Coverage Report

Created: 2026-01-18 06:47

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/php-src/Zend/zend_strtod.c
Line
Count
Source
1
/****************************************************************
2
 *
3
 * The author of this software is David M. Gay.
4
 *
5
 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
6
 *
7
 * Permission to use, copy, modify, and distribute this software for any
8
 * purpose without fee is hereby granted, provided that this entire notice
9
 * is included in all copies of any software which is or includes a copy
10
 * or modification of this software and in all copies of the supporting
11
 * documentation for such software.
12
 *
13
 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
14
 * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
15
 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
16
 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
17
 *
18
 ***************************************************************/
19
20
/* Please send bug reports to David M. Gay (dmg at acm dot org,
21
 * with " at " changed at "@" and " dot " changed to ".").  */
22
23
/* On a machine with IEEE extended-precision registers, it is
24
 * necessary to specify double-precision (53-bit) rounding precision
25
 * before invoking strtod or dtoa.  If the machine uses (the equivalent
26
 * of) Intel 80x87 arithmetic, the call
27
 *  _control87(PC_53, MCW_PC);
28
 * does this with many compilers.  Whether this or another call is
29
 * appropriate depends on the compiler; for this to work, it may be
30
 * necessary to #include "float.h" or another system-dependent header
31
 * file.
32
 */
33
34
/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
35
 * (Note that IEEE arithmetic is disabled by gcc's -ffast-math flag.)
36
 *
37
 * This strtod returns a nearest machine number to the input decimal
38
 * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
39
 * broken by the IEEE round-even rule.  Otherwise ties are broken by
40
 * biased rounding (add half and chop).
41
 *
42
 * Inspired loosely by William D. Clinger's paper "How to Read Floating
43
 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
44
 *
45
 * Modifications:
46
 *
47
 *  1. We only require IEEE, IBM, or VAX double-precision
48
 *    arithmetic (not IEEE double-extended).
49
 *  2. We get by with floating-point arithmetic in a case that
50
 *    Clinger missed -- when we're computing d * 10^n
51
 *    for a small integer d and the integer n is not too
52
 *    much larger than 22 (the maximum integer k for which
53
 *    we can represent 10^k exactly), we may be able to
54
 *    compute (d*10^k) * 10^(e-k) with just one roundoff.
55
 *  3. Rather than a bit-at-a-time adjustment of the binary
56
 *    result in the hard case, we use floating-point
57
 *    arithmetic to determine the adjustment to within
58
 *    one bit; only in really hard cases do we need to
59
 *    compute a second residual.
60
 *  4. Because of 3., we don't need a large table of powers of 10
61
 *    for ten-to-e (just some small tables, e.g. of 10^k
62
 *    for 0 <= k <= 22).
63
 */
64
65
/*
66
 * #define IEEE_8087 for IEEE-arithmetic machines where the least
67
 *  significant byte has the lowest address.
68
 * #define IEEE_MC68k for IEEE-arithmetic machines where the most
69
 *  significant byte has the lowest address.
70
 * #define Long int on machines with 32-bit ints and 64-bit longs.
71
 * #define IBM for IBM mainframe-style floating-point arithmetic.
72
 * #define VAX for VAX-style floating-point arithmetic (D_floating).
73
 * #define No_leftright to omit left-right logic in fast floating-point
74
 *  computation of dtoa.  This will cause dtoa modes 4 and 5 to be
75
 *  treated the same as modes 2 and 3 for some inputs.
76
 * #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
77
 *  and strtod and dtoa should round accordingly.  Unless Trust_FLT_ROUNDS
78
 *  is also #defined, fegetround() will be queried for the rounding mode.
79
 *  Note that both FLT_ROUNDS and fegetround() are specified by the C99
80
 *  standard (and are specified to be consistent, with fesetround()
81
 *  affecting the value of FLT_ROUNDS), but that some (Linux) systems
82
 *  do not work correctly in this regard, so using fegetround() is more
83
 *  portable than using FLT_ROUNDS directly.
84
 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
85
 *  and Honor_FLT_ROUNDS is not #defined.
86
 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
87
 *  that use extended-precision instructions to compute rounded
88
 *  products and quotients) with IBM.
89
 * #define ROUND_BIASED for IEEE-format with biased rounding and arithmetic
90
 *  that rounds toward +Infinity.
91
 * #define ROUND_BIASED_without_Round_Up for IEEE-format with biased
92
 *  rounding when the underlying floating-point arithmetic uses
93
 *  unbiased rounding.  This prevent using ordinary floating-point
94
 *  arithmetic when the result could be computed with one rounding error.
95
 * #define Inaccurate_Divide for IEEE-format with correctly rounded
96
 *  products but inaccurate quotients, e.g., for Intel i860.
97
 * #define NO_LONG_LONG on machines that do not have a "long long"
98
 *  integer type (of >= 64 bits).  On such machines, you can
99
 *  #define Just_16 to store 16 bits per 32-bit Long when doing
100
 *  high-precision integer arithmetic.  Whether this speeds things
101
 *  up or slows things down depends on the machine and the number
102
 *  being converted.  If long long is available and the name is
103
 *  something other than "long long", #define Llong to be the name,
104
 *  and if "unsigned Llong" does not work as an unsigned version of
105
 *  Llong, #define #ULLong to be the corresponding unsigned type.
106
 * #define KR_headers for old-style C function headers.
107
 * #define Bad_float_h if your system lacks a float.h or if it does not
108
 *  define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
109
 *  FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
110
 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
111
 *  if memory is available and otherwise does something you deem
112
 *  appropriate.  If MALLOC is undefined, malloc will be invoked
113
 *  directly -- and assumed always to succeed.  Similarly, if you
114
 *  want something other than the system's free() to be called to
115
 *  recycle memory acquired from MALLOC, #define FREE to be the
116
 *  name of the alternate routine.  (FREE or free is only called in
117
 *  pathological cases, e.g., in a dtoa call after a dtoa return in
118
 *  mode 3 with thousands of digits requested.)
119
 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
120
 *  memory allocations from a private pool of memory when possible.
121
 *  When used, the private pool is PRIVATE_MEM bytes long:  2304 bytes,
122
 *  unless #defined to be a different length.  This default length
123
 *  suffices to get rid of MALLOC calls except for unusual cases,
124
 *  such as decimal-to-binary conversion of a very long string of
125
 *  digits.  The longest string dtoa can return is about 751 bytes
126
 *  long.  For conversions by strtod of strings of 800 digits and
127
 *  all dtoa conversions in single-threaded executions with 8-byte
128
 *  pointers, PRIVATE_MEM >= 7400 appears to suffice; with 4-byte
129
 *  pointers, PRIVATE_MEM >= 7112 appears adequate.
130
 * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK
131
 *  #defined automatically on IEEE systems.  On such systems,
132
 *  when INFNAN_CHECK is #defined, strtod checks
133
 *  for Infinity and NaN (case insensitively).  On some systems
134
 *  (e.g., some HP systems), it may be necessary to #define NAN_WORD0
135
 *  appropriately -- to the most significant word of a quiet NaN.
136
 *  (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
137
 *  When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
138
 *  strtod also accepts (case insensitively) strings of the form
139
 *  NaN(x), where x is a string of hexadecimal digits and spaces;
140
 *  if there is only one string of hexadecimal digits, it is taken
141
 *  for the 52 fraction bits of the resulting NaN; if there are two
142
 *  or more strings of hex digits, the first is for the high 20 bits,
143
 *  the second and subsequent for the low 32 bits, with intervening
144
 *  white space ignored; but if this results in none of the 52
145
 *  fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0
146
 *  and NAN_WORD1 are used instead.
147
 * #define MULTIPLE_THREADS if the system offers preemptively scheduled
148
 *  multiple threads.  In this case, you must provide (or suitably
149
 *  #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
150
 *  by FREE_DTOA_LOCK(n) for n = 0 or 1.  (The second lock, accessed
151
 *  in pow5mult, ensures lazy evaluation of only one copy of high
152
 *  powers of 5; omitting this lock would introduce a small
153
 *  probability of wasting memory, but would otherwise be harmless.)
154
 *  You must also invoke freedtoa(s) to free the value s returned by
155
 *  dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
156
 * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that
157
 *  avoids underflows on inputs whose result does not underflow.
158
 *  If you #define NO_IEEE_Scale on a machine that uses IEEE-format
159
 *  floating-point numbers and flushes underflows to zero rather
160
 *  than implementing gradual underflow, then you must also #define
161
 *  Sudden_Underflow.
162
 * #define USE_LOCALE to use the current locale's decimal_point value.
163
 * #define SET_INEXACT if IEEE arithmetic is being used and extra
164
 *  computation should be done to set the inexact flag when the
165
 *  result is inexact and avoid setting inexact when the result
166
 *  is exact.  In this case, dtoa.c must be compiled in
167
 *  an environment, perhaps provided by #include "dtoa.c" in a
168
 *  suitable wrapper, that defines two functions,
169
 *    int get_inexact(void);
170
 *    void clear_inexact(void);
171
 *  such that get_inexact() returns a nonzero value if the
172
 *  inexact bit is already set, and clear_inexact() sets the
173
 *  inexact bit to 0.  When SET_INEXACT is #defined, strtod
174
 *  also does extra computations to set the underflow and overflow
175
 *  flags when appropriate (i.e., when the result is tiny and
176
 *  inexact or when it is a numeric value rounded to +-infinity).
177
 * #define NO_ERRNO if strtod should not assign errno = ERANGE when
178
 *  the result overflows to +-Infinity or underflows to 0.
179
 * #define NO_HEX_FP to omit recognition of hexadecimal floating-point
180
 *  values by strtod.
181
 * #define NO_STRTOD_BIGCOMP (on IEEE-arithmetic systems only for now)
182
 *  to disable logic for "fast" testing of very long input strings
183
 *  to strtod.  This testing proceeds by initially truncating the
184
 *  input string, then if necessary comparing the whole string with
185
 *  a decimal expansion to decide close cases. This logic is only
186
 *  used for input more than STRTOD_DIGLIM digits long (default 40).
187
 */
188
189
#include <zend_operators.h>
190
#include <zend_strtod.h>
191
#include "zend_strtod_int.h"
192
#include "zend_globals.h"
193
194
#ifndef Long
195
736k
#define Long int32_t
196
#endif
197
#ifndef ULong
198
9.55M
#define ULong uint32_t
199
#endif
200
201
#undef Bigint
202
#undef freelist
203
#undef p5s
204
#undef dtoa_result
205
206
8.97M
#define Bigint      _zend_strtod_bigint
207
10.9M
#define freelist    (EG(strtod_state).freelist)
208
215k
#define p5s         (EG(strtod_state).p5s)
209
82.1k
#define dtoa_result (EG(strtod_state).result)
210
211
#ifdef DEBUG
212
static void Bug(const char *message) {
213
  fprintf(stderr, "%s\n", message);
214
}
215
#endif
216
217
#include "stdlib.h"
218
#include "string.h"
219
220
#ifdef USE_LOCALE
221
#include "locale.h"
222
#endif
223
224
#ifdef Honor_FLT_ROUNDS
225
#ifndef Trust_FLT_ROUNDS
226
#include <fenv.h>
227
#endif
228
#endif
229
230
#ifdef MALLOC
231
#ifdef KR_headers
232
extern char *MALLOC();
233
#else
234
extern void *MALLOC(size_t);
235
#endif
236
#else
237
33
#define MALLOC malloc
238
0
#define FREE   free
239
#endif
240
241
#ifndef Omit_Private_Memory
242
#ifndef PRIVATE_MEM
243
#define PRIVATE_MEM 2304
244
#endif
245
#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
246
static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
247
#endif
248
249
#undef IEEE_Arith
250
#undef Avoid_Underflow
251
#ifdef IEEE_MC68k
252
#define IEEE_Arith
253
#endif
254
#ifdef IEEE_8087
255
#define IEEE_Arith
256
#endif
257
258
#ifdef IEEE_Arith
259
#ifndef NO_INFNAN_CHECK
260
#undef INFNAN_CHECK
261
#define INFNAN_CHECK
262
#endif
263
#else
264
#undef INFNAN_CHECK
265
#define NO_STRTOD_BIGCOMP
266
#endif
267
268
#include "errno.h"
269
270
#ifdef Bad_float_h
271
272
#ifdef IEEE_Arith
273
#define DBL_DIG 15
274
#define DBL_MAX_10_EXP 308
275
#define DBL_MAX_EXP 1024
276
#define FLT_RADIX 2
277
#endif /*IEEE_Arith*/
278
279
#ifdef IBM
280
#define DBL_DIG 16
281
#define DBL_MAX_10_EXP 75
282
#define DBL_MAX_EXP 63
283
#define FLT_RADIX 16
284
#define DBL_MAX 7.2370055773322621e+75
285
#endif
286
287
#ifdef VAX
288
#define DBL_DIG 16
289
#define DBL_MAX_10_EXP 38
290
#define DBL_MAX_EXP 127
291
#define FLT_RADIX 2
292
#define DBL_MAX 1.7014118346046923e+38
293
#endif
294
295
#else /* ifndef Bad_float_h */
296
#include "float.h"
297
#endif /* Bad_float_h */
298
299
#ifndef __MATH_H__
300
#include "math.h"
301
#endif
302
303
#ifndef CONST
304
#ifdef KR_headers
305
#define CONST /* blank */
306
#else
307
415k
#define CONST const
308
#endif
309
#endif
310
311
#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
312
Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
313
#endif
314
315
typedef union { double d; ULong L[2]; } U;
316
317
#ifdef IEEE_8087
318
1.98M
#define word0(x) (x)->L[1]
319
1.10M
#define word1(x) (x)->L[0]
320
#else
321
#define word0(x) (x)->L[0]
322
#define word1(x) (x)->L[1]
323
#endif
324
2.96M
#define dval(x) (x)->d
325
326
#ifndef STRTOD_DIGLIM
327
204k
#define STRTOD_DIGLIM 40
328
#endif
329
330
#ifdef DIGLIM_DEBUG
331
extern int strtod_diglim;
332
#else
333
204k
#define strtod_diglim STRTOD_DIGLIM
334
#endif
335
336
/* The following definition of Storeinc is appropriate for MIPS processors.
337
 * An alternative that might be better on some machines is
338
 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
339
 */
340
#if defined(IEEE_8087) + defined(VAX) + defined(__arm__)
341
#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
342
((unsigned short *)a)[0] = (unsigned short)c, a++)
343
#else
344
#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
345
((unsigned short *)a)[1] = (unsigned short)c, a++)
346
#endif
347
348
/* #define P DBL_MANT_DIG */
349
/* Ten_pmax = floor(P*log(2)/log(5)) */
350
/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
351
/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
352
/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
353
354
#ifdef IEEE_Arith
355
303k
#define Exp_shift  20
356
41.0k
#define Exp_shift1 20
357
875k
#define Exp_msk1    0x100000
358
#define Exp_msk11   0x100000
359
498k
#define Exp_mask  0x7ff00000
360
1.32M
#define P 53
361
#define Nbits 53
362
540k
#define Bias 1023
363
#define Emax 1023
364
280k
#define Emin (-1022)
365
190k
#define Exp_1  0x3ff00000
366
20.4k
#define Exp_11 0x3ff00000
367
409k
#define Ebits 11
368
288k
#define Frac_mask  0xfffff
369
21.2k
#define Frac_mask1 0xfffff
370
57.5k
#define Ten_pmax 22
371
106
#define Bletch 0x10
372
148k
#define Bndry_mask  0xfffff
373
8.83k
#define Bndry_mask1 0xfffff
374
237k
#define LSB 1
375
36.5k
#define Sign_bit 0x80000000
376
3.23k
#define Log2P 1
377
#define Tiny0 0
378
122k
#define Tiny1 1
379
20.8k
#define Quick_max 14
380
20.3k
#define Int_max 14
381
#ifndef NO_IEEE_Scale
382
#define Avoid_Underflow
383
#ifdef Flush_Denorm /* debugging option */
384
#undef Sudden_Underflow
385
#endif
386
#endif
387
388
#ifndef Flt_Rounds
389
#ifdef FLT_ROUNDS
390
200k
#define Flt_Rounds FLT_ROUNDS
391
#else
392
#define Flt_Rounds 1
393
#endif
394
#endif /*Flt_Rounds*/
395
396
#ifdef Honor_FLT_ROUNDS
397
#undef Check_FLT_ROUNDS
398
#define Check_FLT_ROUNDS
399
#else
400
#define Rounding Flt_Rounds
401
#endif
402
403
#else /* ifndef IEEE_Arith */
404
#undef Check_FLT_ROUNDS
405
#undef Honor_FLT_ROUNDS
406
#undef SET_INEXACT
407
#undef  Sudden_Underflow
408
#define Sudden_Underflow
409
#ifdef IBM
410
#undef Flt_Rounds
411
#define Flt_Rounds 0
412
#define Exp_shift  24
413
#define Exp_shift1 24
414
#define Exp_msk1   0x1000000
415
#define Exp_msk11  0x1000000
416
#define Exp_mask  0x7f000000
417
#define P 14
418
#define Nbits 56
419
#define Bias 65
420
#define Emax 248
421
#define Emin (-260)
422
#define Exp_1  0x41000000
423
#define Exp_11 0x41000000
424
#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
425
#define Frac_mask  0xffffff
426
#define Frac_mask1 0xffffff
427
#define Bletch 4
428
#define Ten_pmax 22
429
#define Bndry_mask  0xefffff
430
#define Bndry_mask1 0xffffff
431
#define LSB 1
432
#define Sign_bit 0x80000000
433
#define Log2P 4
434
#define Tiny0 0x100000
435
#define Tiny1 0
436
#define Quick_max 14
437
#define Int_max 15
438
#else /* VAX */
439
#undef Flt_Rounds
440
#define Flt_Rounds 1
441
#define Exp_shift  23
442
#define Exp_shift1 7
443
#define Exp_msk1    0x80
444
#define Exp_msk11   0x800000
445
#define Exp_mask  0x7f80
446
#define P 56
447
#define Nbits 56
448
#define Bias 129
449
#define Emax 126
450
#define Emin (-129)
451
#define Exp_1  0x40800000
452
#define Exp_11 0x4080
453
#define Ebits 8
454
#define Frac_mask  0x7fffff
455
#define Frac_mask1 0xffff007f
456
#define Ten_pmax 24
457
#define Bletch 2
458
#define Bndry_mask  0xffff007f
459
#define Bndry_mask1 0xffff007f
460
#define LSB 0x10000
461
#define Sign_bit 0x8000
462
#define Log2P 1
463
#define Tiny0 0x80
464
#define Tiny1 0
465
#define Quick_max 15
466
#define Int_max 15
467
#endif /* IBM, VAX */
468
#endif /* IEEE_Arith */
469
470
#ifndef IEEE_Arith
471
#define ROUND_BIASED
472
#else
473
#ifdef ROUND_BIASED_without_Round_Up
474
#undef  ROUND_BIASED
475
#define ROUND_BIASED
476
#endif
477
#endif
478
479
#ifdef RND_PRODQUOT
480
#define rounded_product(a,b) a = rnd_prod(a, b)
481
#define rounded_quotient(a,b) a = rnd_quot(a, b)
482
#ifdef KR_headers
483
extern double rnd_prod(), rnd_quot();
484
#else
485
extern double rnd_prod(double, double), rnd_quot(double, double);
486
#endif
487
#else
488
1.50k
#define rounded_product(a,b) a *= b
489
5.87k
#define rounded_quotient(a,b) a /= b
490
#endif
491
492
1.35k
#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
493
800
#define Big1 0xffffffff
494
495
#ifndef Pack_32
496
#define Pack_32
497
#endif
498
499
typedef struct BCinfo BCinfo;
500
 struct
501
BCinfo { int dp0, dp1, dplen, dsign, e0, inexact, nd, nd0, rounding, scale, uflchk; };
502
503
#ifdef KR_headers
504
#define FFFFFFFF ((((unsigned long)0xffff)<<16)|(unsigned long)0xffff)
505
#else
506
25.2M
#define FFFFFFFF 0xffffffffUL
507
#endif
508
509
#ifdef NO_LONG_LONG
510
#undef ULLong
511
#ifdef Just_16
512
#undef Pack_32
513
/* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
514
 * This makes some inner loops simpler and sometimes saves work
515
 * during multiplications, but it often seems to make things slightly
516
 * slower.  Hence the default is now to store 32 bits per Long.
