Coverage Report

Created: 2026-01-18 06:49

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/php-src/Zend/zend_strtod.c
Line
Count
Source
1
/****************************************************************
2
 *
3
 * The author of this software is David M. Gay.
4
 *
5
 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
6
 *
7
 * Permission to use, copy, modify, and distribute this software for any
8
 * purpose without fee is hereby granted, provided that this entire notice
9
 * is included in all copies of any software which is or includes a copy
10
 * or modification of this software and in all copies of the supporting
11
 * documentation for such software.
12
 *
13
 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
14
 * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
15
 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
16
 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
17
 *
18
 ***************************************************************/
19
20
/* Please send bug reports to David M. Gay (dmg at acm dot org,
21
 * with " at " changed at "@" and " dot " changed to ".").  */
22
23
/* On a machine with IEEE extended-precision registers, it is
24
 * necessary to specify double-precision (53-bit) rounding precision
25
 * before invoking strtod or dtoa.  If the machine uses (the equivalent
26
 * of) Intel 80x87 arithmetic, the call
27
 *  _control87(PC_53, MCW_PC);
28
 * does this with many compilers.  Whether this or another call is
29
 * appropriate depends on the compiler; for this to work, it may be
30
 * necessary to #include "float.h" or another system-dependent header
31
 * file.
32
 */
33
34
/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
35
 * (Note that IEEE arithmetic is disabled by gcc's -ffast-math flag.)
36
 *
37
 * This strtod returns a nearest machine number to the input decimal
38
 * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
39
 * broken by the IEEE round-even rule.  Otherwise ties are broken by
40
 * biased rounding (add half and chop).
41
 *
42
 * Inspired loosely by William D. Clinger's paper "How to Read Floating
43
 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
44
 *
45
 * Modifications:
46
 *
47
 *  1. We only require IEEE, IBM, or VAX double-precision
48
 *    arithmetic (not IEEE double-extended).
49
 *  2. We get by with floating-point arithmetic in a case that
50
 *    Clinger missed -- when we're computing d * 10^n
51
 *    for a small integer d and the integer n is not too
52
 *    much larger than 22 (the maximum integer k for which
53
 *    we can represent 10^k exactly), we may be able to
54
 *    compute (d*10^k) * 10^(e-k) with just one roundoff.
55
 *  3. Rather than a bit-at-a-time adjustment of the binary
56
 *    result in the hard case, we use floating-point
57
 *    arithmetic to determine the adjustment to within
58
 *    one bit; only in really hard cases do we need to
59
 *    compute a second residual.
60
 *  4. Because of 3., we don't need a large table of powers of 10
61
 *    for ten-to-e (just some small tables, e.g. of 10^k
62
 *    for 0 <= k <= 22).
63
 */
64
65
/*
66
 * #define IEEE_8087 for IEEE-arithmetic machines where the least
67
 *  significant byte has the lowest address.
68
 * #define IEEE_MC68k for IEEE-arithmetic machines where the most
69
 *  significant byte has the lowest address.
70
 * #define Long int on machines with 32-bit ints and 64-bit longs.
71
 * #define IBM for IBM mainframe-style floating-point arithmetic.
72
 * #define VAX for VAX-style floating-point arithmetic (D_floating).
73
 * #define No_leftright to omit left-right logic in fast floating-point
74
 *  computation of dtoa.  This will cause dtoa modes 4 and 5 to be
75
 *  treated the same as modes 2 and 3 for some inputs.
76
 * #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
77
 *  and strtod and dtoa should round accordingly.  Unless Trust_FLT_ROUNDS
78
 *  is also #defined, fegetround() will be queried for the rounding mode.
79
 *  Note that both FLT_ROUNDS and fegetround() are specified by the C99
80
 *  standard (and are specified to be consistent, with fesetround()
81
 *  affecting the value of FLT_ROUNDS), but that some (Linux) systems
82
 *  do not work correctly in this regard, so using fegetround() is more
83
 *  portable than using FLT_ROUNDS directly.
84
 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
85
 *  and Honor_FLT_ROUNDS is not #defined.
86
 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
87
 *  that use extended-precision instructions to compute rounded
88
 *  products and quotients) with IBM.
89
 * #define ROUND_BIASED for IEEE-format with biased rounding and arithmetic
90
 *  that rounds toward +Infinity.
91
 * #define ROUND_BIASED_without_Round_Up for IEEE-format with biased
92
 *  rounding when the underlying floating-point arithmetic uses
93
 *  unbiased rounding.  This prevent using ordinary floating-point
94
 *  arithmetic when the result could be computed with one rounding error.
95
 * #define Inaccurate_Divide for IEEE-format with correctly rounded
96
 *  products but inaccurate quotients, e.g., for Intel i860.
97
 * #define NO_LONG_LONG on machines that do not have a "long long"
98
 *  integer type (of >= 64 bits).  On such machines, you can
99
 *  #define Just_16 to store 16 bits per 32-bit Long when doing
100
 *  high-precision integer arithmetic.  Whether this speeds things
101
 *  up or slows things down depends on the machine and the number
102
 *  being converted.  If long long is available and the name is
103
 *  something other than "long long", #define Llong to be the name,
104
 *  and if "unsigned Llong" does not work as an unsigned version of
105
 *  Llong, #define #ULLong to be the corresponding unsigned type.
106
 * #define KR_headers for old-style C function headers.
107
 * #define Bad_float_h if your system lacks a float.h or if it does not
108
 *  define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
109
 *  FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
110
 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
111
 *  if memory is available and otherwise does something you deem
112
 *  appropriate.  If MALLOC is undefined, malloc will be invoked
113
 *  directly -- and assumed always to succeed.  Similarly, if you
114
 *  want something other than the system's free() to be called to
115
 *  recycle memory acquired from MALLOC, #define FREE to be the
116
 *  name of the alternate routine.  (FREE or free is only called in
117
 *  pathological cases, e.g., in a dtoa call after a dtoa return in
118
 *  mode 3 with thousands of digits requested.)
119
 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
120
 *  memory allocations from a private pool of memory when possible.
121
 *  When used, the private pool is PRIVATE_MEM bytes long:  2304 bytes,
122
 *  unless #defined to be a different length.  This default length
123
 *  suffices to get rid of MALLOC calls except for unusual cases,
124
 *  such as decimal-to-binary conversion of a very long string of
125
 *  digits.  The longest string dtoa can return is about 751 bytes
126
 *  long.  For conversions by strtod of strings of 800 digits and
127
 *  all dtoa conversions in single-threaded executions with 8-byte
128
 *  pointers, PRIVATE_MEM >= 7400 appears to suffice; with 4-byte
129
 *  pointers, PRIVATE_MEM >= 7112 appears adequate.
130
 * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK
131
 *  #defined automatically on IEEE systems.  On such systems,
132
 *  when INFNAN_CHECK is #defined, strtod checks
133
 *  for Infinity and NaN (case insensitively).  On some systems
134
 *  (e.g., some HP systems), it may be necessary to #define NAN_WORD0
135
 *  appropriately -- to the most significant word of a quiet NaN.
136
 *  (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
137
 *  When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
138
 *  strtod also accepts (case insensitively) strings of the form
139
 *  NaN(x), where x is a string of hexadecimal digits and spaces;
140
 *  if there is only one string of hexadecimal digits, it is taken
141
 *  for the 52 fraction bits of the resulting NaN; if there are two
142
 *  or more strings of hex digits, the first is for the high 20 bits,
143
 *  the second and subsequent for the low 32 bits, with intervening
144
 *  white space ignored; but if this results in none of the 52
145
 *  fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0
146
 *  and NAN_WORD1 are used instead.
147
 * #define MULTIPLE_THREADS if the system offers preemptively scheduled
148
 *  multiple threads.  In this case, you must provide (or suitably
149
 *  #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
150
 *  by FREE_DTOA_LOCK(n) for n = 0 or 1.  (The second lock, accessed
151
 *  in pow5mult, ensures lazy evaluation of only one copy of high
152
 *  powers of 5; omitting this lock would introduce a small
153
 *  probability of wasting memory, but would otherwise be harmless.)
154
 *  You must also invoke freedtoa(s) to free the value s returned by
155
 *  dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
156
 * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that
157
 *  avoids underflows on inputs whose result does not underflow.
158
 *  If you #define NO_IEEE_Scale on a machine that uses IEEE-format
159
 *  floating-point numbers and flushes underflows to zero rather
160
 *  than implementing gradual underflow, then you must also #define
161
 *  Sudden_Underflow.
162
 * #define USE_LOCALE to use the current locale's decimal_point value.
163
 * #define SET_INEXACT if IEEE arithmetic is being used and extra
164
 *  computation should be done to set the inexact flag when the
165
 *  result is inexact and avoid setting inexact when the result
166
 *  is exact.  In this case, dtoa.c must be compiled in
167
 *  an environment, perhaps provided by #include "dtoa.c" in a
168
 *  suitable wrapper, that defines two functions,
169
 *    int get_inexact(void);
170
 *    void clear_inexact(void);
171
 *  such that get_inexact() returns a nonzero value if the
172
 *  inexact bit is already set, and clear_inexact() sets the
173
 *  inexact bit to 0.  When SET_INEXACT is #defined, strtod
174
 *  also does extra computations to set the underflow and overflow
175
 *  flags when appropriate (i.e., when the result is tiny and
176
 *  inexact or when it is a numeric value rounded to +-infinity).
177
 * #define NO_ERRNO if strtod should not assign errno = ERANGE when
178
 *  the result overflows to +-Infinity or underflows to 0.
179
 * #define NO_HEX_FP to omit recognition of hexadecimal floating-point
180
 *  values by strtod.
181
 * #define NO_STRTOD_BIGCOMP (on IEEE-arithmetic systems only for now)
182
 *  to disable logic for "fast" testing of very long input strings
183
 *  to strtod.  This testing proceeds by initially truncating the
184
 *  input string, then if necessary comparing the whole string with
185
 *  a decimal expansion to decide close cases. This logic is only
186
 *  used for input more than STRTOD_DIGLIM digits long (default 40).
187
 */
188
189
#include <zend_operators.h>
190
#include <zend_strtod.h>
191
#include "zend_strtod_int.h"
192
#include "zend_globals.h"
193
194
#ifndef Long
195
45.5k
#define Long int32_t
196
#endif
197
#ifndef ULong
198
533k
#define ULong uint32_t
199
#endif
200
201
#undef Bigint
202
#undef freelist
203
#undef p5s
204
#undef dtoa_result
205
206
514k
#define Bigint      _zend_strtod_bigint
207
535k
#define freelist    (EG(strtod_state).freelist)
208
8.14k
#define p5s         (EG(strtod_state).p5s)
209
7.82k
#define dtoa_result (EG(strtod_state).result)
210
211
#ifdef DEBUG
212
static void Bug(const char *message) {
213
  fprintf(stderr, "%s\n", message);
214
}
215
#endif
216
217
#include "stdlib.h"
218
#include "string.h"
219
220
#ifdef USE_LOCALE
221
#include "locale.h"
222
#endif
223
224
#ifdef Honor_FLT_ROUNDS
225
#ifndef Trust_FLT_ROUNDS
226
#include <fenv.h>
227
#endif
228
#endif
229
230
#ifdef MALLOC
231
#ifdef KR_headers
232
extern char *MALLOC();
233
#else
234
extern void *MALLOC(size_t);
235
#endif
236
#else
237
34
#define MALLOC malloc
238
0
#define FREE   free
239
#endif
240
241
#ifndef Omit_Private_Memory
242
#ifndef PRIVATE_MEM
243
#define PRIVATE_MEM 2304
244
#endif
245
#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
246
static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
247
#endif
248
249
#undef IEEE_Arith
250
#undef Avoid_Underflow
251
#ifdef IEEE_MC68k
252
#define IEEE_Arith
253
#endif
254
#ifdef IEEE_8087
255
#define IEEE_Arith
256
#endif
257
258
#ifdef IEEE_Arith
259
#ifndef NO_INFNAN_CHECK
260
#undef INFNAN_CHECK
261
#define INFNAN_CHECK
262
#endif
263
#else
264
#undef INFNAN_CHECK
265
#define NO_STRTOD_BIGCOMP
266
#endif
267
268
#include "errno.h"
269
270
#ifdef Bad_float_h
271
272
#ifdef IEEE_Arith
273
#define DBL_DIG 15
274
#define DBL_MAX_10_EXP 308
275
#define DBL_MAX_EXP 1024
276
#define FLT_RADIX 2
277
#endif /*IEEE_Arith*/
278
279
#ifdef IBM
280
#define DBL_DIG 16
281
#define DBL_MAX_10_EXP 75
282
#define DBL_MAX_EXP 63
283
#define FLT_RADIX 16
284
#define DBL_MAX 7.2370055773322621e+75
285
#endif
286
287
#ifdef VAX
288
#define DBL_DIG 16
289
#define DBL_MAX_10_EXP 38
290
#define DBL_MAX_EXP 127
291
#define FLT_RADIX 2
292
#define DBL_MAX 1.7014118346046923e+38
293
#endif
294
295
#else /* ifndef Bad_float_h */
296
#include "float.h"
297
#endif /* Bad_float_h */
298
299
#ifndef __MATH_H__
300
#include "math.h"
301
#endif
302
303
#ifndef CONST
304
#ifdef KR_headers
305
#define CONST /* blank */
306
#else
307
26.8k
#define CONST const
308
#endif
309
#endif
310
311
#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
312
Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
313
#endif
314
315
typedef union { double d; ULong L[2]; } U;
316
317
#ifdef IEEE_8087
318
118k
#define word0(x) (x)->L[1]
319
58.9k
#define word1(x) (x)->L[0]
320
#else
321
#define word0(x) (x)->L[0]
322
#define word1(x) (x)->L[1]
323
#endif
324
225k
#define dval(x) (x)->d
325
326
#ifndef STRTOD_DIGLIM
327
11.2k
#define STRTOD_DIGLIM 40
328
#endif
329
330
#ifdef DIGLIM_DEBUG
331
extern int strtod_diglim;
332
#else
333
11.2k
#define strtod_diglim STRTOD_DIGLIM
334
#endif
335
336
/* The following definition of Storeinc is appropriate for MIPS processors.
337
 * An alternative that might be better on some machines is
338
 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
339
 */
340
#if defined(IEEE_8087) + defined(VAX) + defined(__arm__)
341
#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
342
((unsigned short *)a)[0] = (unsigned short)c, a++)
343
#else
344
#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
345
((unsigned short *)a)[1] = (unsigned short)c, a++)
346
#endif
347
348
/* #define P DBL_MANT_DIG */
349
/* Ten_pmax = floor(P*log(2)/log(5)) */
350
/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
351
/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
352
/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
353
354
#ifdef IEEE_Arith
355
16.2k
#define Exp_shift  20
356
3.82k
#define Exp_shift1 20
357
59.5k
#define Exp_msk1    0x100000
358
#define Exp_msk11   0x100000
359
31.9k
#define Exp_mask  0x7ff00000
360
81.8k
#define P 53
361
#define Nbits 53
362
36.3k
#define Bias 1023
363
#define Emax 1023
364
14.2k
#define Emin (-1022)
365
10.5k
#define Exp_1  0x3ff00000
366
1.91k
#define Exp_11 0x3ff00000
367
26.4k
#define Ebits 11
368
16.0k
#define Frac_mask  0xfffff
369
2.10k
#define Frac_mask1 0xfffff
370
12.0k
#define Ten_pmax 22
371
900
#define Bletch 0x10
372
6.37k
#define Bndry_mask  0xfffff
373
87
#define Bndry_mask1 0xfffff
374
12.7k
#define LSB 1
375
2.39k
#define Sign_bit 0x80000000
376
234
#define Log2P 1
377
#define Tiny0 0
378
5.00k
#define Tiny1 1
379
2.93k
#define Quick_max 14
380
617
#define Int_max 14
381
#ifndef NO_IEEE_Scale
382
#define Avoid_Underflow
383
#ifdef Flush_Denorm /* debugging option */
384
#undef Sudden_Underflow
385
#endif
386
#endif
387
388
#ifndef Flt_Rounds
389
#ifdef FLT_ROUNDS
390
13.9k
#define Flt_Rounds FLT_ROUNDS
391
#else
392
#define Flt_Rounds 1
393
#endif
394
#endif /*Flt_Rounds*/
395
396
#ifdef Honor_FLT_ROUNDS
397
#undef Check_FLT_ROUNDS
398
#define Check_FLT_ROUNDS
399
#else
400
#define Rounding Flt_Rounds
401
#endif
402
403
#else /* ifndef IEEE_Arith */
404
#undef Check_FLT_ROUNDS
405
#undef Honor_FLT_ROUNDS
406
#undef SET_INEXACT
407
#undef  Sudden_Underflow
408
#define Sudden_Underflow
409
#ifdef IBM
410
#undef Flt_Rounds
411
#define Flt_Rounds 0
412
#define Exp_shift  24
413
#define Exp_shift1 24
414
#define Exp_msk1   0x1000000
415
#define Exp_msk11  0x1000000
416
#define Exp_mask  0x7f000000
417
#define P 14
418
#define Nbits 56
419
#define Bias 65
420
#define Emax 248
421
#define Emin (-260)
422
#define Exp_1  0x41000000
423
#define Exp_11 0x41000000
424
#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
425
#define Frac_mask  0xffffff
426
#define Frac_mask1 0xffffff
427
#define Bletch 4
428
#define Ten_pmax 22
429
#define Bndry_mask  0xefffff
430
#define Bndry_mask1 0xffffff
431
#define LSB 1
432
#define Sign_bit 0x80000000
433
#define Log2P 4
434
#define Tiny0 0x100000
435
#define Tiny1 0
436
#define Quick_max 14
437
#define Int_max 15
438
#else /* VAX */
439
#undef Flt_Rounds
440
#define Flt_Rounds 1
441
#define Exp_shift  23
442
#define Exp_shift1 7
443
#define Exp_msk1    0x80
444
#define Exp_msk11   0x800000
445
#define Exp_mask  0x7f80
446
#define P 56
447
#define Nbits 56
448
#define Bias 129
449
#define Emax 126
450
#define Emin (-129)
451
#define Exp_1  0x40800000
452
#define Exp_11 0x4080
453
#define Ebits 8
454
#define Frac_mask  0x7fffff
455
#define Frac_mask1 0xffff007f
456
#define Ten_pmax 24
457
#define Bletch 2
458
#define Bndry_mask  0xffff007f
459
#define Bndry_mask1 0xffff007f
460
#define LSB 0x10000
461
#define Sign_bit 0x8000
462
#define Log2P 1
463
#define Tiny0 0x80
464
#define Tiny1 0
465
#define Quick_max 15
466
#define Int_max 15
467
#endif /* IBM, VAX */
468
#endif /* IEEE_Arith */
469
470
#ifndef IEEE_Arith
471
#define ROUND_BIASED
472
#else
473
#ifdef ROUND_BIASED_without_Round_Up
474
#undef  ROUND_BIASED
475
#define ROUND_BIASED
476
#endif
477
#endif
478
479
#ifdef RND_PRODQUOT
480
#define rounded_product(a,b) a = rnd_prod(a, b)
481
#define rounded_quotient(a,b) a = rnd_quot(a, b)
482
#ifdef KR_headers
483
extern double rnd_prod(), rnd_quot();
484
#else
485
extern double rnd_prod(double, double), rnd_quot(double, double);
486
#endif
487
#else
488
1.44k
#define rounded_product(a,b) a *= b
489
7.75k
#define rounded_quotient(a,b) a /= b
490
#endif
491
492
294
#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
493
196
#define Big1 0xffffffff
494
495
#ifndef Pack_32
496
#define Pack_32
497
#endif
498
499
typedef struct BCinfo BCinfo;
500
 struct
501
BCinfo { int dp0, dp1, dplen, dsign, e0, inexact, nd, nd0, rounding, scale, uflchk; };
502
503
#ifdef KR_headers
504
#define FFFFFFFF ((((unsigned long)0xffff)<<16)|(unsigned long)0xffff)
505
#else
506
1.16M
#define FFFFFFFF 0xffffffffUL
507
#endif
508
509
#ifdef NO_LONG_LONG
510
#undef ULLong
511
#ifdef Just_16
512
#undef Pack_32
513
/* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
514
 * This makes some inner loops simpler and sometimes saves work
515
 * during multiplications, but it often seems to make things slightly
516
 * slower.  Hence the default is now to store 32 bits per Long.
