/src/php-src/ext/hash/xxhash/xxhash.h
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * xxHash - Extremely Fast Hash algorithm |
3 | | * Header File |
4 | | * Copyright (C) 2012-2020 Yann Collet |
5 | | * |
6 | | * BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php) |
7 | | * |
8 | | * Redistribution and use in source and binary forms, with or without |
9 | | * modification, are permitted provided that the following conditions are |
10 | | * met: |
11 | | * |
12 | | * * Redistributions of source code must retain the above copyright |
13 | | * notice, this list of conditions and the following disclaimer. |
14 | | * * Redistributions in binary form must reproduce the above |
15 | | * copyright notice, this list of conditions and the following disclaimer |
16 | | * in the documentation and/or other materials provided with the |
17 | | * distribution. |
18 | | * |
19 | | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
20 | | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
21 | | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
22 | | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
23 | | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
24 | | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
25 | | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
26 | | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
27 | | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
28 | | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
29 | | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
30 | | * |
31 | | * You can contact the author at: |
32 | | * - xxHash homepage: https://www.xxhash.com |
33 | | * - xxHash source repository: https://github.com/Cyan4973/xxHash |
34 | | */ |
35 | | /*! |
36 | | * @mainpage xxHash |
37 | | * |
38 | | * @file xxhash.h |
39 | | * xxHash prototypes and implementation |
40 | | */ |
41 | | /* TODO: update */ |
42 | | /* Notice extracted from xxHash homepage: |
43 | | |
44 | | xxHash is an extremely fast hash algorithm, running at RAM speed limits. |
45 | | It also successfully passes all tests from the SMHasher suite. |
46 | | |
47 | | Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 Duo @3GHz) |
48 | | |
49 | | Name Speed Q.Score Author |
50 | | xxHash 5.4 GB/s 10 |
51 | | CrapWow 3.2 GB/s 2 Andrew |
52 | | MurmurHash 3a 2.7 GB/s 10 Austin Appleby |
53 | | SpookyHash 2.0 GB/s 10 Bob Jenkins |
54 | | SBox 1.4 GB/s 9 Bret Mulvey |
55 | | Lookup3 1.2 GB/s 9 Bob Jenkins |
56 | | SuperFastHash 1.2 GB/s 1 Paul Hsieh |
57 | | CityHash64 1.05 GB/s 10 Pike & Alakuijala |
58 | | FNV 0.55 GB/s 5 Fowler, Noll, Vo |
59 | | CRC32 0.43 GB/s 9 |
60 | | MD5-32 0.33 GB/s 10 Ronald L. Rivest |
61 | | SHA1-32 0.28 GB/s 10 |
62 | | |
63 | | Q.Score is a measure of quality of the hash function. |
64 | | It depends on successfully passing SMHasher test set. |
65 | | 10 is a perfect score. |
66 | | |
67 | | Note: SMHasher's CRC32 implementation is not the fastest one. |
68 | | Other speed-oriented implementations can be faster, |
69 | | especially in combination with PCLMUL instruction: |
70 | | https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html?showComment=1552696407071#c3490092340461170735 |
71 | | |
72 | | A 64-bit version, named XXH64, is available since r35. |
73 | | It offers much better speed, but for 64-bit applications only. |
74 | | Name Speed on 64 bits Speed on 32 bits |
75 | | XXH64 13.8 GB/s 1.9 GB/s |
76 | | XXH32 6.8 GB/s 6.0 GB/s |
77 | | */ |
78 | | |
79 | | #if defined (__cplusplus) |
80 | | extern "C" { |
81 | | #endif |
82 | | |
83 | | /* **************************** |
84 | | * INLINE mode |
85 | | ******************************/ |
86 | | /*! |
87 | | * XXH_INLINE_ALL (and XXH_PRIVATE_API) |
88 | | * Use these build macros to inline xxhash into the target unit. |
89 | | * Inlining improves performance on small inputs, especially when the length is |
90 | | * expressed as a compile-time constant: |
91 | | * |
92 | | * https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html |
93 | | * |
94 | | * It also keeps xxHash symbols private to the unit, so they are not exported. |
95 | | * |
96 | | * Usage: |
97 | | * #define XXH_INLINE_ALL |
98 | | * #include "xxhash.h" |
99 | | * |
100 | | * Do not compile and link xxhash.o as a separate object, as it is not useful. |
101 | | */ |
102 | | #if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)) \ |
103 | | && !defined(XXH_INLINE_ALL_31684351384) |
104 | | /* this section should be traversed only once */ |
105 | | # define XXH_INLINE_ALL_31684351384 |
106 | | /* give access to the advanced API, required to compile implementations */ |
107 | | # undef XXH_STATIC_LINKING_ONLY /* avoid macro redef */ |
108 | | # define XXH_STATIC_LINKING_ONLY |
109 | | /* make all functions private */ |
110 | | # undef XXH_PUBLIC_API |
111 | | # if defined(__GNUC__) |
112 | | # define XXH_PUBLIC_API static __inline __attribute__((unused)) |
113 | | # elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) |
114 | | # define XXH_PUBLIC_API static inline |
115 | | # elif defined(_MSC_VER) |
116 | | # define XXH_PUBLIC_API static __inline |
117 | | # else |
118 | | /* note: this version may generate warnings for unused static functions */ |
119 | | # define XXH_PUBLIC_API static |
120 | | # endif |
121 | | |
122 | | /* |
123 | | * This part deals with the special case where a unit wants to inline xxHash, |
124 | | * but "xxhash.h" has previously been included without XXH_INLINE_ALL, |
125 | | * such as part of some previously included *.h header file. |
126 | | * Without further action, the new include would just be ignored, |
127 | | * and functions would effectively _not_ be inlined (silent failure). |
128 | | * The following macros solve this situation by prefixing all inlined names, |
129 | | * avoiding naming collision with previous inclusions. |
130 | | */ |
131 | | /* Before that, we unconditionally #undef all symbols, |
132 | | * in case they were already defined with XXH_NAMESPACE. |
133 | | * They will then be redefined for XXH_INLINE_ALL |
134 | | */ |
135 | | # undef XXH_versionNumber |
136 | | /* XXH32 */ |
137 | | # undef XXH32 |
138 | | # undef XXH32_createState |
139 | | # undef XXH32_freeState |
140 | | # undef XXH32_reset |
141 | | # undef XXH32_update |
142 | | # undef XXH32_digest |
143 | | # undef XXH32_copyState |
144 | | # undef XXH32_canonicalFromHash |
145 | | # undef XXH32_hashFromCanonical |
146 | | /* XXH64 */ |
147 | | # undef XXH64 |
148 | | # undef XXH64_createState |
149 | | # undef XXH64_freeState |
150 | | # undef XXH64_reset |
151 | | # undef XXH64_update |
152 | | # undef XXH64_digest |
153 | | # undef XXH64_copyState |
154 | | # undef XXH64_canonicalFromHash |
155 | | # undef XXH64_hashFromCanonical |
156 | | /* XXH3_64bits */ |
157 | | # undef XXH3_64bits |