517
 */
518
#endif
519
#else /* long long available */
520
#ifndef Llong
521
#define Llong long long
522
#endif
523
#ifndef ULLong
524
4.87M
#define ULLong unsigned Llong
525
#endif
526
#endif /* NO_LONG_LONG */
527
528
#ifndef MULTIPLE_THREADS
529
#define ACQUIRE_DTOA_LOCK(n)  /*nothing*/
530
#define FREE_DTOA_LOCK(n) /*nothing*/
531
#endif
532
533
5.45M
#define Kmax ZEND_STRTOD_K_MAX
534
535
 struct
536
Bigint {
537
  struct Bigint *next;
538
  int k, maxwds, sign, wds;
539
  ULong x[1];
540
  };
541
542
 typedef struct Bigint Bigint;
543
544
#ifndef Bigint
545
 static Bigint *freelist[Kmax+1];
546
#endif
547
548
static void destroy_freelist(void);
549
static void free_p5s(void);
550
551
#ifdef MULTIPLE_THREADS
552
static MUTEX_T dtoa_mutex;
553
static MUTEX_T pow5mult_mutex;
554
#endif /* ZTS */
555
556
ZEND_API int zend_shutdown_strtod(void) /* {{{ */
557
0
{
558
0
  destroy_freelist();
559
0
  free_p5s();
560
561
0
  return 1;
562
0
}
563
/* }}} */
564
565
 static Bigint *
566
Balloc
567
#ifdef KR_headers
568
  (k) int k;
569
#else
570
  (int k)
571
#endif
572
2.72M
{
573
2.72M
  int x;
574
2.72M
  Bigint *rv;
575
#ifndef Omit_Private_Memory
576
  unsigned int len;
577
#endif
578
579
2.72M
  ACQUIRE_DTOA_LOCK(0);
580
  /* The k > Kmax case does not need ACQUIRE_DTOA_LOCK(0), */
581
  /* but this case seems very unlikely. */
582
2.72M
  if (k <= Kmax && (rv = freelist[k]))
583
2.72M
    freelist[k] = rv->next;
584
33
  else {
585
33
    x = 1 << k;
586
33
#ifdef Omit_Private_Memory
587
33
    rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong));
588
33
    if (!rv) {
589
0
      FREE_DTOA_LOCK(0);
590
0
      zend_error_noreturn(E_ERROR, "Balloc() failed to allocate memory");
591
0
    }
592
#else
593
    len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
594
      /sizeof(double);
595
    if (k <= Kmax && pmem_next - private_mem + len <= PRIVATE_mem) {
596
      rv = (Bigint*)pmem_next;
597
      pmem_next += len;
598
      }
599
    else
600
      rv = (Bigint*)MALLOC(len*sizeof(double));
601
      if (!rv) {
602
        FREE_DTOA_LOCK(0);
603
        zend_error_noreturn(E_ERROR, "Balloc() failed to allocate memory");
604
      }
605
#endif
606
33
    rv->k = k;
607
33
    rv->maxwds = x;
608
33
    }
609
2.72M
  FREE_DTOA_LOCK(0);
610
2.72M
  rv->sign = rv->wds = 0;
611
2.72M
  return rv;
612
2.72M
  }
613
614
 static void
615
Bfree
616
#ifdef KR_headers
617
  (v) Bigint *v;
618
#else
619
  (Bigint *v)
620
#endif
621
2.72M
{
622
2.72M
  if (v) {
623
2.72M
    if (v->k > Kmax)
624
0
      FREE((void*)v);
625
2.72M
    else {
626
2.72M
      ACQUIRE_DTOA_LOCK(0);
627
2.72M
      v->next = freelist[v->k];
628
2.72M
      freelist[v->k] = v;
629
2.72M
      FREE_DTOA_LOCK(0);
630
2.72M
      }
631
2.72M
    }
632
2.72M
  }
633
634
245k
#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
635
245k
y->wds*sizeof(Long) + 2*sizeof(int))
636
637
 static Bigint *
638
multadd
639
#ifdef KR_headers
640
  (b, m, a) Bigint *b; int m, a;
641
#else
642
  (Bigint *b, int m, int a) /* multiply by m and add a */
643
#endif
644
3.07M
{
645
3.07M
  int i, wds;
646
3.07M
#ifdef ULLong
647
3.07M
  ULong *x;
648
3.07M
  ULLong carry, y;
649
#else
650
  ULong carry, *x, y;
651
#ifdef Pack_32
652
  ULong xi, z;
653
#endif
654
#endif
655
3.07M
  Bigint *b1;
656
657
3.07M
  wds = b->wds;
658
3.07M
  x = b->x;
659
3.07M
  i = 0;
660
3.07M
  carry = a;
661
10.5M
  do {
662
10.5M
#ifdef ULLong
663
10.5M
    y = *x * (ULLong)m + carry;
664
10.5M
    carry = y >> 32;
665
10.5M
    *x++ = y & FFFFFFFF;
666
#else
667
#ifdef Pack_32
668
    xi = *x;
669
    y = (xi & 0xffff) * m + carry;
670
    z = (xi >> 16) * m + (y >> 16);
671
    carry = z >> 16;
672
    *x++ = (z << 16) + (y & 0xffff);
673
#else
674
    y = *x * m + carry;
675
    carry = y >> 16;
676
    *x++ = y & 0xffff;
677
#endif
678
#endif
679
10.5M
    }
680
10.5M
    while(++i < wds);
681
3.07M
  if (carry) {
682
295k
    if (wds >= b->maxwds) {
683
7.90k
      b1 = Balloc(b->k+1);
684
7.90k
      Bcopy(b1, b);
685
7.90k
      Bfree(b);
686
7.90k
      b = b1;
687
7.90k
      }
688
295k
    b->x[wds++] = carry;
689
295k
    b->wds = wds;
690
295k
    }
691
3.07M
  return b;
692
3.07M
  }
693
694
 static Bigint *
695
s2b
696
#ifdef KR_headers
697
  (s, nd0, nd, y9, dplen) CONST char *s; int nd0, nd, dplen; ULong y9;
698
#else
699
  (const char *s, int nd0, int nd, ULong y9, int dplen)
700
#endif
701
204k
{
702
204k
  Bigint *b;
703
204k
  int i, k;
704
204k
  Long x, y;
705
706
204k
  x = (nd + 8) / 9;
707
461k
  for(k = 0, y = 1; x > y; y <<= 1, k++) ;
708
204k
#ifdef Pack_32
709
204k
  b = Balloc(k);
710
204k
  b->x[0] = y9;
711
204k
  b->wds = 1;
712
#else
713
  b = Balloc(k+1);
714
  b->x[0] = y9 & 0xffff;
715
  b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
716
#endif
717
718
204k
  i = 9;
719
204k
  if (9 < nd0) {
720
131k
    s += 9;
721
1.62M
    do b = multadd(b, 10, *s++ - '0');
722
1.62M
      while(++i < nd0);
723
131k
    s += dplen;
724
131k
    }
725
73.7k
  else
726
73.7k
    s += dplen + 9;
727
563k
  for(; i < nd; i++)
728
358k
    b = multadd(b, 10, *s++ - '0');
729
204k
  return b;
730
204k
  }
731
732
 static int
733
hi0bits
734
#ifdef KR_headers
735
  (x) ULong x;
736
#else
737
  (ULong x)
738
#endif
739
234k
{
740
234k
  int k = 0;
741
742
234k
  if (!(x & 0xffff0000)) {
743
173k
    k = 16;
744
173k
    x <<= 16;
745
173k
    }
746
234k
  if (!(x & 0xff000000)) {
747
151k
    k += 8;
748
151k
    x <<= 8;
749
151k
    }
750
234k
  if (!(x & 0xf0000000)) {
751
166k
    k += 4;
752
166k
    x <<= 4;
753
166k
    }
754
234k
  if (!(x & 0xc0000000)) {
755
87.5k
    k += 2;
756
87.5k
    x <<= 2;
757
87.5k
    }
758
234k
  if (!(x & 0x80000000)) {
759
120k
    k++;
760
120k
    if (!(x & 0x40000000))
761
0
      return 32;
762
120k
    }
763
234k
  return k;
764
234k
  }
765
766
 static int
767
lo0bits
768
#ifdef KR_headers
769
  (y) ULong *y;
770
#else
771
  (ULong *y)
772
#endif
773
288k
{
774
288k
  int k;
775
288k
  ULong x = *y;
776
777
288k
  if (x & 7) {
778
231k
    if (x & 1)
779
148k
      return 0;
780
82.8k
    if (x & 2) {
781
32.5k
      *y = x >> 1;
782
32.5k
      return 1;
783
32.5k
      }
784
50.2k
    *y = x >> 2;
785
50.2k
    return 2;
786
82.8k
    }
787
57.4k
  k = 0;
788
57.4k
  if (!(x & 0xffff)) {
789
11.0k
    k = 16;
790
11.0k
    x >>= 16;
791
11.0k
    }
792
57.4k
  if (!(x & 0xff)) {
793
4.12k
    k += 8;
794
4.12k
    x >>= 8;
795
4.12k
    }
796
57.4k
  if (!(x & 0xf)) {
797
32.4k
    k += 4;
798
32.4k
    x >>= 4;
799
32.4k
    }
800
57.4k
  if (!(x & 0x3)) {
801
28.4k
    k += 2;
802
28.4k
    x >>= 2;
803
28.4k
    }
804
57.4k
  if (!(x & 1)) {
805
31.6k
    k++;
806
31.6k
    x >>= 1;
807
31.6k
    if (!x)
808
0
      return 32;
809
31.6k
    }
810
57.4k
  *y = x;
811
57.4k
  return k;
812
57.4k
  }
813
814
 static Bigint *
815
i2b
816
#ifdef KR_headers
817
  (i) int i;
818
#else
819
  (int i)
820
#endif
821
311k
{
822
311k
  Bigint *b;
823
824
311k
  b = Balloc(1);
825
311k
  b->x[0] = i;
826
311k
  b->wds = 1;
827
311k
  return b;
828
311k
  }
829
830
 static Bigint *
831
mult
832
#ifdef KR_headers
833
  (a, b) Bigint *a, *b;
834
#else
835
  (Bigint *a, Bigint *b)
836
#endif
837
580k
{
838
580k
  Bigint *c;
839
580k
  int k, wa, wb, wc;
840
580k
  ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
841
580k
  ULong y;
842
580k
#ifdef ULLong
843
580k
  ULLong carry, z;
844
#else
845
  ULong carry, z;
846
#ifdef Pack_32
847
  ULong z2;
848
#endif
849
#endif
850
851
580k
  if (a->wds < b->wds) {
852
200k
    c = a;
853
200k
    a = b;
854
200k
    b = c;
855
200k
    }
856
580k
  k = a->k;
857
580k
  wa = a->wds;
858
580k
  wb = b->wds;
859
580k
  wc = wa + wb;
860
580k
  if (wc > a->maxwds)
861
267k
    k++;
862
580k
  c = Balloc(k);
863
3.82M
  for(x = c->x, xa = x + wc; x < xa; x++)
864
3.24M
    *x = 0;
865
580k
  xa = a->x;
866
580k
  xae = xa + wa;
867
580k
  xb = b->x;
868
580k
  xbe = xb + wb;
869
580k
  xc0 = c->x;
870
580k
#ifdef ULLong
871
1.57M
  for(; xb < xbe; xc0++) {
872
997k
    if ((y = *xb++)) {
873
997k
      x = xa;
874
997k
      xc = xc0;
875
997k
      carry = 0;
876
5.53M
      do {
877
5.53M
        z = *x++ * (ULLong)y + *xc + carry;
878
5.53M
        carry = z >> 32;
879
5.53M
        *xc++ = z & FFFFFFFF;
880
5.53M
        }
881
5.53M
        while(x < xae);
882
997k
      *xc = carry;
883
997k
      }
884
997k
    }
885
#else
886
#ifdef Pack_32
887
  for(; xb < xbe; xb++, xc0++) {
888
    if (y = *xb & 0xffff) {
889
      x = xa;
890
      xc = xc0;
891
      carry = 0;
892
      do {
893
        z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
894
        carry = z >> 16;
895
        z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
896
        carry = z2 >> 16;
897
        Storeinc(xc, z2, z);
898
        }
899
        while(x < xae);
900
      *xc = carry;
901
      }
902
    if (y = *xb >> 16) {
903
      x = xa;
904
      xc = xc0;
905
      carry = 0;
906
      z2 = *xc;
907
      do {
908
        z = (*x & 0xffff) * y + (*xc >> 16) + carry;
909
        carry = z >> 16;
910
        Storeinc(xc, z, z2);
911
        z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
912
        carry = z2 >> 16;
913
        }
914
        while(x < xae);
915
      *xc = z2;
916
      }
917
    }
918
#else
919
  for(; xb < xbe; xc0++) {
920
    if (y = *xb++) {
921
      x = xa;
922
      xc = xc0;
923
      carry = 0;
924
      do {
925
        z = *x++ * y + *xc + carry;
926
        carry = z >> 16;
927
        *xc++ = z & 0xffff;
928
        }
929
        while(x < xae);
930
      *xc = carry;
931
      }
932
    }
933
#endif
934
#endif
935
969k
  for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
936
580k
  c->wds = wc;
937
580k
  return c;
938
580k
  }
939
940
#ifndef p5s
941
 static Bigint *p5s;
942
#endif
943
944
 static Bigint *
945
pow5mult
946
#ifdef KR_headers
947
  (b, k) Bigint *b; int k;
948
#else
949
  (Bigint *b, int k)
950
#endif
951
218k
{
952
218k
  Bigint *b1, *p5, *p51;
953
218k
  int i;
954
218k
  static const int p05[3] = { 5, 25, 125 };
955
956
218k
  if ((i = k & 3))
957
179k
    b = multadd(b, p05[i-1], 0);
958
959
218k
  if (!(k >>= 2))
960
2.48k
    return b;
961
215k
  if (!(p5 = p5s)) {
962
    /* first time */
963
#ifdef MULTIPLE_THREADS
964
    ACQUIRE_DTOA_LOCK(1);
965
    if (!(p5 = p5s)) {
966
      p5 = p5s = i2b(625);
967
      p5->next = 0;
968
      }
969
    FREE_DTOA_LOCK(1);
970
#else
971
1
    p5 = p5s = i2b(625);
972
1
    p5->next = 0;
973
1
#endif
974
1
    }
975
883k
  for(;;) {
976
883k
    if (k & 1) {
977
501k
      b1 = mult(b, p5);
978
501k
      Bfree(b);
979
501k
      b = b1;
980
501k
      }
981
883k
    if (!(k >>= 1))
982
215k
      break;
983
668k
    if (!(p51 = p5->next)) {
984
#ifdef MULTIPLE_THREADS
985
      ACQUIRE_DTOA_LOCK(1);
986
      if (!(p51 = p5->next)) {
987
        p51 = p5->next = mult(p5,p5);
988
        p51->next = 0;
989
        }
990
      FREE_DTOA_LOCK(1);
991
#else
992
6
      p51 = p5->next = mult(p5,p5);
993
6
      p51->next = 0;
994
6
#endif
995
6
      }
996
668k
    p5 = p51;
997
668k
    }
998
215k
  return b;
999
218k
  }
1000
1001
 static Bigint *
1002
lshift
1003
#ifdef KR_headers
1004
  (b, k) Bigint *b; int k;
1005
#else
1006
  (Bigint *b, int k)
1007
#endif
1008
624k
{
1009
624k
  int i, k1, n, n1;
1010
624k
  Bigint *b1;
1011
624k
  ULong *x, *x1, *xe, z;
1012
1013
624k
#ifdef Pack_32
1014
624k
  n = k >> 5;
1015
#else
1016
  n = k >> 4;
1017
#endif
1018
624k
  k1 = b->k;
1019
624k
  n1 = n + b->wds + 1;
1020
1.41M
  for(i = b->maxwds; n1 > i; i <<= 1)
1021
795k
    k1++;
1022
624k
  b1 = Balloc(k1);
1023
624k
  x1 = b1->x;
1024
2.33M
  for(i = 0; i < n; i++)
1025
1.71M
    *x1++ = 0;
1026
624k
  x = b->x;
1027
624k
  xe = x + b->wds;
1028
624k
#ifdef Pack_32
1029
624k
  if (k &= 0x1f) {
1030
582k
    k1 = 32 - k;
1031
582k
    z = 0;
1032
1.72M
    do {
1033
1.72M
      *x1++ = *x << k | z;
1034
1.72M
      z = *x++ >> k1;
1035
1.72M
      }
1036
1.72M
      while(x < xe);
1037
582k
    if ((*x1 = z))
1038
105k
      ++n1;
1039
582k
    }
1040
#else
1041
  if (k &= 0xf) {
1042
    k1 = 16 - k;
1043
    z = 0;
1044
    do {
1045
      *x1++ = *x << k  & 0xffff | z;
1046
      z = *x++ >> k1;
1047
      }
1048
      while(x < xe);
1049
    if (*x1 = z)
1050
      ++n1;
1051
    }
1052
#endif
1053
41.2k
  else do
1054
75.4k
    *x1++ = *x++;
1055
75.4k
    while(x < xe);
1056
624k
  b1->wds = n1 - 1;
1057
624k
  Bfree(b);
1058
624k
  return b1;
1059
624k
  }
1060
1061
 static int
1062
cmp
1063
#ifdef KR_headers
1064
  (a, b) Bigint *a, *b;
1065
#else
1066
  (Bigint *a, Bigint *b)
1067
#endif
1068
1.86M
{
1069
1.86M
  ULong *xa, *xa0, *xb, *xb0;
1070
1.86M
  int i, j;
1071
1072
1.86M
  i = a->wds;
1073
1.86M
  j = b->wds;
1074
#ifdef DEBUG
1075
  if (i > 1 && !a->x[i-1])
1076
    Bug("cmp called with a->x[a->wds-1] == 0");
1077
  if (j > 1 && !b->x[j-1])
1078
    Bug("cmp called with b->x[b->wds-1] == 0");
1079
#endif
1080
1.86M
  if (i -= j)
1081
275k
    return i;
1082
1.59M
  xa0 = a->x;
1083
1.59M
  xa = xa0 + j;
1084
1.59M
  xb0 = b->x;
1085
1.59M
  xb = xb0 + j;
1086
1.96M
  for(;;) {
1087
1.96M
    if (*--xa != *--xb)
1088
1.57M
      return *xa < *xb ? -1 : 1;
1089
396k
    if (xa <= xa0)
1090
21.8k
      break;
1091
396k
    }
1092
21.8k
  return 0;
1093
1.59M
  }
1094
1095
 static Bigint *
1096
diff
1097
#ifdef KR_headers
1098
  (a, b) Bigint *a, *b;
1099
#else
1100
  (Bigint *a, Bigint *b)
1101
#endif
1102
454k
{
1103
454k
  Bigint *c;
1104
454k
  int i, wa, wb;
1105
454k
  ULong *xa, *xae, *xb, *xbe, *xc;
1106
454k
#ifdef ULLong
1107
454k
  ULLong borrow, y;
1108
#else
1109
  ULong borrow, y;
1110
#ifdef Pack_32
1111
  ULong z;
1112
#endif
1113
#endif
1114
1115
454k
  i = cmp(a,b);
1116
454k
  if (!i) {
1117
10.9k
    c = Balloc(0);
1118
10.9k
    c->wds = 1;
1119
10.9k
    c->x[0] = 0;
1120
10.9k
    return c;
1121
10.9k
    }
1122
443k
  if (i < 0) {
1123
97.6k
    c = a;
1124
97.6k
    a = b;
1125
97.6k
    b = c;
1126
97.6k
    i = 1;
1127
97.6k
    }
1128
345k
  else
1129
345k
    i = 0;
1130
443k
  c = Balloc(a->k);
1131
443k
  c->sign = i;
1132
443k
  wa = a->wds;
1133
443k
  xa = a->x;
1134
443k
  xae = xa + wa;
1135
443k
  wb = b->wds;
1136
443k
  xb = b->x;
1137
443k
  xbe = xb + wb;
1138
443k
  xc = c->x;
1139
443k
  borrow = 0;
1140
443k
#ifdef ULLong
1141
2.96M
  do {
1142
2.96M
    y = (ULLong)*xa++ - *xb++ - borrow;
1143
2.96M
    borrow = y >> 32 & (ULong)1;
1144
2.96M
    *xc++ = y & FFFFFFFF;
1145
2.96M
    }
1146
2.96M
    while(xb < xbe);
1147
577k
  while(xa < xae) {
1148
133k
    y = *xa++ - borrow;
1149
133k
    borrow = y >> 32 & (ULong)1;
1150
133k
    *xc++ = y & FFFFFFFF;
1151
133k
    }
1152
#else
1153
#ifdef Pack_32
1154
  do {
1155
    y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
1156
    borrow = (y & 0x10000) >> 16;
1157
    z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
1158
    borrow = (z & 0x10000) >> 16;
1159
    Storeinc(xc, z, y);
1160
    }
1161
    while(xb < xbe);
1162
  while(xa < xae) {
1163
    y = (*xa & 0xffff) - borrow;
1164
    borrow = (y & 0x10000) >> 16;
1165
    z = (*xa++ >> 16) - borrow;
1166
    borrow = (z & 0x10000) >> 16;
1167
    Storeinc(xc, z, y);
1168
    }
1169
#else
1170
  do {
1171
    y = *xa++ - *xb++ - borrow;
1172
    borrow = (y & 0x10000) >> 16;
1173
    *xc++ = y & 0xffff;
1174
    }
1175
    while(xb < xbe);
1176
  while(xa < xae) {
1177
    y = *xa++ - borrow;
1178
    borrow = (y & 0x10000) >> 16;
1179
    *xc++ = y & 0xffff;
1180
    }
1181
#endif
1182
#endif
1183
781k
  while(!*--xc)
1184
338k
    wa--;
1185
443k
  c->wds = wa;
1186
443k
  return c;
1187
454k
  }
1188
1189
 static double
1190
ulp
1191
#ifdef KR_headers
1192
  (x) U *x;
1193
#else
1194
  (U *x)
1195
#endif
1196
95.7k
{
1197
95.7k
  Long L;
1198
95.7k
  U u;
1199
1200
95.7k
  L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
1201
#ifndef Avoid_Underflow
1202
#ifndef Sudden_Underflow
1203
  if (L > 0) {
1204
#endif
1205
#endif
1206
#ifdef IBM
1207
    L |= Exp_msk1 >> 4;