517
 */
518
#endif
519
#else /* long long available */
520
#ifndef Llong
521
#define Llong long long
522
#endif
523
#ifndef ULLong
524
296k
#define ULLong unsigned Llong
525
#endif
526
#endif /* NO_LONG_LONG */
527
528
#ifndef MULTIPLE_THREADS
529
#define ACQUIRE_DTOA_LOCK(n)  /*nothing*/
530
#define FREE_DTOA_LOCK(n) /*nothing*/
531
#endif
532
533
267k
#define Kmax ZEND_STRTOD_K_MAX
534
535
 struct
536
Bigint {
537
  struct Bigint *next;
538
  int k, maxwds, sign, wds;
539
  ULong x[1];
540
  };
541
542
 typedef struct Bigint Bigint;
543
544
#ifndef Bigint
545
 static Bigint *freelist[Kmax+1];
546
#endif
547
548
static void destroy_freelist(void);
549
static void free_p5s(void);
550
551
#ifdef MULTIPLE_THREADS
552
static MUTEX_T dtoa_mutex;
553
static MUTEX_T pow5mult_mutex;
554
#endif /* ZTS */
555
556
ZEND_API int zend_shutdown_strtod(void) /* {{{ */
557
0
{
558
0
  destroy_freelist();
559
0
  free_p5s();
560
561
0
  return 1;
562
0
}
563
/* }}} */
564
565
 static Bigint *
566
Balloc
567
#ifdef KR_headers
568
  (k) int k;
569
#else
570
  (int k)
571
#endif
572
134k
{
573
134k
  int x;
574
134k
  Bigint *rv;
575
#ifndef Omit_Private_Memory
576
  unsigned int len;
577
#endif
578
579
134k
  ACQUIRE_DTOA_LOCK(0);
580
  /* The k > Kmax case does not need ACQUIRE_DTOA_LOCK(0), */
581
  /* but this case seems very unlikely. */
582
134k
  if (k <= Kmax && (rv = freelist[k]))
583
133k
    freelist[k] = rv->next;
584
34
  else {
585
34
    x = 1 << k;
586
34
#ifdef Omit_Private_Memory
587
34
    rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong));
588
34
    if (!rv) {
589
0
      FREE_DTOA_LOCK(0);
590
0
      zend_error_noreturn(E_ERROR, "Balloc() failed to allocate memory");
591
0
    }
592
#else
593
    len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
594
      /sizeof(double);
595
    if (k <= Kmax && pmem_next - private_mem + len <= PRIVATE_mem) {
596
      rv = (Bigint*)pmem_next;
597
      pmem_next += len;
598
      }
599
    else
600
      rv = (Bigint*)MALLOC(len*sizeof(double));
601
      if (!rv) {
602
        FREE_DTOA_LOCK(0);
603
        zend_error_noreturn(E_ERROR, "Balloc() failed to allocate memory");
604
      }
605
#endif
606
34
    rv->k = k;
607
34
    rv->maxwds = x;
608
34
    }
609
134k
  FREE_DTOA_LOCK(0);
610
134k
  rv->sign = rv->wds = 0;
611
134k
  return rv;
612
134k
  }
613
614
 static void
615
Bfree
616
#ifdef KR_headers
617
  (v) Bigint *v;
618
#else
619
  (Bigint *v)
620
#endif
621
133k
{
622
133k
  if (v) {
623
133k
    if (v->k > Kmax)
624
0
      FREE((void*)v);
625
133k
    else {
626
133k
      ACQUIRE_DTOA_LOCK(0);
627
133k
      v->next = freelist[v->k];
628
133k
      freelist[v->k] = v;
629
133k
      FREE_DTOA_LOCK(0);
630
133k
      }
631
133k
    }
632
133k
  }
633
634
13.9k
#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
635
13.9k
y->wds*sizeof(Long) + 2*sizeof(int))
636
637
 static Bigint *
638
multadd
639
#ifdef KR_headers
640
  (b, m, a) Bigint *b; int m, a;
641
#else
642
  (Bigint *b, int m, int a) /* multiply by m and add a */
643
#endif
644
221k
{
645
221k
  int i, wds;
646
221k
#ifdef ULLong
647
221k
  ULong *x;
648
221k
  ULLong carry, y;
649
#else
650
  ULong carry, *x, y;
651
#ifdef Pack_32
652
  ULong xi, z;
653
#endif
654
#endif
655
221k
  Bigint *b1;
656
657
221k
  wds = b->wds;
658
221k
  x = b->x;
659
221k
  i = 0;
660
221k
  carry = a;
661
613k
  do {
662
613k
#ifdef ULLong
663
613k
    y = *x * (ULLong)m + carry;
664
613k
    carry = y >> 32;
665
613k
    *x++ = y & FFFFFFFF;
666
#else
667
#ifdef Pack_32
668
    xi = *x;
669
    y = (xi & 0xffff) * m + carry;
670
    z = (xi >> 16) * m + (y >> 16);
671
    carry = z >> 16;
672
    *x++ = (z << 16) + (y & 0xffff);
673
#else
674
    y = *x * m + carry;
675
    carry = y >> 16;
676
    *x++ = y & 0xffff;
677
#endif
678
#endif
679
613k
    }
680
613k
    while(++i < wds);
681
221k
  if (carry) {
682
22.4k
    if (wds >= b->maxwds) {
683
1.11k
      b1 = Balloc(b->k+1);
684
1.11k
      Bcopy(b1, b);
685
1.11k
      Bfree(b);
686
1.11k
      b = b1;
687
1.11k
      }
688
22.4k
    b->x[wds++] = carry;
689
22.4k
    b->wds = wds;
690
22.4k
    }
691
221k
  return b;
692
221k
  }
693
694
 static Bigint *
695
s2b
696
#ifdef KR_headers
697
  (s, nd0, nd, y9, dplen) CONST char *s; int nd0, nd, dplen; ULong y9;
698
#else
699
  (const char *s, int nd0, int nd, ULong y9, int dplen)
700
#endif
701
11.2k
{
702
11.2k
  Bigint *b;
703
11.2k
  int i, k;
704
11.2k
  Long x, y;
705
706
11.2k
  x = (nd + 8) / 9;
707
29.9k
  for(k = 0, y = 1; x > y; y <<= 1, k++) ;
708
11.2k
#ifdef Pack_32
709
11.2k
  b = Balloc(k);
710
11.2k
  b->x[0] = y9;
711
11.2k
  b->wds = 1;
712
#else
713
  b = Balloc(k+1);
714
  b->x[0] = y9 & 0xffff;
715
  b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
716
#endif
717
718
11.2k
  i = 9;
719
11.2k
  if (9 < nd0) {
720
9.73k
    s += 9;
721
168k
    do b = multadd(b, 10, *s++ - '0');
722
168k
      while(++i < nd0);
723
9.73k
    s += dplen;
724
9.73k
    }
725
1.49k
  else
726
1.49k
    s += dplen + 9;
727
18.7k
  for(; i < nd; i++)
728
7.56k
    b = multadd(b, 10, *s++ - '0');
729
11.2k
  return b;
730
11.2k
  }
731
732
 static int
733
hi0bits
734
#ifdef KR_headers
735
  (x) ULong x;
736
#else
737
  (ULong x)
738
#endif
739
12.8k
{
740
12.8k
  int k = 0;
741
742
12.8k
  if (!(x & 0xffff0000)) {
743
7.77k
    k = 16;
744
7.77k
    x <<= 16;
745
7.77k
    }
746
12.8k
  if (!(x & 0xff000000)) {
747
6.59k
    k += 8;
748
6.59k
    x <<= 8;
749
6.59k
    }
750
12.8k
  if (!(x & 0xf0000000)) {
751
9.05k
    k += 4;
752
9.05k
    x <<= 4;
753
9.05k
    }
754
12.8k
  if (!(x & 0xc0000000)) {
755
6.47k
    k += 2;
756
6.47k
    x <<= 2;
757
6.47k
    }
758
12.8k
  if (!(x & 0x80000000)) {
759
6.02k
    k++;
760
6.02k
    if (!(x & 0x40000000))
761
0
      return 32;
762
6.02k
    }
763
12.8k
  return k;
764
12.8k
  }
765
766
 static int
767
lo0bits
768
#ifdef KR_headers
769
  (y) ULong *y;
770
#else
771
  (ULong *y)
772
#endif
773
16.0k
{
774
16.0k
  int k;
775
16.0k
  ULong x = *y;
776
777
16.0k
  if (x & 7) {
778
13.4k
    if (x & 1)
779
8.13k
      return 0;
780
5.32k
    if (x & 2) {
781
3.32k
      *y = x >> 1;
782
3.32k
      return 1;
783
3.32k
      }
784
2.00k
    *y = x >> 2;
785
2.00k
    return 2;
786
5.32k
    }
787
2.59k
  k = 0;
788
2.59k
  if (!(x & 0xffff)) {
789
428
    k = 16;
790
428
    x >>= 16;
791
428
    }
792
2.59k
  if (!(x & 0xff)) {
793
139
    k += 8;
794
139
    x >>= 8;
795
139
    }
796
2.59k
  if (!(x & 0xf)) {
797
1.61k
    k += 4;
798
1.61k
    x >>= 4;
799
1.61k
    }
800
2.59k
  if (!(x & 0x3)) {
801
1.01k
    k += 2;
802
1.01k
    x >>= 2;
803
1.01k
    }
804
2.59k
  if (!(x & 1)) {
805
1.70k
    k++;
806
1.70k
    x >>= 1;
807
1.70k
    if (!x)
808
0
      return 32;
809
1.70k
    }
810
2.59k
  *y = x;
811
2.59k
  return k;
812
2.59k
  }
813
814
 static Bigint *
815
i2b
816
#ifdef KR_headers
817
  (i) int i;
818
#else
819
  (int i)
820
#endif
821
16.0k
{
822
16.0k
  Bigint *b;
823
824
16.0k
  b = Balloc(1);
825
16.0k
  b->x[0] = i;
826
16.0k
  b->wds = 1;
827
16.0k
  return b;
828
16.0k
  }
829
830
 static Bigint *
831
mult
832
#ifdef KR_headers
833
  (a, b) Bigint *a, *b;
834
#else
835
  (Bigint *a, Bigint *b)
836
#endif
837
20.3k
{
838
20.3k
  Bigint *c;
839
20.3k
  int k, wa, wb, wc;
840
20.3k
  ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
841
20.3k
  ULong y;
842
20.3k
#ifdef ULLong
843
20.3k
  ULLong carry, z;
844
#else
845
  ULong carry, z;
846
#ifdef Pack_32
847
  ULong z2;
848
#endif
849
#endif
850
851
20.3k
  if (a->wds < b->wds) {
852
6.55k
    c = a;
853
6.55k
    a = b;
854
6.55k
    b = c;
855
6.55k
    }
856
20.3k
  k = a->k;
857
20.3k
  wa = a->wds;
858
20.3k
  wb = b->wds;
859
20.3k
  wc = wa + wb;
860
20.3k
  if (wc > a->maxwds)
861
11.5k
    k++;
862
20.3k
  c = Balloc(k);
863
121k
  for(x = c->x, xa = x + wc; x < xa; x++)
864
101k
    *x = 0;
865
20.3k
  xa = a->x;
866
20.3k
  xae = xa + wa;
867
20.3k
  xb = b->x;
868
20.3k
  xbe = xb + wb;
869
20.3k
  xc0 = c->x;
870
20.3k
#ifdef ULLong
871
56.5k
  for(; xb < xbe; xc0++) {
872
36.2k
    if ((y = *xb++)) {
873
36.2k
      x = xa;
874
36.2k
      xc = xc0;
875
36.2k
      carry = 0;
876
159k
      do {
877
159k
        z = *x++ * (ULLong)y + *xc + carry;
878
159k
        carry = z >> 32;
879
159k
        *xc++ = z & FFFFFFFF;
880
159k
        }
881
159k
        while(x < xae);
882
36.2k
      *xc = carry;
883
36.2k
      }
884
36.2k
    }
885
#else
886
#ifdef Pack_32
887
  for(; xb < xbe; xb++, xc0++) {
888
    if (y = *xb & 0xffff) {
889
      x = xa;
890
      xc = xc0;
891
      carry = 0;
892
      do {
893
        z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
894
        carry = z >> 16;
895
        z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
896
        carry = z2 >> 16;
897
        Storeinc(xc, z2, z);
898
        }
899
        while(x < xae);
900
      *xc = carry;
901
      }
902
    if (y = *xb >> 16) {
903
      x = xa;
904
      xc = xc0;
905
      carry = 0;
906
      z2 = *xc;
907
      do {
908
        z = (*x & 0xffff) * y + (*xc >> 16) + carry;
909
        carry = z >> 16;
910
        Storeinc(xc, z, z2);
911
        z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
912
        carry = z2 >> 16;
913
        }
914
        while(x < xae);
915
      *xc = z2;
916
      }
917
    }
918
#else
919
  for(; xb < xbe; xc0++) {
920
    if (y = *xb++) {
921
      x = xa;
922
      xc = xc0;
923
      carry = 0;
924
      do {
925
        z = *x++ * y + *xc + carry;
926
        carry = z >> 16;
927
        *xc++ = z & 0xffff;
928
        }
929
        while(x < xae);
930
      *xc = carry;
931
      }
932
    }
933
#endif
934
#endif
935
33.8k
  for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
936
20.3k
  c->wds = wc;
937
20.3k
  return c;
938
20.3k
  }
939
940
#ifndef p5s
941
 static Bigint *p5s;
942
#endif
943
944
 static Bigint *
945
pow5mult
946
#ifdef KR_headers
947
  (b, k) Bigint *b; int k;
948
#else
949
  (Bigint *b, int k)
950
#endif
951
8.56k
{
952
8.56k
  Bigint *b1, *p5, *p51;
953
8.56k
  int i;
954
8.56k
  static const int p05[3] = { 5, 25, 125 };
955
956
8.56k
  if ((i = k & 3))
957
6.81k
    b = multadd(b, p05[i-1], 0);
958
959
8.56k
  if (!(k >>= 2))
960
422
    return b;
961
8.14k
  if (!(p5 = p5s)) {
962
    /* first time */
963
#ifdef MULTIPLE_THREADS
964
    ACQUIRE_DTOA_LOCK(1);
965
    if (!(p5 = p5s)) {
966
      p5 = p5s = i2b(625);
967
      p5->next = 0;
968
      }
969
    FREE_DTOA_LOCK(1);
970
#else
971
1
    p5 = p5s = i2b(625);
972
1
    p5->next = 0;
973
1
#endif
974
1
    }
975
33.0k
  for(;;) {
976
33.0k
    if (k & 1) {
977
18.4k
      b1 = mult(b, p5);
978
18.4k
      Bfree(b);
979
18.4k
      b = b1;
980
18.4k
      }
981
33.0k
    if (!(k >>= 1))
982
8.14k
      break;
983
24.9k
    if (!(p51 = p5->next)) {
984
#ifdef MULTIPLE_THREADS
985
      ACQUIRE_DTOA_LOCK(1);
986
      if (!(p51 = p5->next)) {
987
        p51 = p5->next = mult(p5,p5);
988
        p51->next = 0;
989
        }
990
      FREE_DTOA_LOCK(1);
991
#else
992
6
      p51 = p5->next = mult(p5,p5);
993
6
      p51->next = 0;
994
6
#endif
995
6
      }
996
24.9k
    p5 = p51;
997
24.9k
    }
998
8.14k
  return b;
999
8.56k
  }
1000
1001
 static Bigint *
1002
lshift
1003
#ifdef KR_headers
1004
  (b, k) Bigint *b; int k;
1005
#else
1006
  (Bigint *b, int k)
1007
#endif
1008
32.8k
{
1009
32.8k
  int i, k1, n, n1;
1010
32.8k
  Bigint *b1;
1011
32.8k
  ULong *x, *x1, *xe, z;
1012
1013
32.8k
#ifdef Pack_32
1014
32.8k
  n = k >> 5;
1015
#else
1016
  n = k >> 4;
1017
#endif
1018
32.8k
  k1 = b->k;
1019
32.8k
  n1 = n + b->wds + 1;
1020
73.5k
  for(i = b->maxwds; n1 > i; i <<= 1)
1021
40.7k
    k1++;
1022
32.8k
  b1 = Balloc(k1);
1023
32.8k
  x1 = b1->x;
1024
105k
  for(i = 0; i < n; i++)
1025
72.4k
    *x1++ = 0;
1026
32.8k
  x = b->x;
1027
32.8k
  xe = x + b->wds;
1028
32.8k
#ifdef Pack_32
1029
32.8k
  if (k &= 0x1f) {
1030
31.6k
    k1 = 32 - k;
1031
31.6k
    z = 0;
1032
63.5k
    do {
1033
63.5k
      *x1++ = *x << k | z;
1034
63.5k
      z = *x++ >> k1;
1035
63.5k
      }
1036
63.5k
      while(x < xe);
1037
31.6k
    if ((*x1 = z))
1038
6.55k
      ++n1;
1039
31.6k
    }
1040
#else
1041
  if (k &= 0xf) {
1042
    k1 = 16 - k;
1043
    z = 0;
1044
    do {
1045
      *x1++ = *x << k  & 0xffff | z;
1046
      z = *x++ >> k1;
1047
      }
1048
      while(x < xe);
1049
    if (*x1 = z)
1050
      ++n1;
1051
    }
1052
#endif
1053
1.14k
  else do
1054
1.43k
    *x1++ = *x++;
1055
1.43k
    while(x < xe);
1056
32.8k
  b1->wds = n1 - 1;
1057
32.8k
  Bfree(b);
1058
32.8k
  return b1;
1059
32.8k
  }
1060
1061
 static int
1062
cmp
1063
#ifdef KR_headers
1064
  (a, b) Bigint *a, *b;
1065
#else
1066
  (Bigint *a, Bigint *b)
1067
#endif
1068
85.6k
{
1069
85.6k
  ULong *xa, *xa0, *xb, *xb0;
1070
85.6k
  int i, j;
1071
1072
85.6k
  i = a->wds;
1073
85.6k
  j = b->wds;
1074
#ifdef DEBUG
1075
  if (i > 1 && !a->x[i-1])
1076
    Bug("cmp called with a->x[a->wds-1] == 0");
1077
  if (j > 1 && !b->x[j-1])
1078
    Bug("cmp called with b->x[b->wds-1] == 0");
1079
#endif
1080
85.6k
  if (i -= j)
1081
10.7k
    return i;
1082
74.9k
  xa0 = a->x;
1083
74.9k
  xa = xa0 + j;
1084
74.9k
  xb0 = b->x;
1085
74.9k
  xb = xb0 + j;
1086
95.0k
  for(;;) {
1087
95.0k
    if (*--xa != *--xb)
1088
74.5k
      return *xa < *xb ? -1 : 1;
1089
20.4k
    if (xa <= xa0)
1090
357
      break;
1091
20.4k
    }
1092
357
  return 0;
1093
74.9k
  }
1094
1095
 static Bigint *
1096
diff
1097
#ifdef KR_headers
1098
  (a, b) Bigint *a, *b;
1099
#else
1100
  (Bigint *a, Bigint *b)
1101
#endif
1102
21.6k
{
1103
21.6k
  Bigint *c;
1104
21.6k
  int i, wa, wb;
1105
21.6k
  ULong *xa, *xae, *xb, *xbe, *xc;
1106
21.6k
#ifdef ULLong
1107
21.6k
  ULLong borrow, y;
1108
#else
1109
  ULong borrow, y;
1110
#ifdef Pack_32
1111
  ULong z;
1112
#endif
1113
#endif
1114
1115
21.6k
  i = cmp(a,b);
1116
21.6k
  if (!i) {
1117
170
    c = Balloc(0);
1118
170
    c->wds = 1;
1119
170
    c->x[0] = 0;
1120
170
    return c;
1121
170
    }
1122
21.4k
  if (i < 0) {
1123
4.48k
    c = a;
1124
4.48k
    a = b;
1125
4.48k
    b = c;
1126
4.48k
    i = 1;
1127
4.48k
    }
1128
16.9k
  else
1129
16.9k
    i = 0;
1130
21.4k
  c = Balloc(a->k);
1131
21.4k
  c->sign = i;
1132
21.4k
  wa = a->wds;
1133
21.4k
  xa = a->x;
1134
21.4k
  xae = xa + wa;
1135
21.4k
  wb = b->wds;
1136
21.4k
  xb = b->x;
1137
21.4k
  xbe = xb + wb;
1138
21.4k
  xc = c->x;
1139
21.4k
  borrow = 0;
1140
21.4k
#ifdef ULLong
1141
92.6k
  do {
1142
92.6k
    y = (ULLong)*xa++ - *xb++ - borrow;
1143
92.6k
    borrow = y >> 32 & (ULong)1;
1144
92.6k
    *xc++ = y & FFFFFFFF;
1145
92.6k
    }
1146
92.6k
    while(xb < xbe);
1147
26.3k
  while(xa < xae) {
1148
4.82k
    y = *xa++ - borrow;
1149
4.82k
    borrow = y >> 32 & (ULong)1;
1150
4.82k
    *xc++ = y & FFFFFFFF;
1151
4.82k
    }
1152
#else
1153
#ifdef Pack_32
1154
  do {
1155
    y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
1156
    borrow = (y & 0x10000) >> 16;
1157
    z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
1158
    borrow = (z & 0x10000) >> 16;
1159
    Storeinc(xc, z, y);
1160
    }
1161
    while(xb < xbe);
1162
  while(xa < xae) {
1163
    y = (*xa & 0xffff) - borrow;
1164
    borrow = (y & 0x10000) >> 16;
1165
    z = (*xa++ >> 16) - borrow;
1166
    borrow = (z & 0x10000) >> 16;
1167
    Storeinc(xc, z, y);
1168
    }
1169
#else
1170
  do {
1171
    y = *xa++ - *xb++ - borrow;
1172
    borrow = (y & 0x10000) >> 16;
1173
    *xc++ = y & 0xffff;
1174
    }
1175
    while(xb < xbe);
1176
  while(xa < xae) {
1177
    y = *xa++ - borrow;
1178
    borrow = (y & 0x10000) >> 16;
1179
    *xc++ = y & 0xffff;
1180
    }
1181
#endif
1182
#endif
1183
41.3k
  while(!*--xc)
1184
19.8k
    wa--;
1185
21.4k
  c->wds = wa;
1186
21.4k
  return c;
1187
21.6k
  }
1188
1189
 static double
1190
ulp
1191
#ifdef KR_headers
1192
  (x) U *x;
1193
#else
1194
  (U *x)
1195
#endif
1196
5.50k
{
1197
5.50k
  Long L;
1198
5.50k
  U u;
1199
1200
5.50k
  L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
1201
#ifndef Avoid_Underflow
1202
#ifndef Sudden_Underflow
1203
  if (L > 0) {
1204
#endif
1205
#endif
1206
#ifdef IBM