158 | | # undef XXH3_64bits_withSecret |
159 | | # undef XXH3_64bits_withSeed |
160 | | # undef XXH3_64bits_withSecretandSeed |
161 | | # undef XXH3_createState |
162 | | # undef XXH3_freeState |
163 | | # undef XXH3_copyState |
164 | | # undef XXH3_64bits_reset |
165 | | # undef XXH3_64bits_reset_withSeed |
166 | | # undef XXH3_64bits_reset_withSecret |
167 | | # undef XXH3_64bits_update |
168 | | # undef XXH3_64bits_digest |
169 | | # undef XXH3_generateSecret |
170 | | /* XXH3_128bits */ |
171 | | # undef XXH128 |
172 | | # undef XXH3_128bits |
173 | | # undef XXH3_128bits_withSeed |
174 | | # undef XXH3_128bits_withSecret |
175 | | # undef XXH3_128bits_reset |
176 | | # undef XXH3_128bits_reset_withSeed |
177 | | # undef XXH3_128bits_reset_withSecret |
178 | | # undef XXH3_128bits_reset_withSecretandSeed |
179 | | # undef XXH3_128bits_update |
180 | | # undef XXH3_128bits_digest |
181 | | # undef XXH128_isEqual |
182 | | # undef XXH128_cmp |
183 | | # undef XXH128_canonicalFromHash |
184 | | # undef XXH128_hashFromCanonical |
185 | | /* Finally, free the namespace itself */ |
186 | | # undef XXH_NAMESPACE |
187 | | |
188 | | /* employ the namespace for XXH_INLINE_ALL */ |
189 | | # define XXH_NAMESPACE XXH_INLINE_ |
190 | | /* |
191 | | * Some identifiers (enums, type names) are not symbols, |
192 | | * but they must nonetheless be renamed to avoid redeclaration. |
193 | | * Alternative solution: do not redeclare them. |
194 | | * However, this requires some #ifdefs, and has a more dispersed impact. |
195 | | * Meanwhile, renaming can be achieved in a single place. |
196 | | */ |
197 | 92 | # define XXH_IPREF(Id) XXH_NAMESPACE ## Id |
198 | 318 | # define XXH_OK XXH_IPREF(XXH_OK) |
199 | 0 | # define XXH_ERROR XXH_IPREF(XXH_ERROR) |
200 | | # define XXH_errorcode XXH_IPREF(XXH_errorcode) |
201 | | # define XXH32_canonical_t XXH_IPREF(XXH32_canonical_t) |
202 | | # define XXH64_canonical_t XXH_IPREF(XXH64_canonical_t) |
203 | | # define XXH128_canonical_t XXH_IPREF(XXH128_canonical_t) |
204 | | # define XXH32_state_s XXH_IPREF(XXH32_state_s) |
205 | 108 | # define XXH32_state_t XXH_IPREF(XXH32_state_t) |
206 | | # define XXH64_state_s XXH_IPREF(XXH64_state_s) |
207 | 70 | # define XXH64_state_t XXH_IPREF(XXH64_state_t) |
208 | | # define XXH3_state_s XXH_IPREF(XXH3_state_s) |
209 | | # define XXH3_state_t XXH_IPREF(XXH3_state_t) |
210 | 0 | # define XXH128_hash_t XXH_IPREF(XXH128_hash_t) |
211 | | /* Ensure the header is parsed again, even if it was previously included */ |
212 | | # undef XXHASH_H_5627135585666179 |
213 | | # undef XXHASH_H_STATIC_13879238742 |
214 | | #endif /* XXH_INLINE_ALL || XXH_PRIVATE_API */ |
215 | | |
216 | | |
217 | | |
218 | | /* **************************************************************** |
219 | | * Stable API |
220 | | *****************************************************************/ |
221 | | #ifndef XXHASH_H_5627135585666179 |
222 | | #define XXHASH_H_5627135585666179 1 |
223 | | |
224 | | |
225 | | /*! |
226 | | * @defgroup public Public API |
227 | | * Contains details on the public xxHash functions. |
228 | | * @{ |
229 | | */ |
230 | | /* specific declaration modes for Windows */ |
231 | | #if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API) |
232 | | # if defined(_WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT)) |
233 | | # ifdef XXH_EXPORT |
234 | | # define XXH_PUBLIC_API __declspec(dllexport) |
235 | | # elif XXH_IMPORT |
236 | | # define XXH_PUBLIC_API __declspec(dllimport) |
237 | | # endif |
238 | | # else |
239 | | # define XXH_PUBLIC_API /* do nothing */ |
240 | | # endif |
241 | | #endif |
242 | | |
243 | | #ifdef XXH_DOXYGEN |
244 | | /*! |
245 | | * @brief Emulate a namespace by transparently prefixing all symbols. |
246 | | * |
247 | | * If you want to include _and expose_ xxHash functions from within your own |
248 | | * library, but also want to avoid symbol collisions with other libraries which |
249 | | * may also include xxHash, you can use XXH_NAMESPACE to automatically prefix |
250 | | * any public symbol from xxhash library with the value of XXH_NAMESPACE |
251 | | * (therefore, avoid empty or numeric values). |
252 | | * |
253 | | * Note that no change is required within the calling program as long as it |
254 | | * includes `xxhash.h`: Regular symbol names will be automatically translated |
255 | | * by this header. |
256 | | */ |
257 | | # define XXH_NAMESPACE /* YOUR NAME HERE */ |
258 | | # undef XXH_NAMESPACE |
259 | | #endif |
260 | | |
261 | | #ifdef XXH_NAMESPACE |
262 | 598 | # define XXH_CAT(A,B) A##B |
263 | 598 | # define XXH_NAME2(A,B) XXH_CAT(A,B) |
264 | | # define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber) |
265 | | /* XXH32 */ |
266 | | # define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32) |
267 | | # define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState) |
268 | | # define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState) |
269 | 108 | # define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset) |
270 | 82 | # define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update) |
271 | 82 | # define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest) |
272 | | # define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState) |
273 | 82 | # define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash) |
274 | | # define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical) |
275 | | /* XXH64 */ |
276 | | # define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64) |
277 | | # define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState) |
278 | | # define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState) |
279 | 70 | # define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset) |
280 | 58 | # define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update) |
281 | 58 | # define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest) |
282 | | # define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState) |
283 | 58 | # define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash) |
284 | | # define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical) |
285 | | /* XXH3_64bits */ |
286 | | # define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits) |
287 | 0 | # define XXH3_64bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret) |
288 | 0 | # define XXH3_64bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed) |
289 | | # define XXH3_64bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecretandSeed) |
290 | | # define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState) |
291 | | # define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState) |
292 | | # define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState) |
293 | 0 | # define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset) |