1208
#endif
1209
95.7k
    word0(&u) = L;
1210
95.7k
    word1(&u) = 0;
1211
#ifndef Avoid_Underflow
1212
#ifndef Sudden_Underflow
1213
    }
1214
  else {
1215
    L = -L >> Exp_shift;
1216
    if (L < Exp_shift) {
1217
      word0(&u) = 0x80000 >> L;
1218
      word1(&u) = 0;
1219
      }
1220
    else {
1221
      word0(&u) = 0;
1222
      L -= Exp_shift;
1223
      word1(&u) = L >= 31 ? 1 : 1 << 31 - L;
1224
      }
1225
    }
1226
#endif
1227
#endif
1228
95.7k
  return dval(&u);
1229
95.7k
  }
1230
1231
 static double
1232
b2d
1233
#ifdef KR_headers
1234
  (a, e) Bigint *a; int *e;
1235
#else
1236
  (Bigint *a, int *e)
1237
#endif
1238
181k
{
1239
181k
  ULong *xa, *xa0, w, y, z;
1240
181k
  int k;
1241
181k
  U d;
1242
#ifdef VAX
1243
  ULong d0, d1;
1244
#else
1245
181k
#define d0 word0(&d)
1246
181k
#define d1 word1(&d)
1247
181k
#endif
1248
1249
181k
  xa0 = a->x;
1250
181k
  xa = xa0 + a->wds;
1251
181k
  y = *--xa;
1252
#ifdef DEBUG
1253
  if (!y) Bug("zero y in b2d");
1254
#endif
1255
181k
  k = hi0bits(y);
1256
181k
  *e = 32 - k;
1257
181k
#ifdef Pack_32
1258
181k
  if (k < Ebits) {
1259
23.3k
    d0 = Exp_1 | y >> (Ebits - k);
1260
23.3k
    w = xa > xa0 ? *--xa : 0;
1261
23.3k
    d1 = y << ((32-Ebits) + k) | w >> (Ebits - k);
1262
23.3k
    goto ret_d;
1263
23.3k
    }
1264
157k
  z = xa > xa0 ? *--xa : 0;
1265
157k
  if (k -= Ebits) {
1266
149k
    d0 = Exp_1 | y << k | z >> (32 - k);
1267
149k
    y = xa > xa0 ? *--xa : 0;
1268
149k
    d1 = z << k | y >> (32 - k);
1269
149k
    }
1270
8.28k
  else {
1271
8.28k
    d0 = Exp_1 | y;
1272
8.28k
    d1 = z;
1273
8.28k
    }
1274
#else
1275
  if (k < Ebits + 16) {
1276
    z = xa > xa0 ? *--xa : 0;
1277
    d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
1278
    w = xa > xa0 ? *--xa : 0;
1279
    y = xa > xa0 ? *--xa : 0;
1280
    d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
1281
    goto ret_d;
1282
    }
1283
  z = xa > xa0 ? *--xa : 0;
1284
  w = xa > xa0 ? *--xa : 0;
1285
  k -= Ebits + 16;
1286
  d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
1287
  y = xa > xa0 ? *--xa : 0;
1288
  d1 = w << k + 16 | y << k;
1289
#endif
1290
181k
 ret_d:
1291
#ifdef VAX
1292
  word0(&d) = d0 >> 16 | d0 << 16;
1293
  word1(&d) = d1 >> 16 | d1 << 16;
1294
#else
1295
181k
#undef d0
1296
181k
#undef d1
1297
181k
#endif
1298
181k
  return dval(&d);
1299
157k
  }
1300
1301
 static Bigint *
1302
d2b
1303
#ifdef KR_headers
1304
  (d, e, bits) U *d; int *e, *bits;
1305
#else
1306
  (U *d, int *e, int *bits)
1307
#endif
1308
288k
{
1309
288k
  Bigint *b;
1310
288k
  int de, k;
1311
288k
  ULong *x, y, z;
1312
288k
#ifndef Sudden_Underflow
1313
288k
  int i;
1314
288k
#endif
1315
#ifdef VAX
1316
  ULong d0, d1;
1317
  d0 = word0(d) >> 16 | word0(d) << 16;
1318
  d1 = word1(d) >> 16 | word1(d) << 16;
1319
#else
1320
865k
#define d0 word0(d)
1321
288k
#define d1 word1(d)
1322
288k
#endif
1323
1324
288k
#ifdef Pack_32
1325
288k
  b = Balloc(1);
1326
#else
1327
  b = Balloc(2);
1328
#endif
1329
288k
  x = b->x;
1330
1331
288k
  z = d0 & Frac_mask;
1332
288k
  d0 &= 0x7fffffff; /* clear sign bit, which we ignore */
1333
#ifdef Sudden_Underflow
1334
  de = (int)(d0 >> Exp_shift);
1335
#ifndef IBM
1336
  z |= Exp_msk11;
1337
#endif
1338
#else
1339
288k
  if ((de = (int)(d0 >> Exp_shift)))
1340
288k
    z |= Exp_msk1;
1341
288k
#endif
1342
288k
#ifdef Pack_32
1343
288k
  if ((y = d1)) {
1344
276k
    if ((k = lo0bits(&y))) {
1345
128k
      x[0] = y | z << (32 - k);
1346
128k
      z >>= k;
1347
128k
      }
1348
148k
    else
1349
148k
      x[0] = y;
1350
276k
#ifndef Sudden_Underflow
1351
276k
    i =
1352
276k
#endif
1353
276k
        b->wds = (x[1] = z) ? 2 : 1;
1354
276k
    }
1355
11.9k
  else {
1356
11.9k
    k = lo0bits(&z);
1357
11.9k
    x[0] = z;
1358
11.9k
#ifndef Sudden_Underflow
1359
11.9k
    i =
1360
11.9k
#endif
1361
11.9k
        b->wds = 1;
1362
11.9k
    k += 32;
1363
11.9k
    }
1364
#else
1365
  if (y = d1) {
1366
    if (k = lo0bits(&y))
1367
      if (k >= 16) {
1368
        x[0] = y | z << 32 - k & 0xffff;
1369
        x[1] = z >> k - 16 & 0xffff;
1370
        x[2] = z >> k;
1371
        i = 2;
1372
        }
1373
      else {
1374
        x[0] = y & 0xffff;
1375
        x[1] = y >> 16 | z << 16 - k & 0xffff;
1376
        x[2] = z >> k & 0xffff;
1377
        x[3] = z >> k+16;
1378
        i = 3;
1379
        }
1380
    else {
1381
      x[0] = y & 0xffff;
1382
      x[1] = y >> 16;
1383
      x[2] = z & 0xffff;
1384
      x[3] = z >> 16;
1385
      i = 3;
1386
      }
1387
    }
1388
  else {
1389
#ifdef DEBUG
1390
    if (!z)
1391
      Bug("Zero passed to d2b");
1392
#endif
1393
    k = lo0bits(&z);
1394
    if (k >= 16) {
1395
      x[0] = z;
1396
      i = 0;
1397
      }
1398
    else {
1399
      x[0] = z & 0xffff;
1400
      x[1] = z >> 16;
1401
      i = 1;
1402
      }
1403
    k += 32;
1404
    }
1405
  while(!x[i])
1406
    --i;
1407
  b->wds = i + 1;
1408
#endif
1409
288k
#ifndef Sudden_Underflow
1410
288k
  if (de) {
1411
288k
#endif
1412
#ifdef IBM
1413
    *e = (de - Bias - (P-1) << 2) + k;
1414
    *bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
1415
#else
1416
288k
    *e = de - Bias - (P-1) + k;
1417
288k
    *bits = P - k;
1418
288k
#endif
1419
288k
#ifndef Sudden_Underflow
1420
288k
    }
1421
129
  else {
1422
129
    *e = de - Bias - (P-1) + 1 + k;
1423
129
#ifdef Pack_32
1424
129
    *bits = 32*i - hi0bits(x[i-1]);
1425
#else
1426
    *bits = (i+2)*16 - hi0bits(x[i]);
1427
#endif
1428
129
    }
1429
288k
#endif
1430
288k
  return b;
1431
288k
  }
1432
#undef d0
1433
#undef d1
1434
1435
 static double
1436
ratio
1437
#ifdef KR_headers
1438
  (a, b) Bigint *a, *b;
1439
#else
1440
  (Bigint *a, Bigint *b)
1441
#endif
1442
90.6k
{
1443
90.6k
  U da, db;
1444
90.6k
  int k, ka, kb;
1445
1446
90.6k
  dval(&da) = b2d(a, &ka);
1447
90.6k
  dval(&db) = b2d(b, &kb);
1448
90.6k
#ifdef Pack_32
1449
90.6k
  k = ka - kb + 32*(a->wds - b->wds);
1450
#else
1451
  k = ka - kb + 16*(a->wds - b->wds);
1452
#endif
1453
#ifdef IBM
1454
  if (k > 0) {
1455
    word0(&da) += (k >> 2)*Exp_msk1;
1456
    if (k &= 3)
1457
      dval(&da) *= 1 << k;
1458
    }
1459
  else {
1460
    k = -k;
1461
    word0(&db) += (k >> 2)*Exp_msk1;
1462
    if (k &= 3)
1463
      dval(&db) *= 1 << k;
1464
    }
1465
#else
1466
90.6k
  if (k > 0)
1467
36.0k
    word0(&da) += k*Exp_msk1;
1468
54.5k
  else {
1469
54.5k
    k = -k;
1470
54.5k
    word0(&db) += k*Exp_msk1;
1471
54.5k
    }
1472
90.6k
#endif
1473
90.6k
  return dval(&da) / dval(&db);
1474
90.6k
  }
1475
1476
 static CONST double
1477
tens[] = {
1478
    1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1479
    1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1480
    1e20, 1e21, 1e22
1481
#ifdef VAX
1482
    , 1e23, 1e24
1483
#endif
1484
    };
1485
1486
 static CONST double
1487
#ifdef IEEE_Arith
1488
bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1489
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
1490
#ifdef Avoid_Underflow
1491
    9007199254740992.*9007199254740992.e-256
1492
    /* = 2^106 * 1e-256 */
1493
#else
1494
    1e-256
1495
#endif
1496
    };
1497
/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
1498
/* flag unnecessarily.  It leads to a song and dance at the end of strtod. */
1499
36.0k
#define Scale_Bit 0x10
1500
36.6k
#define n_bigtens 5
1501
#else
1502
#ifdef IBM
1503
bigtens[] = { 1e16, 1e32, 1e64 };
1504
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 };
1505
#define n_bigtens 3
1506
#else
1507
bigtens[] = { 1e16, 1e32 };
1508
static CONST double tinytens[] = { 1e-16, 1e-32 };
1509
#define n_bigtens 2
1510
#endif
1511
#endif
1512
1513
#undef Need_Hexdig
1514
#ifdef INFNAN_CHECK
1515
#ifndef No_Hex_NaN
1516
#define Need_Hexdig
1517
#endif
1518
#endif
1519
1520
#ifndef Need_Hexdig
1521
#ifndef NO_HEX_FP
1522
#define Need_Hexdig
1523
#endif
1524
#endif
1525
1526
#ifdef Need_Hexdig /*{*/
1527
#if 0
1528
static unsigned char hexdig[256];
1529
1530
 static void
1531
htinit(unsigned char *h, unsigned char *s, int inc)
1532
{
1533
  int i, j;
1534
  for(i = 0; (j = s[i]) !=0; i++)
1535
    h[j] = i + inc;
1536
  }
1537
1538
 static void
1539
hexdig_init(void) /* Use of hexdig_init omitted 20121220 to avoid a */
1540
      /* race condition when multiple threads are used. */
1541
{
1542
#define USC (unsigned char *)
1543
  htinit(hexdig, USC "0123456789", 0x10);
1544
  htinit(hexdig, USC "abcdef", 0x10 + 10);
1545
  htinit(hexdig, USC "ABCDEF", 0x10 + 10);
1546
  }
1547
#else
1548
static const unsigned char hexdig[256] = {
1549
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1550
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1551
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1552
  16,17,18,19,20,21,22,23,24,25,0,0,0,0,0,0,
1553
  0,26,27,28,29,30,31,0,0,0,0,0,0,0,0,0,
1554
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1555
  0,26,27,28,29,30,31,0,0,0,0,0,0,0,0,0,
1556
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1557
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1558
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1559
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1560
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1561
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1562
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1563
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1564
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1565
  };
1566
#endif
1567
#endif /* } Need_Hexdig */
1568
1569
#ifdef INFNAN_CHECK
1570
1571
#ifndef NAN_WORD0
1572
#define NAN_WORD0 0x7ff80000
1573
#endif
1574
1575
#ifndef NAN_WORD1
1576
#define NAN_WORD1 0
1577
#endif
1578
1579
 static int
1580
match
1581
#ifdef KR_headers
1582
  (sp, t) char **sp, *t;
1583
#else
1584
  (const char **sp, const char *t)
1585
#endif
1586
{
1587
  int c, d;
1588
  CONST char *s = *sp;
1589
1590
  while((d = *t++)) {
1591
    if ((c = *++s) >= 'A' && c <= 'Z')
1592
      c += 'a' - 'A';
1593
    if (c != d)
1594
      return 0;
1595
    }
1596
  *sp = s + 1;
1597
  return 1;
1598
  }
1599
1600
#ifndef No_Hex_NaN
1601
 static void
1602
hexnan
1603
#ifdef KR_headers
1604
  (rvp, sp) U *rvp; CONST char **sp;
1605
#else
1606
  (U *rvp, const char **sp)
1607
#endif
1608
{
1609
  ULong c, x[2];
1610
  CONST char *s;
1611
  int c1, havedig, udx0, xshift;
1612
1613
  /**** if (!hexdig['0']) hexdig_init(); ****/
1614
  x[0] = x[1] = 0;
1615
  havedig = xshift = 0;
1616
  udx0 = 1;
1617
  s = *sp;
1618
  /* allow optional initial 0x or 0X */
1619
  while((c = *(CONST unsigned char*)(s+1)) && c <= ' ')
1620
    ++s;
1621
  if (s[1] == '0' && (s[2] == 'x' || s[2] == 'X'))
1622
    s += 2;
1623
  while((c = *(CONST unsigned char*)++s)) {
1624
    if ((c1 = hexdig[c]))
1625
      c  = c1 & 0xf;
1626
    else if (c <= ' ') {
1627
      if (udx0 && havedig) {
1628
        udx0 = 0;
1629
        xshift = 1;
1630
        }
1631
      continue;
1632
      }
1633
#ifdef GDTOA_NON_PEDANTIC_NANCHECK
1634
    else if (/*(*/ c == ')' && havedig) {
1635
      *sp = s + 1;
1636
      break;
1637
      }
1638
    else
1639
      return; /* invalid form: don't change *sp */
1640
#else
1641
    else {
1642
      do {
1643
        if (/*(*/ c == ')') {
1644
          *sp = s + 1;
1645
          break;
1646
          }
1647
        } while((c = *++s));
1648
      break;
1649
      }
1650
#endif
1651
    havedig = 1;
1652
    if (xshift) {
1653
      xshift = 0;
1654
      x[0] = x[1];
1655
      x[1] = 0;
1656
      }
1657
    if (udx0)
1658
      x[0] = (x[0] << 4) | (x[1] >> 28);
1659
    x[1] = (x[1] << 4) | c;
1660
    }
1661
  if ((x[0] &= 0xfffff) || x[1]) {
1662
    word0(rvp) = Exp_mask | x[0];
1663
    word1(rvp) = x[1];
1664
    }
1665
  }
1666
#endif /*No_Hex_NaN*/
1667
#endif /* INFNAN_CHECK */
1668
1669
#ifdef Pack_32
1670
#define ULbits 32
1671
#define kshift 5
1672
52.7k
#define kmask 31
1673
#else
1674
#define ULbits 16
1675
#define kshift 4
1676
#define kmask 15
1677
#endif
1678
1679
#if !defined(NO_HEX_FP) || defined(Honor_FLT_ROUNDS) /*{*/
1680
 static Bigint *
1681
#ifdef KR_headers
1682
increment(b) Bigint *b;
1683
#else
1684
increment(Bigint *b)
1685
#endif
1686
{
1687
  ULong *x, *xe;
1688
  Bigint *b1;
1689
1690
  x = b->x;
1691
  xe = x + b->wds;
1692
  do {
1693
    if (*x < (ULong)0xffffffffL) {
1694
      ++*x;
1695
      return b;
1696
      }
1697
    *x++ = 0;
1698
    } while(x < xe);
1699
  {
1700
    if (b->wds >= b->maxwds) {
1701
      b1 = Balloc(b->k+1);
1702
      Bcopy(b1,b);
1703
      Bfree(b);
1704
      b = b1;
1705
      }
1706
    b->x[b->wds++] = 1;
1707
    }
1708
  return b;
1709
  }
1710
1711
#endif /*}*/
1712
1713
#ifndef NO_HEX_FP /*{*/
1714
1715
 static void
1716
#ifdef KR_headers
1717
rshift(b, k) Bigint *b; int k;
1718
#else
1719
rshift(Bigint *b, int k)
1720
#endif
1721
{
1722
  ULong *x, *x1, *xe, y;
1723
  int n;
1724
1725
  x = x1 = b->x;
1726
  n = k >> kshift;
1727
  if (n < b->wds) {
1728
    xe = x + b->wds;
1729
    x += n;
1730
    if (k &= kmask) {
1731
      n = 32 - k;
1732
      y = *x++ >> k;
1733
      while(x < xe) {
1734
        *x1++ = (y | (*x << n)) & 0xffffffff;
1735
        y = *x++ >> k;
1736
        }
1737
      if ((*x1 = y) !=0)
1738
        x1++;
1739
      }
1740
    else
1741
      while(x < xe)
1742
        *x1++ = *x++;
1743
    }
1744
  if ((b->wds = x1 - b->x) == 0)
1745
    b->x[0] = 0;
1746
  }
1747
1748
 static ULong
1749
#ifdef KR_headers
1750
any_on(b, k) Bigint *b; int k;
1751
#else
1752
any_on(Bigint *b, int k)
1753
#endif
1754
{
1755
  int n, nwds;
1756
  ULong *x, *x0, x1, x2;
1757
1758
  x = b->x;
1759
  nwds = b->wds;
1760
  n = k >> kshift;
1761
  if (n > nwds)
1762
    n = nwds;
1763
  else if (n < nwds && (k &= kmask)) {
1764
    x1 = x2 = x[n];
1765
    x1 >>= k;
1766
    x1 <<= k;
1767
    if (x1 != x2)
1768
      return 1;
1769
    }
1770
  x0 = x;
1771
  x += n;
1772
  while(x > x0)
1773
    if (*--x)
1774
      return 1;
1775
  return 0;
1776
  }
1777
1778
enum {  /* rounding values: same as FLT_ROUNDS */
1779
  Round_zero = 0,
1780
  Round_near = 1,
1781
  Round_up = 2,
1782
  Round_down = 3
1783
  };
1784
1785
 void
1786
#ifdef KR_headers
1787
gethex(sp, rvp, rounding, sign)
1788
  CONST char **sp; U *rvp; int rounding, sign;
1789
#else
1790
gethex( CONST char **sp, U *rvp, int rounding, int sign)
1791
#endif
1792
{
1793
  Bigint *b;
1794
  CONST unsigned char *decpt, *s0, *s, *s1;
1795
  Long e, e1;
1796
  ULong L, lostbits, *x;
1797
  int big, denorm, esign, havedig, k, n, nbits, up, zret;
1798
#ifdef IBM
1799
  int j;
1800
#endif
1801
  enum {
1802
#ifdef IEEE_Arith /*{{*/
1803
    emax = 0x7fe - Bias - P + 1,
1804
    emin = Emin - P + 1
1805
#else /*}{*/
1806
    emin = Emin - P,
1807
#ifdef VAX
1808
    emax = 0x7ff - Bias - P + 1
1809
#endif
1810
#ifdef IBM
1811
    emax = 0x7f - Bias - P
1812
#endif
1813
#endif /*}}*/
1814
    };
1815
#ifdef USE_LOCALE
1816
  int i;
1817
#ifdef NO_LOCALE_CACHE
1818
  const unsigned char *decimalpoint = (unsigned char*)
1819
    localeconv()->decimal_point;
1820
#else
1821
  const unsigned char *decimalpoint;
1822
  static unsigned char *decimalpoint_cache;
1823
  if (!(s0 = decimalpoint_cache)) {
1824
    s0 = (unsigned char*)localeconv()->decimal_point;
1825
    if ((decimalpoint_cache = (unsigned char*)
1826
        MALLOC(strlen((CONST char*)s0) + 1))) {
1827
      strcpy((char*)decimalpoint_cache, (CONST char*)s0);
1828
      s0 = decimalpoint_cache;
1829
      }
1830
    }
1831
  decimalpoint = s0;
1832
#endif
1833
#endif
1834
1835
  /**** if (!hexdig['0']) hexdig_init(); ****/
1836
  havedig = 0;
1837
  s0 = *(CONST unsigned char **)sp + 2;
1838
  while(s0[havedig] == '0')
1839
    havedig++;
1840
  s0 += havedig;
1841
  s = s0;
1842
  decpt = 0;
1843
  zret = 0;
1844
  e = 0;
1845
  if (hexdig[*s])
1846
    havedig++;
1847
  else {
1848
    zret = 1;
1849
#ifdef USE_LOCALE
1850
    for(i = 0; decimalpoint[i]; ++i) {
1851
      if (s[i] != decimalpoint[i])
1852
        goto pcheck;
1853
      }
1854
    decpt = s += i;
1855
#else
1856
    if (*s != '.')
