Coverage Report

Created: 2026-01-18 06:47

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/php-src/Zend/zend_strtod.c
Line
Count
Source
1
/****************************************************************
2
 *
3
 * The author of this software is David M. Gay.
4
 *
5
 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
6
 *
7
 * Permission to use, copy, modify, and distribute this software for any
8
 * purpose without fee is hereby granted, provided that this entire notice
9
 * is included in all copies of any software which is or includes a copy
10
 * or modification of this software and in all copies of the supporting
11
 * documentation for such software.
12
 *
13
 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
14
 * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
15
 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
16
 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
17
 *
18
 ***************************************************************/
19
20
/* Please send bug reports to David M. Gay (dmg at acm dot org,
21
 * with " at " changed at "@" and " dot " changed to ".").  */
22
23
/* On a machine with IEEE extended-precision registers, it is
24
 * necessary to specify double-precision (53-bit) rounding precision
25
 * before invoking strtod or dtoa.  If the machine uses (the equivalent
26
 * of) Intel 80x87 arithmetic, the call
27
 *  _control87(PC_53, MCW_PC);
28
 * does this with many compilers.  Whether this or another call is
29
 * appropriate depends on the compiler; for this to work, it may be
30
 * necessary to #include "float.h" or another system-dependent header
31
 * file.
32
 */
33
34
/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
35
 * (Note that IEEE arithmetic is disabled by gcc's -ffast-math flag.)
36
 *
37
 * This strtod returns a nearest machine number to the input decimal
38
 * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
39
 * broken by the IEEE round-even rule.  Otherwise ties are broken by
40
 * biased rounding (add half and chop).
41
 *
42
 * Inspired loosely by William D. Clinger's paper "How to Read Floating
43
 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
44
 *
45
 * Modifications:
46
 *
47
 *  1. We only require IEEE, IBM, or VAX double-precision
48
 *    arithmetic (not IEEE double-extended).
49
 *  2. We get by with floating-point arithmetic in a case that
50
 *    Clinger missed -- when we're computing d * 10^n
51
 *    for a small integer d and the integer n is not too
52
 *    much larger than 22 (the maximum integer k for which
53
 *    we can represent 10^k exactly), we may be able to
54
 *    compute (d*10^k) * 10^(e-k) with just one roundoff.
55
 *  3. Rather than a bit-at-a-time adjustment of the binary
56
 *    result in the hard case, we use floating-point
57
 *    arithmetic to determine the adjustment to within
58
 *    one bit; only in really hard cases do we need to
59
 *    compute a second residual.
60
 *  4. Because of 3., we don't need a large table of powers of 10
61
 *    for ten-to-e (just some small tables, e.g. of 10^k
62
 *    for 0 <= k <= 22).
63
 */
64
65
/*
66
 * #define IEEE_8087 for IEEE-arithmetic machines where the least
67
 *  significant byte has the lowest address.
68
 * #define IEEE_MC68k for IEEE-arithmetic machines where the most
69
 *  significant byte has the lowest address.
70
 * #define Long int on machines with 32-bit ints and 64-bit longs.
71
 * #define IBM for IBM mainframe-style floating-point arithmetic.
72
 * #define VAX for VAX-style floating-point arithmetic (D_floating).
73
 * #define No_leftright to omit left-right logic in fast floating-point
74
 *  computation of dtoa.  This will cause dtoa modes 4 and 5 to be
75
 *  treated the same as modes 2 and 3 for some inputs.
76
 * #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
77
 *  and strtod and dtoa should round accordingly.  Unless Trust_FLT_ROUNDS
78
 *  is also #defined, fegetround() will be queried for the rounding mode.
79
 *  Note that both FLT_ROUNDS and fegetround() are specified by the C99
80
 *  standard (and are specified to be consistent, with fesetround()
81
 *  affecting the value of FLT_ROUNDS), but that some (Linux) systems
82
 *  do not work correctly in this regard, so using fegetround() is more
83
 *  portable than using FLT_ROUNDS directly.
84
 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
85
 *  and Honor_FLT_ROUNDS is not #defined.
86
 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
87
 *  that use extended-precision instructions to compute rounded
88
 *  products and quotients) with IBM.
89
 * #define ROUND_BIASED for IEEE-format with biased rounding and arithmetic
90
 *  that rounds toward +Infinity.
91
 * #define ROUND_BIASED_without_Round_Up for IEEE-format with biased
92
 *  rounding when the underlying floating-point arithmetic uses
93
 *  unbiased rounding.  This prevent using ordinary floating-point
94
 *  arithmetic when the result could be computed with one rounding error.
95
 * #define Inaccurate_Divide for IEEE-format with correctly rounded
96
 *  products but inaccurate quotients, e.g., for Intel i860.
97
 * #define NO_LONG_LONG on machines that do not have a "long long"
98
 *  integer type (of >= 64 bits).  On such machines, you can
99
 *  #define Just_16 to store 16 bits per 32-bit Long when doing
100
 *  high-precision integer arithmetic.  Whether this speeds things
101
 *  up or slows things down depends on the machine and the number
102
 *  being converted.  If long long is available and the name is
103
 *  something other than "long long", #define Llong to be the name,
104
 *  and if "unsigned Llong" does not work as an unsigned version of
105
 *  Llong, #define #ULLong to be the corresponding unsigned type.
106
 * #define KR_headers for old-style C function headers.
107
 * #define Bad_float_h if your system lacks a float.h or if it does not
108
 *  define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
109
 *  FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
110
 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
111
 *  if memory is available and otherwise does something you deem
112
 *  appropriate.  If MALLOC is undefined, malloc will be invoked
113
 *  directly -- and assumed always to succeed.  Similarly, if you
114
 *  want something other than the system's free() to be called to
115
 *  recycle memory acquired from MALLOC, #define FREE to be the
116
 *  name of the alternate routine.  (FREE or free is only called in
117
 *  pathological cases, e.g., in a dtoa call after a dtoa return in
118
 *  mode 3 with thousands of digits requested.)
119
 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
120
 *  memory allocations from a private pool of memory when possible.
121
 *  When used, the private pool is PRIVATE_MEM bytes long:  2304 bytes,
122
 *  unless #defined to be a different length.  This default length
123
 *  suffices to get rid of MALLOC calls except for unusual cases,
124
 *  such as decimal-to-binary conversion of a very long string of
125
 *  digits.  The longest string dtoa can return is about 751 bytes
126
 *  long.  For conversions by strtod of strings of 800 digits and
127
 *  all dtoa conversions in single-threaded executions with 8-byte
128
 *  pointers, PRIVATE_MEM >= 7400 appears to suffice; with 4-byte
129
 *  pointers, PRIVATE_MEM >= 7112 appears adequate.
130
 * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK
131
 *  #defined automatically on IEEE systems.  On such systems,
132
 *  when INFNAN_CHECK is #defined, strtod checks
133
 *  for Infinity and NaN (case insensitively).  On some systems
134
 *  (e.g., some HP systems), it may be necessary to #define NAN_WORD0
135
 *  appropriately -- to the most significant word of a quiet NaN.
136
 *  (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
137
 *  When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
138
 *  strtod also accepts (case insensitively) strings of the form
139
 *  NaN(x), where x is a string of hexadecimal digits and spaces;
140
 *  if there is only one string of hexadecimal digits, it is taken
141
 *  for the 52 fraction bits of the resulting NaN; if there are two
142
 *  or more strings of hex digits, the first is for the high 20 bits,
143
 *  the second and subsequent for the low 32 bits, with intervening
144
 *  white space ignored; but if this results in none of the 52
145
 *  fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0
146
 *  and NAN_WORD1 are used instead.
147
 * #define MULTIPLE_THREADS if the system offers preemptively scheduled
148
 *  multiple threads.  In this case, you must provide (or suitably
149
 *  #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
150
 *  by FREE_DTOA_LOCK(n) for n = 0 or 1.  (The second lock, accessed
151
 *  in pow5mult, ensures lazy evaluation of only one copy of high
152
 *  powers of 5; omitting this lock would introduce a small
153
 *  probability of wasting memory, but would otherwise be harmless.)
154
 *  You must also invoke freedtoa(s) to free the value s returned by
155
 *  dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
156
 * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that
157
 *  avoids underflows on inputs whose result does not underflow.
158
 *  If you #define NO_IEEE_Scale on a machine that uses IEEE-format
159
 *  floating-point numbers and flushes underflows to zero rather
160
 *  than implementing gradual underflow, then you must also #define
161
 *  Sudden_Underflow.
162
 * #define USE_LOCALE to use the current locale's decimal_point value.
163
 * #define SET_INEXACT if IEEE arithmetic is being used and extra
164
 *  computation should be done to set the inexact flag when the
165
 *  result is inexact and avoid setting inexact when the result
166
 *  is exact.  In this case, dtoa.c must be compiled in
167
 *  an environment, perhaps provided by #include "dtoa.c" in a
168
 *  suitable wrapper, that defines two functions,
169
 *    int get_inexact(void);
170
 *    void clear_inexact(void);
171
 *  such that get_inexact() returns a nonzero value if the
172
 *  inexact bit is already set, and clear_inexact() sets the
173
 *  inexact bit to 0.  When SET_INEXACT is #defined, strtod
174
 *  also does extra computations to set the underflow and overflow
175
 *  flags when appropriate (i.e., when the result is tiny and
176
 *  inexact or when it is a numeric value rounded to +-infinity).
177
 * #define NO_ERRNO if strtod should not assign errno = ERANGE when
178
 *  the result overflows to +-Infinity or underflows to 0.
179
 * #define NO_HEX_FP to omit recognition of hexadecimal floating-point
180
 *  values by strtod.
181
 * #define NO_STRTOD_BIGCOMP (on IEEE-arithmetic systems only for now)
182
 *  to disable logic for "fast" testing of very long input strings
183
 *  to strtod.  This testing proceeds by initially truncating the
184
 *  input string, then if necessary comparing the whole string with
185
 *  a decimal expansion to decide close cases. This logic is only
186
 *  used for input more than STRTOD_DIGLIM digits long (default 40).
187
 */
188
189
#include <zend_operators.h>
190
#include <zend_strtod.h>
191
#include "zend_strtod_int.h"
192
#include "zend_globals.h"
193
194
#ifndef Long
195
664k
#define Long int32_t
196
#endif
197
#ifndef ULong
198
11.8M
#define ULong uint32_t
199
#endif
200
201
#undef Bigint
202
#undef freelist
203
#undef p5s
204
#undef dtoa_result
205
206
10.4M
#define Bigint      _zend_strtod_bigint
207
13.5M
#define freelist    (EG(strtod_state).freelist)
208
296k
#define p5s         (EG(strtod_state).p5s)
209
560k
#define dtoa_result (EG(strtod_state).result)
210
211
#ifdef DEBUG
212
static void Bug(const char *message) {
213
  fprintf(stderr, "%s\n", message);
214
}
215
#endif
216
217
#include "stdlib.h"
218
#include "string.h"
219
220
#ifdef USE_LOCALE
221
#include "locale.h"
222
#endif
223
224
#ifdef Honor_FLT_ROUNDS
225
#ifndef Trust_FLT_ROUNDS
226
#include <fenv.h>
227
#endif
228
#endif
229
230
#ifdef MALLOC
231
#ifdef KR_headers
232
extern char *MALLOC();
233
#else
234
extern void *MALLOC(size_t);
235
#endif
236
#else
237
33
#define MALLOC malloc
238
0
#define FREE   free
239
#endif
240
241
#ifndef Omit_Private_Memory
242
#ifndef PRIVATE_MEM
243
#define PRIVATE_MEM 2304
244
#endif
245
#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
246
static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
247
#endif
248
249
#undef IEEE_Arith
250
#undef Avoid_Underflow
251
#ifdef IEEE_MC68k
252
#define IEEE_Arith
253
#endif
254
#ifdef IEEE_8087
255
#define IEEE_Arith
256
#endif
257
258
#ifdef IEEE_Arith
259
#ifndef NO_INFNAN_CHECK
260
#undef INFNAN_CHECK
261
#define INFNAN_CHECK
262
#endif
263
#else
264
#undef INFNAN_CHECK
265
#define NO_STRTOD_BIGCOMP
266
#endif
267
268
#include "errno.h"
269
270
#ifdef Bad_float_h
271
272
#ifdef IEEE_Arith
273
#define DBL_DIG 15
274
#define DBL_MAX_10_EXP 308
275
#define DBL_MAX_EXP 1024
276
#define FLT_RADIX 2
277
#endif /*IEEE_Arith*/
278
279
#ifdef IBM
280
#define DBL_DIG 16
281
#define DBL_MAX_10_EXP 75
282
#define DBL_MAX_EXP 63
283
#define FLT_RADIX 16
284
#define DBL_MAX 7.2370055773322621e+75
285
#endif
286
287
#ifdef VAX
288
#define DBL_DIG 16
289
#define DBL_MAX_10_EXP 38
290
#define DBL_MAX_EXP 127
291
#define FLT_RADIX 2
292
#define DBL_MAX 1.7014118346046923e+38
293
#endif
294
295
#else /* ifndef Bad_float_h */
296
#include "float.h"
297
#endif /* Bad_float_h */
298
299
#ifndef __MATH_H__
300
#include "math.h"
301
#endif
302
303
#ifndef CONST
304
#ifdef KR_headers
305
#define CONST /* blank */
306
#else
307
273k
#define CONST const
308
#endif
309
#endif
310
311
#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
312
Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
313
#endif
314
315
typedef union { double d; ULong L[2]; } U;
316
317
#ifdef IEEE_8087
318
2.91M
#define word0(x) (x)->L[1]
319
1.07M
#define word1(x) (x)->L[0]
320
#else
321
#define word0(x) (x)->L[0]
322
#define word1(x) (x)->L[1]
323
#endif
324
9.10M
#define dval(x) (x)->d
325
326
#ifndef STRTOD_DIGLIM
327
168k
#define STRTOD_DIGLIM 40
328
#endif
329
330
#ifdef DIGLIM_DEBUG
331
extern int strtod_diglim;
332
#else
333
168k
#define strtod_diglim STRTOD_DIGLIM
334
#endif
335
336
/* The following definition of Storeinc is appropriate for MIPS processors.
337
 * An alternative that might be better on some machines is
338
 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
339
 */
340
#if defined(IEEE_8087) + defined(VAX) + defined(__arm__)
341
#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
342
((unsigned short *)a)[0] = (unsigned short)c, a++)
343
#else
344
#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
345
((unsigned short *)a)[1] = (unsigned short)c, a++)
346
#endif
347
348
/* #define P DBL_MANT_DIG */
349
/* Ten_pmax = floor(P*log(2)/log(5)) */
350
/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
351
/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
352
/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
353
354
#ifdef IEEE_Arith
355
448k
#define Exp_shift  20
356
256k
#define Exp_shift1 20
357
1.07M
#define Exp_msk1    0x100000
358
#define Exp_msk11   0x100000
359
868k
#define Exp_mask  0x7ff00000
360
1.76M
#define P 53
361
#define Nbits 53
362
744k
#define Bias 1023
363
#define Emax 1023
364
324k
#define Emin (-1022)
365
208k
#define Exp_1  0x3ff00000
366
98.5k
#define Exp_11 0x3ff00000
367
398k
#define Ebits 11
368
394k
#define Frac_mask  0xfffff
369
99.8k
#define Frac_mask1 0xfffff
370
163k
#define Ten_pmax 22
371
64.7k
#define Bletch 0x10
372
109k
#define Bndry_mask  0xfffff
373
7.66k
#define Bndry_mask1 0xfffff
374
224k
#define LSB 1
375
145k
#define Sign_bit 0x80000000
376
1.78k
#define Log2P 1
377
#define Tiny0 0
378
47.5k
#define Tiny1 1
379
245k
#define Quick_max 14
380
31.6k
#define Int_max 14
381
#ifndef NO_IEEE_Scale
382
#define Avoid_Underflow
383
#ifdef Flush_Denorm /* debugging option */
384
#undef Sudden_Underflow
385
#endif
386
#endif
387
388
#ifndef Flt_Rounds
389
#ifdef FLT_ROUNDS
390
159k
#define Flt_Rounds FLT_ROUNDS
391
#else
392
#define Flt_Rounds 1
393
#endif
394
#endif /*Flt_Rounds*/
395
396
#ifdef Honor_FLT_ROUNDS
397
#undef Check_FLT_ROUNDS
398
#define Check_FLT_ROUNDS
399
#else
400
#define Rounding Flt_Rounds
401
#endif
402
403
#else /* ifndef IEEE_Arith */
404
#undef Check_FLT_ROUNDS
405
#undef Honor_FLT_ROUNDS
406
#undef SET_INEXACT
407
#undef  Sudden_Underflow
408
#define Sudden_Underflow
409
#ifdef IBM
410
#undef Flt_Rounds
411
#define Flt_Rounds 0
412
#define Exp_shift  24
413
#define Exp_shift1 24
414
#define Exp_msk1   0x1000000
415
#define Exp_msk11  0x1000000
416
#define Exp_mask  0x7f000000
417
#define P 14
418
#define Nbits 56
419
#define Bias 65
420
#define Emax 248
421
#define Emin (-260)
422
#define Exp_1  0x41000000
423
#define Exp_11 0x41000000
424
#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
425
#define Frac_mask  0xffffff
426
#define Frac_mask1 0xffffff
427
#define Bletch 4
428
#define Ten_pmax 22
429
#define Bndry_mask  0xefffff
430
#define Bndry_mask1 0xffffff
431
#define LSB 1
432
#define Sign_bit 0x80000000
433
#define Log2P 4
434
#define Tiny0 0x100000
435
#define Tiny1 0
436
#define Quick_max 14
437
#define Int_max 15
438
#else /* VAX */
439
#undef Flt_Rounds
440
#define Flt_Rounds 1
441
#define Exp_shift  23
442
#define Exp_shift1 7
443
#define Exp_msk1    0x80
444
#define Exp_msk11   0x800000
445
#define Exp_mask  0x7f80
446
#define P 56
447
#define Nbits 56
448
#define Bias 129
449
#define Emax 126
450
#define Emin (-129)
451
#define Exp_1  0x40800000
452
#define Exp_11 0x4080
453
#define Ebits 8
454
#define Frac_mask  0x7fffff
455
#define Frac_mask1 0xffff007f
456
#define Ten_pmax 24
457
#define Bletch 2
458
#define Bndry_mask  0xffff007f
459
#define Bndry_mask1 0xffff007f
460
#define LSB 0x10000
461
#define Sign_bit 0x8000
462
#define Log2P 1
463
#define Tiny0 0x80
464
#define Tiny1 0
465
#define Quick_max 15
466
#define Int_max 15
467
#endif /* IBM, VAX */
468
#endif /* IEEE_Arith */
469
470
#ifndef IEEE_Arith
471
#define ROUND_BIASED
472
#else
473
#ifdef ROUND_BIASED_without_Round_Up
474
#undef  ROUND_BIASED
475
#define ROUND_BIASED
476
#endif
477
#endif
478
479
#ifdef RND_PRODQUOT
480
#define rounded_product(a,b) a = rnd_prod(a, b)
481
#define rounded_quotient(a,b) a = rnd_quot(a, b)
482
#ifdef KR_headers
483
extern double rnd_prod(), rnd_quot();
484
#else
485
extern double rnd_prod(double, double), rnd_quot(double, double);
486
#endif
487
#else
488
1.29k
#define rounded_product(a,b) a *= b
489
28.8k
#define rounded_quotient(a,b) a /= b
490
#endif
491
492
1.91k
#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
493
1.26k
#define Big1 0xffffffff
494
495
#ifndef Pack_32
496
#define Pack_32
497
#endif
498
499
typedef struct BCinfo BCinfo;
500
 struct
501
BCinfo { int dp0, dp1, dplen, dsign, e0, inexact, nd, nd0, rounding, scale, uflchk; };
502
503
#ifdef KR_headers
504
#define FFFFFFFF ((((unsigned long)0xffff)<<16)|(unsigned long)0xffff)
505
#else
506
62.0M
#define FFFFFFFF 0xffffffffUL
507
#endif
508
509
#ifdef NO_LONG_LONG
510
#undef ULLong
511
#ifdef Just_16
512
#undef Pack_32
513
/* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
514
 * This makes some inner loops simpler and sometimes saves work
515
 * during multiplications, but it often seems to make things slightly
516
 * slower.  Hence the default is now to store 32 bits per Long.