1207
    L |= Exp_msk1 >> 4;
1208
#endif
1209
5.50k
    word0(&u) = L;
1210
5.50k
    word1(&u) = 0;
1211
#ifndef Avoid_Underflow
1212
#ifndef Sudden_Underflow
1213
    }
1214
  else {
1215
    L = -L >> Exp_shift;
1216
    if (L < Exp_shift) {
1217
      word0(&u) = 0x80000 >> L;
1218
      word1(&u) = 0;
1219
      }
1220
    else {
1221
      word0(&u) = 0;
1222
      L -= Exp_shift;
1223
      word1(&u) = L >= 31 ? 1 : 1 << 31 - L;
1224
      }
1225
    }
1226
#endif
1227
#endif
1228
5.50k
  return dval(&u);
1229
5.50k
  }
1230
1231
 static double
1232
b2d
1233
#ifdef KR_headers
1234
  (a, e) Bigint *a; int *e;
1235
#else
1236
  (Bigint *a, int *e)
1237
#endif
1238
10.4k
{
1239
10.4k
  ULong *xa, *xa0, w, y, z;
1240
10.4k
  int k;
1241
10.4k
  U d;
1242
#ifdef VAX
1243
  ULong d0, d1;
1244
#else
1245
10.4k
#define d0 word0(&d)
1246
10.4k
#define d1 word1(&d)
1247
10.4k
#endif
1248
1249
10.4k
  xa0 = a->x;
1250
10.4k
  xa = xa0 + a->wds;
1251
10.4k
  y = *--xa;
1252
#ifdef DEBUG
1253
  if (!y) Bug("zero y in b2d");
1254
#endif
1255
10.4k
  k = hi0bits(y);
1256
10.4k
  *e = 32 - k;
1257
10.4k
#ifdef Pack_32
1258
10.4k
  if (k < Ebits) {
1259
2.78k
    d0 = Exp_1 | y >> (Ebits - k);
1260
2.78k
    w = xa > xa0 ? *--xa : 0;
1261
2.78k
    d1 = y << ((32-Ebits) + k) | w >> (Ebits - k);
1262
2.78k
    goto ret_d;
1263
2.78k
    }
1264
7.66k
  z = xa > xa0 ? *--xa : 0;
1265
7.66k
  if (k -= Ebits) {
1266
7.54k
    d0 = Exp_1 | y << k | z >> (32 - k);
1267
7.54k
    y = xa > xa0 ? *--xa : 0;
1268
7.54k
    d1 = z << k | y >> (32 - k);
1269
7.54k
    }
1270
113
  else {
1271
113
    d0 = Exp_1 | y;
1272
113
    d1 = z;
1273
113
    }
1274
#else
1275
  if (k < Ebits + 16) {
1276
    z = xa > xa0 ? *--xa : 0;
1277
    d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
1278
    w = xa > xa0 ? *--xa : 0;
1279
    y = xa > xa0 ? *--xa : 0;
1280
    d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
1281
    goto ret_d;
1282
    }
1283
  z = xa > xa0 ? *--xa : 0;
1284
  w = xa > xa0 ? *--xa : 0;
1285
  k -= Ebits + 16;
1286
  d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
1287
  y = xa > xa0 ? *--xa : 0;
1288
  d1 = w << k + 16 | y << k;
1289
#endif
1290
10.4k
 ret_d:
1291
#ifdef VAX
1292
  word0(&d) = d0 >> 16 | d0 << 16;
1293
  word1(&d) = d1 >> 16 | d1 << 16;
1294
#else
1295
10.4k
#undef d0
1296
10.4k
#undef d1
1297
10.4k
#endif
1298
10.4k
  return dval(&d);
1299
7.66k
  }
1300
1301
 static Bigint *
1302
d2b
1303
#ifdef KR_headers
1304
  (d, e, bits) U *d; int *e, *bits;
1305
#else
1306
  (U *d, int *e, int *bits)
1307
#endif
1308
16.0k
{
1309
16.0k
  Bigint *b;
1310
16.0k
  int de, k;
1311
16.0k
  ULong *x, y, z;
1312
16.0k
#ifndef Sudden_Underflow
1313
16.0k
  int i;
1314
16.0k
#endif
1315
#ifdef VAX
1316
  ULong d0, d1;
1317
  d0 = word0(d) >> 16 | word0(d) << 16;
1318
  d1 = word1(d) >> 16 | word1(d) << 16;
1319
#else
1320
48.1k
#define d0 word0(d)
1321
16.0k
#define d1 word1(d)
1322
16.0k
#endif
1323
1324
16.0k
#ifdef Pack_32
1325
16.0k
  b = Balloc(1);
1326
#else
1327
  b = Balloc(2);
1328
#endif
1329
16.0k
  x = b->x;
1330
1331
16.0k
  z = d0 & Frac_mask;
1332
16.0k
  d0 &= 0x7fffffff; /* clear sign bit, which we ignore */
1333
#ifdef Sudden_Underflow
1334
  de = (int)(d0 >> Exp_shift);
1335
#ifndef IBM
1336
  z |= Exp_msk11;
1337
#endif
1338
#else
1339
16.0k
  if ((de = (int)(d0 >> Exp_shift)))
1340
16.0k
    z |= Exp_msk1;
1341
16.0k
#endif
1342
16.0k
#ifdef Pack_32
1343
16.0k
  if ((y = d1)) {
1344
15.6k
    if ((k = lo0bits(&y))) {
1345
7.46k
      x[0] = y | z << (32 - k);
1346
7.46k
      z >>= k;
1347
7.46k
      }
1348
8.13k
    else
1349
8.13k
      x[0] = y;
1350
15.6k
#ifndef Sudden_Underflow
1351
15.6k
    i =
1352
15.6k
#endif
1353
15.6k
        b->wds = (x[1] = z) ? 2 : 1;
1354
15.6k
    }
1355
448
  else {
1356
448
    k = lo0bits(&z);
1357
448
    x[0] = z;
1358
448
#ifndef Sudden_Underflow
1359
448
    i =
1360
448
#endif
1361
448
        b->wds = 1;
1362
448
    k += 32;
1363
448
    }
1364
#else
1365
  if (y = d1) {
1366
    if (k = lo0bits(&y))
1367
      if (k >= 16) {
1368
        x[0] = y | z << 32 - k & 0xffff;
1369
        x[1] = z >> k - 16 & 0xffff;
1370
        x[2] = z >> k;
1371
        i = 2;
1372
        }
1373
      else {
1374
        x[0] = y & 0xffff;
1375
        x[1] = y >> 16 | z << 16 - k & 0xffff;
1376
        x[2] = z >> k & 0xffff;
1377
        x[3] = z >> k+16;
1378
        i = 3;
1379
        }
1380
    else {
1381
      x[0] = y & 0xffff;
1382
      x[1] = y >> 16;
1383
      x[2] = z & 0xffff;
1384
      x[3] = z >> 16;
1385
      i = 3;
1386
      }
1387
    }
1388
  else {
1389
#ifdef DEBUG
1390
    if (!z)
1391
      Bug("Zero passed to d2b");
1392
#endif
1393
    k = lo0bits(&z);
1394
    if (k >= 16) {
1395
      x[0] = z;
1396
      i = 0;
1397
      }
1398
    else {
1399
      x[0] = z & 0xffff;
1400
      x[1] = z >> 16;
1401
      i = 1;
1402
      }
1403
    k += 32;
1404
    }
1405
  while(!x[i])
1406
    --i;
1407
  b->wds = i + 1;
1408
#endif
1409
16.0k
#ifndef Sudden_Underflow
1410
16.0k
  if (de) {
1411
16.0k
#endif
1412
#ifdef IBM
1413
    *e = (de - Bias - (P-1) << 2) + k;
1414
    *bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
1415
#else
1416
16.0k
    *e = de - Bias - (P-1) + k;
1417
16.0k
    *bits = P - k;
1418
16.0k
#endif
1419
16.0k
#ifndef Sudden_Underflow
1420
16.0k
    }
1421
0
  else {
1422
0
    *e = de - Bias - (P-1) + 1 + k;
1423
0
#ifdef Pack_32
1424
0
    *bits = 32*i - hi0bits(x[i-1]);
1425
#else
1426
    *bits = (i+2)*16 - hi0bits(x[i]);
1427
#endif
1428
0
    }
1429
16.0k
#endif
1430
16.0k
  return b;
1431
16.0k
  }
1432
#undef d0
1433
#undef d1
1434
1435
 static double
1436
ratio
1437
#ifdef KR_headers
1438
  (a, b) Bigint *a, *b;
1439
#else
1440
  (Bigint *a, Bigint *b)
1441
#endif
1442
5.22k
{
1443
5.22k
  U da, db;
1444
5.22k
  int k, ka, kb;
1445
1446
5.22k
  dval(&da) = b2d(a, &ka);
1447
5.22k
  dval(&db) = b2d(b, &kb);
1448
5.22k
#ifdef Pack_32
1449
5.22k
  k = ka - kb + 32*(a->wds - b->wds);
1450
#else
1451
  k = ka - kb + 16*(a->wds - b->wds);
1452
#endif
1453
#ifdef IBM
1454
  if (k > 0) {
1455
    word0(&da) += (k >> 2)*Exp_msk1;
1456
    if (k &= 3)
1457
      dval(&da) *= 1 << k;
1458
    }
1459
  else {
1460
    k = -k;
1461
    word0(&db) += (k >> 2)*Exp_msk1;
1462
    if (k &= 3)
1463
      dval(&db) *= 1 << k;
1464
    }
1465
#else
1466
5.22k
  if (k > 0)
1467
1.95k
    word0(&da) += k*Exp_msk1;
1468
3.27k
  else {
1469
3.27k
    k = -k;
1470
3.27k
    word0(&db) += k*Exp_msk1;
1471
3.27k
    }
1472
5.22k
#endif
1473
5.22k
  return dval(&da) / dval(&db);
1474
5.22k
  }
1475
1476
 static CONST double
1477
tens[] = {
1478
    1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1479
    1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1480
    1e20, 1e21, 1e22
1481
#ifdef VAX
1482
    , 1e23, 1e24
1483
#endif
1484
    };
1485
1486
 static CONST double
1487
#ifdef IEEE_Arith
1488
bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1489
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
1490
#ifdef Avoid_Underflow
1491
    9007199254740992.*9007199254740992.e-256
1492
    /* = 2^106 * 1e-256 */
1493
#else
1494
    1e-256
1495
#endif
1496
    };
1497
/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
1498
/* flag unnecessarily.  It leads to a song and dance at the end of strtod. */
1499
1.04k
#define Scale_Bit 0x10
1500
1.22k
#define n_bigtens 5
1501
#else
1502
#ifdef IBM
1503
bigtens[] = { 1e16, 1e32, 1e64 };
1504
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 };
1505
#define n_bigtens 3
1506
#else
1507
bigtens[] = { 1e16, 1e32 };
1508
static CONST double tinytens[] = { 1e-16, 1e-32 };
1509
#define n_bigtens 2
1510
#endif
1511
#endif
1512
1513
#undef Need_Hexdig
1514
#ifdef INFNAN_CHECK
1515
#ifndef No_Hex_NaN
1516
#define Need_Hexdig
1517
#endif
1518
#endif
1519
1520
#ifndef Need_Hexdig
1521
#ifndef NO_HEX_FP
1522
#define Need_Hexdig
1523
#endif
1524
#endif
1525
1526
#ifdef Need_Hexdig /*{*/
1527
#if 0
1528
static unsigned char hexdig[256];
1529
1530
 static void
1531
htinit(unsigned char *h, unsigned char *s, int inc)
1532
{
1533
  int i, j;
1534
  for(i = 0; (j = s[i]) !=0; i++)
1535
    h[j] = i + inc;
1536
  }
1537
1538
 static void
1539
hexdig_init(void) /* Use of hexdig_init omitted 20121220 to avoid a */
1540
      /* race condition when multiple threads are used. */
1541
{
1542
#define USC (unsigned char *)
1543
  htinit(hexdig, USC "0123456789", 0x10);
1544
  htinit(hexdig, USC "abcdef", 0x10 + 10);
1545
  htinit(hexdig, USC "ABCDEF", 0x10 + 10);
1546
  }
1547
#else
1548
static const unsigned char hexdig[256] = {
1549
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1550
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1551
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1552
  16,17,18,19,20,21,22,23,24,25,0,0,0,0,0,0,
1553
  0,26,27,28,29,30,31,0,0,0,0,0,0,0,0,0,
1554
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1555
  0,26,27,28,29,30,31,0,0,0,0,0,0,0,0,0,
1556
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1557
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1558
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1559
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1560
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1561
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1562
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1563
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1564
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1565
  };
1566
#endif
1567
#endif /* } Need_Hexdig */
1568
1569
#ifdef INFNAN_CHECK
1570
1571
#ifndef NAN_WORD0
1572
#define NAN_WORD0 0x7ff80000
1573
#endif
1574
1575
#ifndef NAN_WORD1
1576
#define NAN_WORD1 0
1577
#endif
1578
1579
 static int
1580
match
1581
#ifdef KR_headers
1582
  (sp, t) char **sp, *t;
1583
#else
1584
  (const char **sp, const char *t)
1585
#endif
1586
{
1587
  int c, d;
1588
  CONST char *s = *sp;
1589
1590
  while((d = *t++)) {
1591
    if ((c = *++s) >= 'A' && c <= 'Z')
1592
      c += 'a' - 'A';
1593
    if (c != d)
1594
      return 0;
1595
    }
1596
  *sp = s + 1;
1597
  return 1;
1598
  }
1599
1600
#ifndef No_Hex_NaN
1601
 static void
1602
hexnan
1603
#ifdef KR_headers
1604
  (rvp, sp) U *rvp; CONST char **sp;
1605
#else
1606
  (U *rvp, const char **sp)
1607
#endif
1608
{
1609
  ULong c, x[2];
1610
  CONST char *s;
1611
  int c1, havedig, udx0, xshift;
1612
1613
  /**** if (!hexdig['0']) hexdig_init(); ****/
1614
  x[0] = x[1] = 0;
1615
  havedig = xshift = 0;
1616
  udx0 = 1;
1617
  s = *sp;
1618
  /* allow optional initial 0x or 0X */
1619
  while((c = *(CONST unsigned char*)(s+1)) && c <= ' ')
1620
    ++s;
1621
  if (s[1] == '0' && (s[2] == 'x' || s[2] == 'X'))
1622
    s += 2;
1623
  while((c = *(CONST unsigned char*)++s)) {
1624
    if ((c1 = hexdig[c]))
1625
      c  = c1 & 0xf;
1626
    else if (c <= ' ') {
1627
      if (udx0 && havedig) {
1628
        udx0 = 0;
1629
        xshift = 1;
1630
        }
1631
      continue;
1632
      }
1633
#ifdef GDTOA_NON_PEDANTIC_NANCHECK
1634
    else if (/*(*/ c == ')' && havedig) {
1635
      *sp = s + 1;
1636
      break;
1637
      }
1638
    else
1639
      return; /* invalid form: don't change *sp */
1640
#else
1641
    else {
1642
      do {
1643
        if (/*(*/ c == ')') {
1644
          *sp = s + 1;
1645
          break;
1646
          }
1647
        } while((c = *++s));
1648
      break;
1649
      }
1650
#endif
1651
    havedig = 1;
1652
    if (xshift) {
1653
      xshift = 0;
1654
      x[0] = x[1];
1655
      x[1] = 0;
1656
      }
1657
    if (udx0)
1658
      x[0] = (x[0] << 4) | (x[1] >> 28);
1659
    x[1] = (x[1] << 4) | c;
1660
    }
1661
  if ((x[0] &= 0xfffff) || x[1]) {
1662
    word0(rvp) = Exp_mask | x[0];
1663
    word1(rvp) = x[1];
1664
    }
1665
  }
1666
#endif /*No_Hex_NaN*/
1667
#endif /* INFNAN_CHECK */
1668
1669
#ifdef Pack_32
1670
#define ULbits 32
1671
#define kshift 5
1672
2.43k
#define kmask 31
1673
#else
1674
#define ULbits 16
1675
#define kshift 4
1676
#define kmask 15
1677
#endif
1678
1679
#if !defined(NO_HEX_FP) || defined(Honor_FLT_ROUNDS) /*{*/
1680
 static Bigint *
1681
#ifdef KR_headers
1682
increment(b) Bigint *b;
1683
#else
1684
increment(Bigint *b)
1685
#endif
1686
{
1687
  ULong *x, *xe;
1688
  Bigint *b1;
1689
1690
  x = b->x;
1691
  xe = x + b->wds;
1692
  do {
1693
    if (*x < (ULong)0xffffffffL) {
1694
      ++*x;
1695
      return b;
1696
      }
1697
    *x++ = 0;
1698
    } while(x < xe);
1699
  {
1700
    if (b->wds >= b->maxwds) {
1701
      b1 = Balloc(b->k+1);
1702
      Bcopy(b1,b);
1703
      Bfree(b);
1704
      b = b1;
1705
      }
1706
    b->x[b->wds++] = 1;
1707
    }
1708
  return b;
1709
  }
1710
1711
#endif /*}*/
1712
1713
#ifndef NO_HEX_FP /*{*/
1714
1715
 static void
1716
#ifdef KR_headers
1717
rshift(b, k) Bigint *b; int k;
1718
#else
1719
rshift(Bigint *b, int k)
1720
#endif
1721
{
1722
  ULong *x, *x1, *xe, y;
1723
  int n;
1724
1725
  x = x1 = b->x;
1726
  n = k >> kshift;
1727
  if (n < b->wds) {
1728
    xe = x + b->wds;
1729
    x += n;
1730
    if (k &= kmask) {
1731
      n = 32 - k;
1732
      y = *x++ >> k;
1733
      while(x < xe) {
1734
        *x1++ = (y | (*x << n)) & 0xffffffff;
1735
        y = *x++ >> k;
1736
        }
1737
      if ((*x1 = y) !=0)
1738
        x1++;
1739
      }
1740
    else
1741
      while(x < xe)
1742
        *x1++ = *x++;
1743
    }
1744
  if ((b->wds = x1 - b->x) == 0)
1745
    b->x[0] = 0;
1746
  }
1747
1748
 static ULong
1749
#ifdef KR_headers
1750
any_on(b, k) Bigint *b; int k;
1751
#else
1752
any_on(Bigint *b, int k)
1753
#endif
1754
{
1755
  int n, nwds;
1756
  ULong *x, *x0, x1, x2;
1757
1758
  x = b->x;
1759
  nwds = b->wds;
1760
  n = k >> kshift;
1761
  if (n > nwds)
1762
    n = nwds;
1763
  else if (n < nwds && (k &= kmask)) {
1764
    x1 = x2 = x[n];
1765
    x1 >>= k;
1766
    x1 <<= k;
1767
    if (x1 != x2)
1768
      return 1;
1769
    }
1770
  x0 = x;
1771
  x += n;
1772
  while(x > x0)
1773
    if (*--x)
1774
      return 1;
1775
  return 0;
1776
  }
1777
1778
enum {  /* rounding values: same as FLT_ROUNDS */
1779
  Round_zero = 0,
1780
  Round_near = 1,
1781
  Round_up = 2,
1782
  Round_down = 3
1783
  };
1784
1785
 void
1786
#ifdef KR_headers
1787
gethex(sp, rvp, rounding, sign)
1788
  CONST char **sp; U *rvp; int rounding, sign;
1789
#else
1790
gethex( CONST char **sp, U *rvp, int rounding, int sign)
1791
#endif
1792
{
1793
  Bigint *b;
1794
  CONST unsigned char *decpt, *s0, *s, *s1;
1795
  Long e, e1;
1796
  ULong L, lostbits, *x;
1797
  int big, denorm, esign, havedig, k, n, nbits, up, zret;
1798
#ifdef IBM
1799
  int j;
1800
#endif
1801
  enum {
1802
#ifdef IEEE_Arith /*{{*/
1803
    emax = 0x7fe - Bias - P + 1,
1804
    emin = Emin - P + 1
1805
#else /*}{*/
1806
    emin = Emin - P,
1807
#ifdef VAX
1808
    emax = 0x7ff - Bias - P + 1
1809
#endif
1810
#ifdef IBM
1811
    emax = 0x7f - Bias - P
1812
#endif
1813
#endif /*}}*/
1814
    };
1815
#ifdef USE_LOCALE
1816
  int i;
1817
#ifdef NO_LOCALE_CACHE
1818
  const unsigned char *decimalpoint = (unsigned char*)
1819
    localeconv()->decimal_point;
1820
#else
1821
  const unsigned char *decimalpoint;
1822
  static unsigned char *decimalpoint_cache;
1823
  if (!(s0 = decimalpoint_cache)) {
1824
    s0 = (unsigned char*)localeconv()->decimal_point;
1825
    if ((decimalpoint_cache = (unsigned char*)
1826
        MALLOC(strlen((CONST char*)s0) + 1))) {
1827
      strcpy((char*)decimalpoint_cache, (CONST char*)s0);
1828
      s0 = decimalpoint_cache;
1829
      }
1830
    }
1831
  decimalpoint = s0;
1832
#endif
1833
#endif
1834
1835
  /**** if (!hexdig['0']) hexdig_init(); ****/
1836
  havedig = 0;
1837
  s0 = *(CONST unsigned char **)sp + 2;
1838
  while(s0[havedig] == '0')
1839
    havedig++;
1840
  s0 += havedig;
1841
  s = s0;
1842
  decpt = 0;
1843
  zret = 0;
1844
  e = 0;
1845
  if (hexdig[*s])
1846
    havedig++;
1847
  else {
1848
    zret = 1;
1849
#ifdef USE_LOCALE
1850
    for(i = 0; decimalpoint[i]; ++i) {
1851
      if (s[i] != decimalpoint[i])
1852
        goto pcheck;
1853
      }
1854
    decpt = s += i;
1855
#else
1856
    if (*s != '.')