1857
      goto pcheck;
1858
    decpt = ++s;
1859
#endif
1860
    if (!hexdig[*s])
1861
      goto pcheck;
1862
    while(*s == '0')
1863
      s++;
1864
    if (hexdig[*s])
1865
      zret = 0;
1866
    havedig = 1;
1867
    s0 = s;
1868
    }
1869
  while(hexdig[*s])
1870
    s++;
1871
#ifdef USE_LOCALE
1872
  if (*s == *decimalpoint && !decpt) {
1873
    for(i = 1; decimalpoint[i]; ++i) {
1874
      if (s[i] != decimalpoint[i])
1875
        goto pcheck;
1876
      }
1877
    decpt = s += i;
1878
#else
1879
  if (*s == '.' && !decpt) {
1880
    decpt = ++s;
1881
#endif
1882
    while(hexdig[*s])
1883
      s++;
1884
    }/*}*/
1885
  if (decpt)
1886
    e = -(((Long)(s-decpt)) << 2);
1887
 pcheck:
1888
  s1 = s;
1889
  big = esign = 0;
1890
  switch(*s) {
1891
    case 'p':
1892
    case 'P':
1893
    switch(*++s) {
1894
      case '-':
1895
      esign = 1;
1896
      ZEND_FALLTHROUGH;
1897
      case '+':
1898
      s++;
1899
      }
1900
    if ((n = hexdig[*s]) == 0 || n > 0x19) {
1901
      s = s1;
1902
      break;
1903
      }
1904
    e1 = n - 0x10;
1905
    while((n = hexdig[*++s]) !=0 && n <= 0x19) {
1906
      if (e1 & 0xf8000000)
1907
        big = 1;
1908
      e1 = 10*e1 + n - 0x10;
1909
      }
1910
    if (esign)
1911
      e1 = -e1;
1912
    e += e1;
1913
    }
1914
  *sp = (char*)s;
1915
  if (!havedig)
1916
    *sp = (char*)s0 - 1;
1917
  if (zret)
1918
    goto retz1;
1919
  if (big) {
1920
    if (esign) {
1921
#ifdef IEEE_Arith
1922
      switch(rounding) {
1923
        case Round_up:
1924
        if (sign)
1925
          break;
1926
        goto ret_tiny;
1927
        case Round_down:
1928
        if (!sign)
1929
          break;
1930
        goto ret_tiny;
1931
        }
1932
#endif
1933
      goto retz;
1934
#ifdef IEEE_Arith
1935
 ret_tinyf:
1936
      Bfree(b);
1937
 ret_tiny:
1938
#ifndef NO_ERRNO
1939
      errno = ERANGE;
1940
#endif
1941
      word0(rvp) = 0;
1942
      word1(rvp) = 1;
1943
      return;
1944
#endif /* IEEE_Arith */
1945
      }
1946
    switch(rounding) {
1947
      case Round_near:
1948
      goto ovfl1;
1949
      case Round_up:
1950
      if (!sign)
1951
        goto ovfl1;
1952
      goto ret_big;
1953
      case Round_down:
1954
      if (sign)
1955
        goto ovfl1;
1956
      goto ret_big;
1957
      }
1958
 ret_big:
1959
    word0(rvp) = Big0;
1960
    word1(rvp) = Big1;
1961
    return;
1962
    }
1963
  n = s1 - s0 - 1;
1964
  for(k = 0; n > (1 << (kshift-2)) - 1; n >>= 1)
1965
    k++;
1966
  b = Balloc(k);
1967
  x = b->x;
1968
  n = 0;
1969
  L = 0;
1970
#ifdef USE_LOCALE
1971
  for(i = 0; decimalpoint[i+1]; ++i);
1972
#endif
1973
  while(s1 > s0) {
1974
#ifdef USE_LOCALE
1975
    if (*--s1 == decimalpoint[i]) {
1976
      s1 -= i;
1977
      continue;
1978
      }
1979
#else
1980
    if (*--s1 == '.')
1981
      continue;
1982
#endif
1983
    if (n == ULbits) {
1984
      *x++ = L;
1985
      L = 0;
1986
      n = 0;
1987
      }
1988
    L |= (hexdig[*s1] & 0x0f) << n;
1989
    n += 4;
1990
    }
1991
  *x++ = L;
1992
  b->wds = n = x - b->x;
1993
  n = ULbits*n - hi0bits(L);
1994
  nbits = Nbits;
1995
  lostbits = 0;
1996
  x = b->x;
1997
  if (n > nbits) {
1998
    n -= nbits;
1999
    if (any_on(b,n)) {
2000
      lostbits = 1;
2001
      k = n - 1;
2002
      if (x[k>>kshift] & 1 << (k & kmask)) {
2003
        lostbits = 2;
2004
        if (k > 0 && any_on(b,k))
2005
          lostbits = 3;
2006
        }
2007
      }
2008
    rshift(b, n);
2009
    e += n;
2010
    }
2011
  else if (n < nbits) {
2012
    n = nbits - n;
2013
    b = lshift(b, n);
2014
    e -= n;
2015
    x = b->x;
2016
    }
2017
  if (e > Emax) {
2018
 ovfl:
2019
    Bfree(b);
2020
 ovfl1:
2021
#ifndef NO_ERRNO
2022
    errno = ERANGE;
2023
#endif
2024
    word0(rvp) = Exp_mask;
2025
    word1(rvp) = 0;
2026
    return;
2027
    }
2028
  denorm = 0;
2029
  if (e < emin) {
2030
    denorm = 1;
2031
    n = emin - e;
2032
    if (n >= nbits) {
2033
#ifdef IEEE_Arith /*{*/
2034
      switch (rounding) {
2035
        case Round_near:
2036
        if (n == nbits && (n < 2 || any_on(b,n-1)))
2037
          goto ret_tinyf;
2038
        break;
2039
        case Round_up:
2040
        if (!sign)
2041
          goto ret_tinyf;
2042
        break;
2043
        case Round_down:
2044
        if (sign)
2045
          goto ret_tinyf;
2046
        }
2047
#endif /* } IEEE_Arith */
2048
      Bfree(b);
2049
 retz:
2050
#ifndef NO_ERRNO
2051
      errno = ERANGE;
2052
#endif
2053
 retz1:
2054
      rvp->d = 0.;
2055
      return;
2056
      }
2057
    k = n - 1;
2058
    if (lostbits)
2059
      lostbits = 1;
2060
    else if (k > 0)
2061
      lostbits = any_on(b,k);
2062
    if (x[k>>kshift] & 1 << (k & kmask))
2063
      lostbits |= 2;
2064
    nbits -= n;
2065
    rshift(b,n);
2066
    e = emin;
2067
    }
2068
  if (lostbits) {
2069
    up = 0;
2070
    switch(rounding) {
2071
      case Round_zero:
2072
      break;
2073
      case Round_near:
2074
      if (lostbits & 2
2075
       && (lostbits & 1) | (x[0] & 1))
2076
        up = 1;
2077
      break;
2078
      case Round_up:
2079
      up = 1 - sign;
2080
      break;
2081
      case Round_down:
2082
      up = sign;
2083
      }
2084
    if (up) {
2085
      k = b->wds;
2086
      b = increment(b);
2087
      x = b->x;
2088
      if (denorm) {
2089
#if 0
2090
        if (nbits == Nbits - 1
2091
         && x[nbits >> kshift] & 1 << (nbits & kmask))
2092
          denorm = 0; /* not currently used */
2093
#endif
2094
        }
2095
      else if (b->wds > k
2096
       || ((n = nbits & kmask) !=0
2097
           && hi0bits(x[k-1]) < 32-n)) {
2098
        rshift(b,1);
2099
        if (++e > Emax)
2100
          goto ovfl;
2101
        }
2102
      }
2103
    }
2104
#ifdef IEEE_Arith
2105
  if (denorm)
2106
    word0(rvp) = b->wds > 1 ? b->x[1] & ~0x100000 : 0;
2107
  else
2108
    word0(rvp) = (b->x[1] & ~0x100000) | ((e + 0x3ff + 52) << 20);
2109
  word1(rvp) = b->x[0];
2110
#endif
2111
#ifdef IBM
2112
  if ((j = e & 3)) {
2113
    k = b->x[0] & ((1 << j) - 1);
2114
    rshift(b,j);
2115
    if (k) {
2116
      switch(rounding) {
2117
        case Round_up:
2118
        if (!sign)
2119
          increment(b);
2120
        break;
2121
        case Round_down:
2122
        if (sign)
2123
          increment(b);
2124
        break;
2125
        case Round_near:
2126
        j = 1 << (j-1);
2127
        if (k & j && ((k & (j-1)) | lostbits))
2128
          increment(b);
2129
        }
2130
      }
2131
    }
2132
  e >>= 2;
2133
  word0(rvp) = b->x[1] | ((e + 65 + 13) << 24);
2134
  word1(rvp) = b->x[0];
2135
#endif
2136
#ifdef VAX
2137
  /* The next two lines ignore swap of low- and high-order 2 bytes. */
2138
  /* word0(rvp) = (b->x[1] & ~0x800000) | ((e + 129 + 55) << 23); */
2139
  /* word1(rvp) = b->x[0]; */
2140
  word0(rvp) = ((b->x[1] & ~0x800000) >> 16) | ((e + 129 + 55) << 7) | (b->x[1] << 16);
2141
  word1(rvp) = (b->x[0] >> 16) | (b->x[0] << 16);
2142
#endif
2143
  Bfree(b);
2144
  }
2145
#endif /*!NO_HEX_FP}*/
2146
2147
 static int
2148
#ifdef KR_headers
2149
dshift(b, p2) Bigint *b; int p2;
2150
#else
2151
dshift(Bigint *b, int p2)
2152
#endif
2153
52.7k
{
2154
52.7k
  int rv = hi0bits(b->x[b->wds-1]) - 4;
2155
52.7k
  if (p2 > 0)
2156
7.60k
    rv -= p2;
2157
52.7k
  return rv & kmask;
2158
52.7k
  }
2159
2160
 static int
2161
quorem
2162
#ifdef KR_headers
2163
  (b, S) Bigint *b, *S;
2164
#else
2165
  (Bigint *b, Bigint *S)
2166
#endif
2167
768k
{
2168
768k
  int n;
2169
768k
  ULong *bx, *bxe, q, *sx, *sxe;
2170
768k
#ifdef ULLong
2171
768k
  ULLong borrow, carry, y, ys;
2172
#else
2173
  ULong borrow, carry, y, ys;
2174
#ifdef Pack_32
2175
  ULong si, z, zs;
2176
#endif
2177
#endif
2178
2179
768k
  n = S->wds;
2180
#ifdef DEBUG
2181
  /*debug*/ if (b->wds > n)
2182
  /*debug*/ Bug("oversize b in quorem");
2183
#endif
2184
768k
  if (b->wds < n)
2185
50.7k
    return 0;
2186
717k
  sx = S->x;
2187
717k
  sxe = sx + --n;
2188
717k
  bx = b->x;
2189
717k
  bxe = bx + n;
2190
717k
  q = *bxe / (*sxe + 1);  /* ensure q <= true quotient */
2191
#ifdef DEBUG
2192
#ifdef NO_STRTOD_BIGCOMP
2193
  /*debug*/ if (q > 9)
2194
#else
2195
  /* An oversized q is possible when quorem is called from bigcomp and */
2196
  /* the input is near, e.g., twice the smallest denormalized number. */
2197
  /*debug*/ if (q > 15)
2198
#endif
2199
  /*debug*/ Bug("oversized quotient in quorem");
2200
#endif
2201
717k
  if (q) {
2202
474k
    borrow = 0;
2203
474k
    carry = 0;
2204
2.89M
    do {
2205
2.89M
#ifdef ULLong
2206
2.89M
      ys = *sx++ * (ULLong)q + carry;
2207
2.89M
      carry = ys >> 32;
2208
2.89M
      y = *bx - (ys & FFFFFFFF) - borrow;
2209
2.89M
      borrow = y >> 32 & (ULong)1;
2210
2.89M
      *bx++ = y & FFFFFFFF;
2211
#else
2212
#ifdef Pack_32
2213
      si = *sx++;
2214
      ys = (si & 0xffff) * q + carry;
2215
      zs = (si >> 16) * q + (ys >> 16);
2216
      carry = zs >> 16;
2217
      y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
2218
      borrow = (y & 0x10000) >> 16;
2219
      z = (*bx >> 16) - (zs & 0xffff) - borrow;
2220
      borrow = (z & 0x10000) >> 16;
2221
      Storeinc(bx, z, y);
2222
#else
2223
      ys = *sx++ * q + carry;
2224
      carry = ys >> 16;
2225
      y = *bx - (ys & 0xffff) - borrow;
2226
      borrow = (y & 0x10000) >> 16;
2227
      *bx++ = y & 0xffff;
2228
#endif
2229
#endif
2230
2.89M
      }
2231
2.89M
      while(sx <= sxe);
2232
474k
    if (!*bxe) {
2233
2.35k
      bx = b->x;
2234
2.35k
      while(--bxe > bx && !*bxe)
2235
0
        --n;
2236
2.35k
      b->wds = n;
2237
2.35k
      }
2238
474k
    }
2239
717k
  if (cmp(b, S) >= 0) {
2240
21.4k
    q++;
2241
21.4k
    borrow = 0;
2242
21.4k
    carry = 0;
2243
21.4k
    bx = b->x;
2244
21.4k
    sx = S->x;
2245
177k
    do {
2246
177k
#ifdef ULLong
2247
177k
      ys = *sx++ + carry;
2248
177k
      carry = ys >> 32;
2249
177k
      y = *bx - (ys & FFFFFFFF) - borrow;
2250
177k
      borrow = y >> 32 & (ULong)1;
2251
177k
      *bx++ = y & FFFFFFFF;
2252
#else
2253
#ifdef Pack_32
2254
      si = *sx++;
2255
      ys = (si & 0xffff) + carry;
2256
      zs = (si >> 16) + (ys >> 16);
2257
      carry = zs >> 16;
2258
      y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
2259
      borrow = (y & 0x10000) >> 16;
2260
      z = (*bx >> 16) - (zs & 0xffff) - borrow;
2261
      borrow = (z & 0x10000) >> 16;
2262
      Storeinc(bx, z, y);
2263
#else
2264
      ys = *sx++ + carry;
2265
      carry = ys >> 16;
2266
      y = *bx - (ys & 0xffff) - borrow;
2267
      borrow = (y & 0x10000) >> 16;
2268
      *bx++ = y & 0xffff;
2269
#endif
2270
#endif
2271
177k
      }
2272
177k
      while(sx <= sxe);
2273
21.4k
    bx = b->x;
2274
21.4k
    bxe = bx + n;
2275
21.4k
    if (!*bxe) {
2276
24.4k
      while(--bxe > bx && !*bxe)
2277
4.65k
        --n;
2278
19.7k
      b->wds = n;
2279
19.7k
      }
2280
21.4k
    }
2281
717k
  return q;
2282
768k
  }
2283
2284
#if defined(Avoid_Underflow) || !defined(NO_STRTOD_BIGCOMP) /*{*/
2285
 static double
2286
sulp
2287
#ifdef KR_headers
2288
  (x, bc) U *x; BCinfo *bc;
2289
#else
2290
  (U *x, BCinfo *bc)
2291
#endif
2292
5.10k
{
2293
5.10k
  U u;
2294
5.10k
  double rv;
2295
5.10k
  int i;
2296
2297
5.10k
  rv = ulp(x);
2298
5.10k
  if (!bc->scale || (i = 2*P + 1 - ((word0(x) & Exp_mask) >> Exp_shift)) <= 0)
2299
4.91k
    return rv; /* Is there an example where i <= 0 ? */
2300
183
  word0(&u) = Exp_1 + (i << Exp_shift);
2301
183
  word1(&u) = 0;
2302
183
  return rv * u.d;
2303
5.10k
  }
2304
#endif /*}*/
2305
2306
#ifndef NO_STRTOD_BIGCOMP
2307
 static void
2308
bigcomp
2309
#ifdef KR_headers
2310
  (rv, s0, bc)
2311
  U *rv; CONST char *s0; BCinfo *bc;
2312
#else
2313
  (U *rv, const char *s0, BCinfo *bc)
2314
#endif
2315
32.3k
{
2316
32.3k
  Bigint *b, *d;
2317
32.3k
  int b2, bbits, d2, dd, dig, dsign, i, j, nd, nd0, p2, p5, speccase;
2318
2319
32.3k
  dsign = bc->dsign;
2320
32.3k
  nd = bc->nd;
2321
32.3k
  nd0 = bc->nd0;
2322
32.3k
  p5 = nd + bc->e0 - 1;
2323
32.3k
  speccase = 0;
2324
32.3k
#ifndef Sudden_Underflow
2325
32.3k
  if (rv->d == 0.) { /* special case: value near underflow-to-zero */
2326
        /* threshold was rounded to zero */
2327
1.58k
    b = i2b(1);
2328
1.58k
    p2 = Emin - P + 1;
2329
1.58k
    bbits = 1;
2330
1.58k
#ifdef Avoid_Underflow
2331
1.58k
    word0(rv) = (P+2) << Exp_shift;
2332
#else
2333
    word1(rv) = 1;
2334
#endif
2335
1.58k
    i = 0;
2336
#ifdef Honor_FLT_ROUNDS
2337
    if (bc->rounding == 1)
2338
#endif
2339
1.58k
      {
2340
1.58k
      speccase = 1;
2341
1.58k
      --p2;
2342
1.58k
      dsign = 0;
2343
1.58k
      goto have_i;
2344
1.58k
      }
2345
1.58k
    }
2346
30.7k
  else
2347
30.7k
#endif
2348
30.7k
    b = d2b(rv, &p2, &bbits);
2349
30.7k
#ifdef Avoid_Underflow
2350
30.7k
  p2 -= bc->scale;
2351
30.7k
#endif
2352
  /* floor(log2(rv)) == bbits - 1 + p2 */
2353
  /* Check for denormal case. */
2354
30.7k
  i = P - bbits;
2355
30.7k
  if (i > (j = P - Emin - 1 + p2)) {
2356
#ifdef Sudden_Underflow
2357
    Bfree(b);
2358
    b = i2b(1);
2359
    p2 = Emin;
2360
    i = P - 1;
2361
#ifdef Avoid_Underflow
2362
    word0(rv) = (1 + bc->scale) << Exp_shift;
2363
#else
2364
    word0(rv) = Exp_msk1;
2365
#endif
2366
    word1(rv) = 0;
2367
#else
2368
1.15k
    i = j;
2369
1.15k
#endif
2370
1.15k
    }
2371
#ifdef Honor_FLT_ROUNDS
2372
  if (bc->rounding != 1) {
2373
    if (i > 0)
2374
      b = lshift(b, i);
2375
    if (dsign)
2376
      b = increment(b);
2377
    }
2378
  else
2379
#endif
2380
30.7k
    {
2381
30.7k
    b = lshift(b, ++i);
2382
30.7k
    b->x[0] |= 1;
2383
30.7k
    }
2384
30.7k
#ifndef Sudden_Underflow
2385
32.3k
 have_i:
2386
32.3k
#endif
2387
32.3k
  p2 -= p5 + i;
2388
32.3k
  d = i2b(1);
2389
  /* Arrange for convenient computation of quotients:
2390
   * shift left if necessary so divisor has 4 leading 0 bits.