517
 */
518
#endif
519
#else /* long long available */
520
#ifndef Llong
521
#define Llong long long
522
#endif
523
#ifndef ULLong
524
5.99M
#define ULLong unsigned Llong
525
#endif
526
#endif /* NO_LONG_LONG */
527
528
#ifndef MULTIPLE_THREADS
529
#define ACQUIRE_DTOA_LOCK(n)  /*nothing*/
530
#define FREE_DTOA_LOCK(n) /*nothing*/
531
#endif
532
533
6.75M
#define Kmax ZEND_STRTOD_K_MAX
534
535
 struct
536
Bigint {
537
  struct Bigint *next;
538
  int k, maxwds, sign, wds;
539
  ULong x[1];
540
  };
541
542
 typedef struct Bigint Bigint;
543
544
#ifndef Bigint
545
 static Bigint *freelist[Kmax+1];
546
#endif
547
548
static void destroy_freelist(void);
549
static void free_p5s(void);
550
551
#ifdef MULTIPLE_THREADS
552
static MUTEX_T dtoa_mutex;
553
static MUTEX_T pow5mult_mutex;
554
#endif /* ZTS */
555
556
ZEND_API int zend_shutdown_strtod(void) /* {{{ */
557
0
{
558
0
  destroy_freelist();
559
0
  free_p5s();
560
561
0
  return 1;
562
0
}
563
/* }}} */
564
565
 static Bigint *
566
Balloc
567
#ifdef KR_headers
568
  (k) int k;
569
#else
570
  (int k)
571
#endif
572
3.37M
{
573
3.37M
  int x;
574
3.37M
  Bigint *rv;
575
#ifndef Omit_Private_Memory
576
  unsigned int len;
577
#endif
578
579
3.37M
  ACQUIRE_DTOA_LOCK(0);
580
  /* The k > Kmax case does not need ACQUIRE_DTOA_LOCK(0), */
581
  /* but this case seems very unlikely. */
582
3.37M
  if (k <= Kmax && (rv = freelist[k]))
583
3.37M
    freelist[k] = rv->next;
584
33
  else {
585
33
    x = 1 << k;
586
33
#ifdef Omit_Private_Memory
587
33
    rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong));
588
33
    if (!rv) {
589
0
      FREE_DTOA_LOCK(0);
590
0
      zend_error_noreturn(E_ERROR, "Balloc() failed to allocate memory");
591
0
    }
592
#else
593
    len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
594
      /sizeof(double);
595
    if (k <= Kmax && pmem_next - private_mem + len <= PRIVATE_mem) {
596
      rv = (Bigint*)pmem_next;
597
      pmem_next += len;
598
      }
599
    else
600
      rv = (Bigint*)MALLOC(len*sizeof(double));
601
      if (!rv) {
602
        FREE_DTOA_LOCK(0);
603
        zend_error_noreturn(E_ERROR, "Balloc() failed to allocate memory");
604
      }
605
#endif
606
33
    rv->k = k;
607
33
    rv->maxwds = x;
608
33
    }
609
3.37M
  FREE_DTOA_LOCK(0);
610
3.37M
  rv->sign = rv->wds = 0;
611
3.37M
  return rv;
612
3.37M
  }
613
614
 static void
615
Bfree
616
#ifdef KR_headers
617
  (v) Bigint *v;
618
#else
619
  (Bigint *v)
620
#endif
621
3.37M
{
622
3.37M
  if (v) {
623
3.37M
    if (v->k > Kmax)
624
0
      FREE((void*)v);
625
3.37M
    else {
626
3.37M
      ACQUIRE_DTOA_LOCK(0);
627
3.37M
      v->next = freelist[v->k];
628
3.37M
      freelist[v->k] = v;
629
3.37M
      FREE_DTOA_LOCK(0);
630
3.37M
      }
631
3.37M
    }
632
3.37M
  }
633
634
237k
#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
635
237k
y->wds*sizeof(Long) + 2*sizeof(int))
636
637
 static Bigint *
638
multadd
639
#ifdef KR_headers
640
  (b, m, a) Bigint *b; int m, a;
641
#else
642
  (Bigint *b, int m, int a) /* multiply by m and add a */
643
#endif
644
3.14M
{
645
3.14M
  int i, wds;
646
3.14M
#ifdef ULLong
647
3.14M
  ULong *x;
648
3.14M
  ULLong carry, y;
649
#else
650
  ULong carry, *x, y;
651
#ifdef Pack_32
652
  ULong xi, z;
653
#endif
654
#endif
655
3.14M
  Bigint *b1;
656
657
3.14M
  wds = b->wds;
658
3.14M
  x = b->x;
659
3.14M
  i = 0;
660
3.14M
  carry = a;
661
17.6M
  do {
662
17.6M
#ifdef ULLong
663
17.6M
    y = *x * (ULLong)m + carry;
664
17.6M
    carry = y >> 32;
665
17.6M
    *x++ = y & FFFFFFFF;
666
#else
667
#ifdef Pack_32
668
    xi = *x;
669
    y = (xi & 0xffff) * m + carry;
670
    z = (xi >> 16) * m + (y >> 16);
671
    carry = z >> 16;
672
    *x++ = (z << 16) + (y & 0xffff);
673
#else
674
    y = *x * m + carry;
675
    carry = y >> 16;
676
    *x++ = y & 0xffff;
677
#endif
678
#endif
679
17.6M
    }
680
17.6M
    while(++i < wds);
681
3.14M
  if (carry) {
682
218k
    if (wds >= b->maxwds) {
683
13.6k
      b1 = Balloc(b->k+1);
684
13.6k
      Bcopy(b1, b);
685
13.6k
      Bfree(b);
686
13.6k
      b = b1;
687
13.6k
      }
688
218k
    b->x[wds++] = carry;
689
218k
    b->wds = wds;
690
218k
    }
691
3.14M
  return b;
692
3.14M
  }
693
694
 static Bigint *
695
s2b
696
#ifdef KR_headers
697
  (s, nd0, nd, y9, dplen) CONST char *s; int nd0, nd, dplen; ULong y9;
698
#else
699
  (const char *s, int nd0, int nd, ULong y9, int dplen)
700
#endif
701
168k
{
702
168k
  Bigint *b;
703
168k
  int i, k;
704
168k
  Long x, y;
705
706
168k
  x = (nd + 8) / 9;
707
333k
  for(k = 0, y = 1; x > y; y <<= 1, k++) ;
708
168k
#ifdef Pack_32
709
168k
  b = Balloc(k);
710
168k
  b->x[0] = y9;
711
168k
  b->wds = 1;
712
#else
713
  b = Balloc(k+1);
714
  b->x[0] = y9 & 0xffff;
715
  b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
716
#endif
717
718
168k
  i = 9;
719
168k
  if (9 < nd0) {
720
103k
    s += 9;
721
983k
    do b = multadd(b, 10, *s++ - '0');
722
983k
      while(++i < nd0);
723
103k
    s += dplen;
724
103k
    }
725
64.7k
  else
726
64.7k
    s += dplen + 9;
727
559k
  for(; i < nd; i++)
728
391k
    b = multadd(b, 10, *s++ - '0');
729
168k
  return b;
730
168k
  }
731
732
 static int
733
hi0bits
734
#ifdef KR_headers
735
  (x) ULong x;
736
#else
737
  (ULong x)
738
#endif
739
289k
{
740
289k
  int k = 0;
741
742
289k
  if (!(x & 0xffff0000)) {
743
162k
    k = 16;
744
162k
    x <<= 16;
745
162k
    }
746
289k
  if (!(x & 0xff000000)) {
747
115k
    k += 8;
748
115k
    x <<= 8;
749
115k
    }
750
289k
  if (!(x & 0xf0000000)) {
751
148k
    k += 4;
752
148k
    x <<= 4;
753
148k
    }
754
289k
  if (!(x & 0xc0000000)) {
755
138k
    k += 2;
756
138k
    x <<= 2;
757
138k
    }
758
289k
  if (!(x & 0x80000000)) {
759
153k
    k++;
760
153k
    if (!(x & 0x40000000))
761
0
      return 32;
762
153k
    }
763
289k
  return k;
764
289k
  }
765
766
 static int
767
lo0bits
768
#ifdef KR_headers
769
  (y) ULong *y;
770
#else
771
  (ULong *y)
772
#endif
773
394k
{
774
394k
  int k;
775
394k
  ULong x = *y;
776
777
394k
  if (x & 7) {
778
264k
    if (x & 1)
779
158k
      return 0;
780
106k
    if (x & 2) {
781
60.6k
      *y = x >> 1;
782
60.6k
      return 1;
783
60.6k
      }
784
45.6k
    *y = x >> 2;
785
45.6k
    return 2;
786
106k
    }
787
129k
  k = 0;
788
129k
  if (!(x & 0xffff)) {
789
17.6k
    k = 16;
790
17.6k
    x >>= 16;
791
17.6k
    }
792
129k
  if (!(x & 0xff)) {
793
19.4k
    k += 8;
794
19.4k
    x >>= 8;
795
19.4k
    }
796
129k
  if (!(x & 0xf)) {
797
84.4k
    k += 4;
798
84.4k
    x >>= 4;
799
84.4k
    }
800
129k
  if (!(x & 0x3)) {
801
83.9k
    k += 2;
802
83.9k
    x >>= 2;
803
83.9k
    }
804
129k
  if (!(x & 1)) {
805
60.6k
    k++;
806
60.6k
    x >>= 1;
807
60.6k
    if (!x)
808
0
      return 32;
809
60.6k
    }
810
129k
  *y = x;
811
129k
  return k;
812
129k
  }
813
814
 static Bigint *
815
i2b
816
#ifdef KR_headers
817
  (i) int i;
818
#else
819
  (int i)
820
#endif
821
336k
{
822
336k
  Bigint *b;
823
824
336k
  b = Balloc(1);
825
336k
  b->x[0] = i;
826
336k
  b->wds = 1;
827
336k
  return b;
828
336k
  }
829
830
 static Bigint *
831
mult
832
#ifdef KR_headers
833
  (a, b) Bigint *a, *b;
834
#else
835
  (Bigint *a, Bigint *b)
836
#endif
837
970k
{
838
970k
  Bigint *c;
839
970k
  int k, wa, wb, wc;
840
970k
  ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
841
970k
  ULong y;
842
970k
#ifdef ULLong
843
970k
  ULLong carry, z;
844
#else
845
  ULong carry, z;
846
#ifdef Pack_32
847
  ULong z2;
848
#endif
849
#endif
850
851
970k
  if (a->wds < b->wds) {
852
426k
    c = a;
853
426k
    a = b;
854
426k
    b = c;
855
426k
    }
856
970k
  k = a->k;
857
970k
  wa = a->wds;
858
970k
  wb = b->wds;
859
970k
  wc = wa + wb;
860
970k
  if (wc > a->maxwds)
861
369k
    k++;
862
970k
  c = Balloc(k);
863
8.86M
  for(x = c->x, xa = x + wc; x < xa; x++)
864
7.89M
    *x = 0;
865
970k
  xa = a->x;
866
970k
  xae = xa + wa;
867
970k
  xb = b->x;
868
970k
  xbe = xb + wb;
869
970k
  xc0 = c->x;
870
970k
#ifdef ULLong
871
2.98M
  for(; xb < xbe; xc0++) {
872
2.01M
    if ((y = *xb++)) {
873
2.01M
      x = xa;
874
2.01M
      xc = xc0;
875
2.01M
      carry = 0;
876
17.5M
      do {
877
17.5M
        z = *x++ * (ULLong)y + *xc + carry;
878
17.5M
        carry = z >> 32;
879
17.5M
        *xc++ = z & FFFFFFFF;
880
17.5M
        }
881
17.5M
        while(x < xae);
882
2.01M
      *xc = carry;
883
2.01M
      }
884
2.01M
    }
885
#else
886
#ifdef Pack_32
887
  for(; xb < xbe; xb++, xc0++) {
888
    if (y = *xb & 0xffff) {
889
      x = xa;
890
      xc = xc0;
891
      carry = 0;
892
      do {
893
        z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
894
        carry = z >> 16;
895
        z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
896
        carry = z2 >> 16;
897
        Storeinc(xc, z2, z);
898
        }
899
        while(x < xae);
900
      *xc = carry;
901
      }
902
    if (y = *xb >> 16) {
903
      x = xa;
904
      xc = xc0;
905
      carry = 0;
906
      z2 = *xc;
907
      do {
908
        z = (*x & 0xffff) * y + (*xc >> 16) + carry;
909
        carry = z >> 16;
910
        Storeinc(xc, z, z2);
911
        z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
912
        carry = z2 >> 16;
913
        }
914
        while(x < xae);
915
      *xc = z2;
916
      }
917
    }
918
#else
919
  for(; xb < xbe; xc0++) {
920
    if (y = *xb++) {
921
      x = xa;
922
      xc = xc0;
923
      carry = 0;
924
      do {
925
        z = *x++ * y + *xc + carry;
926
        carry = z >> 16;
927
        *xc++ = z & 0xffff;
928
        }
929
        while(x < xae);
930
      *xc = carry;
931
      }
932
    }
933
#endif
934
#endif
935
1.65M
  for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
936
970k
  c->wds = wc;
937
970k
  return c;
938
970k
  }
939
940
#ifndef p5s
941
 static Bigint *p5s;
942
#endif
943
944
 static Bigint *
945
pow5mult
946
#ifdef KR_headers
947
  (b, k) Bigint *b; int k;
948
#else
949
  (Bigint *b, int k)
950
#endif
951
298k
{
952
298k
  Bigint *b1, *p5, *p51;
953
298k
  int i;
954
298k
  static const int p05[3] = { 5, 25, 125 };
955
956
298k
  if ((i = k & 3))
957
222k
    b = multadd(b, p05[i-1], 0);
958
959
298k
  if (!(k >>= 2))
960
1.58k
    return b;
961
296k
  if (!(p5 = p5s)) {
962
    /* first time */
963
#ifdef MULTIPLE_THREADS
964
    ACQUIRE_DTOA_LOCK(1);
965
    if (!(p5 = p5s)) {
966
      p5 = p5s = i2b(625);
967
      p5->next = 0;
968
      }
969
    FREE_DTOA_LOCK(1);
970
#else
971
1
    p5 = p5s = i2b(625);
972
1
    p5->next = 0;
973
1
#endif
974
1
    }
975
1.49M
  for(;;) {
976
1.49M
    if (k & 1) {
977
842k
      b1 = mult(b, p5);
978
842k
      Bfree(b);
979
842k
      b = b1;
980
842k
      }
981
1.49M
    if (!(k >>= 1))
982
296k
      break;
983
1.20M
    if (!(p51 = p5->next)) {
984
#ifdef MULTIPLE_THREADS
985
      ACQUIRE_DTOA_LOCK(1);
986
      if (!(p51 = p5->next)) {
987
        p51 = p5->next = mult(p5,p5);
988
        p51->next = 0;
989
        }
990
      FREE_DTOA_LOCK(1);
991
#else
992
6
      p51 = p5->next = mult(p5,p5);
993
6
      p51->next = 0;
994
6
#endif
995
6
      }
996
1.20M
    p5 = p51;
997
1.20M
    }
998
296k
  return b;
999
298k
  }
1000
1001
 static Bigint *
1002
lshift
1003
#ifdef KR_headers
1004
  (b, k) Bigint *b; int k;
1005
#else
1006
  (Bigint *b, int k)
1007
#endif
1008
741k
{
1009
741k
  int i, k1, n, n1;
1010
741k
  Bigint *b1;
1011
741k
  ULong *x, *x1, *xe, z;
1012
1013
741k
#ifdef Pack_32
1014
741k
  n = k >> 5;
1015
#else
1016
  n = k >> 4;
1017
#endif
1018
741k
  k1 = b->k;
1019
741k
  n1 = n + b->wds + 1;
1020
1.86M
  for(i = b->maxwds; n1 > i; i <<= 1)
1021
1.11M
    k1++;
1022
741k
  b1 = Balloc(k1);
1023
741k
  x1 = b1->x;
1024
4.72M
  for(i = 0; i < n; i++)
1025
3.98M
    *x1++ = 0;
1026
741k
  x = b->x;
1027
741k
  xe = x + b->wds;
1028
741k
#ifdef Pack_32
1029
741k
  if (k &= 0x1f) {
1030
731k
    k1 = 32 - k;
1031
731k
    z = 0;
1032
4.09M
    do {
1033
4.09M
      *x1++ = *x << k | z;
1034
4.09M
      z = *x++ >> k1;
1035
4.09M
      }
1036
4.09M
      while(x < xe);
1037
731k
    if ((*x1 = z))
1038
188k
      ++n1;
1039
731k
    }
1040
#else
1041
  if (k &= 0xf) {
1042
    k1 = 16 - k;
1043
    z = 0;
1044
    do {
1045
      *x1++ = *x << k  & 0xffff | z;
1046
      z = *x++ >> k1;
1047
      }
1048
      while(x < xe);
1049
    if (*x1 = z)
1050
      ++n1;
1051
    }
1052
#endif
1053
9.32k
  else do
1054
15.7k
    *x1++ = *x++;
1055
15.7k
    while(x < xe);
1056
741k
  b1->wds = n1 - 1;
1057
741k
  Bfree(b);
1058
741k
  return b1;
1059
741k
  }
1060
1061
 static int
1062
cmp
1063
#ifdef KR_headers
1064
  (a, b) Bigint *a, *b;
1065
#else
1066
  (Bigint *a, Bigint *b)
1067
#endif
1068
2.46M
{
1069
2.46M
  ULong *xa, *xa0, *xb, *xb0;
1070
2.46M
  int i, j;
1071
1072
2.46M
  i = a->wds;
1073
2.46M
  j = b->wds;
1074
#ifdef DEBUG
1075
  if (i > 1 && !a->x[i-1])
1076
    Bug("cmp called with a->x[a->wds-1] == 0");
1077
  if (j > 1 && !b->x[j-1])
1078
    Bug("cmp called with b->x[b->wds-1] == 0");
1079
#endif
1080
2.46M
  if (i -= j)
1081
165k
    return i;
1082
2.29M
  xa0 = a->x;
1083
2.29M
  xa = xa0 + j;
1084
2.29M
  xb0 = b->x;
1085
2.29M
  xb = xb0 + j;
1086
2.66M
  for(;;) {
1087
2.66M
    if (*--xa != *--xb)
1088
2.27M
      return *xa < *xb ? -1 : 1;
1089
386k
    if (xa <= xa0)
1090
21.5k
      break;
1091
386k
    }
1092
21.5k
  return 0;
1093
2.29M
  }
1094
1095
 static Bigint *
1096
diff
1097
#ifdef KR_headers
1098
  (a, b) Bigint *a, *b;
1099
#else
1100
  (Bigint *a, Bigint *b)
1101
#endif
1102
386k
{
1103
386k
  Bigint *c;
1104
386k
  int i, wa, wb;
1105
386k
  ULong *xa, *xae, *xb, *xbe, *xc;
1106
386k
#ifdef ULLong
1107
386k
  ULLong borrow, y;
1108
#else
1109
  ULong borrow, y;
1110
#ifdef Pack_32
1111
  ULong z;
1112
#endif
1113
#endif
1114
1115
386k
  i = cmp(a,b);
1116
386k
  if (!i) {
1117
2.83k
    c = Balloc(0);
1118
2.83k
    c->wds = 1;
1119
2.83k
    c->x[0] = 0;
1120
2.83k
    return c;
1121
2.83k
    }
1122
384k
  if (i < 0) {
1123
134k
    c = a;
1124
134k
    a = b;
1125
134k
    b = c;
1126
134k
    i = 1;
1127
134k
    }
1128
250k
  else
1129
250k
    i = 0;
1130
384k
  c = Balloc(a->k);
1131
384k
  c->sign = i;
1132
384k
  wa = a->wds;
1133
384k
  xa = a->x;
1134
384k
  xae = xa + wa;
1135
384k
  wb = b->wds;
1136
384k
  xb = b->x;
1137
384k
  xbe = xb + wb;
1138
384k
  xc = c->x;
1139
384k
  borrow = 0;
1140
384k
#ifdef ULLong
1141
4.38M
  do {
1142
4.38M
    y = (ULLong)*xa++ - *xb++ - borrow;
1143
4.38M
    borrow = y >> 32 & (ULong)1;
1144
4.38M
    *xc++ = y & FFFFFFFF;
1145
4.38M
    }
1146
4.38M
    while(xb < xbe);
1147
460k
  while(xa < xae) {
1148
76.2k
    y = *xa++ - borrow;
1149
76.2k
    borrow = y >> 32 & (ULong)1;
1150
76.2k
    *xc++ = y & FFFFFFFF;
1151
76.2k
    }
1152
#else
1153
#ifdef Pack_32
1154
  do {
1155
    y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
1156
    borrow = (y & 0x10000) >> 16;
1157
    z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
1158
    borrow = (z & 0x10000) >> 16;
1159
    Storeinc(xc, z, y);
1160
    }
1161
    while(xb < xbe);
1162
  while(xa < xae) {
1163
    y = (*xa & 0xffff) - borrow;
1164
    borrow = (y & 0x10000) >> 16;
1165
    z = (*xa++ >> 16) - borrow;
1166
    borrow = (z & 0x10000) >> 16;
1167
    Storeinc(xc, z, y);
1168
    }
1169
#else
1170
  do {
1171
    y = *xa++ - *xb++ - borrow;
1172
    borrow = (y & 0x10000) >> 16;
1173
    *xc++ = y & 0xffff;
1174
    }
1175
    while(xb < xbe);
1176
  while(xa < xae) {
1177
    y = *xa++ - borrow;
1178
    borrow = (y & 0x10000) >> 16;
1179
    *xc++ = y & 0xffff;
1180
    }
1181
#endif
1182
#endif
1183
742k
  while(!*--xc)
1184
358k
    wa--;
1185
384k
  c->wds = wa;
1186
384k
  return c;
1187
386k
  }
1188
1189
 static double
1190
ulp
1191
#ifdef KR_headers
1192
  (x) U *x;
1193
#else
1194
  (U *x)
1195
#endif
1196
81.8k
{
1197
81.8k
  Long L;
1198
81.8k
  U u;
1199
1200
81.8k
  L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
1201
#ifndef Avoid_Underflow
1202
#ifndef Sudden_Underflow
1203
  if (L > 0) {
1204
#endif
1205
#endif
1206
#ifdef IBM
1207
    L |= Exp_msk1 >> 4;
1208
