Exp_mask) <= P*Exp_msk1)
3475
#endif
3476
          {
3477
          if (word0(&rv0) == Tiny0
3478
           && word1(&rv0) == Tiny1) {
3479
            if (bc.nd >nd) {
3480
              bc.uflchk = 1;
3481
              break;
3482
              }
3483
            goto undfl;
3484
            }
3485
          word0(&rv) = Tiny0;
3486
          word1(&rv) = Tiny1;
3487
          goto cont;
3488
          }
3489
        else
3490
          word0(&rv) -= P*Exp_msk1;
3491
        }
3492
      else {
3493
        adj.d = aadj1 * ulp(&rv);
3494
        dval(&rv) += adj.d;
3495
        }
3496
#else /*Sudden_Underflow*/
3497
      /* Compute adj so that the IEEE rounding rules will
3498
       * correctly round rv + adj in some half-way cases.
3499
       * If rv * ulp(rv) is denormalized (i.e.,
3500
       * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
3501
       * trouble from bits lost to denormalization;
3502
       * example: 1.2e-307 .
3503
       */
3504
      if (y <= (P-1)*Exp_msk1 && aadj > 1.) {
3505
        aadj1 = (double)(int)(aadj + 0.5);
3506
        if (!bc.dsign)
3507
          aadj1 = -aadj1;
3508
        }
3509
      adj.d = aadj1 * ulp(&rv);
3510
      dval(&rv) += adj.d;
3511
#endif /*Sudden_Underflow*/
3512
#endif /*Avoid_Underflow*/
3513
73.7k
      }
3514
72.6k
    z = word0(&rv) & Exp_mask;
3515
72.6k
#ifndef SET_INEXACT
3516
72.6k
    if (bc.nd == nd) {
3517
37.6k
#ifdef Avoid_Underflow
3518
37.6k
    if (!bc.scale)
3519
31.3k
#endif
3520
31.3k
    if (y == z) {
3521
      /* Can we stop now? */
3522
31.3k
      L = (Long)aadj;
3523
31.3k
      aadj -= L;
3524
      /* The tolerances below are conservative. */
3525
31.3k
      if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
3526
31.3k
        if (aadj < .4999999 || aadj > .5000001)
3527
29.4k
          break;
3528
31.3k
        }
3529
42
      else if (aadj < .4999999/FLT_RADIX)
3530
42
        break;
3531
31.3k
      }
3532
37.6k
    }
3533
43.0k
#endif
3534
43.4k
 cont:
3535
43.4k
    Bfree(bb);
3536
43.4k
    Bfree(bd);
3537
43.4k
    Bfree(bs);
3538
43.4k
    Bfree(delta);
3539
43.4k
    }
3540
147k
  Bfree(bb);
3541
147k
  Bfree(bd);
3542
147k
  Bfree(bs);
3543
147k
  Bfree(bd0);
3544
147k
  Bfree(delta);
3545
147k
#ifndef NO_STRTOD_BIGCOMP
3546
147k
  if (req_bigcomp) {
3547
45.3k
    bd0 = 0;
3548
45.3k
    bc.e0 += nz1;
3549
45.3k
    bigcomp(&rv, s0, &bc);
3550
45.3k
    y = word0(&rv) & Exp_mask;
3551
45.3k
    if (y == Exp_mask)
3552
0
      goto ovfl;
3553
45.3k
    if (y == 0 && rv.d == 0.)
3554
2.22k
      goto undfl;
3555
45.3k
    }
3556
145k
#endif
3557
#ifdef SET_INEXACT
3558
  if (bc.inexact) {
3559
    if (!oldinexact) {
3560
      word0(&rv0) = Exp_1 + (70 << Exp_shift);
3561
      word1(&rv0) = 0;
3562
      dval(&rv0) += 1.;
3563
      }
3564
    }
3565
  else if (!oldinexact)
3566
    clear_inexact();
3567
#endif
3568
145k
#ifdef Avoid_Underflow
3569
145k
  if (bc.scale) {
3570
12.7k
    word0(&rv0) = Exp_1 - 2*P*Exp_msk1;
3571
12.7k
    word1(&rv0) = 0;
3572
12.7k
    dval(&rv) *= dval(&rv0);
3573
#ifndef NO_ERRNO
3574
    /* try to avoid the bug of testing an 8087 register value */
3575
#ifdef IEEE_Arith
3576
    if (!(word0(&rv) & Exp_mask))
3577
#else
3578
    if (word0(&rv) == 0 && word1(&rv) == 0)
3579
#endif
3580
      errno = ERANGE;
3581
#endif
3582
12.7k
    }
3583
145k
#endif /* Avoid_Underflow */
3584
#ifdef SET_INEXACT
3585
  if (bc.inexact && !(word0(&rv) & Exp_mask)) {
3586
    /* set underflow bit */
3587
    dval(&rv0) = 1e-300;
3588
    dval(&rv0) *= dval(&rv0);
3589
    }
3590
#endif
3591
259k
 ret:
3592
259k
  if (se)
3593
1.75k
    *se = (char *)s;
3594
259k
  return sign ? -dval(&rv) : dval(&rv);
3595
145k
  }
3596
3597
#if !defined(MULTIPLE_THREADS) && !defined(dtoa_result)
3598
 ZEND_TLS char *dtoa_result;
3599
#endif
3600
3601
 static char *
3602
#ifdef KR_headers
3603
rv_alloc(i) int i;
3604
#else
3605
rv_alloc(int i)
3606
#endif
3607
119k
{
3608
3609
119k
  int j, k, *r;
3610
119k
  size_t rem;
3611
3612
119k
  rem = sizeof(Bigint) - sizeof(ULong) - sizeof(int);
3613
3614
3615
119k
  j = sizeof(ULong);
3616
119k
  if (i > ((INT_MAX >> 2) + rem))
3617
0
    i = (INT_MAX >> 2) + rem;
3618
119k
  for(k = 0;
3619
119k
    rem + j <= (size_t)i; j <<= 1)
3620
0
      k++;
3621
3622
119k
  r = (int*)Balloc(k);
3623
119k
  *r = k;
3624
119k
  return
3625
119k
#ifndef MULTIPLE_THREADS
3626
119k
  dtoa_result =
3627
119k
#endif
3628
119k
    (char *)(r+1);
3629
119k
  }
3630
3631
 static char *
3632
#ifdef KR_headers
3633
nrv_alloc(s, rve, n) char *s, **rve; int n;
3634
#else
3635
nrv_alloc(const char *s, char **rve, int n)
3636
#endif
3637
5.12k
{
3638
5.12k
  char *rv, *t;
3639
3640
5.12k
  t = rv = rv_alloc(n);
3641
23.4k
  while((*t = *s++)) t++;
3642
5.12k
  if (rve)
3643
0
    *rve = t;
3644
5.12k
  return rv;
3645
5.12k
  }
3646
3647
/* freedtoa(s) must be used to free values s returned by dtoa
3648
 * when MULTIPLE_THREADS is #defined.  It should be used in all cases,
3649
 * but for consistency with earlier versions of dtoa, it is optional
3650
 * when MULTIPLE_THREADS is not defined.