2391
   */
2392
32.3k
  if (p5 > 0)
2393
26.3k
    d = pow5mult(d, p5);
2394
6.04k
  else if (p5 < 0)
2395
5.95k
    b = pow5mult(b, -p5);
2396
32.3k
  if (p2 > 0) {
2397
25.3k
    b2 = p2;
2398
25.3k
    d2 = 0;
2399
25.3k
    }
2400
7.05k
  else {
2401
7.05k
    b2 = 0;
2402
7.05k
    d2 = -p2;
2403
7.05k
    }
2404
32.3k
  i = dshift(d, d2);
2405
32.3k
  if ((b2 += i) > 0)
2406
32.1k
    b = lshift(b, b2);
2407
32.3k
  if ((d2 += i) > 0)
2408
28.4k
    d = lshift(d, d2);
2409
2410
  /* Now b/d = exactly half-way between the two floating-point values */
2411
  /* on either side of the input string.  Compute first digit of b/d. */
2412
2413
32.3k
  if (!(dig = quorem(b,d))) {
2414
0
    b = multadd(b, 10, 0);  /* very unlikely */
2415
0
    dig = quorem(b,d);
2416
0
    }
2417
2418
  /* Compare b/d with s0 */
2419
2420
528k
  for(i = 0; i < nd0; ) {
2421
525k
    if ((dd = s0[i++] - '0' - dig))
2422
26.1k
      goto ret;
2423
499k
    if (!b->x[0] && b->wds == 1) {
2424
3.16k
      if (i < nd)
2425
1.32k
        dd = 1;
2426
3.16k
      goto ret;
2427
3.16k
      }
2428
496k
    b = multadd(b, 10, 0);
2429
496k
    dig = quorem(b,d);
2430
496k
    }
2431
24.0k
  for(j = bc->dp1; i++ < nd;) {
2432
22.6k
    if ((dd = s0[j++] - '0' - dig))
2433
1.55k
      goto ret;
2434
21.0k
    if (!b->x[0] && b->wds == 1) {
2435
34
      if (i < nd)
2436
34
        dd = 1;
2437
34
      goto ret;
2438
34
      }
2439
21.0k
    b = multadd(b, 10, 0);
2440
21.0k
    dig = quorem(b,d);
2441
21.0k
    }
2442
1.42k
  if (dig > 0 || b->x[0] || b->wds > 1)
2443
1.42k
    dd = -1;
2444
32.3k
 ret:
2445
32.3k
  Bfree(b);
2446
32.3k
  Bfree(d);
2447
#ifdef Honor_FLT_ROUNDS
2448
  if (bc->rounding != 1) {
2449
    if (dd < 0) {
2450
      if (bc->rounding == 0) {
2451
        if (!dsign)
2452
          goto retlow1;
2453
        }
2454
      else if (dsign)
2455
        goto rethi1;
2456
      }
2457
    else if (dd > 0) {
2458
      if (bc->rounding == 0) {
2459
        if (dsign)
2460
          goto rethi1;
2461
        goto ret1;
2462
        }
2463
      if (!dsign)
2464
        goto rethi1;
2465
      dval(rv) += 2.*sulp(rv,bc);
2466
      }
2467
    else {
2468
      bc->inexact = 0;
2469
      if (dsign)
2470
        goto rethi1;
2471
      }
2472
    }
2473
  else
2474
#endif
2475
32.3k
  if (speccase) {
2476
1.58k
    if (dd <= 0)
2477
1.58k
      rv->d = 0.;
2478
1.58k
    }
2479
30.7k
  else if (dd < 0) {
2480
27.2k
    if (!dsign)  /* does not happen for round-near */
2481
0
retlow1:
2482
0
      dval(rv) -= sulp(rv,bc);
2483
27.2k
    }
2484
3.51k
  else if (dd > 0) {
2485
1.67k
    if (dsign) {
2486
2.32k
 rethi1:
2487
2.32k
      dval(rv) += sulp(rv,bc);
2488
2.32k
      }
2489
1.67k
    }
2490
1.84k
  else {
2491
    /* Exact half-way case:  apply round-even rule. */
2492
1.84k
    if ((j = ((word0(rv) & Exp_mask) >> Exp_shift) - bc->scale) <= 0) {
2493
0
      i = 1 - j;
2494
0
      if (i <= 31) {
2495
0
        if (word1(rv) & (0x1 << i))
2496
0
          goto odd;
2497
0
        }
2498
0
      else if (word0(rv) & (0x1 << (i-32)))
2499
0
        goto odd;
2500
0
      }
2501
1.84k
    else if (word1(rv) & 1) {
2502
651
 odd:
2503
651
      if (dsign)
2504
651
        goto rethi1;
2505
0
      goto retlow1;
2506
651
      }
2507
1.84k
    }
2508
2509
#ifdef Honor_FLT_ROUNDS
2510
 ret1:
2511
#endif
2512
32.3k
  return;
2513
32.3k
  }
2514
#endif /* NO_STRTOD_BIGCOMP */
2515
2516
ZEND_API double
2517
zend_strtod
2518
#ifdef KR_headers
2519
  (s00, se) CONST char *s00; char **se;
2520
#else
2521
  (const char *s00, const char **se)
2522
#endif
2523
415k
{
2524
415k
  int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, e, e1;
2525
415k
  int esign, i, j, k, nd, nd0, nf, nz, nz0, nz1, sign;
2526
415k
  CONST char *s, *s0, *s1;
2527
415k
  volatile double aadj, aadj1;
2528
415k
  Long L;
2529
415k
  U aadj2, adj, rv, rv0;
2530
415k
  ULong y, z;
2531
415k
  BCinfo bc;
2532
415k
  Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
2533
415k
#ifdef Avoid_Underflow
2534
415k
  ULong Lsb, Lsb1;
2535
415k
#endif
2536
#ifdef SET_INEXACT
2537
  int oldinexact;
2538
#endif
2539
415k
#ifndef NO_STRTOD_BIGCOMP
2540
415k
  int req_bigcomp = 0;
2541
415k
#endif
2542
#ifdef Honor_FLT_ROUNDS /*{*/
2543
#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
2544
  bc.rounding = Flt_Rounds;
2545
#else /*}{*/
2546
  bc.rounding = 1;
2547
  switch(fegetround()) {
2548
    case FE_TOWARDZERO: bc.rounding = 0; break;
2549
    case FE_UPWARD: bc.rounding = 2; break;
2550
    case FE_DOWNWARD: bc.rounding = 3;
2551
    }
2552
#endif /*}}*/
2553
#endif /*}*/
2554
#ifdef USE_LOCALE
2555
  CONST char *s2;
2556
#endif
2557
2558
415k
  sign = nz0 = nz1 = nz = bc.dplen = bc.uflchk = 0;
2559
415k
  dval(&rv) = 0.;
2560
417k
  for(s = s00;;s++) switch(*s) {
2561
57.5k
    case '-':
2562
57.5k
      sign = 1;
2563
57.5k
      ZEND_FALLTHROUGH;
2564
84.7k
    case '+':
2565
84.7k
      if (*++s)
2566
84.7k
        goto break2;
2567
67
      ZEND_FALLTHROUGH;
2568
323
    case 0:
2569
323
      goto ret0;
2570
305
    case '\t':
2571
593
    case '\n':
2572
1.32k
    case '\v':
2573
1.74k
    case '\f':
2574
1.84k
    case '\r':
2575
2.62k
    case ' ':
2576
2.62k
      continue;
2577
330k
    default:
2578
330k
      goto break2;
2579
417k
    }
2580
414k
 break2:
2581
414k
  if (*s == '0') {
2582
#ifndef NO_HEX_FP /*{*/
2583
    switch(s[1]) {
2584
      case 'x':
2585
      case 'X':
2586
#ifdef Honor_FLT_ROUNDS
2587
      gethex(&s, &rv, bc.rounding, sign);
2588
#else
2589
      gethex(&s, &rv, 1, sign);
2590
#endif
2591
      goto ret;
2592
      }
2593
#endif /*}*/
2594
129k
    nz0 = 1;
2595
529k
    while(*++s == '0') ;
2596
129k
    if (!*s)
2597
34
      goto ret;
2598
129k
    }
2599
414k
  s0 = s;
2600
414k
  y = z = 0;
2601
6.93M
  for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
2602
6.51M
    if (nd < 9)
2603
2.33M
      y = 10*y + c - '0';
2604
4.18M
    else if (nd < DBL_DIG + 2)
2605
1.24M
      z = 10*z + c - '0';
2606
414k
  nd0 = nd;
2607
414k
  bc.dp0 = bc.dp1 = s - s0;
2608
905k
  for(s1 = s; s1 > s0 && *--s1 == '0'; )
2609
490k
    ++nz1;
2610
#ifdef USE_LOCALE
2611
  s1 = localeconv()->decimal_point;
2612
  if (c == *s1) {
2613
    c = '.';
2614
    if (*++s1) {
2615
      s2 = s;
2616
      for(;;) {
2617
        if (*++s2 != *s1) {
2618
          c = 0;
2619
          break;
2620
          }
2621
        if (!*++s1) {
2622
          s = s2;
2623
          break;
2624
          }
2625
        }
2626
      }
2627
    }
2628
#endif
2629
414k
  if (c == '.') {
2630
81.5k
    c = *++s;
2631
81.5k
    bc.dp1 = s - s0;
2632
81.5k
    bc.dplen = bc.dp1 - bc.dp0;
2633
81.5k
    if (!nd) {
2634
3.67M
      for(; c == '0'; c = *++s)
2635
3.64M
        nz++;
2636
27.9k
      if (c > '0' && c <= '9') {
2637
24.6k
        bc.dp0 = s0 - s;
2638
24.6k
        bc.dp1 = bc.dp0 + bc.dplen;
2639
24.6k
        s0 = s;
2640
24.6k
        nf += nz;
2641
24.6k
        nz = 0;
2642
24.6k
        goto have_dig;
2643
24.6k
        }
2644
3.24k
      goto dig_done;
2645
27.9k
      }
2646
5.14M
    for(; c >= '0' && c <= '9'; c = *++s) {
2647
5.09M
 have_dig:
2648
5.09M
      nz++;
2649
5.09M
      if (c -= '0') {
2650
413k
        nf += nz;
2651
4.80M
        for(i = 1; i < nz; i++)
2652
4.39M
          if (nd++ < 9)
2653
361k
            y *= 10;
2654
4.03M
          else if (nd <= DBL_DIG + 2)
2655
359k
            z *= 10;
2656
413k
        if (nd++ < 9)
2657
116k
          y = 10*y + c;
2658
297k
        else if (nd <= DBL_DIG + 2)
2659
103k
          z = 10*z + c;
2660
413k
        nz = nz1 = 0;
2661
413k
        }
2662
5.09M
      }
2663
53.6k
    }
2664
414k
 dig_done:
2665
414k
  if (nd < 0) {
2666
    /* overflow */
2667
0
    nd = DBL_DIG + 2;
2668
0
  }
2669
414k
  if (nf < 0) {
2670
    /* overflow */
2671
0
    nf = DBL_DIG + 2;
2672
0
  }
2673
414k
  e = 0;
2674
414k
  if (c == 'e' || c == 'E') {
2675
68.2k
    if (!nd && !nz && !nz0) {
2676
67
      goto ret0;
2677
67
      }
2678
68.1k
    s00 = s;
2679
68.1k
    esign = 0;
2680
68.1k
    switch(c = *++s) {
2681
12.4k
      case '-':
2682
12.4k
        esign = 1;
2683
12.4k
        ZEND_FALLTHROUGH;
2684
12.6k
      case '+':
2685
12.6k
        c = *++s;
2686
68.1k
      }
2687
68.1k
    if (c >= '0' && c <= '9') {
2688
262k
      while(c == '0')
2689
194k
        c = *++s;
2690
67.9k
      if (c > '0' && c <= '9') {
2691
67.2k
        L = c - '0';
2692
67.2k
        s1 = s;
2693
195k
        while((c = *++s) >= '0' && c <= '9')
2694
128k
          L = (Long) (10*(ULong)L + (c - '0'));
2695
67.2k
        if (s - s1 > 8 || L > 19999)
2696
          /* Avoid confusion from exponents
2697
           * so large that e might overflow.
2698
           */
2699
4.14k
          e = 19999; /* safe for 16 bit ints */
2700
63.0k
        else
2701
63.0k
          e = (int)L;
2702
67.2k
        if (esign)
2703
12.3k
          e = -e;
2704
67.2k
        }
2705
752
      else
2706
752
        e = 0;
2707
67.9k
      }
2708
170
    else
2709
170
      s = s00;
2710
68.1k
    }
2711
414k
  if (!nd) {
2712
35.3k
    if (!nz && !nz0) {
2713
#ifdef INFNAN_CHECK
2714
      /* Check for Nan and Infinity */
2715
      if (!bc.dplen)
2716
       switch(c) {
2717
        case 'i':
2718
        case 'I':
2719
        if (match(&s,"nf")) {
2720
          --s;
2721
          if (!match(&s,"inity"))
2722
            ++s;
2723
          word0(&rv) = 0x7ff00000;
2724
          word1(&rv) = 0;
2725
          goto ret;
2726
          }
2727
        break;
2728
        case 'n':
2729
        case 'N':
2730
        if (match(&s, "an")) {
2731
          word0(&rv) = NAN_WORD0;
2732
          word1(&rv) = NAN_WORD1;
2733
#ifndef No_Hex_NaN
2734
          if (*s == '(') /*)*/
2735
            hexnan(&rv, &s);
2736
#endif
2737
          goto ret;
2738
          }
2739
        }
2740
#endif /* INFNAN_CHECK */
2741
610
 ret0:
2742
610
      s = s00;
2743
610
      sign = 0;
2744
610
      }
2745
35.7k
    goto ret;
2746
35.3k
    }
2747
379k
  bc.e0 = e1 = e -= nf;
2748
2749
  /* Now we have nd0 digits, starting at s0, followed by a
2750
   * decimal point, followed by nd-nd0 digits.  The number we're
2751
   * after is the integer represented by those digits times
2752
   * 10**e */
2753
2754
379k
  if (!nd0)
2755
24.6k
    nd0 = nd;
2756
379k
  k = nd < DBL_DIG + 2 ? nd : DBL_DIG + 2;
2757
379k
  dval(&rv) = y;
2758
379k
  if (k > 9) {
2759
#ifdef SET_INEXACT
2760
    if (k > DBL_DIG)
2761
      oldinexact = get_inexact();
2762
#endif
2763
248k
    dval(&rv) = tens[k - 9] * dval(&rv) + z;
2764
248k
    }
2765
379k
  bd0 = 0;
2766
379k
  if (nd <= DBL_DIG
2767
191k
#ifndef RND_PRODQUOT
2768
191k
#ifndef Honor_FLT_ROUNDS
2769
191k
    && Flt_Rounds == 1
2770
379k
#endif
2771
379k
#endif
2772
379k
      ) {
2773
191k
    if (!e)
2774
161k
      goto ret;
2775
30.3k
#ifndef ROUND_BIASED_without_Round_Up
2776
30.3k
    if (e > 0) {
2777
7.93k
      if (e <= Ten_pmax) {
2778
#ifdef VAX
2779
        goto vax_ovfl_check;
2780
#else
2781
#ifdef Honor_FLT_ROUNDS
2782
        /* round correctly FLT_ROUNDS = 2 or 3 */
2783
        if (sign) {
2784
          rv.d = -rv.d;
2785
          sign = 0;
2786
          }
2787
#endif
2788
1.09k
        /* rv = */ rounded_product(dval(&rv), tens[e]);
2789
1.09k
        goto ret;
2790
1.09k
#endif
2791
1.09k
        }
2792
6.83k
      i = DBL_DIG - nd;
2793
6.83k
      if (e <= Ten_pmax + i) {
2794
        /* A fancier test would sometimes let us do
2795
         * this for larger i values.
2796
         */
2797
#ifdef Honor_FLT_ROUNDS
2798
        /* round correctly FLT_ROUNDS = 2 or 3 */
2799
        if (sign) {
2800
          rv.d = -rv.d;
2801
          sign = 0;
2802
          }
2803
#endif
2804
410
        e -= i;
2805
410
        dval(&rv) *= tens[i];
2806
#ifdef VAX
2807
        /* VAX exponent range is so narrow we must
2808
         * worry about overflow here...
2809
         */
2810
 vax_ovfl_check:
2811
        word0(&rv) -= P*Exp_msk1;
2812
        /* rv = */ rounded_product(dval(&rv), tens[e]);
2813
        if ((word0(&rv) & Exp_mask)
2814
         > Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
2815
          goto ovfl;
2816
        word0(&rv) += P*Exp_msk1;
2817
#else
2818
410
        /* rv = */ rounded_product(dval(&rv), tens[e]);
2819
410
#endif
2820
410
        goto ret;
2821
410
        }
2822
6.83k
      }
2823
22.4k
#ifndef Inaccurate_Divide
2824
22.4k
    else if (e >= -Ten_pmax) {
2825
#ifdef Honor_FLT_ROUNDS
2826
      /* round correctly FLT_ROUNDS = 2 or 3 */
2827
      if (sign) {
2828
        rv.d = -rv.d;
2829
        sign = 0;
2830
        }
2831
#endif
2832
5.87k
      /* rv = */ rounded_quotient(dval(&rv), tens[-e]);
2833
5.87k
      goto ret;
2834
5.87k
      }
2835
30.3k
#endif
2836
30.3k
#endif /* ROUND_BIASED_without_Round_Up */
2837
30.3k
    }
2838
210k
  e1 += nd - k;
2839
2840
210k
#ifdef IEEE_Arith
2841
#ifdef SET_INEXACT
2842
  bc.inexact = 1;
2843
  if (k <= DBL_DIG)
2844
    oldinexact = get_inexact();
2845
#endif
2846
210k
#ifdef Avoid_Underflow
2847
210k
  bc.scale = 0;
2848
210k
#endif
2849
#ifdef Honor_FLT_ROUNDS
2850
  if (bc.rounding >= 2) {
2851
    if (sign)
2852
      bc.rounding = bc.rounding == 2 ? 0 : 2;
2853
    else
2854
      if (bc.rounding != 2)
2855
        bc.rounding = 0;
2856
    }
2857
#endif
2858
210k
#endif /*IEEE_Arith*/
2859
2860
  /* Get starting approximation = rv * 10**e1 */
2861
2862
210k
  if (e1 > 0) {
2863
128k
    if ((i = e1 & 15))
2864
125k
      dval(&rv) *= tens[i];
2865
128k
    if (e1 &= ~15) {
2866
73.7k
      if (e1 > DBL_MAX_10_EXP) {
2867
4.93k
 ovfl:
2868
        /* Can't trust HUGE_VAL */
2869
4.93k
#ifdef IEEE_Arith
2870
#ifdef Honor_FLT_ROUNDS
2871
        switch(bc.rounding) {
2872
          case 0: /* toward 0 */
2873
          case 3: /* toward -infinity */
2874
          word0(&rv) = Big0;
2875
          word1(&rv) = Big1;
2876
          break;
2877
          default:
2878
          word0(&rv) = Exp_mask;
2879
          word1(&rv) = 0;
2880
          }
2881
#else /*Honor_FLT_ROUNDS*/
2882
4.93k
        word0(&rv) = Exp_mask;
2883
4.93k
        word1(&rv) = 0;
2884
4.93k
#endif /*Honor_FLT_ROUNDS*/
2885
#ifdef SET_INEXACT
2886
        /* set overflow bit */
2887
        dval(&rv0) = 1e300;
2888
        dval(&rv0) *= dval(&rv0);
2889
#endif
2890
#else /*IEEE_Arith*/
2891
        word0(&rv) = Big0;
2892
        word1(&rv) = Big1;
2893
#endif /*IEEE_Arith*/
2894
7.94k
 range_err:
2895
7.94k
        if (bd0) {
2896
400
          Bfree(bb);
2897
400
          Bfree(bd);
2898
400
          Bfree(bs);
2899
400
          Bfree(bd0);
2900
400
          Bfree(delta);
2901
400
          }
2902
#ifndef NO_ERRNO
2903
        errno = ERANGE;
2904
#endif
2905
7.94k
        goto ret;
2906
4.93k
        }
2907
69.3k
      e1 >>= 4;
2908
152k
      for(j = 0; e1 > 1; j++, e1 >>= 1)
2909
83.0k
        if (e1 & 1)
2910
33.7k
          dval(&rv) *= bigtens[j];
2911
    /* The last multiplication could overflow. */
2912
69.3k
      word0(&rv) -= P*Exp_msk1;
2913
69.3k
      dval(&rv) *= bigtens[j];
2914
69.3k
      if ((z = word0(&rv) & Exp_mask)
2915
69.3k
       > Exp_msk1*(DBL_MAX_EXP+Bias-P))
2916
153
        goto ovfl;
2917
69.1k
      if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
2918
        /* set to largest number */
2919
        /* (Can't trust DBL_MAX) */
2920
400
        word0(&rv) = Big0;
2921
400
        word1(&rv) = Big1;
2922
400
        }
2923
68.7k
      else
2924
68.7k
        word0(&rv) += P*Exp_msk1;
2925
69.1k
      }
2926
128k
    }
2927
82.7k
  else if (e1 < 0) {
2928
72.6k
    e1 = -e1;
2929
72.6k
    if ((i = e1 & 15))
2930
69.4k
      dval(&rv) /= tens[i];
2931
72.6k
    if (e1 >>= 4) {
2932
36.6k
      if (e1 >= 1 << n_bigtens)
2933
651
        goto undfl;
2934
36.0k
#ifdef Avoid_Underflow
2935
36.0k
      if (e1 & Scale_Bit)
2936
11.4k
        bc.scale = 2*P;
2937
143k
      for(j = 0; e1 > 0; j++, e1 >>= 1)
2938
107k
        if (e1 & 1)
2939
58.7k
          dval(&rv) *= tinytens[j];
2940
36.0k
      if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask)
2941
11.4k
            >> Exp_shift)) > 0) {
2942
        /* scaled rv is denormal; clear j low bits */
2943
8.87k
        if (j >= 32) {
2944
3.43k
          if (j > 54)
2945
783
            goto undfl;
2946
2.65k
          word1(&rv) = 0;
2947
2.65k
          if (j >= 53)
2948
1.84k
           word0(&rv) = (P+2)*Exp_msk1;
2949
807
          else
2950
807
           word0(&rv) &= 0xffffffff << (j-32);
2951
2.65k
          }
2952
5.43k
        else
2953
5.43k
          word1(&rv) &= 0xffffffff << j;
2954
8.87k
        }
2955
#else
2956
      for(j = 0; e1 > 1; j++, e1 >>= 1)
2957
        if (e1 & 1)
2958
          dval(&rv) *= tinytens[j];
2959
      /* The last multiplication could underflow. */
2960
      dval(&rv0) = dval(&rv);
2961
      dval(&rv) *= tinytens[j];
2962
      if (!dval(&rv)) {
2963
        dval(&rv) = 2.*dval(&rv0);
2964
        dval(&rv) *= tinytens[j];
2965
#endif
2966
35.2k
        if (!dval(&rv)) {
2967
3.01k
 undfl:
2968
3.01k
          dval(&rv) = 0.;
2969
3.01k
          goto range_err;
2970
0
          }
2971
#ifndef Avoid_Underflow
2972
        word0(&rv) = Tiny0;
2973
        word1(&rv) = Tiny1;
2974
        /* The refinement below will clean
2975
         * this approximation up.