#endif
1209
81.8k
    word0(&u) = L;
1210
81.8k
    word1(&u) = 0;
1211
#ifndef Avoid_Underflow
1212
#ifndef Sudden_Underflow
1213
    }
1214
  else {
1215
    L = -L >> Exp_shift;
1216
    if (L < Exp_shift) {
1217
      word0(&u) = 0x80000 >> L;
1218
      word1(&u) = 0;
1219
      }
1220
    else {
1221
      word0(&u) = 0;
1222
      L -= Exp_shift;
1223
      word1(&u) = L >= 31 ? 1 : 1 << 31 - L;
1224
      }
1225
    }
1226
#endif
1227
#endif
1228
81.8k
  return dval(&u);
1229
81.8k
  }
1230
1231
 static double
1232
b2d
1233
#ifdef KR_headers
1234
  (a, e) Bigint *a; int *e;
1235
#else
1236
  (Bigint *a, int *e)
1237
#endif
1238
160k
{
1239
160k
  ULong *xa, *xa0, w, y, z;
1240
160k
  int k;
1241
160k
  U d;
1242
#ifdef VAX
1243
  ULong d0, d1;
1244
#else
1245
160k
#define d0 word0(&d)
1246
160k
#define d1 word1(&d)
1247
160k
#endif
1248
1249
160k
  xa0 = a->x;
1250
160k
  xa = xa0 + a->wds;
1251
160k
  y = *--xa;
1252
#ifdef DEBUG
1253
  if (!y) Bug("zero y in b2d");
1254
#endif
1255
160k
  k = hi0bits(y);
1256
160k
  *e = 32 - k;
1257
160k
#ifdef Pack_32
1258
160k
  if (k < Ebits) {
1259
38.6k
    d0 = Exp_1 | y >> (Ebits - k);
1260
38.6k
    w = xa > xa0 ? *--xa : 0;
1261
38.6k
    d1 = y << ((32-Ebits) + k) | w >> (Ebits - k);
1262
38.6k
    goto ret_d;
1263
38.6k
    }
1264
122k
  z = xa > xa0 ? *--xa : 0;
1265
122k
  if (k -= Ebits) {
1266
120k
    d0 = Exp_1 | y << k | z >> (32 - k);
1267
120k
    y = xa > xa0 ? *--xa : 0;
1268
120k
    d1 = z << k | y >> (32 - k);
1269
120k
    }
1270
1.54k
  else {
1271
1.54k
    d0 = Exp_1 | y;
1272
1.54k
    d1 = z;
1273
1.54k
    }
1274
#else
1275
  if (k < Ebits + 16) {
1276
    z = xa > xa0 ? *--xa : 0;
1277
    d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
1278
    w = xa > xa0 ? *--xa : 0;
1279
    y = xa > xa0 ? *--xa : 0;
1280
    d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
1281
    goto ret_d;
1282
    }
1283
  z = xa > xa0 ? *--xa : 0;
1284
  w = xa > xa0 ? *--xa : 0;
1285
  k -= Ebits + 16;
1286
  d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
1287
  y = xa > xa0 ? *--xa : 0;
1288
  d1 = w << k + 16 | y << k;
1289
#endif
1290
160k
 ret_d:
1291
#ifdef VAX
1292
  word0(&d) = d0 >> 16 | d0 << 16;
1293
  word1(&d) = d1 >> 16 | d1 << 16;
1294
#else
1295
160k
#undef d0
1296
160k
#undef d1
1297
160k
#endif
1298
160k
  return dval(&d);
1299
122k
  }
1300
1301
 static Bigint *
1302
d2b
1303
#ifdef KR_headers
1304
  (d, e, bits) U *d; int *e, *bits;
1305
#else
1306
  (U *d, int *e, int *bits)
1307
#endif
1308
394k
{
1309
394k
  Bigint *b;
1310
394k
  int de, k;
1311
394k
  ULong *x, y, z;
1312
394k
#ifndef Sudden_Underflow
1313
394k
  int i;
1314
394k
#endif
1315
#ifdef VAX
1316
  ULong d0, d1;
1317
  d0 = word0(d) >> 16 | word0(d) << 16;
1318
  d1 = word1(d) >> 16 | word1(d) << 16;
1319
#else
1320
1.18M
#define d0 word0(d)
1321
394k
#define d1 word1(d)
1322
394k
#endif
1323
1324
394k
#ifdef Pack_32
1325
394k
  b = Balloc(1);
1326
#else
1327
  b = Balloc(2);
1328
#endif
1329
394k
  x = b->x;
1330
1331
394k
  z = d0 & Frac_mask;
1332
394k
  d0 &= 0x7fffffff; /* clear sign bit, which we ignore */
1333
#ifdef Sudden_Underflow
1334
  de = (int)(d0 >> Exp_shift);
1335
#ifndef IBM
1336
  z |= Exp_msk11;
1337
#endif
1338
#else
1339
394k
  if ((de = (int)(d0 >> Exp_shift)))
1340
364k
    z |= Exp_msk1;
1341
394k
#endif
1342
394k
#ifdef Pack_32
1343
394k
  if ((y = d1)) {
1344
371k
    if ((k = lo0bits(&y))) {
1345
214k
      x[0] = y | z << (32 - k);
1346
214k
      z >>= k;
1347
214k
      }
1348
156k
    else
1349
156k
      x[0] = y;
1350
371k
#ifndef Sudden_Underflow
1351
371k
    i =
1352
371k
#endif
1353
371k
        b->wds = (x[1] = z) ? 2 : 1;
1354
371k
    }
1355
22.9k
  else {
1356
22.9k
    k = lo0bits(&z);
1357
22.9k
    x[0] = z;
1358
22.9k
#ifndef Sudden_Underflow
1359
22.9k
    i =
1360
22.9k
#endif
1361
22.9k
        b->wds = 1;
1362
22.9k
    k += 32;
1363
22.9k
    }
1364
#else
1365
  if (y = d1) {
1366
    if (k = lo0bits(&y))
1367
      if (k >= 16) {
1368
        x[0] = y | z << 32 - k & 0xffff;
1369
        x[1] = z >> k - 16 & 0xffff;
1370
        x[2] = z >> k;
1371
        i = 2;
1372
        }
1373
      else {
1374
        x[0] = y & 0xffff;
1375
        x[1] = y >> 16 | z << 16 - k & 0xffff;
1376
        x[2] = z >> k & 0xffff;
1377
        x[3] = z >> k+16;
1378
        i = 3;
1379
        }
1380
    else {
1381
      x[0] = y & 0xffff;
1382
      x[1] = y >> 16;
1383
      x[2] = z & 0xffff;
1384
      x[3] = z >> 16;
1385
      i = 3;
1386
      }
1387
    }
1388
  else {
1389
#ifdef DEBUG
1390
    if (!z)
1391
      Bug("Zero passed to d2b");
1392
#endif
1393
    k = lo0bits(&z);
1394
    if (k >= 16) {
1395
      x[0] = z;
1396
      i = 0;
1397
      }
1398
    else {
1399
      x[0] = z & 0xffff;
1400
      x[1] = z >> 16;
1401
      i = 1;
1402
      }
1403
    k += 32;
1404
    }
1405
  while(!x[i])
1406
    --i;
1407
  b->wds = i + 1;
1408
#endif
1409
394k
#ifndef Sudden_Underflow
1410
394k
  if (de) {
1411
364k
#endif
1412
#ifdef IBM
1413
    *e = (de - Bias - (P-1) << 2) + k;
1414
    *bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
1415
#else
1416
364k
    *e = de - Bias - (P-1) + k;
1417
364k
    *bits = P - k;
1418
364k
#endif
1419
364k
#ifndef Sudden_Underflow
1420
364k
    }
1421
29.5k
  else {
1422
29.5k
    *e = de - Bias - (P-1) + 1 + k;
1423
29.5k
#ifdef Pack_32
1424
29.5k
    *bits = 32*i - hi0bits(x[i-1]);
1425
#else
1426
    *bits = (i+2)*16 - hi0bits(x[i]);
1427
#endif
1428
29.5k
    }
1429
394k
#endif
1430
394k
  return b;
1431
394k
  }
1432
#undef d0
1433
#undef d1
1434
1435
 static double
1436
ratio
1437
#ifdef KR_headers
1438
  (a, b) Bigint *a, *b;
1439
#else
1440
  (Bigint *a, Bigint *b)
1441
#endif
1442
80.3k
{
1443
80.3k
  U da, db;
1444
80.3k
  int k, ka, kb;
1445
1446
80.3k
  dval(&da) = b2d(a, &ka);
1447
80.3k
  dval(&db) = b2d(b, &kb);
1448
80.3k
#ifdef Pack_32
1449
80.3k
  k = ka - kb + 32*(a->wds - b->wds);
1450
#else
1451
  k = ka - kb + 16*(a->wds - b->wds);
1452
#endif
1453
#ifdef IBM
1454
  if (k > 0) {
1455
    word0(&da) += (k >> 2)*Exp_msk1;
1456
    if (k &= 3)
1457
      dval(&da) *= 1 << k;
1458
    }
1459
  else {
1460
    k = -k;
1461
    word0(&db) += (k >> 2)*Exp_msk1;
1462
    if (k &= 3)
1463
      dval(&db) *= 1 << k;
1464
    }
1465
#else
1466
80.3k
  if (k > 0)
1467
37.8k
    word0(&da) += k*Exp_msk1;
1468
42.5k
  else {
1469
42.5k
    k = -k;
1470
42.5k
    word0(&db) += k*Exp_msk1;
1471
42.5k
    }
1472
80.3k
#endif
1473
80.3k
  return dval(&da) / dval(&db);
1474
80.3k
  }
1475
1476
 static CONST double
1477
tens[] = {
1478
    1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1479
    1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1480
    1e20, 1e21, 1e22
1481
#ifdef VAX
1482
    , 1e23, 1e24
1483
#endif
1484
    };
1485
1486
 static CONST double
1487
#ifdef IEEE_Arith
1488
bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1489
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
1490
#ifdef Avoid_Underflow
1491
    9007199254740992.*9007199254740992.e-256
1492
    /* = 2^106 * 1e-256 */
1493
#else
1494
    1e-256
1495
#endif
1496
    };
1497
/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
1498
/* flag unnecessarily.  It leads to a song and dance at the end of strtod. */
1499
71.3k
#define Scale_Bit 0x10
1500
73.5k
#define n_bigtens 5
1501
#else
1502
#ifdef IBM
1503
bigtens[] = { 1e16, 1e32, 1e64 };
1504
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 };
1505
#define n_bigtens 3
1506
#else
1507
bigtens[] = { 1e16, 1e32 };
1508
static CONST double tinytens[] = { 1e-16, 1e-32 };
1509
#define n_bigtens 2
1510
#endif
1511
#endif
1512
1513
#undef Need_Hexdig
1514
#ifdef INFNAN_CHECK
1515
#ifndef No_Hex_NaN
1516
#define Need_Hexdig
1517
#endif
1518
#endif
1519
1520
#ifndef Need_Hexdig
1521
#ifndef NO_HEX_FP
1522
#define Need_Hexdig
1523
#endif
1524
#endif
1525
1526
#ifdef Need_Hexdig /*{*/
1527
#if 0
1528
static unsigned char hexdig[256];
1529
1530
 static void
1531
htinit(unsigned char *h, unsigned char *s, int inc)
1532
{
1533
  int i, j;
1534
  for(i = 0; (j = s[i]) !=0; i++)
1535
    h[j] = i + inc;
1536
  }
1537
1538
 static void
1539
hexdig_init(void) /* Use of hexdig_init omitted 20121220 to avoid a */
1540
      /* race condition when multiple threads are used. */
1541
{
1542
#define USC (unsigned char *)
1543
  htinit(hexdig, USC "0123456789", 0x10);
1544
  htinit(hexdig, USC "abcdef", 0x10 + 10);
1545
  htinit(hexdig, USC "ABCDEF", 0x10 + 10);
1546
  }
1547
#else
1548
static const unsigned char hexdig[256] = {
1549
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1550
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1551
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1552
  16,17,18,19,20,21,22,23,24,25,0,0,0,0,0,0,
1553
  0,26,27,28,29,30,31,0,0,0,0,0,0,0,0,0,
1554
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1555
  0,26,27,28,29,30,31,0,0,0,0,0,0,0,0,0,
1556
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1557
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1558
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1559
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1560
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1561
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1562
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1563
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1564
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1565
  };
1566
#endif
1567
#endif /* } Need_Hexdig */
1568
1569
#ifdef INFNAN_CHECK
1570
1571
#ifndef NAN_WORD0
1572
#define NAN_WORD0 0x7ff80000
1573
#endif
1574
1575
#ifndef NAN_WORD1
1576
#define NAN_WORD1 0
1577
#endif
1578
1579
 static int
1580
match
1581
#ifdef KR_headers
1582
  (sp, t) char **sp, *t;
1583
#else
1584
  (const char **sp, const char *t)
1585
#endif
1586
{
1587
  int c, d;
1588
  CONST char *s = *sp;
1589
1590
  while((d = *t++)) {
1591
    if ((c = *++s) >= 'A' && c <= 'Z')
1592
      c += 'a' - 'A';
1593
    if (c != d)
1594
      return 0;
1595
    }
1596
  *sp = s + 1;
1597
  return 1;
1598
  }
1599
1600
#ifndef No_Hex_NaN
1601
 static void
1602
hexnan
1603
#ifdef KR_headers
1604
  (rvp, sp) U *rvp; CONST char **sp;
1605
#else
1606
  (U *rvp, const char **sp)
1607
#endif
1608
{
1609
  ULong c, x[2];
1610
  CONST char *s;
1611
  int c1, havedig, udx0, xshift;
1612
1613
  /**** if (!hexdig['0']) hexdig_init(); ****/
1614
  x[0] = x[1] = 0;
1615
  havedig = xshift = 0;
1616
  udx0 = 1;
1617
  s = *sp;
1618
  /* allow optional initial 0x or 0X */
1619
  while((c = *(CONST unsigned char*)(s+1)) && c <= ' ')
1620
    ++s;
1621
  if (s[1] == '0' && (s[2] == 'x' || s[2] == 'X'))
1622
    s += 2;
1623
  while((c = *(CONST unsigned char*)++s)) {
1624
    if ((c1 = hexdig[c]))
1625
      c  = c1 & 0xf;
1626
    else if (c <= ' ') {
1627
      if (udx0 && havedig) {
1628
        udx0 = 0;
1629
        xshift = 1;
1630
        }
1631
      continue;
1632
      }
1633
#ifdef GDTOA_NON_PEDANTIC_NANCHECK
1634
    else if (/*(*/ c == ')' && havedig) {
1635
      *sp = s + 1;
1636
      break;
1637
      }
1638
    else
1639
      return; /* invalid form: don't change *sp */
1640
#else
1641
    else {
1642
      do {
1643
        if (/*(*/ c == ')') {
1644
          *sp = s + 1;
1645
          break;
1646
          }
1647
        } while((c = *++s));
1648
      break;
1649
      }
1650
#endif
1651
    havedig = 1;
1652
    if (xshift) {
1653
      xshift = 0;
1654
      x[0] = x[1];
1655
      x[1] = 0;
1656
      }
1657
    if (udx0)
1658
      x[0] = (x[0] << 4) | (x[1] >> 28);
1659
    x[1] = (x[1] << 4) | c;
1660
    }
1661
  if ((x[0] &= 0xfffff) || x[1]) {
1662
    word0(rvp) = Exp_mask | x[0];
1663
    word1(rvp) = x[1];
1664
    }
1665
  }
1666
#endif /*No_Hex_NaN*/
1667
#endif /* INFNAN_CHECK */
1668
1669
#ifdef Pack_32
1670
#define ULbits 32
1671
#define kshift 5
1672
98.8k
#define kmask 31
1673
#else
1674
#define ULbits 16
1675
#define kshift 4
1676
#define kmask 15
1677
#endif
1678
1679
#if !defined(NO_HEX_FP) || defined(Honor_FLT_ROUNDS) /*{*/
1680
 static Bigint *
1681
#ifdef KR_headers
1682
increment(b) Bigint *b;
1683
#else
1684
increment(Bigint *b)
1685
#endif
1686
{
1687
  ULong *x, *xe;
1688
  Bigint *b1;
1689
1690
  x = b->x;
1691
  xe = x + b->wds;
1692
  do {
1693
    if (*x < (ULong)0xffffffffL) {
1694
      ++*x;
1695
      return b;
1696
      }
1697
    *x++ = 0;
1698
    } while(x < xe);
1699
  {
1700
    if (b->wds >= b->maxwds) {
1701
      b1 = Balloc(b->k+1);
1702
      Bcopy(b1,b);
1703
      Bfree(b);
1704
      b = b1;
1705
      }
1706
    b->x[b->wds++] = 1;
1707
    }
1708
  return b;
1709
  }
1710
1711
#endif /*}*/
1712
1713
#ifndef NO_HEX_FP /*{*/
1714
1715
 static void
1716
#ifdef KR_headers
1717
rshift(b, k) Bigint *b; int k;
1718
#else
1719
rshift(Bigint *b, int k)
1720
#endif
1721
{
1722
  ULong *x, *x1, *xe, y;
1723
  int n;
1724
1725
  x = x1 = b->x;
1726
  n = k >> kshift;
1727
  if (n < b->wds) {
1728
    xe = x + b->wds;
1729
    x += n;
1730
    if (k &= kmask) {
1731
      n = 32 - k;
1732
      y = *x++ >> k;
1733
      while(x < xe) {
1734
        *x1++ = (y | (*x << n)) & 0xffffffff;
1735
        y = *x++ >> k;
1736
        }
1737
      if ((*x1 = y) !=0)
1738
        x1++;
1739
      }
1740
    else
1741
      while(x < xe)
1742
        *x1++ = *x++;
1743
    }
1744
  if ((b->wds = x1 - b->x) == 0)
1745
    b->x[0] = 0;
1746
  }
1747
1748
 static ULong
1749
#ifdef KR_headers
1750
any_on(b, k) Bigint *b; int k;
1751
#else
1752
any_on(Bigint *b, int k)
1753
#endif
1754
{
1755
  int n, nwds;
1756
  ULong *x, *x0, x1, x2;
1757
1758
  x = b->x;
1759
  nwds = b->wds;
1760
  n = k >> kshift;
1761
  if (n > nwds)
1762
    n = nwds;
1763
  else if (n < nwds && (k &= kmask)) {
1764
    x1 = x2 = x[n];
1765
    x1 >>= k;
1766
    x1 <<= k;
1767
    if (x1 != x2)
1768
      return 1;
1769
    }
1770
  x0 = x;
1771
  x += n;
1772
  while(x > x0)
1773
    if (*--x)
1774
      return 1;
1775
  return 0;
1776
  }
1777
1778
enum {  /* rounding values: same as FLT_ROUNDS */
1779
  Round_zero = 0,
1780
  Round_near = 1,
1781
  Round_up = 2,
1782
  Round_down = 3
1783
  };
1784
1785
 void
1786
#ifdef KR_headers
1787
gethex(sp, rvp, rounding, sign)
1788
  CONST char **sp; U *rvp; int rounding, sign;
1789
#else
1790
gethex( CONST char **sp, U *rvp, int rounding, int sign)
1791
#endif
1792
{
1793
  Bigint *b;
1794
  CONST unsigned char *decpt, *s0, *s, *s1;
1795
  Long e, e1;
1796
  ULong L, lostbits, *x;
1797
  int big, denorm, esign, havedig, k, n, nbits, up, zret;
1798
#ifdef IBM
1799
  int j;
1800
#endif
1801
  enum {
1802
#ifdef IEEE_Arith /*{{*/
1803
    emax = 0x7fe - Bias - P + 1,
1804
    emin = Emin - P + 1
1805
#else /*}{*/
1806
    emin = Emin - P,
1807
#ifdef VAX
1808
    emax = 0x7ff - Bias - P + 1
1809
#endif
1810
#ifdef IBM
1811
    emax = 0x7f - Bias - P
1812
#endif
1813
#endif /*}}*/
1814
    };
1815
#ifdef USE_LOCALE
1816
  int i;
1817
#ifdef NO_LOCALE_CACHE
1818
  const unsigned char *decimalpoint = (unsigned char*)
1819
    localeconv()->decimal_point;
1820
#else
1821
  const unsigned char *decimalpoint;
1822
  static unsigned char *decimalpoint_cache;
1823
  if (!(s0 = decimalpoint_cache)) {
1824
    s0 = (unsigned char*)localeconv()->decimal_point;
1825
    if ((decimalpoint_cache = (unsigned char*)
1826
        MALLOC(strlen((CONST char*)s0) + 1))) {
1827
      strcpy((char*)decimalpoint_cache, (CONST char*)s0);
1828
      s0 = decimalpoint_cache;
1829
      }
1830
    }
1831
  decimalpoint = s0;
1832
#endif
1833
#endif
1834
1835
  /**** if (!hexdig['0']) hexdig_init(); ****/
1836
  havedig = 0;
1837
  s0 = *(CONST unsigned char **)sp + 2;
1838
  while(s0[havedig] == '0')
1839
    havedig++;
1840
  s0 += havedig;
1841
  s = s0;
1842
  decpt = 0;
1843
  zret = 0;
1844
  e = 0;
1845
  if (hexdig[*s])
1846
    havedig++;
1847
  else {
1848
    zret = 1;
1849
#ifdef USE_LOCALE
1850
    for(i = 0; decimalpoint[i]; ++i) {
1851
      if (s[i] != decimalpoint[i])
1852
        goto pcheck;
1853
      }
1854
    decpt = s += i;
1855
#else
1856
    if (*s != '.')
