Coverage Report

Created: 2026-01-18 06:48

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/php-src/Zend/zend_strtod.c
Line
Count
Source
1
/****************************************************************
2
 *
3
 * The author of this software is David M. Gay.
4
 *
5
 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
6
 *
7
 * Permission to use, copy, modify, and distribute this software for any
8
 * purpose without fee is hereby granted, provided that this entire notice
9
 * is included in all copies of any software which is or includes a copy
10
 * or modification of this software and in all copies of the supporting
11
 * documentation for such software.
12
 *
13
 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
14
 * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
15
 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
16
 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
17
 *
18
 ***************************************************************/
19
20
/* Please send bug reports to David M. Gay (dmg at acm dot org,
21
 * with " at " changed at "@" and " dot " changed to ".").  */
22
23
/* On a machine with IEEE extended-precision registers, it is
24
 * necessary to specify double-precision (53-bit) rounding precision
25
 * before invoking strtod or dtoa.  If the machine uses (the equivalent
26
 * of) Intel 80x87 arithmetic, the call
27
 *  _control87(PC_53, MCW_PC);
28
 * does this with many compilers.  Whether this or another call is
29
 * appropriate depends on the compiler; for this to work, it may be
30
 * necessary to #include "float.h" or another system-dependent header
31
 * file.
32
 */
33
34
/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
35
 * (Note that IEEE arithmetic is disabled by gcc's -ffast-math flag.)
36
 *
37
 * This strtod returns a nearest machine number to the input decimal
38
 * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
39
 * broken by the IEEE round-even rule.  Otherwise ties are broken by
40
 * biased rounding (add half and chop).
41
 *
42
 * Inspired loosely by William D. Clinger's paper "How to Read Floating
43
 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
44
 *
45
 * Modifications:
46
 *
47
 *  1. We only require IEEE, IBM, or VAX double-precision
48
 *    arithmetic (not IEEE double-extended).
49
 *  2. We get by with floating-point arithmetic in a case that
50
 *    Clinger missed -- when we're computing d * 10^n
51
 *    for a small integer d and the integer n is not too
52
 *    much larger than 22 (the maximum integer k for which
53
 *    we can represent 10^k exactly), we may be able to
54
 *    compute (d*10^k) * 10^(e-k) with just one roundoff.
55
 *  3. Rather than a bit-at-a-time adjustment of the binary
56
 *    result in the hard case, we use floating-point
57
 *    arithmetic to determine the adjustment to within
58
 *    one bit; only in really hard cases do we need to
59
 *    compute a second residual.
60
 *  4. Because of 3., we don't need a large table of powers of 10
61
 *    for ten-to-e (just some small tables, e.g. of 10^k
62
 *    for 0 <= k <= 22).
63
 */
64
65
/*
66
 * #define IEEE_8087 for IEEE-arithmetic machines where the least
67
 *  significant byte has the lowest address.
68
 * #define IEEE_MC68k for IEEE-arithmetic machines where the most
69
 *  significant byte has the lowest address.
70
 * #define Long int on machines with 32-bit ints and 64-bit longs.
71
 * #define IBM for IBM mainframe-style floating-point arithmetic.
72
 * #define VAX for VAX-style floating-point arithmetic (D_floating).
73
 * #define No_leftright to omit left-right logic in fast floating-point
74
 *  computation of dtoa.  This will cause dtoa modes 4 and 5 to be
75
 *  treated the same as modes 2 and 3 for some inputs.
76
 * #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
77
 *  and strtod and dtoa should round accordingly.  Unless Trust_FLT_ROUNDS
78
 *  is also #defined, fegetround() will be queried for the rounding mode.
79
 *  Note that both FLT_ROUNDS and fegetround() are specified by the C99
80
 *  standard (and are specified to be consistent, with fesetround()
81
 *  affecting the value of FLT_ROUNDS), but that some (Linux) systems
82
 *  do not work correctly in this regard, so using fegetround() is more
83
 *  portable than using FLT_ROUNDS directly.
84
 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
85
 *  and Honor_FLT_ROUNDS is not #defined.
86
 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
87
 *  that use extended-precision instructions to compute rounded
88
 *  products and quotients) with IBM.
89
 * #define ROUND_BIASED for IEEE-format with biased rounding and arithmetic
90
 *  that rounds toward +Infinity.
91
 * #define ROUND_BIASED_without_Round_Up for IEEE-format with biased
92
 *  rounding when the underlying floating-point arithmetic uses
93
 *  unbiased rounding.  This prevent using ordinary floating-point
94
 *  arithmetic when the result could be computed with one rounding error.
95
 * #define Inaccurate_Divide for IEEE-format with correctly rounded
96
 *  products but inaccurate quotients, e.g., for Intel i860.
97
 * #define NO_LONG_LONG on machines that do not have a "long long"
98
 *  integer type (of >= 64 bits).  On such machines, you can
99
 *  #define Just_16 to store 16 bits per 32-bit Long when doing
100
 *  high-precision integer arithmetic.  Whether this speeds things
101
 *  up or slows things down depends on the machine and the number
102
 *  being converted.  If long long is available and the name is
103
 *  something other than "long long", #define Llong to be the name,
104
 *  and if "unsigned Llong" does not work as an unsigned version of
105
 *  Llong, #define #ULLong to be the corresponding unsigned type.
106
 * #define KR_headers for old-style C function headers.
107
 * #define Bad_float_h if your system lacks a float.h or if it does not
108
 *  define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
109
 *  FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
110
 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
111
 *  if memory is available and otherwise does something you deem
112
 *  appropriate.  If MALLOC is undefined, malloc will be invoked
113
 *  directly -- and assumed always to succeed.  Similarly, if you
114
 *  want something other than the system's free() to be called to
115
 *  recycle memory acquired from MALLOC, #define FREE to be the
116
 *  name of the alternate routine.  (FREE or free is only called in
117
 *  pathological cases, e.g., in a dtoa call after a dtoa return in
118
 *  mode 3 with thousands of digits requested.)
119
 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
120
 *  memory allocations from a private pool of memory when possible.
121
 *  When used, the private pool is PRIVATE_MEM bytes long:  2304 bytes,
122
 *  unless #defined to be a different length.  This default length
123
 *  suffices to get rid of MALLOC calls except for unusual cases,
124
 *  such as decimal-to-binary conversion of a very long string of
125
 *  digits.  The longest string dtoa can return is about 751 bytes
126
 *  long.  For conversions by strtod of strings of 800 digits and
127
 *  all dtoa conversions in single-threaded executions with 8-byte
128
 *  pointers, PRIVATE_MEM >= 7400 appears to suffice; with 4-byte
129
 *  pointers, PRIVATE_MEM >= 7112 appears adequate.
130
 * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK
131
 *  #defined automatically on IEEE systems.  On such systems,
132
 *  when INFNAN_CHECK is #defined, strtod checks
133
 *  for Infinity and NaN (case insensitively).  On some systems
134
 *  (e.g., some HP systems), it may be necessary to #define NAN_WORD0
135
 *  appropriately -- to the most significant word of a quiet NaN.
136
 *  (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
137
 *  When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
138
 *  strtod also accepts (case insensitively) strings of the form
139
 *  NaN(x), where x is a string of hexadecimal digits and spaces;
140
 *  if there is only one string of hexadecimal digits, it is taken
141
 *  for the 52 fraction bits of the resulting NaN; if there are two
142
 *  or more strings of hex digits, the first is for the high 20 bits,
143
 *  the second and subsequent for the low 32 bits, with intervening
144
 *  white space ignored; but if this results in none of the 52
145
 *  fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0
146
 *  and NAN_WORD1 are used instead.
147
 * #define MULTIPLE_THREADS if the system offers preemptively scheduled
148
 *  multiple threads.  In this case, you must provide (or suitably
149
 *  #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
150
 *  by FREE_DTOA_LOCK(n) for n = 0 or 1.  (The second lock, accessed
151
 *  in pow5mult, ensures lazy evaluation of only one copy of high
152
 *  powers of 5; omitting this lock would introduce a small
153
 *  probability of wasting memory, but would otherwise be harmless.)
154
 *  You must also invoke freedtoa(s) to free the value s returned by
155
 *  dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
156
 * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that
157
 *  avoids underflows on inputs whose result does not underflow.
158
 *  If you #define NO_IEEE_Scale on a machine that uses IEEE-format
159
 *  floating-point numbers and flushes underflows to zero rather
160
 *  than implementing gradual underflow, then you must also #define
161
 *  Sudden_Underflow.
162
 * #define USE_LOCALE to use the current locale's decimal_point value.
163
 * #define SET_INEXACT if IEEE arithmetic is being used and extra
164
 *  computation should be done to set the inexact flag when the
165
 *  result is inexact and avoid setting inexact when the result
166
 *  is exact.  In this case, dtoa.c must be compiled in
167
 *  an environment, perhaps provided by #include "dtoa.c" in a
168
 *  suitable wrapper, that defines two functions,
169
 *    int get_inexact(void);
170
 *    void clear_inexact(void);
171
 *  such that get_inexact() returns a nonzero value if the
172
 *  inexact bit is already set, and clear_inexact() sets the
173
 *  inexact bit to 0.  When SET_INEXACT is #defined, strtod
174
 *  also does extra computations to set the underflow and overflow
175
 *  flags when appropriate (i.e., when the result is tiny and
176
 *  inexact or when it is a numeric value rounded to +-infinity).
177
 * #define NO_ERRNO if strtod should not assign errno = ERANGE when
178
 *  the result overflows to +-Infinity or underflows to 0.
179
 * #define NO_HEX_FP to omit recognition of hexadecimal floating-point
180
 *  values by strtod.
181
 * #define NO_STRTOD_BIGCOMP (on IEEE-arithmetic systems only for now)
182
 *  to disable logic for "fast" testing of very long input strings
183
 *  to strtod.  This testing proceeds by initially truncating the
184
 *  input string, then if necessary comparing the whole string with
185
 *  a decimal expansion to decide close cases. This logic is only
186
 *  used for input more than STRTOD_DIGLIM digits long (default 40).
187
 */
188
189
#include <zend_operators.h>
190
#include <zend_strtod.h>
191
#include "zend_strtod_int.h"
192
#include "zend_globals.h"
193
194
#ifndef Long
195
120
#define Long int32_t
196
#endif
197
#ifndef ULong
198
1.81k
#define ULong uint32_t
199
#endif
200
201
#undef Bigint
202
#undef freelist
203
#undef p5s
204
#undef dtoa_result
205
206
1.83k
#define Bigint      _zend_strtod_bigint
207
2.18k
#define freelist    (EG(strtod_state).freelist)
208
45
#define p5s         (EG(strtod_state).p5s)
209
76
#define dtoa_result (EG(strtod_state).result)
210
211
#ifdef DEBUG
212
static void Bug(const char *message) {
213
  fprintf(stderr, "%s\n", message);
214
}
215
#endif
216
217
#include "stdlib.h"
218
#include "string.h"
219
220
#ifdef USE_LOCALE
221
#include "locale.h"
222
#endif
223
224
#ifdef Honor_FLT_ROUNDS
225
#ifndef Trust_FLT_ROUNDS
226
#include <fenv.h>
227
#endif
228
#endif
229
230
#ifdef MALLOC
231
#ifdef KR_headers
232
extern char *MALLOC();
233
#else
234
extern void *MALLOC(size_t);
235
#endif
236
#else
237
24
#define MALLOC malloc
238
0
#define FREE   free
239
#endif
240
241
#ifndef Omit_Private_Memory
242
#ifndef PRIVATE_MEM
243
#define PRIVATE_MEM 2304
244
#endif
245
#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
246
static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
247
#endif
248
249
#undef IEEE_Arith
250
#undef Avoid_Underflow
251
#ifdef IEEE_MC68k
252
#define IEEE_Arith
253
#endif
254
#ifdef IEEE_8087
255
#define IEEE_Arith
256
#endif
257
258
#ifdef IEEE_Arith
259
#ifndef NO_INFNAN_CHECK
260
#undef INFNAN_CHECK
261
#define INFNAN_CHECK
262
#endif
263
#else
264
#undef INFNAN_CHECK
265
#define NO_STRTOD_BIGCOMP
266
#endif
267
268
#include "errno.h"
269
270
#ifdef Bad_float_h
271
272
#ifdef IEEE_Arith
273
#define DBL_DIG 15
274
#define DBL_MAX_10_EXP 308
275
#define DBL_MAX_EXP 1024
276
#define FLT_RADIX 2
277
#endif /*IEEE_Arith*/
278
279
#ifdef IBM
280
#define DBL_DIG 16
281
#define DBL_MAX_10_EXP 75
282
#define DBL_MAX_EXP 63
283
#define FLT_RADIX 16
284
#define DBL_MAX 7.2370055773322621e+75
285
#endif
286
287
#ifdef VAX
288
#define DBL_DIG 16
289
#define DBL_MAX_10_EXP 38
290
#define DBL_MAX_EXP 127
291
#define FLT_RADIX 2
292
#define DBL_MAX 1.7014118346046923e+38
293
#endif
294
295
#else /* ifndef Bad_float_h */
296
#include "float.h"
297
#endif /* Bad_float_h */
298
299
#ifndef __MATH_H__
300
#include "math.h"
301
#endif
302
303
#ifndef CONST
304
#ifdef KR_headers
305
#define CONST /* blank */
306
#else
307
51
#define CONST const
308
#endif
309
#endif
310
311
#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
312
Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
313
#endif
314
315
typedef union { double d; ULong L[2]; } U;
316
317
#ifdef IEEE_8087
318
506
#define word0(x) (x)->L[1]
319
198
#define word1(x) (x)->L[0]
320
#else
321
#define word0(x) (x)->L[0]
322
#define word1(x) (x)->L[1]
323
#endif
324
1.35k
#define dval(x) (x)->d
325
326
#ifndef STRTOD_DIGLIM
327
33
#define STRTOD_DIGLIM 40
328
#endif
329
330
#ifdef DIGLIM_DEBUG
331
extern int strtod_diglim;
332
#else
333
33
#define strtod_diglim STRTOD_DIGLIM
334
#endif
335
336
/* The following definition of Storeinc is appropriate for MIPS processors.
337
 * An alternative that might be better on some machines is
338
 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
339
 */
340
#if defined(IEEE_8087) + defined(VAX) + defined(__arm__)
341
#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
342
((unsigned short *)a)[0] = (unsigned short)c, a++)
343
#else
344
#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
345
((unsigned short *)a)[1] = (unsigned short)c, a++)
346
#endif
347
348
/* #define P DBL_MANT_DIG */
349
/* Ten_pmax = floor(P*log(2)/log(5)) */
350
/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
351
/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
352
/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
353
354
#ifdef IEEE_Arith
355
70
#define Exp_shift  20
356
38
#define Exp_shift1 20
357
213
#define Exp_msk1    0x100000
358
#define Exp_msk11   0x100000
359
140
#define Exp_mask  0x7ff00000
360
313
#define P 53
361
#define Nbits 53
362
146
#define Bias 1023
363
#define Emax 1023
364
51
#define Emin (-1022)
365
34
#define Exp_1  0x3ff00000
366
19
#define Exp_11 0x3ff00000
367
108
#define Ebits 11
368
70
#define Frac_mask  0xfffff
369
19
#define Frac_mask1 0xfffff
370
35
#define Ten_pmax 22
371
11
#define Bletch 0x10
372
22
#define Bndry_mask  0xfffff
373
0
#define Bndry_mask1 0xfffff
374
45
#define LSB 1
375
23
#define Sign_bit 0x80000000
376
0
#define Log2P 1
377
#define Tiny0 0
378
12
#define Tiny1 1
379
31
#define Quick_max 14
380
10
#define Int_max 14
381
#ifndef NO_IEEE_Scale
382
#define Avoid_Underflow
383
#ifdef Flush_Denorm /* debugging option */
384
#undef Sudden_Underflow
385
#endif
386
#endif
387
388
#ifndef Flt_Rounds
389
#ifdef FLT_ROUNDS
390
18
#define Flt_Rounds FLT_ROUNDS
391
#else
392
#define Flt_Rounds 1
393
#endif
394
#endif /*Flt_Rounds*/
395
396
#ifdef Honor_FLT_ROUNDS
397
#undef Check_FLT_ROUNDS
398
#define Check_FLT_ROUNDS
399
#else
400
#define Rounding Flt_Rounds
401
#endif
402
403
#else /* ifndef IEEE_Arith */
404
#undef Check_FLT_ROUNDS
405
#undef Honor_FLT_ROUNDS
406
#undef SET_INEXACT
407
#undef  Sudden_Underflow
408
#define Sudden_Underflow
409
#ifdef IBM
410
#undef Flt_Rounds
411
#define Flt_Rounds 0
412
#define Exp_shift  24
413
#define Exp_shift1 24
414
#define Exp_msk1   0x1000000
415
#define Exp_msk11  0x1000000
416
#define Exp_mask  0x7f000000
417
#define P 14
418
#define Nbits 56
419
#define Bias 65
420
#define Emax 248
421
#define Emin (-260)
422
#define Exp_1  0x41000000
423
#define Exp_11 0x41000000
424
#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
425
#define Frac_mask  0xffffff
426
#define Frac_mask1 0xffffff
427
#define Bletch 4
428
#define Ten_pmax 22
429
#define Bndry_mask  0xefffff
430
#define Bndry_mask1 0xffffff
431
#define LSB 1
432
#define Sign_bit 0x80000000
433
#define Log2P 4
434
#define Tiny0 0x100000
435
#define Tiny1 0
436
#define Quick_max 14
437
#define Int_max 15
438
#else /* VAX */
439
#undef Flt_Rounds
440
#define Flt_Rounds 1
441
#define Exp_shift  23
442
#define Exp_shift1 7
443
#define Exp_msk1    0x80
444
#define Exp_msk11   0x800000
445
#define Exp_mask  0x7f80
446
#define P 56
447
#define Nbits 56
448
#define Bias 129
449
#define Emax 126
450
#define Emin (-129)
451
#define Exp_1  0x40800000
452
#define Exp_11 0x4080
453
#define Ebits 8
454
#define Frac_mask  0x7fffff
455
#define Frac_mask1 0xffff007f
456
#define Ten_pmax 24
457
#define Bletch 2
458
#define Bndry_mask  0xffff007f
459
#define Bndry_mask1 0xffff007f
460
#define LSB 0x10000
461
#define Sign_bit 0x8000
462
#define Log2P 1
463
#define Tiny0 0x80
464
#define Tiny1 0
465
#define Quick_max 15
466
#define Int_max 15
467
#endif /* IBM, VAX */
468
#endif /* IEEE_Arith */
469
470
#ifndef IEEE_Arith
471
#define ROUND_BIASED
472
#else
473
#ifdef ROUND_BIASED_without_Round_Up
474
#undef  ROUND_BIASED
475
#define ROUND_BIASED
476
#endif
477
#endif
478
479
#ifdef RND_PRODQUOT
480
#define rounded_product(a,b) a = rnd_prod(a, b)
481
#define rounded_quotient(a,b) a = rnd_quot(a, b)
482
#ifdef KR_headers
483
extern double rnd_prod(), rnd_quot();
484
#else
485
extern double rnd_prod(double, double), rnd_quot(double, double);
486
#endif
487
#else
488
2
#define rounded_product(a,b) a *= b
489
16
#define rounded_quotient(a,b) a /= b
490
#endif
491
492
0
#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
493
0
#define Big1 0xffffffff
494
495
#ifndef Pack_32
496
#define Pack_32
497
#endif
498
499
typedef struct BCinfo BCinfo;
500
 struct
501
BCinfo { int dp0, dp1, dplen, dsign, e0, inexact, nd, nd0, rounding, scale, uflchk; };
502
503
#ifdef KR_headers
504
#define FFFFFFFF ((((unsigned long)0xffff)<<16)|(unsigned long)0xffff)
505
#else
506
6.46k
#define FFFFFFFF 0xffffffffUL
507
#endif
508
509
#ifdef NO_LONG_LONG
510
#undef ULLong
511
#ifdef Just_16
512
#undef Pack_32
513
/* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
514
 * This makes some inner loops simpler and sometimes saves work
515
 * during multiplications, but it often seems to make things slightly
516
 * slower.  Hence the default is now to store 32 bits per Long.