2976
         */
2977
        }
2978
#endif
2979
35.2k
      }
2980
72.6k
    }
2981
2982
  /* Now the hard part -- adjusting rv to the correct value.*/
2983
2984
  /* Put digits into bd: true value = bd * 10^e */
2985
2986
204k
  bc.nd = nd - nz1;
2987
204k
#ifndef NO_STRTOD_BIGCOMP
2988
204k
  bc.nd0 = nd0; /* Only needed if nd > strtod_diglim, but done here */
2989
      /* to silence an erroneous warning about bc.nd0 */
2990
      /* possibly not being initialized. */
2991
204k
  if (nd > strtod_diglim) {
2992
    /* ASSERT(strtod_diglim >= 18); 18 == one more than the */
2993
    /* minimum number of decimal digits to distinguish double values */
2994
    /* in IEEE arithmetic. */
2995
58.2k
    i = j = 18;
2996
58.2k
    if (i > nd0)
2997
5.75k
      j += bc.dplen;
2998
400k
    for(;;) {
2999
400k
      if (--j < bc.dp1 && j >= bc.dp0)
3000
2.53k
        j = bc.dp0 - 1;
3001
400k
      if (s0[j] != '0')
3002
58.2k
        break;
3003
341k
      --i;
3004
341k
      }
3005
58.2k
    e += nd - i;
3006
58.2k
    nd = i;
3007
58.2k
    if (nd0 > nd)
3008
52.4k
      nd0 = nd;
3009
58.2k
    if (nd < 9) { /* must recompute y */
3010
20.1k
      y = 0;
3011
78.1k
      for(i = 0; i < nd0; ++i)
3012
58.0k
        y = 10*y + s0[i] - '0';
3013
23.0k
      for(j = bc.dp1; i < nd; ++i)
3014
2.86k
        y = 10*y + s0[j++] - '0';
3015
20.1k
      }
3016
58.2k
    }
3017
204k
#endif
3018
204k
  bd0 = s2b(s0, nd0, nd, y, bc.dplen);
3019
3020
237k
  for(;;) {
3021
237k
    bd = Balloc(bd0->k);
3022
237k
    Bcopy(bd, bd0);
3023
237k
    bb = d2b(&rv, &bbe, &bbbits); /* rv = bb * 2^bbe */
3024
237k
    bs = i2b(1);
3025
3026
237k
    if (e >= 0) {
3027
158k
      bb2 = bb5 = 0;
3028
158k
      bd2 = bd5 = e;
3029
158k
      }
3030
78.4k
    else {
3031
78.4k
      bb2 = bb5 = -e;
3032
78.4k
      bd2 = bd5 = 0;
3033
78.4k
      }
3034
237k
    if (bbe >= 0)
3035
164k
      bb2 += bbe;
3036
72.9k
    else
3037
72.9k
      bd2 -= bbe;
3038
237k
    bs2 = bb2;
3039
#ifdef Honor_FLT_ROUNDS
3040
    if (bc.rounding != 1)
3041
      bs2++;
3042
#endif
3043
237k
#ifdef Avoid_Underflow
3044
237k
    Lsb = LSB;
3045
237k
    Lsb1 = 0;
3046
237k
    j = bbe - bc.scale;
3047
237k
    i = j + bbbits - 1; /* logb(rv) */
3048
237k
    j = P + 1 - bbbits;
3049
237k
    if (i < Emin) { /* denormal */
3050
10.8k
      i = Emin - i;
3051
10.8k
      j -= i;
3052
10.8k
      if (i < 32)
3053
7.47k
        Lsb <<= i;
3054
3.41k
      else if (i < 52)
3055
1.55k
        Lsb1 = Lsb << (i-32);
3056
1.86k
      else
3057
1.86k
        Lsb1 = Exp_mask;
3058
10.8k
      }
3059
#else /*Avoid_Underflow*/
3060
#ifdef Sudden_Underflow
3061
#ifdef IBM
3062
    j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
3063
#else
3064
    j = P + 1 - bbbits;
3065
#endif
3066
#else /*Sudden_Underflow*/
3067
    j = bbe;
3068
    i = j + bbbits - 1; /* logb(rv) */
3069
    if (i < Emin) /* denormal */
3070
      j += P - Emin;
3071
    else
3072
      j = P + 1 - bbbits;
3073
#endif /*Sudden_Underflow*/
3074
#endif /*Avoid_Underflow*/
3075
237k
    bb2 += j;
3076
237k
    bd2 += j;
3077
237k
#ifdef Avoid_Underflow
3078
237k
    bd2 += bc.scale;
3079
237k
#endif
3080
237k
    i = bb2 < bd2 ? bb2 : bd2;
3081
237k
    if (i > bs2)
3082
80.8k
      i = bs2;
3083
237k
    if (i > 0) {
3084
234k
      bb2 -= i;
3085
234k
      bd2 -= i;
3086
234k
      bs2 -= i;
3087
234k
      }
3088
237k
    if (bb5 > 0) {
3089
78.4k
      bs = pow5mult(bs, bb5);
3090
78.4k
      bb1 = mult(bs, bb);
3091
78.4k
      Bfree(bb);
3092
78.4k
      bb = bb1;
3093
78.4k
      }
3094
237k
    if (bb2 > 0)
3095
237k
      bb = lshift(bb, bb2);
3096
237k
    if (bd5 > 0)
3097
87.0k
      bd = pow5mult(bd, bd5);
3098
237k
    if (bd2 > 0)
3099
80.8k
      bd = lshift(bd, bd2);
3100
237k
    if (bs2 > 0)
3101
154k
      bs = lshift(bs, bs2);
3102
237k
    delta = diff(bb, bd);
3103
237k
    bc.dsign = delta->sign;
3104
237k
    delta->sign = 0;
3105
237k
    i = cmp(delta, bs);
3106
237k
#ifndef NO_STRTOD_BIGCOMP /*{*/
3107
237k
    if (bc.nd > nd && i <= 0) {
3108
57.8k
      if (bc.dsign) {
3109
        /* Must use bigcomp(). */
3110
30.7k
        req_bigcomp = 1;
3111
30.7k
        break;
3112
30.7k
        }
3113
#ifdef Honor_FLT_ROUNDS
3114
      if (bc.rounding != 1) {
3115
        if (i < 0) {
3116
          req_bigcomp = 1;
3117
          break;
3118
          }
3119
        }
3120
      else
3121
#endif
3122
27.0k
        i = -1; /* Discarded digits make delta smaller. */
3123
27.0k
      }
3124
206k
#endif /*}*/
3125
#ifdef Honor_FLT_ROUNDS /*{*/
3126
    if (bc.rounding != 1) {
3127
      if (i < 0) {
3128
        /* Error is less than an ulp */
3129
        if (!delta->x[0] && delta->wds <= 1) {
3130
          /* exact */
3131
#ifdef SET_INEXACT
3132
          bc.inexact = 0;
3133
#endif
3134
          break;
3135
          }
3136
        if (bc.rounding) {
3137
          if (bc.dsign) {
3138
            adj.d = 1.;
3139
            goto apply_adj;
3140
            }
3141
          }
3142
        else if (!bc.dsign) {
3143
          adj.d = -1.;
3144
          if (!word1(&rv)
3145
           && !(word0(&rv) & Frac_mask)) {
3146
            y = word0(&rv) & Exp_mask;
3147
#ifdef Avoid_Underflow
3148
            if (!bc.scale || y > 2*P*Exp_msk1)
3149
#else
3150
            if (y)
3151
#endif
3152
              {
3153
              delta = lshift(delta,Log2P);
3154
              if (cmp(delta, bs) <= 0)
3155
              adj.d = -0.5;
3156
              }
3157
            }
3158
 apply_adj:
3159
#ifdef Avoid_Underflow /*{*/
3160
          if (bc.scale && (y = word0(&rv) & Exp_mask)
3161
            <= 2*P*Exp_msk1)
3162
            word0(&adj) += (2*P+1)*Exp_msk1 - y;
3163
#else
3164
#ifdef Sudden_Underflow
3165
          if ((word0(&rv) & Exp_mask) <=
3166
              P*Exp_msk1) {
3167
            word0(&rv) += P*Exp_msk1;
3168
            dval(&rv) += adj.d*ulp(dval(&rv));
3169
            word0(&rv) -= P*Exp_msk1;
3170
            }
3171
          else
3172
#endif /*Sudden_Underflow*/
3173
#endif /*Avoid_Underflow}*/
3174
          dval(&rv) += adj.d*ulp(&rv);
3175
          }
3176
        break;
3177
        }
3178
      adj.d = ratio(delta, bs);
3179
      if (adj.d < 1.)
3180
        adj.d = 1.;
3181
      if (adj.d <= 0x7ffffffe) {
3182
        /* adj = rounding ? ceil(adj) : floor(adj); */
3183
        y = adj.d;
3184
        if (y != adj.d) {
3185
          if (!((bc.rounding>>1) ^ bc.dsign))
3186
            y++;
3187
          adj.d = y;
3188
          }
3189
        }
3190
#ifdef Avoid_Underflow /*{*/
3191
      if (bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1)
3192
        word0(&adj) += (2*P+1)*Exp_msk1 - y;
3193
#else
3194
#ifdef Sudden_Underflow
3195
      if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) {
3196
        word0(&rv) += P*Exp_msk1;
3197
        adj.d *= ulp(dval(&rv));
3198
        if (bc.dsign)
3199
          dval(&rv) += adj.d;
3200
        else
3201
          dval(&rv) -= adj.d;
3202
        word0(&rv) -= P*Exp_msk1;
3203
        goto cont;
3204
        }
3205
#endif /*Sudden_Underflow*/
3206
#endif /*Avoid_Underflow}*/
3207
      adj.d *= ulp(&rv);
3208
      if (bc.dsign) {
3209
        if (word0(&rv) == Big0 && word1(&rv) == Big1)
3210
          goto ovfl;
3211
        dval(&rv) += adj.d;
3212
        }
3213
      else
3214
        dval(&rv) -= adj.d;
3215
      goto cont;
3216
      }
3217
#endif /*}Honor_FLT_ROUNDS*/
3218
3219
206k
    if (i < 0) {
3220
      /* Error is less than half an ulp -- check for
3221
       * special case of mantissa a power of two.
3222
       */
3223
109k
      if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask
3224
5.11k
#ifdef IEEE_Arith /*{*/
3225
5.11k
#ifdef Avoid_Underflow
3226
5.11k
       || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1
3227
#else
3228
       || (word0(&rv) & Exp_mask) <= Exp_msk1
3229
#endif
3230
109k
#endif /*}*/
3231
109k
        ) {
3232
#ifdef SET_INEXACT
3233
        if (!delta->x[0] && delta->wds <= 1)
3234
          bc.inexact = 0;
3235
#endif
3236
104k
        break;
3237
104k
        }
3238
4.84k
      if (!delta->x[0] && delta->wds <= 1) {
3239
        /* exact result */
3240
#ifdef SET_INEXACT
3241
        bc.inexact = 0;
3242
#endif
3243
1.60k
        break;
3244
1.60k
        }
3245
3.23k
      delta = lshift(delta,Log2P);
3246
3.23k
      if (cmp(delta, bs) > 0)
3247
1.12k
        goto drop_down;
3248
2.10k
      break;
3249
3.23k
      }
3250
96.7k
    if (i == 0) {
3251
      /* exactly half-way between */
3252
6.12k
      if (bc.dsign) {
3253
2.56k
        if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
3254
180
         &&  word1(&rv) == (
3255
180
#ifdef Avoid_Underflow
3256
180
      (bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1)
3257
180
    ? (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
3258
180
#endif
3259
180
               0xffffffff)) {
3260
          /*boundary case -- increment exponent*/
3261
77
          if (word0(&rv) == Big0 && word1(&rv) == Big1)
3262
0
            goto ovfl;
3263
77
          word0(&rv) = (word0(&rv) & Exp_mask)
3264
77
            + Exp_msk1
3265
#ifdef IBM
3266
            | Exp_msk1 >> 4
3267
#endif
3268
77
            ;
3269
77
          word1(&rv) = 0;
3270
77
#ifdef Avoid_Underflow
3271
77
          bc.dsign = 0;
3272
77
#endif
3273
77
          break;
3274
77
          }
3275
2.56k
        }
3276
3.55k
      else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) {
3277
1.12k
 drop_down:
3278
        /* boundary case -- decrement exponent */
3279
#ifdef Sudden_Underflow /*{{*/
3280
        L = word0(&rv) & Exp_mask;
3281
#ifdef IBM
3282
        if (L <  Exp_msk1)
3283
#else
3284
#ifdef Avoid_Underflow
3285
        if (L <= (bc.scale ? (2*P+1)*Exp_msk1 : Exp_msk1))
3286
#else
3287
        if (L <= Exp_msk1)
3288
#endif /*Avoid_Underflow*/
3289
#endif /*IBM*/
3290
          {
3291
          if (bc.nd >nd) {
3292
            bc.uflchk = 1;
3293
            break;
3294
            }
3295
          goto undfl;
3296
          }
3297
        L -= Exp_msk1;
3298
#else /*Sudden_Underflow}{*/
3299
1.12k
#ifdef Avoid_Underflow
3300
1.12k
        if (bc.scale) {
3301
0
          L = word0(&rv) & Exp_mask;
3302
0
          if (L <= (2*P+1)*Exp_msk1) {
3303
0
            if (L > (P+2)*Exp_msk1)
3304
              /* round even ==> */
3305
              /* accept rv */
3306
0
              break;
3307
            /* rv = smallest denormal */
3308
0
            if (bc.nd >nd) {
3309
0
              bc.uflchk = 1;
3310
0
              break;
3311
0
              }
3312
0
            goto undfl;
3313
0
            }
3314
0
          }
3315
1.12k
#endif /*Avoid_Underflow*/
3316
1.12k
        L = (word0(&rv) & Exp_mask) - Exp_msk1;
3317
1.12k
#endif /*Sudden_Underflow}}*/
3318
1.12k
        word0(&rv) = L | Bndry_mask1;
3319
1.12k
        word1(&rv) = 0xffffffff;
3320
#ifdef IBM
3321
        goto cont;
3322
#else
3323
1.12k
#ifndef NO_STRTOD_BIGCOMP
3324
1.12k
        if (bc.nd > nd)
3325
173
          goto cont;
3326
955
#endif
3327
955
        break;
3328
1.12k
#endif
3329
1.12k
        }
3330
6.04k
#ifndef ROUND_BIASED
3331
6.04k
#ifdef Avoid_Underflow
3332
6.04k
      if (Lsb1) {
3333
0
        if (!(word0(&rv) & Lsb1))
3334
0
          break;
3335
0
        }
3336
6.04k
      else if (!(word1(&rv) & Lsb))
3337
3.26k
        break;
3338
#else
3339
      if (!(word1(&rv) & LSB))
3340
        break;
3341
#endif
3342
2.77k
#endif
3343
2.77k
      if (bc.dsign)
3344
1.31k
#ifdef Avoid_Underflow
3345
1.31k
        dval(&rv) += sulp(&rv, &bc);
3346
#else
3347
        dval(&rv) += ulp(&rv);
3348
#endif
3349
1.45k
#ifndef ROUND_BIASED
3350
1.45k
      else {
3351
1.45k
#ifdef Avoid_Underflow
3352
1.45k
        dval(&rv) -= sulp(&rv, &bc);
3353
#else
3354
        dval(&rv) -= ulp(&rv);
3355
#endif
3356
1.45k
#ifndef Sudden_Underflow
3357
1.45k
        if (!dval(&rv)) {
3358
0
          if (bc.nd >nd) {
3359
0
            bc.uflchk = 1;
3360
0
            break;
3361
0
            }
3362
0
          goto undfl;
3363
0
          }
3364
1.45k
#endif
3365
1.45k
        }
3366
2.77k
#ifdef Avoid_Underflow
3367
2.77k
      bc.dsign = 1 - bc.dsign;
3368
2.77k
#endif
3369
2.77k
#endif
3370
2.77k
      break;
3371
2.77k
      }
3372
90.6k
    if ((aadj = ratio(delta, bs)) <= 2.) {
3373
81.3k
      if (bc.dsign)
3374
18.5k
        aadj = aadj1 = 1.;
3375
62.7k
      else if (word1(&rv) || word0(&rv) & Bndry_mask) {
3376
61.2k
#ifndef Sudden_Underflow
3377
61.2k
        if (word1(&rv) == Tiny1 && !word0(&rv)) {
3378
0
          if (bc.nd >nd) {
3379
0
            bc.uflchk = 1;
3380
0
            break;
3381
0
            }
3382
0
          goto undfl;
3383
0
          }
3384
61.2k
#endif
3385
61.2k
        aadj = 1.;
3386
61.2k
        aadj1 = -1.;
3387
61.2k
        }
3388
1.58k
      else {
3389
        /* special case -- power of FLT_RADIX to be */
3390
        /* rounded down... */
3391
3392
1.58k
        if (aadj < 2./FLT_RADIX)
3393
0
          aadj = 1./FLT_RADIX;
3394
1.58k
        else
3395
1.58k
          aadj *= 0.5;
3396
1.58k
        aadj1 = -aadj;
3397
1.58k
        }
3398
81.3k
      }
3399
9.28k
    else {
3400
9.28k
      aadj *= 0.5;
3401
9.28k
      aadj1 = bc.dsign ? aadj : -aadj;
3402
#ifdef Check_FLT_ROUNDS
3403
      switch(bc.rounding) {
3404
        case 2: /* towards +infinity */
3405
          aadj1 -= 0.5;
3406
          break;
3407
        case 0: /* towards 0 */
3408
        case 3: /* towards -infinity */
3409
          aadj1 += 0.5;
3410
        }
3411
#else
3412
9.28k
      if (Flt_Rounds == 0)
3413
0
        aadj1 += 0.5;
3414
9.28k
#endif /*Check_FLT_ROUNDS*/
3415
9.28k
      }
3416
90.6k
    y = word0(&rv) & Exp_mask;
3417
3418
    /* Check for overflow */
3419
3420
90.6k
    if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
3421
1.53k
      dval(&rv0) = dval(&rv);
3422
1.53k
      word0(&rv) -= P*Exp_msk1;
3423
1.53k
      adj.d = aadj1 * ulp(&rv);
3424
1.53k
      dval(&rv) += adj.d;
3425
1.53k
      if ((word0(&rv) & Exp_mask) >=
3426
1.53k
          Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
3427
400
        if (word0(&rv0) == Big0 && word1(&rv0) == Big1)
3428
400
          goto ovfl;
3429
0
        word0(&rv) = Big0;
3430
0
        word1(&rv) = Big1;
3431
0
        goto cont;
3432
400
        }
3433
1.13k
      else
3434
1.13k
        word0(&rv) += P*Exp_msk1;
3435
1.53k
      }
3436
89.0k
    else {
3437
89.0k
#ifdef Avoid_Underflow
3438
89.0k
      if (bc.scale && y <= 2*P*Exp_msk1) {
3439
4.37k
        if (aadj <= 0x7fffffff) {
3440
4.37k
          if ((z = aadj) <= 0)
3441
1.58k
            z = 1;
3442
4.37k
          aadj = z;
3443
4.37k
          aadj1 = bc.dsign ? aadj : -aadj;
3444
4.37k
          }
3445
4.37k
        dval(&aadj2) = aadj1;
3446
4.37k
        word0(&aadj2) += (2*P+1)*Exp_msk1 - y;
3447
4.37k
        aadj1 = dval(&aadj2);
3448
4.37k
        adj.d = aadj1 * ulp(&rv);
3449
4.37k
        dval(&rv) += adj.d;
3450
4.37k
        if (rv.d == 0.)
3451
#ifdef NO_STRTOD_BIGCOMP
3452
          goto undfl;
3453
#else
3454
1.58k
          {
3455
1.58k
          req_bigcomp = 1;
3456
1.58k
          break;
3457
1.58k
          }
3458
4.37k
#endif
3459
4.37k
        }
3460
84.7k
      else {
3461
84.7k
        adj.d = aadj1 * ulp(&rv);
3462
84.7k
        dval(&rv) += adj.d;
3463
84.7k
        }
3464
#else
3465
#ifdef Sudden_Underflow
3466
      if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) {
3467
        dval(&rv0) = dval(&rv);
3468
        word0(&rv) += P*Exp_msk1;
3469
        adj.d = aadj1 * ulp(&rv);
3470
        dval(&rv) += adj.d;
3471
#ifdef IBM
3472
        if ((word0(&rv) & Exp_mask) <  P*Exp_msk1)
3473
#else
3474
        if ((word0(&rv) & Exp_mask) <= P*Exp_msk1)
3475
#endif
3476
          {
3477
          if (word0(&rv0) == Tiny0
3478
           && word1(&rv0) == Tiny1) {
3479
            if (bc.nd >nd) {
3480
              bc.uflchk = 1;
3481
              break;
3482
              }
3483
            goto undfl;
3484
            }
3485
          word0(&rv) = Tiny0;
3486
          word1(&rv) = Tiny1;
3487
          goto cont;
3488
          }
3489
        else
3490
          word0(&rv) -= P*Exp_msk1;
3491
        }
3492
      else {
3493
        adj.d = aadj1 * ulp(&rv);
3494
        dval(&rv) += adj.d;
3495
        }
3496
#else /*Sudden_Underflow*/
3497
      /* Compute adj so that the IEEE rounding rules will
3498
       * correctly round rv + adj in some half-way cases.
3499
       * If rv * ulp(rv) is denormalized (i.e.,
3500
       * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
3501
       * trouble from bits lost to denormalization;
3502
       * example: 1.2e-307 .