1857
      goto pcheck;
1858
    decpt = ++s;
1859
#endif
1860
    if (!hexdig[*s])
1861
      goto pcheck;
1862
    while(*s == '0')
1863
      s++;
1864
    if (hexdig[*s])
1865
      zret = 0;
1866
    havedig = 1;
1867
    s0 = s;
1868
    }
1869
  while(hexdig[*s])
1870
    s++;
1871
#ifdef USE_LOCALE
1872
  if (*s == *decimalpoint && !decpt) {
1873
    for(i = 1; decimalpoint[i]; ++i) {
1874
      if (s[i] != decimalpoint[i])
1875
        goto pcheck;
1876
      }
1877
    decpt = s += i;
1878
#else
1879
  if (*s == '.' && !decpt) {
1880
    decpt = ++s;
1881
#endif
1882
    while(hexdig[*s])
1883
      s++;
1884
    }/*}*/
1885
  if (decpt)
1886
    e = -(((Long)(s-decpt)) << 2);
1887
 pcheck:
1888
  s1 = s;
1889
  big = esign = 0;
1890
  switch(*s) {
1891
    case 'p':
1892
    case 'P':
1893
    switch(*++s) {
1894
      case '-':
1895
      esign = 1;
1896
      ZEND_FALLTHROUGH;
1897
      case '+':
1898
      s++;
1899
      }
1900
    if ((n = hexdig[*s]) == 0 || n > 0x19) {
1901
      s = s1;
1902
      break;
1903
      }
1904
    e1 = n - 0x10;
1905
    while((n = hexdig[*++s]) !=0 && n <= 0x19) {
1906
      if (e1 & 0xf8000000)
1907
        big = 1;
1908
      e1 = 10*e1 + n - 0x10;
1909
      }
1910
    if (esign)
1911
      e1 = -e1;
1912
    e += e1;
1913
    }
1914
  *sp = (char*)s;
1915
  if (!havedig)
1916
    *sp = (char*)s0 - 1;
1917
  if (zret)
1918
    goto retz1;
1919
  if (big) {
1920
    if (esign) {
1921
#ifdef IEEE_Arith
1922
      switch(rounding) {
1923
        case Round_up:
1924
        if (sign)
1925
          break;
1926
        goto ret_tiny;
1927
        case Round_down:
1928
        if (!sign)
1929
          break;
1930
        goto ret_tiny;
1931
        }
1932
#endif
1933
      goto retz;
1934
#ifdef IEEE_Arith
1935
 ret_tinyf:
1936
      Bfree(b);
1937
 ret_tiny:
1938
#ifndef NO_ERRNO
1939
      errno = ERANGE;
1940
#endif
1941
      word0(rvp) = 0;
1942
      word1(rvp) = 1;
1943
      return;
1944
#endif /* IEEE_Arith */
1945
      }
1946
    switch(rounding) {
1947
      case Round_near:
1948
      goto ovfl1;
1949
      case Round_up:
1950
      if (!sign)
1951
        goto ovfl1;
1952
      goto ret_big;
1953
      case Round_down:
1954
      if (sign)
1955
        goto ovfl1;
1956
      goto ret_big;
1957
      }
1958
 ret_big:
1959
    word0(rvp) = Big0;
1960
    word1(rvp) = Big1;
1961
    return;
1962
    }
1963
  n = s1 - s0 - 1;
1964
  for(k = 0; n > (1 << (kshift-2)) - 1; n >>= 1)
1965
    k++;
1966
  b = Balloc(k);
1967
  x = b->x;
1968
  n = 0;
1969
  L = 0;
1970
#ifdef USE_LOCALE
1971
  for(i = 0; decimalpoint[i+1]; ++i);
1972
#endif
1973
  while(s1 > s0) {
1974
#ifdef USE_LOCALE
1975
    if (*--s1 == decimalpoint[i]) {
1976
      s1 -= i;
1977
      continue;
1978
      }
1979
#else
1980
    if (*--s1 == '.')
1981
      continue;
1982
#endif
1983
    if (n == ULbits) {
1984
      *x++ = L;
1985
      L = 0;
1986
      n = 0;
1987
      }
1988
    L |= (hexdig[*s1] & 0x0f) << n;
1989
    n += 4;
1990
    }
1991
  *x++ = L;
1992
  b->wds = n = x - b->x;
1993
  n = ULbits*n - hi0bits(L);
1994
  nbits = Nbits;
1995
  lostbits = 0;
1996
  x = b->x;
1997
  if (n > nbits) {
1998
    n -= nbits;
1999
    if (any_on(b,n)) {
2000
      lostbits = 1;
2001
      k = n - 1;
2002
      if (x[k>>kshift] & 1 << (k & kmask)) {
2003
        lostbits = 2;
2004
        if (k > 0 && any_on(b,k))
2005
          lostbits = 3;
2006
        }
2007
      }
2008
    rshift(b, n);
2009
    e += n;
2010
    }
2011
  else if (n < nbits) {
2012
    n = nbits - n;
2013
    b = lshift(b, n);
2014
    e -= n;
2015
    x = b->x;
2016
    }
2017
  if (e > Emax) {
2018
 ovfl:
2019
    Bfree(b);
2020
 ovfl1:
2021
#ifndef NO_ERRNO
2022
    errno = ERANGE;
2023
#endif
2024
    word0(rvp) = Exp_mask;
2025
    word1(rvp) = 0;
2026
    return;
2027
    }
2028
  denorm = 0;
2029
  if (e < emin) {
2030
    denorm = 1;
2031
    n = emin - e;
2032
    if (n >= nbits) {
2033
#ifdef IEEE_Arith /*{*/
2034
      switch (rounding) {
2035
        case Round_near:
2036
        if (n == nbits && (n < 2 || any_on(b,n-1)))
2037
          goto ret_tinyf;
2038
        break;
2039
        case Round_up:
2040
        if (!sign)
2041
          goto ret_tinyf;
2042
        break;
2043
        case Round_down:
2044
        if (sign)
2045
          goto ret_tinyf;
2046
        }
2047
#endif /* } IEEE_Arith */
2048
      Bfree(b);
2049
 retz:
2050
#ifndef NO_ERRNO
2051
      errno = ERANGE;
2052
#endif
2053
 retz1:
2054
      rvp->d = 0.;
2055
      return;
2056
      }
2057
    k = n - 1;
2058
    if (lostbits)
2059
      lostbits = 1;
2060
    else if (k > 0)
2061
      lostbits = any_on(b,k);
2062
    if (x[k>>kshift] & 1 << (k & kmask))
2063
      lostbits |= 2;
2064
    nbits -= n;
2065
    rshift(b,n);
2066
    e = emin;
2067
    }
2068
  if (lostbits) {
2069
    up = 0;
2070
    switch(rounding) {
2071
      case Round_zero:
2072
      break;
2073
      case Round_near:
2074
      if (lostbits & 2
2075
       && (lostbits & 1) | (x[0] & 1))
2076
        up = 1;
2077
      break;
2078
      case Round_up:
2079
      up = 1 - sign;
2080
      break;
2081
      case Round_down:
2082
      up = sign;
2083
      }
2084
    if (up) {
2085
      k = b->wds;
2086
      b = increment(b);
2087
      x = b->x;
2088
      if (denorm) {
2089
#if 0
2090
        if (nbits == Nbits - 1
2091
         && x[nbits >> kshift] & 1 << (nbits & kmask))
2092
          denorm = 0; /* not currently used */
2093
#endif
2094
        }
2095
      else if (b->wds > k
2096
       || ((n = nbits & kmask) !=0
2097
           && hi0bits(x[k-1]) < 32-n)) {
2098
        rshift(b,1);
2099
        if (++e > Emax)
2100
          goto ovfl;
2101
        }
2102
      }
2103
    }
2104
#ifdef IEEE_Arith
2105
  if (denorm)
2106
    word0(rvp) = b->wds > 1 ? b->x[1] & ~0x100000 : 0;
2107
  else
2108
    word0(rvp) = (b->x[1] & ~0x100000) | ((e + 0x3ff + 52) << 20);
2109
  word1(rvp) = b->x[0];
2110
#endif
2111
#ifdef IBM
2112
  if ((j = e & 3)) {
2113
    k = b->x[0] & ((1 << j) - 1);
2114
    rshift(b,j);
2115
    if (k) {
2116
      switch(rounding) {
2117
        case Round_up:
2118
        if (!sign)
2119
          increment(b);
2120
        break;
2121
        case Round_down:
2122
        if (sign)
2123
          increment(b);
2124
        break;
2125
        case Round_near:
2126
        j = 1 << (j-1);
2127
        if (k & j && ((k & (j-1)) | lostbits))
2128
          increment(b);
2129
        }
2130
      }
2131
    }
2132
  e >>= 2;
2133
  word0(rvp) = b->x[1] | ((e + 65 + 13) << 24);
2134
  word1(rvp) = b->x[0];
2135
#endif
2136
#ifdef VAX
2137
  /* The next two lines ignore swap of low- and high-order 2 bytes. */
2138
  /* word0(rvp) = (b->x[1] & ~0x800000) | ((e + 129 + 55) << 23); */
2139
  /* word1(rvp) = b->x[0]; */
2140
  word0(rvp) = ((b->x[1] & ~0x800000) >> 16) | ((e + 129 + 55) << 7) | (b->x[1] << 16);
2141
  word1(rvp) = (b->x[0] >> 16) | (b->x[0] << 16);
2142
#endif
2143
  Bfree(b);
2144
  }
2145
#endif /*!NO_HEX_FP}*/
2146
2147
 static int
2148
#ifdef KR_headers
2149
dshift(b, p2) Bigint *b; int p2;
2150
#else
2151
dshift(Bigint *b, int p2)
2152
#endif
2153
2.43k
{
2154
2.43k
  int rv = hi0bits(b->x[b->wds-1]) - 4;
2155
2.43k
  if (p2 > 0)
2156
821
    rv -= p2;
2157
2.43k
  return rv & kmask;
2158
2.43k
  }
2159
2160
 static int
2161
quorem
2162
#ifdef KR_headers
2163
  (b, S) Bigint *b, *S;
2164
#else
2165
  (Bigint *b, Bigint *S)
2166
#endif
2167
32.8k
{
2168
32.8k
  int n;
2169
32.8k
  ULong *bx, *bxe, q, *sx, *sxe;
2170
32.8k
#ifdef ULLong
2171
32.8k
  ULLong borrow, carry, y, ys;
2172
#else
2173
  ULong borrow, carry, y, ys;
2174
#ifdef Pack_32
2175
  ULong si, z, zs;
2176
#endif
2177
#endif
2178
2179
32.8k
  n = S->wds;
2180
#ifdef DEBUG
2181
  /*debug*/ if (b->wds > n)
2182
  /*debug*/ Bug("oversize b in quorem");
2183
#endif
2184
32.8k
  if (b->wds < n)
2185
207
    return 0;
2186
32.6k
  sx = S->x;
2187
32.6k
  sxe = sx + --n;
2188
32.6k
  bx = b->x;
2189
32.6k
  bxe = bx + n;
2190
32.6k
  q = *bxe / (*sxe + 1);  /* ensure q <= true quotient */
2191
#ifdef DEBUG
2192
#ifdef NO_STRTOD_BIGCOMP
2193
  /*debug*/ if (q > 9)
2194
#else
2195
  /* An oversized q is possible when quorem is called from bigcomp and */
2196
  /* the input is near, e.g., twice the smallest denormalized number. */
2197
  /*debug*/ if (q > 15)
2198
#endif
2199
  /*debug*/ Bug("oversized quotient in quorem");
2200
#endif
2201
32.6k
  if (q) {
2202
30.4k
    borrow = 0;
2203
30.4k
    carry = 0;
2204
144k
    do {
2205
144k
#ifdef ULLong
2206
144k
      ys = *sx++ * (ULLong)q + carry;
2207
144k
      carry = ys >> 32;
2208
144k
      y = *bx - (ys & FFFFFFFF) - borrow;
2209
144k
      borrow = y >> 32 & (ULong)1;
2210
144k
      *bx++ = y & FFFFFFFF;
2211
#else
2212
#ifdef Pack_32
2213
      si = *sx++;
2214
      ys = (si & 0xffff) * q + carry;
2215
      zs = (si >> 16) * q + (ys >> 16);
2216
      carry = zs >> 16;
2217
      y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
2218
      borrow = (y & 0x10000) >> 16;
2219
      z = (*bx >> 16) - (zs & 0xffff) - borrow;
2220
      borrow = (z & 0x10000) >> 16;
2221
      Storeinc(bx, z, y);
2222
#else
2223
      ys = *sx++ * q + carry;
2224
      carry = ys >> 16;
2225
      y = *bx - (ys & 0xffff) - borrow;
2226
      borrow = (y & 0x10000) >> 16;
2227
      *bx++ = y & 0xffff;
2228
#endif
2229
#endif
2230
144k
      }
2231
144k
      while(sx <= sxe);
2232
30.4k
    if (!*bxe) {
2233
57
      bx = b->x;
2234
57
      while(--bxe > bx && !*bxe)
2235
0
        --n;
2236
57
      b->wds = n;
2237
57
      }
2238
30.4k
    }
2239
32.6k
  if (cmp(b, S) >= 0) {
2240
415
    q++;
2241
415
    borrow = 0;
2242
415
    carry = 0;
2243
415
    bx = b->x;
2244
415
    sx = S->x;
2245
1.86k
    do {
2246
1.86k
#ifdef ULLong
2247
1.86k
      ys = *sx++ + carry;
2248
1.86k
      carry = ys >> 32;
2249
1.86k
      y = *bx - (ys & FFFFFFFF) - borrow;
2250
1.86k
      borrow = y >> 32 & (ULong)1;
2251
1.86k
      *bx++ = y & FFFFFFFF;
2252
#else
2253
#ifdef Pack_32
2254
      si = *sx++;
2255
      ys = (si & 0xffff) + carry;
2256
      zs = (si >> 16) + (ys >> 16);
2257
      carry = zs >> 16;
2258
      y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
2259
      borrow = (y & 0x10000) >> 16;
2260
      z = (*bx >> 16) - (zs & 0xffff) - borrow;
2261
      borrow = (z & 0x10000) >> 16;
2262
      Storeinc(bx, z, y);
2263
#else
2264
      ys = *sx++ + carry;
2265
      carry = ys >> 16;
2266
      y = *bx - (ys & 0xffff) - borrow;
2267
      borrow = (y & 0x10000) >> 16;
2268
      *bx++ = y & 0xffff;
2269
#endif
2270
#endif
2271
1.86k
      }
2272
1.86k
      while(sx <= sxe);
2273
415
    bx = b->x;
2274
415
    bxe = bx + n;
2275
415
    if (!*bxe) {
2276
416
      while(--bxe > bx && !*bxe)
2277
1
        --n;
2278
415
      b->wds = n;
2279
415
      }
2280
415
    }
2281
32.6k
  return q;
2282
32.8k
  }
2283
2284
#if defined(Avoid_Underflow) || !defined(NO_STRTOD_BIGCOMP) /*{*/
2285
 static double
2286
sulp
2287
#ifdef KR_headers
2288
  (x, bc) U *x; BCinfo *bc;
2289
#else
2290
  (U *x, BCinfo *bc)
2291
#endif
2292
286
{
2293
286
  U u;
2294
286
  double rv;
2295
286
  int i;
2296
2297
286
  rv = ulp(x);
2298
286
  if (!bc->scale || (i = 2*P + 1 - ((word0(x) & Exp_mask) >> Exp_shift)) <= 0)
2299
286
    return rv; /* Is there an example where i <= 0 ? */
2300
0
  word0(&u) = Exp_1 + (i << Exp_shift);
2301
0
  word1(&u) = 0;
2302
0
  return rv * u.d;
2303
286
  }
2304
#endif /*}*/
2305
2306
#ifndef NO_STRTOD_BIGCOMP
2307
 static void
2308
bigcomp
2309
#ifdef KR_headers
2310
  (rv, s0, bc)
2311
  U *rv; CONST char *s0; BCinfo *bc;
2312
#else
2313
  (U *rv, const char *s0, BCinfo *bc)
2314
#endif
2315
1.45k
{
2316
1.45k
  Bigint *b, *d;
2317
1.45k
  int b2, bbits, d2, dd, dig, dsign, i, j, nd, nd0, p2, p5, speccase;
2318
2319
1.45k
  dsign = bc->dsign;
2320
1.45k
  nd = bc->nd;
2321
1.45k
  nd0 = bc->nd0;
2322
1.45k
  p5 = nd + bc->e0 - 1;
2323
1.45k
  speccase = 0;
2324
1.45k
#ifndef Sudden_Underflow
2325
1.45k
  if (rv->d == 0.) { /* special case: value near underflow-to-zero */
2326
        /* threshold was rounded to zero */
2327
42
    b = i2b(1);
2328
42
    p2 = Emin - P + 1;
2329
42
    bbits = 1;
2330
42
#ifdef Avoid_Underflow
2331
42
    word0(rv) = (P+2) << Exp_shift;
2332
#else
2333
    word1(rv) = 1;
2334
#endif
2335
42
    i = 0;
2336
#ifdef Honor_FLT_ROUNDS
2337
    if (bc->rounding == 1)
2338
#endif
2339
42
      {
2340
42
      speccase = 1;
2341
42
      --p2;
2342
42
      dsign = 0;
2343
42
      goto have_i;
2344
42
      }
2345
42
    }
2346
1.41k
  else
2347
1.41k
#endif
2348
1.41k
    b = d2b(rv, &p2, &bbits);
2349
1.41k
#ifdef Avoid_Underflow
2350
1.41k
  p2 -= bc->scale;
2351
1.41k
#endif
2352
  /* floor(log2(rv)) == bbits - 1 + p2 */
2353
  /* Check for denormal case. */
2354
1.41k
  i = P - bbits;
2355
1.41k
  if (i > (j = P - Emin - 1 + p2)) {
2356
#ifdef Sudden_Underflow
2357
    Bfree(b);
2358
    b = i2b(1);
2359
    p2 = Emin;
2360
    i = P - 1;
2361
#ifdef Avoid_Underflow
2362
    word0(rv) = (1 + bc->scale) << Exp_shift;
2363
#else
2364
    word0(rv) = Exp_msk1;
2365
#endif
2366
    word1(rv) = 0;
2367
#else
2368
0
    i = j;
2369
0
#endif
2370
0
    }
2371
#ifdef Honor_FLT_ROUNDS
2372
  if (bc->rounding != 1) {
2373
    if (i > 0)
2374
      b = lshift(b, i);
2375
    if (dsign)
2376
      b = increment(b);
2377
    }
2378
  else
2379
#endif
2380
1.41k
    {
2381
1.41k
    b = lshift(b, ++i);
2382
1.41k
    b->x[0] |= 1;
2383
1.41k
    }
2384
1.41k
#ifndef Sudden_Underflow
2385
1.45k
 have_i:
2386
1.45k
#endif
2387
1.45k
  p2 -= p5 + i;
2388
1.45k
  d = i2b(1);
2389
  /* Arrange for convenient computation of quotients:
2390
   * shift left if necessary so divisor has 4 leading 0 bits.