517
 */
518
#endif
519
#else /* long long available */
520
#ifndef Llong
521
#define Llong long long
522
#endif
523
#ifndef ULLong
524
978
#define ULLong unsigned Llong
525
#endif
526
#endif /* NO_LONG_LONG */
527
528
#ifndef MULTIPLE_THREADS
529
#define ACQUIRE_DTOA_LOCK(n)  /*nothing*/
530
#define FREE_DTOA_LOCK(n) /*nothing*/
531
#endif
532
533
1.10k
#define Kmax ZEND_STRTOD_K_MAX
534
535
 struct
536
Bigint {
537
  struct Bigint *next;
538
  int k, maxwds, sign, wds;
539
  ULong x[1];
540
  };
541
542
 typedef struct Bigint Bigint;
543
544
#ifndef Bigint
545
 static Bigint *freelist[Kmax+1];
546
#endif
547
548
static void destroy_freelist(void);
549
static void free_p5s(void);
550
551
#ifdef MULTIPLE_THREADS
552
static MUTEX_T dtoa_mutex;
553
static MUTEX_T pow5mult_mutex;
554
#endif /* ZTS */
555
556
ZEND_API int zend_shutdown_strtod(void) /* {{{ */
557
0
{
558
0
  destroy_freelist();
559
0
  free_p5s();
560
561
0
  return 1;
562
0
}
563
/* }}} */
564
565
 static Bigint *
566
Balloc
567
#ifdef KR_headers
568
  (k) int k;
569
#else
570
  (int k)
571
#endif
572
556
{
573
556
  int x;
574
556
  Bigint *rv;
575
#ifndef Omit_Private_Memory
576
  unsigned int len;
577
#endif
578
579
556
  ACQUIRE_DTOA_LOCK(0);
580
  /* The k > Kmax case does not need ACQUIRE_DTOA_LOCK(0), */
581
  /* but this case seems very unlikely. */
582
556
  if (k <= Kmax && (rv = freelist[k]))
583
532
    freelist[k] = rv->next;
584
24
  else {
585
24
    x = 1 << k;
586
24
#ifdef Omit_Private_Memory
587
24
    rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong));
588
24
    if (!rv) {
589
0
      FREE_DTOA_LOCK(0);
590
0
      zend_error_noreturn(E_ERROR, "Balloc() failed to allocate memory");
591
0
    }
592
#else
593
    len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
594
      /sizeof(double);
595
    if (k <= Kmax && pmem_next - private_mem + len <= PRIVATE_mem) {
596
      rv = (Bigint*)pmem_next;
597
      pmem_next += len;
598
      }
599
    else
600
      rv = (Bigint*)MALLOC(len*sizeof(double));
601
      if (!rv) {
602
        FREE_DTOA_LOCK(0);
603
        zend_error_noreturn(E_ERROR, "Balloc() failed to allocate memory");
604
      }
605
#endif
606
24
    rv->k = k;
607
24
    rv->maxwds = x;
608
24
    }
609
556
  FREE_DTOA_LOCK(0);
610
556
  rv->sign = rv->wds = 0;
611
556
  return rv;
612
556
  }
613
614
 static void
615
Bfree
616
#ifdef KR_headers
617
  (v) Bigint *v;
618
#else
619
  (Bigint *v)
620
#endif
621
550
{
622
550
  if (v) {
623
550
    if (v->k > Kmax)
624
0
      FREE((void*)v);
625
550
    else {
626
550
      ACQUIRE_DTOA_LOCK(0);
627
550
      v->next = freelist[v->k];
628
550
      freelist[v->k] = v;
629
550
      FREE_DTOA_LOCK(0);
630
550
      }
631
550
    }
632
550
  }
633
634
61
#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
635
61
y->wds*sizeof(Long) + 2*sizeof(int))
636
637
 static Bigint *
638
multadd
639
#ifdef KR_headers
640
  (b, m, a) Bigint *b; int m, a;
641
#else
642
  (Bigint *b, int m, int a) /* multiply by m and add a */
643
#endif
644
661
{
645
661
  int i, wds;
646
661
#ifdef ULLong
647
661
  ULong *x;
648
661
  ULLong carry, y;
649
#else
650
  ULong carry, *x, y;
651
#ifdef Pack_32
652
  ULong xi, z;
653
#endif
654
#endif
655
661
  Bigint *b1;
656
657
661
  wds = b->wds;
658
661
  x = b->x;
659
661
  i = 0;
660
661
  carry = a;
661
2.45k
  do {
662
2.45k
#ifdef ULLong
663
2.45k
    y = *x * (ULLong)m + carry;
664
2.45k
    carry = y >> 32;
665
2.45k
    *x++ = y & FFFFFFFF;
666
#else
667
#ifdef Pack_32
668
    xi = *x;
669
    y = (xi & 0xffff) * m + carry;
670
    z = (xi >> 16) * m + (y >> 16);
671
    carry = z >> 16;
672
    *x++ = (z << 16) + (y & 0xffff);
673
#else
674
    y = *x * m + carry;
675
    carry = y >> 16;
676
    *x++ = y & 0xffff;
677
#endif
678
#endif
679
2.45k
    }
680
2.45k
    while(++i < wds);
681
661
  if (carry) {
682
74
    if (wds >= b->maxwds) {
683
16
      b1 = Balloc(b->k+1);
684
16
      Bcopy(b1, b);
685
16
      Bfree(b);
686
16
      b = b1;
687
16
      }
688
74
    b->x[wds++] = carry;
689
74
    b->wds = wds;
690
74
    }
691
661
  return b;
692
661
  }
693
694
 static Bigint *
695
s2b
696
#ifdef KR_headers
697
  (s, nd0, nd, y9, dplen) CONST char *s; int nd0, nd, dplen; ULong y9;
698
#else
699
  (const char *s, int nd0, int nd, ULong y9, int dplen)
700
#endif
701
33
{
702
33
  Bigint *b;
703
33
  int i, k;
704
33
  Long x, y;
705
706
33
  x = (nd + 8) / 9;
707
82
  for(k = 0, y = 1; x > y; y <<= 1, k++) ;
708
33
#ifdef Pack_32
709
33
  b = Balloc(k);
710
33
  b->x[0] = y9;
711
33
  b->wds = 1;
712
#else
713
  b = Balloc(k+1);
714
  b->x[0] = y9 & 0xffff;
715
  b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
716
#endif
717
718
33
  i = 9;
719
33
  if (9 < nd0) {
720
33
    s += 9;
721
469
    do b = multadd(b, 10, *s++ - '0');
722
469
      while(++i < nd0);
723
33
    s += dplen;
724
33
    }
725
0
  else
726
0
    s += dplen + 9;
727
39
  for(; i < nd; i++)
728
6
    b = multadd(b, 10, *s++ - '0');
729
33
  return b;
730
33
  }
731
732
 static int
733
hi0bits
734
#ifdef KR_headers
735
  (x) ULong x;
736
#else
737
  (ULong x)
738
#endif
739
49
{
740
49
  int k = 0;
741
742
49
  if (!(x & 0xffff0000)) {
743
10
    k = 16;
744
10
    x <<= 16;
745
10
    }
746
49
  if (!(x & 0xff000000)) {
747
21
    k += 8;
748
21
    x <<= 8;
749
21
    }
750
49
  if (!(x & 0xf0000000)) {
751
15
    k += 4;
752
15
    x <<= 4;
753
15
    }
754
49
  if (!(x & 0xc0000000)) {
755
26
    k += 2;
756
26
    x <<= 2;
757
26
    }
758
49
  if (!(x & 0x80000000)) {
759
24
    k++;
760
24
    if (!(x & 0x40000000))
761
0
      return 32;
762
24
    }
763
49
  return k;
764
49
  }
765
766
 static int
767
lo0bits
768
#ifdef KR_headers
769
  (y) ULong *y;
770
#else
771
  (ULong *y)
772
#endif
773
70
{
774
70
  int k;
775
70
  ULong x = *y;
776
777
70
  if (x & 7) {
778
57
    if (x & 1)
779
35
      return 0;
780
22
    if (x & 2) {
781
9
      *y = x >> 1;
782
9
      return 1;
783
9
      }
784
13
    *y = x >> 2;
785
13
    return 2;
786
22
    }
787
13
  k = 0;
788
13
  if (!(x & 0xffff)) {
789
0
    k = 16;
790
0
    x >>= 16;
791
0
    }
792
13
  if (!(x & 0xff)) {
793
0
    k += 8;
794
0
    x >>= 8;
795
0
    }
796
13
  if (!(x & 0xf)) {
797
6
    k += 4;
798
6
    x >>= 4;
799
6
    }
800
13
  if (!(x & 0x3)) {
801
11
    k += 2;
802
11
    x >>= 2;
803
11
    }
804
13
  if (!(x & 1)) {
805
7
    k++;
806
7
    x >>= 1;
807
7
    if (!x)
808
0
      return 32;
809
7
    }
810
13
  *y = x;
811
13
  return k;
812
13
  }
813
814
 static Bigint *
815
i2b
816
#ifdef KR_headers
817
  (i) int i;
818
#else
819
  (int i)
820
#endif
821
68
{
822
68
  Bigint *b;
823
824
68
  b = Balloc(1);
825
68
  b->x[0] = i;
826
68
  b->wds = 1;
827
68
  return b;
828
68
  }
829
830
 static Bigint *
831
mult
832
#ifdef KR_headers
833
  (a, b) Bigint *a, *b;
834
#else
835
  (Bigint *a, Bigint *b)
836
#endif
837
108
{
838
108
  Bigint *c;
839
108
  int k, wa, wb, wc;
840
108
  ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
841
108
  ULong y;
842
108
#ifdef ULLong
843
108
  ULLong carry, z;
844
#else
845
  ULong carry, z;
846
#ifdef Pack_32
847
  ULong z2;
848
#endif
849
#endif
850
851
108
  if (a->wds < b->wds) {
852
39
    c = a;
853
39
    a = b;
854
39
    b = c;
855
39
    }
856
108
  k = a->k;
857
108
  wa = a->wds;
858
108
  wb = b->wds;
859
108
  wc = wa + wb;
860
108
  if (wc > a->maxwds)
861
42
    k++;
862
108
  c = Balloc(k);
863
727
  for(x = c->x, xa = x + wc; x < xa; x++)
864
619
    *x = 0;
865
108
  xa = a->x;
866
108
  xae = xa + wa;
867
108
  xb = b->x;
868
108
  xbe = xb + wb;
869
108
  xc0 = c->x;
870
108
#ifdef ULLong
871
287
  for(; xb < xbe; xc0++) {
872
179
    if ((y = *xb++)) {
873
179
      x = xa;
874
179
      xc = xc0;
875
179
      carry = 0;
876
908
      do {
877
908
        z = *x++ * (ULLong)y + *xc + carry;
878
908
        carry = z >> 32;
879
908
        *xc++ = z & FFFFFFFF;
880
908
        }
881
908
        while(x < xae);
882
179
      *xc = carry;
883
179
      }
884
179
    }
885
#else
886
#ifdef Pack_32
887
  for(; xb < xbe; xb++, xc0++) {
888
    if (y = *xb & 0xffff) {
889
      x = xa;
890
      xc = xc0;
891
      carry = 0;
892
      do {
893
        z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
894
        carry = z >> 16;
895
        z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
896
        carry = z2 >> 16;
897
        Storeinc(xc, z2, z);
898
        }
899
        while(x < xae);
900
      *xc = carry;
901
      }
902
    if (y = *xb >> 16) {
903
      x = xa;
904
      xc = xc0;
905
      carry = 0;
906
      z2 = *xc;
907
      do {
908
        z = (*x & 0xffff) * y + (*xc >> 16) + carry;
909
        carry = z >> 16;
910
        Storeinc(xc, z, z2);
911
        z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
912
        carry = z2 >> 16;
913
        }
914
        while(x < xae);
915
      *xc = z2;
916
      }
917
    }
918
#else
919
  for(; xb < xbe; xc0++) {
920
    if (y = *xb++) {
921
      x = xa;
922
      xc = xc0;
923
      carry = 0;
924
      do {
925
        z = *x++ * y + *xc + carry;
926
        carry = z >> 16;
927
        *xc++ = z & 0xffff;
928
        }
929
        while(x < xae);
930
      *xc = carry;
931
      }
932
    }
933
#endif
934
#endif
935
185
  for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
936
108
  c->wds = wc;
937
108
  return c;
938
108
  }
939
940
#ifndef p5s
941
 static Bigint *p5s;
942
#endif
943
944
 static Bigint *
945
pow5mult
946
#ifdef KR_headers
947
  (b, k) Bigint *b; int k;
948
#else
949
  (Bigint *b, int k)
950
#endif
951
44
{
952
44
  Bigint *b1, *p5, *p51;
953
44
  int i;
954
44
  static const int p05[3] = { 5, 25, 125 };
955
956
44
  if ((i = k & 3))
957
36
    b = multadd(b, p05[i-1], 0);
958
959
44
  if (!(k >>= 2))
960
0
    return b;
961
44
  if (!(p5 = p5s)) {
962
    /* first time */
963
#ifdef MULTIPLE_THREADS
964
    ACQUIRE_DTOA_LOCK(1);
965
    if (!(p5 = p5s)) {
966
      p5 = p5s = i2b(625);
967
      p5->next = 0;
968
      }
969
    FREE_DTOA_LOCK(1);
970
#else
971
1
    p5 = p5s = i2b(625);
972
1
    p5->next = 0;
973
1
#endif
974
1
    }
975
212
  for(;;) {
976
212
    if (k & 1) {
977
100
      b1 = mult(b, p5);
978
100
      Bfree(b);
979
100
      b = b1;
980
100
      }
981
212
    if (!(k >>= 1))
982
44
      break;
983
168
    if (!(p51 = p5->next)) {
984
#ifdef MULTIPLE_THREADS
985
      ACQUIRE_DTOA_LOCK(1);
986
      if (!(p51 = p5->next)) {
987
        p51 = p5->next = mult(p5,p5);
988
        p51->next = 0;
989
        }
990
      FREE_DTOA_LOCK(1);
991
#else
992
5
      p51 = p5->next = mult(p5,p5);
993
5
      p51->next = 0;
994
5
#endif
995
5
      }
996
168
    p5 = p51;
997
168
    }
998
44
  return b;
999
44
  }
1000
1001
 static Bigint *
1002
lshift
1003
#ifdef KR_headers
1004
  (b, k) Bigint *b; int k;
1005
#else
1006
  (Bigint *b, int k)
1007
#endif
1008
135
{
1009
135
  int i, k1, n, n1;
1010
135
  Bigint *b1;
1011
135
  ULong *x, *x1, *xe, z;
1012
1013
135
#ifdef Pack_32
1014
135
  n = k >> 5;
1015
#else
1016
  n = k >> 4;
1017
#endif
1018
135
  k1 = b->k;
1019
135
  n1 = n + b->wds + 1;
1020
352
  for(i = b->maxwds; n1 > i; i <<= 1)
1021
217
    k1++;
1022
135
  b1 = Balloc(k1);
1023
135
  x1 = b1->x;
1024
634
  for(i = 0; i < n; i++)
1025
499
    *x1++ = 0;
1026
135
  x = b->x;
1027
135
  xe = x + b->wds;
1028
135
#ifdef Pack_32
1029
135
  if (k &= 0x1f) {
1030
119
    k1 = 32 - k;
1031
119
    z = 0;
1032
305
    do {
1033
305
      *x1++ = *x << k | z;
1034
305
      z = *x++ >> k1;
1035
305
      }
1036
305
      while(x < xe);
1037
119
    if ((*x1 = z))
1038
19
      ++n1;
1039
119
    }
1040
#else
1041
  if (k &= 0xf) {
1042
    k1 = 16 - k;
1043
    z = 0;
1044
    do {
1045
      *x1++ = *x << k  & 0xffff | z;
1046
      z = *x++ >> k1;
1047
      }
1048
      while(x < xe);
1049
    if (*x1 = z)
1050
      ++n1;
1051
    }
1052
#endif
1053
16
  else do
1054
26
    *x1++ = *x++;
1055
26
    while(x < xe);
1056
135
  b1->wds = n1 - 1;
1057
135
  Bfree(b);
1058
135
  return b1;
1059
135
  }
1060
1061
 static int
1062
cmp
1063
#ifdef KR_headers
1064
  (a, b) Bigint *a, *b;
1065
#else
1066
  (Bigint *a, Bigint *b)
1067
#endif
1068
298
{
1069
298
  ULong *xa, *xa0, *xb, *xb0;
1070
298
  int i, j;
1071
1072
298
  i = a->wds;
1073
298
  j = b->wds;
1074
#ifdef DEBUG
1075
  if (i > 1 && !a->x[i-1])
1076
    Bug("cmp called with a->x[a->wds-1] == 0");
1077
  if (j > 1 && !b->x[j-1])
1078
    Bug("cmp called with b->x[b->wds-1] == 0");
1079
#endif
1080
298
  if (i -= j)
1081
38
    return i;
1082
260
  xa0 = a->x;
1083
260
  xa = xa0 + j;
1084
260
  xb0 = b->x;
1085
260
  xb = xb0 + j;
1086
348
  for(;;) {
1087
348
    if (*--xa != *--xb)
1088
260
      return *xa < *xb ? -1 : 1;
1089
88
    if (xa <= xa0)
1090
0
      break;
1091
88
    }
1092
0
  return 0;
1093
260
  }
1094
1095
 static Bigint *
1096
diff
1097
#ifdef KR_headers
1098
  (a, b) Bigint *a, *b;
1099
#else
1100
  (Bigint *a, Bigint *b)
1101
#endif
1102
62
{
1103
62
  Bigint *c;
1104
62
  int i, wa, wb;
1105
62
  ULong *xa, *xae, *xb, *xbe, *xc;
1106
62
#ifdef ULLong
1107
62
  ULLong borrow, y;
1108
#else
1109
  ULong borrow, y;
1110
#ifdef Pack_32
1111
  ULong z;
1112
#endif
1113
#endif
1114
1115
62
  i = cmp(a,b);
1116
62
  if (!i) {
1117
0
    c = Balloc(0);
1118
0
    c->wds = 1;
1119
0
    c->x[0] = 0;
1120
0
    return c;
1121
0
    }
1122
62
  if (i < 0) {
1123
21
    c = a;
1124
21
    a = b;
1125
21
    b = c;
1126
21
    i = 1;
1127
21
    }
1128
41
  else
1129
41
    i = 0;
1130
62
  c = Balloc(a->k);
1131
62
  c->sign = i;
1132
62
  wa = a->wds;
1133
62
  xa = a->x;
1134
62
  xae = xa + wa;
1135
62
  wb = b->wds;
1136
62
  xb = b->x;
1137
62
  xbe = xb + wb;
1138
62
  xc = c->x;
1139
62
  borrow = 0;
1140
62
#ifdef ULLong
1141
371
  do {
1142
371
    y = (ULLong)*xa++ - *xb++ - borrow;
1143
371
    borrow = y >> 32 & (ULong)1;
1144
371
    *xc++ = y & FFFFFFFF;
1145
371
    }
1146
371
    while(xb < xbe);
1147
78
  while(xa < xae) {
1148
16
    y = *xa++ - borrow;
1149
16
    borrow = y >> 32 & (ULong)1;
1150
16
    *xc++ = y & FFFFFFFF;
1151
16
    }
1152
#else
1153
#ifdef Pack_32
1154
  do {
1155
    y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
1156
    borrow = (y & 0x10000) >> 16;
1157
    z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
1158
    borrow = (z & 0x10000) >> 16;
1159
    Storeinc(xc, z, y);
1160
    }
1161
    while(xb < xbe);
1162
  while(xa < xae) {
1163
    y = (*xa & 0xffff) - borrow;
1164
    borrow = (y & 0x10000) >> 16;
1165
    z = (*xa++ >> 16) - borrow;
1166
    borrow = (z & 0x10000) >> 16;
1167
    Storeinc(xc, z, y);
1168
    }
1169
#else
1170
  do {
1171
    y = *xa++ - *xb++ - borrow;
1172
    borrow = (y & 0x10000) >> 16;
1173
    *xc++ = y & 0xffff;
1174
    }
1175
    while(xb < xbe);
1176
  while(xa < xae) {
1177
    y = *xa++ - borrow;
1178
    borrow = (y & 0x10000) >> 16;
1179
    *xc++ = y & 0xffff;
1180
    }
1181
#endif
1182
#endif
1183
150
  while(!*--xc)
1184
88
    wa--;
1185
62
  c->wds = wa;
1186
62
  return c;
1187
62
  }
1188
1189
 static double
1190
ulp
1191
#ifdef KR_headers
1192
  (x) U *x;
1193
#else
1194
  (U *x)
1195
#endif
1196
17
{
1197
17
  Long L;
1198
17
  U u;
1199
1200
17
  L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
1201
#ifndef Avoid_Underflow
1202
#ifndef Sudden_Underflow
1203
  if (L > 0) {
1204
#endif
1205
#endif
1206
#ifdef IBM
1207
    L |= Exp_msk1 >> 4;
1208
#endif
1209
17
    word0(&u) = L;
1210
17
    word1(&u) = 0;
1211
#ifndef Avoid_Underflow
1212
#ifndef Sudden_Underflow
1213
    }
1214
  else {
1215
    L = -L >> Exp_shift;