294 | 0 | # define XXH3_64bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed) |
295 | 0 | # define XXH3_64bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret) |
296 | | # define XXH3_64bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecretandSeed) |
297 | 0 | # define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update) |
298 | 0 | # define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest) |
299 | | # define XXH3_generateSecret XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret) |
300 | | # define XXH3_generateSecret_fromSeed XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret_fromSeed) |
301 | | /* XXH3_128bits */ |
302 | | # define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128) |
303 | | # define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits) |
304 | 0 | # define XXH3_128bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed) |
305 | 0 | # define XXH3_128bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret) |
306 | | # define XXH3_128bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecretandSeed) |
307 | | # define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset) |
308 | 0 | # define XXH3_128bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed) |
309 | 0 | # define XXH3_128bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret) |
310 | | # define XXH3_128bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecretandSeed) |
311 | 0 | # define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update) |
312 | 0 | # define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest) |
313 | | # define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual) |
314 | | # define XXH128_cmp XXH_NAME2(XXH_NAMESPACE, XXH128_cmp) |
315 | 0 | # define XXH128_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash) |
316 | | # define XXH128_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical) |
317 | | #endif |
318 | | |
319 | | |
320 | | /* ************************************* |
321 | | * Version |
322 | | ***************************************/ |
323 | | #define XXH_VERSION_MAJOR 0 |
324 | | #define XXH_VERSION_MINOR 8 |
325 | | #define XXH_VERSION_RELEASE 1 |
326 | | #define XXH_VERSION_NUMBER (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE) |
327 | | |
328 | | /*! |
329 | | * @brief Obtains the xxHash version. |
330 | | * |
331 | | * This is mostly useful when xxHash is compiled as a shared library, |
332 | | * since the returned value comes from the library, as opposed to header file. |
333 | | * |
334 | | * @return `XXH_VERSION_NUMBER` of the invoked library. |
335 | | */ |
336 | | XXH_PUBLIC_API unsigned XXH_versionNumber (void); |
337 | | |
338 | | |
339 | | /* **************************** |
340 | | * Common basic types |
341 | | ******************************/ |
342 | | #include <stddef.h> /* size_t */ |
343 | | typedef enum { XXH_OK=0, XXH_ERROR } XXH_errorcode; |
344 | | |
345 | | |
346 | | /*-********************************************************************** |
347 | | * 32-bit hash |
348 | | ************************************************************************/ |
349 | | #if defined(XXH_DOXYGEN) /* Don't show <stdint.h> include */ |
350 | | /*! |
351 | | * @brief An unsigned 32-bit integer. |
352 | | * |
353 | | * Not necessarily defined to `uint32_t` but functionally equivalent. |
354 | | */ |
355 | | typedef uint32_t XXH32_hash_t; |
356 | | |
357 | | #elif !defined (__VMS) \ |
358 | | && (defined (__cplusplus) \ |
359 | | || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
360 | | # include <stdint.h> |
361 | | typedef uint32_t XXH32_hash_t; |
362 | | |
363 | | #else |
364 | | # include <limits.h> |
365 | | # if UINT_MAX == 0xFFFFFFFFUL |
366 | | typedef unsigned int XXH32_hash_t; |
367 | | # else |
368 | | # if ULONG_MAX == 0xFFFFFFFFUL |
369 | | typedef unsigned long XXH32_hash_t; |
370 | | # else |
371 | | # error "unsupported platform: need a 32-bit type" |
372 | | # endif |
373 | | # endif |
374 | | #endif |
375 | | |
376 | | /*! |
377 | | * @} |
378 | | * |
379 | | * @defgroup xxh32_family XXH32 family |
380 | | * @ingroup public |
381 | | * Contains functions used in the classic 32-bit xxHash algorithm. |
382 | | * |
383 | | * @note |
384 | | * XXH32 is useful for older platforms, with no or poor 64-bit performance. |
385 | | * Note that @ref xxh3_family provides competitive speed |
386 | | * for both 32-bit and 64-bit systems, and offers true 64/128 bit hash results. |
387 | | * |
388 | | * @see @ref xxh64_family, @ref xxh3_family : Other xxHash families |
389 | | * @see @ref xxh32_impl for implementation details |
390 | | * @{ |
391 | | */ |
392 | | |
393 | | /*! |
394 | | * @brief Calculates the 32-bit hash of @p input using xxHash32. |
395 | | * |
396 | | * Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark): 5.4 GB/s |
397 | | * |
398 | | * @param input The block of data to be hashed, at least @p length bytes in size. |
399 | | * @param length The length of @p input, in bytes. |
400 | | * @param seed The 32-bit seed to alter the hash's output predictably. |
401 | | * |
402 | | * @pre |
403 | | * The memory between @p input and @p input + @p length must be valid, |
404 | | * readable, contiguous memory. However, if @p length is `0`, @p input may be |
405 | | * `NULL`. In C++, this also must be *TriviallyCopyable*. |
406 | | * |
407 | | * @return The calculated 32-bit hash value. |
408 | | * |
409 | | * @see |
410 | | * XXH64(), XXH3_64bits_withSeed(), XXH3_128bits_withSeed(), XXH128(): |
411 | | * Direct equivalents for the other variants of xxHash. |
412 | | * @see |
413 | | * XXH32_createState(), XXH32_update(), XXH32_digest(): Streaming version. |
414 | | */ |
415 | | XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed); |
416 | | |
417 | | /*! |
418 | | * Streaming functions generate the xxHash value from an incremental input. |
419 | | * This method is slower than single-call functions, due to state management. |
420 | | * For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized. |
421 | | * |
422 | | * An XXH state must first be allocated using `XXH*_createState()`. |
423 | | * |
424 | | * Start a new hash by initializing the state with a seed using `XXH*_reset()`. |
425 | | * |
426 | | * Then, feed the hash state by calling `XXH*_update()` as many times as necessary. |
427 | | * |
428 | | * The function returns an error code, with 0 meaning OK, and any other value |
429 | | * meaning there is an error. |
430 | | * |
431 | | * Finally, a hash value can be produced anytime, by using `XXH*_digest()`. |
432 | | * This function returns the nn-bits hash as an int or long long. |
433 | | * |
434 | | * It's still possible to continue inserting input into the hash state after a |
435 | | * digest, and generate new hash values later on by invoking `XXH*_digest()`. |
436 | | * |