3651
 */
3652
3653
ZEND_API void
3654
#ifdef KR_headers
3655
zend_freedtoa(s) char *s;
3656
#else
3657
zend_freedtoa(char *s)
3658
#endif
3659
119k
{
3660
119k
  Bigint *b = (Bigint *)((int *)s - 1);
3661
119k
  b->maxwds = 1 << (b->k = *(int*)b);
3662
119k
  Bfree(b);
3663
119k
#ifndef MULTIPLE_THREADS
3664
119k
  if (s == dtoa_result)
3665
119k
    dtoa_result = 0;
3666
119k
#endif
3667
119k
  }
3668
3669
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
3670
 *
3671
 * Inspired by "How to Print Floating-Point Numbers Accurately" by
3672
 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
3673
 *
3674
 * Modifications:
3675
 *  1. Rather than iterating, we use a simple numeric overestimate
3676
 *     to determine k = floor(log10(d)).  We scale relevant
3677
 *     quantities using O(log2(k)) rather than O(k) multiplications.
3678
 *  2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
3679
 *     try to generate digits strictly left to right.  Instead, we
3680
 *     compute with fewer bits and propagate the carry if necessary
3681
 *     when rounding the final digit up.  This is often faster.
3682
 *  3. Under the assumption that input will be rounded nearest,
3683
 *     mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
3684
 *     That is, we allow equality in stopping tests when the
3685
 *     round-nearest rule will give the same floating-point value
3686
 *     as would satisfaction of the stopping test with strict
3687
 *     inequality.
3688
 *  4. We remove common factors of powers of 2 from relevant
3689
 *     quantities.
3690
 *  5. When converting floating-point integers less than 1e16,
3691
 *     we use floating-point arithmetic rather than resorting
3692
 *     to multiple-precision integers.
3693
 *  6. When asked to produce fewer than 15 digits, we first try
3694
 *     to get by with floating-point arithmetic; we resort to
3695
 *     multiple-precision integer arithmetic only if we cannot
3696
 *     guarantee that the floating-point calculation has given
3697
 *     the correctly rounded result.  For k requested digits and
3698
 *     "uniformly" distributed input, the probability is
3699
 *     something like 10^(k-15) that we must resort to the Long
3700
 *     calculation.
3701
 */
3702
3703
ZEND_API char *zend_dtoa(double dd, int mode, int ndigits, int *decpt, bool *sign, char **rve)
3704
119k
{
3705
 /* Arguments ndigits, decpt, sign are similar to those
3706
  of ecvt and fcvt; trailing zeros are suppressed from
3707
  the returned string.  If not null, *rve is set to point
3708
  to the end of the return value.  If d is +-Infinity or NaN,
3709
  then *decpt is set to 9999.
3710
3711
  mode:
3712
    0 ==> shortest string that yields d when read in
3713
      and rounded to nearest.
3714
    1 ==> like 0, but with Steele & White stopping rule;
3715
      e.g. with IEEE P754 arithmetic , mode 0 gives
3716
      1e23 whereas mode 1 gives 9.999999999999999e22.
3717
    2 ==> max(1,ndigits) significant digits.  This gives a
3718
      return value similar to that of ecvt, except
3719
      that trailing zeros are suppressed.
3720
    3 ==> through ndigits past the decimal point.  This
3721
      gives a return value similar to that from fcvt,
3722
      except that trailing zeros are suppressed, and
3723
      ndigits can be negative.
3724
    4,5 ==> similar to 2 and 3, respectively, but (in
3725
      round-nearest mode) with the tests of mode 0 to
3726
      possibly return a shorter string that rounds to d.
3727
      With IEEE arithmetic and compilation with
3728
      -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
3729
      as modes 2 and 3 when FLT_ROUNDS != 1.
3730
    6-9 ==> Debugging modes similar to mode - 4:  don't try
3731
      fast floating-point estimate (if applicable).
3732
3733
    Values of mode other than 0-9 are treated as mode 0.
3734
3735
    Sufficient space is allocated to the return value
3736
    to hold the suppressed trailing zeros.