1216
    if (L < Exp_shift) {
1217
      word0(&u) = 0x80000 >> L;
1218
      word1(&u) = 0;
1219
      }
1220
    else {
1221
      word0(&u) = 0;
1222
      L -= Exp_shift;
1223
      word1(&u) = L >= 31 ? 1 : 1 << 31 - L;
1224
      }
1225
    }
1226
#endif
1227
#endif
1228
17
  return dval(&u);
1229
17
  }
1230
1231
 static double
1232
b2d
1233
#ifdef KR_headers
1234
  (a, e) Bigint *a; int *e;
1235
#else
1236
  (Bigint *a, int *e)
1237
#endif
1238
34
{
1239
34
  ULong *xa, *xa0, w, y, z;
1240
34
  int k;
1241
34
  U d;
1242
#ifdef VAX
1243
  ULong d0, d1;
1244
#else
1245
34
#define d0 word0(&d)
1246
34
#define d1 word1(&d)
1247
34
#endif
1248
1249
34
  xa0 = a->x;
1250
34
  xa = xa0 + a->wds;
1251
34
  y = *--xa;
1252
#ifdef DEBUG
1253
  if (!y) Bug("zero y in b2d");
1254
#endif
1255
34
  k = hi0bits(y);
1256
34
  *e = 32 - k;
1257
34
#ifdef Pack_32
1258
34
  if (k < Ebits) {
1259
20
    d0 = Exp_1 | y >> (Ebits - k);
1260
20
    w = xa > xa0 ? *--xa : 0;
1261
20
    d1 = y << ((32-Ebits) + k) | w >> (Ebits - k);
1262
20
    goto ret_d;
1263
20
    }
1264
14
  z = xa > xa0 ? *--xa : 0;
1265
14
  if (k -= Ebits) {
1266
2
    d0 = Exp_1 | y << k | z >> (32 - k);
1267
2
    y = xa > xa0 ? *--xa : 0;
1268
2
    d1 = z << k | y >> (32 - k);
1269
2
    }
1270
12
  else {
1271
12
    d0 = Exp_1 | y;
1272
12
    d1 = z;
1273
12
    }
1274
#else
1275
  if (k < Ebits + 16) {
1276
    z = xa > xa0 ? *--xa : 0;
1277
    d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
1278
    w = xa > xa0 ? *--xa : 0;
1279
    y = xa > xa0 ? *--xa : 0;
1280
    d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
1281
    goto ret_d;
1282
    }
1283
  z = xa > xa0 ? *--xa : 0;
1284
  w = xa > xa0 ? *--xa : 0;
1285
  k -= Ebits + 16;
1286
  d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
1287
  y = xa > xa0 ? *--xa : 0;
1288
  d1 = w << k + 16 | y << k;
1289
#endif
1290
34
 ret_d:
1291
#ifdef VAX
1292
  word0(&d) = d0 >> 16 | d0 << 16;
1293
  word1(&d) = d1 >> 16 | d1 << 16;
1294
#else
1295
34
#undef d0
1296
34
#undef d1
1297
34
#endif
1298
34
  return dval(&d);
1299
14
  }
1300
1301
 static Bigint *
1302
d2b
1303
#ifdef KR_headers
1304
  (d, e, bits) U *d; int *e, *bits;
1305
#else
1306
  (U *d, int *e, int *bits)
1307
#endif
1308
70
{
1309
70
  Bigint *b;
1310
70
  int de, k;
1311
70
  ULong *x, y, z;
1312
70
#ifndef Sudden_Underflow
1313
70
  int i;
1314
70
#endif
1315
#ifdef VAX
1316
  ULong d0, d1;
1317
  d0 = word0(d) >> 16 | word0(d) << 16;
1318
  d1 = word1(d) >> 16 | word1(d) << 16;
1319
#else
1320
210
#define d0 word0(d)
1321
70
#define d1 word1(d)
1322
70
#endif
1323
1324
70
#ifdef Pack_32
1325
70
  b = Balloc(1);
1326
#else
1327
  b = Balloc(2);
1328
#endif
1329
70
  x = b->x;
1330
1331
70
  z = d0 & Frac_mask;
1332
70
  d0 &= 0x7fffffff; /* clear sign bit, which we ignore */
1333
#ifdef Sudden_Underflow
1334
  de = (int)(d0 >> Exp_shift);
1335
#ifndef IBM
1336
  z |= Exp_msk11;
1337
#endif
1338
#else
1339
70
  if ((de = (int)(d0 >> Exp_shift)))
1340
70
    z |= Exp_msk1;
1341
70
#endif
1342
70
#ifdef Pack_32
1343
70
  if ((y = d1)) {
1344
70
    if ((k = lo0bits(&y))) {
1345
35
      x[0] = y | z << (32 - k);
1346
35
      z >>= k;
1347
35
      }
1348
35
    else
1349
35
      x[0] = y;
1350
70
#ifndef Sudden_Underflow
1351
70
    i =
1352
70
#endif
1353
70
        b->wds = (x[1] = z) ? 2 : 1;
1354
70
    }
1355
0
  else {
1356
0
    k = lo0bits(&z);
1357
0
    x[0] = z;
1358
0
#ifndef Sudden_Underflow
1359
0
    i =
1360
0
#endif
1361
0
        b->wds = 1;
1362
0
    k += 32;
1363
0
    }
1364
#else
1365
  if (y = d1) {
1366
    if (k = lo0bits(&y))
1367
      if (k >= 16) {
1368
        x[0] = y | z << 32 - k & 0xffff;
1369
        x[1] = z >> k - 16 & 0xffff;
1370
        x[2] = z >> k;
1371
        i = 2;
1372
        }
1373
      else {
1374
        x[0] = y & 0xffff;
1375
        x[1] = y >> 16 | z << 16 - k & 0xffff;
1376
        x[2] = z >> k & 0xffff;
1377
        x[3] = z >> k+16;
1378
        i = 3;
1379
        }
1380
    else {
1381
      x[0] = y & 0xffff;
1382
      x[1] = y >> 16;
1383
      x[2] = z & 0xffff;
1384
      x[3] = z >> 16;
1385
      i = 3;
1386
      }
1387
    }
1388
  else {
1389
#ifdef DEBUG
1390
    if (!z)
1391
      Bug("Zero passed to d2b");
1392
#endif
1393
    k = lo0bits(&z);
1394
    if (k >= 16) {
1395
      x[0] = z;
1396
      i = 0;
1397
      }
1398
    else {
1399
      x[0] = z & 0xffff;
1400
      x[1] = z >> 16;
1401
      i = 1;
1402
      }
1403
    k += 32;
1404
    }
1405
  while(!x[i])
1406
    --i;
1407
  b->wds = i + 1;
1408
#endif
1409
70
#ifndef Sudden_Underflow
1410
70
  if (de) {
1411
70
#endif
1412
#ifdef IBM
1413
    *e = (de - Bias - (P-1) << 2) + k;
1414
    *bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
1415
#else
1416
70
    *e = de - Bias - (P-1) + k;
1417
70
    *bits = P - k;
1418
70
#endif
1419
70
#ifndef Sudden_Underflow
1420
70
    }
1421
0
  else {
1422
0
    *e = de - Bias - (P-1) + 1 + k;
1423
0
#ifdef Pack_32
1424
0
    *bits = 32*i - hi0bits(x[i-1]);
1425
#else
1426
    *bits = (i+2)*16 - hi0bits(x[i]);
1427
#endif
1428
0
    }
1429
70
#endif
1430
70
  return b;
1431
70
  }
1432
#undef d0
1433
#undef d1
1434
1435
 static double
1436
ratio
1437
#ifdef KR_headers
1438
  (a, b) Bigint *a, *b;
1439
#else
1440
  (Bigint *a, Bigint *b)
1441
#endif
1442
17
{
1443
17
  U da, db;
1444
17
  int k, ka, kb;
1445
1446
17
  dval(&da) = b2d(a, &ka);
1447
17
  dval(&db) = b2d(b, &kb);
1448
17
#ifdef Pack_32
1449
17
  k = ka - kb + 32*(a->wds - b->wds);
1450
#else
1451
  k = ka - kb + 16*(a->wds - b->wds);
1452
#endif
1453
#ifdef IBM
1454
  if (k > 0) {
1455
    word0(&da) += (k >> 2)*Exp_msk1;
1456
    if (k &= 3)
1457
      dval(&da) *= 1 << k;
1458
    }
1459
  else {
1460
    k = -k;
1461
    word0(&db) += (k >> 2)*Exp_msk1;
1462
    if (k &= 3)
1463
      dval(&db) *= 1 << k;
1464
    }
1465
#else
1466
17
  if (k > 0)
1467
1
    word0(&da) += k*Exp_msk1;
1468
16
  else {
1469
16
    k = -k;
1470
16
    word0(&db) += k*Exp_msk1;
1471
16
    }
1472
17
#endif
1473
17
  return dval(&da) / dval(&db);
1474
17
  }
1475
1476
 static CONST double
1477
tens[] = {
1478
    1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1479
    1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1480
    1e20, 1e21, 1e22
1481
#ifdef VAX
1482
    , 1e23, 1e24
1483
#endif
1484
    };
1485
1486
 static CONST double
1487
#ifdef IEEE_Arith
1488
bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1489
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
1490
#ifdef Avoid_Underflow
1491
    9007199254740992.*9007199254740992.e-256
1492
    /* = 2^106 * 1e-256 */
1493
#else
1494
    1e-256
1495
#endif
1496
    };
1497
/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
1498
/* flag unnecessarily.  It leads to a song and dance at the end of strtod. */
1499
0
#define Scale_Bit 0x10
1500
0
#define n_bigtens 5
1501
#else
1502
#ifdef IBM
1503
bigtens[] = { 1e16, 1e32, 1e64 };
1504
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 };
1505
#define n_bigtens 3
1506
#else
1507
bigtens[] = { 1e16, 1e32 };
1508
static CONST double tinytens[] = { 1e-16, 1e-32 };
1509
#define n_bigtens 2
1510
#endif
1511
#endif
1512
1513
#undef Need_Hexdig
1514
#ifdef INFNAN_CHECK
1515
#ifndef No_Hex_NaN
1516
#define Need_Hexdig
1517
#endif
1518
#endif
1519
1520
#ifndef Need_Hexdig
1521
#ifndef NO_HEX_FP
1522
#define Need_Hexdig
1523
#endif
1524
#endif
1525
1526
#ifdef Need_Hexdig /*{*/
1527
#if 0
1528
static unsigned char hexdig[256];
1529
1530
 static void
1531
htinit(unsigned char *h, unsigned char *s, int inc)
1532
{
1533
  int i, j;
1534
  for(i = 0; (j = s[i]) !=0; i++)
1535
    h[j] = i + inc;
1536
  }
1537
1538
 static void
1539
hexdig_init(void) /* Use of hexdig_init omitted 20121220 to avoid a */
1540
      /* race condition when multiple threads are used. */
1541
{
1542
#define USC (unsigned char *)
1543
  htinit(hexdig, USC "0123456789", 0x10);
1544
  htinit(hexdig, USC "abcdef", 0x10 + 10);
1545
  htinit(hexdig, USC "ABCDEF", 0x10 + 10);
1546
  }
1547
#else
1548
static const unsigned char hexdig[256] = {
1549
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1550
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1551
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1552
  16,17,18,19,20,21,22,23,24,25,0,0,0,0,0,0,
1553
  0,26,27,28,29,30,31,0,0,0,0,0,0,0,0,0,
1554
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1555
  0,26,27,28,29,30,31,0,0,0,0,0,0,0,0,0,
1556
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1557
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1558
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1559
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1560
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1561
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1562
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1563
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1564
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1565
  };
1566
#endif
1567
#endif /* } Need_Hexdig */
1568
1569
#ifdef INFNAN_CHECK
1570
1571
#ifndef NAN_WORD0
1572
#define NAN_WORD0 0x7ff80000
1573
#endif
1574
1575
#ifndef NAN_WORD1
1576
#define NAN_WORD1 0
1577
#endif
1578
1579
 static int
1580
match
1581
#ifdef KR_headers
1582
  (sp, t) char **sp, *t;
1583
#else
1584
  (const char **sp, const char *t)
1585
#endif
1586
{
1587
  int c, d;
1588
  CONST char *s = *sp;
1589
1590
  while((d = *t++)) {
1591
    if ((c = *++s) >= 'A' && c <= 'Z')
1592
      c += 'a' - 'A';
1593
    if (c != d)
1594
      return 0;
1595
    }
1596
  *sp = s + 1;
1597
  return 1;
1598
  }
1599
1600
#ifndef No_Hex_NaN
1601
 static void
1602
hexnan
1603
#ifdef KR_headers
1604
  (rvp, sp) U *rvp; CONST char **sp;
1605
#else
1606
  (U *rvp, const char **sp)
1607
#endif
1608
{
1609
  ULong c, x[2];
1610
  CONST char *s;
1611
  int c1, havedig, udx0, xshift;
1612
1613
  /**** if (!hexdig['0']) hexdig_init(); ****/
1614
  x[0] = x[1] = 0;
1615
  havedig = xshift = 0;
1616
  udx0 = 1;
1617
  s = *sp;
1618
  /* allow optional initial 0x or 0X */
1619
  while((c = *(CONST unsigned char*)(s+1)) && c <= ' ')
1620
    ++s;
1621
  if (s[1] == '0' && (s[2] == 'x' || s[2] == 'X'))
1622
    s += 2;
1623
  while((c = *(CONST unsigned char*)++s)) {
1624
    if ((c1 = hexdig[c]))
1625
      c  = c1 & 0xf;
1626
    else if (c <= ' ') {
1627
      if (udx0 && havedig) {
1628
        udx0 = 0;
1629
        xshift = 1;
1630
        }
1631
      continue;
1632
      }
1633
#ifdef GDTOA_NON_PEDANTIC_NANCHECK
1634
    else if (/*(*/ c == ')' && havedig) {
1635
      *sp = s + 1;
1636
      break;
1637
      }
1638
    else
1639
      return; /* invalid form: don't change *sp */
1640
#else
1641
    else {
1642
      do {
1643
        if (/*(*/ c == ')') {
1644
          *sp = s + 1;
1645
          break;
1646
          }
1647
        } while((c = *++s));
1648
      break;
1649
      }
1650
#endif
1651
    havedig = 1;
1652
    if (xshift) {
1653
      xshift = 0;
1654
      x[0] = x[1];
1655
      x[1] = 0;
1656
      }
1657
    if (udx0)
1658
      x[0] = (x[0] << 4) | (x[1] >> 28);
1659
    x[1] = (x[1] << 4) | c;
1660
    }
1661
  if ((x[0] &= 0xfffff) || x[1]) {
1662
    word0(rvp) = Exp_mask | x[0];
1663
    word1(rvp) = x[1];
1664
    }
1665
  }
1666
#endif /*No_Hex_NaN*/
1667
#endif /* INFNAN_CHECK */
1668
1669
#ifdef Pack_32
1670
#define ULbits 32
1671
#define kshift 5
1672
15
#define kmask 31
1673
#else
1674
#define ULbits 16
1675
#define kshift 4
1676
#define kmask 15
1677
#endif
1678
1679
#if !defined(NO_HEX_FP) || defined(Honor_FLT_ROUNDS) /*{*/
1680
 static Bigint *
1681
#ifdef KR_headers
1682
increment(b) Bigint *b;
1683
#else
1684
increment(Bigint *b)
1685
#endif
1686
{
1687
  ULong *x, *xe;
1688
  Bigint *b1;
1689
1690
  x = b->x;
1691
  xe = x + b->wds;
1692
  do {
1693
    if (*x < (ULong)0xffffffffL) {
1694
      ++*x;
1695
      return b;
1696
      }
1697
    *x++ = 0;
1698
    } while(x < xe);
1699
  {
1700
    if (b->wds >= b->maxwds) {
1701
      b1 = Balloc(b->k+1);
1702
      Bcopy(b1,b);
1703
      Bfree(b);
1704
      b = b1;
1705
      }
1706
    b->x[b->wds++] = 1;
1707
    }
1708
  return b;
1709
  }
1710
1711
#endif /*}*/
1712
1713
#ifndef NO_HEX_FP /*{*/
1714
1715
 static void
1716
#ifdef KR_headers
1717
rshift(b, k) Bigint *b; int k;
1718
#else
1719
rshift(Bigint *b, int k)
1720
#endif
1721
{
1722
  ULong *x, *x1, *xe, y;
1723
  int n;
1724
1725
  x = x1 = b->x;
1726
  n = k >> kshift;
1727
  if (n < b->wds) {
1728
    xe = x + b->wds;
1729
    x += n;
1730
    if (k &= kmask) {
1731
      n = 32 - k;
1732
      y = *x++ >> k;
1733
      while(x < xe) {
1734
        *x1++ = (y | (*x << n)) & 0xffffffff;
1735
        y = *x++ >> k;
1736
        }
1737
      if ((*x1 = y) !=0)
1738
        x1++;
1739
      }
1740
    else
1741
      while(x < xe)
1742
        *x1++ = *x++;
1743
    }
1744
  if ((b->wds = x1 - b->x) == 0)
1745
    b->x[0] = 0;
1746
  }
1747
1748
 static ULong
1749
#ifdef KR_headers
1750
any_on(b, k) Bigint *b; int k;
1751
#else
1752
any_on(Bigint *b, int k)
1753
#endif
1754
{
1755
  int n, nwds;
1756
  ULong *x, *x0, x1, x2;
1757
1758
  x = b->x;
1759
  nwds = b->wds;
1760
  n = k >> kshift;
1761
  if (n > nwds)
1762
    n = nwds;
1763
  else if (n < nwds && (k &= kmask)) {
1764
    x1 = x2 = x[n];
1765
    x1 >>= k;
1766
    x1 <<= k;
1767
    if (x1 != x2)
1768
      return 1;
1769
    }
1770
  x0 = x;
1771
  x += n;
1772
  while(x > x0)
1773
    if (*--x)
1774
      return 1;
1775
  return 0;
1776
  }
1777
1778
enum {  /* rounding values: same as FLT_ROUNDS */
1779
  Round_zero = 0,
1780
  Round_near = 1,
1781
  Round_up = 2,
1782
  Round_down = 3
1783
  };
1784
1785
 void
1786
#ifdef KR_headers
1787
gethex(sp, rvp, rounding, sign)
1788
  CONST char **sp; U *rvp; int rounding, sign;
1789
#else
1790
gethex( CONST char **sp, U *rvp, int rounding, int sign)
1791
#endif
1792
{
1793
  Bigint *b;
1794
  CONST unsigned char *decpt, *s0, *s, *s1;
1795
  Long e, e1;
1796
  ULong L, lostbits, *x;
1797
  int big, denorm, esign, havedig, k, n, nbits, up, zret;
1798
#ifdef IBM
1799
  int j;
1800
#endif
1801
  enum {
1802
#ifdef IEEE_Arith /*{{*/
1803
    emax = 0x7fe - Bias - P + 1,
1804
    emin = Emin - P + 1
1805
#else /*}{*/
1806
    emin = Emin - P,
1807
#ifdef VAX
1808
    emax = 0x7ff - Bias - P + 1
1809
#endif
1810
#ifdef IBM
1811
    emax = 0x7f - Bias - P
1812
#endif
1813
#endif /*}}*/
1814
    };
1815
#ifdef USE_LOCALE
1816
  int i;
1817
#ifdef NO_LOCALE_CACHE
1818
  const unsigned char *decimalpoint = (unsigned char*)
1819
    localeconv()->decimal_point;
1820
#else
1821
  const unsigned char *decimalpoint;
1822
  static unsigned char *decimalpoint_cache;
1823
  if (!(s0 = decimalpoint_cache)) {
1824
    s0 = (unsigned char*)localeconv()->decimal_point;
1825
    if ((decimalpoint_cache = (unsigned char*)
1826
        MALLOC(strlen((CONST char*)s0) + 1))) {
1827
      strcpy((char*)decimalpoint_cache, (CONST char*)s0);
1828
      s0 = decimalpoint_cache;
1829
      }
1830
    }
1831
  decimalpoint = s0;
1832
#endif
1833
#endif
1834
1835
  /**** if (!hexdig['0']) hexdig_init(); ****/
1836
  havedig = 0;
1837
  s0 = *(CONST unsigned char **)sp + 2;
1838
  while(s0[havedig] == '0')
1839
    havedig++;
1840
  s0 += havedig;
1841
  s = s0;
1842
  decpt = 0;
1843
  zret = 0;
1844
  e = 0;
1845
  if (hexdig[*s])
1846
    havedig++;
1847
  else {
1848
    zret = 1;
1849
#ifdef USE_LOCALE
1850
    for(i = 0; decimalpoint[i]; ++i) {
1851
      if (s[i] != decimalpoint[i])
1852
        goto pcheck;
1853
      }
1854
    decpt = s += i;
1855
#else
1856
    if (*s != '.')