437 | | * When done, release the state using `XXH*_freeState()`. |
438 | | * |
439 | | * Example code for incrementally hashing a file: |
440 | | * @code{.c} |
441 | | * #include <stdio.h> |
442 | | * #include <xxhash.h> |
443 | | * #define BUFFER_SIZE 256 |
444 | | * |
445 | | * // Note: XXH64 and XXH3 use the same interface. |
446 | | * XXH32_hash_t |
447 | | * hashFile(FILE* stream) |
448 | | * { |
449 | | * XXH32_state_t* state; |
450 | | * unsigned char buf[BUFFER_SIZE]; |
451 | | * size_t amt; |
452 | | * XXH32_hash_t hash; |
453 | | * |
454 | | * state = XXH32_createState(); // Create a state |
455 | | * assert(state != NULL); // Error check here |
456 | | * XXH32_reset(state, 0xbaad5eed); // Reset state with our seed |
457 | | * while ((amt = fread(buf, 1, sizeof(buf), stream)) != 0) { |
458 | | * XXH32_update(state, buf, amt); // Hash the file in chunks |
459 | | * } |
460 | | * hash = XXH32_digest(state); // Finalize the hash |
461 | | * XXH32_freeState(state); // Clean up |
462 | | * return hash; |
463 | | * } |
464 | | * @endcode |
465 | | */ |
466 | | |
467 | | /*! |
468 | | * @typedef struct XXH32_state_s XXH32_state_t |
469 | | * @brief The opaque state struct for the XXH32 streaming API. |
470 | | * |
471 | | * @see XXH32_state_s for details. |
472 | | */ |
473 | | typedef struct XXH32_state_s XXH32_state_t; |
474 | | |
475 | | /*! |
476 | | * @brief Allocates an @ref XXH32_state_t. |
477 | | * |
478 | | * Must be freed with XXH32_freeState(). |
479 | | * @return An allocated XXH32_state_t on success, `NULL` on failure. |
480 | | */ |
481 | | XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void); |
482 | | /*! |
483 | | * @brief Frees an @ref XXH32_state_t. |
484 | | * |
485 | | * Must be allocated with XXH32_createState(). |
486 | | * @param statePtr A pointer to an @ref XXH32_state_t allocated with @ref XXH32_createState(). |
487 | | * @return XXH_OK. |
488 | | */ |
489 | | XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr); |
490 | | /*! |
491 | | * @brief Copies one @ref XXH32_state_t to another. |
492 | | * |
493 | | * @param dst_state The state to copy to. |
494 | | * @param src_state The state to copy from. |
495 | | * @pre |
496 | | * @p dst_state and @p src_state must not be `NULL` and must not overlap. |
497 | | */ |
498 | | XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dst_state, const XXH32_state_t* src_state); |
499 | | |
500 | | /*! |
501 | | * @brief Resets an @ref XXH32_state_t to begin a new hash. |
502 | | * |
503 | | * This function resets and seeds a state. Call it before @ref XXH32_update(). |
504 | | * |
505 | | * @param statePtr The state struct to reset. |
506 | | * @param seed The 32-bit seed to alter the hash result predictably. |
507 | | * |
508 | | * @pre |
509 | | * @p statePtr must not be `NULL`. |
510 | | * |
511 | | * @return @ref XXH_OK on success, @ref XXH_ERROR on failure. |
512 | | */ |
513 | | XXH_PUBLIC_API XXH_errorcode XXH32_reset (XXH32_state_t* statePtr, XXH32_hash_t seed); |
514 | | |
515 | | /*! |
516 | | * @brief Consumes a block of @p input to an @ref XXH32_state_t. |
517 | | * |
518 | | * Call this to incrementally consume blocks of data. |
519 | | * |
520 | | * @param statePtr The state struct to update. |
521 | | * @param input The block of data to be hashed, at least @p length bytes in size. |
522 | | * @param length The length of @p input, in bytes. |
523 | | * |
524 | | * @pre |
525 | | * @p statePtr must not be `NULL`. |
526 | | * @pre |
527 | | * The memory between @p input and @p input + @p length must be valid, |
528 | | * readable, contiguous memory. However, if @p length is `0`, @p input may be |
529 | | * `NULL`. In C++, this also must be *TriviallyCopyable*. |
530 | | * |
531 | | * @return @ref XXH_OK on success, @ref XXH_ERROR on failure. |
532 | | */ |
533 | | XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length); |
534 | | |
535 | | /*! |
536 | | * @brief Returns the calculated hash value from an @ref XXH32_state_t. |
537 | | * |
538 | | * @note |
539 | | * Calling XXH32_digest() will not affect @p statePtr, so you can update, |
540 | | * digest, and update again. |
541 | | * |
542 | | * @param statePtr The state struct to calculate the hash from. |
543 | | * |
544 | | * @pre |
545 | | * @p statePtr must not be `NULL`. |
546 | | * |
547 | | * @return The calculated xxHash32 value from that state. |
548 | | */ |
549 | | XXH_PUBLIC_API XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr); |
550 | | |
551 | | /******* Canonical representation *******/ |
552 | | |
553 | | /* |
554 | | * The default return values from XXH functions are unsigned 32 and 64 bit |
555 | | * integers. |
556 | | * This the simplest and fastest format for further post-processing. |
557 | | * |
558 | | * However, this leaves open the question of what is the order on the byte level, |
559 | | * since little and big endian conventions will store the same number differently. |
560 | | * |
561 | | * The canonical representation settles this issue by mandating big-endian |
562 | | * convention, the same convention as human-readable numbers (large digits first). |
563 | | * |
564 | | * When writing hash values to storage, sending them over a network, or printing |
565 | | * them, it's highly recommended to use the canonical representation to ensure |
566 | | * portability across a wider range of systems, present and future. |
567 | | * |
568 | | * The following functions allow transformation of hash values to and from |
569 | | * canonical format. |
570 | | */ |
571 | | |
572 | | /*! |
573 | | * @brief Canonical (big endian) representation of @ref XXH32_hash_t. |
574 | | */ |
575 | | typedef struct { |
576 | | unsigned char digest[4]; /*!< Hash bytes, big endian */ |
577 | | } XXH32_canonical_t; |
578 | | |
579 | | /*! |
580 | | * @brief Converts an @ref XXH32_hash_t to a big endian @ref XXH32_canonical_t. |
581 | | * |
582 | | * @param dst The @ref XXH32_canonical_t pointer to be stored to. |
583 | | * @param hash The @ref XXH32_hash_t to be converted. |
584 | | * |
585 | | * @pre |
586 | | * @p dst must not be `NULL`. |
587 | | */ |
588 | | XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash); |
589 | | |
590 | | /*! |
591 | | * @brief Converts an @ref XXH32_canonical_t to a native @ref XXH32_hash_t. |
592 | | * |
593 | | * @param src The @ref XXH32_canonical_t to convert. |
594 | | * |
595 | | * @pre |
596 | | * @p src must not be `NULL`. |
597 | | * |
598 | | * @return The converted hash. |
599 | | */ |
600 | | XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src); |
601 | | |
602 | | |
603 | | #ifdef __has_attribute |
604 | | # define XXH_HAS_ATTRIBUTE(x) __has_attribute(x) |
605 | | #else |
606 | | # define XXH_HAS_ATTRIBUTE(x) 0 |
607 | | #endif |
608 | | |
609 | | /* C-language Attributes are added in C23. */ |