2391
   */
2392
1.45k
  if (p5 > 0)
2393
1.25k
    d = pow5mult(d, p5);
2394
195
  else if (p5 < 0)
2395
117
    b = pow5mult(b, -p5);
2396
1.45k
  if (p2 > 0) {
2397
1.19k
    b2 = p2;
2398
1.19k
    d2 = 0;
2399
1.19k
    }
2400
261
  else {
2401
261
    b2 = 0;
2402
261
    d2 = -p2;
2403
261
    }
2404
1.45k
  i = dshift(d, d2);
2405
1.45k
  if ((b2 += i) > 0)
2406
1.45k
    b = lshift(b, b2);
2407
1.45k
  if ((d2 += i) > 0)
2408
1.31k
    d = lshift(d, d2);
2409
2410
  /* Now b/d = exactly half-way between the two floating-point values */
2411
  /* on either side of the input string.  Compute first digit of b/d. */
2412
2413
1.45k
  if (!(dig = quorem(b,d))) {
2414
0
    b = multadd(b, 10, 0);  /* very unlikely */
2415
0
    dig = quorem(b,d);
2416
0
    }
2417
2418
  /* Compare b/d with s0 */
2419
2420
20.9k
  for(i = 0; i < nd0; ) {
2421
20.7k
    if ((dd = s0[i++] - '0' - dig))
2422
1.30k
      goto ret;
2423
19.4k
    if (!b->x[0] && b->wds == 1) {
2424
0
      if (i < nd)
2425
0
        dd = 1;
2426
0
      goto ret;
2427
0
      }
2428
19.4k
    b = multadd(b, 10, 0);
2429
19.4k
    dig = quorem(b,d);
2430
19.4k
    }
2431
1.85k
  for(j = bc->dp1; i++ < nd;) {
2432
1.85k
    if ((dd = s0[j++] - '0' - dig))
2433
144
      goto ret;
2434
1.71k
    if (!b->x[0] && b->wds == 1) {
2435
0
      if (i < nd)
2436
0
        dd = 1;
2437
0
      goto ret;
2438
0
      }
2439
1.71k
    b = multadd(b, 10, 0);
2440
1.71k
    dig = quorem(b,d);
2441
1.71k
    }
2442
0
  if (dig > 0 || b->x[0] || b->wds > 1)
2443
0
    dd = -1;
2444
1.45k
 ret:
2445
1.45k
  Bfree(b);
2446
1.45k
  Bfree(d);
2447
#ifdef Honor_FLT_ROUNDS
2448
  if (bc->rounding != 1) {
2449
    if (dd < 0) {
2450
      if (bc->rounding == 0) {
2451
        if (!dsign)
2452
          goto retlow1;
2453
        }
2454
      else if (dsign)
2455
        goto rethi1;
2456
      }
2457
    else if (dd > 0) {
2458
      if (bc->rounding == 0) {
2459
        if (dsign)
2460
          goto rethi1;
2461
        goto ret1;
2462
        }
2463
      if (!dsign)
2464
        goto rethi1;
2465
      dval(rv) += 2.*sulp(rv,bc);
2466
      }
2467
    else {
2468
      bc->inexact = 0;
2469
      if (dsign)
2470
        goto rethi1;
2471
      }
2472
    }
2473
  else
2474
#endif
2475
1.45k
  if (speccase) {
2476
42
    if (dd <= 0)
2477
42
      rv->d = 0.;
2478
42
    }
2479
1.41k
  else if (dd < 0) {
2480
1.24k
    if (!dsign)  /* does not happen for round-near */
2481
0
retlow1:
2482
0
      dval(rv) -= sulp(rv,bc);
2483
1.24k
    }
2484
170
  else if (dd > 0) {
2485
170
    if (dsign) {
2486
170
 rethi1:
2487
170
      dval(rv) += sulp(rv,bc);
2488
170
      }
2489
170
    }
2490
0
  else {
2491
    /* Exact half-way case:  apply round-even rule. */
2492
0
    if ((j = ((word0(rv) & Exp_mask) >> Exp_shift) - bc->scale) <= 0) {
2493
0
      i = 1 - j;
2494
0
      if (i <= 31) {
2495
0
        if (word1(rv) & (0x1 << i))
2496
0
          goto odd;
2497
0
        }
2498
0
      else if (word0(rv) & (0x1 << (i-32)))
2499
0
        goto odd;
2500
0
      }
2501
0
    else if (word1(rv) & 1) {
2502
0
 odd:
2503
0
      if (dsign)
2504
0
        goto rethi1;
2505
0
      goto retlow1;
2506
0
      }
2507
0
    }
2508
2509
#ifdef Honor_FLT_ROUNDS
2510
 ret1:
2511
#endif
2512
1.45k
  return;
2513
1.45k
  }
2514
#endif /* NO_STRTOD_BIGCOMP */
2515
2516
ZEND_API double
2517
zend_strtod
2518
#ifdef KR_headers
2519
  (s00, se) CONST char *s00; char **se;
2520
#else
2521
  (const char *s00, const char **se)
2522
#endif
2523
26.8k
{
2524
26.8k
  int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, e, e1;
2525
26.8k
  int esign, i, j, k, nd, nd0, nf, nz, nz0, nz1, sign;
2526
26.8k
  CONST char *s, *s0, *s1;
2527
26.8k
  volatile double aadj, aadj1;
2528
26.8k
  Long L;
2529
26.8k
  U aadj2, adj, rv, rv0;
2530
26.8k
  ULong y, z;
2531
26.8k
  BCinfo bc;
2532
26.8k
  Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
2533
26.8k
#ifdef Avoid_Underflow
2534
26.8k
  ULong Lsb, Lsb1;
2535
26.8k
#endif
2536
#ifdef SET_INEXACT
2537
  int oldinexact;
2538
#endif
2539
26.8k
#ifndef NO_STRTOD_BIGCOMP
2540
26.8k
  int req_bigcomp = 0;
2541
26.8k
#endif
2542
#ifdef Honor_FLT_ROUNDS /*{*/
2543
#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
2544
  bc.rounding = Flt_Rounds;
2545
#else /*}{*/
2546
  bc.rounding = 1;
2547
  switch(fegetround()) {
2548
    case FE_TOWARDZERO: bc.rounding = 0; break;
2549
    case FE_UPWARD: bc.rounding = 2; break;
2550
    case FE_DOWNWARD: bc.rounding = 3;
2551
    }
2552
#endif /*}}*/
2553
#endif /*}*/
2554
#ifdef USE_LOCALE
2555
  CONST char *s2;
2556
#endif
2557
2558
26.8k
  sign = nz0 = nz1 = nz = bc.dplen = bc.uflchk = 0;
2559
26.8k
  dval(&rv) = 0.;
2560
31.0k
  for(s = s00;;s++) switch(*s) {
2561
173
    case '-':
2562
173
      sign = 1;
2563
173
      ZEND_FALLTHROUGH;
2564
173
    case '+':
2565
173
      if (*++s)
2566
173
        goto break2;
2567
0
      ZEND_FALLTHROUGH;
2568
14
    case 0:
2569
14
      goto ret0;
2570
0
    case '\t':
2571
0
    case '\n':
2572
0
    case '\v':
2573
0
    case '\f':
2574
4.21k
    case '\r':
2575
4.21k
    case ' ':
2576
4.21k
      continue;
2577
26.6k
    default:
2578
26.6k
      goto break2;
2579
31.0k
    }
2580
26.8k
 break2:
2581
26.8k
  if (*s == '0') {
2582
#ifndef NO_HEX_FP /*{*/
2583
    switch(s[1]) {
2584
      case 'x':
2585
      case 'X':
2586
#ifdef Honor_FLT_ROUNDS
2587
      gethex(&s, &rv, bc.rounding, sign);
2588
#else
2589
      gethex(&s, &rv, 1, sign);
2590
#endif
2591
      goto ret;
2592
      }
2593
#endif /*}*/
2594
1.89k
    nz0 = 1;
2595
4.48k
    while(*++s == '0') ;
2596
1.89k
    if (!*s)
2597
0
      goto ret;
2598
1.89k
    }
2599
26.8k
  s0 = s;
2600
26.8k
  y = z = 0;
2601
558k
  for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
2602
531k
    if (nd < 9)
2603
110k
      y = 10*y + c - '0';
2604
421k
    else if (nd < DBL_DIG + 2)
2605
78.9k
      z = 10*z + c - '0';
2606
26.8k
  nd0 = nd;
2607
26.8k
  bc.dp0 = bc.dp1 = s - s0;
2608
134k
  for(s1 = s; s1 > s0 && *--s1 == '0'; )
2609
107k
    ++nz1;
2610
#ifdef USE_LOCALE
2611
  s1 = localeconv()->decimal_point;
2612
  if (c == *s1) {
2613
    c = '.';
2614
    if (*++s1) {
2615
      s2 = s;
2616
      for(;;) {
2617
        if (*++s2 != *s1) {
2618
          c = 0;
2619
          break;
2620
          }
2621
        if (!*++s1) {
2622
          s = s2;
2623
          break;
2624
          }
2625
        }
2626
      }
2627
    }
2628
#endif
2629
26.8k
  if (c == '.') {
2630
13.5k
    c = *++s;
2631
13.5k
    bc.dp1 = s - s0;
2632
13.5k
    bc.dplen = bc.dp1 - bc.dp0;
2633
13.5k
    if (!nd) {
2634
14.0k
      for(; c == '0'; c = *++s)
2635
7.16k
        nz++;
2636
6.87k
      if (c > '0' && c <= '9') {
2637
5.28k
        bc.dp0 = s0 - s;
2638
5.28k
        bc.dp1 = bc.dp0 + bc.dplen;
2639
5.28k
        s0 = s;
2640
5.28k
        nf += nz;
2641
5.28k
        nz = 0;
2642
5.28k
        goto have_dig;
2643
5.28k
        }
2644
1.59k
      goto dig_done;
2645
6.87k
      }
2646
72.9k
    for(; c >= '0' && c <= '9'; c = *++s) {
2647
66.2k
 have_dig:
2648
66.2k
      nz++;
2649
66.2k
      if (c -= '0') {
2650
58.8k
        nf += nz;
2651
64.1k
        for(i = 1; i < nz; i++)
2652
5.30k
          if (nd++ < 9)
2653
2.36k
            y *= 10;
2654
2.94k
          else if (nd <= DBL_DIG + 2)
2655
1.01k
            z *= 10;
2656
58.8k
        if (nd++ < 9)
2657
31.2k
          y = 10*y + c;
2658
27.5k
        else if (nd <= DBL_DIG + 2)
2659
10.2k
          z = 10*z + c;
2660
58.8k
        nz = nz1 = 0;
2661
58.8k
        }
2662
66.2k
      }
2663
6.63k
    }
2664
26.8k
 dig_done:
2665
26.8k
  if (nd < 0) {
2666
    /* overflow */
2667
0
    nd = DBL_DIG + 2;
2668
0
  }
2669
26.8k
  if (nf < 0) {
2670
    /* overflow */
2671
0
    nf = DBL_DIG + 2;
2672
0
  }
2673
26.8k
  e = 0;
2674
26.8k
  if (c == 'e' || c == 'E') {
2675
3.33k
    if (!nd && !nz && !nz0) {
2676
0
      goto ret0;
2677
0
      }
2678
3.33k
    s00 = s;
2679
3.33k
    esign = 0;
2680
3.33k
    switch(c = *++s) {
2681
997
      case '-':
2682
997
        esign = 1;
2683
997
        ZEND_FALLTHROUGH;
2684
1.34k
      case '+':
2685
1.34k
        c = *++s;
2686
3.33k
      }
2687
3.33k
    if (c >= '0' && c <= '9') {
2688
4.53k
      while(c == '0')
2689
1.29k
        c = *++s;
2690
3.24k
      if (c > '0' && c <= '9') {
2691
3.00k
        L = c - '0';
2692
3.00k
        s1 = s;
2693
6.70k
        while((c = *++s) >= '0' && c <= '9')
2694
3.69k
          L = (Long) (10*(ULong)L + (c - '0'));
2695
3.00k
        if (s - s1 > 8 || L > 19999)
2696
          /* Avoid confusion from exponents
2697
           * so large that e might overflow.
2698
           */
2699
195
          e = 19999; /* safe for 16 bit ints */
2700
2.81k
        else
2701
2.81k
          e = (int)L;
2702
3.00k
        if (esign)
2703
997
          e = -e;
2704
3.00k
        }
2705
232
      else
2706
232
        e = 0;
2707
3.24k
      }
2708
95
    else
2709
95
      s = s00;
2710
3.33k
    }
2711
26.8k
  if (!nd) {
2712
3.45k
    if (!nz && !nz0) {
2713
#ifdef INFNAN_CHECK
2714
      /* Check for Nan and Infinity */
2715
      if (!bc.dplen)
2716
       switch(c) {
2717
        case 'i':
2718
        case 'I':
2719
        if (match(&s,"nf")) {
2720
          --s;
2721
          if (!match(&s,"inity"))
2722
            ++s;
2723
          word0(&rv) = 0x7ff00000;
2724
          word1(&rv) = 0;
2725
          goto ret;
2726
          }
2727
        break;
2728
        case 'n':
2729
        case 'N':
2730
        if (match(&s, "an")) {
2731
          word0(&rv) = NAN_WORD0;
2732
          word1(&rv) = NAN_WORD1;
2733
#ifndef No_Hex_NaN
2734
          if (*s == '(') /*)*/
2735
            hexnan(&rv, &s);
2736
#endif
2737
          goto ret;
2738
          }
2739
        }
2740
#endif /* INFNAN_CHECK */
2741
1.57k
 ret0:
2742
1.57k
      s = s00;
2743
1.57k
      sign = 0;
2744
1.57k
      }
2745
3.47k
    goto ret;
2746
3.45k
    }
2747
23.3k
  bc.e0 = e1 = e -= nf;
2748
2749
  /* Now we have nd0 digits, starting at s0, followed by a
2750
   * decimal point, followed by nd-nd0 digits.  The number we're
2751
   * after is the integer represented by those digits times
2752
   * 10**e */
2753
2754
23.3k
  if (!nd0)
2755
5.28k
    nd0 = nd;
2756
23.3k
  k = nd < DBL_DIG + 2 ? nd : DBL_DIG + 2;
2757
23.3k
  dval(&rv) = y;
2758
23.3k
  if (k > 9) {
2759
#ifdef SET_INEXACT
2760
    if (k > DBL_DIG)
2761
      oldinexact = get_inexact();
2762
#endif
2763
11.9k
    dval(&rv) = tens[k - 9] * dval(&rv) + z;
2764
11.9k
    }
2765
23.3k
  bd0 = 0;
2766
23.3k
  if (nd <= DBL_DIG
2767
12.4k
#ifndef RND_PRODQUOT
2768
12.4k
#ifndef Honor_FLT_ROUNDS
2769
12.4k
    && Flt_Rounds == 1
2770
23.3k
#endif
2771
23.3k
#endif
2772
23.3k
      ) {
2773
12.4k
    if (!e)
2774
2.44k
      goto ret;
2775
10.0k
#ifndef ROUND_BIASED_without_Round_Up
2776
10.0k
    if (e > 0) {
2777
1.72k
      if (e <= Ten_pmax) {
2778
#ifdef VAX
2779
        goto vax_ovfl_check;
2780
#else
2781
#ifdef Honor_FLT_ROUNDS
2782
        /* round correctly FLT_ROUNDS = 2 or 3 */
2783
        if (sign) {
2784
          rv.d = -rv.d;
2785
          sign = 0;
2786
          }
2787
#endif
2788
1.39k
        /* rv = */ rounded_product(dval(&rv), tens[e]);
2789
1.39k
        goto ret;
2790
1.39k
#endif
2791
1.39k
        }
2792
324
      i = DBL_DIG - nd;
2793
324
      if (e <= Ten_pmax + i) {
2794
        /* A fancier test would sometimes let us do
2795
         * this for larger i values.
2796
         */
2797
#ifdef Honor_FLT_ROUNDS
2798
        /* round correctly FLT_ROUNDS = 2 or 3 */
2799
        if (sign) {
2800
          rv.d = -rv.d;
2801
          sign = 0;
2802
          }
2803
#endif
2804
51
        e -= i;
2805
51
        dval(&rv) *= tens[i];
2806
#ifdef VAX
2807
        /* VAX exponent range is so narrow we must
2808
         * worry about overflow here...
2809
         */
2810
 vax_ovfl_check:
2811
        word0(&rv) -= P*Exp_msk1;
2812
        /* rv = */ rounded_product(dval(&rv), tens[e]);
2813
        if ((word0(&rv) & Exp_mask)
2814
         > Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
2815
          goto ovfl;
2816
        word0(&rv) += P*Exp_msk1;
2817
#else
2818
51
        /* rv = */ rounded_product(dval(&rv), tens[e]);
2819
51
#endif
2820
51
        goto ret;
2821
51
        }
2822
324
      }
2823
8.30k
#ifndef Inaccurate_Divide
2824
8.30k
    else if (e >= -Ten_pmax) {
2825
#ifdef Honor_FLT_ROUNDS
2826
      /* round correctly FLT_ROUNDS = 2 or 3 */
2827
      if (sign) {
2828
        rv.d = -rv.d;
2829
        sign = 0;
2830
        }
2831
#endif
2832
7.75k
      /* rv = */ rounded_quotient(dval(&rv), tens[-e]);
2833
7.75k
      goto ret;
2834
7.75k
      }
2835
10.0k
#endif
2836
10.0k
#endif /* ROUND_BIASED_without_Round_Up */
2837
10.0k
    }
2838
11.7k
  e1 += nd - k;
2839
2840
11.7k
#ifdef IEEE_Arith
2841
#ifdef SET_INEXACT
2842
  bc.inexact = 1;
2843
  if (k <= DBL_DIG)
2844
    oldinexact = get_inexact();
2845
#endif
2846
11.7k
#ifdef Avoid_Underflow
2847
11.7k
  bc.scale = 0;
2848
11.7k
#endif
2849
#ifdef Honor_FLT_ROUNDS
2850
  if (bc.rounding >= 2) {
2851
    if (sign)
2852
      bc.rounding = bc.rounding == 2 ? 0 : 2;
2853
    else
2854
      if (bc.rounding != 2)
2855
        bc.rounding = 0;
2856
    }
2857
#endif
2858
11.7k
#endif /*IEEE_Arith*/
2859
2860
  /* Get starting approximation = rv * 10**e1 */
2861
2862
11.7k
  if (e1 > 0) {
2863
9.87k
    if ((i = e1 & 15))
2864
9.21k
      dval(&rv) *= tens[i];
2865
9.87k
    if (e1 &= ~15) {
2866
6.62k
      if (e1 > DBL_MAX_10_EXP) {
2867
338
 ovfl:
2868
        /* Can't trust HUGE_VAL */
2869
338
#ifdef IEEE_Arith
2870
#ifdef Honor_FLT_ROUNDS
2871
        switch(bc.rounding) {
2872
          case 0: /* toward 0 */
2873
          case 3: /* toward -infinity */
2874
          word0(&rv) = Big0;
2875
          word1(&rv) = Big1;
2876
          break;
2877
          default:
2878
          word0(&rv) = Exp_mask;
2879
          word1(&rv) = 0;
2880
          }
2881
#else /*Honor_FLT_ROUNDS*/
2882
338
        word0(&rv) = Exp_mask;
2883
338
        word1(&rv) = 0;
2884
338
#endif /*Honor_FLT_ROUNDS*/
2885
#ifdef SET_INEXACT
2886
        /* set overflow bit */
2887
        dval(&rv0) = 1e300;
2888
        dval(&rv0) *= dval(&rv0);
2889
#endif
2890
#else /*IEEE_Arith*/
2891
        word0(&rv) = Big0;
2892
        word1(&rv) = Big1;
2893
#endif /*IEEE_Arith*/
2894
626
 range_err:
2895
626
        if (bd0) {
2896
98
          Bfree(bb);
2897
98
          Bfree(bd);
2898
98
          Bfree(bs);
2899
98
          Bfree(bd0);
2900
98
          Bfree(delta);
2901
98
          }
2902
#ifndef NO_ERRNO
2903
        errno = ERANGE;
2904
#endif
2905
626
        goto ret;
2906
338
        }
2907
6.38k
      e1 >>= 4;
2908
10.7k
      for(j = 0; e1 > 1; j++, e1 >>= 1)
2909
4.38k
        if (e1 & 1)
2910
1.54k
          dval(&rv) *= bigtens[j];
2911
    /* The last multiplication could overflow. */
2912
6.38k
      word0(&rv) -= P*Exp_msk1;
2913
6.38k
      dval(&rv) *= bigtens[j];
2914
6.38k
      if ((z = word0(&rv) & Exp_mask)
2915
6.38k
       > Exp_msk1*(DBL_MAX_EXP+Bias-P))
2916
3
        goto ovfl;
2917
6.38k
      if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
2918
        /* set to largest number */
2919
        /* (Can't trust DBL_MAX) */
2920
98
        word0(&rv) = Big0;
2921
98
        word1(&rv) = Big1;
2922
98
        }
2923
6.28k
      else
2924
6.28k
        word0(&rv) += P*Exp_msk1;
2925
6.38k
      }
2926
9.87k
    }
2927
1.84k
  else if (e1 < 0) {
2928
1.81k
    e1 = -e1;
2929
1.81k
    if ((i = e1 & 15))
2930
1.67k
      dval(&rv) /= tens[i];
2931
1.81k
    if (e1 >>= 4) {
2932
1.22k
      if (e1 >= 1 << n_bigtens)
2933
176
        goto undfl;
2934
1.04k
#ifdef Avoid_Underflow
2935
1.04k
      if (e1 & Scale_Bit)
2936
191
        bc.scale = 2*P;
2937
3.13k
      for(j = 0; e1 > 0; j++, e1 >>= 1)
2938
2.09k
        if (e1 & 1)
2939
1.25k
          dval(&rv) *= tinytens[j];
2940
1.04k
      if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask)
2941
191
            >> Exp_shift)) > 0) {
2942
        /* scaled rv is denormal; clear j low bits */
2943
115
        if (j >= 32) {
2944
115
          if (j > 54)
2945
70
            goto undfl;
2946
45
          word1(&rv) = 0;
2947
45
          if (j >= 53)
2948
42
           word0(&rv) = (P+2)*Exp_msk1;
2949
3
          else
2950
3
           word0(&rv) &= 0xffffffff << (j-32);
2951
45
          }
2952
0
        else
2953
0
          word1(&rv) &= 0xffffffff << j;
2954
115
        }
2955
#else
2956
      for(j = 0; e1 > 1; j++, e1 >>= 1)
2957
        if (e1 & 1)
2958
          dval(&rv) *= tinytens[j];
2959
      /* The last multiplication could underflow. */
2960
      dval(&rv0) = dval(&rv);
2961
      dval(&rv) *= tinytens[j];
2962
      if (!dval(&rv)) {
2963
        dval(&rv) = 2.*dval(&rv0);
2964
        dval(&rv) *= tinytens[j];
2965
#endif
2966
978
        if (!dval(&rv)) {
2967
288
 undfl:
2968
288
          dval(&rv) = 0.;
2969
288
          goto range_err;
2970
0
          }
2971
#ifndef Avoid_Underflow
2972
        word0(&rv) = Tiny0;
2973
        word1(&rv) = Tiny1;
2974
        /* The refinement below will clean
2975
         * this approximation up.