1857
      goto pcheck;
1858
    decpt = ++s;
1859
#endif
1860
    if (!hexdig[*s])
1861
      goto pcheck;
1862
    while(*s == '0')
1863
      s++;
1864
    if (hexdig[*s])
1865
      zret = 0;
1866
    havedig = 1;
1867
    s0 = s;
1868
    }
1869
  while(hexdig[*s])
1870
    s++;
1871
#ifdef USE_LOCALE
1872
  if (*s == *decimalpoint && !decpt) {
1873
    for(i = 1; decimalpoint[i]; ++i) {
1874
      if (s[i] != decimalpoint[i])
1875
        goto pcheck;
1876
      }
1877
    decpt = s += i;
1878
#else
1879
  if (*s == '.' && !decpt) {
1880
    decpt = ++s;
1881
#endif
1882
    while(hexdig[*s])
1883
      s++;
1884
    }/*}*/
1885
  if (decpt)
1886
    e = -(((Long)(s-decpt)) << 2);
1887
 pcheck:
1888
  s1 = s;
1889
  big = esign = 0;
1890
  switch(*s) {
1891
    case 'p':
1892
    case 'P':
1893
    switch(*++s) {
1894
      case '-':
1895
      esign = 1;
1896
      ZEND_FALLTHROUGH;
1897
      case '+':
1898
      s++;
1899
      }
1900
    if ((n = hexdig[*s]) == 0 || n > 0x19) {
1901
      s = s1;
1902
      break;
1903
      }
1904
    e1 = n - 0x10;
1905
    while((n = hexdig[*++s]) !=0 && n <= 0x19) {
1906
      if (e1 & 0xf8000000)
1907
        big = 1;
1908
      e1 = 10*e1 + n - 0x10;
1909
      }
1910
    if (esign)
1911
      e1 = -e1;
1912
    e += e1;
1913
    }
1914
  *sp = (char*)s;
1915
  if (!havedig)
1916
    *sp = (char*)s0 - 1;
1917
  if (zret)
1918
    goto retz1;
1919
  if (big) {
1920
    if (esign) {
1921
#ifdef IEEE_Arith
1922
      switch(rounding) {
1923
        case Round_up:
1924
        if (sign)
1925
          break;
1926
        goto ret_tiny;
1927
        case Round_down:
1928
        if (!sign)
1929
          break;
1930
        goto ret_tiny;
1931
        }
1932
#endif
1933
      goto retz;
1934
#ifdef IEEE_Arith
1935
 ret_tinyf:
1936
      Bfree(b);
1937
 ret_tiny:
1938
#ifndef NO_ERRNO
1939
      errno = ERANGE;
1940
#endif
1941
      word0(rvp) = 0;
1942
      word1(rvp) = 1;
1943
      return;
1944
#endif /* IEEE_Arith */
1945
      }
1946
    switch(rounding) {
1947
      case Round_near:
1948
      goto ovfl1;
1949
      case Round_up:
1950
      if (!sign)
1951
        goto ovfl1;
1952
      goto ret_big;
1953
      case Round_down:
1954
      if (sign)
1955
        goto ovfl1;
1956
      goto ret_big;
1957
      }
1958
 ret_big:
1959
    word0(rvp) = Big0;
1960
    word1(rvp) = Big1;
1961
    return;
1962
    }
1963
  n = s1 - s0 - 1;
1964
  for(k = 0; n > (1 << (kshift-2)) - 1; n >>= 1)
1965
    k++;
1966
  b = Balloc(k);
1967
  x = b->x;
1968
  n = 0;
1969
  L = 0;
1970
#ifdef USE_LOCALE
1971
  for(i = 0; decimalpoint[i+1]; ++i);
1972
#endif
1973
  while(s1 > s0) {
1974
#ifdef USE_LOCALE
1975
    if (*--s1 == decimalpoint[i]) {
1976
      s1 -= i;
1977
      continue;
1978
      }
1979
#else
1980
    if (*--s1 == '.')
1981
      continue;
1982
#endif
1983
    if (n == ULbits) {
1984
      *x++ = L;
1985
      L = 0;
1986
      n = 0;
1987
      }
1988
    L |= (hexdig[*s1] & 0x0f) << n;
1989
    n += 4;
1990
    }
1991
  *x++ = L;
1992
  b->wds = n = x - b->x;
1993
  n = ULbits*n - hi0bits(L);
1994
  nbits = Nbits;
1995
  lostbits = 0;
1996
  x = b->x;
1997
  if (n > nbits) {
1998
    n -= nbits;
1999
    if (any_on(b,n)) {
2000
      lostbits = 1;
2001
      k = n - 1;
2002
      if (x[k>>kshift] & 1 << (k & kmask)) {
2003
        lostbits = 2;
2004
        if (k > 0 && any_on(b,k))
2005
          lostbits = 3;
2006
        }
2007
      }
2008
    rshift(b, n);
2009
    e += n;
2010
    }
2011
  else if (n < nbits) {
2012
    n = nbits - n;
2013
    b = lshift(b, n);
2014
    e -= n;
2015
    x = b->x;
2016
    }
2017
  if (e > Emax) {
2018
 ovfl:
2019
    Bfree(b);
2020
 ovfl1:
2021
#ifndef NO_ERRNO
2022
    errno = ERANGE;
2023
#endif
2024
    word0(rvp) = Exp_mask;
2025
    word1(rvp) = 0;
2026
    return;
2027
    }
2028
  denorm = 0;
2029
  if (e < emin) {
2030
    denorm = 1;
2031
    n = emin - e;
2032
    if (n >= nbits) {
2033
#ifdef IEEE_Arith /*{*/
2034
      switch (rounding) {
2035
        case Round_near:
2036
        if (n == nbits && (n < 2 || any_on(b,n-1)))
2037
          goto ret_tinyf;
2038
        break;
2039
        case Round_up:
2040
        if (!sign)
2041
          goto ret_tinyf;
2042
        break;
2043
        case Round_down:
2044
        if (sign)
2045
          goto ret_tinyf;
2046
        }
2047
#endif /* } IEEE_Arith */
2048
      Bfree(b);
2049
 retz:
2050
#ifndef NO_ERRNO
2051
      errno = ERANGE;
2052
#endif
2053
 retz1:
2054
      rvp->d = 0.;
2055
      return;
2056
      }
2057
    k = n - 1;
2058
    if (lostbits)
2059
      lostbits = 1;
2060
    else if (k > 0)
2061
      lostbits = any_on(b,k);
2062
    if (x[k>>kshift] & 1 << (k & kmask))
2063
      lostbits |= 2;
2064
    nbits -= n;
2065
    rshift(b,n);
2066
    e = emin;
2067
    }
2068
  if (lostbits) {
2069
    up = 0;
2070
    switch(rounding) {
2071
      case Round_zero:
2072
      break;
2073
      case Round_near:
2074
      if (lostbits & 2
2075
       && (lostbits & 1) | (x[0] & 1))
2076
        up = 1;
2077
      break;
2078
      case Round_up:
2079
      up = 1 - sign;
2080
      break;
2081
      case Round_down:
2082
      up = sign;
2083
      }
2084
    if (up) {
2085
      k = b->wds;
2086
      b = increment(b);
2087
      x = b->x;
2088
      if (denorm) {
2089
#if 0
2090
        if (nbits == Nbits - 1
2091
         && x[nbits >> kshift] & 1 << (nbits & kmask))
2092
          denorm = 0; /* not currently used */
2093
#endif
2094
        }
2095
      else if (b->wds > k
2096
       || ((n = nbits & kmask) !=0
2097
           && hi0bits(x[k-1]) < 32-n)) {
2098
        rshift(b,1);
2099
        if (++e > Emax)
2100
          goto ovfl;
2101
        }
2102
      }
2103
    }
2104
#ifdef IEEE_Arith
2105
  if (denorm)
2106
    word0(rvp) = b->wds > 1 ? b->x[1] & ~0x100000 : 0;
2107
  else
2108
    word0(rvp) = (b->x[1] & ~0x100000) | ((e + 0x3ff + 52) << 20);
2109
  word1(rvp) = b->x[0];
2110
#endif
2111
#ifdef IBM
2112
  if ((j = e & 3)) {
2113
    k = b->x[0] & ((1 << j) - 1);
2114
    rshift(b,j);
2115
    if (k) {
2116
      switch(rounding) {
2117
        case Round_up:
2118
        if (!sign)
2119
          increment(b);
2120
        break;
2121
        case Round_down:
2122
        if (sign)
2123
          increment(b);
2124
        break;
2125
        case Round_near:
2126
        j = 1 << (j-1);
2127
        if (k & j && ((k & (j-1)) | lostbits))
2128
          increment(b);
2129
        }
2130
      }
2131
    }
2132
  e >>= 2;
2133
  word0(rvp) = b->x[1] | ((e + 65 + 13) << 24);
2134
  word1(rvp) = b->x[0];
2135
#endif
2136
#ifdef VAX
2137
  /* The next two lines ignore swap of low- and high-order 2 bytes. */
2138
  /* word0(rvp) = (b->x[1] & ~0x800000) | ((e + 129 + 55) << 23); */
2139
  /* word1(rvp) = b->x[0]; */
2140
  word0(rvp) = ((b->x[1] & ~0x800000) >> 16) | ((e + 129 + 55) << 7) | (b->x[1] << 16);
2141
  word1(rvp) = (b->x[0] >> 16) | (b->x[0] << 16);
2142
#endif
2143
  Bfree(b);
2144
  }
2145
#endif /*!NO_HEX_FP}*/
2146
2147
 static int
2148
#ifdef KR_headers
2149
dshift(b, p2) Bigint *b; int p2;
2150
#else
2151
dshift(Bigint *b, int p2)
2152
#endif
2153
98.8k
{
2154
98.8k
  int rv = hi0bits(b->x[b->wds-1]) - 4;
2155
98.8k
  if (p2 > 0)
2156
45.6k
    rv -= p2;
2157
98.8k
  return rv & kmask;
2158
98.8k
  }
2159
2160
 static int
2161
quorem
2162
#ifdef KR_headers
2163
  (b, S) Bigint *b, *S;
2164
#else
2165
  (Bigint *b, Bigint *S)
2166
#endif
2167
1.48M
{
2168
1.48M
  int n;
2169
1.48M
  ULong *bx, *bxe, q, *sx, *sxe;
2170
1.48M
#ifdef ULLong
2171
1.48M
  ULLong borrow, carry, y, ys;
2172
#else
2173
  ULong borrow, carry, y, ys;
2174
#ifdef Pack_32
2175
  ULong si, z, zs;
2176
#endif
2177
#endif
2178
2179
1.48M
  n = S->wds;
2180
#ifdef DEBUG
2181
  /*debug*/ if (b->wds > n)
2182
  /*debug*/ Bug("oversize b in quorem");
2183
#endif
2184
1.48M
  if (b->wds < n)
2185
44.5k
    return 0;
2186
1.44M
  sx = S->x;
2187
1.44M
  sxe = sx + --n;
2188
1.44M
  bx = b->x;
2189
1.44M
  bxe = bx + n;
2190
1.44M
  q = *bxe / (*sxe + 1);  /* ensure q <= true quotient */
2191
#ifdef DEBUG
2192
#ifdef NO_STRTOD_BIGCOMP
2193
  /*debug*/ if (q > 9)
2194
#else
2195
  /* An oversized q is possible when quorem is called from bigcomp and */
2196
  /* the input is near, e.g., twice the smallest denormalized number. */
2197
  /*debug*/ if (q > 15)
2198
#endif
2199
  /*debug*/ Bug("oversized quotient in quorem");
2200
#endif
2201
1.44M
  if (q) {
2202
1.01M
    borrow = 0;
2203
1.01M
    carry = 0;
2204
11.1M
    do {
2205
11.1M
#ifdef ULLong
2206
11.1M
      ys = *sx++ * (ULLong)q + carry;
2207
11.1M
      carry = ys >> 32;
2208
11.1M
      y = *bx - (ys & FFFFFFFF) - borrow;
2209
11.1M
      borrow = y >> 32 & (ULong)1;
2210
11.1M
      *bx++ = y & FFFFFFFF;
2211
#else
2212
#ifdef Pack_32
2213
      si = *sx++;
2214
      ys = (si & 0xffff) * q + carry;
2215
      zs = (si >> 16) * q + (ys >> 16);
2216
      carry = zs >> 16;
2217
      y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
2218
      borrow = (y & 0x10000) >> 16;
2219
      z = (*bx >> 16) - (zs & 0xffff) - borrow;
2220
      borrow = (z & 0x10000) >> 16;
2221
      Storeinc(bx, z, y);
2222
#else
2223
      ys = *sx++ * q + carry;
2224
      carry = ys >> 16;
2225
      y = *bx - (ys & 0xffff) - borrow;
2226
      borrow = (y & 0x10000) >> 16;
2227
      *bx++ = y & 0xffff;
2228
#endif
2229
#endif
2230
11.1M
      }
2231
11.1M
      while(sx <= sxe);
2232
1.01M
    if (!*bxe) {
2233
456
      bx = b->x;
2234
456
      while(--bxe > bx && !*bxe)
2235
0
        --n;
2236
456
      b->wds = n;
2237
456
      }
2238
1.01M
    }
2239
1.44M
  if (cmp(b, S) >= 0) {
2240
31.2k
    q++;
2241
31.2k
    borrow = 0;
2242
31.2k
    carry = 0;
2243
31.2k
    bx = b->x;
2244
31.2k
    sx = S->x;
2245
94.1k
    do {
2246
94.1k
#ifdef ULLong
2247
94.1k
      ys = *sx++ + carry;
2248
94.1k
      carry = ys >> 32;
2249
94.1k
      y = *bx - (ys & FFFFFFFF) - borrow;
2250
94.1k
      borrow = y >> 32 & (ULong)1;
2251
94.1k
      *bx++ = y & FFFFFFFF;
2252
#else
2253
#ifdef Pack_32
2254
      si = *sx++;
2255
      ys = (si & 0xffff) + carry;
2256
      zs = (si >> 16) + (ys >> 16);
2257
      carry = zs >> 16;
2258
      y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
2259
      borrow = (y & 0x10000) >> 16;
2260
      z = (*bx >> 16) - (zs & 0xffff) - borrow;
2261
      borrow = (z & 0x10000) >> 16;
2262
      Storeinc(bx, z, y);
2263
#else
2264
      ys = *sx++ + carry;
2265
      carry = ys >> 16;
2266
      y = *bx - (ys & 0xffff) - borrow;
2267
      borrow = (y & 0x10000) >> 16;
2268
      *bx++ = y & 0xffff;
2269
#endif
2270
#endif
2271
94.1k
      }
2272
94.1k
      while(sx <= sxe);
2273
31.2k
    bx = b->x;
2274
31.2k
    bxe = bx + n;
2275
31.2k
    if (!*bxe) {
2276
32.7k
      while(--bxe > bx && !*bxe)
2277
1.88k
        --n;
2278
30.8k
      b->wds = n;
2279
30.8k
      }
2280
31.2k
    }
2281
1.44M
  return q;
2282
1.48M
  }
2283
2284
#if defined(Avoid_Underflow) || !defined(NO_STRTOD_BIGCOMP) /*{*/
2285
 static double
2286
sulp
2287
#ifdef KR_headers
2288
  (x, bc) U *x; BCinfo *bc;
2289
#else
2290
  (U *x, BCinfo *bc)
2291
#endif
2292
1.48k
{
2293
1.48k
  U u;
2294
1.48k
  double rv;
2295
1.48k
  int i;
2296
2297
1.48k
  rv = ulp(x);
2298
1.48k
  if (!bc->scale || (i = 2*P + 1 - ((word0(x) & Exp_mask) >> Exp_shift)) <= 0)
2299
1.46k
    return rv; /* Is there an example where i <= 0 ? */
2300
21
  word0(&u) = Exp_1 + (i << Exp_shift);
2301
21
  word1(&u) = 0;
2302
21
  return rv * u.d;
2303
1.48k
  }
2304
#endif /*}*/
2305
2306
#ifndef NO_STRTOD_BIGCOMP
2307
 static void
2308
bigcomp
2309
#ifdef KR_headers
2310
  (rv, s0, bc)
2311
  U *rv; CONST char *s0; BCinfo *bc;
2312
#else
2313
  (U *rv, const char *s0, BCinfo *bc)
2314
#endif
2315
44.4k
{
2316
44.4k
  Bigint *b, *d;
2317
44.4k
  int b2, bbits, d2, dd, dig, dsign, i, j, nd, nd0, p2, p5, speccase;
2318
2319
44.4k
  dsign = bc->dsign;
2320
44.4k
  nd = bc->nd;
2321
44.4k
  nd0 = bc->nd0;
2322
44.4k
  p5 = nd + bc->e0 - 1;
2323
44.4k
  speccase = 0;
2324
44.4k
#ifndef Sudden_Underflow
2325
44.4k
  if (rv->d == 0.) { /* special case: value near underflow-to-zero */
2326
        /* threshold was rounded to zero */
2327
2.44k
    b = i2b(1);
2328
2.44k
    p2 = Emin - P + 1;
2329
2.44k
    bbits = 1;
2330
2.44k
#ifdef Avoid_Underflow
2331
2.44k
    word0(rv) = (P+2) << Exp_shift;
2332
#else
2333
    word1(rv) = 1;
2334
#endif
2335
2.44k
    i = 0;
2336
#ifdef Honor_FLT_ROUNDS
2337
    if (bc->rounding == 1)
2338
#endif
2339
2.44k
      {
2340
2.44k
      speccase = 1;
2341
2.44k
      --p2;
2342
2.44k
      dsign = 0;
2343
2.44k
      goto have_i;
2344
2.44k
      }
2345
2.44k
    }
2346
42.0k
  else
2347
42.0k
#endif
2348
42.0k
    b = d2b(rv, &p2, &bbits);
2349
42.0k
#ifdef Avoid_Underflow
2350
42.0k
  p2 -= bc->scale;
2351
42.0k
#endif
2352
  /* floor(log2(rv)) == bbits - 1 + p2 */
2353
  /* Check for denormal case. */
2354
42.0k
  i = P - bbits;
2355
42.0k
  if (i > (j = P - Emin - 1 + p2)) {
2356
#ifdef Sudden_Underflow
2357
    Bfree(b);
2358
    b = i2b(1);
2359
    p2 = Emin;
2360
    i = P - 1;
2361
#ifdef Avoid_Underflow
2362
    word0(rv) = (1 + bc->scale) << Exp_shift;
2363
#else
2364
    word0(rv) = Exp_msk1;
2365
#endif
2366
    word1(rv) = 0;
2367
#else
2368
849
    i = j;
2369
849
#endif
2370
849
    }
2371
#ifdef Honor_FLT_ROUNDS
2372
  if (bc->rounding != 1) {
2373
    if (i > 0)
2374
      b = lshift(b, i);
2375
    if (dsign)
2376
      b = increment(b);
2377
    }
2378
  else
2379
#endif
2380
42.0k
    {
2381
42.0k
    b = lshift(b, ++i);
2382
42.0k
    b->x[0] |= 1;
2383
42.0k
    }
2384
42.0k
#ifndef Sudden_Underflow
2385
44.4k
 have_i:
2386
44.4k
#endif
2387
44.4k
  p2 -= p5 + i;
2388
44.4k
  d = i2b(1);
2389
  /* Arrange for convenient computation of quotients:
2390
   * shift left if necessary so divisor has 4 leading 0 bits.