1857
      goto pcheck;
1858
    decpt = ++s;
1859
#endif
1860
    if (!hexdig[*s])
1861
      goto pcheck;
1862
    while(*s == '0')
1863
      s++;
1864
    if (hexdig[*s])
1865
      zret = 0;
1866
    havedig = 1;
1867
    s0 = s;
1868
    }
1869
  while(hexdig[*s])
1870
    s++;
1871
#ifdef USE_LOCALE
1872
  if (*s == *decimalpoint && !decpt) {
1873
    for(i = 1; decimalpoint[i]; ++i) {
1874
      if (s[i] != decimalpoint[i])
1875
        goto pcheck;
1876
      }
1877
    decpt = s += i;
1878
#else
1879
  if (*s == '.' && !decpt) {
1880
    decpt = ++s;
1881
#endif
1882
    while(hexdig[*s])
1883
      s++;
1884
    }/*}*/
1885
  if (decpt)
1886
    e = -(((Long)(s-decpt)) << 2);
1887
 pcheck:
1888
  s1 = s;
1889
  big = esign = 0;
1890
  switch(*s) {
1891
    case 'p':
1892
    case 'P':
1893
    switch(*++s) {
1894
      case '-':
1895
      esign = 1;
1896
      ZEND_FALLTHROUGH;
1897
      case '+':
1898
      s++;
1899
      }
1900
    if ((n = hexdig[*s]) == 0 || n > 0x19) {
1901
      s = s1;
1902
      break;
1903
      }
1904
    e1 = n - 0x10;
1905
    while((n = hexdig[*++s]) !=0 && n <= 0x19) {
1906
      if (e1 & 0xf8000000)
1907
        big = 1;
1908
      e1 = 10*e1 + n - 0x10;
1909
      }
1910
    if (esign)
1911
      e1 = -e1;
1912
    e += e1;
1913
    }
1914
  *sp = (char*)s;
1915
  if (!havedig)
1916
    *sp = (char*)s0 - 1;
1917
  if (zret)
1918
    goto retz1;
1919
  if (big) {
1920
    if (esign) {
1921
#ifdef IEEE_Arith
1922
      switch(rounding) {
1923
        case Round_up:
1924
        if (sign)
1925
          break;
1926
        goto ret_tiny;
1927
        case Round_down:
1928
        if (!sign)
1929
          break;
1930
        goto ret_tiny;
1931
        }
1932
#endif
1933
      goto retz;
1934
#ifdef IEEE_Arith
1935
 ret_tinyf:
1936
      Bfree(b);
1937
 ret_tiny:
1938
#ifndef NO_ERRNO
1939
      errno = ERANGE;
1940
#endif
1941
      word0(rvp) = 0;
1942
      word1(rvp) = 1;
1943
      return;
1944
#endif /* IEEE_Arith */
1945
      }
1946
    switch(rounding) {
1947
      case Round_near:
1948
      goto ovfl1;
1949
      case Round_up:
1950
      if (!sign)
1951
        goto ovfl1;
1952
      goto ret_big;
1953
      case Round_down:
1954
      if (sign)
1955
        goto ovfl1;
1956
      goto ret_big;
1957
      }
1958
 ret_big:
1959
    word0(rvp) = Big0;
1960
    word1(rvp) = Big1;
1961
    return;
1962
    }
1963
  n = s1 - s0 - 1;
1964
  for(k = 0; n > (1 << (kshift-2)) - 1; n >>= 1)
1965
    k++;
1966
  b = Balloc(k);
1967
  x = b->x;
1968
  n = 0;
1969
  L = 0;
1970
#ifdef USE_LOCALE
1971
  for(i = 0; decimalpoint[i+1]; ++i);
1972
#endif
1973
  while(s1 > s0) {
1974
#ifdef USE_LOCALE
1975
    if (*--s1 == decimalpoint[i]) {
1976
      s1 -= i;
1977
      continue;
1978
      }
1979
#else
1980
    if (*--s1 == '.')
1981
      continue;
1982
#endif
1983
    if (n == ULbits) {
1984
      *x++ = L;
1985
      L = 0;
1986
      n = 0;
1987
      }
1988
    L |= (hexdig[*s1] & 0x0f) << n;
1989
    n += 4;
1990
    }
1991
  *x++ = L;
1992
  b->wds = n = x - b->x;
1993
  n = ULbits*n - hi0bits(L);
1994
  nbits = Nbits;
1995
  lostbits = 0;
1996
  x = b->x;
1997
  if (n > nbits) {
1998
    n -= nbits;
1999
    if (any_on(b,n)) {
2000
      lostbits = 1;
2001
      k = n - 1;
2002
      if (x[k>>kshift] & 1 << (k & kmask)) {
2003
        lostbits = 2;
2004
        if (k > 0 && any_on(b,k))
2005
          lostbits = 3;
2006
        }
2007
      }
2008
    rshift(b, n);
2009
    e += n;
2010
    }
2011
  else if (n < nbits) {
2012
    n = nbits - n;
2013
    b = lshift(b, n);
2014
    e -= n;
2015
    x = b->x;
2016
    }
2017
  if (e > Emax) {
2018
 ovfl:
2019
    Bfree(b);
2020
 ovfl1:
2021
#ifndef NO_ERRNO
2022
    errno = ERANGE;
2023
#endif
2024
    word0(rvp) = Exp_mask;
2025
    word1(rvp) = 0;
2026
    return;
2027
    }
2028
  denorm = 0;
2029
  if (e < emin) {
2030
    denorm = 1;
2031
    n = emin - e;
2032
    if (n >= nbits) {
2033
#ifdef IEEE_Arith /*{*/
2034
      switch (rounding) {
2035
        case Round_near:
2036
        if (n == nbits && (n < 2 || any_on(b,n-1)))
2037
          goto ret_tinyf;
2038
        break;
2039
        case Round_up:
2040
        if (!sign)
2041
          goto ret_tinyf;
2042
        break;
2043
        case Round_down:
2044
        if (sign)
2045
          goto ret_tinyf;
2046
        }
2047
#endif /* } IEEE_Arith */
2048
      Bfree(b);
2049
 retz:
2050
#ifndef NO_ERRNO
2051
      errno = ERANGE;
2052
#endif
2053
 retz1:
2054
      rvp->d = 0.;
2055
      return;
2056
      }
2057
    k = n - 1;
2058
    if (lostbits)
2059
      lostbits = 1;
2060
    else if (k > 0)
2061
      lostbits = any_on(b,k);
2062
    if (x[k>>kshift] & 1 << (k & kmask))
2063
      lostbits |= 2;
2064
    nbits -= n;
2065
    rshift(b,n);
2066
    e = emin;
2067
    }
2068
  if (lostbits) {
2069
    up = 0;
2070
    switch(rounding) {
2071
      case Round_zero:
2072
      break;
2073
      case Round_near:
2074
      if (lostbits & 2
2075
       && (lostbits & 1) | (x[0] & 1))
2076
        up = 1;
2077
      break;
2078
      case Round_up:
2079
      up = 1 - sign;
2080
      break;
2081
      case Round_down:
2082
      up = sign;
2083
      }
2084
    if (up) {
2085
      k = b->wds;
2086
      b = increment(b);
2087
      x = b->x;
2088
      if (denorm) {
2089
#if 0
2090
        if (nbits == Nbits - 1
2091
         && x[nbits >> kshift] & 1 << (nbits & kmask))
2092
          denorm = 0; /* not currently used */
2093
#endif
2094
        }
2095
      else if (b->wds > k
2096
       || ((n = nbits & kmask) !=0
2097
           && hi0bits(x[k-1]) < 32-n)) {
2098
        rshift(b,1);
2099
        if (++e > Emax)
2100
          goto ovfl;
2101
        }
2102
      }
2103
    }
2104
#ifdef IEEE_Arith
2105
  if (denorm)
2106
    word0(rvp) = b->wds > 1 ? b->x[1] & ~0x100000 : 0;
2107
  else
2108
    word0(rvp) = (b->x[1] & ~0x100000) | ((e + 0x3ff + 52) << 20);
2109
  word1(rvp) = b->x[0];
2110
#endif
2111
#ifdef IBM
2112
  if ((j = e & 3)) {
2113
    k = b->x[0] & ((1 << j) - 1);
2114
    rshift(b,j);
2115
    if (k) {
2116
      switch(rounding) {
2117
        case Round_up:
2118
        if (!sign)
2119
          increment(b);
2120
        break;
2121
        case Round_down:
2122
        if (sign)
2123
          increment(b);
2124
        break;
2125
        case Round_near:
2126
        j = 1 << (j-1);
2127
        if (k & j && ((k & (j-1)) | lostbits))
2128
          increment(b);
2129
        }
2130
      }
2131
    }
2132
  e >>= 2;
2133
  word0(rvp) = b->x[1] | ((e + 65 + 13) << 24);
2134
  word1(rvp) = b->x[0];
2135
#endif
2136
#ifdef VAX
2137
  /* The next two lines ignore swap of low- and high-order 2 bytes. */
2138
  /* word0(rvp) = (b->x[1] & ~0x800000) | ((e + 129 + 55) << 23); */
2139
  /* word1(rvp) = b->x[0]; */
2140
  word0(rvp) = ((b->x[1] & ~0x800000) >> 16) | ((e + 129 + 55) << 7) | (b->x[1] << 16);
2141
  word1(rvp) = (b->x[0] >> 16) | (b->x[0] << 16);
2142
#endif
2143
  Bfree(b);
2144
  }
2145
#endif /*!NO_HEX_FP}*/
2146
2147
 static int
2148
#ifdef KR_headers
2149
dshift(b, p2) Bigint *b; int p2;
2150
#else
2151
dshift(Bigint *b, int p2)
2152
#endif
2153
15
{
2154
15
  int rv = hi0bits(b->x[b->wds-1]) - 4;
2155
15
  if (p2 > 0)
2156
3
    rv -= p2;
2157
15
  return rv & kmask;
2158
15
  }
2159
2160
 static int
2161
quorem
2162
#ifdef KR_headers
2163
  (b, S) Bigint *b, *S;
2164
#else
2165
  (Bigint *b, Bigint *S)
2166
#endif
2167
147
{
2168
147
  int n;
2169
147
  ULong *bx, *bxe, q, *sx, *sxe;
2170
147
#ifdef ULLong
2171
147
  ULLong borrow, carry, y, ys;
2172
#else
2173
  ULong borrow, carry, y, ys;
2174
#ifdef Pack_32
2175
  ULong si, z, zs;
2176
#endif
2177
#endif
2178
2179
147
  n = S->wds;
2180
#ifdef DEBUG
2181
  /*debug*/ if (b->wds > n)
2182
  /*debug*/ Bug("oversize b in quorem");
2183
#endif
2184
147
  if (b->wds < n)
2185
0
    return 0;
2186
147
  sx = S->x;
2187
147
  sxe = sx + --n;
2188
147
  bx = b->x;
2189
147
  bxe = bx + n;
2190
147
  q = *bxe / (*sxe + 1);  /* ensure q <= true quotient */
2191
#ifdef DEBUG
2192
#ifdef NO_STRTOD_BIGCOMP
2193
  /*debug*/ if (q > 9)
2194
#else
2195
  /* An oversized q is possible when quorem is called from bigcomp and */
2196
  /* the input is near, e.g., twice the smallest denormalized number. */
2197
  /*debug*/ if (q > 15)
2198
#endif
2199
  /*debug*/ Bug("oversized quotient in quorem");
2200
#endif
2201
147
  if (q) {
2202
143
    borrow = 0;
2203
143
    carry = 0;
2204
1.36k
    do {
2205
1.36k
#ifdef ULLong
2206
1.36k
      ys = *sx++ * (ULLong)q + carry;
2207
1.36k
      carry = ys >> 32;
2208
1.36k
      y = *bx - (ys & FFFFFFFF) - borrow;
2209
1.36k
      borrow = y >> 32 & (ULong)1;
2210
1.36k
      *bx++ = y & FFFFFFFF;
2211
#else
2212
#ifdef Pack_32
2213
      si = *sx++;
2214
      ys = (si & 0xffff) * q + carry;
2215
      zs = (si >> 16) * q + (ys >> 16);
2216
      carry = zs >> 16;
2217
      y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
2218
      borrow = (y & 0x10000) >> 16;
2219
      z = (*bx >> 16) - (zs & 0xffff) - borrow;
2220
      borrow = (z & 0x10000) >> 16;
2221
      Storeinc(bx, z, y);
2222
#else
2223
      ys = *sx++ * q + carry;
2224
      carry = ys >> 16;
2225
      y = *bx - (ys & 0xffff) - borrow;
2226
      borrow = (y & 0x10000) >> 16;
2227
      *bx++ = y & 0xffff;
2228
#endif
2229
#endif
2230
1.36k
      }
2231
1.36k
      while(sx <= sxe);
2232
143
    if (!*bxe) {
2233
0
      bx = b->x;
2234
0
      while(--bxe > bx && !*bxe)
2235
0
        --n;
2236
0
      b->wds = n;
2237
0
      }
2238
143
    }
2239
147
  if (cmp(b, S) >= 0) {
2240
0
    q++;
2241
0
    borrow = 0;
2242
0
    carry = 0;
2243
0
    bx = b->x;
2244
0
    sx = S->x;
2245
0
    do {
2246
0
#ifdef ULLong
2247
0
      ys = *sx++ + carry;
2248
0
      carry = ys >> 32;
2249
0
      y = *bx - (ys & FFFFFFFF) - borrow;
2250
0
      borrow = y >> 32 & (ULong)1;
2251
0
      *bx++ = y & FFFFFFFF;
2252
#else
2253
#ifdef Pack_32
2254
      si = *sx++;
2255
      ys = (si & 0xffff) + carry;
2256
      zs = (si >> 16) + (ys >> 16);
2257
      carry = zs >> 16;
2258
      y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
2259
      borrow = (y & 0x10000) >> 16;
2260
      z = (*bx >> 16) - (zs & 0xffff) - borrow;
2261
      borrow = (z & 0x10000) >> 16;
2262
      Storeinc(bx, z, y);
2263
#else
2264
      ys = *sx++ + carry;
2265
      carry = ys >> 16;
2266
      y = *bx - (ys & 0xffff) - borrow;
2267
      borrow = (y & 0x10000) >> 16;
2268
      *bx++ = y & 0xffff;
2269
#endif
2270
#endif
2271
0
      }
2272
0
      while(sx <= sxe);
2273
0
    bx = b->x;
2274
0
    bxe = bx + n;
2275
0
    if (!*bxe) {
2276
0
      while(--bxe > bx && !*bxe)
2277
0
        --n;
2278
0
      b->wds = n;
2279
0
      }
2280
0
    }
2281
147
  return q;
2282
147
  }
2283
2284
#if defined(Avoid_Underflow) || !defined(NO_STRTOD_BIGCOMP) /*{*/
2285
 static double
2286
sulp
2287
#ifdef KR_headers
2288
  (x, bc) U *x; BCinfo *bc;
2289
#else
2290
  (U *x, BCinfo *bc)
2291
#endif
2292
0
{
2293
0
  U u;
2294
0
  double rv;
2295
0
  int i;
2296
2297
0
  rv = ulp(x);
2298
0
  if (!bc->scale || (i = 2*P + 1 - ((word0(x) & Exp_mask) >> Exp_shift)) <= 0)
2299
0
    return rv; /* Is there an example where i <= 0 ? */
2300
0
  word0(&u) = Exp_1 + (i << Exp_shift);
2301
0
  word1(&u) = 0;
2302
0
  return rv * u.d;
2303
0
  }
2304
#endif /*}*/
2305
2306
#ifndef NO_STRTOD_BIGCOMP
2307
 static void
2308
bigcomp
2309
#ifdef KR_headers
2310
  (rv, s0, bc)
2311
  U *rv; CONST char *s0; BCinfo *bc;
2312
#else
2313
  (U *rv, const char *s0, BCinfo *bc)
2314
#endif
2315
6
{
2316
6
  Bigint *b, *d;
2317
6
  int b2, bbits, d2, dd, dig, dsign, i, j, nd, nd0, p2, p5, speccase;
2318
2319
6
  dsign = bc->dsign;
2320
6
  nd = bc->nd;
2321
6
  nd0 = bc->nd0;
2322
6
  p5 = nd + bc->e0 - 1;
2323
6
  speccase = 0;
2324
6
#ifndef Sudden_Underflow
2325
6
  if (rv->d == 0.) { /* special case: value near underflow-to-zero */
2326
        /* threshold was rounded to zero */
2327
0
    b = i2b(1);
2328
0
    p2 = Emin - P + 1;
2329
0
    bbits = 1;
2330
0
#ifdef Avoid_Underflow
2331
0
    word0(rv) = (P+2) << Exp_shift;
2332
#else
2333
    word1(rv) = 1;
2334
#endif
2335
0
    i = 0;
2336
#ifdef Honor_FLT_ROUNDS
2337
    if (bc->rounding == 1)
2338
#endif
2339
0
      {
2340
0
      speccase = 1;
2341
0
      --p2;
2342
0
      dsign = 0;
2343
0
      goto have_i;
2344
0
      }
2345
0
    }
2346
6
  else
2347
6
#endif
2348
6
    b = d2b(rv, &p2, &bbits);
2349
6
#ifdef Avoid_Underflow
2350
6
  p2 -= bc->scale;
2351
6
#endif
2352
  /* floor(log2(rv)) == bbits - 1 + p2 */
2353
  /* Check for denormal case. */
2354
6
  i = P - bbits;
2355
6
  if (i > (j = P - Emin - 1 + p2)) {
2356
#ifdef Sudden_Underflow
2357
    Bfree(b);
2358
    b = i2b(1);
2359
    p2 = Emin;
2360
    i = P - 1;
2361
#ifdef Avoid_Underflow
2362
    word0(rv) = (1 + bc->scale) << Exp_shift;
2363
#else
2364
    word0(rv) = Exp_msk1;
2365
#endif
2366
    word1(rv) = 0;
2367
#else
2368
0
    i = j;
2369
0
#endif
2370
0
    }
2371
#ifdef Honor_FLT_ROUNDS
2372
  if (bc->rounding != 1) {
2373
    if (i > 0)
2374
      b = lshift(b, i);
2375
    if (dsign)
2376
      b = increment(b);
2377
    }
2378
  else
2379
#endif
2380
6
    {
2381
6
    b = lshift(b, ++i);
2382
6
    b->x[0] |= 1;
2383
6
    }
2384
6
#ifndef Sudden_Underflow
2385
6
 have_i:
2386
6
#endif
2387
6
  p2 -= p5 + i;
2388
6
  d = i2b(1);
2389
  /* Arrange for convenient computation of quotients:
2390
   * shift left if necessary so divisor has 4 leading 0 bits.