610 | | #if defined(__STDC_VERSION__) && (__STDC_VERSION__ > 201710L) && defined(__has_c_attribute) |
611 | | # define XXH_HAS_C_ATTRIBUTE(x) __has_c_attribute(x) |
612 | | #else |
613 | | # define XXH_HAS_C_ATTRIBUTE(x) 0 |
614 | | #endif |
615 | | |
616 | | #if defined(__cplusplus) && defined(__has_cpp_attribute) |
617 | | # define XXH_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x) |
618 | | #else |
619 | | # define XXH_HAS_CPP_ATTRIBUTE(x) 0 |
620 | | #endif |
621 | | |
622 | | /* |
623 | | Define XXH_FALLTHROUGH macro for annotating switch case with the 'fallthrough' attribute |
624 | | introduced in CPP17 and C23. |
625 | | CPP17 : https://en.cppreference.com/w/cpp/language/attributes/fallthrough |
626 | | C23 : https://en.cppreference.com/w/c/language/attributes/fallthrough |
627 | | */ |
628 | | #if XXH_HAS_C_ATTRIBUTE(x) |
629 | | # define XXH_FALLTHROUGH [[fallthrough]] |
630 | | #elif XXH_HAS_CPP_ATTRIBUTE(x) |
631 | | # define XXH_FALLTHROUGH [[fallthrough]] |
632 | | #elif XXH_HAS_ATTRIBUTE(__fallthrough__) |
633 | 0 | # define XXH_FALLTHROUGH __attribute__ ((fallthrough)) |
634 | | #else |
635 | | # define XXH_FALLTHROUGH |
636 | | #endif |
637 | | |
638 | | /*! |
639 | | * @} |
640 | | * @ingroup public |
641 | | * @{ |
642 | | */ |
643 | | |
644 | | #ifndef XXH_NO_LONG_LONG |
645 | | /*-********************************************************************** |
646 | | * 64-bit hash |
647 | | ************************************************************************/ |
648 | | #if defined(XXH_DOXYGEN) /* don't include <stdint.h> */ |
649 | | /*! |
650 | | * @brief An unsigned 64-bit integer. |
651 | | * |
652 | | * Not necessarily defined to `uint64_t` but functionally equivalent. |
653 | | */ |
654 | | typedef uint64_t XXH64_hash_t; |
655 | | #elif !defined (__VMS) \ |
656 | | && (defined (__cplusplus) \ |
657 | | || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
658 | | # include <stdint.h> |
659 | | typedef uint64_t XXH64_hash_t; |
660 | | #else |
661 | | # include <limits.h> |
662 | | # if defined(__LP64__) && ULONG_MAX == 0xFFFFFFFFFFFFFFFFULL |
663 | | /* LP64 ABI says uint64_t is unsigned long */ |
664 | | typedef unsigned long XXH64_hash_t; |
665 | | # else |
666 | | /* the following type must have a width of 64-bit */ |
667 | | typedef unsigned long long XXH64_hash_t; |
668 | | # endif |
669 | | #endif |
670 | | |
671 | | /*! |
672 | | * @} |
673 | | * |
674 | | * @defgroup xxh64_family XXH64 family |
675 | | * @ingroup public |
676 | | * @{ |
677 | | * Contains functions used in the classic 64-bit xxHash algorithm. |
678 | | * |
679 | | * @note |
680 | | * XXH3 provides competitive speed for both 32-bit and 64-bit systems, |
681 | | * and offers true 64/128 bit hash results. |
682 | | * It provides better speed for systems with vector processing capabilities. |
683 | | */ |
684 | | |
685 | | |
686 | | /*! |
687 | | * @brief Calculates the 64-bit hash of @p input using xxHash64. |
688 | | * |
689 | | * This function usually runs faster on 64-bit systems, but slower on 32-bit |
690 | | * systems (see benchmark). |
691 | | * |
692 | | * @param input The block of data to be hashed, at least @p length bytes in size. |
693 | | * @param length The length of @p input, in bytes. |
694 | | * @param seed The 64-bit seed to alter the hash's output predictably. |
695 | | * |
696 | | * @pre |
697 | | * The memory between @p input and @p input + @p length must be valid, |
698 | | * readable, contiguous memory. However, if @p length is `0`, @p input may be |
699 | | * `NULL`. In C++, this also must be *TriviallyCopyable*. |
700 | | * |
701 | | * @return The calculated 64-bit hash. |
702 | | * |
703 | | * @see |
704 | | * XXH32(), XXH3_64bits_withSeed(), XXH3_128bits_withSeed(), XXH128(): |
705 | | * Direct equivalents for the other variants of xxHash. |
706 | | * @see |
707 | | * XXH64_createState(), XXH64_update(), XXH64_digest(): Streaming version. |
708 | | */ |
709 | | XXH_PUBLIC_API XXH64_hash_t XXH64(const void* input, size_t length, XXH64_hash_t seed); |
710 | | |
711 | | /******* Streaming *******/ |
712 | | /*! |
713 | | * @brief The opaque state struct for the XXH64 streaming API. |
714 | | * |
715 | | * @see XXH64_state_s for details. |
716 | | */ |
717 | | typedef struct XXH64_state_s XXH64_state_t; /* incomplete type */ |
718 | | XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void); |
719 | | XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr); |
720 | | XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dst_state, const XXH64_state_t* src_state); |
721 | | |
722 | | XXH_PUBLIC_API XXH_errorcode XXH64_reset (XXH64_state_t* statePtr, XXH64_hash_t seed); |
723 | | XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* statePtr, const void* input, size_t length); |
724 | | XXH_PUBLIC_API XXH64_hash_t XXH64_digest (const XXH64_state_t* statePtr); |
725 | | |
726 | | /******* Canonical representation *******/ |
727 | | typedef struct { unsigned char digest[sizeof(XXH64_hash_t)]; } XXH64_canonical_t; |
728 | | XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash); |
729 | | XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src); |
730 | | |
731 | | /*! |
732 | | * @} |
733 | | * ************************************************************************ |
734 | | * @defgroup xxh3_family XXH3 family |
735 | | * @ingroup public |
736 | | * @{ |
737 | | * |
738 | | * XXH3 is a more recent hash algorithm featuring: |
739 | | * - Improved speed for both small and large inputs |
740 | | * - True 64-bit and 128-bit outputs |
741 | | * - SIMD acceleration |
742 | | * - Improved 32-bit viability |
743 | | * |
744 | | * Speed analysis methodology is explained here: |
745 | | * |
746 | | * https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html |
747 | | * |
748 | | * Compared to XXH64, expect XXH3 to run approximately |
749 | | * ~2x faster on large inputs and >3x faster on small ones, |
750 | | * exact differences vary depending on platform. |
751 | | * |
752 | | * XXH3's speed benefits greatly from SIMD and 64-bit arithmetic, |
753 | | * but does not require it. |
754 | | * Any 32-bit and 64-bit targets that can run XXH32 smoothly |
755 | | * can run XXH3 at competitive speeds, even without vector support. |
756 | | * Further details are explained in the implementation. |
757 | | * |
758 | | * Optimized implementations are provided for AVX512, AVX2, SSE2, NEON, POWER8, |
759 | | * ZVector and scalar targets. This can be controlled via the XXH_VECTOR macro. |
760 | | * |
761 | | * XXH3 implementation is portable: |
762 | | * it has a generic C90 formulation that can be compiled on any platform, |
763 | | * all implementations generage exactly the same hash value on all platforms. |
764 | | * Starting from v0.8.0, it's also labelled "stable", meaning that |
765 | | * any future version will also generate the same hash value. |