3737
  */
3738
3739
119k
  int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1,
3740
119k
    j, j1 = 0, k, k0, k_check, leftright, m2, m5, s2, s5,
3741
119k
    spec_case = 0, try_quick;
3742
119k
  Long L;
3743
119k
#ifndef Sudden_Underflow
3744
119k
  int denorm;
3745
119k
  ULong x;
3746
119k
#endif
3747
119k
  Bigint *b, *b1, *delta, *mlo, *mhi, *S;
3748
119k
  U d2, eps, u;
3749
119k
  double ds;
3750
119k
  char *s, *s0;
3751
119k
#ifndef No_leftright
3752
119k
#ifdef IEEE_Arith
3753
119k
  U eps1;
3754
119k
#endif
3755
119k
#endif
3756
#ifdef SET_INEXACT
3757
  int inexact, oldinexact;
3758
#endif
3759
#ifdef Honor_FLT_ROUNDS /*{*/
3760
  int Rounding;
3761
#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
3762
  Rounding = Flt_Rounds;
3763
#else /*}{*/
3764
  Rounding = 1;
3765
  switch(fegetround()) {
3766
    case FE_TOWARDZERO: Rounding = 0; break;
3767
    case FE_UPWARD: Rounding = 2; break;
3768
    case FE_DOWNWARD: Rounding = 3;
3769
    }
3770
#endif /*}}*/
3771
#endif /*}*/
3772
3773
119k
#ifndef MULTIPLE_THREADS
3774
119k
  if (dtoa_result) {
3775
0
    zend_freedtoa(dtoa_result);
3776
0
    dtoa_result = 0;
3777
0
    }
3778
119k
#endif
3779
3780
119k
  u.d = dd;
3781
119k
  if (word0(&u) & Sign_bit) {
3782
    /* set sign for everything, including 0's and NaNs */
3783
4.13k
    *sign = 1;
3784
4.13k
    word0(&u) &= ~Sign_bit; /* clear sign bit */
3785
4.13k
    }
3786
115k
  else
3787
115k
    *sign = 0;
3788
3789
119k
#if defined(IEEE_Arith) + defined(VAX)
3790
119k
#ifdef IEEE_Arith
3791
119k
  if ((word0(&u) & Exp_mask) == Exp_mask)
3792
#else
3793
  if (word0(&u)  == 0x8000)
3794
#endif
3795
1.88k
    {
3796
    /* Infinity or NaN */
3797
1.88k
    *decpt = 9999;
3798
1.88k
#ifdef IEEE_Arith
3799
1.88k
    if (!word1(&u) && !(word0(&u) & 0xfffff))
3800
1.88k
      return nrv_alloc("Infinity", rve, 8);
3801
1
#endif
3802
1
    return nrv_alloc("NaN", rve, 3);
3803
1.88k
    }
3804
118k
#endif
3805
#ifdef IBM
3806
  dval(&u) += 0; /* normalize */
3807
#endif
3808
118k
  if (!dval(&u)) {
3809
3.23k
    *decpt = 1;
3810
3.23k
    return nrv_alloc("0", rve, 1);
3811
3.23k
    }
3812
3813
#ifdef SET_INEXACT
3814
  try_quick = oldinexact = get_inexact();
3815
  inexact = 1;
3816
#endif
3817
#ifdef Honor_FLT_ROUNDS
3818
  if (Rounding >= 2) {
3819
    if (*sign)
3820
      Rounding = Rounding == 2 ? 0 : 2;
3821
    else
3822
      if (Rounding != 2)
3823
        Rounding = 0;
3824
    }
3825
#endif
3826
3827
114k
  b = d2b(&u, &be, &bbits);
3828
#ifdef Sudden_Underflow
3829
  i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
3830
#else
3831
114k
  if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
3832
109k
#endif
3833
109k
    dval(&d2) = dval(&u);
3834
109k
    word0(&d2) &= Frac_mask1;
3835
109k
    word0(&d2) |= Exp_11;
3836
#ifdef IBM
3837
    if (j = 11 - hi0bits(word0(&d2) & Frac_mask))
3838
      dval(&d2) /= 1 << j;
3839
#endif
3840
3841
    /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
3842
     * log10(x)  =  log(x) / log(10)
3843
     *    ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
3844
     * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
3845
     *
3846
     * This suggests computing an approximation k to log10(d) by
3847
     *
3848
     * k = (i - Bias)*0.301029995663981
3849
     *  + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
3850
     *
3851
     * We want k to be too large rather than too small.
3852
     * The error in the first-order Taylor series approximation
3853
     * is in our favor, so we just round up the constant enough
3854
     * to compensate for any error in the multiplication of
3855
     * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
3856
     * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
3857
     * adding 1e-13 to the constant term more than suffices.
3858
     * Hence we adjust the constant term to 0.1760912590558.
3859
     * (We could get a more accurate k by invoking log10,
3860
     *  but this is probably not worthwhile.)