2391
   */
2392
6
  if (p5 > 0)
2393
6
    d = pow5mult(d, p5);
2394
0
  else if (p5 < 0)
2395
0
    b = pow5mult(b, -p5);
2396
6
  if (p2 > 0) {
2397
6
    b2 = p2;
2398
6
    d2 = 0;
2399
6
    }
2400
0
  else {
2401
0
    b2 = 0;
2402
0
    d2 = -p2;
2403
0
    }
2404
6
  i = dshift(d, d2);
2405
6
  if ((b2 += i) > 0)
2406
6
    b = lshift(b, b2);
2407
6
  if ((d2 += i) > 0)
2408
6
    d = lshift(d, d2);
2409
2410
  /* Now b/d = exactly half-way between the two floating-point values */
2411
  /* on either side of the input string.  Compute first digit of b/d. */
2412
2413
6
  if (!(dig = quorem(b,d))) {
2414
0
    b = multadd(b, 10, 0);  /* very unlikely */
2415
0
    dig = quorem(b,d);
2416
0
    }
2417
2418
  /* Compare b/d with s0 */
2419
2420
102
  for(i = 0; i < nd0; ) {
2421
102
    if ((dd = s0[i++] - '0' - dig))
2422
6
      goto ret;
2423
96
    if (!b->x[0] && b->wds == 1) {
2424
0
      if (i < nd)
2425
0
        dd = 1;
2426
0
      goto ret;
2427
0
      }
2428
96
    b = multadd(b, 10, 0);
2429
96
    dig = quorem(b,d);
2430
96
    }
2431
0
  for(j = bc->dp1; i++ < nd;) {
2432
0
    if ((dd = s0[j++] - '0' - dig))
2433
0
      goto ret;
2434
0
    if (!b->x[0] && b->wds == 1) {
2435
0
      if (i < nd)
2436
0
        dd = 1;
2437
0
      goto ret;
2438
0
      }
2439
0
    b = multadd(b, 10, 0);
2440
0
    dig = quorem(b,d);
2441
0
    }
2442
0
  if (dig > 0 || b->x[0] || b->wds > 1)
2443
0
    dd = -1;
2444
6
 ret:
2445
6
  Bfree(b);
2446
6
  Bfree(d);
2447
#ifdef Honor_FLT_ROUNDS
2448
  if (bc->rounding != 1) {
2449
    if (dd < 0) {
2450
      if (bc->rounding == 0) {
2451
        if (!dsign)
2452
          goto retlow1;
2453
        }
2454
      else if (dsign)
2455
        goto rethi1;
2456
      }
2457
    else if (dd > 0) {
2458
      if (bc->rounding == 0) {
2459
        if (dsign)
2460
          goto rethi1;
2461
        goto ret1;
2462
        }
2463
      if (!dsign)
2464
        goto rethi1;
2465
      dval(rv) += 2.*sulp(rv,bc);
2466
      }
2467
    else {
2468
      bc->inexact = 0;
2469
      if (dsign)
2470
        goto rethi1;
2471
      }
2472
    }
2473
  else
2474
#endif
2475
6
  if (speccase) {
2476
0
    if (dd <= 0)
2477
0
      rv->d = 0.;
2478
0
    }
2479
6
  else if (dd < 0) {
2480
6
    if (!dsign)  /* does not happen for round-near */
2481
0
retlow1:
2482
0
      dval(rv) -= sulp(rv,bc);
2483
6
    }
2484
0
  else if (dd > 0) {
2485
0
    if (dsign) {
2486
0
 rethi1:
2487
0
      dval(rv) += sulp(rv,bc);
2488
0
      }
2489
0
    }
2490
0
  else {
2491
    /* Exact half-way case:  apply round-even rule. */
2492
0
    if ((j = ((word0(rv) & Exp_mask) >> Exp_shift) - bc->scale) <= 0) {
2493
0
      i = 1 - j;
2494
0
      if (i <= 31) {
2495
0
        if (word1(rv) & (0x1 << i))
2496
0
          goto odd;
2497
0
        }
2498
0
      else if (word0(rv) & (0x1 << (i-32)))
2499
0
        goto odd;
2500
0
      }
2501
0
    else if (word1(rv) & 1) {
2502
0
 odd:
2503
0
      if (dsign)
2504
0
        goto rethi1;
2505
0
      goto retlow1;
2506
0
      }
2507
0
    }
2508
2509
#ifdef Honor_FLT_ROUNDS
2510
 ret1:
2511
#endif
2512
6
  return;
2513
6
  }
2514
#endif /* NO_STRTOD_BIGCOMP */
2515
2516
ZEND_API double
2517
zend_strtod
2518
#ifdef KR_headers
2519
  (s00, se) CONST char *s00; char **se;
2520
#else
2521
  (const char *s00, const char **se)
2522
#endif
2523
51
{
2524
51
  int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, e, e1;
2525
51
  int esign, i, j, k, nd, nd0, nf, nz, nz0, nz1, sign;
2526
51
  CONST char *s, *s0, *s1;
2527
51
  volatile double aadj, aadj1;
2528
51
  Long L;
2529
51
  U aadj2, adj, rv, rv0;
2530
51
  ULong y, z;
2531
51
  BCinfo bc;
2532
51
  Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
2533
51
#ifdef Avoid_Underflow
2534
51
  ULong Lsb, Lsb1;
2535
51
#endif
2536
#ifdef SET_INEXACT
2537
  int oldinexact;
2538
#endif
2539
51
#ifndef NO_STRTOD_BIGCOMP
2540
51
  int req_bigcomp = 0;
2541
51
#endif
2542
#ifdef Honor_FLT_ROUNDS /*{*/
2543
#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
2544
  bc.rounding = Flt_Rounds;
2545
#else /*}{*/
2546
  bc.rounding = 1;
2547
  switch(fegetround()) {
2548
    case FE_TOWARDZERO: bc.rounding = 0; break;
2549
    case FE_UPWARD: bc.rounding = 2; break;
2550
    case FE_DOWNWARD: bc.rounding = 3;
2551
    }
2552
#endif /*}}*/
2553
#endif /*}*/
2554
#ifdef USE_LOCALE
2555
  CONST char *s2;
2556
#endif
2557
2558
51
  sign = nz0 = nz1 = nz = bc.dplen = bc.uflchk = 0;
2559
51
  dval(&rv) = 0.;
2560
51
  for(s = s00;;s++) switch(*s) {
2561
0
    case '-':
2562
0
      sign = 1;
2563
0
      ZEND_FALLTHROUGH;
2564
0
    case '+':
2565
0
      if (*++s)
2566
0
        goto break2;
2567
0
      ZEND_FALLTHROUGH;
2568
0
    case 0:
2569
0
      goto ret0;
2570
0
    case '\t':
2571
0
    case '\n':
2572
0
    case '\v':
2573
0
    case '\f':
2574
0
    case '\r':
2575
0
    case ' ':
2576
0
      continue;
2577
51
    default:
2578
51
      goto break2;
2579
51
    }
2580
51
 break2:
2581
51
  if (*s == '0') {
2582
#ifndef NO_HEX_FP /*{*/
2583
    switch(s[1]) {
2584
      case 'x':
2585
      case 'X':
2586
#ifdef Honor_FLT_ROUNDS
2587
      gethex(&s, &rv, bc.rounding, sign);
2588
#else
2589
      gethex(&s, &rv, 1, sign);
2590
#endif
2591
      goto ret;
2592
      }
2593
#endif /*}*/
2594
3
    nz0 = 1;
2595
3
    while(*++s == '0') ;
2596
3
    if (!*s)
2597
0
      goto ret;
2598
3
    }
2599
51
  s0 = s;
2600
51
  y = z = 0;
2601
2.16k
  for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
2602
2.11k
    if (nd < 9)
2603
316
      y = 10*y + c - '0';
2604
1.80k
    else if (nd < DBL_DIG + 2)
2605
259
      z = 10*z + c - '0';
2606
51
  nd0 = nd;
2607
51
  bc.dp0 = bc.dp1 = s - s0;
2608
56
  for(s1 = s; s1 > s0 && *--s1 == '0'; )
2609
5
    ++nz1;
2610
#ifdef USE_LOCALE
2611
  s1 = localeconv()->decimal_point;
2612
  if (c == *s1) {
2613
    c = '.';
2614
    if (*++s1) {
2615
      s2 = s;
2616
      for(;;) {
2617
        if (*++s2 != *s1) {
2618
          c = 0;
2619
          break;
2620
          }
2621
        if (!*++s1) {
2622
          s = s2;
2623
          break;
2624
          }
2625
        }
2626
      }
2627
    }
2628
#endif
2629
51
  if (c == '.') {
2630
19
    c = *++s;
2631
19
    bc.dp1 = s - s0;
2632
19
    bc.dplen = bc.dp1 - bc.dp0;
2633
19
    if (!nd) {
2634
17
      for(; c == '0'; c = *++s)
2635
4
        nz++;
2636
13
      if (c > '0' && c <= '9') {
2637
13
        bc.dp0 = s0 - s;
2638
13
        bc.dp1 = bc.dp0 + bc.dplen;
2639
13
        s0 = s;
2640
13
        nf += nz;
2641
13
        nz = 0;
2642
13
        goto have_dig;
2643
13
        }
2644
0
      goto dig_done;
2645
13
      }
2646
64
    for(; c >= '0' && c <= '9'; c = *++s) {
2647
58
 have_dig:
2648
58
      nz++;
2649
58
      if (c -= '0') {
2650
27
        nf += nz;
2651
28
        for(i = 1; i < nz; i++)
2652
1
          if (nd++ < 9)
2653
1
            y *= 10;
2654
0
          else if (nd <= DBL_DIG + 2)
2655
0
            z *= 10;
2656
27
        if (nd++ < 9)
2657
17
          y = 10*y + c;
2658
10
        else if (nd <= DBL_DIG + 2)
2659
9
          z = 10*z + c;
2660
27
        nz = nz1 = 0;
2661
27
        }
2662
58
      }
2663
6
    }
2664
51
 dig_done:
2665
51
  if (nd < 0) {
2666
    /* overflow */
2667
0
    nd = DBL_DIG + 2;
2668
0
  }
2669
51
  if (nf < 0) {
2670
    /* overflow */
2671
0
    nf = DBL_DIG + 2;
2672
0
  }
2673
51
  e = 0;
2674
51
  if (c == 'e' || c == 'E') {
2675
2
    if (!nd && !nz && !nz0) {
2676
0
      goto ret0;
2677
0
      }
2678
2
    s00 = s;
2679
2
    esign = 0;
2680
2
    switch(c = *++s) {
2681
0
      case '-':
2682
0
        esign = 1;
2683
0
        ZEND_FALLTHROUGH;
2684
2
      case '+':
2685
2
        c = *++s;
2686
2
      }
2687
2
    if (c >= '0' && c <= '9') {
2688
2
      while(c == '0')
2689
0
        c = *++s;
2690
2
      if (c > '0' && c <= '9') {
2691
2
        L = c - '0';
2692
2
        s1 = s;
2693
4
        while((c = *++s) >= '0' && c <= '9')
2694
2
          L = (Long) (10*(ULong)L + (c - '0'));
2695
2
        if (s - s1 > 8 || L > 19999)
2696
          /* Avoid confusion from exponents
2697
           * so large that e might overflow.
2698
           */
2699
0
          e = 19999; /* safe for 16 bit ints */
2700
2
        else
2701
2
          e = (int)L;
2702
2
        if (esign)
2703
0
          e = -e;
2704
2
        }
2705
0
      else
2706
0
        e = 0;
2707
2
      }
2708
0
    else
2709
0
      s = s00;
2710
2
    }
2711
51
  if (!nd) {
2712
0
    if (!nz && !nz0) {
2713
#ifdef INFNAN_CHECK
2714
      /* Check for Nan and Infinity */
2715
      if (!bc.dplen)
2716
       switch(c) {
2717
        case 'i':
2718
        case 'I':
2719
        if (match(&s,"nf")) {
2720
          --s;
2721
          if (!match(&s,"inity"))
2722
            ++s;
2723
          word0(&rv) = 0x7ff00000;
2724
          word1(&rv) = 0;
2725
          goto ret;
2726
          }
2727
        break;
2728
        case 'n':
2729
        case 'N':
2730
        if (match(&s, "an")) {
2731
          word0(&rv) = NAN_WORD0;
2732
          word1(&rv) = NAN_WORD1;
2733
#ifndef No_Hex_NaN
2734
          if (*s == '(') /*)*/
2735
            hexnan(&rv, &s);
2736
#endif
2737
          goto ret;
2738
          }
2739
        }
2740
#endif /* INFNAN_CHECK */
2741
0
 ret0:
2742
0
      s = s00;
2743
0
      sign = 0;
2744
0
      }
2745
0
    goto ret;
2746
0
    }
2747
51
  bc.e0 = e1 = e -= nf;
2748
2749
  /* Now we have nd0 digits, starting at s0, followed by a
2750
   * decimal point, followed by nd-nd0 digits.  The number we're
2751
   * after is the integer represented by those digits times
2752
   * 10**e */
2753
2754
51
  if (!nd0)
2755
13
    nd0 = nd;
2756
51
  k = nd < DBL_DIG + 2 ? nd : DBL_DIG + 2;
2757
51
  dval(&rv) = y;
2758
51
  if (k > 9) {
2759
#ifdef SET_INEXACT
2760
    if (k > DBL_DIG)
2761
      oldinexact = get_inexact();
2762
#endif
2763
34
    dval(&rv) = tens[k - 9] * dval(&rv) + z;
2764
34
    }
2765
51
  bd0 = 0;
2766
51
  if (nd <= DBL_DIG
2767
18
#ifndef RND_PRODQUOT
2768
18
#ifndef Honor_FLT_ROUNDS
2769
18
    && Flt_Rounds == 1
2770
51
#endif
2771
51
#endif
2772
51
      ) {
2773
18
    if (!e)
2774
0
      goto ret;
2775
18
#ifndef ROUND_BIASED_without_Round_Up
2776
18
    if (e > 0) {
2777
2
      if (e <= Ten_pmax) {
2778
#ifdef VAX
2779
        goto vax_ovfl_check;
2780
#else
2781
#ifdef Honor_FLT_ROUNDS
2782
        /* round correctly FLT_ROUNDS = 2 or 3 */
2783
        if (sign) {
2784
          rv.d = -rv.d;
2785
          sign = 0;
2786
          }
2787
#endif
2788
2
        /* rv = */ rounded_product(dval(&rv), tens[e]);
2789
2
        goto ret;
2790
2
#endif
2791
2
        }
2792
0
      i = DBL_DIG - nd;
2793
0
      if (e <= Ten_pmax + i) {
2794
        /* A fancier test would sometimes let us do
2795
         * this for larger i values.
2796
         */
2797
#ifdef Honor_FLT_ROUNDS
2798
        /* round correctly FLT_ROUNDS = 2 or 3 */
2799
        if (sign) {
2800
          rv.d = -rv.d;
2801
          sign = 0;
2802
          }
2803
#endif
2804
0
        e -= i;
2805
0
        dval(&rv) *= tens[i];
2806
#ifdef VAX
2807
        /* VAX exponent range is so narrow we must
2808
         * worry about overflow here...
2809
         */
2810
 vax_ovfl_check:
2811
        word0(&rv) -= P*Exp_msk1;
2812
        /* rv = */ rounded_product(dval(&rv), tens[e]);
2813
        if ((word0(&rv) & Exp_mask)
2814
         > Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
2815
          goto ovfl;
2816
        word0(&rv) += P*Exp_msk1;
2817
#else
2818
0
        /* rv = */ rounded_product(dval(&rv), tens[e]);
2819
0
#endif
2820
0
        goto ret;
2821
0
        }
2822
0
      }
2823
16
#ifndef Inaccurate_Divide
2824
16
    else if (e >= -Ten_pmax) {
2825
#ifdef Honor_FLT_ROUNDS
2826
      /* round correctly FLT_ROUNDS = 2 or 3 */
2827
      if (sign) {
2828
        rv.d = -rv.d;
2829
        sign = 0;
2830
        }
2831
#endif
2832
16
      /* rv = */ rounded_quotient(dval(&rv), tens[-e]);
2833
16
      goto ret;
2834
16
      }
2835
18
#endif
2836
18
#endif /* ROUND_BIASED_without_Round_Up */
2837
18
    }
2838
33
  e1 += nd - k;
2839
2840
33
#ifdef IEEE_Arith
2841
#ifdef SET_INEXACT
2842
  bc.inexact = 1;
2843
  if (k <= DBL_DIG)
2844
    oldinexact = get_inexact();
2845
#endif
2846
33
#ifdef Avoid_Underflow
2847
33
  bc.scale = 0;
2848
33
#endif
2849
#ifdef Honor_FLT_ROUNDS
2850
  if (bc.rounding >= 2) {
2851
    if (sign)
2852
      bc.rounding = bc.rounding == 2 ? 0 : 2;
2853
    else
2854
      if (bc.rounding != 2)
2855
        bc.rounding = 0;
2856
    }
2857
#endif
2858
33
#endif /*IEEE_Arith*/
2859
2860
  /* Get starting approximation = rv * 10**e1 */
2861
2862
33
  if (e1 > 0) {
2863
32
    if ((i = e1 & 15))
2864
30
      dval(&rv) *= tens[i];
2865
32
    if (e1 &= ~15) {
2866
20
      if (e1 > DBL_MAX_10_EXP) {
2867
0
 ovfl:
2868
        /* Can't trust HUGE_VAL */
2869
0
#ifdef IEEE_Arith
2870
#ifdef Honor_FLT_ROUNDS
2871
        switch(bc.rounding) {
2872
          case 0: /* toward 0 */
2873
          case 3: /* toward -infinity */
2874
          word0(&rv) = Big0;
2875
          word1(&rv) = Big1;
2876
          break;
2877
          default:
2878
          word0(&rv) = Exp_mask;
2879
          word1(&rv) = 0;
2880
          }
2881
#else /*Honor_FLT_ROUNDS*/
2882
0
        word0(&rv) = Exp_mask;
2883
0
        word1(&rv) = 0;
2884
0
#endif /*Honor_FLT_ROUNDS*/
2885
#ifdef SET_INEXACT
2886
        /* set overflow bit */
2887
        dval(&rv0) = 1e300;
2888
        dval(&rv0) *= dval(&rv0);
2889
#endif
2890
#else /*IEEE_Arith*/
2891
        word0(&rv) = Big0;
2892
        word1(&rv) = Big1;
2893
#endif /*IEEE_Arith*/
2894
0
 range_err:
2895
0
        if (bd0) {
2896
0
          Bfree(bb);
2897
0
          Bfree(bd);
2898
0
          Bfree(bs);
2899
0
          Bfree(bd0);
2900
0
          Bfree(delta);
2901
0
          }
2902
#ifndef NO_ERRNO
2903
        errno = ERANGE;
2904
#endif
2905
0
        goto ret;
2906
0
        }
2907
20
      e1 >>= 4;
2908
48
      for(j = 0; e1 > 1; j++, e1 >>= 1)
2909
28
        if (e1 & 1)
2910
4
          dval(&rv) *= bigtens[j];
2911
    /* The last multiplication could overflow. */
2912
20
      word0(&rv) -= P*Exp_msk1;
2913
20
      dval(&rv) *= bigtens[j];
2914
20
      if ((z = word0(&rv) & Exp_mask)
2915
20
       > Exp_msk1*(DBL_MAX_EXP+Bias-P))
2916
0
        goto ovfl;
2917
20
      if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
2918
        /* set to largest number */
2919
        /* (Can't trust DBL_MAX) */
2920
0
        word0(&rv) = Big0;
2921
0
        word1(&rv) = Big1;
2922
0
        }
2923
20
      else
2924
20
        word0(&rv) += P*Exp_msk1;
2925
20
      }
2926
32
    }
2927
1
  else if (e1 < 0) {
2928
1
    e1 = -e1;
2929
1
    if ((i = e1 & 15))
2930
1
      dval(&rv) /= tens[i];
2931
1
    if (e1 >>= 4) {
2932
0
      if (e1 >= 1 << n_bigtens)
2933
0
        goto undfl;
2934
0
#ifdef Avoid_Underflow
2935
0
      if (e1 & Scale_Bit)
2936
0
        bc.scale = 2*P;
2937
0
      for(j = 0; e1 > 0; j++, e1 >>= 1)
2938
0
        if (e1 & 1)
2939
0
          dval(&rv) *= tinytens[j];
2940
0
      if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask)
2941
0
            >> Exp_shift)) > 0) {
2942
        /* scaled rv is denormal; clear j low bits */
2943
0
        if (j >= 32) {
2944
0
          if (j > 54)
2945
0
            goto undfl;
2946
0
          word1(&rv) = 0;
2947
0
          if (j >= 53)
2948
0
           word0(&rv) = (P+2)*Exp_msk1;
2949
0
          else
2950
0
           word0(&rv) &= 0xffffffff << (j-32);
2951
0
          }
2952
0
        else
2953
0
          word1(&rv) &= 0xffffffff << j;
2954
0
        }
2955
#else
2956
      for(j = 0; e1 > 1; j++, e1 >>= 1)
2957
        if (e1 & 1)
2958
          dval(&rv) *= tinytens[j];
2959
      /* The last multiplication could underflow. */
2960
      dval(&rv0) = dval(&rv);
2961
      dval(&rv) *= tinytens[j];
2962
      if (!dval(&rv)) {
2963
        dval(&rv) = 2.*dval(&rv0);
2964
        dval(&rv) *= tinytens[j];
2965
#endif
2966
0
        if (!dval(&rv)) {
2967
0
 undfl:
2968
0
          dval(&rv) = 0.;
2969
0
          goto range_err;
2970
0
          }
2971
#ifndef Avoid_Underflow
2972
        word0(&rv) = Tiny0;
2973
        word1(&rv) = Tiny1;
2974
        /* The refinement below will clean
2975
         * this approximation up.