2391
   */
2392
44.4k
  if (p5 > 0)
2393
34.7k
    d = pow5mult(d, p5);
2394
9.72k
  else if (p5 < 0)
2395
9.15k
    b = pow5mult(b, -p5);
2396
44.4k
  if (p2 > 0) {
2397
25.2k
    b2 = p2;
2398
25.2k
    d2 = 0;
2399
25.2k
    }
2400
19.2k
  else {
2401
19.2k
    b2 = 0;
2402
19.2k
    d2 = -p2;
2403
19.2k
    }
2404
44.4k
  i = dshift(d, d2);
2405
44.4k
  if ((b2 += i) > 0)
2406
42.8k
    b = lshift(b, b2);
2407
44.4k
  if ((d2 += i) > 0)
2408
43.5k
    d = lshift(d, d2);
2409
2410
  /* Now b/d = exactly half-way between the two floating-point values */
2411
  /* on either side of the input string.  Compute first digit of b/d. */
2412
2413
44.4k
  if (!(dig = quorem(b,d))) {
2414
0
    b = multadd(b, 10, 0);  /* very unlikely */
2415
0
    dig = quorem(b,d);
2416
0
    }
2417
2418
  /* Compare b/d with s0 */
2419
2420
662k
  for(i = 0; i < nd0; ) {
2421
649k
    if ((dd = s0[i++] - '0' - dig))
2422
30.7k
      goto ret;
2423
619k
    if (!b->x[0] && b->wds == 1) {
2424
835
      if (i < nd)
2425
753
        dd = 1;
2426
835
      goto ret;
2427
835
      }
2428
618k
    b = multadd(b, 10, 0);
2429
618k
    dig = quorem(b,d);
2430
618k
    }
2431
69.0k
  for(j = bc->dp1; i++ < nd;) {
2432
67.4k
    if ((dd = s0[j++] - '0' - dig))
2433
11.2k
      goto ret;
2434
56.1k
    if (!b->x[0] && b->wds == 1) {
2435
19
      if (i < nd)
2436
19
        dd = 1;
2437
19
      goto ret;
2438
19
      }
2439
56.1k
    b = multadd(b, 10, 0);
2440
56.1k
    dig = quorem(b,d);
2441
56.1k
    }
2442
1.64k
  if (dig > 0 || b->x[0] || b->wds > 1)
2443
1.64k
    dd = -1;
2444
44.4k
 ret:
2445
44.4k
  Bfree(b);
2446
44.4k
  Bfree(d);
2447
#ifdef Honor_FLT_ROUNDS
2448
  if (bc->rounding != 1) {
2449
    if (dd < 0) {
2450
      if (bc->rounding == 0) {
2451
        if (!dsign)
2452
          goto retlow1;
2453
        }
2454
      else if (dsign)
2455
        goto rethi1;
2456
      }
2457
    else if (dd > 0) {
2458
      if (bc->rounding == 0) {
2459
        if (dsign)
2460
          goto rethi1;
2461
        goto ret1;
2462
        }
2463
      if (!dsign)
2464
        goto rethi1;
2465
      dval(rv) += 2.*sulp(rv,bc);
2466
      }
2467
    else {
2468
      bc->inexact = 0;
2469
      if (dsign)
2470
        goto rethi1;
2471
      }
2472
    }
2473
  else
2474
#endif
2475
44.4k
  if (speccase) {
2476
2.44k
    if (dd <= 0)
2477
2.44k
      rv->d = 0.;
2478
2.44k
    }
2479
42.0k
  else if (dd < 0) {
2480
41.0k
    if (!dsign)  /* does not happen for round-near */
2481
0
retlow1:
2482
0
      dval(rv) -= sulp(rv,bc);
2483
41.0k
    }
2484
975
  else if (dd > 0) {
2485
893
    if (dsign) {
2486
975
 rethi1:
2487
975
      dval(rv) += sulp(rv,bc);
2488
975
      }
2489
893
    }
2490
82
  else {
2491
    /* Exact half-way case:  apply round-even rule. */
2492
82
    if ((j = ((word0(rv) & Exp_mask) >> Exp_shift) - bc->scale) <= 0) {
2493
0
      i = 1 - j;
2494
0
      if (i <= 31) {
2495
0
        if (word1(rv) & (0x1 << i))
2496
0
          goto odd;
2497
0
        }
2498
0
      else if (word0(rv) & (0x1 << (i-32)))
2499
0
        goto odd;
2500
0
      }
2501
82
    else if (word1(rv) & 1) {
2502
82
 odd:
2503
82
      if (dsign)
2504
82
        goto rethi1;
2505
0
      goto retlow1;
2506
82
      }
2507
82
    }
2508
2509
#ifdef Honor_FLT_ROUNDS
2510
 ret1:
2511
#endif
2512
44.4k
  return;
2513
44.4k
  }
2514
#endif /* NO_STRTOD_BIGCOMP */
2515
2516
ZEND_API double
2517
zend_strtod
2518
#ifdef KR_headers
2519
  (s00, se) CONST char *s00; char **se;
2520
#else
2521
  (const char *s00, const char **se)
2522
#endif
2523
273k
{
2524
273k
  int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, e, e1;
2525
273k
  int esign, i, j, k, nd, nd0, nf, nz, nz0, nz1, sign;
2526
273k
  CONST char *s, *s0, *s1;
2527
273k
  volatile double aadj, aadj1;
2528
273k
  Long L;
2529
273k
  U aadj2, adj, rv, rv0;
2530
273k
  ULong y, z;
2531
273k
  BCinfo bc;
2532
273k
  Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
2533
273k
#ifdef Avoid_Underflow
2534
273k
  ULong Lsb, Lsb1;
2535
273k
#endif
2536
#ifdef SET_INEXACT
2537
  int oldinexact;
2538
#endif
2539
273k
#ifndef NO_STRTOD_BIGCOMP
2540
273k
  int req_bigcomp = 0;
2541
273k
#endif
2542
#ifdef Honor_FLT_ROUNDS /*{*/
2543
#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
2544
  bc.rounding = Flt_Rounds;
2545
#else /*}{*/
2546
  bc.rounding = 1;
2547
  switch(fegetround()) {
2548
    case FE_TOWARDZERO: bc.rounding = 0; break;
2549
    case FE_UPWARD: bc.rounding = 2; break;
2550
    case FE_DOWNWARD: bc.rounding = 3;
2551
    }
2552
#endif /*}}*/
2553
#endif /*}*/
2554
#ifdef USE_LOCALE
2555
  CONST char *s2;
2556
#endif
2557
2558
273k
  sign = nz0 = nz1 = nz = bc.dplen = bc.uflchk = 0;
2559
273k
  dval(&rv) = 0.;
2560
274k
  for(s = s00;;s++) switch(*s) {
2561
11.0k
    case '-':
2562
11.0k
      sign = 1;
2563
11.0k
      ZEND_FALLTHROUGH;
2564
15.3k
    case '+':
2565
15.3k
      if (*++s)
2566
15.3k
        goto break2;
2567
1
      ZEND_FALLTHROUGH;
2568
5
    case 0:
2569
5
      goto ret0;
2570
101
    case '\t':
2571
275
    case '\n':
2572
393
    case '\v':
2573
546
    case '\f':
2574
720
    case '\r':
2575
860
    case ' ':
2576
860
      continue;
2577
258k
    default:
2578
258k
      goto break2;
2579
274k
    }
2580
273k
 break2:
2581
273k
  if (*s == '0') {
2582
#ifndef NO_HEX_FP /*{*/
2583
    switch(s[1]) {
2584
      case 'x':
2585
      case 'X':
2586
#ifdef Honor_FLT_ROUNDS
2587
      gethex(&s, &rv, bc.rounding, sign);
2588
#else
2589
      gethex(&s, &rv, 1, sign);
2590
#endif
2591
      goto ret;
2592
      }
2593
#endif /*}*/
2594
85.3k
    nz0 = 1;
2595
903k
    while(*++s == '0') ;
2596
85.3k
    if (!*s)
2597
1
      goto ret;
2598
85.3k
    }
2599
273k
  s0 = s;
2600
273k
  y = z = 0;
2601
11.8M
  for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
2602
11.6M
    if (nd < 9)
2603
1.39M
      y = 10*y + c - '0';
2604
10.2M
    else if (nd < DBL_DIG + 2)
2605
826k
      z = 10*z + c - '0';
2606
273k
  nd0 = nd;
2607
273k
  bc.dp0 = bc.dp1 = s - s0;
2608
576k
  for(s1 = s; s1 > s0 && *--s1 == '0'; )
2609
303k
    ++nz1;
2610
#ifdef USE_LOCALE
2611
  s1 = localeconv()->decimal_point;
2612
  if (c == *s1) {
2613
    c = '.';
2614
    if (*++s1) {
2615
      s2 = s;
2616
      for(;;) {
2617
        if (*++s2 != *s1) {
2618
          c = 0;
2619
          break;
2620
          }
2621
        if (!*++s1) {
2622
          s = s2;
2623
          break;
2624
          }
2625
        }
2626
      }
2627
    }
2628
#endif
2629
273k
  if (c == '.') {
2630
108k
    c = *++s;
2631
108k
    bc.dp1 = s - s0;
2632
108k
    bc.dplen = bc.dp1 - bc.dp0;
2633
108k
    if (!nd) {
2634
7.38M
      for(; c == '0'; c = *++s)
2635
7.34M
        nz++;
2636
40.4k
      if (c > '0' && c <= '9') {
2637
34.4k
        bc.dp0 = s0 - s;
2638
34.4k
        bc.dp1 = bc.dp0 + bc.dplen;
2639
34.4k
        s0 = s;
2640
34.4k
        nf += nz;
2641
34.4k
        nz = 0;
2642
34.4k
        goto have_dig;
2643
34.4k
        }
2644
6.06k
      goto dig_done;
2645
40.4k
      }
2646
6.00M
    for(; c >= '0' && c <= '9'; c = *++s) {
2647
5.93M
 have_dig:
2648
5.93M
      nz++;
2649
5.93M
      if (c -= '0') {
2650
1.03M
        nf += nz;
2651
5.80M
        for(i = 1; i < nz; i++)
2652
4.77M
          if (nd++ < 9)
2653
101k
            y *= 10;
2654
4.67M
          else if (nd <= DBL_DIG + 2)
2655
176k
            z *= 10;
2656
1.03M
        if (nd++ < 9)
2657
225k
          y = 10*y + c;
2658
805k
        else if (nd <= DBL_DIG + 2)
2659
127k
          z = 10*z + c;
2660
1.03M
        nz = nz1 = 0;
2661
1.03M
        }
2662
5.93M
      }
2663
67.9k
    }
2664
273k
 dig_done:
2665
273k
  if (nd < 0) {
2666
    /* overflow */
2667
0
    nd = DBL_DIG + 2;
2668
0
  }
2669
273k
  if (nf < 0) {
2670
    /* overflow */
2671
0
    nf = DBL_DIG + 2;
2672
0
  }
2673
273k
  e = 0;
2674
273k
  if (c == 'e' || c == 'E') {
2675
77.0k
    if (!nd && !nz && !nz0) {
2676
1
      goto ret0;
2677
1
      }
2678
77.0k
    s00 = s;
2679
77.0k
    esign = 0;
2680
77.0k
    switch(c = *++s) {
2681
53.2k
      case '-':
2682
53.2k
        esign = 1;
2683
53.2k
        ZEND_FALLTHROUGH;
2684
53.2k
      case '+':
2685
53.2k
        c = *++s;
2686
77.0k
      }
2687
77.0k
    if (c >= '0' && c <= '9') {
2688
1.46M
      while(c == '0')
2689
1.38M
        c = *++s;
2690
76.2k
      if (c > '0' && c <= '9') {
2691
71.0k
        L = c - '0';
2692
71.0k
        s1 = s;
2693
937k
        while((c = *++s) >= '0' && c <= '9')
2694
866k
          L = (Long) (10*(ULong)L + (c - '0'));
2695
71.0k
        if (s - s1 > 8 || L > 19999)
2696
          /* Avoid confusion from exponents
2697
           * so large that e might overflow.
2698
           */
2699
3.11k
          e = 19999; /* safe for 16 bit ints */
2700
67.9k
        else
2701
67.9k
          e = (int)L;
2702
71.0k
        if (esign)
2703
52.8k
          e = -e;
2704
71.0k
        }
2705
5.20k
      else
2706
5.20k
        e = 0;
2707
76.2k
      }
2708
803
    else
2709
803
      s = s00;
2710
77.0k
    }
2711
273k
  if (!nd) {
2712
6.94k
    if (!nz && !nz0) {
2713
#ifdef INFNAN_CHECK
2714
      /* Check for Nan and Infinity */
2715
      if (!bc.dplen)
2716
       switch(c) {
2717
        case 'i':
2718
        case 'I':
2719
        if (match(&s,"nf")) {
2720
          --s;
2721
          if (!match(&s,"inity"))
2722
            ++s;
2723
          word0(&rv) = 0x7ff00000;
2724
          word1(&rv) = 0;
2725
          goto ret;
2726
          }
2727
        break;
2728
        case 'n':
2729
        case 'N':
2730
        if (match(&s, "an")) {
2731
          word0(&rv) = NAN_WORD0;
2732
          word1(&rv) = NAN_WORD1;
2733
#ifndef No_Hex_NaN
2734
          if (*s == '(') /*)*/
2735
            hexnan(&rv, &s);
2736
#endif
2737
          goto ret;
2738
          }
2739
        }
2740
#endif /* INFNAN_CHECK */
2741
22
 ret0:
2742
22
      s = s00;
2743
22
      sign = 0;
2744
22
      }
2745
6.94k
    goto ret;
2746
6.94k
    }
2747
266k
  bc.e0 = e1 = e -= nf;
2748
2749
  /* Now we have nd0 digits, starting at s0, followed by a
2750
   * decimal point, followed by nd-nd0 digits.  The number we're
2751
   * after is the integer represented by those digits times
2752
   * 10**e */
2753
2754
266k
  if (!nd0)
2755
34.4k
    nd0 = nd;
2756
266k
  k = nd < DBL_DIG + 2 ? nd : DBL_DIG + 2;
2757
266k
  dval(&rv) = y;
2758
266k
  if (k > 9) {
2759
#ifdef SET_INEXACT
2760
    if (k > DBL_DIG)
2761
      oldinexact = get_inexact();
2762
#endif
2763
150k
    dval(&rv) = tens[k - 9] * dval(&rv) + z;
2764
150k
    }
2765
266k
  bd0 = 0;
2766
266k
  if (nd <= DBL_DIG
2767
133k
#ifndef RND_PRODQUOT
2768
133k
#ifndef Honor_FLT_ROUNDS
2769
133k
    && Flt_Rounds == 1
2770
266k
#endif
2771
266k
#endif
2772
266k
      ) {
2773
133k
    if (!e)
2774
53.1k
      goto ret;
2775
80.1k
#ifndef ROUND_BIASED_without_Round_Up
2776
80.1k
    if (e > 0) {
2777
9.55k
      if (e <= Ten_pmax) {
2778
#ifdef VAX
2779
        goto vax_ovfl_check;
2780
#else
2781
#ifdef Honor_FLT_ROUNDS
2782
        /* round correctly FLT_ROUNDS = 2 or 3 */
2783
        if (sign) {
2784
          rv.d = -rv.d;
2785
          sign = 0;
2786
          }
2787
#endif
2788
1.25k
        /* rv = */ rounded_product(dval(&rv), tens[e]);
2789
1.25k
        goto ret;
2790
1.25k
#endif
2791
1.25k
        }
2792
8.29k
      i = DBL_DIG - nd;
2793
8.29k
      if (e <= Ten_pmax + i) {
2794
        /* A fancier test would sometimes let us do
2795
         * this for larger i values.
2796
         */
2797
#ifdef Honor_FLT_ROUNDS
2798
        /* round correctly FLT_ROUNDS = 2 or 3 */
2799
        if (sign) {
2800
          rv.d = -rv.d;
2801
          sign = 0;
2802
          }
2803
#endif
2804
41
        e -= i;
2805
41
        dval(&rv) *= tens[i];
2806
#ifdef VAX
2807
        /* VAX exponent range is so narrow we must
2808
         * worry about overflow here...
2809
         */
2810
 vax_ovfl_check:
2811
        word0(&rv) -= P*Exp_msk1;
2812
        /* rv = */ rounded_product(dval(&rv), tens[e]);
2813
        if ((word0(&rv) & Exp_mask)
2814
         > Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
2815
          goto ovfl;
2816
        word0(&rv) += P*Exp_msk1;
2817
#else
2818
41
        /* rv = */ rounded_product(dval(&rv), tens[e]);
2819
41
#endif
2820
41
        goto ret;
2821
41
        }
2822
8.29k
      }
2823
70.6k
#ifndef Inaccurate_Divide
2824
70.6k
    else if (e >= -Ten_pmax) {
2825
#ifdef Honor_FLT_ROUNDS
2826
      /* round correctly FLT_ROUNDS = 2 or 3 */
2827
      if (sign) {
2828
        rv.d = -rv.d;
2829
        sign = 0;
2830
        }
2831
#endif
2832
28.8k
      /* rv = */ rounded_quotient(dval(&rv), tens[-e]);
2833
28.8k
      goto ret;
2834
28.8k
      }
2835
80.1k
#endif
2836
80.1k
#endif /* ROUND_BIASED_without_Round_Up */
2837
80.1k
    }
2838
183k
  e1 += nd - k;
2839
2840
183k
#ifdef IEEE_Arith
2841
#ifdef SET_INEXACT
2842
  bc.inexact = 1;
2843
  if (k <= DBL_DIG)
2844
    oldinexact = get_inexact();
2845
#endif
2846
183k
#ifdef Avoid_Underflow
2847
183k
  bc.scale = 0;
2848
183k
#endif
2849
#ifdef Honor_FLT_ROUNDS
2850
  if (bc.rounding >= 2) {
2851
    if (sign)
2852
      bc.rounding = bc.rounding == 2 ? 0 : 2;
2853
    else
2854
      if (bc.rounding != 2)
2855
        bc.rounding = 0;
2856
    }
2857
#endif
2858
183k
#endif /*IEEE_Arith*/
2859
2860
  /* Get starting approximation = rv * 10**e1 */
2861
2862
183k
  if (e1 > 0) {
2863
82.1k
    if ((i = e1 & 15))
2864
80.1k
      dval(&rv) *= tens[i];
2865
82.1k
    if (e1 &= ~15) {
2866
63.8k
      if (e1 > DBL_MAX_10_EXP) {
2867
13.1k
 ovfl:
2868
        /* Can't trust HUGE_VAL */
2869
13.1k
#ifdef IEEE_Arith
2870
#ifdef Honor_FLT_ROUNDS
2871
        switch(bc.rounding) {
2872
          case 0: /* toward 0 */
2873
          case 3: /* toward -infinity */
2874
          word0(&rv) = Big0;
2875
          word1(&rv) = Big1;
2876
          break;
2877
          default:
2878
          word0(&rv) = Exp_mask;
2879
          word1(&rv) = 0;
2880
          }
2881
#else /*Honor_FLT_ROUNDS*/
2882
13.1k
        word0(&rv) = Exp_mask;
2883
13.1k
        word1(&rv) = 0;
2884
13.1k
#endif /*Honor_FLT_ROUNDS*/
2885
#ifdef SET_INEXACT
2886
        /* set overflow bit */
2887
        dval(&rv0) = 1e300;
2888
        dval(&rv0) *= dval(&rv0);
2889
#endif
2890
#else /*IEEE_Arith*/
2891
        word0(&rv) = Big0;
2892
        word1(&rv) = Big1;
2893
#endif /*IEEE_Arith*/
2894
17.5k
 range_err:
2895
17.5k
        if (bd0) {
2896
632
          Bfree(bb);
2897
632
          Bfree(bd);
2898
632
          Bfree(bs);
2899
632
          Bfree(bd0);
2900
632
          Bfree(delta);
2901
632
          }
2902
#ifndef NO_ERRNO
2903
        errno = ERANGE;
2904
#endif
2905
17.5k
        goto ret;
2906
13.1k
        }
2907
57.6k
      e1 >>= 4;
2908
199k
      for(j = 0; e1 > 1; j++, e1 >>= 1)
2909
142k
        if (e1 & 1)
2910
63.7k
          dval(&rv) *= bigtens[j];
2911
    /* The last multiplication could overflow. */
2912
57.6k
      word0(&rv) -= P*Exp_msk1;
2913
57.6k
      dval(&rv) *= bigtens[j];
2914
57.6k
      if ((z = word0(&rv) & Exp_mask)
2915
57.6k
       > Exp_msk1*(DBL_MAX_EXP+Bias-P))
2916
6.35k
        goto ovfl;
2917
51.3k
      if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
2918
        /* set to largest number */
2919
        /* (Can't trust DBL_MAX) */
2920
632
        word0(&rv) = Big0;
2921
632
        word1(&rv) = Big1;
2922
632
        }
2923
50.6k
      else
2924
50.6k
        word0(&rv) += P*Exp_msk1;
2925
51.3k
      }
2926
82.1k
    }
2927
100k
  else if (e1 < 0) {
2928
98.1k
    e1 = -e1;
2929
98.1k
    if ((i = e1 & 15))
2930
91.8k
      dval(&rv) /= tens[i];
2931
98.1k
    if (e1 >>= 4) {
2932
71.9k
      if (e1 >= 1 << n_bigtens)
2933
589
        goto undfl;
2934
71.3k
#ifdef Avoid_Underflow
2935
71.3k
      if (e1 & Scale_Bit)
2936
51.3k
        bc.scale = 2*P;
2937
380k
      for(j = 0; e1 > 0; j++, e1 >>= 1)
2938
308k
        if (e1 & 1)
2939
177k
          dval(&rv) *= tinytens[j];
2940
71.3k
      if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask)
2941
51.3k
            >> Exp_shift)) > 0) {
2942
        /* scaled rv is denormal; clear j low bits */
2943
40.1k
        if (j >= 32) {
2944
8.30k
          if (j > 54)
2945
1.34k
            goto undfl;
2946
6.95k
          word1(&rv) = 0;
2947
6.95k
          if (j >= 53)
2948
2.56k
           word0(&rv) = (P+2)*Exp_msk1;
2949
4.38k
          else
2950
4.38k
           word0(&rv) &= 0xffffffff << (j-32);
2951
6.95k
          }
2952
31.8k
        else
2953
31.8k
          word1(&rv) &= 0xffffffff << j;
2954
40.1k
        }
2955
#else
2956
      for(j = 0; e1 > 1; j++, e1 >>= 1)
2957
        if (e1 & 1)
2958
          dval(&rv) *= tinytens[j];
2959
      /* The last multiplication could underflow. */
2960
      dval(&rv0) = dval(&rv);
2961
      dval(&rv) *= tinytens[j];
2962
      if (!dval(&rv)) {
2963
        dval(&rv) = 2.*dval(&rv0);
2964
        dval(&rv) *= tinytens[j];
2965
#endif
2966
70.0k
        if (!dval(&rv)) {
2967
4.38k
 undfl:
2968
4.38k
          dval(&rv) = 0.;
2969
4.38k
          goto range_err;
2970
0
          }
2971
#ifndef Avoid_Underflow
2972
        word0(&rv) = Tiny0;
2973
        word1(&rv) = Tiny1;
2974
        /* The refinement below will clean
2975
         * this approximation up.