3861
     */
3862
3863
109k
    i -= Bias;
3864
#ifdef IBM
3865
    i <<= 2;
3866
    i += j;
3867
#endif
3868
109k
#ifndef Sudden_Underflow
3869
109k
    denorm = 0;
3870
109k
    }
3871
5.39k
  else {
3872
    /* d is denormalized */
3873
3874
5.39k
    i = bbits + be + (Bias + (P-1) - 1);
3875
5.39k
    x = i > 32  ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)
3876
5.39k
          : word1(&u) << (32 - i);
3877
5.39k
    dval(&d2) = x;
3878
5.39k
    word0(&d2) -= 31*Exp_msk1; /* adjust exponent */
3879
5.39k
    i -= (Bias + (P-1) - 1) + 1;
3880
5.39k
    denorm = 1;
3881
5.39k
    }
3882
114k
#endif
3883
114k
  ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
3884
114k
  k = (int)ds;
3885
114k
  if (ds < 0. && ds != k)
3886
16.1k
    k--; /* want k = floor(ds) */
3887
114k
  k_check = 1;
3888
114k
  if (k >= 0 && k <= Ten_pmax) {
3889
69.6k
    if (dval(&u) < tens[k])
3890
833
      k--;
3891
69.6k
    k_check = 0;
3892
69.6k
    }
3893
114k
  j = bbits - i - 1;
3894
114k
  if (j >= 0) {
3895
67.3k
    b2 = 0;
3896
67.3k
    s2 = j;
3897
67.3k
    }
3898
47.5k
  else {
3899
47.5k
    b2 = -j;
3900
47.5k
    s2 = 0;
3901
47.5k
    }
3902
114k
  if (k >= 0) {
3903
98.6k
    b5 = 0;
3904
98.6k
    s5 = k;
3905
98.6k
    s2 += k;
3906
98.6k
    }
3907
16.1k
  else {
3908
16.1k
    b2 -= k;
3909
16.1k
    b5 = -k;
3910
16.1k
    s5 = 0;
3911
16.1k
    }
3912
114k
  if (mode < 0 || mode > 9)
3913
0
    mode = 0;
3914
3915
114k
#ifndef SET_INEXACT
3916
#ifdef Check_FLT_ROUNDS
3917
  try_quick = Rounding == 1;
3918
#else
3919
114k
  try_quick = 1;
3920
114k
#endif
3921
114k
#endif /*SET_INEXACT*/
3922
3923
114k
  if (mode > 5) {
3924
0
    mode -= 4;
3925
0
    try_quick = 0;
3926
0
    }
3927
114k
  leftright = 1;
3928
114k
  ilim = ilim1 = -1;  /* Values for cases 0 and 1; done here to */
3929
        /* silence erroneous "gcc -Wall" warning. */
3930
114k
  switch(mode) {
3931
7.21k
    case 0:
3932
7.21k
    case 1:
3933
7.21k
      i = 18;
3934
7.21k
      ndigits = 0;
3935
7.21k
      break;
3936
107k
    case 2:
3937
107k
      leftright = 0;
3938
107k
      ZEND_FALLTHROUGH;
3939
107k
    case 4:
3940
107k
      if (ndigits <= 0)
3941
0
        ndigits = 1;
3942
107k
      ilim = ilim1 = i = ndigits;
3943
107k
      break;
3944
0
    case 3:
3945
0
      leftright = 0;
3946
0
      ZEND_FALLTHROUGH;
3947
0
    case 5:
3948
0
      i = ndigits + k + 1;
3949
0
      ilim = i;
3950
0
      ilim1 = i - 1;
3951
0
      if (i <= 0)
3952
0
        i = 1;
3953
114k
    }
3954
114k
  s = s0 = rv_alloc(i);
3955
3956
#ifdef Honor_FLT_ROUNDS
3957
  if (mode > 1 && Rounding != 1)
3958
    leftright = 0;
3959
#endif
3960
3961
114k
  if (ilim >= 0 && ilim <= Quick_max && try_quick) {
3962
3963
    /* Try to get by with floating-point arithmetic. */
3964
3965
107k
    i = 0;
3966
107k
    dval(&d2) = dval(&u);
3967
107k
    k0 = k;
3968
107k
    ilim0 = ilim;
3969
107k
    ieps = 2; /* conservative */
3970
107k
    if (k > 0) {
3971
91.2k
      ds = tens[k&0xf];
3972
91.2k
      j = k >> 4;
3973
91.2k
      if (j & Bletch) {
3974
        /* prevent overflows */
3975
1.01k
        j &= Bletch - 1;
3976
1.01k
        dval(&u) /= bigtens[n_bigtens-1];
3977
1.01k
        ieps++;
3978
1.01k
        }
3979
181k
      for(; j; j >>= 1, i++)
3980
90.2k
        if (j & 1) {
3981
55.9k
          ieps++;
3982
55.9k
          ds *= bigtens[i];
3983
55.9k
          }
3984
91.2k
      dval(&u) /= ds;
3985
91.2k
      }
3986
16.3k
    else if ((j1 = -k)) {
3987
16.1k
      dval(&u) *= tens[j1 & 0xf];
3988
71.1k
      for(j = j1 >> 4; j; j >>= 1, i++)
3989
54.9k
        if (j & 1) {
3990
31.5k
          ieps++;
3991
31.5k
          dval(&u) *= bigtens[i];
3992
31.5k
          }
3993
16.1k
      }
3994
107k
    if (k_check && dval(&u) < 1. && ilim > 0) {
3995
6.82k
      if (ilim1 <= 0)
3996
0
        goto fast_failed;
3997
6.82k
      ilim = ilim1;
3998
6.82k
      k--;
3999
6.82k
      dval(&u) *= 10.;
4000
6.82k
      ieps++;
4001
6.82k
      }
4002
107k
    dval(&eps) = ieps*dval(&u) + 7.;
4003
107k
    word0(&eps) -= (P-1)*Exp_msk1;
4004
107k
    if (ilim == 0) {
4005
0
      S = mhi = 0;
4006
0
      dval(&u) -= 5.;
4007
0
      if (dval(&u) > dval(&eps))
4008
0
        goto one_digit;
4009
0
      if (dval(&u) < -dval(&eps))
4010
0
        goto no_digits;
4011
0
      goto fast_failed;
4012
0
      }
4013
107k
#ifndef No_leftright
4014
107k
    if (leftright) {
4015
      /* Use Steele & White method of only
4016
       * generating digits needed.