2976
         */
2977
        }
2978
#endif
2979
0
      }
2980
1
    }
2981
2982
  /* Now the hard part -- adjusting rv to the correct value.*/
2983
2984
  /* Put digits into bd: true value = bd * 10^e */
2985
2986
33
  bc.nd = nd - nz1;
2987
33
#ifndef NO_STRTOD_BIGCOMP
2988
33
  bc.nd0 = nd0; /* Only needed if nd > strtod_diglim, but done here */
2989
      /* to silence an erroneous warning about bc.nd0 */
2990
      /* possibly not being initialized. */
2991
33
  if (nd > strtod_diglim) {
2992
    /* ASSERT(strtod_diglim >= 18); 18 == one more than the */
2993
    /* minimum number of decimal digits to distinguish double values */
2994
    /* in IEEE arithmetic. */
2995
16
    i = j = 18;
2996
16
    if (i > nd0)
2997
0
      j += bc.dplen;
2998
16
    for(;;) {
2999
16
      if (--j < bc.dp1 && j >= bc.dp0)
3000
0
        j = bc.dp0 - 1;
3001
16
      if (s0[j] != '0')
3002
16
        break;
3003
0
      --i;
3004
0
      }
3005
16
    e += nd - i;
3006
16
    nd = i;
3007
16
    if (nd0 > nd)
3008
16
      nd0 = nd;
3009
16
    if (nd < 9) { /* must recompute y */
3010
0
      y = 0;
3011
0
      for(i = 0; i < nd0; ++i)
3012
0
        y = 10*y + s0[i] - '0';
3013
0
      for(j = bc.dp1; i < nd; ++i)
3014
0
        y = 10*y + s0[j++] - '0';
3015
0
      }
3016
16
    }
3017
33
#endif
3018
33
  bd0 = s2b(s0, nd0, nd, y, bc.dplen);
3019
3020
45
  for(;;) {
3021
45
    bd = Balloc(bd0->k);
3022
45
    Bcopy(bd, bd0);
3023
45
    bb = d2b(&rv, &bbe, &bbbits); /* rv = bb * 2^bbe */
3024
45
    bs = i2b(1);
3025
3026
45
    if (e >= 0) {
3027
44
      bb2 = bb5 = 0;
3028
44
      bd2 = bd5 = e;
3029
44
      }
3030
1
    else {
3031
1
      bb2 = bb5 = -e;
3032
1
      bd2 = bd5 = 0;
3033
1
      }
3034
45
    if (bbe >= 0)
3035
44
      bb2 += bbe;
3036
1
    else
3037
1
      bd2 -= bbe;
3038
45
    bs2 = bb2;
3039
#ifdef Honor_FLT_ROUNDS
3040
    if (bc.rounding != 1)
3041
      bs2++;
3042
#endif
3043
45
#ifdef Avoid_Underflow
3044
45
    Lsb = LSB;
3045
45
    Lsb1 = 0;
3046
45
    j = bbe - bc.scale;
3047
45
    i = j + bbbits - 1; /* logb(rv) */
3048
45
    j = P + 1 - bbbits;
3049
45
    if (i < Emin) { /* denormal */
3050
0
      i = Emin - i;
3051
0
      j -= i;
3052
0
      if (i < 32)
3053
0
        Lsb <<= i;
3054
0
      else if (i < 52)
3055
0
        Lsb1 = Lsb << (i-32);
3056
0
      else
3057
0
        Lsb1 = Exp_mask;
3058
0
      }
3059
#else /*Avoid_Underflow*/
3060
#ifdef Sudden_Underflow
3061
#ifdef IBM
3062
    j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
3063
#else
3064
    j = P + 1 - bbbits;
3065
#endif
3066
#else /*Sudden_Underflow*/
3067
    j = bbe;
3068
    i = j + bbbits - 1; /* logb(rv) */
3069
    if (i < Emin) /* denormal */
3070
      j += P - Emin;
3071
    else
3072
      j = P + 1 - bbbits;
3073
#endif /*Sudden_Underflow*/
3074
#endif /*Avoid_Underflow*/
3075
45
    bb2 += j;
3076
45
    bd2 += j;
3077
45
#ifdef Avoid_Underflow
3078
45
    bd2 += bc.scale;
3079
45
#endif
3080
45
    i = bb2 < bd2 ? bb2 : bd2;
3081
45
    if (i > bs2)
3082
1
      i = bs2;
3083
45
    if (i > 0) {
3084
45
      bb2 -= i;
3085
45
      bd2 -= i;
3086
45
      bs2 -= i;
3087
45
      }
3088
45
    if (bb5 > 0) {
3089
1
      bs = pow5mult(bs, bb5);
3090
1
      bb1 = mult(bs, bb);
3091
1
      Bfree(bb);
3092
1
      bb = bb1;
3093
1
      }
3094
45
    if (bb2 > 0)
3095
45
      bb = lshift(bb, bb2);
3096
45
    if (bd5 > 0)
3097
28
      bd = pow5mult(bd, bd5);
3098
45
    if (bd2 > 0)
3099
1
      bd = lshift(bd, bd2);
3100
45
    if (bs2 > 0)
3101
44
      bs = lshift(bs, bs2);
3102
45
    delta = diff(bb, bd);
3103
45
    bc.dsign = delta->sign;
3104
45
    delta->sign = 0;
3105
45
    i = cmp(delta, bs);
3106
45
#ifndef NO_STRTOD_BIGCOMP /*{*/
3107
45
    if (bc.nd > nd && i <= 0) {
3108
16
      if (bc.dsign) {
3109
        /* Must use bigcomp(). */
3110
6
        req_bigcomp = 1;
3111
6
        break;
3112
6
        }
3113
#ifdef Honor_FLT_ROUNDS
3114
      if (bc.rounding != 1) {
3115
        if (i < 0) {
3116
          req_bigcomp = 1;
3117
          break;
3118
          }
3119
        }
3120
      else
3121
#endif
3122
10
        i = -1; /* Discarded digits make delta smaller. */
3123
10
      }
3124
39
#endif /*}*/
3125
#ifdef Honor_FLT_ROUNDS /*{*/
3126
    if (bc.rounding != 1) {
3127
      if (i < 0) {
3128
        /* Error is less than an ulp */
3129
        if (!delta->x[0] && delta->wds <= 1) {
3130
          /* exact */
3131
#ifdef SET_INEXACT
3132
          bc.inexact = 0;
3133
#endif
3134
          break;
3135
          }
3136
        if (bc.rounding) {
3137
          if (bc.dsign) {
3138
            adj.d = 1.;
3139
            goto apply_adj;
3140
            }
3141
          }
3142
        else if (!bc.dsign) {
3143
          adj.d = -1.;
3144
          if (!word1(&rv)
3145
           && !(word0(&rv) & Frac_mask)) {
3146
            y = word0(&rv) & Exp_mask;
3147
#ifdef Avoid_Underflow
3148
            if (!bc.scale || y > 2*P*Exp_msk1)
3149
#else
3150
            if (y)
3151
#endif
3152
              {
3153
              delta = lshift(delta,Log2P);
3154
              if (cmp(delta, bs) <= 0)
3155
              adj.d = -0.5;
3156
              }
3157
            }
3158
 apply_adj:
3159
#ifdef Avoid_Underflow /*{*/
3160
          if (bc.scale && (y = word0(&rv) & Exp_mask)
3161
            <= 2*P*Exp_msk1)
3162
            word0(&adj) += (2*P+1)*Exp_msk1 - y;
3163
#else
3164
#ifdef Sudden_Underflow
3165
          if ((word0(&rv) & Exp_mask) <=
3166
              P*Exp_msk1) {
3167
            word0(&rv) += P*Exp_msk1;
3168
            dval(&rv) += adj.d*ulp(dval(&rv));
3169
            word0(&rv) -= P*Exp_msk1;
3170
            }
3171
          else
3172
#endif /*Sudden_Underflow*/
3173
#endif /*Avoid_Underflow}*/
3174
          dval(&rv) += adj.d*ulp(&rv);
3175
          }
3176
        break;
3177
        }
3178
      adj.d = ratio(delta, bs);
3179
      if (adj.d < 1.)
3180
        adj.d = 1.;
3181
      if (adj.d <= 0x7ffffffe) {
3182
        /* adj = rounding ? ceil(adj) : floor(adj); */
3183
        y = adj.d;
3184
        if (y != adj.d) {
3185
          if (!((bc.rounding>>1) ^ bc.dsign))
3186
            y++;
3187
          adj.d = y;
3188
          }
3189
        }
3190
#ifdef Avoid_Underflow /*{*/
3191
      if (bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1)
3192
        word0(&adj) += (2*P+1)*Exp_msk1 - y;
3193
#else
3194
#ifdef Sudden_Underflow
3195
      if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) {
3196
        word0(&rv) += P*Exp_msk1;
3197
        adj.d *= ulp(dval(&rv));
3198
        if (bc.dsign)
3199
          dval(&rv) += adj.d;
3200
        else
3201
          dval(&rv) -= adj.d;
3202
        word0(&rv) -= P*Exp_msk1;
3203
        goto cont;
3204
        }
3205
#endif /*Sudden_Underflow*/
3206
#endif /*Avoid_Underflow}*/
3207
      adj.d *= ulp(&rv);
3208
      if (bc.dsign) {
3209
        if (word0(&rv) == Big0 && word1(&rv) == Big1)
3210
          goto ovfl;
3211
        dval(&rv) += adj.d;
3212
        }
3213
      else
3214
        dval(&rv) -= adj.d;
3215
      goto cont;
3216
      }
3217
#endif /*}Honor_FLT_ROUNDS*/
3218
3219
39
    if (i < 0) {
3220
      /* Error is less than half an ulp -- check for
3221
       * special case of mantissa a power of two.
3222
       */
3223
22
      if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask
3224
0
#ifdef IEEE_Arith /*{*/
3225
0
#ifdef Avoid_Underflow
3226
0
       || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1
3227
#else
3228
       || (word0(&rv) & Exp_mask) <= Exp_msk1
3229
#endif
3230
22
#endif /*}*/
3231
22
        ) {
3232
#ifdef SET_INEXACT
3233
        if (!delta->x[0] && delta->wds <= 1)
3234
          bc.inexact = 0;
3235
#endif
3236
22
        break;
3237
22
        }
3238
0
      if (!delta->x[0] && delta->wds <= 1) {
3239
        /* exact result */
3240
#ifdef SET_INEXACT
3241
        bc.inexact = 0;
3242
#endif
3243
0
        break;
3244
0
        }
3245
0
      delta = lshift(delta,Log2P);
3246
0
      if (cmp(delta, bs) > 0)
3247
0
        goto drop_down;
3248
0
      break;
3249
0
      }
3250
17
    if (i == 0) {
3251
      /* exactly half-way between */
3252
0
      if (bc.dsign) {
3253
0
        if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
3254
0
         &&  word1(&rv) == (
3255
0
#ifdef Avoid_Underflow
3256
0
      (bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1)
3257
0
    ? (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
3258
0
#endif
3259
0
               0xffffffff)) {
3260
          /*boundary case -- increment exponent*/
3261
0
          if (word0(&rv) == Big0 && word1(&rv) == Big1)
3262
0
            goto ovfl;
3263
0
          word0(&rv) = (word0(&rv) & Exp_mask)
3264
0
            + Exp_msk1
3265
#ifdef IBM
3266
            | Exp_msk1 >> 4
3267
#endif
3268
0
            ;
3269
0
          word1(&rv) = 0;
3270
0
#ifdef Avoid_Underflow
3271
0
          bc.dsign = 0;
3272
0
#endif
3273
0
          break;
3274
0
          }
3275
0
        }
3276
0
      else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) {
3277
0
 drop_down:
3278
        /* boundary case -- decrement exponent */
3279
#ifdef Sudden_Underflow /*{{*/
3280
        L = word0(&rv) & Exp_mask;
3281
#ifdef IBM
3282
        if (L <  Exp_msk1)
3283
#else
3284
#ifdef Avoid_Underflow
3285
        if (L <= (bc.scale ? (2*P+1)*Exp_msk1 : Exp_msk1))
3286
#else
3287
        if (L <= Exp_msk1)
3288
#endif /*Avoid_Underflow*/
3289
#endif /*IBM*/
3290
          {
3291
          if (bc.nd >nd) {
3292
            bc.uflchk = 1;
3293
            break;
3294
            }
3295
          goto undfl;
3296
          }
3297
        L -= Exp_msk1;
3298
#else /*Sudden_Underflow}{*/
3299
0
#ifdef Avoid_Underflow
3300
0
        if (bc.scale) {
3301
0
          L = word0(&rv) & Exp_mask;
3302
0
          if (L <= (2*P+1)*Exp_msk1) {
3303
0
            if (L > (P+2)*Exp_msk1)
3304
              /* round even ==> */
3305
              /* accept rv */
3306
0
              break;
3307
            /* rv = smallest denormal */
3308
0
            if (bc.nd >nd) {
3309
0
              bc.uflchk = 1;
3310
0
              break;
3311
0
              }
3312
0
            goto undfl;
3313
0
            }
3314
0
          }
3315
0
#endif /*Avoid_Underflow*/
3316
0
        L = (word0(&rv) & Exp_mask) - Exp_msk1;
3317
0
#endif /*Sudden_Underflow}}*/
3318
0
        word0(&rv) = L | Bndry_mask1;
3319
0
        word1(&rv) = 0xffffffff;
3320
#ifdef IBM
3321
        goto cont;
3322
#else
3323
0
#ifndef NO_STRTOD_BIGCOMP
3324
0
        if (bc.nd > nd)
3325
0
          goto cont;
3326
0
#endif
3327
0
        break;
3328
0
#endif
3329
0
        }
3330
0
#ifndef ROUND_BIASED
3331
0
#ifdef Avoid_Underflow
3332
0
      if (Lsb1) {
3333
0
        if (!(word0(&rv) & Lsb1))
3334
0
          break;
3335
0
        }
3336
0
      else if (!(word1(&rv) & Lsb))
3337
0
        break;
3338
#else
3339
      if (!(word1(&rv) & LSB))
3340
        break;
3341
#endif
3342
0
#endif
3343
0
      if (bc.dsign)
3344
0
#ifdef Avoid_Underflow
3345
0
        dval(&rv) += sulp(&rv, &bc);
3346
#else
3347
        dval(&rv) += ulp(&rv);
3348
#endif
3349
0
#ifndef ROUND_BIASED
3350
0
      else {
3351
0
#ifdef Avoid_Underflow
3352
0
        dval(&rv) -= sulp(&rv, &bc);
3353
#else
3354
        dval(&rv) -= ulp(&rv);
3355
#endif
3356
0
#ifndef Sudden_Underflow
3357
0
        if (!dval(&rv)) {
3358
0
          if (bc.nd >nd) {
3359
0
            bc.uflchk = 1;
3360
0
            break;
3361
0
            }
3362
0
          goto undfl;
3363
0
          }
3364
0
#endif
3365
0
        }
3366
0
#ifdef Avoid_Underflow
3367
0
      bc.dsign = 1 - bc.dsign;
3368
0
#endif
3369
0
#endif
3370
0
      break;
3371
0
      }
3372
17
    if ((aadj = ratio(delta, bs)) <= 2.) {
3373
17
      if (bc.dsign)
3374
11
        aadj = aadj1 = 1.;
3375
6
      else if (word1(&rv) || word0(&rv) & Bndry_mask) {
3376
6
#ifndef Sudden_Underflow
3377
6
        if (word1(&rv) == Tiny1 && !word0(&rv)) {
3378
0
          if (bc.nd >nd) {
3379
0
            bc.uflchk = 1;
3380
0
            break;
3381
0
            }
3382
0
          goto undfl;
3383
0
          }
3384
6
#endif
3385
6
        aadj = 1.;
3386
6
        aadj1 = -1.;
3387
6
        }
3388
0
      else {
3389
        /* special case -- power of FLT_RADIX to be */
3390
        /* rounded down... */
3391
3392
0
        if (aadj < 2./FLT_RADIX)
3393
0
          aadj = 1./FLT_RADIX;
3394
0
        else
3395
0
          aadj *= 0.5;
3396
0
        aadj1 = -aadj;
3397
0
        }
3398
17
      }
3399
0
    else {
3400
0
      aadj *= 0.5;
3401
0
      aadj1 = bc.dsign ? aadj : -aadj;
3402
#ifdef Check_FLT_ROUNDS
3403
      switch(bc.rounding) {
3404
        case 2: /* towards +infinity */
3405
          aadj1 -= 0.5;
3406
          break;
3407
        case 0: /* towards 0 */
3408
        case 3: /* towards -infinity */
3409
          aadj1 += 0.5;
3410
        }
3411
#else
3412
0
      if (Flt_Rounds == 0)
3413
0
        aadj1 += 0.5;
3414
0
#endif /*Check_FLT_ROUNDS*/
3415
0
      }
3416
17
    y = word0(&rv) & Exp_mask;
3417
3418
    /* Check for overflow */
3419
3420
17
    if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
3421
0
      dval(&rv0) = dval(&rv);
3422
0
      word0(&rv) -= P*Exp_msk1;
3423
0
      adj.d = aadj1 * ulp(&rv);
3424
0
      dval(&rv) += adj.d;
3425
0
      if ((word0(&rv) & Exp_mask) >=
3426
0
          Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
3427
0
        if (word0(&rv0) == Big0 && word1(&rv0) == Big1)
3428
0
          goto ovfl;
3429
0
        word0(&rv) = Big0;
3430
0
        word1(&rv) = Big1;
3431
0
        goto cont;
3432
0
        }
3433
0
      else
3434
0
        word0(&rv) += P*Exp_msk1;
3435
0
      }
3436
17
    else {
3437
17
#ifdef Avoid_Underflow
3438
17
      if (bc.scale && y <= 2*P*Exp_msk1) {
3439
0
        if (aadj <= 0x7fffffff) {
3440
0
          if ((z = aadj) <= 0)
3441
0
            z = 1;
3442
0
          aadj = z;
3443
0
          aadj1 = bc.dsign ? aadj : -aadj;
3444
0
          }
3445
0
        dval(&aadj2) = aadj1;
3446
0
        word0(&aadj2) += (2*P+1)*Exp_msk1 - y;
3447
0
        aadj1 = dval(&aadj2);
3448
0
        adj.d = aadj1 * ulp(&rv);
3449
0
        dval(&rv) += adj.d;
3450
0
        if (rv.d == 0.)
3451
#ifdef NO_STRTOD_BIGCOMP
3452
          goto undfl;
3453
#else
3454
0
          {
3455
0
          req_bigcomp = 1;
3456
0
          break;
3457
0
          }
3458
0
#endif
3459
0
        }
3460
17
      else {
3461
17
        adj.d = aadj1 * ulp(&rv);
3462
17
        dval(&rv) += adj.d;
3463
17
        }
3464
#else
3465
#ifdef Sudden_Underflow
3466
      if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) {
3467
        dval(&rv0) = dval(&rv);
3468
        word0(&rv) += P*Exp_msk1;
3469
        adj.d = aadj1 * ulp(&rv);
3470
        dval(&rv) += adj.d;
3471
#ifdef IBM
3472
        if ((word0(&rv) & Exp_mask) <  P*Exp_msk1)
3473
#else
3474
        if ((word0(&rv) & Exp_mask) <= P*Exp_msk1)
3475
#endif
3476
          {
3477
          if (word0(&rv0) == Tiny0
3478
           && word1(&rv0) == Tiny1) {
3479
            if (bc.nd >nd) {
3480
              bc.uflchk = 1;
3481
              break;
3482
              }
3483
            goto undfl;
3484
            }
3485
          word0(&rv) = Tiny0;
3486
          word1(&rv) = Tiny1;
3487
          goto cont;
3488
          }
3489
        else
3490
          word0(&rv) -= P*Exp_msk1;
3491
        }
3492
      else {
3493
        adj.d = aadj1 * ulp(&rv);
3494
        dval(&rv) += adj.d;
3495
        }
3496
#else /*Sudden_Underflow*/
3497
      /* Compute adj so that the IEEE rounding rules will
3498
       * correctly round rv + adj in some half-way cases.
3499
       * If rv * ulp(rv) is denormalized (i.e.,
3500
       * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
3501
       * trouble from bits lost to denormalization;
3502
       * example: 1.2e-307 .