2976
         */
2977
        }
2978
#endif
2979
70.0k
      }
2980
98.1k
    }
2981
2982
  /* Now the hard part -- adjusting rv to the correct value.*/
2983
2984
  /* Put digits into bd: true value = bd * 10^e */
2985
2986
168k
  bc.nd = nd - nz1;
2987
168k
#ifndef NO_STRTOD_BIGCOMP
2988
168k
  bc.nd0 = nd0; /* Only needed if nd > strtod_diglim, but done here */
2989
      /* to silence an erroneous warning about bc.nd0 */
2990
      /* possibly not being initialized. */
2991
168k
  if (nd > strtod_diglim) {
2992
    /* ASSERT(strtod_diglim >= 18); 18 == one more than the */
2993
    /* minimum number of decimal digits to distinguish double values */
2994
    /* in IEEE arithmetic. */
2995
66.8k
    i = j = 18;
2996
66.8k
    if (i > nd0)
2997
12.4k
      j += bc.dplen;
2998
345k
    for(;;) {
2999
345k
      if (--j < bc.dp1 && j >= bc.dp0)
3000
1.67k
        j = bc.dp0 - 1;
3001
345k
      if (s0[j] != '0')
3002
66.8k
        break;
3003
278k
      --i;
3004
278k
      }
3005
66.8k
    e += nd - i;
3006
66.8k
    nd = i;
3007
66.8k
    if (nd0 > nd)
3008
54.4k
      nd0 = nd;
3009
66.8k
    if (nd < 9) { /* must recompute y */
3010
16.6k
      y = 0;
3011
54.9k
      for(i = 0; i < nd0; ++i)
3012
38.2k
        y = 10*y + s0[i] - '0';
3013
20.2k
      for(j = bc.dp1; i < nd; ++i)
3014
3.60k
        y = 10*y + s0[j++] - '0';
3015
16.6k
      }
3016
66.8k
    }
3017
168k
#endif
3018
168k
  bd0 = s2b(s0, nd0, nd, y, bc.dplen);
3019
3020
224k
  for(;;) {
3021
224k
    bd = Balloc(bd0->k);
3022
224k
    Bcopy(bd, bd0);
3023
224k
    bb = d2b(&rv, &bbe, &bbbits); /* rv = bb * 2^bbe */
3024
224k
    bs = i2b(1);
3025
3026
224k
    if (e >= 0) {
3027
96.1k
      bb2 = bb5 = 0;
3028
96.1k
      bd2 = bd5 = e;
3029
96.1k
      }
3030
128k
    else {
3031
128k
      bb2 = bb5 = -e;
3032
128k
      bd2 = bd5 = 0;
3033
128k
      }
3034
224k
    if (bbe >= 0)
3035
105k
      bb2 += bbe;
3036
118k
    else
3037
118k
      bd2 -= bbe;
3038
224k
    bs2 = bb2;
3039
#ifdef Honor_FLT_ROUNDS
3040
    if (bc.rounding != 1)
3041
      bs2++;
3042
#endif
3043
224k
#ifdef Avoid_Underflow
3044
224k
    Lsb = LSB;
3045
224k
    Lsb1 = 0;
3046
224k
    j = bbe - bc.scale;
3047
224k
    i = j + bbbits - 1; /* logb(rv) */
3048
224k
    j = P + 1 - bbbits;
3049
224k
    if (i < Emin) { /* denormal */
3050
55.6k
      i = Emin - i;
3051
55.6k
      j -= i;
3052
55.6k
      if (i < 32)
3053
45.4k
        Lsb <<= i;
3054
10.2k
      else if (i < 52)
3055
7.54k
        Lsb1 = Lsb << (i-32);
3056
2.67k
      else
3057
2.67k
        Lsb1 = Exp_mask;
3058
55.6k
      }
3059
#else /*Avoid_Underflow*/
3060
#ifdef Sudden_Underflow
3061
#ifdef IBM
3062
    j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
3063
#else
3064
    j = P + 1 - bbbits;
3065
#endif
3066
#else /*Sudden_Underflow*/
3067
    j = bbe;
3068
    i = j + bbbits - 1; /* logb(rv) */
3069
    if (i < Emin) /* denormal */
3070
      j += P - Emin;
3071
    else
3072
      j = P + 1 - bbbits;
3073
#endif /*Sudden_Underflow*/
3074
#endif /*Avoid_Underflow*/
3075
224k
    bb2 += j;
3076
224k
    bd2 += j;
3077
224k
#ifdef Avoid_Underflow
3078
224k
    bd2 += bc.scale;
3079
224k
#endif
3080
224k
    i = bb2 < bd2 ? bb2 : bd2;
3081
224k
    if (i > bs2)
3082
114k
      i = bs2;
3083
224k
    if (i > 0) {
3084
224k
      bb2 -= i;
3085
224k
      bd2 -= i;
3086
224k
      bs2 -= i;
3087
224k
      }
3088
224k
    if (bb5 > 0) {
3089
128k
      bs = pow5mult(bs, bb5);
3090
128k
      bb1 = mult(bs, bb);
3091
128k
      Bfree(bb);
3092
128k
      bb = bb1;
3093
128k
      }
3094
224k
    if (bb2 > 0)
3095
224k
      bb = lshift(bb, bb2);
3096
224k
    if (bd5 > 0)
3097
71.8k
      bd = pow5mult(bd, bd5);
3098
224k
    if (bd2 > 0)
3099
114k
      bd = lshift(bd, bd2);
3100
224k
    if (bs2 > 0)
3101
105k
      bs = lshift(bs, bs2);
3102
224k
    delta = diff(bb, bd);
3103
224k
    bc.dsign = delta->sign;
3104
224k
    delta->sign = 0;
3105
224k
    i = cmp(delta, bs);
3106
224k
#ifndef NO_STRTOD_BIGCOMP /*{*/
3107
224k
    if (bc.nd > nd && i <= 0) {
3108
66.7k
      if (bc.dsign) {
3109
        /* Must use bigcomp(). */
3110
42.0k
        req_bigcomp = 1;
3111
42.0k
        break;
3112
42.0k
        }
3113
#ifdef Honor_FLT_ROUNDS
3114
      if (bc.rounding != 1) {
3115
        if (i < 0) {
3116
          req_bigcomp = 1;
3117
          break;
3118
          }
3119
        }
3120
      else
3121
#endif
3122
24.7k
        i = -1; /* Discarded digits make delta smaller. */
3123
24.7k
      }
3124
182k
#endif /*}*/
3125
#ifdef Honor_FLT_ROUNDS /*{*/
3126
    if (bc.rounding != 1) {
3127
      if (i < 0) {
3128
        /* Error is less than an ulp */
3129
        if (!delta->x[0] && delta->wds <= 1) {
3130
          /* exact */
3131
#ifdef SET_INEXACT
3132
          bc.inexact = 0;
3133
#endif
3134
          break;
3135
          }
3136
        if (bc.rounding) {
3137
          if (bc.dsign) {
3138
            adj.d = 1.;
3139
            goto apply_adj;
3140
            }
3141
          }
3142
        else if (!bc.dsign) {
3143
          adj.d = -1.;
3144
          if (!word1(&rv)
3145
           && !(word0(&rv) & Frac_mask)) {
3146
            y = word0(&rv) & Exp_mask;
3147
#ifdef Avoid_Underflow
3148
            if (!bc.scale || y > 2*P*Exp_msk1)
3149
#else
3150
            if (y)
3151
#endif
3152
              {
3153
              delta = lshift(delta,Log2P);
3154
              if (cmp(delta, bs) <= 0)
3155
              adj.d = -0.5;
3156
              }
3157
            }
3158
 apply_adj:
3159
#ifdef Avoid_Underflow /*{*/
3160
          if (bc.scale && (y = word0(&rv) & Exp_mask)
3161
            <= 2*P*Exp_msk1)
3162
            word0(&adj) += (2*P+1)*Exp_msk1 - y;
3163
#else
3164
#ifdef Sudden_Underflow
3165
          if ((word0(&rv) & Exp_mask) <=
3166
              P*Exp_msk1) {
3167
            word0(&rv) += P*Exp_msk1;
3168
            dval(&rv) += adj.d*ulp(dval(&rv));
3169
            word0(&rv) -= P*Exp_msk1;
3170
            }
3171
          else
3172
#endif /*Sudden_Underflow*/
3173
#endif /*Avoid_Underflow}*/
3174
          dval(&rv) += adj.d*ulp(&rv);
3175
          }
3176
        break;
3177
        }
3178
      adj.d = ratio(delta, bs);
3179
      if (adj.d < 1.)
3180
        adj.d = 1.;
3181
      if (adj.d <= 0x7ffffffe) {
3182
        /* adj = rounding ? ceil(adj) : floor(adj); */
3183
        y = adj.d;
3184
        if (y != adj.d) {
3185
          if (!((bc.rounding>>1) ^ bc.dsign))
3186
            y++;
3187
          adj.d = y;
3188
          }
3189
        }
3190
#ifdef Avoid_Underflow /*{*/
3191
      if (bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1)
3192
        word0(&adj) += (2*P+1)*Exp_msk1 - y;
3193
#else
3194
#ifdef Sudden_Underflow
3195
      if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) {
3196
        word0(&rv) += P*Exp_msk1;
3197
        adj.d *= ulp(dval(&rv));
3198
        if (bc.dsign)
3199
          dval(&rv) += adj.d;
3200
        else
3201
          dval(&rv) -= adj.d;
3202
        word0(&rv) -= P*Exp_msk1;
3203
        goto cont;
3204
        }
3205
#endif /*Sudden_Underflow*/
3206
#endif /*Avoid_Underflow}*/
3207
      adj.d *= ulp(&rv);
3208
      if (bc.dsign) {
3209
        if (word0(&rv) == Big0 && word1(&rv) == Big1)
3210
          goto ovfl;
3211
        dval(&rv) += adj.d;
3212
        }
3213
      else
3214
        dval(&rv) -= adj.d;
3215
      goto cont;
3216
      }
3217
#endif /*}Honor_FLT_ROUNDS*/
3218
3219
182k
    if (i < 0) {
3220
      /* Error is less than half an ulp -- check for
3221
       * special case of mantissa a power of two.
3222
       */
3223
98.9k
      if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask
3224
3.79k
#ifdef IEEE_Arith /*{*/
3225
3.79k
#ifdef Avoid_Underflow
3226
3.79k
       || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1
3227
#else
3228
       || (word0(&rv) & Exp_mask) <= Exp_msk1
3229
#endif
3230
98.9k
#endif /*}*/
3231
98.9k
        ) {
3232
#ifdef SET_INEXACT
3233
        if (!delta->x[0] && delta->wds <= 1)
3234
          bc.inexact = 0;
3235
#endif
3236
95.8k
        break;
3237
95.8k
        }
3238
3.12k
      if (!delta->x[0] && delta->wds <= 1) {
3239
        /* exact result */
3240
#ifdef SET_INEXACT
3241
        bc.inexact = 0;
3242
#endif
3243
1.42k
        break;
3244
1.42k
        }
3245
1.70k
      delta = lshift(delta,Log2P);
3246
1.70k
      if (cmp(delta, bs) > 0)
3247
1.33k
        goto drop_down;
3248
367
      break;
3249
1.70k
      }
3250
83.3k
    if (i == 0) {
3251
      /* exactly half-way between */
3252
2.98k
      if (bc.dsign) {
3253
2.11k
        if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
3254
1.19k
         &&  word1(&rv) == (
3255
1.19k
#ifdef Avoid_Underflow
3256
1.19k
      (bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1)
3257
1.19k
    ? (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
3258
1.19k
#endif
3259
1.19k
               0xffffffff)) {
3260
          /*boundary case -- increment exponent*/
3261
9
          if (word0(&rv) == Big0 && word1(&rv) == Big1)
3262
0
            goto ovfl;
3263
9
          word0(&rv) = (word0(&rv) & Exp_mask)
3264
9
            + Exp_msk1
3265
#ifdef IBM
3266
            | Exp_msk1 >> 4
3267
#endif
3268
9
            ;
3269
9
          word1(&rv) = 0;
3270
9
#ifdef Avoid_Underflow
3271
9
          bc.dsign = 0;
3272
9
#endif
3273
9
          break;
3274
9
          }
3275
2.11k
        }
3276
870
      else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) {
3277
1.33k
 drop_down:
3278
        /* boundary case -- decrement exponent */
3279
#ifdef Sudden_Underflow /*{{*/
3280
        L = word0(&rv) & Exp_mask;
3281
#ifdef IBM
3282
        if (L <  Exp_msk1)
3283
#else
3284
#ifdef Avoid_Underflow
3285
        if (L <= (bc.scale ? (2*P+1)*Exp_msk1 : Exp_msk1))
3286
#else
3287
        if (L <= Exp_msk1)
3288
#endif /*Avoid_Underflow*/
3289
#endif /*IBM*/
3290
          {
3291
          if (bc.nd >nd) {
3292
            bc.uflchk = 1;
3293
            break;
3294
            }
3295
          goto undfl;
3296
          }
3297
        L -= Exp_msk1;
3298
#else /*Sudden_Underflow}{*/
3299
1.33k
#ifdef Avoid_Underflow
3300
1.33k
        if (bc.scale) {
3301
0
          L = word0(&rv) & Exp_mask;
3302
0
          if (L <= (2*P+1)*Exp_msk1) {
3303
0
            if (L > (P+2)*Exp_msk1)
3304
              /* round even ==> */
3305
              /* accept rv */
3306
0
              break;
3307
            /* rv = smallest denormal */
3308
0
            if (bc.nd >nd) {
3309
0
              bc.uflchk = 1;
3310
0
              break;
3311
0
              }
3312
0
            goto undfl;
3313
0
            }
3314
0
          }
3315
1.33k
#endif /*Avoid_Underflow*/
3316
1.33k
        L = (word0(&rv) & Exp_mask) - Exp_msk1;
3317
1.33k
#endif /*Sudden_Underflow}}*/
3318
1.33k
        word0(&rv) = L | Bndry_mask1;
3319
1.33k
        word1(&rv) = 0xffffffff;
3320
#ifdef IBM
3321
        goto cont;
3322
#else
3323
1.33k
#ifndef NO_STRTOD_BIGCOMP
3324
1.33k
        if (bc.nd > nd)
3325
1.07k
          goto cont;
3326
256
#endif
3327
256
        break;
3328
1.33k
#endif
3329
1.33k
        }
3330
2.97k
#ifndef ROUND_BIASED
3331
2.97k
#ifdef Avoid_Underflow
3332
2.97k
      if (Lsb1) {
3333
0
        if (!(word0(&rv) & Lsb1))
3334
0
          break;
3335
0
        }
3336
2.97k
      else if (!(word1(&rv) & Lsb))
3337
2.46k
        break;
3338
#else
3339
      if (!(word1(&rv) & LSB))
3340
        break;
3341
#endif
3342
509
#endif
3343
509
      if (bc.dsign)
3344
114
#ifdef Avoid_Underflow
3345
114
        dval(&rv) += sulp(&rv, &bc);
3346
#else
3347
        dval(&rv) += ulp(&rv);
3348
#endif
3349
395
#ifndef ROUND_BIASED
3350
395
      else {
3351
395
#ifdef Avoid_Underflow
3352
395
        dval(&rv) -= sulp(&rv, &bc);
3353
#else
3354
        dval(&rv) -= ulp(&rv);
3355
#endif
3356
395
#ifndef Sudden_Underflow
3357
395
        if (!dval(&rv)) {
3358
0
          if (bc.nd >nd) {
3359
0
            bc.uflchk = 1;
3360
0
            break;
3361
0
            }
3362
0
          goto undfl;
3363
0
          }
3364
395
#endif
3365
395
        }
3366
509
#ifdef Avoid_Underflow
3367
509
      bc.dsign = 1 - bc.dsign;
3368
509
#endif
3369
509
#endif
3370
509
      break;
3371
509
      }
3372
80.3k
    if ((aadj = ratio(delta, bs)) <= 2.) {
3373
53.9k
      if (bc.dsign)
3374
27.7k
        aadj = aadj1 = 1.;
3375
26.2k
      else if (word1(&rv) || word0(&rv) & Bndry_mask) {
3376
23.7k
#ifndef Sudden_Underflow
3377
23.7k
        if (word1(&rv) == Tiny1 && !word0(&rv)) {
3378
0
          if (bc.nd >nd) {
3379
0
            bc.uflchk = 1;
3380
0
            break;
3381
0
            }
3382
0
          goto undfl;
3383
0
          }
3384
23.7k
#endif
3385
23.7k
        aadj = 1.;
3386
23.7k
        aadj1 = -1.;
3387
23.7k
        }
3388
2.44k
      else {
3389
        /* special case -- power of FLT_RADIX to be */
3390
        /* rounded down... */
3391
3392
2.44k
        if (aadj < 2./FLT_RADIX)
3393
0
          aadj = 1./FLT_RADIX;
3394
2.44k
        else
3395
2.44k
          aadj *= 0.5;
3396
2.44k
        aadj1 = -aadj;
3397
2.44k
        }
3398
53.9k
      }
3399
26.4k
    else {
3400
26.4k
      aadj *= 0.5;
3401
26.4k
      aadj1 = bc.dsign ? aadj : -aadj;
3402
#ifdef Check_FLT_ROUNDS
3403
      switch(bc.rounding) {
3404
        case 2: /* towards +infinity */
3405
          aadj1 -= 0.5;
3406
          break;
3407
        case 0: /* towards 0 */
3408
        case 3: /* towards -infinity */
3409
          aadj1 += 0.5;
3410
        }
3411
#else
3412
26.4k
      if (Flt_Rounds == 0)
3413
0
        aadj1 += 0.5;
3414
26.4k
#endif /*Check_FLT_ROUNDS*/
3415
26.4k
      }
3416
80.3k
    y = word0(&rv) & Exp_mask;
3417
3418
    /* Check for overflow */
3419
3420
80.3k
    if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
3421
1.35k
      dval(&rv0) = dval(&rv);
3422
1.35k
      word0(&rv) -= P*Exp_msk1;
3423
1.35k
      adj.d = aadj1 * ulp(&rv);
3424
1.35k
      dval(&rv) += adj.d;
3425
1.35k
      if ((word0(&rv) & Exp_mask) >=
3426
1.35k
          Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
3427
632
        if (word0(&rv0) == Big0 && word1(&rv0) == Big1)
3428
632
          goto ovfl;
3429
0
        word0(&rv) = Big0;
3430
0
        word1(&rv) = Big1;
3431
0
        goto cont;
3432
632
        }
3433
727
      else
3434
727
        word0(&rv) += P*Exp_msk1;
3435
1.35k
      }
3436
79.0k
    else {
3437
79.0k
#ifdef Avoid_Underflow
3438
79.0k
      if (bc.scale && y <= 2*P*Exp_msk1) {
3439
19.2k
        if (aadj <= 0x7fffffff) {
3440
19.2k
          if ((z = aadj) <= 0)
3441
2.44k
            z = 1;
3442
19.2k
          aadj = z;
3443
19.2k
          aadj1 = bc.dsign ? aadj : -aadj;
3444
19.2k
          }
3445
19.2k
        dval(&aadj2) = aadj1;
3446
19.2k
        word0(&aadj2) += (2*P+1)*Exp_msk1 - y;
3447
19.2k
        aadj1 = dval(&aadj2);
3448
19.2k
        adj.d = aadj1 * ulp(&rv);
3449
19.2k
        dval(&rv) += adj.d;
3450
19.2k
        if (rv.d == 0.)
3451
#ifdef NO_STRTOD_BIGCOMP
3452
          goto undfl;
3453
#else
3454
2.44k
          {
3455
2.44k
          req_bigcomp = 1;
3456
2.44k
          break;
3457
2.44k
          }
3458
19.2k
#endif
3459
19.2k
        }
3460
59.7k
      else {
3461
59.7k
        adj.d = aadj1 * ulp(&rv);
3462
59.7k
        dval(&rv) += adj.d;
3463
59.7k
        }
3464
#else
3465
#ifdef Sudden_Underflow
3466
      if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) {
3467
        dval(&rv0) = dval(&rv);
3468
        word0(&rv) += P*Exp_msk1;
3469
        adj.d = aadj1 * ulp(&rv);
3470
        dval(&rv) += adj.d;
3471
#ifdef IBM
3472
        if ((word0(&rv) & Exp_mask) <  P*Exp_msk1)
3473
#else
3474
        if ((word0(&rv) & Exp_mask) <= P*Exp_msk1)
3475
#endif
3476
          {
3477
          if (word0(&rv0) == Tiny0
3478
           && word1(&rv0) == Tiny1) {
3479
            if (bc.nd >nd) {
3480
              bc.uflchk = 1;
3481
              break;
3482
              }
3483
            goto undfl;
3484
            }
3485
          word0(&rv) = Tiny0;
3486
          word1(&rv) = Tiny1;
3487
          goto cont;
3488
          }
3489
        else
3490
          word0(&rv) -= P*Exp_msk1;
3491
        }
3492
      else {
3493
        adj.d = aadj1 * ulp(&rv);
3494
        dval(&rv) += adj.d;
3495
        }
3496
#else /*Sudden_Underflow*/
3497
      /* Compute adj so that the IEEE rounding rules will
3498
       * correctly round rv + adj in some half-way cases.
3499
       * If rv * ulp(rv) is denormalized (i.e.,
3500
       * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
3501
       * trouble from bits lost to denormalization;
3502
       * example: 1.2e-307 .
3503
       */
3504
      if (y <= (P-1)*Exp_msk1 && aadj > 1.) {
3505
        aadj1 = (double)(int)(aadj + 0.5);
3506
        if (!bc.dsign)
3507
          aadj1 = -aadj1;
3508
        }
3509
      adj.d = aadj1 * ulp(&rv);
3510
      dval(&rv) += adj.d;
3511
#endif /*Sudden_Underflow*/
3512
#endif /*Avoid_Underflow*/
3513
79.0k
      }
3514
77.3k
    z = word0(&rv) & Exp_mask;
3515
77.3k
#ifndef SET_INEXACT
3516
77.3k
    if (bc.nd == nd) {
3517
43.0k
#ifdef Avoid_Underflow
3518
43.0k
    if (!bc.scale)
3519
24.2k
#endif
3520
24.2k
    if (y == z) {
3521
      /* Can we stop now? */
3522
24.2k
      L = (Long)aadj;
3523
24.2k
      aadj -= L;
3524
      /* The tolerances below are conservative. */
3525
24.2k
      if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
3526
24.1k
        if (aadj < .4999999 || aadj > .5000001)
3527
22.6k
          break;
3528
24.1k
        }
3529
51
      else if (aadj < .4999999/FLT_RADIX)
3530
51
        break;
3531
24.2k
      }
3532
43.0k
    }
3533
54.6k
#endif
3534
55.6k
 cont:
3535
55.6k
    Bfree(bb);
3536
55.6k
    Bfree(bd);
3537
55.6k
    Bfree(bs);
3538
55.6k
    Bfree(delta);
3539
55.6k
    }
3540
167k
  Bfree(bb);
3541
167k
  Bfree(bd);
3542
167k
  Bfree(bs);
3543
167k
  Bfree(bd0);
3544
167k
  Bfree(delta);
3545
167k
#ifndef NO_STRTOD_BIGCOMP
3546
167k
  if (req_bigcomp) {
3547
44.4k
    bd0 = 0;
3548
44.4k
    bc.e0 += nz1;
3549
44.4k
    bigcomp(&rv, s0, &bc);
3550
44.4k
    y = word0(&rv) & Exp_mask;
3551
44.4k
    if (y == Exp_mask)
3552
0
      goto ovfl;
3553
44.4k
    if (y == 0 && rv.d == 0.)