4017
       */
4018
0
      dval(&eps) = 0.5/tens[ilim-1] - dval(&eps);
4019
0
#ifdef IEEE_Arith
4020
0
      if (k0 < 0 && j1 >= 307) {
4021
0
        eps1.d = 1.01e256; /* 1.01 allows roundoff in the next few lines */
4022
0
        word0(&eps1) -= Exp_msk1 * (Bias+P-1);
4023
0
        dval(&eps1) *= tens[j1 & 0xf];
4024
0
        for(i = 0, j = (j1-256) >> 4; j; j >>= 1, i++)
4025
0
          if (j & 1)
4026
0
            dval(&eps1) *= bigtens[i];
4027
0
        if (eps.d < eps1.d)
4028
0
          eps.d = eps1.d;
4029
0
        }
4030
0
#endif
4031
0
      for(i = 0;;) {
4032
0
        L = dval(&u);
4033
0
        dval(&u) -= L;
4034
0
        *s++ = '0' + (int)L;
4035
0
        if (1. - dval(&u) < dval(&eps))
4036
0
          goto bump_up;
4037
0
        if (dval(&u) < dval(&eps))
4038
0
          goto ret1;
4039
0
        if (++i >= ilim)
4040
0
          break;
4041
0
        dval(&eps) *= 10.;
4042
0
        dval(&u) *= 10.;
4043
0
        }
4044
0
      }
4045
107k
    else {
4046
107k
#endif
4047
      /* Generate ilim digits, then fix them up. */
4048
107k
      dval(&eps) *= tens[ilim-1];
4049
1.46M
      for(i = 1;; i++, dval(&u) *= 10.) {
4050
1.46M
        L = (Long)(dval(&u));
4051
1.46M
        if (!(dval(&u) -= L))
4052
3.31k
          ilim = i;
4053
1.46M
        *s++ = '0' + (int)L;
4054
1.46M
        if (i == ilim) {
4055
107k
          if (dval(&u) > 0.5 + dval(&eps))
4056
25.9k
            goto bump_up;
4057
81.6k
          else if (dval(&u) < 0.5 - dval(&eps)) {
4058
102k
            while(*--s == '0');
4059
27.7k
            s++;
4060
27.7k
            goto ret1;
4061
27.7k
            }
4062
53.9k
          break;
4063
107k
          }
4064
1.46M
        }
4065
107k
#ifndef No_leftright
4066
107k
      }
4067
53.9k
#endif
4068
53.9k
 fast_failed:
4069
53.9k
    s = s0;
4070
53.9k
    dval(&u) = dval(&d2);
4071
53.9k
    k = k0;
4072
53.9k
    ilim = ilim0;
4073
53.9k
    }
4074
4075
  /* Do we have a "small" integer? */
4076
4077
61.1k
  if (be >= 0 && k <= Int_max) {
4078
    /* Yes. */
4079
4.89k
    ds = tens[k];
4080
4.89k
    if (ndigits < 0 && ilim <= 0) {
4081
0
      S = mhi = 0;
4082
0
      if (ilim < 0 || dval(&u) <= 5*ds)
4083
0
        goto no_digits;
4084
0
      goto one_digit;
4085
0
      }
4086
68.4k
    for(i = 1;; i++, dval(&u) *= 10.) {
4087
68.4k
      L = (Long)(dval(&u) / ds);
4088
68.4k
      dval(&u) -= L*ds;
4089
#ifdef Check_FLT_ROUNDS
4090
      /* If FLT_ROUNDS == 2, L will usually be high by 1 */
4091
      if (dval(&u) < 0) {
4092
        L--;
4093
        dval(&u) += ds;
4094
        }
4095
#endif
4096
68.4k
      *s++ = '0' + (int)L;
4097
68.4k
      if (!dval(&u)) {
4098
#ifdef SET_INEXACT
4099
        inexact = 0;
4100
#endif
4101
0
        break;
4102
0
        }
4103
68.4k
      if (i == ilim) {
4104
#ifdef Honor_FLT_ROUNDS
4105
        if (mode > 1)
4106
        switch(Rounding) {
4107
          case 0: goto ret1;
4108
          case 2: goto bump_up;
4109
          }
4110
#endif
4111
4.89k
        dval(&u) += dval(&u);
4112
#ifdef ROUND_BIASED
4113
        if (dval(&u) >= ds)
4114
#else
4115
4.89k
        if (dval(&u) > ds || (dval(&u) == ds && L & 1))
4116
47
#endif
4117
47
          {
4118
25.9k
 bump_up:
4119
95.3k
          while(*--s == '9')
4120
71.1k
            if (s == s0) {
4121
1.78k
              k++;
4122
1.78k
              *s = '0';
4123
1.78k
              break;
4124
1.78k
              }
4125
25.9k
          ++*s++;
4126
25.9k
          }
4127
30.8k
        break;
4128
4.89k
        }
4129
68.4k
      }
4130
30.8k
    goto ret1;
4131
4.89k
    }
4132
4133
56.2k
  m2 = b2;
4134
56.2k
  m5 = b5;
4135
56.2k
  mhi = mlo = 0;
4136
56.2k
  if (leftright) {
4137
7.21k
    i =
4138
7.21k
#ifndef Sudden_Underflow
4139
7.21k
      denorm ? be + (Bias + (P-1) - 1 + 1) :
4140
7.21k
#endif
4141
#ifdef IBM
4142
      1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
4143
#else
4144
7.21k
      1 + P - bbits;
4145
7.21k
#endif
4146
7.21k
    b2 += i;
4147
7.21k
    s2 += i;
4148
7.21k
    mhi = i2b(1);
4149
7.21k
    }
4150
56.2k
  if (m2 > 0 && s2 > 0) {
4151
29.6k
    i = m2 < s2 ? m2 : s2;
4152
29.6k
    b2 -= i;
4153
29.6k
    m2 -= i;
4154
29.6k
    s2 -= i;
4155
29.6k
    }
4156
56.2k
  if (b5 > 0) {
4157
5.27k
    if (leftright) {
4158
0
      if (m5 > 0) {
4159
0
        mhi = pow5mult(mhi, m5);
4160
0
        b1 = mult(mhi, b);
4161
0
        Bfree(b);
4162
0
        b = b1;
4163
0
        }
4164
0
      if ((j = b5 - m5))
4165
0
        b = pow5mult(b, j);
4166
0
      }
4167
5.27k
    else
4168
5.27k
      b = pow5mult(b, b5);
4169
5.27k
    }
4170
56.2k
  S = i2b(1);
4171
56.2k
  if (s5 > 0)
4172
50.9k
    S = pow5mult(S, s5);
4173
4174
  /* Check for special case that d is a normalized power of 2. */
4175
4176
56.2k
  spec_case = 0;
4177
56.2k
  if ((mode < 2 || leftright)
4178
#ifdef Honor_FLT_ROUNDS
4179
      && Rounding == 1
4180
#endif
4181
56.2k
        ) {
4182
7.21k
    if (!word1(&u) && !(word0(&u) & Bndry_mask)
4183
7
#ifndef Sudden_Underflow
4184
7
     && word0(&u) & (Exp_mask & ~Exp_msk1)
4185
7.21k
#endif
4186
7.21k
        ) {
4187
      /* The special case */
4188
7
      b2 += Log2P;
4189
7
      s2 += Log2P;
4190
7
      spec_case = 1;
4191
7
      }
4192
7.21k
    }
4193
4194
  /* Arrange for convenient computation of quotients:
4195
   * shift left if necessary so divisor has 4 leading 0 bits.