3503
       */
3504
      if (y <= (P-1)*Exp_msk1 && aadj > 1.) {
3505
        aadj1 = (double)(int)(aadj + 0.5);
3506
        if (!bc.dsign)
3507
          aadj1 = -aadj1;
3508
        }
3509
      adj.d = aadj1 * ulp(&rv);
3510
      dval(&rv) += adj.d;
3511
#endif /*Sudden_Underflow*/
3512
#endif /*Avoid_Underflow*/
3513
17
      }
3514
17
    z = word0(&rv) & Exp_mask;
3515
17
#ifndef SET_INEXACT
3516
17
    if (bc.nd == nd) {
3517
5
#ifdef Avoid_Underflow
3518
5
    if (!bc.scale)
3519
5
#endif
3520
5
    if (y == z) {
3521
      /* Can we stop now? */
3522
5
      L = (Long)aadj;
3523
5
      aadj -= L;
3524
      /* The tolerances below are conservative. */
3525
5
      if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
3526
5
        if (aadj < .4999999 || aadj > .5000001)
3527
5
          break;
3528
5
        }
3529
0
      else if (aadj < .4999999/FLT_RADIX)
3530
0
        break;
3531
5
      }
3532
5
    }
3533
12
#endif
3534
12
 cont:
3535
12
    Bfree(bb);
3536
12
    Bfree(bd);
3537
12
    Bfree(bs);
3538
12
    Bfree(delta);
3539
12
    }
3540
33
  Bfree(bb);
3541
33
  Bfree(bd);
3542
33
  Bfree(bs);
3543
33
  Bfree(bd0);
3544
33
  Bfree(delta);
3545
33
#ifndef NO_STRTOD_BIGCOMP
3546
33
  if (req_bigcomp) {
3547
6
    bd0 = 0;
3548
6
    bc.e0 += nz1;
3549
6
    bigcomp(&rv, s0, &bc);
3550
6
    y = word0(&rv) & Exp_mask;
3551
6
    if (y == Exp_mask)
3552
0
      goto ovfl;
3553
6
    if (y == 0 && rv.d == 0.)
3554
0
      goto undfl;
3555
6
    }
3556
33
#endif
3557
#ifdef SET_INEXACT
3558
  if (bc.inexact) {
3559
    if (!oldinexact) {
3560
      word0(&rv0) = Exp_1 + (70 << Exp_shift);
3561
      word1(&rv0) = 0;
3562
      dval(&rv0) += 1.;
3563
      }
3564
    }
3565
  else if (!oldinexact)
3566
    clear_inexact();
3567
#endif
3568
33
#ifdef Avoid_Underflow
3569
33
  if (bc.scale) {
3570
0
    word0(&rv0) = Exp_1 - 2*P*Exp_msk1;
3571
0
    word1(&rv0) = 0;
3572
0
    dval(&rv) *= dval(&rv0);
3573
#ifndef NO_ERRNO
3574
    /* try to avoid the bug of testing an 8087 register value */
3575
#ifdef IEEE_Arith
3576
    if (!(word0(&rv) & Exp_mask))
3577
#else
3578
    if (word0(&rv) == 0 && word1(&rv) == 0)
3579
#endif
3580
      errno = ERANGE;
3581
#endif
3582
0
    }
3583
33
#endif /* Avoid_Underflow */
3584
#ifdef SET_INEXACT
3585
  if (bc.inexact && !(word0(&rv) & Exp_mask)) {
3586
    /* set underflow bit */
3587
    dval(&rv0) = 1e-300;
3588
    dval(&rv0) *= dval(&rv0);
3589
    }
3590
#endif
3591
51
 ret:
3592
51
  if (se)
3593
49
    *se = (char *)s;
3594
51
  return sign ? -dval(&rv) : dval(&rv);
3595
33
  }
3596
3597
#if !defined(MULTIPLE_THREADS) && !defined(dtoa_result)
3598
 ZEND_TLS char *dtoa_result;
3599
#endif
3600
3601
 static char *
3602
#ifdef KR_headers
3603
rv_alloc(i) int i;
3604
#else
3605
rv_alloc(int i)
3606
#endif
3607
19
{
3608
3609
19
  int j, k, *r;
3610
19
  size_t rem;
3611
3612
19
  rem = sizeof(Bigint) - sizeof(ULong) - sizeof(int);
3613
3614
3615
19
  j = sizeof(ULong);
3616
19
  if (i > ((INT_MAX >> 2) + rem))
3617
0
    i = (INT_MAX >> 2) + rem;
3618
19
  for(k = 0;
3619
19
    rem + j <= (size_t)i; j <<= 1)
3620
0
      k++;
3621
3622
19
  r = (int*)Balloc(k);
3623
19
  *r = k;
3624
19
  return
3625
19
#ifndef MULTIPLE_THREADS
3626
19
  dtoa_result =
3627
19
#endif
3628
19
    (char *)(r+1);
3629
19
  }
3630
3631
 static char *
3632
#ifdef KR_headers
3633
nrv_alloc(s, rve, n) char *s, **rve; int n;
3634
#else
3635
nrv_alloc(const char *s, char **rve, int n)
3636
#endif
3637
0
{
3638
0
  char *rv, *t;
3639
3640
0
  t = rv = rv_alloc(n);
3641
0
  while((*t = *s++)) t++;
3642
0
  if (rve)
3643
0
    *rve = t;
3644
0
  return rv;
3645
0
  }
3646
3647
/* freedtoa(s) must be used to free values s returned by dtoa
3648
 * when MULTIPLE_THREADS is #defined.  It should be used in all cases,
3649
 * but for consistency with earlier versions of dtoa, it is optional
3650
 * when MULTIPLE_THREADS is not defined.
3651
 */
3652
3653
ZEND_API void
3654
#ifdef KR_headers
3655
zend_freedtoa(s) char *s;
3656
#else
3657
zend_freedtoa(char *s)
3658
#endif
3659
19
{
3660
19
  Bigint *b = (Bigint *)((int *)s - 1);
3661
19
  b->maxwds = 1 << (b->k = *(int*)b);
3662
19
  Bfree(b);
3663
19
#ifndef MULTIPLE_THREADS
3664
19
  if (s == dtoa_result)
3665
19
    dtoa_result = 0;
3666
19
#endif
3667
19
  }
3668
3669
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
3670
 *
3671
 * Inspired by "How to Print Floating-Point Numbers Accurately" by
3672
 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
3673
 *
3674
 * Modifications:
3675
 *  1. Rather than iterating, we use a simple numeric overestimate
3676
 *     to determine k = floor(log10(d)).  We scale relevant
3677
 *     quantities using O(log2(k)) rather than O(k) multiplications.
3678
 *  2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
3679
 *     try to generate digits strictly left to right.  Instead, we
3680
 *     compute with fewer bits and propagate the carry if necessary
3681
 *     when rounding the final digit up.  This is often faster.
3682
 *  3. Under the assumption that input will be rounded nearest,
3683
 *     mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
3684
 *     That is, we allow equality in stopping tests when the
3685
 *     round-nearest rule will give the same floating-point value
3686
 *     as would satisfaction of the stopping test with strict
3687
 *     inequality.
3688
 *  4. We remove common factors of powers of 2 from relevant
3689
 *     quantities.
3690
 *  5. When converting floating-point integers less than 1e16,
3691
 *     we use floating-point arithmetic rather than resorting
3692
 *     to multiple-precision integers.
3693
 *  6. When asked to produce fewer than 15 digits, we first try
3694
 *     to get by with floating-point arithmetic; we resort to
3695
 *     multiple-precision integer arithmetic only if we cannot
3696
 *     guarantee that the floating-point calculation has given
3697
 *     the correctly rounded result.  For k requested digits and
3698
 *     "uniformly" distributed input, the probability is
3699
 *     something like 10^(k-15) that we must resort to the Long
3700
 *     calculation.
3701
 */
3702
3703
ZEND_API char *zend_dtoa(double dd, int mode, int ndigits, int *decpt, bool *sign, char **rve)
3704
19
{
3705
 /* Arguments ndigits, decpt, sign are similar to those
3706
  of ecvt and fcvt; trailing zeros are suppressed from
3707
  the returned string.  If not null, *rve is set to point
3708
  to the end of the return value.  If d is +-Infinity or NaN,
3709
  then *decpt is set to 9999.
3710
3711
  mode:
3712
    0 ==> shortest string that yields d when read in
3713
      and rounded to nearest.
3714
    1 ==> like 0, but with Steele & White stopping rule;
3715
      e.g. with IEEE P754 arithmetic , mode 0 gives
3716
      1e23 whereas mode 1 gives 9.999999999999999e22.
3717
    2 ==> max(1,ndigits) significant digits.  This gives a
3718
      return value similar to that of ecvt, except
3719
      that trailing zeros are suppressed.
3720
    3 ==> through ndigits past the decimal point.  This
3721
      gives a return value similar to that from fcvt,
3722
      except that trailing zeros are suppressed, and
3723
      ndigits can be negative.
3724
    4,5 ==> similar to 2 and 3, respectively, but (in
3725
      round-nearest mode) with the tests of mode 0 to
3726
      possibly return a shorter string that rounds to d.
3727
      With IEEE arithmetic and compilation with
3728
      -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
3729
      as modes 2 and 3 when FLT_ROUNDS != 1.
3730
    6-9 ==> Debugging modes similar to mode - 4:  don't try
3731
      fast floating-point estimate (if applicable).
3732
3733
    Values of mode other than 0-9 are treated as mode 0.
3734
3735
    Sufficient space is allocated to the return value
3736
    to hold the suppressed trailing zeros.
3737
  */
3738
3739
19
  int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1,
3740
19
    j, j1 = 0, k, k0, k_check, leftright, m2, m5, s2, s5,
3741
19
    spec_case = 0, try_quick;
3742
19
  Long L;
3743
19
#ifndef Sudden_Underflow
3744
19
  int denorm;
3745
19
  ULong x;
3746
19
#endif
3747
19
  Bigint *b, *b1, *delta, *mlo, *mhi, *S;
3748
19
  U d2, eps, u;
3749
19
  double ds;
3750
19
  char *s, *s0;
3751
19
#ifndef No_leftright
3752
19
#ifdef IEEE_Arith
3753
19
  U eps1;
3754
19
#endif
3755
19
#endif
3756
#ifdef SET_INEXACT
3757
  int inexact, oldinexact;
3758
#endif
3759
#ifdef Honor_FLT_ROUNDS /*{*/
3760
  int Rounding;
3761
#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
3762
  Rounding = Flt_Rounds;
3763
#else /*}{*/
3764
  Rounding = 1;
3765
  switch(fegetround()) {
3766
    case FE_TOWARDZERO: Rounding = 0; break;
3767
    case FE_UPWARD: Rounding = 2; break;
3768
    case FE_DOWNWARD: Rounding = 3;
3769
    }
3770
#endif /*}}*/
3771
#endif /*}*/
3772
3773
19
#ifndef MULTIPLE_THREADS
3774
19
  if (dtoa_result) {
3775
0
    zend_freedtoa(dtoa_result);
3776
0
    dtoa_result = 0;
3777
0
    }
3778
19
#endif
3779
3780
19
  u.d = dd;
3781
19
  if (word0(&u) & Sign_bit) {
3782
    /* set sign for everything, including 0's and NaNs */
3783
4
    *sign = 1;
3784
4
    word0(&u) &= ~Sign_bit; /* clear sign bit */
3785
4
    }
3786
15
  else
3787
15
    *sign = 0;
3788
3789
19
#if defined(IEEE_Arith) + defined(VAX)
3790
19
#ifdef IEEE_Arith
3791
19
  if ((word0(&u) & Exp_mask) == Exp_mask)
3792
#else
3793
  if (word0(&u)  == 0x8000)
3794
#endif
3795
0
    {
3796
    /* Infinity or NaN */
3797
0
    *decpt = 9999;
3798
0
#ifdef IEEE_Arith
3799
0
    if (!word1(&u) && !(word0(&u) & 0xfffff))
3800
0
      return nrv_alloc("Infinity", rve, 8);
3801
0
#endif
3802
0
    return nrv_alloc("NaN", rve, 3);
3803
0
    }
3804
19
#endif
3805
#ifdef IBM
3806
  dval(&u) += 0; /* normalize */
3807
#endif
3808
19
  if (!dval(&u)) {
3809
0
    *decpt = 1;
3810
0
    return nrv_alloc("0", rve, 1);
3811
0
    }
3812
3813
#ifdef SET_INEXACT
3814
  try_quick = oldinexact = get_inexact();
3815
  inexact = 1;
3816
#endif
3817
#ifdef Honor_FLT_ROUNDS
3818
  if (Rounding >= 2) {
3819
    if (*sign)
3820
      Rounding = Rounding == 2 ? 0 : 2;
3821
    else
3822
      if (Rounding != 2)
3823
        Rounding = 0;
3824
    }
3825
#endif
3826
3827
19
  b = d2b(&u, &be, &bbits);
3828
#ifdef Sudden_Underflow
3829
  i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
3830
#else
3831
19
  if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
3832
19
#endif
3833
19
    dval(&d2) = dval(&u);
3834
19
    word0(&d2) &= Frac_mask1;
3835
19
    word0(&d2) |= Exp_11;
3836
#ifdef IBM
3837
    if (j = 11 - hi0bits(word0(&d2) & Frac_mask))
3838
      dval(&d2) /= 1 << j;
3839
#endif
3840
3841
    /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
3842
     * log10(x)  =  log(x) / log(10)
3843
     *    ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
3844
     * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
3845
     *
3846
     * This suggests computing an approximation k to log10(d) by
3847
     *
3848
     * k = (i - Bias)*0.301029995663981
3849
     *  + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
3850
     *
3851
     * We want k to be too large rather than too small.
3852
     * The error in the first-order Taylor series approximation
3853
     * is in our favor, so we just round up the constant enough
3854
     * to compensate for any error in the multiplication of
3855
     * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
3856
     * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
3857
     * adding 1e-13 to the constant term more than suffices.
3858
     * Hence we adjust the constant term to 0.1760912590558.
3859
     * (We could get a more accurate k by invoking log10,
3860
     *  but this is probably not worthwhile.)
3861
     */
3862
3863
19
    i -= Bias;
3864
#ifdef IBM
3865
    i <<= 2;
3866
    i += j;
3867
#endif
3868
19
#ifndef Sudden_Underflow
3869
19
    denorm = 0;
3870
19
    }
3871
0
  else {
3872
    /* d is denormalized */
3873
3874
0
    i = bbits + be + (Bias + (P-1) - 1);
3875
0
    x = i > 32  ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)
3876
0
          : word1(&u) << (32 - i);
3877
0
    dval(&d2) = x;
3878
0
    word0(&d2) -= 31*Exp_msk1; /* adjust exponent */
3879
0
    i -= (Bias + (P-1) - 1) + 1;
3880
0
    denorm = 1;
3881
0
    }
3882
19
#endif
3883
19
  ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
3884
19
  k = (int)ds;
3885
19
  if (ds < 0. && ds != k)
3886
2
    k--; /* want k = floor(ds) */
3887
19
  k_check = 1;
3888
19
  if (k >= 0 && k <= Ten_pmax) {
3889
7
    if (dval(&u) < tens[k])
3890
0
      k--;
3891
7
    k_check = 0;
3892
7
    }
3893
19
  j = bbits - i - 1;
3894
19
  if (j >= 0) {
3895
9
    b2 = 0;
3896
9
    s2 = j;
3897
9
    }
3898
10
  else {
3899
10
    b2 = -j;
3900
10
    s2 = 0;
3901
10
    }
3902
19
  if (k >= 0) {
3903
17
    b5 = 0;
3904
17
    s5 = k;
3905
17
    s2 += k;
3906
17
    }
3907
2
  else {
3908
2
    b2 -= k;
3909
2
    b5 = -k;
3910
2
    s5 = 0;
3911
2
    }
3912
19
  if (mode < 0 || mode > 9)
3913
0
    mode = 0;
3914
3915
19
#ifndef SET_INEXACT
3916
#ifdef Check_FLT_ROUNDS
3917
  try_quick = Rounding == 1;
3918
#else
3919
19
  try_quick = 1;
3920
19
#endif
3921
19
#endif /*SET_INEXACT*/
3922
3923
19
  if (mode > 5) {
3924
0
    mode -= 4;
3925
0
    try_quick = 0;
3926
0
    }
3927
19
  leftright = 1;
3928
19
  ilim = ilim1 = -1;  /* Values for cases 0 and 1; done here to */
3929
        /* silence erroneous "gcc -Wall" warning. */
3930
19
  switch(mode) {
3931
7
    case 0:
3932
7
    case 1:
3933
7
      i = 18;
3934
7
      ndigits = 0;
3935
7
      break;
3936
12
    case 2:
3937
12
      leftright = 0;
3938
12
      ZEND_FALLTHROUGH;
3939
12
    case 4:
3940
12
      if (ndigits <= 0)
3941
0
        ndigits = 1;
3942
12
      ilim = ilim1 = i = ndigits;
3943
12
      break;
3944
0
    case 3:
3945
0
      leftright = 0;
3946
0
      ZEND_FALLTHROUGH;
3947
0
    case 5:
3948
0
      i = ndigits + k + 1;
3949
0
      ilim = i;
3950
0
      ilim1 = i - 1;
3951
0
      if (i <= 0)
3952
0
        i = 1;
3953
19
    }
3954
19
  s = s0 = rv_alloc(i);
3955
3956
#ifdef Honor_FLT_ROUNDS
3957
  if (mode > 1 && Rounding != 1)
3958
    leftright = 0;
3959
#endif
3960
3961
19
  if (ilim >= 0 && ilim <= Quick_max && try_quick) {
3962
3963
    /* Try to get by with floating-point arithmetic. */
3964
3965
12
    i = 0;
3966
12
    dval(&d2) = dval(&u);
3967
12
    k0 = k;
3968
12
    ilim0 = ilim;
3969
12
    ieps = 2; /* conservative */
3970
12
    if (k > 0) {
3971
11
      ds = tens[k&0xf];
3972
11
      j = k >> 4;
3973
11
      if (j & Bletch) {
3974
        /* prevent overflows */
3975
0
        j &= Bletch - 1;
3976
0
        dval(&u) /= bigtens[n_bigtens-1];
3977
0
        ieps++;
3978
0
        }
3979
19
      for(; j; j >>= 1, i++)
3980
8
        if (j & 1) {
3981
6
          ieps++;
3982
6
          ds *= bigtens[i];
3983
6
          }
3984
11
      dval(&u) /= ds;
3985
11
      }
3986
1
    else if ((j1 = -k)) {
3987
0
      dval(&u) *= tens[j1 & 0xf];
3988
0
      for(j = j1 >> 4; j; j >>= 1, i++)
3989
0
        if (j & 1) {
3990
0
          ieps++;
3991
0
          dval(&u) *= bigtens[i];
3992
0
          }
3993
0
      }
3994
12
    if (k_check && dval(&u) < 1. && ilim > 0) {
3995
2
      if (ilim1 <= 0)
3996
0
        goto fast_failed;
3997
2
      ilim = ilim1;
3998
2
      k--;
3999
2
      dval(&u) *= 10.;
4000
2
      ieps++;
4001
2
      }
4002
12
    dval(&eps) = ieps*dval(&u) + 7.;
4003
12
    word0(&eps) -= (P-1)*Exp_msk1;
4004
12
    if (ilim == 0) {
4005
0
      S = mhi = 0;
4006
0
      dval(&u) -= 5.;
4007
0
      if (dval(&u) > dval(&eps))
4008
0
        goto one_digit;
4009
0
      if (dval(&u) < -dval(&eps))
4010
0
        goto no_digits;
4011
0
      goto fast_failed;
4012
0
      }
4013
12
#ifndef No_leftright
4014
12
    if (leftright) {
4015
      /* Use Steele & White method of only
4016
       * generating digits needed.