3503
       */
3504
      if (y <= (P-1)*Exp_msk1 && aadj > 1.) {
3505
        aadj1 = (double)(int)(aadj + 0.5);
3506
        if (!bc.dsign)
3507
          aadj1 = -aadj1;
3508
        }
3509
      adj.d = aadj1 * ulp(&rv);
3510
      dval(&rv) += adj.d;
3511
#endif /*Sudden_Underflow*/
3512
#endif /*Avoid_Underflow*/
3513
89.0k
      }
3514
88.6k
    z = word0(&rv) & Exp_mask;
3515
88.6k
#ifndef SET_INEXACT
3516
88.6k
    if (bc.nd == nd) {
3517
61.8k
#ifdef Avoid_Underflow
3518
61.8k
    if (!bc.scale)
3519
57.2k
#endif
3520
57.2k
    if (y == z) {
3521
      /* Can we stop now? */
3522
56.8k
      L = (Long)aadj;
3523
56.8k
      aadj -= L;
3524
      /* The tolerances below are conservative. */
3525
56.8k
      if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
3526
30.5k
        if (aadj < .4999999 || aadj > .5000001)
3527
30.0k
          break;
3528
30.5k
        }
3529
26.3k
      else if (aadj < .4999999/FLT_RADIX)
3530
26.3k
        break;
3531
56.8k
      }
3532
61.8k
    }
3533
32.2k
#endif
3534
32.4k
 cont:
3535
32.4k
    Bfree(bb);
3536
32.4k
    Bfree(bd);
3537
32.4k
    Bfree(bs);
3538
32.4k
    Bfree(delta);
3539
32.4k
    }
3540
204k
  Bfree(bb);
3541
204k
  Bfree(bd);
3542
204k
  Bfree(bs);
3543
204k
  Bfree(bd0);
3544
204k
  Bfree(delta);
3545
204k
#ifndef NO_STRTOD_BIGCOMP
3546
204k
  if (req_bigcomp) {
3547
32.3k
    bd0 = 0;
3548
32.3k
    bc.e0 += nz1;
3549
32.3k
    bigcomp(&rv, s0, &bc);
3550
32.3k
    y = word0(&rv) & Exp_mask;
3551
32.3k
    if (y == Exp_mask)
3552
0
      goto ovfl;
3553
32.3k
    if (y == 0 && rv.d == 0.)
3554
1.58k
      goto undfl;
3555
32.3k
    }
3556
202k
#endif
3557
#ifdef SET_INEXACT
3558
  if (bc.inexact) {
3559
    if (!oldinexact) {
3560
      word0(&rv0) = Exp_1 + (70 << Exp_shift);
3561
      word1(&rv0) = 0;
3562
      dval(&rv0) += 1.;
3563
      }
3564
    }
3565
  else if (!oldinexact)
3566
    clear_inexact();
3567
#endif
3568
202k
#ifdef Avoid_Underflow
3569
202k
  if (bc.scale) {
3570
9.08k
    word0(&rv0) = Exp_1 - 2*P*Exp_msk1;
3571
9.08k
    word1(&rv0) = 0;
3572
9.08k
    dval(&rv) *= dval(&rv0);
3573
#ifndef NO_ERRNO
3574
    /* try to avoid the bug of testing an 8087 register value */
3575
#ifdef IEEE_Arith
3576
    if (!(word0(&rv) & Exp_mask))
3577
#else
3578
    if (word0(&rv) == 0 && word1(&rv) == 0)
3579
#endif
3580
      errno = ERANGE;
3581
#endif
3582
9.08k
    }
3583
202k
#endif /* Avoid_Underflow */
3584
#ifdef SET_INEXACT
3585
  if (bc.inexact && !(word0(&rv) & Exp_mask)) {
3586
    /* set underflow bit */
3587
    dval(&rv0) = 1e-300;
3588
    dval(&rv0) *= dval(&rv0);
3589
    }
3590
#endif
3591
415k
 ret:
3592
415k
  if (se)
3593
2.07k
    *se = (char *)s;
3594
415k
  return sign ? -dval(&rv) : dval(&rv);
3595
202k
  }
3596
3597
#if !defined(MULTIPLE_THREADS) && !defined(dtoa_result)
3598
 ZEND_TLS char *dtoa_result;
3599
#endif
3600
3601
 static char *
3602
#ifdef KR_headers
3603
rv_alloc(i) int i;
3604
#else
3605
rv_alloc(int i)
3606
#endif
3607
20.5k
{
3608
3609
20.5k
  int j, k, *r;
3610
20.5k
  size_t rem;
3611
3612
20.5k
  rem = sizeof(Bigint) - sizeof(ULong) - sizeof(int);
3613
3614
3615
20.5k
  j = sizeof(ULong);
3616
20.5k
  if (i > ((INT_MAX >> 2) + rem))
3617
0
    i = (INT_MAX >> 2) + rem;
3618
20.5k
  for(k = 0;
3619
20.5k
    rem + j <= (size_t)i; j <<= 1)
3620
0
      k++;
3621
3622
20.5k
  r = (int*)Balloc(k);
3623
20.5k
  *r = k;
3624
20.5k
  return
3625
20.5k
#ifndef MULTIPLE_THREADS
3626
20.5k
  dtoa_result =
3627
20.5k
#endif
3628
20.5k
    (char *)(r+1);
3629
20.5k
  }
3630
3631
 static char *
3632
#ifdef KR_headers
3633
nrv_alloc(s, rve, n) char *s, **rve; int n;
3634
#else
3635
nrv_alloc(const char *s, char **rve, int n)
3636
#endif
3637
9
{
3638
9
  char *rv, *t;
3639
3640
9
  t = rv = rv_alloc(n);
3641
67
  while((*t = *s++)) t++;
3642
9
  if (rve)
3643
0
    *rve = t;
3644
9
  return rv;
3645
9
  }
3646
3647
/* freedtoa(s) must be used to free values s returned by dtoa
3648
 * when MULTIPLE_THREADS is #defined.  It should be used in all cases,
3649
 * but for consistency with earlier versions of dtoa, it is optional
3650
 * when MULTIPLE_THREADS is not defined.
3651
 */
3652
3653
ZEND_API void
3654
#ifdef KR_headers
3655
zend_freedtoa(s) char *s;
3656
#else
3657
zend_freedtoa(char *s)
3658
#endif
3659
20.5k
{
3660
20.5k
  Bigint *b = (Bigint *)((int *)s - 1);
3661
20.5k
  b->maxwds = 1 << (b->k = *(int*)b);
3662
20.5k
  Bfree(b);
3663
20.5k
#ifndef MULTIPLE_THREADS
3664
20.5k
  if (s == dtoa_result)
3665
20.5k
    dtoa_result = 0;
3666
20.5k
#endif
3667
20.5k
  }
3668
3669
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
3670
 *
3671
 * Inspired by "How to Print Floating-Point Numbers Accurately" by
3672
 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
3673
 *
3674
 * Modifications:
3675
 *  1. Rather than iterating, we use a simple numeric overestimate
3676
 *     to determine k = floor(log10(d)).  We scale relevant
3677
 *     quantities using O(log2(k)) rather than O(k) multiplications.
3678
 *  2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
3679
 *     try to generate digits strictly left to right.  Instead, we
3680
 *     compute with fewer bits and propagate the carry if necessary
3681
 *     when rounding the final digit up.  This is often faster.
3682
 *  3. Under the assumption that input will be rounded nearest,
3683
 *     mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
3684
 *     That is, we allow equality in stopping tests when the
3685
 *     round-nearest rule will give the same floating-point value
3686
 *     as would satisfaction of the stopping test with strict
3687
 *     inequality.
3688
 *  4. We remove common factors of powers of 2 from relevant
3689
 *     quantities.
3690
 *  5. When converting floating-point integers less than 1e16,
3691
 *     we use floating-point arithmetic rather than resorting
3692
 *     to multiple-precision integers.
3693
 *  6. When asked to produce fewer than 15 digits, we first try
3694
 *     to get by with floating-point arithmetic; we resort to
3695
 *     multiple-precision integer arithmetic only if we cannot
3696
 *     guarantee that the floating-point calculation has given
3697
 *     the correctly rounded result.  For k requested digits and
3698
 *     "uniformly" distributed input, the probability is
3699
 *     something like 10^(k-15) that we must resort to the Long
3700
 *     calculation.
3701
 */
3702
3703
ZEND_API char *zend_dtoa(double dd, int mode, int ndigits, int *decpt, bool *sign, char **rve)
3704
20.5k
{
3705
 /* Arguments ndigits, decpt, sign are similar to those
3706
  of ecvt and fcvt; trailing zeros are suppressed from
3707
  the returned string.  If not null, *rve is set to point
3708
  to the end of the return value.  If d is +-Infinity or NaN,
3709
  then *decpt is set to 9999.
3710
3711
  mode:
3712
    0 ==> shortest string that yields d when read in
3713
      and rounded to nearest.
3714
    1 ==> like 0, but with Steele & White stopping rule;
3715
      e.g. with IEEE P754 arithmetic , mode 0 gives
3716
      1e23 whereas mode 1 gives 9.999999999999999e22.
3717
    2 ==> max(1,ndigits) significant digits.  This gives a
3718
      return value similar to that of ecvt, except
3719
      that trailing zeros are suppressed.
3720
    3 ==> through ndigits past the decimal point.  This
3721
      gives a return value similar to that from fcvt,
3722
      except that trailing zeros are suppressed, and
3723
      ndigits can be negative.
3724
    4,5 ==> similar to 2 and 3, respectively, but (in
3725
      round-nearest mode) with the tests of mode 0 to
3726
      possibly return a shorter string that rounds to d.
3727
      With IEEE arithmetic and compilation with
3728
      -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
3729
      as modes 2 and 3 when FLT_ROUNDS != 1.
3730
    6-9 ==> Debugging modes similar to mode - 4:  don't try
3731
      fast floating-point estimate (if applicable).
3732
3733
    Values of mode other than 0-9 are treated as mode 0.
3734
3735
    Sufficient space is allocated to the return value
3736
    to hold the suppressed trailing zeros.
3737
  */
3738
3739
20.5k
  int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1,
3740
20.5k
    j, j1 = 0, k, k0, k_check, leftright, m2, m5, s2, s5,
3741
20.5k
    spec_case = 0, try_quick;
3742
20.5k
  Long L;
3743
20.5k
#ifndef Sudden_Underflow
3744
20.5k
  int denorm;
3745
20.5k
  ULong x;
3746
20.5k
#endif
3747
20.5k
  Bigint *b, *b1, *delta, *mlo, *mhi, *S;
3748
20.5k
  U d2, eps, u;
3749
20.5k
  double ds;
3750
20.5k
  char *s, *s0;
3751
20.5k
#ifndef No_leftright
3752
20.5k
#ifdef IEEE_Arith
3753
20.5k
  U eps1;
3754
20.5k
#endif
3755
20.5k
#endif
3756
#ifdef SET_INEXACT
3757
  int inexact, oldinexact;
3758
#endif
3759
#ifdef Honor_FLT_ROUNDS /*{*/
3760
  int Rounding;
3761
#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
3762
  Rounding = Flt_Rounds;
3763
#else /*}{*/
3764
  Rounding = 1;
3765
  switch(fegetround()) {
3766
    case FE_TOWARDZERO: Rounding = 0; break;
3767
    case FE_UPWARD: Rounding = 2; break;
3768
    case FE_DOWNWARD: Rounding = 3;
3769
    }
3770
#endif /*}}*/
3771
#endif /*}*/
3772
3773
20.5k
#ifndef MULTIPLE_THREADS
3774
20.5k
  if (dtoa_result) {
3775
0
    zend_freedtoa(dtoa_result);
3776
0
    dtoa_result = 0;
3777
0
    }
3778
20.5k
#endif
3779
3780
20.5k
  u.d = dd;
3781
20.5k
  if (word0(&u) & Sign_bit) {
3782
    /* set sign for everything, including 0's and NaNs */
3783
16.0k
    *sign = 1;
3784
16.0k
    word0(&u) &= ~Sign_bit; /* clear sign bit */
3785
16.0k
    }
3786
4.53k
  else
3787
4.53k
    *sign = 0;
3788
3789
20.5k
#if defined(IEEE_Arith) + defined(VAX)
3790
20.5k
#ifdef IEEE_Arith
3791
20.5k
  if ((word0(&u) & Exp_mask) == Exp_mask)
3792
#else
3793
  if (word0(&u)  == 0x8000)
3794
#endif
3795
7
    {
3796
    /* Infinity or NaN */
3797
7
    *decpt = 9999;
3798
7
#ifdef IEEE_Arith
3799
7
    if (!word1(&u) && !(word0(&u) & 0xfffff))
3800
7
      return nrv_alloc("Infinity", rve, 8);
3801
0
#endif
3802
0
    return nrv_alloc("NaN", rve, 3);
3803
7
    }
3804
20.5k
#endif
3805
#ifdef IBM
3806
  dval(&u) += 0; /* normalize */
3807
#endif
3808
20.5k
  if (!dval(&u)) {
3809
2
    *decpt = 1;
3810
2
    return nrv_alloc("0", rve, 1);
3811
2
    }
3812
3813
#ifdef SET_INEXACT
3814
  try_quick = oldinexact = get_inexact();
3815
  inexact = 1;
3816
#endif
3817
#ifdef Honor_FLT_ROUNDS
3818
  if (Rounding >= 2) {
3819
    if (*sign)
3820
      Rounding = Rounding == 2 ? 0 : 2;
3821
    else
3822
      if (Rounding != 2)
3823
        Rounding = 0;
3824
    }
3825
#endif
3826
3827
20.5k
  b = d2b(&u, &be, &bbits);
3828
#ifdef Sudden_Underflow
3829
  i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
3830
#else
3831
20.5k
  if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
3832
20.4k
#endif
3833
20.4k
    dval(&d2) = dval(&u);
3834
20.4k
    word0(&d2) &= Frac_mask1;
3835
20.4k
    word0(&d2) |= Exp_11;
3836
#ifdef IBM
3837
    if (j = 11 - hi0bits(word0(&d2) & Frac_mask))
3838
      dval(&d2) /= 1 << j;
3839
#endif
3840
3841
    /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
3842
     * log10(x)  =  log(x) / log(10)
3843
     *    ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
3844
     * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
3845
     *
3846
     * This suggests computing an approximation k to log10(d) by
3847
     *
3848
     * k = (i - Bias)*0.301029995663981
3849
     *  + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
3850
     *
3851
     * We want k to be too large rather than too small.
3852
     * The error in the first-order Taylor series approximation
3853
     * is in our favor, so we just round up the constant enough
3854
     * to compensate for any error in the multiplication of
3855
     * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
3856
     * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
3857
     * adding 1e-13 to the constant term more than suffices.
3858
     * Hence we adjust the constant term to 0.1760912590558.
3859
     * (We could get a more accurate k by invoking log10,
3860
     *  but this is probably not worthwhile.)
3861
     */
3862
3863
20.4k
    i -= Bias;
3864
#ifdef IBM
3865
    i <<= 2;
3866
    i += j;
3867
#endif
3868
20.4k
#ifndef Sudden_Underflow
3869
20.4k
    denorm = 0;
3870
20.4k
    }
3871
129
  else {
3872
    /* d is denormalized */
3873
3874
129
    i = bbits + be + (Bias + (P-1) - 1);
3875
129
    x = i > 32  ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)
3876
129
          : word1(&u) << (32 - i);
3877
129
    dval(&d2) = x;
3878
129
    word0(&d2) -= 31*Exp_msk1; /* adjust exponent */
3879
129
    i -= (Bias + (P-1) - 1) + 1;
3880
129
    denorm = 1;
3881
129
    }
3882
20.5k
#endif
3883
20.5k
  ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
3884
20.5k
  k = (int)ds;
3885
20.5k
  if (ds < 0. && ds != k)
3886
170
    k--; /* want k = floor(ds) */
3887
20.5k
  k_check = 1;
3888
20.5k
  if (k >= 0 && k <= Ten_pmax) {
3889
542
    if (dval(&u) < tens[k])
3890
201
      k--;
3891
542
    k_check = 0;
3892
542
    }
3893
20.5k
  j = bbits - i - 1;
3894
20.5k
  if (j >= 0) {
3895
198
    b2 = 0;
3896
198
    s2 = j;
3897
198
    }
3898
20.3k
  else {
3899
20.3k
    b2 = -j;
3900
20.3k
    s2 = 0;
3901
20.3k
    }
3902
20.5k
  if (k >= 0) {
3903
20.3k
    b5 = 0;
3904
20.3k
    s5 = k;
3905
20.3k
    s2 += k;
3906
20.3k
    }
3907
172
  else {
3908
172
    b2 -= k;
3909
172
    b5 = -k;
3910
172
    s5 = 0;
3911
172
    }
3912
20.5k
  if (mode < 0 || mode > 9)
3913
0
    mode = 0;
3914
3915
20.5k
#ifndef SET_INEXACT
3916
#ifdef Check_FLT_ROUNDS
3917
  try_quick = Rounding == 1;
3918
#else
3919
20.5k
  try_quick = 1;
3920
20.5k
#endif
3921
20.5k
#endif /*SET_INEXACT*/
3922
3923
20.5k
  if (mode > 5) {
3924
0
    mode -= 4;
3925
0
    try_quick = 0;
3926
0
    }
3927
20.5k
  leftright = 1;
3928
20.5k
  ilim = ilim1 = -1;  /* Values for cases 0 and 1; done here to */
3929
        /* silence erroneous "gcc -Wall" warning. */
3930
20.5k
  switch(mode) {
3931
20.2k
    case 0:
3932
20.2k
    case 1:
3933
20.2k
      i = 18;
3934
20.2k
      ndigits = 0;
3935
20.2k
      break;
3936
271
    case 2:
3937
271
      leftright = 0;
3938
271
      ZEND_FALLTHROUGH;
3939
271
    case 4:
3940
271
      if (ndigits <= 0)
3941
0
        ndigits = 1;
3942
271
      ilim = ilim1 = i = ndigits;
3943
271
      break;
3944
0
    case 3:
3945
0
      leftright = 0;
3946
0
      ZEND_FALLTHROUGH;
3947
0
    case 5:
3948
0
      i = ndigits + k + 1;
3949
0
      ilim = i;
3950
0
      ilim1 = i - 1;
3951
0
      if (i <= 0)
3952
0
        i = 1;
3953
20.5k
    }
3954
20.5k
  s = s0 = rv_alloc(i);
3955
3956
#ifdef Honor_FLT_ROUNDS
3957
  if (mode > 1 && Rounding != 1)
3958
    leftright = 0;
3959
#endif
3960
3961
20.5k
  if (ilim >= 0 && ilim <= Quick_max && try_quick) {
3962
3963
    /* Try to get by with floating-point arithmetic. */
3964
3965
271
    i = 0;
3966
271
    dval(&d2) = dval(&u);
3967
271
    k0 = k;
3968
271
    ilim0 = ilim;
3969
271
    ieps = 2; /* conservative */
3970
271
    if (k > 0) {
3971
89
      ds = tens[k&0xf];
3972
89
      j = k >> 4;
3973
89
      if (j & Bletch) {
3974
        /* prevent overflows */
3975
17
        j &= Bletch - 1;
3976
17
        dval(&u) /= bigtens[n_bigtens-1];
3977
17
        ieps++;
3978
17
        }
3979
232
      for(; j; j >>= 1, i++)
3980
143
        if (j & 1) {
3981
99
          ieps++;
3982
99
          ds *= bigtens[i];
3983
99
          }
3984
89
      dval(&u) /= ds;
3985
89
      }
3986
182
    else if ((j1 = -k)) {
3987
172
      dval(&u) *= tens[j1 & 0xf];
3988
876
      for(j = j1 >> 4; j; j >>= 1, i++)
3989
704
        if (j & 1) {
3990
410
          ieps++;
3991
410
          dval(&u) *= bigtens[i];
3992
410
          }
3993
172
      }
3994
271
    if (k_check && dval(&u) < 1. && ilim > 0) {
3995
9
      if (ilim1 <= 0)
3996
0
        goto fast_failed;
3997
9
      ilim = ilim1;
3998
9
      k--;
3999
9
      dval(&u) *= 10.;
4000
9
      ieps++;
4001
9
      }
4002
271
    dval(&eps) = ieps*dval(&u) + 7.;
4003
271
    word0(&eps) -= (P-1)*Exp_msk1;
4004
271
    if (ilim == 0) {
4005
0
      S = mhi = 0;
4006
0
      dval(&u) -= 5.;
4007
0
      if (dval(&u) > dval(&eps))
4008
0
        goto one_digit;
4009
0
      if (dval(&u) < -dval(&eps))
4010
0
        goto no_digits;
4011
0
      goto fast_failed;
4012
0
      }
4013
271
#ifndef No_leftright
4014
271
    if (leftright) {
4015
      /* Use Steele & White method of only
4016
       * generating digits needed.