4196
   *
4197
   * Perhaps we should just compute leading 28 bits of S once
4198
   * and for all and pass them and a shift to quorem, so it
4199
   * can do shifts and ORs to compute the numerator for q.
4200
   */
4201
56.2k
  i = dshift(S, s2);
4202
56.2k
  b2 += i;
4203
56.2k
  m2 += i;
4204
56.2k
  s2 += i;
4205
56.2k
  if (b2 > 0)
4206
55.4k
    b = lshift(b, b2);
4207
56.2k
  if (s2 > 0)
4208
56.0k
    S = lshift(S, s2);
4209
56.2k
  if (k_check) {
4210
28.5k
    if (cmp(b,S) < 0) {
4211
5.09k
      k--;
4212
5.09k
      b = multadd(b, 10, 0);  /* we botched the k estimate */
4213
5.09k
      if (leftright)
4214
222
        mhi = multadd(mhi, 10, 0);
4215
5.09k
      ilim = ilim1;
4216
5.09k
      }
4217
28.5k
    }
4218
56.2k
  if (ilim <= 0 && (mode == 3 || mode == 5)) {
4219
0
    if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
4220
      /* no digits, fcvt style */
4221
0
 no_digits:
4222
0
      k = -1 - ndigits;
4223
0
      goto ret;
4224
0
      }
4225
0
 one_digit:
4226
0
    *s++ = '1';
4227
0
    k++;
4228
0
    goto ret;
4229
0
    }
4230
56.2k
  if (leftright) {
4231
7.21k
    if (m2 > 0)
4232
7.21k
      mhi = lshift(mhi, m2);
4233
4234
    /* Compute mlo -- check for special case
4235
     * that d is a normalized power of 2.
4236
     */
4237
4238
7.21k
    mlo = mhi;
4239
7.21k
    if (spec_case) {
4240
7
      mhi = Balloc(mhi->k);
4241
7
      Bcopy(mhi, mlo);
4242
7
      mhi = lshift(mhi, Log2P);
4243
7
      }
4244
4245
105k
    for(i = 1;;i++) {
4246
105k
      dig = quorem(b,S) + '0';
4247
      /* Do we yet have the shortest decimal string
4248
       * that will round to d?
4249
       */
4250
105k
      j = cmp(b, mlo);
4251
105k
      delta = diff(S, mhi);
4252
105k
      j1 = delta->sign ? 1 : cmp(b, delta);
4253
105k
      Bfree(delta);
4254
105k
#ifndef ROUND_BIASED
4255
105k
      if (j1 == 0 && mode != 1 && !(word1(&u) & 1)
4256
#ifdef Honor_FLT_ROUNDS
4257
        && Rounding >= 1
4258
#endif
4259
105k
                   ) {
4260
5
        if (dig == '9')
4261
1
          goto round_9_up;
4262
4
        if (j > 0)
4263
1
          dig++;
4264
#ifdef SET_INEXACT
4265
        else if (!b->x[0] && b->wds <= 1)
4266
          inexact = 0;
4267
#endif
4268
4
        *s++ = dig;
4269
4
        goto ret;
4270
5
        }
4271
105k
#endif
4272
105k
      if (j < 0 || (j == 0 && mode != 1
4273
28
#ifndef ROUND_BIASED
4274
28
              && !(word1(&u) & 1)
4275
100k
#endif
4276
100k
          )) {
4277
4.92k
        if (!b->x[0] && b->wds <= 1) {
4278
#ifdef SET_INEXACT
4279
          inexact = 0;
4280
#endif
4281
106
          goto accept_dig;
4282
106
          }
4283
#ifdef Honor_FLT_ROUNDS
4284
        if (mode > 1)
4285
         switch(Rounding) {
4286
          case 0: goto accept_dig;
4287
          case 2: goto keep_dig;
4288
          }
4289
#endif /*Honor_FLT_ROUNDS*/
4290
4.81k
        if (j1 > 0) {
4291
2.73k
          b = lshift(b, 1);
4292
2.73k
          j1 = cmp(b, S);
4293
#ifdef ROUND_BIASED
4294
          if (j1 >= 0 /*)*/
4295
#else
4296
2.73k
          if ((j1 > 0 || (j1 == 0 && dig & 1))
4297
986
#endif
4298
986
          && dig++ == '9')
4299
0
            goto round_9_up;
4300
2.73k
          }
4301
4.92k
 accept_dig:
4302
4.92k
        *s++ = dig;
4303
4.92k
        goto ret;
4304
4.81k
        }
4305
100k
      if (j1 > 0) {
4306
#ifdef Honor_FLT_ROUNDS
4307
        if (!Rounding)
4308
          goto accept_dig;
4309
#endif
4310
2.28k
        if (dig == '9') { /* possible if i == 1 */
4311
210
 round_9_up:
4312
210
          *s++ = '9';
4313
210
          goto roundoff;
4314
209
          }
4315
2.07k
        *s++ = dig + 1;
4316
2.07k
        goto ret;
4317
2.28k
        }
4318
#ifdef Honor_FLT_ROUNDS
4319
 keep_dig:
4320
#endif
4321
98.4k
      *s++ = dig;
4322
98.4k
      if (i == ilim)
4323
0
        break;
4324
98.4k
      b = multadd(b, 10, 0);
4325
98.4k
      if (mlo == mhi)
4326
98.3k
        mlo = mhi = multadd(mhi, 10, 0);
4327
110