2976
         */
2977
        }
2978
#endif
2979
978
      }
2980
1.81k
    }
2981
2982
  /* Now the hard part -- adjusting rv to the correct value.*/
2983
2984
  /* Put digits into bd: true value = bd * 10^e */
2985
2986
11.2k
  bc.nd = nd - nz1;
2987
11.2k
#ifndef NO_STRTOD_BIGCOMP
2988
11.2k
  bc.nd0 = nd0; /* Only needed if nd > strtod_diglim, but done here */
2989
      /* to silence an erroneous warning about bc.nd0 */
2990
      /* possibly not being initialized. */
2991
11.2k
  if (nd > strtod_diglim) {
2992
    /* ASSERT(strtod_diglim >= 18); 18 == one more than the */
2993
    /* minimum number of decimal digits to distinguish double values */
2994
    /* in IEEE arithmetic. */
2995
3.46k
    i = j = 18;
2996
3.46k
    if (i > nd0)
2997
162
      j += bc.dplen;
2998
12.9k
    for(;;) {
2999
12.9k
      if (--j < bc.dp1 && j >= bc.dp0)
3000
18
        j = bc.dp0 - 1;
3001
12.9k
      if (s0[j] != '0')
3002
3.46k
        break;
3003
9.51k
      --i;
3004
9.51k
      }
3005
3.46k
    e += nd - i;
3006
3.46k
    nd = i;
3007
3.46k
    if (nd0 > nd)
3008
3.30k
      nd0 = nd;
3009
3.46k
    if (nd < 9) { /* must recompute y */
3010
622
      y = 0;
3011
2.34k
      for(i = 0; i < nd0; ++i)
3012
1.72k
        y = 10*y + s0[i] - '0';
3013
670
      for(j = bc.dp1; i < nd; ++i)
3014
48
        y = 10*y + s0[j++] - '0';
3015
622
      }
3016
3.46k
    }
3017
11.2k
#endif
3018
11.2k
  bd0 = s2b(s0, nd0, nd, y, bc.dplen);
3019
3020
12.7k
  for(;;) {
3021
12.7k
    bd = Balloc(bd0->k);
3022
12.7k
    Bcopy(bd, bd0);
3023
12.7k
    bb = d2b(&rv, &bbe, &bbbits); /* rv = bb * 2^bbe */
3024
12.7k
    bs = i2b(1);
3025
3026
12.7k
    if (e >= 0) {
3027
11.0k
      bb2 = bb5 = 0;
3028
11.0k
      bd2 = bd5 = e;
3029
11.0k
      }
3030
1.68k
    else {
3031
1.68k
      bb2 = bb5 = -e;
3032
1.68k
      bd2 = bd5 = 0;
3033
1.68k
      }
3034
12.7k
    if (bbe >= 0)
3035
11.1k
      bb2 += bbe;
3036
1.58k
    else
3037
1.58k
      bd2 -= bbe;
3038
12.7k
    bs2 = bb2;
3039
#ifdef Honor_FLT_ROUNDS
3040
    if (bc.rounding != 1)
3041
      bs2++;
3042
#endif
3043
12.7k
#ifdef Avoid_Underflow
3044
12.7k
    Lsb = LSB;
3045
12.7k
    Lsb1 = 0;
3046
12.7k
    j = bbe - bc.scale;
3047
12.7k
    i = j + bbbits - 1; /* logb(rv) */
3048
12.7k
    j = P + 1 - bbbits;
3049
12.7k
    if (i < Emin) { /* denormal */
3050
48
      i = Emin - i;
3051
48
      j -= i;
3052
48
      if (i < 32)
3053
0
        Lsb <<= i;
3054
48
      else if (i < 52)
3055
3
        Lsb1 = Lsb << (i-32);
3056
45
      else
3057
45
        Lsb1 = Exp_mask;
3058
48
      }
3059
#else /*Avoid_Underflow*/
3060
#ifdef Sudden_Underflow
3061
#ifdef IBM
3062
    j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
3063
#else
3064
    j = P + 1 - bbbits;
3065
#endif
3066
#else /*Sudden_Underflow*/
3067
    j = bbe;
3068
    i = j + bbbits - 1; /* logb(rv) */
3069
    if (i < Emin) /* denormal */
3070
      j += P - Emin;
3071
    else
3072
      j = P + 1 - bbbits;
3073
#endif /*Sudden_Underflow*/
3074
#endif /*Avoid_Underflow*/
3075
12.7k
    bb2 += j;
3076
12.7k
    bd2 += j;
3077
12.7k
#ifdef Avoid_Underflow
3078
12.7k
    bd2 += bc.scale;
3079
12.7k
#endif
3080
12.7k
    i = bb2 < bd2 ? bb2 : bd2;
3081
12.7k
    if (i > bs2)
3082
1.60k
      i = bs2;
3083
12.7k
    if (i > 0) {
3084
12.7k
      bb2 -= i;
3085
12.7k
      bd2 -= i;
3086
12.7k
      bs2 -= i;
3087
12.7k
      }
3088
12.7k
    if (bb5 > 0) {
3089
1.68k
      bs = pow5mult(bs, bb5);
3090
1.68k
      bb1 = mult(bs, bb);
3091
1.68k
      Bfree(bb);
3092
1.68k
      bb = bb1;
3093
1.68k
      }
3094
12.7k
    if (bb2 > 0)
3095
12.7k
      bb = lshift(bb, bb2);
3096
12.7k
    if (bd5 > 0)
3097
4.54k
      bd = pow5mult(bd, bd5);
3098
12.7k
    if (bd2 > 0)
3099
1.60k
      bd = lshift(bd, bd2);
3100
12.7k
    if (bs2 > 0)
3101
11.1k
      bs = lshift(bs, bs2);
3102
12.7k
    delta = diff(bb, bd);
3103
12.7k
    bc.dsign = delta->sign;
3104
12.7k
    delta->sign = 0;
3105
12.7k
    i = cmp(delta, bs);
3106
12.7k
#ifndef NO_STRTOD_BIGCOMP /*{*/
3107
12.7k
    if (bc.nd > nd && i <= 0) {
3108
2.98k
      if (bc.dsign) {
3109
        /* Must use bigcomp(). */
3110
1.41k
        req_bigcomp = 1;
3111
1.41k
        break;
3112
1.41k
        }
3113
#ifdef Honor_FLT_ROUNDS
3114
      if (bc.rounding != 1) {
3115
        if (i < 0) {
3116
          req_bigcomp = 1;
3117
          break;
3118
          }
3119
        }
3120
      else
3121
#endif
3122
1.57k
        i = -1; /* Discarded digits make delta smaller. */
3123
1.57k
      }
3124
11.3k
#endif /*}*/
3125
#ifdef Honor_FLT_ROUNDS /*{*/
3126
    if (bc.rounding != 1) {
3127
      if (i < 0) {
3128
        /* Error is less than an ulp */
3129
        if (!delta->x[0] && delta->wds <= 1) {
3130
          /* exact */
3131
#ifdef SET_INEXACT
3132
          bc.inexact = 0;
3133
#endif
3134
          break;
3135
          }
3136
        if (bc.rounding) {
3137
          if (bc.dsign) {
3138
            adj.d = 1.;
3139
            goto apply_adj;
3140
            }
3141
          }
3142
        else if (!bc.dsign) {
3143
          adj.d = -1.;
3144
          if (!word1(&rv)
3145
           && !(word0(&rv) & Frac_mask)) {
3146
            y = word0(&rv) & Exp_mask;
3147
#ifdef Avoid_Underflow
3148
            if (!bc.scale || y > 2*P*Exp_msk1)
3149
#else
3150
            if (y)
3151
#endif
3152
              {
3153
              delta = lshift(delta,Log2P);
3154
              if (cmp(delta, bs) <= 0)
3155
              adj.d = -0.5;
3156
              }
3157
            }
3158
 apply_adj:
3159
#ifdef Avoid_Underflow /*{*/
3160
          if (bc.scale && (y = word0(&rv) & Exp_mask)
3161
            <= 2*P*Exp_msk1)
3162
            word0(&adj) += (2*P+1)*Exp_msk1 - y;
3163
#else
3164
#ifdef Sudden_Underflow
3165
          if ((word0(&rv) & Exp_mask) <=
3166
              P*Exp_msk1) {
3167
            word0(&rv) += P*Exp_msk1;
3168
            dval(&rv) += adj.d*ulp(dval(&rv));
3169
            word0(&rv) -= P*Exp_msk1;
3170
            }
3171
          else
3172
#endif /*Sudden_Underflow*/
3173
#endif /*Avoid_Underflow}*/
3174
          dval(&rv) += adj.d*ulp(&rv);
3175
          }
3176
        break;
3177
        }
3178
      adj.d = ratio(delta, bs);
3179
      if (adj.d < 1.)
3180
        adj.d = 1.;
3181
      if (adj.d <= 0x7ffffffe) {
3182
        /* adj = rounding ? ceil(adj) : floor(adj); */
3183
        y = adj.d;
3184
        if (y != adj.d) {
3185
          if (!((bc.rounding>>1) ^ bc.dsign))
3186
            y++;
3187
          adj.d = y;
3188
          }
3189
        }
3190
#ifdef Avoid_Underflow /*{*/
3191
      if (bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1)
3192
        word0(&adj) += (2*P+1)*Exp_msk1 - y;
3193
#else
3194
#ifdef Sudden_Underflow
3195
      if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) {
3196
        word0(&rv) += P*Exp_msk1;
3197
        adj.d *= ulp(dval(&rv));
3198
        if (bc.dsign)
3199
          dval(&rv) += adj.d;
3200
        else
3201
          dval(&rv) -= adj.d;
3202
        word0(&rv) -= P*Exp_msk1;
3203
        goto cont;
3204
        }
3205
#endif /*Sudden_Underflow*/
3206
#endif /*Avoid_Underflow}*/
3207
      adj.d *= ulp(&rv);
3208
      if (bc.dsign) {
3209
        if (word0(&rv) == Big0 && word1(&rv) == Big1)
3210
          goto ovfl;
3211
        dval(&rv) += adj.d;
3212
        }
3213
      else
3214
        dval(&rv) -= adj.d;
3215
      goto cont;
3216
      }
3217
#endif /*}Honor_FLT_ROUNDS*/
3218
3219
11.3k
    if (i < 0) {
3220
      /* Error is less than half an ulp -- check for
3221
       * special case of mantissa a power of two.
3222
       */
3223
5.98k
      if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask
3224
152
#ifdef IEEE_Arith /*{*/
3225
152
#ifdef Avoid_Underflow
3226
152
       || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1
3227
#else
3228
       || (word0(&rv) & Exp_mask) <= Exp_msk1
3229
#endif
3230
5.98k
#endif /*}*/
3231
5.98k
        ) {
3232
#ifdef SET_INEXACT
3233
        if (!delta->x[0] && delta->wds <= 1)
3234
          bc.inexact = 0;
3235
#endif
3236
5.83k
        break;
3237
5.83k
        }
3238
149
      if (!delta->x[0] && delta->wds <= 1) {
3239
        /* exact result */
3240
#ifdef SET_INEXACT
3241
        bc.inexact = 0;
3242
#endif
3243
89
        break;
3244
89
        }
3245
60
      delta = lshift(delta,Log2P);
3246
60
      if (cmp(delta, bs) > 0)
3247
18
        goto drop_down;
3248
42
      break;
3249
60
      }
3250
5.33k
    if (i == 0) {
3251
      /* exactly half-way between */
3252
117
      if (bc.dsign) {
3253
23
        if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
3254
0
         &&  word1(&rv) == (
3255
0
#ifdef Avoid_Underflow
3256
0
      (bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1)
3257
0
    ? (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
3258
0
#endif
3259
0
               0xffffffff)) {
3260
          /*boundary case -- increment exponent*/
3261
0
          if (word0(&rv) == Big0 && word1(&rv) == Big1)
3262
0
            goto ovfl;
3263
0
          word0(&rv) = (word0(&rv) & Exp_mask)
3264
0
            + Exp_msk1
3265
#ifdef IBM
3266
            | Exp_msk1 >> 4
3267
#endif
3268
0
            ;
3269
0
          word1(&rv) = 0;
3270
0
#ifdef Avoid_Underflow
3271
0
          bc.dsign = 0;
3272
0
#endif
3273
0
          break;
3274
0
          }
3275
23
        }
3276
94
      else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) {
3277
18
 drop_down:
3278
        /* boundary case -- decrement exponent */
3279
#ifdef Sudden_Underflow /*{{*/
3280
        L = word0(&rv) & Exp_mask;
3281
#ifdef IBM
3282
        if (L <  Exp_msk1)
3283
#else
3284
#ifdef Avoid_Underflow
3285
        if (L <= (bc.scale ? (2*P+1)*Exp_msk1 : Exp_msk1))
3286
#else
3287
        if (L <= Exp_msk1)
3288
#endif /*Avoid_Underflow*/
3289
#endif /*IBM*/
3290
          {
3291
          if (bc.nd >nd) {
3292
            bc.uflchk = 1;
3293
            break;
3294
            }
3295
          goto undfl;
3296
          }
3297
        L -= Exp_msk1;
3298
#else /*Sudden_Underflow}{*/
3299
18
#ifdef Avoid_Underflow
3300
18
        if (bc.scale) {
3301
0
          L = word0(&rv) & Exp_mask;
3302
0
          if (L <= (2*P+1)*Exp_msk1) {
3303
0
            if (L > (P+2)*Exp_msk1)
3304
              /* round even ==> */
3305
              /* accept rv */
3306
0
              break;
3307
            /* rv = smallest denormal */
3308
0
            if (bc.nd >nd) {
3309
0
              bc.uflchk = 1;
3310
0
              break;
3311
0
              }
3312
0
            goto undfl;
3313
0
            }
3314
0
          }
3315
18
#endif /*Avoid_Underflow*/
3316
18
        L = (word0(&rv) & Exp_mask) - Exp_msk1;
3317
18
#endif /*Sudden_Underflow}}*/
3318
18
        word0(&rv) = L | Bndry_mask1;
3319
18
        word1(&rv) = 0xffffffff;
3320
#ifdef IBM
3321
        goto cont;
3322
#else
3323
18
#ifndef NO_STRTOD_BIGCOMP
3324
18
        if (bc.nd > nd)
3325
17
          goto cont;
3326
1
#endif
3327
1
        break;
3328
18
#endif
3329
18
        }
3330
117
#ifndef ROUND_BIASED
3331
117
#ifdef Avoid_Underflow
3332
117
      if (Lsb1) {
3333
0
        if (!(word0(&rv) & Lsb1))
3334
0
          break;
3335
0
        }
3336
117
      else if (!(word1(&rv) & Lsb))
3337
1
        break;
3338
#else
3339
      if (!(word1(&rv) & LSB))
3340
        break;
3341
#endif
3342
116
#endif
3343
116
      if (bc.dsign)
3344
22
#ifdef Avoid_Underflow
3345
22
        dval(&rv) += sulp(&rv, &bc);
3346
#else
3347
        dval(&rv) += ulp(&rv);
3348
#endif
3349
94
#ifndef ROUND_BIASED
3350
94
      else {
3351
94
#ifdef Avoid_Underflow
3352
94
        dval(&rv) -= sulp(&rv, &bc);
3353
#else
3354
        dval(&rv) -= ulp(&rv);
3355
#endif
3356
94
#ifndef Sudden_Underflow
3357
94
        if (!dval(&rv)) {
3358
0
          if (bc.nd >nd) {
3359
0
            bc.uflchk = 1;
3360
0
            break;
3361
0
            }
3362
0
          goto undfl;
3363
0
          }
3364
94
#endif
3365
94
        }
3366
116
#ifdef Avoid_Underflow
3367
116
      bc.dsign = 1 - bc.dsign;
3368
116
#endif
3369
116
#endif
3370
116
      break;
3371
116
      }
3372
5.22k
    if ((aadj = ratio(delta, bs)) <= 2.) {
3373
3.72k
      if (bc.dsign)
3374
1.18k
        aadj = aadj1 = 1.;
3375
2.54k
      else if (word1(&rv) || word0(&rv) & Bndry_mask) {
3376
2.50k
#ifndef Sudden_Underflow
3377
2.50k
        if (word1(&rv) == Tiny1 && !word0(&rv)) {
3378
0
          if (bc.nd >nd) {
3379
0
            bc.uflchk = 1;
3380
0
            break;
3381
0
            }
3382
0
          goto undfl;
3383
0
          }
3384
2.50k
#endif
3385
2.50k
        aadj = 1.;
3386
2.50k
        aadj1 = -1.;
3387
2.50k
        }
3388
42
      else {
3389
        /* special case -- power of FLT_RADIX to be */
3390
        /* rounded down... */
3391
3392
42
        if (aadj < 2./FLT_RADIX)
3393
0
          aadj = 1./FLT_RADIX;
3394
42
        else
3395
42
          aadj *= 0.5;
3396
42
        aadj1 = -aadj;
3397
42
        }
3398
3.72k
      }
3399
1.49k
    else {
3400
1.49k
      aadj *= 0.5;
3401
1.49k
      aadj1 = bc.dsign ? aadj : -aadj;
3402
#ifdef Check_FLT_ROUNDS
3403
      switch(bc.rounding) {
3404
        case 2: /* towards +infinity */
3405
          aadj1 -= 0.5;
3406
          break;
3407
        case 0: /* towards 0 */
3408
        case 3: /* towards -infinity */
3409
          aadj1 += 0.5;
3410
        }
3411
#else
3412
1.49k
      if (Flt_Rounds == 0)
3413
0
        aadj1 += 0.5;
3414
1.49k
#endif /*Check_FLT_ROUNDS*/
3415
1.49k
      }
3416
5.22k
    y = word0(&rv) & Exp_mask;
3417
3418
    /* Check for overflow */
3419
3420
5.22k
    if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
3421
187
      dval(&rv0) = dval(&rv);
3422
187
      word0(&rv) -= P*Exp_msk1;
3423
187
      adj.d = aadj1 * ulp(&rv);
3424
187
      dval(&rv) += adj.d;
3425
187
      if ((word0(&rv) & Exp_mask) >=
3426
187
          Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
3427
98
        if (word0(&rv0) == Big0 && word1(&rv0) == Big1)
3428
98
          goto ovfl;
3429
0
        word0(&rv) = Big0;
3430
0
        word1(&rv) = Big1;
3431
0
        goto cont;
3432
98
        }
3433
89
      else
3434
89
        word0(&rv) += P*Exp_msk1;
3435
187
      }
3436
5.03k
    else {
3437
5.03k
#ifdef Avoid_Underflow
3438
5.03k
      if (bc.scale && y <= 2*P*Exp_msk1) {
3439
45
        if (aadj <= 0x7fffffff) {
3440
45
          if ((z = aadj) <= 0)
3441
42
            z = 1;
3442
45
          aadj = z;
3443
45
          aadj1 = bc.dsign ? aadj : -aadj;
3444
45
          }
3445
45
        dval(&aadj2) = aadj1;
3446
45
        word0(&aadj2) += (2*P+1)*Exp_msk1 - y;
3447
45
        aadj1 = dval(&aadj2);
3448
45
        adj.d = aadj1 * ulp(&rv);
3449
45
        dval(&rv) += adj.d;
3450
45
        if (rv.d == 0.)
3451
#ifdef NO_STRTOD_BIGCOMP
3452
          goto undfl;
3453
#else
3454
42
          {
3455
42
          req_bigcomp = 1;
3456
42
          break;
3457
42
          }
3458
45
#endif
3459
45
        }
3460
4.99k
      else {
3461
4.99k
        adj.d = aadj1 * ulp(&rv);
3462
4.99k
        dval(&rv) += adj.d;
3463
4.99k
        }
3464
#else
3465
#ifdef Sudden_Underflow
3466
      if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) {
3467
        dval(&rv0) = dval(&rv);
3468
        word0(&rv) += P*Exp_msk1;
3469
        adj.d = aadj1 * ulp(&rv);
3470
        dval(&rv) += adj.d;
3471
#ifdef IBM
3472
        if ((word0(&rv) & Exp_mask) <  P*Exp_msk1)
3473
#else
3474
        if ((word0(&rv) & Exp_mask) <= P*Exp_msk1)
3475
#endif
3476
          {
3477
          if (word0(&rv0) == Tiny0
3478
           && word1(&rv0) == Tiny1) {
3479
            if (bc.nd >nd) {
3480
              bc.uflchk = 1;
3481
              break;
3482
              }
3483
            goto undfl;
3484
            }
3485
          word0(&rv) = Tiny0;
3486
          word1(&rv) = Tiny1;
3487
          goto cont;
3488
          }
3489
        else
3490
          word0(&rv) -= P*Exp_msk1;
3491
        }
3492
      else {
3493
        adj.d = aadj1 * ulp(&rv);
3494
        dval(&rv) += adj.d;
3495
        }
3496
#else /*Sudden_Underflow*/
3497
      /* Compute adj so that the IEEE rounding rules will
3498
       * correctly round rv + adj in some half-way cases.
3499
       * If rv * ulp(rv) is denormalized (i.e.,
3500
       * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
3501
       * trouble from bits lost to denormalization;
3502
       * example: 1.2e-307 .