766 | | * |
767 | | * XXH3 offers 2 variants, _64bits and _128bits. |
768 | | * |
769 | | * When only 64 bits are needed, prefer invoking the _64bits variant, as it |
770 | | * reduces the amount of mixing, resulting in faster speed on small inputs. |
771 | | * It's also generally simpler to manipulate a scalar return type than a struct. |
772 | | * |
773 | | * The API supports one-shot hashing, streaming mode, and custom secrets. |
774 | | */ |
775 | | |
776 | | /*-********************************************************************** |
777 | | * XXH3 64-bit variant |
778 | | ************************************************************************/ |
779 | | |
780 | | /* XXH3_64bits(): |
781 | | * default 64-bit variant, using default secret and default seed of 0. |
782 | | * It's the fastest variant. */ |
783 | | XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* data, size_t len); |
784 | | |
785 | | /* |
786 | | * XXH3_64bits_withSeed(): |
787 | | * This variant generates a custom secret on the fly |
788 | | * based on default secret altered using the `seed` value. |
789 | | * While this operation is decently fast, note that it's not completely free. |
790 | | * Note: seed==0 produces the same results as XXH3_64bits(). |
791 | | */ |
792 | | XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSeed(const void* data, size_t len, XXH64_hash_t seed); |
793 | | |
794 | | /*! |
795 | | * The bare minimum size for a custom secret. |
796 | | * |
797 | | * @see |
798 | | * XXH3_64bits_withSecret(), XXH3_64bits_reset_withSecret(), |
799 | | * XXH3_128bits_withSecret(), XXH3_128bits_reset_withSecret(). |
800 | | */ |
801 | 0 | #define XXH3_SECRET_SIZE_MIN 136 |
802 | | |
803 | | /* |
804 | | * XXH3_64bits_withSecret(): |
805 | | * It's possible to provide any blob of bytes as a "secret" to generate the hash. |
806 | | * This makes it more difficult for an external actor to prepare an intentional collision. |
807 | | * The main condition is that secretSize *must* be large enough (>= XXH3_SECRET_SIZE_MIN). |
808 | | * However, the quality of the secret impacts the dispersion of the hash algorithm. |
809 | | * Therefore, the secret _must_ look like a bunch of random bytes. |
810 | | * Avoid "trivial" or structured data such as repeated sequences or a text document. |
811 | | * Whenever in doubt about the "randomness" of the blob of bytes, |
812 | | * consider employing "XXH3_generateSecret()" instead (see below). |
813 | | * It will generate a proper high entropy secret derived from the blob of bytes. |
814 | | * Another advantage of using XXH3_generateSecret() is that |
815 | | * it guarantees that all bits within the initial blob of bytes |
816 | | * will impact every bit of the output. |
817 | | * This is not necessarily the case when using the blob of bytes directly |
818 | | * because, when hashing _small_ inputs, only a portion of the secret is employed. |
819 | | */ |
820 | | XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize); |
821 | | |
822 | | |
823 | | /******* Streaming *******/ |
824 | | /* |
825 | | * Streaming requires state maintenance. |
826 | | * This operation costs memory and CPU. |
827 | | * As a consequence, streaming is slower than one-shot hashing. |
828 | | * For better performance, prefer one-shot functions whenever applicable. |
829 | | */ |
830 | | |
831 | | /*! |
832 | | * @brief The state struct for the XXH3 streaming API. |
833 | | * |
834 | | * @see XXH3_state_s for details. |
835 | | */ |
836 | | typedef struct XXH3_state_s XXH3_state_t; |
837 | | XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void); |
838 | | XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr); |
839 | | XXH_PUBLIC_API void XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state); |
840 | | |
841 | | /* |
842 | | * XXH3_64bits_reset(): |
843 | | * Initialize with default parameters. |
844 | | * digest will be equivalent to `XXH3_64bits()`. |
845 | | */ |
846 | | XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH3_state_t* statePtr); |
847 | | /* |
848 | | * XXH3_64bits_reset_withSeed(): |
849 | | * Generate a custom secret from `seed`, and store it into `statePtr`. |
850 | | * digest will be equivalent to `XXH3_64bits_withSeed()`. |
851 | | */ |
852 | | XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed); |
853 | | /* |
854 | | * XXH3_64bits_reset_withSecret(): |
855 | | * `secret` is referenced, it _must outlive_ the hash streaming session. |
856 | | * Similar to one-shot API, `secretSize` must be >= `XXH3_SECRET_SIZE_MIN`, |
857 | | * and the quality of produced hash values depends on secret's entropy |
858 | | * (secret's content should look like a bunch of random bytes). |
859 | | * When in doubt about the randomness of a candidate `secret`, |
860 | | * consider employing `XXH3_generateSecret()` instead (see below). |
861 | | */ |
862 | | XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize); |
863 | | |
864 | | XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH3_state_t* statePtr, const void* input, size_t length); |
865 | | XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* statePtr); |
866 | | |
867 | | /* note : canonical representation of XXH3 is the same as XXH64 |
868 | | * since they both produce XXH64_hash_t values */ |
869 | | |
870 | | |
871 | | /*-********************************************************************** |
872 | | * XXH3 128-bit variant |
873 | | ************************************************************************/ |
874 | | |
875 | | /*! |
876 | | * @brief The return value from 128-bit hashes. |
877 | | * |
878 | | * Stored in little endian order, although the fields themselves are in native |
879 | | * endianness. |
880 | | */ |
881 | | typedef struct { |
882 | | XXH64_hash_t low64; /*!< `value & 0xFFFFFFFFFFFFFFFF` */ |
883 | | XXH64_hash_t high64; /*!< `value >> 64` */ |
884 | | } XXH128_hash_t; |
885 | | |
886 | | XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* data, size_t len); |
887 | | XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSeed(const void* data, size_t len, XXH64_hash_t seed); |
888 | | XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize); |
889 | | |
890 | | /******* Streaming *******/ |
891 | | /* |
892 | | * Streaming requires state maintenance. |
893 | | * This operation costs memory and CPU. |
894 | | * As a consequence, streaming is slower than one-shot hashing. |
895 | | * For better performance, prefer one-shot functions whenever applicable. |
896 | | * |
897 | | * XXH3_128bits uses the same XXH3_state_t as XXH3_64bits(). |
898 | | * Use already declared XXH3_createState() and XXH3_freeState(). |
899 | | * |
900 | | * All reset and streaming functions have same meaning as their 64-bit counterpart. |
901 | | */ |
902 | | |