      else {
4328
110
        mlo = multadd(mlo, 10, 0);
4329
110
        mhi = multadd(mhi, 10, 0);
4330
110
        }
4331
98.4k
      }
4332
7.21k
    }
4333
49.0k
  else
4334
686k
    for(i = 1;; i++) {
4335
686k
      *s++ = dig = quorem(b,S) + '0';
4336
686k
      if (!b->x[0] && b->wds <= 1) {
4337
#ifdef SET_INEXACT
4338
        inexact = 0;
4339
#endif
4340
0
        goto ret;
4341
0
        }
4342
686k
      if (i >= ilim)
4343
49.0k
        break;
4344
637k
      b = multadd(b, 10, 0);
4345
637k
      }
4346
4347
  /* Round off last digit */
4348
4349
#ifdef Honor_FLT_ROUNDS
4350
  switch(Rounding) {
4351
    case 0: goto trimzeros;
4352
    case 2: goto roundoff;
4353
    }
4354
#endif
4355
49.0k
  b = lshift(b, 1);
4356
49.0k
  j = cmp(b, S);
4357
#ifdef ROUND_BIASED
4358
  if (j >= 0)
4359
#else
4360
49.0k
  if (j > 0 || (j == 0 && dig & 1))
4361
18.1k
#endif
4362
18.1k
    {
4363
18.3k
 roundoff:
4364
18.8k
    while(*--s == '9')
4365
674
      if (s == s0) {
4366
210
        k++;
4367
210
        *s++ = '1';
4368
210
        goto ret;
4369
210
        }
4370
18.1k
    ++*s++;
4371
18.1k
    }
4372
30.8k
  else {
4373
#ifdef Honor_FLT_ROUNDS
4374
 trimzeros:
4375
#endif
4376
62.1k
    while(*--s == '0');
4377
30.8k
    s++;
4378
30.8k
    }
4379
56.2k
 ret:
4380
56.2k
  Bfree(S);
4381
56.2k
  if (mhi) {
4382
7.21k
    if (mlo && mlo != mhi)
4383
7
      Bfree(mlo);
4384
7.21k
    Bfree(mhi);
4385
7.21k
    }
4386
114k
 ret1:
4387
#ifdef SET_INEXACT
4388
  if (inexact) {
4389
    if (!oldinexact) {
4390
      word0(&u) = Exp_1 + (70 << Exp_shift);
4391
      word1(&u) = 0;
4392
      dval(&u) += 1.;
4393
      }
4394
    }
4395
  else if (!oldinexact)
4396
    clear_inexact();
4397
#endif
4398
114k
  Bfree(b);
4399
114k
  *s = 0;
4400
114k
  *decpt = k + 1;
4401
114k
  if (rve)
4402
0
    *rve = s;
4403
114k
  return s0;
4404
56.2k
  }
4405
4406
ZEND_API double zend_hex_strtod(const char *str, const char **endptr)
4407
0
{
4408
0
  const char *s = str;
4409
0
  char c;
4410
0
  int any = 0;
4411
0
  double value = 0;
4412
4413
0
  if (*s == '0' && (s[1] == 'x' || s[1] == 'X')) {
4414
0
    s += 2;
4415
0
  }
4416
4417
0
  while ((c = *s++)) {
4418
0
    if (c >= '0' && c <= '9') {
4419
0
      c -= '0';
4420
0
    } else if (c >= 'A' && c <= 'F') {
4421
0
      c -= 'A' - 10;
4422
0
    } else if (c >= 'a' && c <= 'f') {
4423
0
      c -= 'a' - 10;
4424
0
    } else {
4425
0
      break;
4426
0
    }
4427
4428
0
    any = 1;
4429
0
    value = value * 16 + c;
4430
0
  }
4431
4432
0
  if (endptr != NULL) {
4433
0
    *endptr = any ? s - 1 : str;
4434
0
  }
4435
4436
0
  return value;
4437
0
}
4438
4439
ZEND_API double zend_oct_strtod(const char *str, const char **endptr)
4440
0
{
4441
0
  const char *s = str;
4442
0
  char c;
4443
0
  double value = 0;
4444
0
  int any = 0;
4445
4446
0
  if (str[0] == '\0') {
4447
0
    if (endptr != NULL) {
4448
0
      *endptr = str;
4449
0
    }
4450
0
    return 0.0;
4451
0
  }
4452
4453
0
  while ((c = *s++)) {
4454
0
    if (c < '0' || c > '7') {
4455
      /* break and return the current value if the number is not well-formed
4456
       * that's what Linux strtol() does
4457
       */
4458
0
      break;
4459
0
    }
4460
0
    value = value * 8 + c - '0';
4461
0
    any = 1;
4462
0
  }
4463
4464
0
  if (endptr != NULL) {
4465
0
    *endptr = any ? s - 1 : str;
4466
0
  }
4467
4468
0
  return value;
4469
0
}
4470
4471
ZEND_API double zend_bin_strtod(const char *str, const char **endptr)
4472
0
{
4473
0
  const char *s = str;
4474
0
  char    c;
4475
0
  double    value = 0;
4476
0
  int     any = 0;
4477
4478
0
  if ('0' == *s && ('b' == s[1] || 'B' == s[1])) {
4479
0
    s += 2;
4480
0
  }
4481
4482
0
  while ((c = *s++)) {
4483
    /*
4484
     * Verify the validity of the current character as a base-2 digit.  In
4485
     * the event that an invalid digit is found, halt the conversion and
4486
     * return the portion which has been converted thus far.