3503
       */
3504
      if (y <= (P-1)*Exp_msk1 && aadj > 1.) {
3505
        aadj1 = (double)(int)(aadj + 0.5);
3506
        if (!bc.dsign)
3507
          aadj1 = -aadj1;
3508
        }
3509
      adj.d = aadj1 * ulp(&rv);
3510
      dval(&rv) += adj.d;
3511
#endif /*Sudden_Underflow*/
3512
#endif /*Avoid_Underflow*/
3513
5.03k
      }
3514
5.08k
    z = word0(&rv) & Exp_mask;
3515
5.08k
#ifndef SET_INEXACT
3516
5.08k
    if (bc.nd == nd) {
3517
3.59k
#ifdef Avoid_Underflow
3518
3.59k
    if (!bc.scale)
3519
3.59k
#endif
3520
3.59k
    if (y == z) {
3521
      /* Can we stop now? */
3522
3.59k
      L = (Long)aadj;
3523
3.59k
      aadj -= L;
3524
      /* The tolerances below are conservative. */
3525
3.59k
      if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
3526
3.58k
        if (aadj < .4999999 || aadj > .5000001)
3527
3.58k
          break;
3528
3.58k
        }
3529
8
      else if (aadj < .4999999/FLT_RADIX)
3530
8
        break;
3531
3.59k
      }
3532
3.59k
    }
3533
1.48k
#endif
3534
1.50k
 cont:
3535
1.50k
    Bfree(bb);
3536
1.50k
    Bfree(bd);
3537
1.50k
    Bfree(bs);
3538
1.50k
    Bfree(delta);
3539
1.50k
    }
3540
11.1k
  Bfree(bb);
3541
11.1k
  Bfree(bd);
3542
11.1k
  Bfree(bs);
3543
11.1k
  Bfree(bd0);
3544
11.1k
  Bfree(delta);
3545
11.1k
#ifndef NO_STRTOD_BIGCOMP
3546
11.1k
  if (req_bigcomp) {
3547
1.45k
    bd0 = 0;
3548
1.45k
    bc.e0 += nz1;
3549
1.45k
    bigcomp(&rv, s0, &bc);
3550
1.45k
    y = word0(&rv) & Exp_mask;
3551
1.45k
    if (y == Exp_mask)
3552
0
      goto ovfl;
3553
1.45k
    if (y == 0 && rv.d == 0.)
3554
42
      goto undfl;
3555
1.45k
    }
3556
11.0k
#endif
3557
#ifdef SET_INEXACT
3558
  if (bc.inexact) {
3559
    if (!oldinexact) {
3560
      word0(&rv0) = Exp_1 + (70 << Exp_shift);
3561
      word1(&rv0) = 0;
3562
      dval(&rv0) += 1.;
3563
      }
3564
    }
3565
  else if (!oldinexact)
3566
    clear_inexact();
3567
#endif
3568
11.0k
#ifdef Avoid_Underflow
3569
11.0k
  if (bc.scale) {
3570
79
    word0(&rv0) = Exp_1 - 2*P*Exp_msk1;
3571
79
    word1(&rv0) = 0;
3572
79
    dval(&rv) *= dval(&rv0);
3573
#ifndef NO_ERRNO
3574
    /* try to avoid the bug of testing an 8087 register value */
3575
#ifdef IEEE_Arith
3576
    if (!(word0(&rv) & Exp_mask))
3577
#else
3578
    if (word0(&rv) == 0 && word1(&rv) == 0)
3579
#endif
3580
      errno = ERANGE;
3581
#endif
3582
79
    }
3583
11.0k
#endif /* Avoid_Underflow */
3584
#ifdef SET_INEXACT
3585
  if (bc.inexact && !(word0(&rv) & Exp_mask)) {
3586
    /* set underflow bit */
3587
    dval(&rv0) = 1e-300;
3588
    dval(&rv0) *= dval(&rv0);
3589
    }
3590
#endif
3591
26.8k
 ret:
3592
26.8k
  if (se)
3593
25.2k
    *se = (char *)s;
3594
26.8k
  return sign ? -dval(&rv) : dval(&rv);
3595
11.0k
  }
3596
3597
#if !defined(MULTIPLE_THREADS) && !defined(dtoa_result)
3598
 ZEND_TLS char *dtoa_result;
3599
#endif
3600
3601
 static char *
3602
#ifdef KR_headers
3603
rv_alloc(i) int i;
3604
#else
3605
rv_alloc(int i)
3606
#endif
3607
1.95k
{
3608
3609
1.95k
  int j, k, *r;
3610
1.95k
  size_t rem;
3611
3612
1.95k
  rem = sizeof(Bigint) - sizeof(ULong) - sizeof(int);
3613
3614
3615
1.95k
  j = sizeof(ULong);
3616
1.95k
  if (i > ((INT_MAX >> 2) + rem))
3617
0
    i = (INT_MAX >> 2) + rem;
3618
1.95k
  for(k = 0;
3619
1.95k
    rem + j <= (size_t)i; j <<= 1)
3620
0
      k++;
3621
3622
1.95k
  r = (int*)Balloc(k);
3623
1.95k
  *r = k;
3624
1.95k
  return
3625
1.95k
#ifndef MULTIPLE_THREADS
3626
1.95k
  dtoa_result =
3627
1.95k
#endif
3628
1.95k
    (char *)(r+1);
3629
1.95k
  }
3630
3631
 static char *
3632
#ifdef KR_headers
3633
nrv_alloc(s, rve, n) char *s, **rve; int n;
3634
#else
3635
nrv_alloc(const char *s, char **rve, int n)
3636
#endif
3637
45
{
3638
45
  char *rv, *t;
3639
3640
45
  t = rv = rv_alloc(n);
3641
342
  while((*t = *s++)) t++;
3642
45
  if (rve)
3643
0
    *rve = t;
3644
45
  return rv;
3645
45
  }
3646
3647
/* freedtoa(s) must be used to free values s returned by dtoa
3648
 * when MULTIPLE_THREADS is #defined.  It should be used in all cases,
3649
 * but for consistency with earlier versions of dtoa, it is optional
3650
 * when MULTIPLE_THREADS is not defined.
3651
 */
3652
3653
ZEND_API void
3654
#ifdef KR_headers
3655
zend_freedtoa(s) char *s;
3656
#else
3657
zend_freedtoa(char *s)
3658
#endif
3659
1.95k
{
3660
1.95k
  Bigint *b = (Bigint *)((int *)s - 1);
3661
1.95k
  b->maxwds = 1 << (b->k = *(int*)b);
3662
1.95k
  Bfree(b);
3663
1.95k
#ifndef MULTIPLE_THREADS
3664
1.95k
  if (s == dtoa_result)
3665
1.95k
    dtoa_result = 0;
3666
1.95k
#endif
3667
1.95k
  }
3668
3669
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
3670
 *
3671
 * Inspired by "How to Print Floating-Point Numbers Accurately" by
3672
 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
3673
 *
3674
 * Modifications:
3675
 *  1. Rather than iterating, we use a simple numeric overestimate
3676
 *     to determine k = floor(log10(d)).  We scale relevant
3677
 *     quantities using O(log2(k)) rather than O(k) multiplications.
3678
 *  2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
3679
 *     try to generate digits strictly left to right.  Instead, we
3680
 *     compute with fewer bits and propagate the carry if necessary
3681
 *     when rounding the final digit up.  This is often faster.
3682
 *  3. Under the assumption that input will be rounded nearest,
3683
 *     mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
3684
 *     That is, we allow equality in stopping tests when the
3685
 *     round-nearest rule will give the same floating-point value
3686
 *     as would satisfaction of the stopping test with strict
3687
 *     inequality.
3688
 *  4. We remove common factors of powers of 2 from relevant
3689
 *     quantities.
3690
 *  5. When converting floating-point integers less than 1e16,
3691
 *     we use floating-point arithmetic rather than resorting
3692
 *     to multiple-precision integers.
3693
 *  6. When asked to produce fewer than 15 digits, we first try
3694
 *     to get by with floating-point arithmetic; we resort to
3695
 *     multiple-precision integer arithmetic only if we cannot
3696
 *     guarantee that the floating-point calculation has given
3697
 *     the correctly rounded result.  For k requested digits and
3698
 *     "uniformly" distributed input, the probability is
3699
 *     something like 10^(k-15) that we must resort to the Long
3700
 *     calculation.
3701
 */
3702
3703
ZEND_API char *zend_dtoa(double dd, int mode, int ndigits, int *decpt, bool *sign, char **rve)
3704
1.95k
{
3705
 /* Arguments ndigits, decpt, sign are similar to those
3706
  of ecvt and fcvt; trailing zeros are suppressed from
3707
  the returned string.  If not null, *rve is set to point
3708
  to the end of the return value.  If d is +-Infinity or NaN,
3709
  then *decpt is set to 9999.
3710
3711
  mode:
3712
    0 ==> shortest string that yields d when read in
3713
      and rounded to nearest.
3714
    1 ==> like 0, but with Steele & White stopping rule;
3715
      e.g. with IEEE P754 arithmetic , mode 0 gives
3716
      1e23 whereas mode 1 gives 9.999999999999999e22.
3717
    2 ==> max(1,ndigits) significant digits.  This gives a
3718
      return value similar to that of ecvt, except
3719
      that trailing zeros are suppressed.
3720
    3 ==> through ndigits past the decimal point.  This
3721
      gives a return value similar to that from fcvt,
3722
      except that trailing zeros are suppressed, and
3723
      ndigits can be negative.
3724
    4,5 ==> similar to 2 and 3, respectively, but (in
3725
      round-nearest mode) with the tests of mode 0 to
3726
      possibly return a shorter string that rounds to d.
3727
      With IEEE arithmetic and compilation with
3728
      -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
3729
      as modes 2 and 3 when FLT_ROUNDS != 1.
3730
    6-9 ==> Debugging modes similar to mode - 4:  don't try
3731
      fast floating-point estimate (if applicable).
3732
3733
    Values of mode other than 0-9 are treated as mode 0.
3734
3735
    Sufficient space is allocated to the return value
3736
    to hold the suppressed trailing zeros.
3737
  */
3738
3739
1.95k
  int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1,
3740
1.95k
    j, j1 = 0, k, k0, k_check, leftright, m2, m5, s2, s5,
3741
1.95k
    spec_case = 0, try_quick;
3742
1.95k
  Long L;
3743
1.95k
#ifndef Sudden_Underflow
3744
1.95k
  int denorm;
3745
1.95k
  ULong x;
3746
1.95k
#endif
3747
1.95k
  Bigint *b, *b1, *delta, *mlo, *mhi, *S;
3748
1.95k
  U d2, eps, u;
3749
1.95k
  double ds;
3750
1.95k
  char *s, *s0;
3751
1.95k
#ifndef No_leftright
3752
1.95k
#ifdef IEEE_Arith
3753
1.95k
  U eps1;
3754
1.95k
#endif
3755
1.95k
#endif
3756
#ifdef SET_INEXACT
3757
  int inexact, oldinexact;
3758
#endif
3759
#ifdef Honor_FLT_ROUNDS /*{*/
3760
  int Rounding;
3761
#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
3762
  Rounding = Flt_Rounds;
3763
#else /*}{*/
3764
  Rounding = 1;
3765
  switch(fegetround()) {
3766
    case FE_TOWARDZERO: Rounding = 0; break;
3767
    case FE_UPWARD: Rounding = 2; break;
3768
    case FE_DOWNWARD: Rounding = 3;
3769
    }
3770
#endif /*}}*/
3771
#endif /*}*/
3772
3773
1.95k
#ifndef MULTIPLE_THREADS
3774
1.95k
  if (dtoa_result) {
3775
0
    zend_freedtoa(dtoa_result);
3776
0
    dtoa_result = 0;
3777
0
    }
3778
1.95k
#endif
3779
3780
1.95k
  u.d = dd;
3781
1.95k
  if (word0(&u) & Sign_bit) {
3782
    /* set sign for everything, including 0's and NaNs */
3783
437
    *sign = 1;
3784
437
    word0(&u) &= ~Sign_bit; /* clear sign bit */
3785
437
    }
3786
1.51k
  else
3787
1.51k
    *sign = 0;
3788
3789
1.95k
#if defined(IEEE_Arith) + defined(VAX)
3790
1.95k
#ifdef IEEE_Arith
3791
1.95k
  if ((word0(&u) & Exp_mask) == Exp_mask)
3792
#else
3793
  if (word0(&u)  == 0x8000)
3794
#endif
3795
36
    {
3796
    /* Infinity or NaN */
3797
36
    *decpt = 9999;
3798
36
#ifdef IEEE_Arith
3799
36
    if (!word1(&u) && !(word0(&u) & 0xfffff))
3800
36
      return nrv_alloc("Infinity", rve, 8);
3801
0
#endif
3802
0
    return nrv_alloc("NaN", rve, 3);
3803
36
    }
3804
1.92k
#endif
3805
#ifdef IBM
3806
  dval(&u) += 0; /* normalize */
3807
#endif
3808
1.92k
  if (!dval(&u)) {
3809
9
    *decpt = 1;
3810
9
    return nrv_alloc("0", rve, 1);
3811
9
    }
3812
3813
#ifdef SET_INEXACT
3814
  try_quick = oldinexact = get_inexact();
3815
  inexact = 1;
3816
#endif
3817
#ifdef Honor_FLT_ROUNDS
3818
  if (Rounding >= 2) {
3819
    if (*sign)
3820
      Rounding = Rounding == 2 ? 0 : 2;
3821
    else
3822
      if (Rounding != 2)
3823
        Rounding = 0;
3824
    }
3825
#endif
3826
3827
1.91k
  b = d2b(&u, &be, &bbits);
3828
#ifdef Sudden_Underflow
3829
  i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
3830
#else
3831
1.91k
  if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
3832
1.91k
#endif
3833
1.91k
    dval(&d2) = dval(&u);
3834
1.91k
    word0(&d2) &= Frac_mask1;
3835
1.91k
    word0(&d2) |= Exp_11;
3836
#ifdef IBM
3837
    if (j = 11 - hi0bits(word0(&d2) & Frac_mask))
3838
      dval(&d2) /= 1 << j;
3839
#endif
3840
3841
    /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
3842
     * log10(x)  =  log(x) / log(10)
3843
     *    ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
3844
     * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
3845
     *
3846
     * This suggests computing an approximation k to log10(d) by
3847
     *
3848
     * k = (i - Bias)*0.301029995663981
3849
     *  + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
3850
     *
3851
     * We want k to be too large rather than too small.
3852
     * The error in the first-order Taylor series approximation
3853
     * is in our favor, so we just round up the constant enough
3854
     * to compensate for any error in the multiplication of
3855
     * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
3856
     * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
3857
     * adding 1e-13 to the constant term more than suffices.
3858
     * Hence we adjust the constant term to 0.1760912590558.
3859
     * (We could get a more accurate k by invoking log10,
3860
     *  but this is probably not worthwhile.)
3861
     */
3862
3863
1.91k
    i -= Bias;
3864
#ifdef IBM
3865
    i <<= 2;
3866
    i += j;
3867
#endif
3868
1.91k
#ifndef Sudden_Underflow
3869
1.91k
    denorm = 0;
3870
1.91k
    }
3871
0
  else {
3872
    /* d is denormalized */
3873
3874
0
    i = bbits + be + (Bias + (P-1) - 1);
3875
0
    x = i > 32  ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)
3876
0
          : word1(&u) << (32 - i);
3877
0
    dval(&d2) = x;
3878
0
    word0(&d2) -= 31*Exp_msk1; /* adjust exponent */
3879
0
    i -= (Bias + (P-1) - 1) + 1;
3880
0
    denorm = 1;
3881
0
    }
3882
1.91k
#endif
3883
1.91k
  ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
3884
1.91k
  k = (int)ds;
3885
1.91k
  if (ds < 0. && ds != k)
3886
248
    k--; /* want k = floor(ds) */
3887
1.91k
  k_check = 1;
3888
1.91k
  if (k >= 0 && k <= Ten_pmax) {
3889
1.06k
    if (dval(&u) < tens[k])
3890
25
      k--;
3891
1.06k
    k_check = 0;
3892
1.06k
    }
3893
1.91k
  j = bbits - i - 1;
3894
1.91k
  if (j >= 0) {
3895
664
    b2 = 0;
3896
664
    s2 = j;
3897
664
    }
3898
1.24k
  else {
3899
1.24k
    b2 = -j;
3900
1.24k
    s2 = 0;
3901
1.24k
    }
3902
1.91k
  if (k >= 0) {
3903
1.66k
    b5 = 0;
3904
1.66k
    s5 = k;
3905
1.66k
    s2 += k;
3906
1.66k
    }
3907
250
  else {
3908
250
    b2 -= k;
3909
250
    b5 = -k;
3910
250
    s5 = 0;
3911
250
    }
3912
1.91k
  if (mode < 0 || mode > 9)
3913
0
    mode = 0;
3914
3915
1.91k
#ifndef SET_INEXACT
3916
#ifdef Check_FLT_ROUNDS
3917
  try_quick = Rounding == 1;
3918
#else
3919
1.91k
  try_quick = 1;
3920
1.91k
#endif
3921
1.91k
#endif /*SET_INEXACT*/
3922
3923
1.91k
  if (mode > 5) {
3924
0
    mode -= 4;
3925
0
    try_quick = 0;
3926
0
    }
3927
1.91k
  leftright = 1;
3928
1.91k
  ilim = ilim1 = -1;  /* Values for cases 0 and 1; done here to */
3929
        /* silence erroneous "gcc -Wall" warning. */
3930
1.91k
  switch(mode) {
3931
892
    case 0:
3932
892
    case 1:
3933
892
      i = 18;
3934
892
      ndigits = 0;
3935
892
      break;
3936
1.01k
    case 2:
3937
1.01k
      leftright = 0;
3938
1.01k
      ZEND_FALLTHROUGH;
3939
1.01k
    case 4:
3940
1.01k
      if (ndigits <= 0)
3941
0
        ndigits = 1;
3942
1.01k
      ilim = ilim1 = i = ndigits;
3943
1.01k
      break;
3944
1
    case 3:
3945
1
      leftright = 0;
3946
1
      ZEND_FALLTHROUGH;
3947
1
    case 5:
3948
1
      i = ndigits + k + 1;
3949
1
      ilim = i;
3950
1
      ilim1 = i - 1;
3951
1
      if (i <= 0)
3952
0
        i = 1;
3953
1.91k
    }
3954
1.91k
  s = s0 = rv_alloc(i);
3955
3956
#ifdef Honor_FLT_ROUNDS
3957
  if (mode > 1 && Rounding != 1)
3958
    leftright = 0;
3959
#endif
3960
3961
1.91k
  if (ilim >= 0 && ilim <= Quick_max && try_quick) {
3962
3963
    /* Try to get by with floating-point arithmetic. */
3964
3965
1.01k
    i = 0;
3966
1.01k
    dval(&d2) = dval(&u);
3967
1.01k
    k0 = k;
3968
1.01k
    ilim0 = ilim;
3969
1.01k
    ieps = 2; /* conservative */
3970
1.01k
    if (k > 0) {
3971
900
      ds = tens[k&0xf];
3972
900
      j = k >> 4;
3973
900
      if (j & Bletch) {
3974
        /* prevent overflows */
3975
0
        j &= Bletch - 1;
3976
0
        dval(&u) /= bigtens[n_bigtens-1];
3977
0
        ieps++;
3978
0
        }
3979
1.96k
      for(; j; j >>= 1, i++)
3980
1.06k
        if (j & 1) {
3981
823
          ieps++;
3982
823
          ds *= bigtens[i];
3983
823
          }
3984
900
      dval(&u) /= ds;
3985
900
      }
3986
119
    else if ((j1 = -k)) {
3987
50
      dval(&u) *= tens[j1 & 0xf];
3988
74
      for(j = j1 >> 4; j; j >>= 1, i++)
3989
24
        if (j & 1) {
3990
18
          ieps++;
3991
18
          dval(&u) *= bigtens[i];
3992
18
          }
3993
50
      }
3994
1.01k
    if (k_check && dval(&u) < 1. && ilim > 0) {
3995
4
      if (ilim1 <= 0)
3996
0
        goto fast_failed;
3997
4
      ilim = ilim1;
3998
4
      k--;
3999
4
      dval(&u) *= 10.;
4000
4
      ieps++;
4001
4
      }
4002
1.01k
    dval(&eps) = ieps*dval(&u) + 7.;
4003
1.01k
    word0(&eps) -= (P-1)*Exp_msk1;
4004
1.01k
    if (ilim == 0) {
4005
0
      S = mhi = 0;
4006
0
      dval(&u) -= 5.;
4007
0
      if (dval(&u) > dval(&eps))
4008
0
        goto one_digit;
4009
0
      if (dval(&u) < -dval(&eps))
4010
0
        goto no_digits;
4011
0
      goto fast_failed;
4012
0
      }
4013
1.01k
#ifndef No_leftright
4014
1.01k
    if (leftright) {
4015
      /* Use Steele & White method of only
4016
       * generating digits needed.