903 | | XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH3_state_t* statePtr); |
904 | | XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed); |
905 | | XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize); |
906 | | |
907 | | XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH3_state_t* statePtr, const void* input, size_t length); |
908 | | XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* statePtr); |
909 | | |
910 | | /* Following helper functions make it possible to compare XXH128_hast_t values. |
911 | | * Since XXH128_hash_t is a structure, this capability is not offered by the language. |
912 | | * Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */ |
913 | | |
914 | | /*! |
915 | | * XXH128_isEqual(): |
916 | | * Return: 1 if `h1` and `h2` are equal, 0 if they are not. |
917 | | */ |
918 | | XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2); |
919 | | |
920 | | /*! |
921 | | * XXH128_cmp(): |
922 | | * |
923 | | * This comparator is compatible with stdlib's `qsort()`/`bsearch()`. |
924 | | * |
925 | | * return: >0 if *h128_1 > *h128_2 |
926 | | * =0 if *h128_1 == *h128_2 |
927 | | * <0 if *h128_1 < *h128_2 |
928 | | */ |
929 | | XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2); |
930 | | |
931 | | |
932 | | /******* Canonical representation *******/ |
933 | | typedef struct { unsigned char digest[sizeof(XXH128_hash_t)]; } XXH128_canonical_t; |
934 | | static zend_always_inline void XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash); |
935 | | XXH_PUBLIC_API XXH128_hash_t XXH128_hashFromCanonical(const XXH128_canonical_t* src); |
936 | | |
937 | | |
938 | | #endif /* XXH_NO_LONG_LONG */ |
939 | | |
940 | | /*! |
941 | | * @} |
942 | | */ |
943 | | #endif /* XXHASH_H_5627135585666179 */ |
944 | | |
945 | | |
946 | | |
947 | | #if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) |
948 | | #define XXHASH_H_STATIC_13879238742 |
949 | | /* **************************************************************************** |
950 | | * This section contains declarations which are not guaranteed to remain stable. |
951 | | * They may change in future versions, becoming incompatible with a different |
952 | | * version of the library. |
953 | | * These declarations should only be used with static linking. |
954 | | * Never use them in association with dynamic linking! |
955 | | ***************************************************************************** */ |
956 | | |
957 | | /* |
958 | | * These definitions are only present to allow static allocation |
959 | | * of XXH states, on stack or in a struct, for example. |
960 | | * Never **ever** access their members directly. |
961 | | */ |
962 | | |
963 | | /*! |
964 | | * @internal |
965 | | * @brief Structure for XXH32 streaming API. |
966 | | * |
967 | | * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY, |
968 | | * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is |
969 | | * an opaque type. This allows fields to safely be changed. |
970 | | * |
971 | | * Typedef'd to @ref XXH32_state_t. |
972 | | * Do not access the members of this struct directly. |
973 | | * @see XXH64_state_s, XXH3_state_s |
974 | | */ |
975 | | struct XXH32_state_s { |
976 | | XXH32_hash_t total_len_32; /*!< Total length hashed, modulo 2^32 */ |
977 | | XXH32_hash_t large_len; /*!< Whether the hash is >= 16 (handles @ref total_len_32 overflow) */ |
978 | | XXH32_hash_t v[4]; /*!< Accumulator lanes */ |
979 | | XXH32_hash_t mem32[4]; /*!< Internal buffer for partial reads. Treated as unsigned char[16]. */ |
980 | | XXH32_hash_t memsize; /*!< Amount of data in @ref mem32 */ |
981 | | XXH32_hash_t reserved; /*!< Reserved field. Do not read or write to it, it may be removed. */ |
982 | | }; /* typedef'd to XXH32_state_t */ |
983 | | |
984 | | |
985 | | #ifndef XXH_NO_LONG_LONG /* defined when there is no 64-bit support */ |
986 | | |
987 | | /*! |
988 | | * @internal |
989 | | * @brief Structure for XXH64 streaming API. |
990 | | * |
991 | | * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY, |
992 | | * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is |
993 | | * an opaque type. This allows fields to safely be changed. |
994 | | * |
995 | | * Typedef'd to @ref XXH64_state_t. |
996 | | * Do not access the members of this struct directly. |
997 | | * @see XXH32_state_s, XXH3_state_s |
998 | | */ |
999 | | struct XXH64_state_s { |
1000 | | XXH64_hash_t total_len; /*!< Total length hashed. This is always 64-bit. */ |
1001 | | XXH64_hash_t v[4]; /*!< Accumulator lanes */ |
1002 | | XXH64_hash_t mem64[4]; /*!< Internal buffer for partial reads. Treated as unsigned char[32]. */ |
1003 | | XXH32_hash_t memsize; /*!< Amount of data in @ref mem64 */ |
1004 | | XXH32_hash_t reserved32; /*!< Reserved field, needed for padding anyways*/ |
1005 | | XXH64_hash_t reserved64; /*!< Reserved field. Do not read or write to it, it may be removed. */ |
1006 | | }; /* typedef'd to XXH64_state_t */ |
1007 | | |
1008 | | #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* >= C11 */ |
1009 | | # include <stdalign.h> |
1010 | 0 | # define XXH_ALIGN(n) alignas(n) |
1011 | | #elif defined(__cplusplus) && (__cplusplus >= 201103L) /* >= C++11 */ |
1012 | | /* In C++ alignas() is a keyword */ |
1013 | | # define XXH_ALIGN(n) alignas(n) |
1014 | | #elif defined(__GNUC__) |
1015 | | # define XXH_ALIGN(n) __attribute__ ((aligned(n))) |
1016 | | #elif defined(_MSC_VER) |
1017 | | # define XXH_ALIGN(n) __declspec(align(n)) |
1018 | | #else |
1019 | | # define XXH_ALIGN(n) /* disabled */ |
1020 | | #endif |
1021 | | |
1022 | | /* Old GCC versions only accept the attribute after the type in structures. */ |
1023 | | #if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)) /* C11+ */ \ |
1024 | | && ! (defined(__cplusplus) && (__cplusplus >= 201103L)) /* >= C++11 */ \ |
1025 | | && defined(__GNUC__) |
1026 | | # define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align) |
1027 | | #else |
1028 | | # define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type |
1029 | | #endif |
1030 | | |
1031 | | /*! |
1032 | | * @brief The size of the internal XXH3 buffer. |
1033 | | * |
1034 | | * This is the optimal update size for incremental hashing. |
1035 | | * |
1036 | | * @see XXH3_64b_update(), XXH3_128b_update(). |
1037 | | */ |
1038 | 0 | #define XXH3_INTERNALBUFFER_SIZE 256 |
1039 | | |
1040 | | /*! |
1041 | | * @brief Default size of the secret buffer (and @ref XXH3_kSecret). |
1042 | | * |
1043 | | * This is the size used in @ref XXH3_kSecret and the seeded functions. |
1044 | | * |
1045 | | * Not to be confused with @ref XXH3_SECRET_SIZE_MIN. |
1046 | | */ |
1047 | | #define XXH3_SECRET_DEFAULT_SIZE 192 |
1048 | | |
1049 | | /*! |
1050 | | * @internal |
1051 | | * @brief Structure for XXH3 streaming API. |
1052 | | * |
1053 | | * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY, |