3554
2.44k
      goto undfl;
3555
44.4k
    }
3556
165k
#endif
3557
#ifdef SET_INEXACT
3558
  if (bc.inexact) {
3559
    if (!oldinexact) {
3560
      word0(&rv0) = Exp_1 + (70 << Exp_shift);
3561
      word1(&rv0) = 0;
3562
      dval(&rv0) += 1.;
3563
      }
3564
    }
3565
  else if (!oldinexact)
3566
    clear_inexact();
3567
#endif
3568
165k
#ifdef Avoid_Underflow
3569
165k
  if (bc.scale) {
3570
47.5k
    word0(&rv0) = Exp_1 - 2*P*Exp_msk1;
3571
47.5k
    word1(&rv0) = 0;
3572
47.5k
    dval(&rv) *= dval(&rv0);
3573
#ifndef NO_ERRNO
3574
    /* try to avoid the bug of testing an 8087 register value */
3575
#ifdef IEEE_Arith
3576
    if (!(word0(&rv) & Exp_mask))
3577
#else
3578
    if (word0(&rv) == 0 && word1(&rv) == 0)
3579
#endif
3580
      errno = ERANGE;
3581
#endif
3582
47.5k
    }
3583
165k
#endif /* Avoid_Underflow */
3584
#ifdef SET_INEXACT
3585
  if (bc.inexact && !(word0(&rv) & Exp_mask)) {
3586
    /* set underflow bit */
3587
    dval(&rv0) = 1e-300;
3588
    dval(&rv0) *= dval(&rv0);
3589
    }
3590
#endif
3591
273k
 ret:
3592
273k
  if (se)
3593
2.37k
    *se = (char *)s;
3594
273k
  return sign ? -dval(&rv) : dval(&rv);
3595
165k
  }
3596
3597
#if !defined(MULTIPLE_THREADS) && !defined(dtoa_result)
3598
 ZEND_TLS char *dtoa_result;
3599
#endif
3600
3601
 static char *
3602
#ifdef KR_headers
3603
rv_alloc(i) int i;
3604
#else
3605
rv_alloc(int i)
3606
#endif
3607
140k
{
3608
3609
140k
  int j, k, *r;
3610
140k
  size_t rem;
3611
3612
140k
  rem = sizeof(Bigint) - sizeof(ULong) - sizeof(int);
3613
3614
3615
140k
  j = sizeof(ULong);
3616
140k
  if (i > ((INT_MAX >> 2) + rem))
3617
0
    i = (INT_MAX >> 2) + rem;
3618
140k
  for(k = 0;
3619
140k
    rem + j <= (size_t)i; j <<= 1)
3620
0
      k++;
3621
3622
140k
  r = (int*)Balloc(k);
3623
140k
  *r = k;
3624
140k
  return
3625
140k
#ifndef MULTIPLE_THREADS
3626
140k
  dtoa_result =
3627
140k
#endif
3628
140k
    (char *)(r+1);
3629
140k
  }
3630
3631
 static char *
3632
#ifdef KR_headers
3633
nrv_alloc(s, rve, n) char *s, **rve; int n;
3634
#else
3635
nrv_alloc(const char *s, char **rve, int n)
3636
#endif
3637
12.0k
{
3638
12.0k
  char *rv, *t;
3639
3640
12.0k
  t = rv = rv_alloc(n);
3641
75.9k
  while((*t = *s++)) t++;
3642
12.0k
  if (rve)
3643
0
    *rve = t;
3644
12.0k
  return rv;
3645
12.0k
  }
3646
3647
/* freedtoa(s) must be used to free values s returned by dtoa
3648
 * when MULTIPLE_THREADS is #defined.  It should be used in all cases,
3649
 * but for consistency with earlier versions of dtoa, it is optional
3650
 * when MULTIPLE_THREADS is not defined.
3651
 */
3652
3653
ZEND_API void
3654
#ifdef KR_headers
3655
zend_freedtoa(s) char *s;
3656
#else
3657
zend_freedtoa(char *s)
3658
#endif
3659
140k
{
3660
140k
  Bigint *b = (Bigint *)((int *)s - 1);
3661
140k
  b->maxwds = 1 << (b->k = *(int*)b);
3662
140k
  Bfree(b);
3663
140k
#ifndef MULTIPLE_THREADS
3664
140k
  if (s == dtoa_result)
3665
140k
    dtoa_result = 0;
3666
140k
#endif
3667
140k
  }
3668
3669
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
3670
 *
3671
 * Inspired by "How to Print Floating-Point Numbers Accurately" by
3672
 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
3673
 *
3674
 * Modifications:
3675
 *  1. Rather than iterating, we use a simple numeric overestimate
3676
 *     to determine k = floor(log10(d)).  We scale relevant
3677
 *     quantities using O(log2(k)) rather than O(k) multiplications.
3678
 *  2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
3679
 *     try to generate digits strictly left to right.  Instead, we
3680
 *     compute with fewer bits and propagate the carry if necessary
3681
 *     when rounding the final digit up.  This is often faster.
3682
 *  3. Under the assumption that input will be rounded nearest,
3683
 *     mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
3684
 *     That is, we allow equality in stopping tests when the
3685
 *     round-nearest rule will give the same floating-point value
3686
 *     as would satisfaction of the stopping test with strict
3687
 *     inequality.
3688
 *  4. We remove common factors of powers of 2 from relevant
3689
 *     quantities.
3690
 *  5. When converting floating-point integers less than 1e16,
3691
 *     we use floating-point arithmetic rather than resorting
3692
 *     to multiple-precision integers.
3693
 *  6. When asked to produce fewer than 15 digits, we first try
3694
 *     to get by with floating-point arithmetic; we resort to
3695
 *     multiple-precision integer arithmetic only if we cannot
3696
 *     guarantee that the floating-point calculation has given
3697
 *     the correctly rounded result.  For k requested digits and
3698
 *     "uniformly" distributed input, the probability is
3699
 *     something like 10^(k-15) that we must resort to the Long
3700
 *     calculation.
3701
 */
3702
3703
ZEND_API char *zend_dtoa(double dd, int mode, int ndigits, int *decpt, bool *sign, char **rve)
3704
140k
{
3705
 /* Arguments ndigits, decpt, sign are similar to those
3706
  of ecvt and fcvt; trailing zeros are suppressed from
3707
  the returned string.  If not null, *rve is set to point
3708
  to the end of the return value.  If d is +-Infinity or NaN,
3709
  then *decpt is set to 9999.
3710
3711
  mode:
3712
    0 ==> shortest string that yields d when read in
3713
      and rounded to nearest.
3714
    1 ==> like 0, but with Steele & White stopping rule;
3715
      e.g. with IEEE P754 arithmetic , mode 0 gives
3716
      1e23 whereas mode 1 gives 9.999999999999999e22.
3717
    2 ==> max(1,ndigits) significant digits.  This gives a
3718
      return value similar to that of ecvt, except
3719
      that trailing zeros are suppressed.
3720
    3 ==> through ndigits past the decimal point.  This
3721
      gives a return value similar to that from fcvt,
3722
      except that trailing zeros are suppressed, and
3723
      ndigits can be negative.
3724
    4,5 ==> similar to 2 and 3, respectively, but (in
3725
      round-nearest mode) with the tests of mode 0 to
3726
      possibly return a shorter string that rounds to d.
3727
      With IEEE arithmetic and compilation with
3728
      -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
3729
      as modes 2 and 3 when FLT_ROUNDS != 1.
3730
    6-9 ==> Debugging modes similar to mode - 4:  don't try
3731
      fast floating-point estimate (if applicable).
3732
3733
    Values of mode other than 0-9 are treated as mode 0.
3734
3735
    Sufficient space is allocated to the return value
3736
    to hold the suppressed trailing zeros.
3737
  */
3738
3739
140k
  int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1,
3740
140k
    j, j1 = 0, k, k0, k_check, leftright, m2, m5, s2, s5,
3741
140k
    spec_case = 0, try_quick;
3742
140k
  Long L;
3743
140k
#ifndef Sudden_Underflow
3744
140k
  int denorm;
3745
140k
  ULong x;
3746
140k
#endif
3747
140k
  Bigint *b, *b1, *delta, *mlo, *mhi, *S;
3748
140k
  U d2, eps, u;
3749
140k
  double ds;
3750
140k
  char *s, *s0;
3751
140k
#ifndef No_leftright
3752
140k
#ifdef IEEE_Arith
3753
140k
  U eps1;
3754
140k
#endif
3755
140k
#endif
3756
#ifdef SET_INEXACT
3757
  int inexact, oldinexact;
3758
#endif
3759
#ifdef Honor_FLT_ROUNDS /*{*/
3760
  int Rounding;
3761
#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
3762
  Rounding = Flt_Rounds;
3763
#else /*}{*/
3764
  Rounding = 1;
3765
  switch(fegetround()) {
3766
    case FE_TOWARDZERO: Rounding = 0; break;
3767
    case FE_UPWARD: Rounding = 2; break;
3768
    case FE_DOWNWARD: Rounding = 3;
3769
    }
3770
#endif /*}}*/
3771
#endif /*}*/
3772
3773
140k
#ifndef MULTIPLE_THREADS
3774
140k
  if (dtoa_result) {
3775
0
    zend_freedtoa(dtoa_result);
3776
0
    dtoa_result = 0;
3777
0
    }
3778
140k
#endif
3779
3780
140k
  u.d = dd;
3781
140k
  if (word0(&u) & Sign_bit) {
3782
    /* set sign for everything, including 0's and NaNs */
3783
5.59k
    *sign = 1;
3784
5.59k
    word0(&u) &= ~Sign_bit; /* clear sign bit */
3785
5.59k
    }
3786
134k
  else
3787
134k
    *sign = 0;
3788
3789
140k
#if defined(IEEE_Arith) + defined(VAX)
3790
140k
#ifdef IEEE_Arith
3791
140k
  if ((word0(&u) & Exp_mask) == Exp_mask)
3792
#else
3793
  if (word0(&u)  == 0x8000)
3794
#endif
3795
7.41k
    {
3796
    /* Infinity or NaN */
3797
7.41k
    *decpt = 9999;
3798
7.41k
#ifdef IEEE_Arith
3799
7.41k
    if (!word1(&u) && !(word0(&u) & 0xfffff))
3800
7.41k
      return nrv_alloc("Infinity", rve, 8);
3801
1
#endif
3802
1
    return nrv_alloc("NaN", rve, 3);
3803
7.41k
    }
3804
132k
#endif
3805
#ifdef IBM
3806
  dval(&u) += 0; /* normalize */
3807
#endif
3808
132k
  if (!dval(&u)) {
3809
4.59k
    *decpt = 1;
3810
4.59k
    return nrv_alloc("0", rve, 1);
3811
4.59k
    }
3812
3813
#ifdef SET_INEXACT
3814
  try_quick = oldinexact = get_inexact();
3815
  inexact = 1;
3816
#endif
3817
#ifdef Honor_FLT_ROUNDS
3818
  if (Rounding >= 2) {
3819
    if (*sign)
3820
      Rounding = Rounding == 2 ? 0 : 2;
3821
    else
3822
      if (Rounding != 2)
3823
        Rounding = 0;
3824
    }
3825
#endif
3826
3827
128k
  b = d2b(&u, &be, &bbits);
3828
#ifdef Sudden_Underflow
3829
  i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
3830
#else
3831
128k
  if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
3832
98.5k
#endif
3833
98.5k
    dval(&d2) = dval(&u);
3834
98.5k
    word0(&d2) &= Frac_mask1;
3835
98.5k
    word0(&d2) |= Exp_11;
3836
#ifdef IBM
3837
    if (j = 11 - hi0bits(word0(&d2) & Frac_mask))
3838
      dval(&d2) /= 1 << j;
3839
#endif
3840
3841
    /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
3842
     * log10(x)  =  log(x) / log(10)
3843
     *    ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
3844
     * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
3845
     *
3846
     * This suggests computing an approximation k to log10(d) by
3847
     *
3848
     * k = (i - Bias)*0.301029995663981
3849
     *  + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
3850
     *
3851
     * We want k to be too large rather than too small.
3852
     * The error in the first-order Taylor series approximation
3853
     * is in our favor, so we just round up the constant enough
3854
     * to compensate for any error in the multiplication of
3855
     * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
3856
     * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
3857
     * adding 1e-13 to the constant term more than suffices.
3858
     * Hence we adjust the constant term to 0.1760912590558.
3859
     * (We could get a more accurate k by invoking log10,
3860
     *  but this is probably not worthwhile.)
3861
     */
3862
3863
98.5k
    i -= Bias;
3864
#ifdef IBM
3865
    i <<= 2;
3866
    i += j;
3867
#endif
3868
98.5k
#ifndef Sudden_Underflow
3869
98.5k
    denorm = 0;
3870
98.5k
    }
3871
29.5k
  else {
3872
    /* d is denormalized */
3873
3874
29.5k
    i = bbits + be + (Bias + (P-1) - 1);
3875
29.5k
    x = i > 32  ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)
3876
29.5k
          : word1(&u) << (32 - i);
3877
29.5k
    dval(&d2) = x;
3878
29.5k
    word0(&d2) -= 31*Exp_msk1; /* adjust exponent */
3879
29.5k
    i -= (Bias + (P-1) - 1) + 1;
3880
29.5k
    denorm = 1;
3881
29.5k
    }
3882
128k
#endif
3883
128k
  ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
3884
128k
  k = (int)ds;
3885
128k
  if (ds < 0. && ds != k)
3886
53.2k
    k--; /* want k = floor(ds) */
3887
128k
  k_check = 1;
3888
128k
  if (k >= 0 && k <= Ten_pmax) {
3889
41.8k
    if (dval(&u) < tens[k])
3890
1.33k
      k--;
3891
41.8k
    k_check = 0;
3892
41.8k
    }
3893
128k
  j = bbits - i - 1;
3894
128k
  if (j >= 0) {
3895
83.6k
    b2 = 0;
3896
83.6k
    s2 = j;
3897
83.6k
    }
3898
44.4k
  else {
3899
44.4k
    b2 = -j;
3900
44.4k
    s2 = 0;
3901
44.4k
    }
3902
128k
  if (k >= 0) {
3903
74.8k
    b5 = 0;
3904
74.8k
    s5 = k;
3905
74.8k
    s2 += k;
3906
74.8k
    }
3907
53.2k
  else {
3908
53.2k
    b2 -= k;
3909
53.2k
    b5 = -k;
3910
53.2k
    s5 = 0;
3911
53.2k
    }
3912
128k
  if (mode < 0 || mode > 9)
3913
0
    mode = 0;
3914
3915
128k
#ifndef SET_INEXACT
3916
#ifdef Check_FLT_ROUNDS
3917
  try_quick = Rounding == 1;
3918
#else
3919
128k
  try_quick = 1;
3920
128k
#endif
3921
128k
#endif /*SET_INEXACT*/
3922
3923
128k
  if (mode > 5) {
3924
0
    mode -= 4;
3925
0
    try_quick = 0;
3926
0
    }
3927
128k
  leftright = 1;
3928
128k
  ilim = ilim1 = -1;  /* Values for cases 0 and 1; done here to */
3929
        /* silence erroneous "gcc -Wall" warning. */
3930
128k
  switch(mode) {
3931
11.0k
    case 0:
3932
11.0k
    case 1:
3933
11.0k
      i = 18;
3934
11.0k
      ndigits = 0;
3935
11.0k
      break;
3936
117k
    case 2:
3937
117k
      leftright = 0;
3938
117k
      ZEND_FALLTHROUGH;
3939
117k
    case 4:
3940
117k
      if (ndigits <= 0)
3941
0
        ndigits = 1;
3942
117k
      ilim = ilim1 = i = ndigits;
3943
117k
      break;
3944
0
    case 3:
3945
0
      leftright = 0;
3946
0
      ZEND_FALLTHROUGH;
3947
0
    case 5:
3948
0
      i = ndigits + k + 1;
3949
0
      ilim = i;
3950
0
      ilim1 = i - 1;
3951
0
      if (i <= 0)
3952
0
        i = 1;
3953
128k
    }
3954
128k
  s = s0 = rv_alloc(i);
3955
3956
#ifdef Honor_FLT_ROUNDS
3957
  if (mode > 1 && Rounding != 1)
3958
    leftright = 0;
3959
#endif
3960
3961
128k
  if (ilim >= 0 && ilim <= Quick_max && try_quick) {
3962
3963
    /* Try to get by with floating-point arithmetic. */
3964
3965
117k
    i = 0;
3966
117k
    dval(&d2) = dval(&u);
3967
117k
    k0 = k;
3968
117k
    ilim0 = ilim;
3969
117k
    ieps = 2; /* conservative */
3970
117k
    if (k > 0) {
3971
63.1k
      ds = tens[k&0xf];
3972
63.1k
      j = k >> 4;
3973
63.1k
      if (j & Bletch) {
3974
        /* prevent overflows */
3975
1.59k
        j &= Bletch - 1;
3976
1.59k
        dval(&u) /= bigtens[n_bigtens-1];
3977
1.59k
        ieps++;
3978
1.59k
        }
3979
147k
      for(; j; j >>= 1, i++)
3980
83.9k
        if (j & 1) {
3981
52.1k
          ieps++;
3982
52.1k
          ds *= bigtens[i];
3983
52.1k
          }
3984
63.1k
      dval(&u) /= ds;
3985
63.1k
      }
3986
53.9k
    else if ((j1 = -k)) {
3987
53.2k
      dval(&u) *= tens[j1 & 0xf];
3988
278k
      for(j = j1 >> 4; j; j >>= 1, i++)
3989
225k
        if (j & 1) {
3990
127k
          ieps++;
3991
127k
          dval(&u) *= bigtens[i];
3992
127k
          }
3993
53.2k
      }
3994
117k
    if (k_check && dval(&u) < 1. && ilim > 0) {
3995
8.40k
      if (ilim1 <= 0)
3996
0
        goto fast_failed;
3997
8.40k
      ilim = ilim1;
3998
8.40k
      k--;
3999
8.40k
      dval(&u) *= 10.;
4000
8.40k
      ieps++;
4001
8.40k
      }
4002
117k
    dval(&eps) = ieps*dval(&u) + 7.;
4003
117k
    word0(&eps) -= (P-1)*Exp_msk1;
4004
117k
    if (ilim == 0) {
4005
0
      S = mhi = 0;
4006
0
      dval(&u) -= 5.;
4007
0
      if (dval(&u) > dval(&eps))
4008
0
        goto one_digit;
4009
0
      if (dval(&u) < -dval(&eps))
4010
0
        goto no_digits;
4011
0
      goto fast_failed;
4012
0
      }
4013
117k
#ifndef No_leftright
4014
117k
    if (leftright) {
4015
      /* Use Steele & White method of only
4016
       * generating digits needed.