4017
       */
4018
0
      dval(&eps) = 0.5/tens[ilim-1] - dval(&eps);
4019
0
#ifdef IEEE_Arith
4020
0
      if (k0 < 0 && j1 >= 307) {
4021
0
        eps1.d = 1.01e256; /* 1.01 allows roundoff in the next few lines */
4022
0
        word0(&eps1) -= Exp_msk1 * (Bias+P-1);
4023
0
        dval(&eps1) *= tens[j1 & 0xf];
4024
0
        for(i = 0, j = (j1-256) >> 4; j; j >>= 1, i++)
4025
0
          if (j & 1)
4026
0
            dval(&eps1) *= bigtens[i];
4027
0
        if (eps.d < eps1.d)
4028
0
          eps.d = eps1.d;
4029
0
        }
4030
0
#endif
4031
0
      for(i = 0;;) {
4032
0
        L = dval(&u);
4033
0
        dval(&u) -= L;
4034
0
        *s++ = '0' + (int)L;
4035
0
        if (1. - dval(&u) < dval(&eps))
4036
0
          goto bump_up;
4037
0
        if (dval(&u) < dval(&eps))
4038
0
          goto ret1;
4039
0
        if (++i >= ilim)
4040
0
          break;
4041
0
        dval(&eps) *= 10.;
4042
0
        dval(&u) *= 10.;
4043
0
        }
4044
0
      }
4045
12
    else {
4046
12
#endif
4047
      /* Generate ilim digits, then fix them up. */
4048
12
      dval(&eps) *= tens[ilim-1];
4049
168
      for(i = 1;; i++, dval(&u) *= 10.) {
4050
168
        L = (Long)(dval(&u));
4051
168
        if (!(dval(&u) -= L))
4052
0
          ilim = i;
4053
168
        *s++ = '0' + (int)L;
4054
168
        if (i == ilim) {
4055
12
          if (dval(&u) > 0.5 + dval(&eps))
4056
5
            goto bump_up;
4057
7
          else if (dval(&u) < 0.5 - dval(&eps)) {
4058
6
            while(*--s == '0');
4059
1
            s++;
4060
1
            goto ret1;
4061
1
            }
4062
6
          break;
4063
12
          }
4064
168
        }
4065
12
#ifndef No_leftright
4066
12
      }
4067
6
#endif
4068
6
 fast_failed:
4069
6
    s = s0;
4070
6
    dval(&u) = dval(&d2);
4071
6
    k = k0;
4072
6
    ilim = ilim0;
4073
6
    }
4074
4075
  /* Do we have a "small" integer? */
4076
4077
13
  if (be >= 0 && k <= Int_max) {
4078
    /* Yes. */
4079
4
    ds = tens[k];
4080
4
    if (ndigits < 0 && ilim <= 0) {
4081
0
      S = mhi = 0;
4082
0
      if (ilim < 0 || dval(&u) <= 5*ds)
4083
0
        goto no_digits;
4084
0
      goto one_digit;
4085
0
      }
4086
56
    for(i = 1;; i++, dval(&u) *= 10.) {
4087
56
      L = (Long)(dval(&u) / ds);
4088
56
      dval(&u) -= L*ds;
4089
#ifdef Check_FLT_ROUNDS
4090
      /* If FLT_ROUNDS == 2, L will usually be high by 1 */
4091
      if (dval(&u) < 0) {
4092
        L--;
4093
        dval(&u) += ds;
4094
        }
4095
#endif
4096
56
      *s++ = '0' + (int)L;
4097
56
      if (!dval(&u)) {
4098
#ifdef SET_INEXACT
4099
        inexact = 0;
4100
#endif
4101
0
        break;
4102
0
        }
4103
56
      if (i == ilim) {
4104
#ifdef Honor_FLT_ROUNDS
4105
        if (mode > 1)
4106
        switch(Rounding) {
4107
          case 0: goto ret1;
4108
          case 2: goto bump_up;
4109
          }
4110
#endif
4111
4
        dval(&u) += dval(&u);
4112
#ifdef ROUND_BIASED
4113
        if (dval(&u) >= ds)
4114
#else
4115
4
        if (dval(&u) > ds || (dval(&u) == ds && L & 1))
4116
0
#endif
4117
0
          {
4118
5
 bump_up:
4119
41
          while(*--s == '9')
4120
38
            if (s == s0) {
4121
2
              k++;
4122
2
              *s = '0';
4123
2
              break;
4124
2
              }
4125
5
          ++*s++;
4126
5
          }
4127
9
        break;
4128
4
        }
4129
56
      }
4130
9
    goto ret1;
4131
4
    }
4132
4133
9
  m2 = b2;
4134
9
  m5 = b5;
4135
9
  mhi = mlo = 0;
4136
9
  if (leftright) {
4137
7
    i =
4138
7
#ifndef Sudden_Underflow
4139
7
      denorm ? be + (Bias + (P-1) - 1 + 1) :
4140
7
#endif
4141
#ifdef IBM
4142
      1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
4143
#else
4144
7
      1 + P - bbits;
4145
7
#endif
4146
7
    b2 += i;
4147
7
    s2 += i;
4148
7
    mhi = i2b(1);
4149
7
    }
4150
9
  if (m2 > 0 && s2 > 0) {
4151
8
    i = m2 < s2 ? m2 : s2;
4152
8
    b2 -= i;
4153
8
    m2 -= i;
4154
8
    s2 -= i;
4155
8
    }
4156
9
  if (b5 > 0) {
4157
2
    if (leftright) {
4158
2
      if (m5 > 0) {
4159
2
        mhi = pow5mult(mhi, m5);
4160
2
        b1 = mult(mhi, b);
4161
2
        Bfree(b);
4162
2
        b = b1;
4163
2
        }
4164
2
      if ((j = b5 - m5))
4165
0
        b = pow5mult(b, j);
4166
2
      }
4167
0
    else
4168
0
      b = pow5mult(b, b5);
4169
2
    }
4170
9
  S = i2b(1);
4171
9
  if (s5 > 0)
4172
7
    S = pow5mult(S, s5);
4173
4174
  /* Check for special case that d is a normalized power of 2. */
4175
4176
9
  spec_case = 0;
4177
9
  if ((mode < 2 || leftright)
4178
#ifdef Honor_FLT_ROUNDS
4179
      && Rounding == 1
4180
#endif
4181
9
        ) {
4182
7
    if (!word1(&u) && !(word0(&u) & Bndry_mask)
4183
0
#ifndef Sudden_Underflow
4184
0
     && word0(&u) & (Exp_mask & ~Exp_msk1)
4185
7
#endif
4186
7
        ) {
4187
      /* The special case */
4188
0
      b2 += Log2P;
4189
0
      s2 += Log2P;
4190
0
      spec_case = 1;
4191
0
      }
4192
7
    }
4193
4194
  /* Arrange for convenient computation of quotients:
4195
   * shift left if necessary so divisor has 4 leading 0 bits.
4196
   *
4197
   * Perhaps we should just compute leading 28 bits of S once
4198
   * and for all and pass them and a shift to quorem, so it
4199
   * can do shifts and ORs to compute the numerator for q.
4200
   */
4201
9
  i = dshift(S, s2);
4202
9
  b2 += i;
4203
9
  m2 += i;
4204
9
  s2 += i;
4205
9
  if (b2 > 0)
4206
9
    b = lshift(b, b2);
4207
9
  if (s2 > 0)
4208
9
    S = lshift(S, s2);
4209
9
  if (k_check) {
4210
8
    if (cmp(b,S) < 0) {
4211
4
      k--;
4212
4
      b = multadd(b, 10, 0);  /* we botched the k estimate */
4213
4
      if (leftright)
4214
4
        mhi = multadd(mhi, 10, 0);
4215
4
      ilim = ilim1;
4216
4
      }
4217
8
    }
4218
9
  if (ilim <= 0 && (mode == 3 || mode == 5)) {
4219
0
    if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
4220
      /* no digits, fcvt style */
4221
0
 no_digits:
4222
0
      k = -1 - ndigits;
4223
0
      goto ret;
4224
0
      }
4225
0
 one_digit:
4226
0
    *s++ = '1';
4227
0
    k++;
4228
0
    goto ret;
4229
0
    }
4230
9
  if (leftright) {
4231
7
    if (m2 > 0)
4232
7
      mhi = lshift(mhi, m2);
4233
4234
    /* Compute mlo -- check for special case
4235
     * that d is a normalized power of 2.
4236
     */
4237
4238
7
    mlo = mhi;
4239
7
    if (spec_case) {
4240
0
      mhi = Balloc(mhi->k);
4241
0
      Bcopy(mhi, mlo);
4242
0
      mhi = lshift(mhi, Log2P);
4243
0
      }
4244
4245
17
    for(i = 1;;i++) {
4246
17
      dig = quorem(b,S) + '0';
4247
      /* Do we yet have the shortest decimal string
4248
       * that will round to d?
4249
       */
4250
17
      j = cmp(b, mlo);
4251
17
      delta = diff(S, mhi);
4252
17
      j1 = delta->sign ? 1 : cmp(b, delta);
4253
17
      Bfree(delta);
4254
17
#ifndef ROUND_BIASED
4255
17
      if (j1 == 0 && mode != 1 && !(word1(&u) & 1)
4256
#ifdef Honor_FLT_ROUNDS
4257
        && Rounding >= 1
4258
#endif
4259
17
                   ) {
4260
0
        if (dig == '9')
4261
0
          goto round_9_up;
4262
0
        if (j > 0)
4263
0
          dig++;
4264
#ifdef SET_INEXACT
4265
        else if (!b->x[0] && b->wds <= 1)
4266
          inexact = 0;
4267
#endif
4268
0
        *s++ = dig;
4269
0
        goto ret;
4270
0
        }
4271
17
#endif
4272
17
      if (j < 0 || (j == 0 && mode != 1
4273
0
#ifndef ROUND_BIASED
4274
0
              && !(word1(&u) & 1)
4275
17
#endif
4276
17
          )) {
4277
0
        if (!b->x[0] && b->wds <= 1) {
4278
#ifdef SET_INEXACT
4279
          inexact = 0;
4280
#endif
4281
0
          goto accept_dig;
4282
0
          }
4283
#ifdef Honor_FLT_ROUNDS
4284
        if (mode > 1)
4285
         switch(Rounding) {
4286
          case 0: goto accept_dig;
4287
          case 2: goto keep_dig;
4288
          }
4289
#endif /*Honor_FLT_ROUNDS*/
4290
0
        if (j1 > 0) {
4291
0
          b = lshift(b, 1);
4292
0
          j1 = cmp(b, S);
4293
#ifdef ROUND_BIASED
4294
          if (j1 >= 0 /*)*/
4295
#else
4296
0
          if ((j1 > 0 || (j1 == 0 && dig & 1))
4297
0
#endif
4298
0
          && dig++ == '9')
4299
0
            goto round_9_up;
4300
0
          }
4301
0
 accept_dig:
4302
0
        *s++ = dig;
4303
0
        goto ret;
4304
0
        }
4305
17
      if (j1 > 0) {
4306
#ifdef Honor_FLT_ROUNDS
4307
        if (!Rounding)
4308
          goto accept_dig;
4309
#endif
4310
7
        if (dig == '9') { /* possible if i == 1 */
4311
4
 round_9_up:
4312
4
          *s++ = '9';
4313
4
          goto roundoff;
4314
4
          }
4315
3
        *s++ = dig + 1;
4316
3
        goto ret;
4317
7
        }
4318
#ifdef Honor_FLT_ROUNDS
4319
 keep_dig:
4320
#endif
4321
10
      *s++ = dig;
4322
10
      if (i == ilim)
4323
0
        break;
4324
10
      b = multadd(b, 10, 0);
4325
10
      if (mlo == mhi)
4326
10
        mlo = mhi = multadd(mhi, 10, 0);
4327
0
      else {
4328
0
        mlo = multadd(mlo, 10, 0);
4329
0
        mhi = multadd(mhi, 10, 0);
4330
0
        }
4331
10
      }
4332
7
    }
4333
2
  else
4334
28
    for(i = 1;; i++) {
4335
28
      *s++ = dig = quorem(b,S) + '0';
4336
28
      if (!b->x[0] && b->wds <= 1) {
4337
#ifdef SET_INEXACT
4338
        inexact = 0;
4339
#endif
4340
0
        goto ret;
4341
0
        }
4342
28
      if (i >= ilim)
4343
2
        break;
4344
26
      b = multadd(b, 10, 0);
4345
26
      }
4346
4347
  /* Round off last digit */
4348
4349
#ifdef Honor_FLT_ROUNDS
4350
  switch(Rounding) {
4351
    case 0: goto trimzeros;
4352
    case 2: goto roundoff;
4353
    }
4354
#endif
4355
2
  b = lshift(b, 1);
4356
2
  j = cmp(b, S);
4357
#ifdef ROUND_BIASED
4358
  if (j >= 0)
4359
#else
4360
2
  if (j > 0 || (j == 0 && dig & 1))
4361
2
#endif
4362
2
    {
4363
6
 roundoff:
4364
6
    while(*--s == '9')
4365
4
      if (s == s0) {
4366
4
        k++;
4367
4
        *s++ = '1';
4368
4
        goto ret;
4369
4
        }
4370
2
    ++*s++;
4371
2
    }
4372
0
  else {
4373
#ifdef Honor_FLT_ROUNDS
4374
 trimzeros:
4375
#endif
4376
0
    while(*--s == '0');
4377
0
    s++;
4378
0
    }
4379
9
 ret:
4380
9
  Bfree(S);
4381
9
  if (mhi) {
4382
7
    if (mlo && mlo != mhi)
4383
0
      Bfree(mlo);
4384
7
    Bfree(mhi);
4385
7
    }
4386
19
 ret1:
4387
#ifdef SET_INEXACT
4388
  if (inexact) {
4389
    if (!oldinexact) {
4390
      word0(&u) = Exp_1 + (70 << Exp_shift);
4391
      word1(&u) = 0;
4392
      dval(&u) += 1.;
4393
      }
4394
    }
4395
  else if (!oldinexact)
4396
    clear_inexact();
4397
#endif
4398
19
  Bfree(b);
4399
19
  *s = 0;
4400
19
  *decpt = k + 1;
4401
19
  if (rve)
4402
0
    *rve = s;
4403
19
  return s0;
4404
9
  }
4405
4406
ZEND_API double zend_hex_strtod(const char *str, const char **endptr)
4407
0
{
4408
0
  const char *s = str;
4409
0
  char c;
4410
0
  int any = 0;
4411
0
  double value = 0;
4412
4413
0
  if (*s == '0' && (s[1] == 'x' || s[1] == 'X')) {
4414
0
    s += 2;
4415
0
  }
4416
4417
0
  while ((c = *s++)) {
4418
0
    if (c >= '0' && c <= '9') {
4419
0
      c -= '0';
4420
0
    } else if (c >= 'A' && c <= 'F') {
4421
0
      c -= 'A' - 10;
4422
0
    } else if (c >= 'a' && c <= 'f') {
4423
0
      c -= 'a' - 10;
4424
0
    } else {
4425
0
      break;
4426
0
    }
4427
4428
0
    any = 1;
4429
0
    value = value * 16 + c;
4430
0
  }
4431
4432
0
  if (endptr != NULL) {
4433
0
    *endptr = any ? s - 1 : str;
4434
0
  }
4435
4436
0
  return value;
4437
0
}
4438
4439
ZEND_API double zend_oct_strtod(const char *str, const char **endptr)
4440
0
{
4441
0
  const char *s = str;
4442
0
  char c;
4443
0
  double value = 0;
4444
0
  int any = 0;
4445
4446
0
  if (str[0] == '\0') {
4447
0
    if (endptr != NULL) {
4448
0
      *endptr = str;
4449
0
    }
4450
0
    return 0.0;
4451
0
  }
4452
4453
0
  while ((c = *s++)) {
4454
0
    if (c < '0' || c > '7') {
4455
      /* break and return the current value if the number is not well-formed
4456
       * that's what Linux strtol() does
4457
       */
4458
0
      break;
4459
0
    }
4460
0
    value = value * 8 + c - '0';
4461
0
    any = 1;
4462
0
  }
4463
4464
0
  if (endptr != NULL) {
4465
0
    *endptr = any ? s - 1 : str;
4466
0
  }
4467
4468
0
  return value;
4469
0
}
4470
4471
ZEND_API double zend_bin_strtod(const char *str, const char **endptr)
4472
0
{
4473
0
  const char *s = str;
4474
0
  char    c;
4475
0
  double    value = 0;
4476
0
  int     any = 0;
4477
4478
0
  if ('0' == *s && ('b' == s[1] || 'B' == s[1])) {
4479
0
    s += 2;
4480
0
  }
4481
4482
0
  while ((c = *s++)) {
4483
    /*
4484
     * Verify the validity of the current character as a base-2 digit.  In
4485
     * the event that an invalid digit is found, halt the conversion and
4486
     * return the portion which has been converted thus far.
4487
     */
4488
0
    if ('0' == c || '1' == c)
4489
0
      value = value * 2 + c - '0';
4490
0
    else
4491
0
      break;
4492
4493
0
    any = 1;
4494
0
  }
4495
4496
  /*
4497
   * As with many strtoX implementations, should the subject sequence be
4498
   * empty or not well-formed, no conversion is performed and the original
4499
   * value of str is stored in *endptr, provided that endptr is not a null
4500
   * pointer.
4501
   */
4502
0
  if (NULL != endptr) {
4503
0
    *endptr = (char *)(any ? s - 1 : str);
4504
0
  }
4505
4506
0
  return value;
4507
0
}
4508
4509
ZEND_API char *zend_gcvt(double value, int ndigit, char dec_point, char exponent, char *buf)
4510
19
{
4511
19
  char *digits, *dst, *src;
4512
19
  int i, decpt;
4513
19
  bool sign;
4514
19
  int mode = ndigit >= 0 ? 2 : 0;
4515
4516
19
  if (mode == 0) {
4517
7
    ndigit = 17;
4518
7
  }
4519
19
  digits = zend_dtoa(value, mode, ndigit, &decpt, &sign, NULL);
4520
19
  if (decpt == 9999) {
4521
    /*
4522
     * Infinity or NaN, convert to inf or nan with sign.
4523
     * We assume the buffer is at least ndigit long.
4524
     */
4525
0
    snprintf(buf, ndigit + 1, "%s%s", (sign && *digits == 'I') ? "-" : "", *digits == 'I' ? "INF" : "NAN");
4526
0
    zend_freedtoa(digits);
4527
0
    return (buf);
4528
0
  }
4529
4530
19
  dst = buf;
4531
19
  if (sign) {
4532
4
    *dst++ = '-';
4533
4
  }
4534
4535
19
  if ((decpt >= 0 && decpt > ndigit) || decpt < -3) { /* use E-style */
4536
    /* exponential format (e.g. 1.2345e+13) */
4537
16
    if (--decpt < 0) {
4538
2
      sign = true;
4539
2
      decpt = -decpt;
4540
14
    } else {
4541
14
      sign = false;
4542
14
    }
4543
16
    src = digits;
4544
16
    *dst++ = *src++;
4545
16
    *dst++ = dec_point;
4546
16
    if (*src == '\0') {
4547
6
      *dst++ = '0';
4548
10
    } else {
4549
106
      do {
4550
106
        *dst++ = *src++;
4551
106
      } while (*src != '\0');
4552
10
    }
4553
16
    *dst++ = exponent;
4554
16
    if (sign) {
4555
2
      *dst++ = '-';
4556
14
    } else {
4557
14
      *dst++ = '+';
4558
14
    }
4559
16
    if (decpt < 10) {
4560
0
      *dst++ = '0' + decpt;
4561
0
      *dst = '\0';
4562
16
    } else {
4563
      /* XXX - optimize */
4564
16
      int n;
4565
36
      for (n = decpt, i = 0; (n /= 10) != 0; i++);
4566
16
      dst[i + 1] = '\0';
4567
52
      while (decpt != 0) {
4568
36
        dst[i--] = '0' + decpt % 10;
4569
36
        decpt /= 10;
4570
36
      }
4571
16
    }
4572
16
  } else if (decpt < 0) {
4573
    /* standard format 0. */
4574
0
    *dst++ = '0';   /* zero before decimal point */
4575
0
    *dst++ = dec_point;
4576
0
    do {
4577
0
      *dst++ = '0';
4578
0
    } while (++decpt < 0);
4579
0
    src = digits;
4580
0
    while (*src != '\0') {
4581
0
      *dst++ = *src++;
4582
0
    }
4583
0
    *dst = '\0';
4584
3
  } else {
4585
    /* standard format */
4586
20
    for (i = 0, src = digits; i < decpt; i++) {
4587
17
      if (*src != '\0') {
4588
17
        *dst++ = *src++;
4589
17
      } else {
4590
0
        *dst++ = '0';
4591
0
      }
4592
17
    }
4593
3
    if (*src != '\0') {
4594
3
      if (src == digits) {
4595
0
        *dst++ = '0';   /* zero before decimal point */
4596
0
      }
4597
3
      *dst++ = dec_point;
4598
8
      for (i = decpt; digits[i] != '\0'; i++) {
4599
5
        *dst++ = digits[i];
4600
5
      }
4601
3
    }
4602
3
    *dst = '\0';
4603
3
  }
4604
19
  zend_freedtoa(digits);
4605
19
  return (buf);
4606
19
}
4607
4608
static void destroy_freelist(void)
4609
0
{
4610
0
  int i;
4611
0
  Bigint *tmp;
4612
4613
0
  ACQUIRE_DTOA_LOCK(0)
4614
0
  for (i = 0; i <= Kmax; i++) {
4615
0
    Bigint **listp = &freelist[i];
4616
0
    while ((tmp = *listp) != NULL) {
4617
0
      *listp = tmp->next;
4618
0
      FREE(tmp);
4619
0
    }
4620
0
    freelist[i] = NULL;
4621
0
  }
4622
0
  FREE_DTOA_LOCK(0)
4623
0
}
4624
4625
static void free_p5s(void)
4626
0
{
4627
0
  Bigint **listp, *tmp;
4628
4629
0
  ACQUIRE_DTOA_LOCK(1)
4630
0
  listp = &p5s;
4631
0
  while ((tmp = *listp) != NULL) {
4632
0
    *listp = tmp->next;
4633
0
    FREE(tmp);
4634
0
  }
4635
0
  p5s = NULL;
4636
0
  FREE_DTOA_LOCK(1)
4637
0
}