4487
     */
4488
0
    if ('0' == c || '1' == c)
4489
0
      value = value * 2 + c - '0';
4490
0
    else
4491
0
      break;
4492
4493
0
    any = 1;
4494
0
  }
4495
4496
  /*
4497
   * As with many strtoX implementations, should the subject sequence be
4498
   * empty or not well-formed, no conversion is performed and the original
4499
   * value of str is stored in *endptr, provided that endptr is not a null
4500
   * pointer.
4501
   */
4502
0
  if (NULL != endptr) {
4503
0
    *endptr = (char *)(any ? s - 1 : str);
4504
0
  }
4505
4506
0
  return value;
4507
0
}
4508
4509
ZEND_API char *zend_gcvt(double value, int ndigit, char dec_point, char exponent, char *buf)
4510
119k
{
4511
119k
  char *digits, *dst, *src;
4512
119k
  int i, decpt;
4513
119k
  bool sign;
4514
119k
  int mode = ndigit >= 0 ? 2 : 0;
4515
4516
119k
  if (mode == 0) {
4517
7.21k
    ndigit = 17;
4518
7.21k
  }
4519
119k
  digits = zend_dtoa(value, mode, ndigit, &decpt, &sign, NULL);
4520
119k
  if (decpt == 9999) {
4521
    /*
4522
     * Infinity or NaN, convert to inf or nan with sign.
4523
     * We assume the buffer is at least ndigit long.
4524
     */
4525
1.88k
    snprintf(buf, ndigit + 1, "%s%s", (sign && *digits == 'I') ? "-" : "", *digits == 'I' ? "INF" : "NAN");
4526
1.88k
    zend_freedtoa(digits);
4527
1.88k
    return (buf);
4528
1.88k
  }
4529
4530
118k
  dst = buf;
4531
118k
  if (sign) {
4532
4.03k
    *dst++ = '-';
4533
4.03k
  }
4534
4535
118k
  if ((decpt >= 0 && decpt > ndigit) || decpt < -3) { /* use E-style */
4536
    /* exponential format (e.g. 1.2345e+13) */
4537
63.7k
    if (--decpt < 0) {
4538
14.7k
      sign = true;
4539
14.7k
      decpt = -decpt;
4540
48.9k
    } else {
4541
48.9k
      sign = false;
4542
48.9k
    }
4543
63.7k
    src = digits;
4544
63.7k
    *dst++ = *src++;
4545
63.7k
    *dst++ = dec_point;
4546
63.7k
    if (*src == '\0') {
4547
6.92k
      *dst++ = '0';
4548
56.8k
    } else {
4549
688k
      do {
4550
688k
        *dst++ = *src++;
4551
688k
      } while (*src != '\0');
4552
56.8k
    }
4553
63.7k
    *dst++ = exponent;
4554
63.7k
    if (sign) {
4555
14.7k
      *dst++ = '-';
4556
48.9k
    } else {
4557
48.9k
      *dst++ = '+';
4558
48.9k
    }
4559
63.7k
    if (decpt < 10) {
4560
683
      *dst++ = '0' + decpt;
4561
683
      *dst = '\0';
4562
63.0k
    } else {
4563
      /* XXX - optimize */
4564
63.0k
      int n;
4565
156k
      for (n = decpt, i = 0; (n /= 10) != 0; i++);
4566
63.0k
      dst[i + 1] = '\0';
4567
219k
      while (decpt != 0) {
4568
156k
        dst[i--] = '0' + decpt % 10;
4569
156k
        decpt /= 10;
4570
156k
      }
4571
63.0k
    }
4572
63.7k
  } else if (decpt < 0) {
4573
    /* standard format 0. */
4574
295
    *dst++ = '0';   /* zero before decimal point */
4575
295
    *dst++ = dec_point;
4576
597
    do {
4577
597
      *dst++ = '0';
4578
597
    } while (++decpt < 0);
4579
295
    src = digits;
4580
1.14k
    while (*src != '\0') {
4581
845
      *dst++ = *src++;
4582
845
    }
4583
295
    *dst = '\0';
4584
54.0k
  } else {
4585
    /* standard format */
4586
610k
    for (i = 0, src = digits; i < decpt; i++) {
4587
556k
      if (*src != '\0') {
4588
527k
        *dst++ = *src++;
4589
527k
      } else {
4590
29.0k
        *dst++ = '0';
4591
29.0k
      }
4592
556k
    }
4593
54.0k
    if (*src != '\0') {
4594
17.8k
      if (src == digits) {
4595
1.09k
        *dst++ = '0';   /* zero before decimal point */
4596
1.09k
      }
4597
17.8k
      *dst++ = dec_point;
4598
132k
      for (i = decpt; digits[i] != '\0'; i++) {
4599
115k
        *dst++ = digits[i];
4600
115k
      }
4601
17.8k
    }
4602
54.0k
    *dst = '\0';
4603
54.0k
  }
4604
118k
  zend_freedtoa(digits);
4605
118k
  return (buf);
4606
119k
}
4607
4608
static void destroy_freelist(void)
4609
0
{
4610
0
  int i;
4611
0
  Bigint *tmp;
4612
4613
0
  ACQUIRE_DTOA_LOCK(0)
4614
0
  for (i = 0; i <= Kmax; i++) {
4615
0
    Bigint **listp = &freelist[i];
4616
0
    while ((tmp = *listp) != NULL) {
4617
0
      *listp = tmp->next;
4618
0
      FREE(tmp);
4619
0
    }
4620
0
    freelist[i] = NULL;
4621
0
  }
4622
0
  FREE_DTOA_LOCK(0)
4623
0
}
4624
4625
static void free_p5s(void)
4626
0
{
4627
0
  Bigint **listp, *tmp;
4628
4629
0
  ACQUIRE_DTOA_LOCK(1)
4630
0
  listp = &p5s;
4631
0
  while ((tmp = *listp) != NULL) {
4632
0
    *listp = tmp->next;
4633
0
    FREE(tmp);
4634
0
  }
4635
0
  p5s = NULL;
4636
0
  FREE_DTOA_LOCK(1)
4637
0
}