4017
       */
4018
0
      dval(&eps) = 0.5/tens[ilim-1] - dval(&eps);
4019
0
#ifdef IEEE_Arith
4020
0
      if (k0 < 0 && j1 >= 307) {
4021
0
        eps1.d = 1.01e256; /* 1.01 allows roundoff in the next few lines */
4022
0
        word0(&eps1) -= Exp_msk1 * (Bias+P-1);
4023
0
        dval(&eps1) *= tens[j1 & 0xf];
4024
0
        for(i = 0, j = (j1-256) >> 4; j; j >>= 1, i++)
4025
0
          if (j & 1)
4026
0
            dval(&eps1) *= bigtens[i];
4027
0
        if (eps.d < eps1.d)
4028
0
          eps.d = eps1.d;
4029
0
        }
4030
0
#endif
4031
0
      for(i = 0;;) {
4032
0
        L = dval(&u);
4033
0
        dval(&u) -= L;
4034
0
        *s++ = '0' + (int)L;
4035
0
        if (1. - dval(&u) < dval(&eps))
4036
0
          goto bump_up;
4037
0
        if (dval(&u) < dval(&eps))
4038
0
          goto ret1;
4039
0
        if (++i >= ilim)
4040
0
          break;
4041
0
        dval(&eps) *= 10.;
4042
0
        dval(&u) *= 10.;
4043
0
        }
4044
0
      }
4045
271
    else {
4046
271
#endif
4047
      /* Generate ilim digits, then fix them up. */
4048
271
      dval(&eps) *= tens[ilim-1];
4049
3.31k
      for(i = 1;; i++, dval(&u) *= 10.) {
4050
3.31k
        L = (Long)(dval(&u));
4051
3.31k
        if (!(dval(&u) -= L))
4052
38
          ilim = i;
4053
3.31k
        *s++ = '0' + (int)L;
4054
3.31k
        if (i == ilim) {
4055
271
          if (dval(&u) > 0.5 + dval(&eps))
4056
70
            goto bump_up;
4057
201
          else if (dval(&u) < 0.5 - dval(&eps)) {
4058
377
            while(*--s == '0');
4059
100
            s++;
4060
100
            goto ret1;
4061
100
            }
4062
101
          break;
4063
271
          }
4064
3.31k
        }
4065
271
#ifndef No_leftright
4066
271
      }
4067
101
#endif
4068
101
 fast_failed:
4069
101
    s = s0;
4070
101
    dval(&u) = dval(&d2);
4071
101
    k = k0;
4072
101
    ilim = ilim0;
4073
101
    }
4074
4075
  /* Do we have a "small" integer? */
4076
4077
20.3k
  if (be >= 0 && k <= Int_max) {
4078
    /* Yes. */
4079
2
    ds = tens[k];
4080
2
    if (ndigits < 0 && ilim <= 0) {
4081
0
      S = mhi = 0;
4082
0
      if (ilim < 0 || dval(&u) <= 5*ds)
4083
0
        goto no_digits;
4084
0
      goto one_digit;
4085
0
      }
4086
28
    for(i = 1;; i++, dval(&u) *= 10.) {
4087
28
      L = (Long)(dval(&u) / ds);
4088
28
      dval(&u) -= L*ds;
4089
#ifdef Check_FLT_ROUNDS
4090
      /* If FLT_ROUNDS == 2, L will usually be high by 1 */
4091
      if (dval(&u) < 0) {
4092
        L--;
4093
        dval(&u) += ds;
4094
        }
4095
#endif
4096
28
      *s++ = '0' + (int)L;
4097
28
      if (!dval(&u)) {
4098
#ifdef SET_INEXACT
4099
        inexact = 0;
4100
#endif
4101
0
        break;
4102
0
        }
4103
28
      if (i == ilim) {
4104
#ifdef Honor_FLT_ROUNDS
4105
        if (mode > 1)
4106
        switch(Rounding) {
4107
          case 0: goto ret1;
4108
          case 2: goto bump_up;
4109
          }
4110
#endif
4111
2
        dval(&u) += dval(&u);
4112
#ifdef ROUND_BIASED
4113
        if (dval(&u) >= ds)
4114
#else
4115
2
        if (dval(&u) > ds || (dval(&u) == ds && L & 1))
4116
1
#endif
4117
1
          {
4118
71
 bump_up:
4119
360
          while(*--s == '9')
4120
290
            if (s == s0) {
4121
1
              k++;
4122
1
              *s = '0';
4123
1
              break;
4124
1
              }
4125
71
          ++*s++;
4126
71
          }
4127
72
        break;
4128
2
        }
4129
28
      }
4130
72
    goto ret1;
4131
2
    }
4132
4133
20.3k
  m2 = b2;
4134
20.3k
  m5 = b5;
4135
20.3k
  mhi = mlo = 0;
4136
20.3k
  if (leftright) {
4137
20.2k
    i =
4138
20.2k
#ifndef Sudden_Underflow
4139
20.2k
      denorm ? be + (Bias + (P-1) - 1 + 1) :
4140
20.2k
#endif
4141
#ifdef IBM
4142
      1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
4143
#else
4144
20.2k
      1 + P - bbits;
4145
20.2k
#endif
4146
20.2k
    b2 += i;
4147
20.2k
    s2 += i;
4148
20.2k
    mhi = i2b(1);
4149
20.2k
    }
4150
20.3k
  if (m2 > 0 && s2 > 0) {
4151
20.3k
    i = m2 < s2 ? m2 : s2;
4152
20.3k
    b2 -= i;
4153
20.3k
    m2 -= i;
4154
20.3k
    s2 -= i;
4155
20.3k
    }
4156
20.3k
  if (b5 > 0) {
4157
57
    if (leftright) {
4158
0
      if (m5 > 0) {
4159
0
        mhi = pow5mult(mhi, m5);
4160
0
        b1 = mult(mhi, b);
4161
0
        Bfree(b);
4162
0
        b = b1;
4163
0
        }
4164
0
      if ((j = b5 - m5))
4165
0
        b = pow5mult(b, j);
4166
0
      }
4167
57
    else
4168
57
      b = pow5mult(b, b5);
4169
57
    }
4170
20.3k
  S = i2b(1);
4171
20.3k
  if (s5 > 0)
4172
20.3k
    S = pow5mult(S, s5);
4173
4174
  /* Check for special case that d is a normalized power of 2. */
4175
4176
20.3k
  spec_case = 0;
4177
20.3k
  if ((mode < 2 || leftright)
4178
#ifdef Honor_FLT_ROUNDS
4179
      && Rounding == 1
4180
#endif
4181
20.3k
        ) {
4182
20.2k
    if (!word1(&u) && !(word0(&u) & Bndry_mask)
4183
2
#ifndef Sudden_Underflow
4184
2
     && word0(&u) & (Exp_mask & ~Exp_msk1)
4185
20.2k
#endif
4186
20.2k
        ) {
4187
      /* The special case */
4188
2
      b2 += Log2P;
4189
2
      s2 += Log2P;
4190
2
      spec_case = 1;
4191
2
      }
4192
20.2k
    }
4193
4194
  /* Arrange for convenient computation of quotients:
4195
   * shift left if necessary so divisor has 4 leading 0 bits.
4196
   *
4197
   * Perhaps we should just compute leading 28 bits of S once
4198
   * and for all and pass them and a shift to quorem, so it
4199
   * can do shifts and ORs to compute the numerator for q.
4200
   */
4201
20.3k
  i = dshift(S, s2);
4202
20.3k
  b2 += i;
4203
20.3k
  m2 += i;
4204
20.3k
  s2 += i;
4205
20.3k
  if (b2 > 0)
4206
20.3k
    b = lshift(b, b2);
4207
20.3k
  if (s2 > 0)
4208
12.8k
    S = lshift(S, s2);
4209
20.3k
  if (k_check) {
4210
19.8k
    if (cmp(b,S) < 0) {
4211
168
      k--;
4212
168
      b = multadd(b, 10, 0);  /* we botched the k estimate */
4213
168
      if (leftright)
4214
160
        mhi = multadd(mhi, 10, 0);
4215
168
      ilim = ilim1;
4216
168
      }
4217
19.8k
    }
4218
20.3k
  if (ilim <= 0 && (mode == 3 || mode == 5)) {
4219
0
    if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
4220
      /* no digits, fcvt style */
4221
0
 no_digits:
4222
0
      k = -1 - ndigits;
4223
0
      goto ret;
4224
0
      }
4225
0
 one_digit:
4226
0
    *s++ = '1';
4227
0
    k++;
4228
0
    goto ret;
4229
0
    }
4230
20.3k
  if (leftright) {
4231
20.2k
    if (m2 > 0)
4232
20.2k
      mhi = lshift(mhi, m2);
4233
4234
    /* Compute mlo -- check for special case
4235
     * that d is a normalized power of 2.
4236
     */
4237
4238
20.2k
    mlo = mhi;
4239
20.2k
    if (spec_case) {
4240
2
      mhi = Balloc(mhi->k);
4241
2
      Bcopy(mhi, mlo);
4242
2
      mhi = lshift(mhi, Log2P);
4243
2
      }
4244
4245
217k
    for(i = 1;;i++) {
4246
217k
      dig = quorem(b,S) + '0';
4247
      /* Do we yet have the shortest decimal string
4248
       * that will round to d?
4249
       */
4250
217k
      j = cmp(b, mlo);
4251
217k
      delta = diff(S, mhi);
4252
217k
      j1 = delta->sign ? 1 : cmp(b, delta);
4253
217k
      Bfree(delta);
4254
217k
#ifndef ROUND_BIASED
4255
217k
      if (j1 == 0 && mode != 1 && !(word1(&u) & 1)
4256
#ifdef Honor_FLT_ROUNDS
4257
        && Rounding >= 1
4258
#endif
4259
217k
                   ) {
4260
78
        if (dig == '9')
4261
34
          goto round_9_up;
4262
44
        if (j > 0)
4263
34
          dig++;
4264
#ifdef SET_INEXACT
4265
        else if (!b->x[0] && b->wds <= 1)
4266
          inexact = 0;
4267
#endif
4268
44
        *s++ = dig;
4269
44
        goto ret;
4270
78
        }
4271
217k
#endif
4272
217k
      if (j < 0 || (j == 0 && mode != 1
4273
212
#ifndef ROUND_BIASED
4274
212
              && !(word1(&u) & 1)
4275
210k
#endif
4276
210k
          )) {
4277
6.85k
        if (!b->x[0] && b->wds <= 1) {
4278
#ifdef SET_INEXACT
4279
          inexact = 0;
4280
#endif
4281
34
          goto accept_dig;
4282
34
          }
4283
#ifdef Honor_FLT_ROUNDS
4284
        if (mode > 1)
4285
         switch(Rounding) {
4286
          case 0: goto accept_dig;
4287
          case 2: goto keep_dig;
4288
          }
4289
#endif /*Honor_FLT_ROUNDS*/
4290
6.81k
        if (j1 > 0) {
4291
3.42k
          b = lshift(b, 1);
4292
3.42k
          j1 = cmp(b, S);
4293
#ifdef ROUND_BIASED
4294
          if (j1 >= 0 /*)*/
4295
#else
4296
3.42k
          if ((j1 > 0 || (j1 == 0 && dig & 1))
4297
1.64k
#endif
4298
1.64k
          && dig++ == '9')
4299
0
            goto round_9_up;
4300
3.42k
          }
4301
6.85k
 accept_dig:
4302
6.85k
        *s++ = dig;
4303
6.85k
        goto ret;
4304
6.81k
        }
4305
210k
      if (j1 > 0) {
4306
#ifdef Honor_FLT_ROUNDS
4307
        if (!Rounding)
4308
          goto accept_dig;
4309
#endif
4310
13.3k
        if (dig == '9') { /* possible if i == 1 */
4311
108
 round_9_up:
4312
108
          *s++ = '9';
4313
108
          goto roundoff;
4314
74
          }
4315
13.2k
        *s++ = dig + 1;
4316
13.2k
        goto ret;
4317
13.3k
        }
4318
#ifdef Honor_FLT_ROUNDS
4319
 keep_dig:
4320
#endif
4321
197k
      *s++ = dig;
4322
197k
      if (i == ilim)
4323
0
        break;
4324
197k
      b = multadd(b, 10, 0);
4325
197k
      if (mlo == mhi)
4326
197k
        mlo = mhi = multadd(mhi, 10, 0);
4327
31
      else {
4328
31
        mlo = multadd(mlo, 10, 0);
4329
31
        mhi = multadd(mhi, 10, 0);
4330
31
        }
4331
197k
      }
4332
20.2k
    }
4333
99
  else
4334
1.38k
    for(i = 1;; i++) {
4335
1.38k
      *s++ = dig = quorem(b,S) + '0';
4336
1.38k
      if (!b->x[0] && b->wds <= 1) {
4337
#ifdef SET_INEXACT
4338
        inexact = 0;
4339
#endif
4340
0
        goto ret;
4341
0
        }
4342
1.38k
      if (i >= ilim)
4343
99
        break;
4344
1.28k
      b = multadd(b, 10, 0);
4345
1.28k
      }
4346
4347
  /* Round off last digit */
4348
4349
#ifdef Honor_FLT_ROUNDS
4350
  switch(Rounding) {
4351
    case 0: goto trimzeros;
4352
    case 2: goto roundoff;
4353
    }
4354
#endif
4355
99
  b = lshift(b, 1);
4356
99
  j = cmp(b, S);
4357
#ifdef ROUND_BIASED
4358
  if (j >= 0)
4359
#else
4360
99
  if (j > 0 || (j == 0 && dig & 1))
4361
52
#endif
4362
52
    {
4363
160
 roundoff:
4364
239
    while(*--s == '9')
4365
188
      if (s == s0) {
4366
109
        k++;
4367
109
        *s++ = '1';
4368
109
        goto ret;
4369
109
        }
4370
51
    ++*s++;
4371
51
    }
4372
47
  else {
4373
#ifdef Honor_FLT_ROUNDS
4374
 trimzeros:
4375
#endif
4376
83
    while(*--s == '0');
4377
47
    s++;
4378
47
    }
4379
20.3k
 ret:
4380
20.3k
  Bfree(S);
4381
20.3k
  if (mhi) {
4382
20.2k
    if (mlo && mlo != mhi)
4383
2
      Bfree(mlo);
4384
20.2k
    Bfree(mhi);
4385
20.2k
    }
4386
20.5k
 ret1:
4387
#ifdef SET_INEXACT
4388
  if (inexact) {
4389
    if (!oldinexact) {
4390
      word0(&u) = Exp_1 + (70 << Exp_shift);
4391
      word1(&u) = 0;
4392
      dval(&u) += 1.;
4393
      }
4394
    }
4395
  else if (!oldinexact)
4396
    clear_inexact();
4397
#endif
4398
20.5k
  Bfree(b);
4399
20.5k
  *s = 0;
4400
20.5k
  *decpt = k + 1;
4401
20.5k
  if (rve)
4402
0
    *rve = s;
4403
20.5k
  return s0;
4404
20.3k
  }
4405
4406
ZEND_API double zend_hex_strtod(const char *str, const char **endptr)
4407
0
{
4408
0
  const char *s = str;
4409
0
  char c;
4410
0
  int any = 0;
4411
0
  double value = 0;
4412
4413
0
  if (*s == '0' && (s[1] == 'x' || s[1] == 'X')) {
4414
0
    s += 2;
4415
0
  }
4416
4417
0
  while ((c = *s++)) {
4418
0
    if (c >= '0' && c <= '9') {
4419
0
      c -= '0';
4420
0
    } else if (c >= 'A' && c <= 'F') {
4421
0
      c -= 'A' - 10;
4422
0
    } else if (c >= 'a' && c <= 'f') {
4423
0
      c -= 'a' - 10;
4424
0
    } else {
4425
0
      break;
4426
0
    }
4427
4428
0
    any = 1;
4429
0
    value = value * 16 + c;
4430
0
  }
4431
4432
0
  if (endptr != NULL) {
4433
0
    *endptr = any ? s - 1 : str;
4434
0
  }
4435
4436
0
  return value;
4437
0
}
4438
4439
ZEND_API double zend_oct_strtod(const char *str, const char **endptr)
4440
0
{
4441
0
  const char *s = str;
4442
0
  char c;
4443
0
  double value = 0;
4444
0
  int any = 0;
4445
4446
0
  if (str[0] == '\0') {
4447
0
    if (endptr != NULL) {
4448
0
      *endptr = str;
4449
0
    }
4450
0
    return 0.0;
4451
0
  }
4452
4453
0
  while ((c = *s++)) {
4454
0
    if (c < '0' || c > '7') {
4455
      /* break and return the current value if the number is not well-formed
4456
       * that's what Linux strtol() does
4457
       */
4458
0
      break;
4459
0
    }
4460
0
    value = value * 8 + c - '0';
4461
0
    any = 1;
4462
0
  }
4463
4464
0
  if (endptr != NULL) {
4465
0
    *endptr = any ? s - 1 : str;
4466
0
  }
4467
4468
0
  return value;
4469
0
}
4470
4471
ZEND_API double zend_bin_strtod(const char *str, const char **endptr)
4472
0
{
4473
0
  const char *s = str;
4474
0
  char    c;
4475
0
  double    value = 0;
4476
0
  int     any = 0;
4477
4478
0
  if ('0' == *s && ('b' == s[1] || 'B' == s[1])) {
4479
0
    s += 2;
4480
0
  }
4481
4482
0
  while ((c = *s++)) {
4483
    /*
4484
     * Verify the validity of the current character as a base-2 digit.  In
4485
     * the event that an invalid digit is found, halt the conversion and
4486
     * return the portion which has been converted thus far.
4487
     */
4488
0
    if ('0' == c || '1' == c)
4489
0
      value = value * 2 + c - '0';
4490
0
    else
4491
0
      break;
4492
4493
0
    any = 1;
4494
0
  }
4495
4496
  /*
4497
   * As with many strtoX implementations, should the subject sequence be
4498
   * empty or not well-formed, no conversion is performed and the original
4499
   * value of str is stored in *endptr, provided that endptr is not a null
4500
   * pointer.
4501
   */
4502
0
  if (NULL != endptr) {
4503
0
    *endptr = (char *)(any ? s - 1 : str);
4504
0
  }
4505
4506
0
  return value;
4507
0
}
4508
4509
ZEND_API char *zend_gcvt(double value, int ndigit, char dec_point, char exponent, char *buf)
4510
20.5k
{
4511
20.5k
  char *digits, *dst, *src;
4512
20.5k
  int i, decpt;
4513
20.5k
  bool sign;
4514
20.5k
  int mode = ndigit >= 0 ? 2 : 0;
4515
4516
20.5k
  if (mode == 0) {
4517
20.2k
    ndigit = 17;
4518
20.2k
  }
4519
20.5k
  digits = zend_dtoa(value, mode, ndigit, &decpt, &sign, NULL);
4520
20.5k
  if (decpt == 9999) {
4521
    /*
4522
     * Infinity or NaN, convert to inf or nan with sign.
4523
     * We assume the buffer is at least ndigit long.
4524
     */
4525
7
    snprintf(buf, ndigit + 1, "%s%s", (sign && *digits == 'I') ? "-" : "", *digits == 'I' ? "INF" : "NAN");
4526
7
    zend_freedtoa(digits);
4527
7
    return (buf);
4528
7
  }
4529
4530
20.5k
  dst = buf;
4531
20.5k
  if (sign) {
4532
16.0k
    *dst++ = '-';
4533
16.0k
  }
4534
4535
20.5k
  if ((decpt >= 0 && decpt > ndigit) || decpt < -3) { /* use E-style */
4536
    /* exponential format (e.g. 1.2345e+13) */
4537
20.4k
    if (--decpt < 0) {
4538
154
      sign = true;
4539
154
      decpt = -decpt;
4540
20.3k
    } else {
4541
20.3k
      sign = false;
4542
20.3k
    }
4543
20.4k
    src = digits;
4544
20.4k
    *dst++ = *src++;
4545
20.4k
    *dst++ = dec_point;
4546
20.4k
    if (*src == '\0') {
4547
293
      *dst++ = '0';
4548
20.1k
    } else {
4549
199k
      do {
4550
199k
        *dst++ = *src++;
4551
199k
      } while (*src != '\0');
4552
20.1k
    }
4553
20.4k
    *dst++ = exponent;
4554
20.4k
    if (sign) {
4555
154
      *dst++ = '-';
4556
20.3k
    } else {
4557
20.3k
      *dst++ = '+';
4558
20.3k
    }
4559
20.4k
    if (decpt < 10) {
4560
8
      *dst++ = '0' + decpt;
4561
8
      *dst = '\0';
4562
20.4k
    } else {
4563
      /* XXX - optimize */
4564
20.4k
      int n;
4565
47.8k
      for (n = decpt, i = 0; (n /= 10) != 0; i++);
4566
20.4k
      dst[i + 1] = '\0';
4567
68.3k
      while (decpt != 0) {
4568
47.8k
        dst[i--] = '0' + decpt % 10;
4569
47.8k
        decpt /= 10;
4570
47.8k
      }
4571
20.4k
    }
4572
20.4k
  } else if (decpt < 0) {
4573
    /* standard format 0. */
4574
9
    *dst++ = '0';   /* zero before decimal point */
4575
9
    *dst++ = dec_point;
4576
15
    do {
4577
15
      *dst++ = '0';
4578
15
    } while (++decpt < 0);
4579
9
    src = digits;
4580
49
    while (*src != '\0') {
4581
40
      *dst++ = *src++;
4582
40
    }
4583
9
    *dst = '\0';
4584
48
  } else {
4585
    /* standard format */
4586
251
    for (i = 0, src = digits; i < decpt; i++) {
4587
203
      if (*src != '\0') {
4588
144
        *dst++ = *src++;
4589
144
      } else {
4590
59
        *dst++ = '0';
4591
59
      }
4592
203
    }
4593
48
    if (*src != '\0') {
4594
16
      if (src == digits) {
4595
9
        *dst++ = '0';   /* zero before decimal point */
4596
9
      }
4597
16
      *dst++ = dec_point;
4598
98
      for (i = decpt; digits[i] != '\0'; i++) {
4599
82
        *dst++ = digits[i];
4600
82
      }
4601
16
    }
4602
48
    *dst = '\0';
4603
48
  }
4604
20.5k
  zend_freedtoa(digits);
4605
20.5k
  return (buf);
4606
20.5k
}
4607
4608
static void destroy_freelist(void)
4609
0
{
4610
0
  int i;
4611
0
  Bigint *tmp;
4612
4613
0
  ACQUIRE_DTOA_LOCK(0)
4614
0
  for (i = 0; i <= Kmax; i++) {
4615
0
    Bigint **listp = &freelist[i];
4616
0
    while ((tmp = *listp) != NULL) {
4617
0
      *listp = tmp->next;
4618
0
      FREE(tmp);
4619
0
    }
4620
0
    freelist[i] = NULL;
4621
0
  }
4622
0
  FREE_DTOA_LOCK(0)
4623
0
}
4624
4625
static void free_p5s(void)
4626
0
{
4627
0
  Bigint **listp, *tmp;
4628
4629
0
  ACQUIRE_DTOA_LOCK(1)
4630
0
  listp = &p5s;
4631
0
  while ((tmp = *listp) != NULL) {
4632
0
    *listp = tmp->next;
4633
0
    FREE(tmp);
4634
0
  }
4635
0
  p5s = NULL;
4636
0
  FREE_DTOA_LOCK(1)
4637
0
}