4017
       */
4018
0
      dval(&eps) = 0.5/tens[ilim-1] - dval(&eps);
4019
0
#ifdef IEEE_Arith
4020
0
      if (k0 < 0 && j1 >= 307) {
4021
0
        eps1.d = 1.01e256; /* 1.01 allows roundoff in the next few lines */
4022
0
        word0(&eps1) -= Exp_msk1 * (Bias+P-1);
4023
0
        dval(&eps1) *= tens[j1 & 0xf];
4024
0
        for(i = 0, j = (j1-256) >> 4; j; j >>= 1, i++)
4025
0
          if (j & 1)
4026
0
            dval(&eps1) *= bigtens[i];
4027
0
        if (eps.d < eps1.d)
4028
0
          eps.d = eps1.d;
4029
0
        }
4030
0
#endif
4031
0
      for(i = 0;;) {
4032
0
        L = dval(&u);
4033
0
        dval(&u) -= L;
4034
0
        *s++ = '0' + (int)L;
4035
0
        if (1. - dval(&u) < dval(&eps))
4036
0
          goto bump_up;
4037
0
        if (dval(&u) < dval(&eps))
4038
0
          goto ret1;
4039
0
        if (++i >= ilim)
4040
0
          break;
4041
0
        dval(&eps) *= 10.;
4042
0
        dval(&u) *= 10.;
4043
0
        }
4044
0
      }
4045
117k
    else {
4046
117k
#endif
4047
      /* Generate ilim digits, then fix them up. */
4048
117k
      dval(&eps) *= tens[ilim-1];
4049
1.56M
      for(i = 1;; i++, dval(&u) *= 10.) {
4050
1.56M
        L = (Long)(dval(&u));
4051
1.56M
        if (!(dval(&u) -= L))
4052
5.90k
          ilim = i;
4053
1.56M
        *s++ = '0' + (int)L;
4054
1.56M
        if (i == ilim) {
4055
117k
          if (dval(&u) > 0.5 + dval(&eps))
4056
22.8k
            goto bump_up;
4057
94.2k
          else if (dval(&u) < 0.5 - dval(&eps)) {
4058
295k
            while(*--s == '0');
4059
48.6k
            s++;
4060
48.6k
            goto ret1;
4061
48.6k
            }
4062
45.5k
          break;
4063
117k
          }
4064
1.56M
        }
4065
117k
#ifndef No_leftright
4066
117k
      }
4067
45.5k
#endif
4068
45.5k
 fast_failed:
4069
45.5k
    s = s0;
4070
45.5k
    dval(&u) = dval(&d2);
4071
45.5k
    k = k0;
4072
45.5k
    ilim = ilim0;
4073
45.5k
    }
4074
4075
  /* Do we have a "small" integer? */
4076
4077
56.6k
  if (be >= 0 && k <= Int_max) {
4078
    /* Yes. */
4079
2.24k
    ds = tens[k];
4080
2.24k
    if (ndigits < 0 && ilim <= 0) {
4081
0
      S = mhi = 0;
4082
0
      if (ilim < 0 || dval(&u) <= 5*ds)
4083
0
        goto no_digits;
4084
0
      goto one_digit;
4085
0
      }
4086
31.3k
    for(i = 1;; i++, dval(&u) *= 10.) {
4087
31.3k
      L = (Long)(dval(&u) / ds);
4088
31.3k
      dval(&u) -= L*ds;
4089
#ifdef Check_FLT_ROUNDS
4090
      /* If FLT_ROUNDS == 2, L will usually be high by 1 */
4091
      if (dval(&u) < 0) {
4092
        L--;
4093
        dval(&u) += ds;
4094
        }
4095
#endif
4096
31.3k
      *s++ = '0' + (int)L;
4097
31.3k
      if (!dval(&u)) {
4098
#ifdef SET_INEXACT
4099
        inexact = 0;
4100
#endif
4101
0
        break;
4102
0
        }
4103
31.3k
      if (i == ilim) {
4104
#ifdef Honor_FLT_ROUNDS
4105
        if (mode > 1)
4106
        switch(Rounding) {
4107
          case 0: goto ret1;
4108
          case 2: goto bump_up;
4109
          }
4110
#endif
4111
2.24k
        dval(&u) += dval(&u);
4112
#ifdef ROUND_BIASED
4113
        if (dval(&u) >= ds)
4114
#else
4115
2.24k
        if (dval(&u) > ds || (dval(&u) == ds && L & 1))
4116
97
#endif
4117
97
          {
4118
22.9k
 bump_up:
4119
153k
          while(*--s == '9')
4120
130k
            if (s == s0) {
4121
641
              k++;
4122
641
              *s = '0';
4123
641
              break;
4124
641
              }
4125
22.9k
          ++*s++;
4126
22.9k
          }
4127
25.1k
        break;
4128
2.24k
        }
4129
31.3k
      }
4130
25.1k
    goto ret1;
4131
2.24k
    }
4132
4133
54.3k
  m2 = b2;
4134
54.3k
  m5 = b5;
4135
54.3k
  mhi = mlo = 0;
4136
54.3k
  if (leftright) {
4137
11.0k
    i =
4138
11.0k
#ifndef Sudden_Underflow
4139
11.0k
      denorm ? be + (Bias + (P-1) - 1 + 1) :
4140
11.0k
#endif
4141
#ifdef IBM
4142
      1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
4143
#else
4144
11.0k
      1 + P - bbits;
4145
11.0k
#endif
4146
11.0k
    b2 += i;
4147
11.0k
    s2 += i;
4148
11.0k
    mhi = i2b(1);
4149
11.0k
    }
4150
54.3k
  if (m2 > 0 && s2 > 0) {
4151
39.7k
    i = m2 < s2 ? m2 : s2;
4152
39.7k
    b2 -= i;
4153
39.7k
    m2 -= i;
4154
39.7k
    s2 -= i;
4155
39.7k
    }
4156
54.3k
  if (b5 > 0) {
4157
10.3k
    if (leftright) {
4158
0
      if (m5 > 0) {
4159
0
        mhi = pow5mult(mhi, m5);
4160
0
        b1 = mult(mhi, b);
4161
0
        Bfree(b);
4162
0
        b = b1;
4163
0
        }
4164
0
      if ((j = b5 - m5))
4165
0
        b = pow5mult(b, j);
4166
0
      }
4167
10.3k
    else
4168
10.3k
      b = pow5mult(b, b5);
4169
10.3k
    }
4170
54.3k
  S = i2b(1);
4171
54.3k
  if (s5 > 0)
4172
44.0k
    S = pow5mult(S, s5);
4173
4174
  /* Check for special case that d is a normalized power of 2. */
4175
4176
54.3k
  spec_case = 0;
4177
54.3k
  if ((mode < 2 || leftright)
4178
#ifdef Honor_FLT_ROUNDS
4179
      && Rounding == 1
4180
#endif
4181
54.3k
        ) {
4182
11.0k
    if (!word1(&u) && !(word0(&u) & Bndry_mask)
4183
28
#ifndef Sudden_Underflow
4184
28
     && word0(&u) & (Exp_mask & ~Exp_msk1)
4185
11.0k
#endif
4186
11.0k
        ) {
4187
      /* The special case */
4188
28
      b2 += Log2P;
4189
28
      s2 += Log2P;
4190
28
      spec_case = 1;
4191
28
      }
4192
11.0k
    }
4193
4194
  /* Arrange for convenient computation of quotients:
4195
   * shift left if necessary so divisor has 4 leading 0 bits.
4196
   *
4197
   * Perhaps we should just compute leading 28 bits of S once
4198
   * and for all and pass them and a shift to quorem, so it
4199
   * can do shifts and ORs to compute the numerator for q.
4200
   */
4201
54.3k
  i = dshift(S, s2);
4202
54.3k
  b2 += i;
4203
54.3k
  m2 += i;
4204
54.3k
  s2 += i;
4205
54.3k
  if (b2 > 0)
4206
53.3k
    b = lshift(b, b2);
4207
54.3k
  if (s2 > 0)
4208
54.0k
    S = lshift(S, s2);
4209
54.3k
  if (k_check) {
4210
38.3k
    if (cmp(b,S) < 0) {
4211
7.90k
      k--;
4212
7.90k
      b = multadd(b, 10, 0);  /* we botched the k estimate */
4213
7.90k
      if (leftright)
4214
319
        mhi = multadd(mhi, 10, 0);
4215
7.90k
      ilim = ilim1;
4216
7.90k
      }
4217
38.3k
    }
4218
54.3k
  if (ilim <= 0 && (mode == 3 || mode == 5)) {
4219
0
    if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
4220
      /* no digits, fcvt style */
4221
0
 no_digits:
4222
0
      k = -1 - ndigits;
4223
0
      goto ret;
4224
0
      }
4225
0
 one_digit:
4226
0
    *s++ = '1';
4227
0
    k++;
4228
0
    goto ret;
4229
0
    }
4230
54.3k
  if (leftright) {
4231
11.0k
    if (m2 > 0)
4232
11.0k
      mhi = lshift(mhi, m2);
4233
4234
    /* Compute mlo -- check for special case
4235
     * that d is a normalized power of 2.
4236
     */
4237
4238
11.0k
    mlo = mhi;
4239
11.0k
    if (spec_case) {
4240
28
      mhi = Balloc(mhi->k);
4241
28
      Bcopy(mhi, mlo);
4242
28
      mhi = lshift(mhi, Log2P);
4243
28
      }
4244
4245
162k
    for(i = 1;;i++) {
4246
162k
      dig = quorem(b,S) + '0';
4247
      /* Do we yet have the shortest decimal string
4248
       * that will round to d?
4249
       */
4250
162k
      j = cmp(b, mlo);
4251
162k
      delta = diff(S, mhi);
4252
162k
      j1 = delta->sign ? 1 : cmp(b, delta);
4253
162k
      Bfree(delta);
4254
162k
#ifndef ROUND_BIASED
4255
162k
      if (j1 == 0 && mode != 1 && !(word1(&u) & 1)
4256
#ifdef Honor_FLT_ROUNDS
4257
        && Rounding >= 1
4258
#endif
4259
162k
                   ) {
4260
37
        if (dig == '9')
4261
13
          goto round_9_up;
4262
24
        if (j > 0)
4263
23
          dig++;
4264
#ifdef SET_INEXACT
4265
        else if (!b->x[0] && b->wds <= 1)
4266
          inexact = 0;
4267
#endif
4268
24
        *s++ = dig;
4269
24
        goto ret;
4270
37
        }
4271
162k
#endif
4272
162k
      if (j < 0 || (j == 0 && mode != 1
4273
189
#ifndef ROUND_BIASED
4274
189
              && !(word1(&u) & 1)
4275
155k
#endif
4276
155k
          )) {
4277
7.29k
        if (!b->x[0] && b->wds <= 1) {
4278
#ifdef SET_INEXACT
4279
          inexact = 0;
4280
#endif
4281
175
          goto accept_dig;
4282
175
          }
4283
#ifdef Honor_FLT_ROUNDS
4284
        if (mode > 1)
4285
         switch(Rounding) {
4286
          case 0: goto accept_dig;
4287
          case 2: goto keep_dig;
4288
          }
4289
#endif /*Honor_FLT_ROUNDS*/
4290
7.12k
        if (j1 > 0) {
4291
4.19k
          b = lshift(b, 1);
4292
4.19k
          j1 = cmp(b, S);
4293
#ifdef ROUND_BIASED
4294
          if (j1 >= 0 /*)*/
4295
#else
4296
4.19k
          if ((j1 > 0 || (j1 == 0 && dig & 1))
4297
1.77k
#endif
4298
1.77k
          && dig++ == '9')
4299
0
            goto round_9_up;
4300
4.19k
          }
4301
7.29k
 accept_dig:
4302
7.29k
        *s++ = dig;
4303
7.29k
        goto ret;
4304
7.12k
        }
4305
155k
      if (j1 > 0) {
4306
#ifdef Honor_FLT_ROUNDS
4307
        if (!Rounding)
4308
          goto accept_dig;
4309
#endif
4310
3.70k
        if (dig == '9') { /* possible if i == 1 */
4311
306
 round_9_up:
4312
306
          *s++ = '9';
4313
306
          goto roundoff;
4314
293
          }
4315
3.41k
        *s++ = dig + 1;
4316
3.41k
        goto ret;
4317
3.70k
        }
4318
#ifdef Honor_FLT_ROUNDS
4319
 keep_dig:
4320
#endif
4321
151k
      *s++ = dig;
4322
151k
      if (i == ilim)
4323
0
        break;
4324
151k
      b = multadd(b, 10, 0);
4325
151k
      if (mlo == mhi)
4326
151k
        mlo = mhi = multadd(mhi, 10, 0);
4327
446
      else {
4328
446
        mlo = multadd(mlo, 10, 0);
4329
446
        mhi = multadd(mhi, 10, 0);
4330
446
        }
4331
151k
      }
4332
11.0k
    }
4333
43.3k
  else
4334
606k
    for(i = 1;; i++) {
4335
606k
      *s++ = dig = quorem(b,S) + '0';
4336
606k
      if (!b->x[0] && b->wds <= 1) {
4337
#ifdef SET_INEXACT
4338
        inexact = 0;
4339
#endif
4340
0
        goto ret;
4341
0
        }
4342
606k
      if (i >= ilim)
4343
43.3k
        break;
4344
563k
      b = multadd(b, 10, 0);
4345
563k
      }
4346
4347
  /* Round off last digit */
4348
4349
#ifdef Honor_FLT_ROUNDS
4350
  switch(Rounding) {
4351
    case 0: goto trimzeros;
4352
    case 2: goto roundoff;
4353
    }
4354
#endif
4355
43.3k
  b = lshift(b, 1);
4356
43.3k
  j = cmp(b, S);
4357
#ifdef ROUND_BIASED
4358
  if (j >= 0)
4359
#else
4360
43.3k
  if (j > 0 || (j == 0 && dig & 1))
4361
21.3k
#endif
4362
21.3k
    {
4363
21.7k
 roundoff:
4364
22.3k
    while(*--s == '9')
4365
938
      if (s == s0) {
4366
306
        k++;
4367
306
        *s++ = '1';
4368
306
        goto ret;
4369
306
        }
4370
21.3k
    ++*s++;
4371
21.3k
    }
4372
21.9k
  else {
4373
#ifdef Honor_FLT_ROUNDS
4374
 trimzeros:
4375
#endif
4376
44.0k
    while(*--s == '0');
4377
21.9k
    s++;
4378
21.9k
    }
4379
54.3k
 ret:
4380
54.3k
  Bfree(S);
4381
54.3k
  if (mhi) {
4382
11.0k
    if (mlo && mlo != mhi)
4383
28
      Bfree(mlo);
4384
11.0k
    Bfree(mhi);
4385
11.0k
    }
4386
128k
 ret1:
4387
#ifdef SET_INEXACT
4388
  if (inexact) {
4389
    if (!oldinexact) {
4390
      word0(&u) = Exp_1 + (70 << Exp_shift);
4391
      word1(&u) = 0;
4392
      dval(&u) += 1.;
4393
      }
4394
    }
4395
  else if (!oldinexact)
4396
    clear_inexact();
4397
#endif
4398
128k
  Bfree(b);
4399
128k
  *s = 0;
4400
128k
  *decpt = k + 1;
4401
128k
  if (rve)
4402
0
    *rve = s;
4403
128k
  return s0;
4404
54.3k
  }
4405
4406
ZEND_API double zend_hex_strtod(const char *str, const char **endptr)
4407
0
{
4408
0
  const char *s = str;
4409
0
  char c;
4410
0
  int any = 0;
4411
0
  double value = 0;
4412
4413
0
  if (*s == '0' && (s[1] == 'x' || s[1] == 'X')) {
4414
0
    s += 2;
4415
0
  }
4416
4417
0
  while ((c = *s++)) {
4418
0
    if (c >= '0' && c <= '9') {
4419
0
      c -= '0';
4420
0
    } else if (c >= 'A' && c <= 'F') {
4421
0
      c -= 'A' - 10;
4422
0
    } else if (c >= 'a' && c <= 'f') {
4423
0
      c -= 'a' - 10;
4424
0
    } else {
4425
0
      break;
4426
0
    }
4427
4428
0
    any = 1;
4429
0
    value = value * 16 + c;
4430
0
  }
4431
4432
0
  if (endptr != NULL) {
4433
0
    *endptr = any ? s - 1 : str;
4434
0
  }
4435
4436
0
  return value;
4437
0
}
4438
4439
ZEND_API double zend_oct_strtod(const char *str, const char **endptr)
4440
0
{
4441
0
  const char *s = str;
4442
0
  char c;
4443
0
  double value = 0;
4444
0
  int any = 0;
4445
4446
0
  if (str[0] == '\0') {
4447
0
    if (endptr != NULL) {
4448
0
      *endptr = str;
4449
0
    }
4450
0
    return 0.0;
4451
0
  }
4452
4453
0
  while ((c = *s++)) {
4454
0
    if (c < '0' || c > '7') {
4455
      /* break and return the current value if the number is not well-formed
4456
       * that's what Linux strtol() does
4457
       */
4458
0
      break;
4459
0
    }
4460
0
    value = value * 8 + c - '0';
4461
0
    any = 1;
4462
0
  }
4463
4464
0
  if (endptr != NULL) {
4465
0
    *endptr = any ? s - 1 : str;
4466
0
  }
4467
4468
0
  return value;
4469
0
}
4470
4471
ZEND_API double zend_bin_strtod(const char *str, const char **endptr)
4472
0
{
4473
0
  const char *s = str;
4474
0
  char    c;
4475
0
  double    value = 0;
4476
0
  int     any = 0;
4477
4478
0
  if ('0' == *s && ('b' == s[1] || 'B' == s[1])) {
4479
0
    s += 2;
4480
0
  }
4481
4482
0
  while ((c = *s++)) {
4483
    /*
4484
     * Verify the validity of the current character as a base-2 digit.  In
4485
     * the event that an invalid digit is found, halt the conversion and
4486
     * return the portion which has been converted thus far.
4487
     */
4488
0
    if ('0' == c || '1' == c)
4489
0
      value = value * 2 + c - '0';
4490
0
    else
4491
0
      break;
4492
4493
0
    any = 1;
4494
0
  }
4495
4496
  /*
4497
   * As with many strtoX implementations, should the subject sequence be
4498
   * empty or not well-formed, no conversion is performed and the original
4499
   * value of str is stored in *endptr, provided that endptr is not a null
4500
   * pointer.
4501
   */
4502
0
  if (NULL != endptr) {
4503
0
    *endptr = (char *)(any ? s - 1 : str);
4504
0
  }
4505
4506
0
  return value;
4507
0
}
4508
4509
ZEND_API char *zend_gcvt(double value, int ndigit, char dec_point, char exponent, char *buf)
4510
140k
{
4511
140k
  char *digits, *dst, *src;
4512
140k
  int i, decpt;
4513
140k
  bool sign;
4514
140k
  int mode = ndigit >= 0 ? 2 : 0;
4515
4516
140k
  if (mode == 0) {
4517
11.0k
    ndigit = 17;
4518
11.0k
  }
4519
140k
  digits = zend_dtoa(value, mode, ndigit, &decpt, &sign, NULL);
4520
140k
  if (decpt == 9999) {
4521
    /*
4522
     * Infinity or NaN, convert to inf or nan with sign.
4523
     * We assume the buffer is at least ndigit long.
4524
     */
4525
7.41k
    snprintf(buf, ndigit + 1, "%s%s", (sign && *digits == 'I') ? "-" : "", *digits == 'I' ? "INF" : "NAN");
4526
7.41k
    zend_freedtoa(digits);
4527
7.41k
    return (buf);
4528
7.41k
  }
4529
4530
132k
  dst = buf;
4531
132k
  if (sign) {
4532
5.44k
    *dst++ = '-';
4533
5.44k
  }
4534
4535
132k
  if ((decpt >= 0 && decpt > ndigit) || decpt < -3) { /* use E-style */
4536
    /* exponential format (e.g. 1.2345e+13) */
4537
95.4k
    if (--decpt < 0) {
4538
50.8k
      sign = true;
4539
50.8k
      decpt = -decpt;
4540
50.8k
    } else {
4541
44.5k
      sign = false;
4542
44.5k
    }
4543
95.4k
    src = digits;
4544
95.4k
    *dst++ = *src++;
4545
95.4k
    *dst++ = dec_point;
4546
95.4k
    if (*src == '\0') {
4547
17.9k
      *dst++ = '0';
4548
77.4k
    } else {
4549
860k
      do {
4550
860k
        *dst++ = *src++;
4551
860k
      } while (*src != '\0');
4552
77.4k
    }
4553
95.4k
    *dst++ = exponent;
4554
95.4k
    if (sign) {
4555
50.8k
      *dst++ = '-';
4556
50.8k
    } else {
4557
44.5k
      *dst++ = '+';
4558
44.5k
    }
4559
95.4k
    if (decpt < 10) {
4560
1.03k
      *dst++ = '0' + decpt;
4561
1.03k
      *dst = '\0';
4562
94.3k
    } else {
4563
      /* XXX - optimize */
4564
94.3k
      int n;
4565
254k
      for (n = decpt, i = 0; (n /= 10) != 0; i++);
4566
94.3k
      dst[i + 1] = '\0';
4567
349k
      while (decpt != 0) {
4568
254k
        dst[i--] = '0' + decpt % 10;
4569
254k
        decpt /= 10;
4570
254k
      }
4571
94.3k
    }
4572
95.4k
  } else if (decpt < 0) {
4573
    /* standard format 0. */
4574
348
    *dst++ = '0';   /* zero before decimal point */
4575
348
    *dst++ = dec_point;
4576
831
    do {
4577
831
      *dst++ = '0';
4578
831
    } while (++decpt < 0);
4579
348
    src = digits;
4580
1.41k
    while (*src != '\0') {
4581
1.06k
      *dst++ = *src++;
4582
1.06k
    }
4583
348
    *dst = '\0';
4584
36.9k
  } else {
4585
    /* standard format */
4586
361k
    for (i = 0, src = digits; i < decpt; i++) {
4587
324k
      if (*src != '\0') {
4588
307k
        *dst++ = *src++;
4589
307k
      } else {
4590
16.8k
        *dst++ = '0';
4591
16.8k
      }
4592
324k
    }
4593
36.9k
    if (*src != '\0') {
4594
11.0k
      if (src == digits) {
4595
2.07k
        *dst++ = '0';   /* zero before decimal point */
4596
2.07k
      }
4597
11.0k
      *dst++ = dec_point;
4598
77.2k
      for (i = decpt; digits[i] != '\0'; i++) {
4599
66.1k
        *dst++ = digits[i];
4600
66.1k
      }
4601
11.0k
    }
4602
36.9k
    *dst = '\0';
4603
36.9k
  }
4604
132k
  zend_freedtoa(digits);
4605
132k
  return (buf);
4606
140k
}
4607
4608
static void destroy_freelist(void)
4609
0
{
4610
0
  int i;
4611
0
  Bigint *tmp;
4612
4613
0
  ACQUIRE_DTOA_LOCK(0)
4614
0
  for (i = 0; i <= Kmax; i++) {
4615
0
    Bigint **listp = &freelist[i];
4616
0
    while ((tmp = *listp) != NULL) {
4617
0
      *listp = tmp->next;
4618
0
      FREE(tmp);
4619
0
    }
4620
0
    freelist[i] = NULL;
4621
0
  }
4622
0
  FREE_DTOA_LOCK(0)
4623
0
}
4624
4625
static void free_p5s(void)
4626
0
{
4627
0
  Bigint **listp, *tmp;
4628
4629
0
  ACQUIRE_DTOA_LOCK(1)
4630
0
  listp = &p5s;
4631
0
  while ((tmp = *listp) != NULL) {
4632
0
    *listp = tmp->next;
4633
0
    FREE(tmp);
4634
0
  }
4635
0
  p5s = NULL;
4636
0
  FREE_DTOA_LOCK(1)
4637
0
}