4017
       */
4018
0
      dval(&eps) = 0.5/tens[ilim-1] - dval(&eps);
4019
0
#ifdef IEEE_Arith
4020
0
      if (k0 < 0 && j1 >= 307) {
4021
0
        eps1.d = 1.01e256; /* 1.01 allows roundoff in the next few lines */
4022
0
        word0(&eps1) -= Exp_msk1 * (Bias+P-1);
4023
0
        dval(&eps1) *= tens[j1 & 0xf];
4024
0
        for(i = 0, j = (j1-256) >> 4; j; j >>= 1, i++)
4025
0
          if (j & 1)
4026
0
            dval(&eps1) *= bigtens[i];
4027
0
        if (eps.d < eps1.d)
4028
0
          eps.d = eps1.d;
4029
0
        }
4030
0
#endif
4031
0
      for(i = 0;;) {
4032
0
        L = dval(&u);
4033
0
        dval(&u) -= L;
4034
0
        *s++ = '0' + (int)L;
4035
0
        if (1. - dval(&u) < dval(&eps))
4036
0
          goto bump_up;
4037
0
        if (dval(&u) < dval(&eps))
4038
0
          goto ret1;
4039
0
        if (++i >= ilim)
4040
0
          break;
4041
0
        dval(&eps) *= 10.;
4042
0
        dval(&u) *= 10.;
4043
0
        }
4044
0
      }
4045
1.01k
    else {
4046
1.01k
#endif
4047
      /* Generate ilim digits, then fix them up. */
4048
1.01k
      dval(&eps) *= tens[ilim-1];
4049
14.1k
      for(i = 1;; i++, dval(&u) *= 10.) {
4050
14.1k
        L = (Long)(dval(&u));
4051
14.1k
        if (!(dval(&u) -= L))
4052
8
          ilim = i;
4053
14.1k
        *s++ = '0' + (int)L;
4054
14.1k
        if (i == ilim) {
4055
1.01k
          if (dval(&u) > 0.5 + dval(&eps))
4056
609
            goto bump_up;
4057
410
          else if (dval(&u) < 0.5 - dval(&eps)) {
4058
1.21k
            while(*--s == '0');
4059
316
            s++;
4060
316
            goto ret1;
4061
316
            }
4062
94
          break;
4063
1.01k
          }
4064
14.1k
        }
4065
1.01k
#ifndef No_leftright
4066
1.01k
      }
4067
94
#endif
4068
94
 fast_failed:
4069
94
    s = s0;
4070
94
    dval(&u) = dval(&d2);
4071
94
    k = k0;
4072
94
    ilim = ilim0;
4073
94
    }
4074
4075
  /* Do we have a "small" integer? */
4076
4077
986
  if (be >= 0 && k <= Int_max) {
4078
    /* Yes. */
4079
6
    ds = tens[k];
4080
6
    if (ndigits < 0 && ilim <= 0) {
4081
0
      S = mhi = 0;
4082
0
      if (ilim < 0 || dval(&u) <= 5*ds)
4083
0
        goto no_digits;
4084
0
      goto one_digit;
4085
0
      }
4086
71
    for(i = 1;; i++, dval(&u) *= 10.) {
4087
71
      L = (Long)(dval(&u) / ds);
4088
71
      dval(&u) -= L*ds;
4089
#ifdef Check_FLT_ROUNDS
4090
      /* If FLT_ROUNDS == 2, L will usually be high by 1 */
4091
      if (dval(&u) < 0) {
4092
        L--;
4093
        dval(&u) += ds;
4094
        }
4095
#endif
4096
71
      *s++ = '0' + (int)L;
4097
71
      if (!dval(&u)) {
4098
#ifdef SET_INEXACT
4099
        inexact = 0;
4100
#endif
4101
5
        break;
4102
5
        }
4103
66
      if (i == ilim) {
4104
#ifdef Honor_FLT_ROUNDS
4105
        if (mode > 1)
4106
        switch(Rounding) {
4107
          case 0: goto ret1;
4108
          case 2: goto bump_up;
4109
          }
4110
#endif
4111
1
        dval(&u) += dval(&u);
4112
#ifdef ROUND_BIASED
4113
        if (dval(&u) >= ds)
4114
#else
4115
1
        if (dval(&u) > ds || (dval(&u) == ds && L & 1))
4116
0
#endif
4117
0
          {
4118
609
 bump_up:
4119
2.02k
          while(*--s == '9')
4120
1.42k
            if (s == s0) {
4121
1
              k++;
4122
1
              *s = '0';
4123
1
              break;
4124
1
              }
4125
609
          ++*s++;
4126
609
          }
4127
610
        break;
4128
1
        }
4129
66
      }
4130
615
    goto ret1;
4131
6
    }
4132
4133
980
  m2 = b2;
4134
980
  m5 = b5;
4135
980
  mhi = mlo = 0;
4136
980
  if (leftright) {
4137
887
    i =
4138
887
#ifndef Sudden_Underflow
4139
887
      denorm ? be + (Bias + (P-1) - 1 + 1) :
4140
887
#endif
4141
#ifdef IBM
4142
      1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
4143
#else
4144
887
      1 + P - bbits;
4145
887
#endif
4146
887
    b2 += i;
4147
887
    s2 += i;
4148
887
    mhi = i2b(1);
4149
887
    }
4150
980
  if (m2 > 0 && s2 > 0) {
4151
800
    i = m2 < s2 ? m2 : s2;
4152
800
    b2 -= i;
4153
800
    m2 -= i;
4154
800
    s2 -= i;
4155
800
    }
4156
980
  if (b5 > 0) {
4157
200
    if (leftright) {
4158
200
      if (m5 > 0) {
4159
200
        mhi = pow5mult(mhi, m5);
4160
200
        b1 = mult(mhi, b);
4161
200
        Bfree(b);
4162
200
        b = b1;
4163
200
        }
4164
200
      if ((j = b5 - m5))
4165
0
        b = pow5mult(b, j);
4166
200
      }
4167
0
    else
4168
0
      b = pow5mult(b, b5);
4169
200
    }
4170
980
  S = i2b(1);
4171
980
  if (s5 > 0)
4172
764
    S = pow5mult(S, s5);
4173
4174
  /* Check for special case that d is a normalized power of 2. */
4175
4176
980
  spec_case = 0;
4177
980
  if ((mode < 2 || leftright)
4178
#ifdef Honor_FLT_ROUNDS
4179
      && Rounding == 1
4180
#endif
4181
980
        ) {
4182
887
    if (!word1(&u) && !(word0(&u) & Bndry_mask)
4183
58
#ifndef Sudden_Underflow
4184
58
     && word0(&u) & (Exp_mask & ~Exp_msk1)
4185
887
#endif
4186
887
        ) {
4187
      /* The special case */
4188
58
      b2 += Log2P;
4189
58
      s2 += Log2P;
4190
58
      spec_case = 1;
4191
58
      }
4192
887
    }
4193
4194
  /* Arrange for convenient computation of quotients:
4195
   * shift left if necessary so divisor has 4 leading 0 bits.
4196
   *
4197
   * Perhaps we should just compute leading 28 bits of S once
4198
   * and for all and pass them and a shift to quorem, so it
4199
   * can do shifts and ORs to compute the numerator for q.
4200
   */
4201
980
  i = dshift(S, s2);
4202
980
  b2 += i;
4203
980
  m2 += i;
4204
980
  s2 += i;
4205
980
  if (b2 > 0)
4206
980
    b = lshift(b, b2);
4207
980
  if (s2 > 0)
4208
974
    S = lshift(S, s2);
4209
980
  if (k_check) {
4210
630
    if (cmp(b,S) < 0) {
4211
3
      k--;
4212
3
      b = multadd(b, 10, 0);  /* we botched the k estimate */
4213
3
      if (leftright)
4214
2
        mhi = multadd(mhi, 10, 0);
4215
3
      ilim = ilim1;
4216
3
      }
4217
630
    }
4218
980
  if (ilim <= 0 && (mode == 3 || mode == 5)) {
4219
0
    if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
4220
      /* no digits, fcvt style */
4221
0
 no_digits:
4222
0
      k = -1 - ndigits;
4223
0
      goto ret;
4224
0
      }
4225
0
 one_digit:
4226
0
    *s++ = '1';
4227
0
    k++;
4228
0
    goto ret;
4229
0
    }
4230
980
  if (leftright) {
4231
887
    if (m2 > 0)
4232
885
      mhi = lshift(mhi, m2);
4233
4234
    /* Compute mlo -- check for special case
4235
     * that d is a normalized power of 2.
4236
     */
4237
4238
887
    mlo = mhi;
4239
887
    if (spec_case) {
4240
58
      mhi = Balloc(mhi->k);
4241
58
      Bcopy(mhi, mlo);
4242
58
      mhi = lshift(mhi, Log2P);
4243
58
      }
4244
4245
8.91k
    for(i = 1;;i++) {
4246
8.91k
      dig = quorem(b,S) + '0';
4247
      /* Do we yet have the shortest decimal string
4248
       * that will round to d?
4249
       */
4250
8.91k
      j = cmp(b, mlo);
4251
8.91k
      delta = diff(S, mhi);
4252
8.91k
      j1 = delta->sign ? 1 : cmp(b, delta);
4253
8.91k
      Bfree(delta);
4254
8.91k
#ifndef ROUND_BIASED
4255
8.91k
      if (j1 == 0 && mode != 1 && !(word1(&u) & 1)
4256
#ifdef Honor_FLT_ROUNDS
4257
        && Rounding >= 1
4258
#endif
4259
8.91k
                   ) {
4260
9
        if (dig == '9')
4261
0
          goto round_9_up;
4262
9
        if (j > 0)
4263
0
          dig++;
4264
#ifdef SET_INEXACT
4265
        else if (!b->x[0] && b->wds <= 1)
4266
          inexact = 0;
4267
#endif
4268
9
        *s++ = dig;
4269
9
        goto ret;
4270
9
        }
4271
8.90k
#endif
4272
8.90k
      if (j < 0 || (j == 0 && mode != 1
4273
0
#ifndef ROUND_BIASED
4274
0
              && !(word1(&u) & 1)
4275
8.39k
#endif
4276
8.39k
          )) {
4277
517
        if (!b->x[0] && b->wds <= 1) {
4278
#ifdef SET_INEXACT
4279
          inexact = 0;
4280
#endif
4281
48
          goto accept_dig;
4282
48
          }
4283
#ifdef Honor_FLT_ROUNDS
4284
        if (mode > 1)
4285
         switch(Rounding) {
4286
          case 0: goto accept_dig;
4287
          case 2: goto keep_dig;
4288
          }
4289
#endif /*Honor_FLT_ROUNDS*/
4290
469
        if (j1 > 0) {
4291
135
          b = lshift(b, 1);
4292
135
          j1 = cmp(b, S);
4293
#ifdef ROUND_BIASED
4294
          if (j1 >= 0 /*)*/
4295
#else
4296
135
          if ((j1 > 0 || (j1 == 0 && dig & 1))
4297
67
#endif
4298
67
          && dig++ == '9')
4299
0
            goto round_9_up;
4300
135
          }
4301
517
 accept_dig:
4302
517
        *s++ = dig;
4303
517
        goto ret;
4304
469
        }
4305
8.39k
      if (j1 > 0) {
4306
#ifdef Honor_FLT_ROUNDS
4307
        if (!Rounding)
4308
          goto accept_dig;
4309
#endif
4310
361
        if (dig == '9') { /* possible if i == 1 */
4311
0
 round_9_up:
4312
0
          *s++ = '9';
4313
0
          goto roundoff;
4314
0
          }
4315
361
        *s++ = dig + 1;
4316
361
        goto ret;
4317
361
        }
4318
#ifdef Honor_FLT_ROUNDS
4319
 keep_dig:
4320
#endif
4321
8.03k
      *s++ = dig;
4322
8.03k
      if (i == ilim)
4323
0
        break;
4324
8.03k
      b = multadd(b, 10, 0);
4325
8.03k
      if (mlo == mhi)
4326
7.16k
        mlo = mhi = multadd(mhi, 10, 0);
4327
870
      else {
4328
870
        mlo = multadd(mlo, 10, 0);
4329
870
        mhi = multadd(mhi, 10, 0);
4330
870
        }
4331
8.03k
      }
4332
887
    }
4333
93
  else
4334
1.30k
    for(i = 1;; i++) {
4335
1.30k
      *s++ = dig = quorem(b,S) + '0';
4336
1.30k
      if (!b->x[0] && b->wds <= 1) {
4337
#ifdef SET_INEXACT
4338
        inexact = 0;
4339
#endif
4340
0
        goto ret;
4341
0
        }
4342
1.30k
      if (i >= ilim)
4343
93
        break;
4344
1.20k
      b = multadd(b, 10, 0);
4345
1.20k
      }
4346
4347
  /* Round off last digit */
4348
4349
#ifdef Honor_FLT_ROUNDS
4350
  switch(Rounding) {
4351
    case 0: goto trimzeros;
4352
    case 2: goto roundoff;
4353
    }
4354
#endif
4355
93
  b = lshift(b, 1);
4356
93
  j = cmp(b, S);
4357
#ifdef ROUND_BIASED
4358
  if (j >= 0)
4359
#else
4360
93
  if (j > 0 || (j == 0 && dig & 1))
4361
5
#endif
4362
5
    {
4363
5
 roundoff:
4364
6
    while(*--s == '9')
4365
1
      if (s == s0) {
4366
0
        k++;
4367
0
        *s++ = '1';
4368
0
        goto ret;
4369
0
        }
4370
5
    ++*s++;
4371
5
    }
4372
88
  else {
4373
#ifdef Honor_FLT_ROUNDS
4374
 trimzeros:
4375
#endif
4376
172
    while(*--s == '0');
4377
88
    s++;
4378
88
    }
4379
980
 ret:
4380
980
  Bfree(S);
4381
980
  if (mhi) {
4382
887
    if (mlo && mlo != mhi)
4383
58
      Bfree(mlo);
4384
887
    Bfree(mhi);
4385
887
    }
4386
1.91k
 ret1:
4387
#ifdef SET_INEXACT
4388
  if (inexact) {
4389
    if (!oldinexact) {
4390
      word0(&u) = Exp_1 + (70 << Exp_shift);
4391
      word1(&u) = 0;
4392
      dval(&u) += 1.;
4393
      }
4394
    }
4395
  else if (!oldinexact)
4396
    clear_inexact();
4397
#endif
4398
1.91k
  Bfree(b);
4399
1.91k
  *s = 0;
4400
1.91k
  *decpt = k + 1;
4401
1.91k
  if (rve)
4402
2
    *rve = s;
4403
1.91k
  return s0;
4404
980
  }
4405
4406
ZEND_API double zend_hex_strtod(const char *str, const char **endptr)
4407
351
{
4408
351
  const char *s = str;
4409
351
  char c;
4410
351
  int any = 0;
4411
351
  double value = 0;
4412
4413
351
  if (*s == '0' && (s[1] == 'x' || s[1] == 'X')) {
4414
0
    s += 2;
4415
0
  }
4416
4417
7.20k
  while ((c = *s++)) {
4418
7.03k
    if (c >= '0' && c <= '9') {
4419
3.64k
      c -= '0';
4420
3.64k
    } else if (c >= 'A' && c <= 'F') {
4421
1.38k
      c -= 'A' - 10;
4422
2.00k
    } else if (c >= 'a' && c <= 'f') {
4423
1.82k
      c -= 'a' - 10;
4424
1.82k
    } else {
4425
183
      break;
4426
183
    }
4427
4428
6.85k
    any = 1;
4429
6.85k
    value = value * 16 + c;
4430
6.85k
  }
4431
4432
351
  if (endptr != NULL) {
4433
351
    *endptr = any ? s - 1 : str;
4434
351
  }
4435
4436
351
  return value;
4437
351
}
4438
4439
ZEND_API double zend_oct_strtod(const char *str, const char **endptr)
4440
225
{
4441
225
  const char *s = str;
4442
225
  char c;
4443
225
  double value = 0;
4444
225
  int any = 0;
4445
4446
225
  if (str[0] == '\0') {
4447
0
    if (endptr != NULL) {
4448
0
      *endptr = str;
4449
0
    }
4450
0
    return 0.0;
4451
0
  }
4452
4453
27.4k
  while ((c = *s++)) {
4454
27.4k
    if (c < '0' || c > '7') {
4455
      /* break and return the current value if the number is not well-formed
4456
       * that's what Linux strtol() does
4457
       */
4458
217
      break;
4459
217
    }
4460
27.2k
    value = value * 8 + c - '0';
4461
27.2k
    any = 1;
4462
27.2k
  }
4463
4464
225
  if (endptr != NULL) {
4465
225
    *endptr = any ? s - 1 : str;
4466
225
  }
4467
4468
225
  return value;
4469
225
}
4470
4471
ZEND_API double zend_bin_strtod(const char *str, const char **endptr)
4472
81
{
4473
81
  const char *s = str;
4474
81
  char    c;
4475
81
  double    value = 0;
4476
81
  int     any = 0;
4477
4478
81
  if ('0' == *s && ('b' == s[1] || 'B' == s[1])) {
4479
0
    s += 2;
4480
0
  }
4481
4482
5.42k
  while ((c = *s++)) {
4483
    /*
4484
     * Verify the validity of the current character as a base-2 digit.  In
4485
     * the event that an invalid digit is found, halt the conversion and
4486
     * return the portion which has been converted thus far.
4487
     */
4488
5.42k
    if ('0' == c || '1' == c)
4489
5.34k
      value = value * 2 + c - '0';
4490
81
    else
4491
81
      break;
4492
4493
5.34k
    any = 1;
4494
5.34k
  }
4495
4496
  /*
4497
   * As with many strtoX implementations, should the subject sequence be
4498
   * empty or not well-formed, no conversion is performed and the original
4499
   * value of str is stored in *endptr, provided that endptr is not a null
4500
   * pointer.
4501
   */
4502
81
  if (NULL != endptr) {
4503
81
    *endptr = (char *)(any ? s - 1 : str);
4504
81
  }
4505
4506
81
  return value;
4507
81
}
4508
4509
ZEND_API char *zend_gcvt(double value, int ndigit, char dec_point, char exponent, char *buf)
4510
1.95k
{
4511
1.95k
  char *digits, *dst, *src;
4512
1.95k
  int i, decpt;
4513
1.95k
  bool sign;
4514
1.95k
  int mode = ndigit >= 0 ? 2 : 0;
4515
4516
1.95k
  if (mode == 0) {
4517
892
    ndigit = 17;
4518
892
  }
4519
1.95k
  digits = zend_dtoa(value, mode, ndigit, &decpt, &sign, NULL);
4520
1.95k
  if (decpt == 9999) {
4521
    /*
4522
     * Infinity or NaN, convert to inf or nan with sign.
4523
     * We assume the buffer is at least ndigit long.
4524
     */
4525
36
    snprintf(buf, ndigit + 1, "%s%s", (sign && *digits == 'I') ? "-" : "", *digits == 'I' ? "INF" : "NAN");
4526
36
    zend_freedtoa(digits);
4527
36
    return (buf);
4528
36
  }
4529
4530
1.91k
  dst = buf;
4531
1.91k
  if (sign) {
4532
404
    *dst++ = '-';
4533
404
  }
4534
4535
1.91k
  if ((decpt >= 0 && decpt > ndigit) || decpt < -3) { /* use E-style */
4536
    /* exponential format (e.g. 1.2345e+13) */
4537
1.25k
    if (--decpt < 0) {
4538
41
      sign = true;
4539
41
      decpt = -decpt;
4540
1.21k
    } else {
4541
1.21k
      sign = false;
4542
1.21k
    }
4543
1.25k
    src = digits;
4544
1.25k
    *dst++ = *src++;
4545
1.25k
    *dst++ = dec_point;
4546
1.25k
    if (*src == '\0') {
4547
148
      *dst++ = '0';
4548
1.10k
    } else {
4549
14.0k
      do {
4550
14.0k
        *dst++ = *src++;
4551
14.0k
      } while (*src != '\0');
4552
1.10k
    }
4553
1.25k
    *dst++ = exponent;
4554
1.25k
    if (sign) {
4555
41
      *dst++ = '-';
4556
1.21k
    } else {
4557
1.21k
      *dst++ = '+';
4558
1.21k
    }
4559
1.25k
    if (decpt < 10) {
4560
15
      *dst++ = '0' + decpt;
4561
15
      *dst = '\0';
4562
1.23k
    } else {
4563
      /* XXX - optimize */
4564
1.23k
      int n;
4565
2.63k
      for (n = decpt, i = 0; (n /= 10) != 0; i++);
4566
1.23k
      dst[i + 1] = '\0';
4567
3.86k
      while (decpt != 0) {
4568
2.63k
        dst[i--] = '0' + decpt % 10;
4569
2.63k
        decpt /= 10;
4570
2.63k
      }
4571
1.23k
    }
4572
1.25k
  } else if (decpt < 0) {
4573
    /* standard format 0. */
4574
139
    *dst++ = '0';   /* zero before decimal point */
4575
139
    *dst++ = dec_point;
4576
139
    do {
4577
139
      *dst++ = '0';
4578
139
    } while (++decpt < 0);
4579
139
    src = digits;
4580
548
    while (*src != '\0') {
4581
409
      *dst++ = *src++;
4582
409
    }
4583
139
    *dst = '\0';
4584
526
  } else {
4585
    /* standard format */
4586
3.22k
    for (i = 0, src = digits; i < decpt; i++) {
4587
2.69k
      if (*src != '\0') {
4588
2.69k
        *dst++ = *src++;
4589
2.69k
      } else {
4590
4
        *dst++ = '0';
4591
4
      }
4592
2.69k
    }
4593
526
    if (*src != '\0') {
4594
456
      if (src == digits) {
4595
70
        *dst++ = '0';   /* zero before decimal point */
4596
70
      }
4597
456
      *dst++ = dec_point;
4598
2.81k
      for (i = decpt; digits[i] != '\0'; i++) {
4599
2.35k
        *dst++ = digits[i];
4600
2.35k
      }
4601
456
    }
4602
526
    *dst = '\0';
4603
526
  }
4604
1.91k
  zend_freedtoa(digits);
4605
1.91k
  return (buf);
4606
1.95k
}
4607
4608
static void destroy_freelist(void)
4609
0
{
4610
0
  int i;
4611
0
  Bigint *tmp;
4612
4613
0
  ACQUIRE_DTOA_LOCK(0)
4614
0
  for (i = 0; i <= Kmax; i++) {
4615
0
    Bigint **listp = &freelist[i];
4616
0
    while ((tmp = *listp) != NULL) {
4617
0
      *listp = tmp->next;
4618
0
      FREE(tmp);
4619
0
    }
4620
0
    freelist[i] = NULL;
4621
0
  }
4622
0
  FREE_DTOA_LOCK(0)
4623
0
}
4624
4625
static void free_p5s(void)
4626
0
{
4627
0
  Bigint **listp, *tmp;
4628
4629
0
  ACQUIRE_DTOA_LOCK(1)
4630
0
  listp = &p5s;
4631
0
  while ((tmp = *listp) != NULL) {
4632
0
    *listp = tmp->next;
4633
0
    FREE(tmp);
4634
0
  }
4635
0
  p5s = NULL;
4636
0
  FREE_DTOA_LOCK(1)
4637
0
}