1054 | | * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. |
1055 | | * Otherwise it is an opaque type. |
1056 | | * Never use this definition in combination with dynamic library. |
1057 | | * This allows fields to safely be changed in the future. |
1058 | | * |
1059 | | * @note ** This structure has a strict alignment requirement of 64 bytes!! ** |
1060 | | * Do not allocate this with `malloc()` or `new`, |
1061 | | * it will not be sufficiently aligned. |
1062 | | * Use @ref XXH3_createState() and @ref XXH3_freeState(), or stack allocation. |
1063 | | * |
1064 | | * Typedef'd to @ref XXH3_state_t. |
1065 | | * Do never access the members of this struct directly. |
1066 | | * |
1067 | | * @see XXH3_INITSTATE() for stack initialization. |
1068 | | * @see XXH3_createState(), XXH3_freeState(). |
1069 | | * @see XXH32_state_s, XXH64_state_s |
1070 | | */ |
1071 | | struct XXH3_state_s { |
1072 | | XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]); |
1073 | | /*!< The 8 accumulators. Similar to `vN` in @ref XXH32_state_s::v1 and @ref XXH64_state_s */ |
1074 | | XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]); |
1075 | | /*!< Used to store a custom secret generated from a seed. */ |
1076 | | XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]); |
1077 | | /*!< The internal buffer. @see XXH32_state_s::mem32 */ |
1078 | | XXH32_hash_t bufferedSize; |
1079 | | /*!< The amount of memory in @ref buffer, @see XXH32_state_s::memsize */ |
1080 | | XXH32_hash_t useSeed; |
1081 | | /*!< Reserved field. Needed for padding on 64-bit. */ |
1082 | | size_t nbStripesSoFar; |
1083 | | /*!< Number or stripes processed. */ |
1084 | | XXH64_hash_t totalLen; |
1085 | | /*!< Total length hashed. 64-bit even on 32-bit targets. */ |
1086 | | size_t nbStripesPerBlock; |
1087 | | /*!< Number of stripes per block. */ |
1088 | | size_t secretLimit; |
1089 | | /*!< Size of @ref customSecret or @ref extSecret */ |
1090 | | XXH64_hash_t seed; |
1091 | | /*!< Seed for _withSeed variants. Must be zero otherwise, @see XXH3_INITSTATE() */ |
1092 | | XXH64_hash_t reserved64; |
1093 | | /*!< Reserved field. */ |
1094 | | const unsigned char* extSecret; |
1095 | | /*!< Reference to an external secret for the _withSecret variants, NULL |
1096 | | * for other variants. */ |
1097 | | /* note: there may be some padding at the end due to alignment on 64 bytes */ |
1098 | | }; /* typedef'd to XXH3_state_t */ |
1099 | | |
1100 | | #undef XXH_ALIGN_MEMBER |
1101 | | |
1102 | | /*! |
1103 | | * @brief Initializes a stack-allocated `XXH3_state_s`. |
1104 | | * |
1105 | | * When the @ref XXH3_state_t structure is merely emplaced on stack, |
1106 | | * it should be initialized with XXH3_INITSTATE() or a memset() |
1107 | | * in case its first reset uses XXH3_NNbits_reset_withSeed(). |
1108 | | * This init can be omitted if the first reset uses default or _withSecret mode. |
1109 | | * This operation isn't necessary when the state is created with XXH3_createState(). |
1110 | | * Note that this doesn't prepare the state for a streaming operation, |
1111 | | * it's still necessary to use XXH3_NNbits_reset*() afterwards. |
1112 | | */ |
1113 | | #define XXH3_INITSTATE(XXH3_state_ptr) { (XXH3_state_ptr)->seed = 0; } |
1114 | | |
1115 | | |
1116 | | /* XXH128() : |
1117 | | * simple alias to pre-selected XXH3_128bits variant |
1118 | | */ |
1119 | | XXH_PUBLIC_API XXH128_hash_t XXH128(const void* data, size_t len, XXH64_hash_t seed); |
1120 | | |
1121 | | |
1122 | | /* === Experimental API === */ |
1123 | | /* Symbols defined below must be considered tied to a specific library version. */ |
1124 | | |
1125 | | /* |
1126 | | * XXH3_generateSecret(): |
1127 | | * |
1128 | | * Derive a high-entropy secret from any user-defined content, named customSeed. |
1129 | | * The generated secret can be used in combination with `*_withSecret()` functions. |
1130 | | * The `_withSecret()` variants are useful to provide a higher level of protection than 64-bit seed, |
1131 | | * as it becomes much more difficult for an external actor to guess how to impact the calculation logic. |
1132 | | * |
1133 | | * The function accepts as input a custom seed of any length and any content, |
1134 | | * and derives from it a high-entropy secret of length @secretSize |
1135 | | * into an already allocated buffer @secretBuffer. |
1136 | | * @secretSize must be >= XXH3_SECRET_SIZE_MIN |
1137 | | * |
1138 | | * The generated secret can then be used with any `*_withSecret()` variant. |
1139 | | * Functions `XXH3_128bits_withSecret()`, `XXH3_64bits_withSecret()`, |
1140 | | * `XXH3_128bits_reset_withSecret()` and `XXH3_64bits_reset_withSecret()` |
1141 | | * are part of this list. They all accept a `secret` parameter |
1142 | | * which must be large enough for implementation reasons (>= XXH3_SECRET_SIZE_MIN) |
1143 | | * _and_ feature very high entropy (consist of random-looking bytes). |
1144 | | * These conditions can be a high bar to meet, so |
1145 | | * XXH3_generateSecret() can be employed to ensure proper quality. |
1146 | | * |
1147 | | * customSeed can be anything. It can have any size, even small ones, |
1148 | | * and its content can be anything, even "poor entropy" sources such as a bunch of zeroes. |
1149 | | * The resulting `secret` will nonetheless provide all required qualities. |
1150 | | * |
1151 | | * When customSeedSize > 0, supplying NULL as customSeed is undefined behavior. |
1152 | | */ |
1153 | | XXH_PUBLIC_API XXH_errorcode XXH3_generateSecret(void* secretBuffer, size_t secretSize, const void* customSeed, size_t customSeedSize); |
1154 | | |
1155 | | |
1156 | | /* |
1157 | | * XXH3_generateSecret_fromSeed(): |
1158 | | * |
1159 | | * Generate the same secret as the _withSeed() variants. |
1160 | | * |
1161 | | * The resulting secret has a length of XXH3_SECRET_DEFAULT_SIZE (necessarily). |
1162 | | * @secretBuffer must be already allocated, of size at least XXH3_SECRET_DEFAULT_SIZE bytes. |
1163 | | * |
1164 | | * The generated secret can be used in combination with |
1165 | | *`*_withSecret()` and `_withSecretandSeed()` variants. |
1166 | | * This generator is notably useful in combination with `_withSecretandSeed()`, |
1167 | | * as a way to emulate a faster `_withSeed()` variant. |
1168 | | */ |
1169 | | XXH_PUBLIC_API void XXH3_generateSecret_fromSeed(void* secretBuffer, XXH64_hash_t seed); |
1170 | | |
1171 | | /* |
1172 | | * *_withSecretandSeed() : |
1173 | | * These variants generate hash values using either |
1174 | | * @seed for "short" keys (< XXH3_MIDSIZE_MAX = 240 bytes) |
1175 | | * or @secret for "large" keys (>= XXH3_MIDSIZE_MAX). |
1176 | | * |
1177 | | * This generally benefits speed, compared to `_withSeed()` or `_withSecret()`. |
1178 | | * `_withSeed()` has to generate the secret on the fly for "large" keys. |
1179 | | * It's fast, but can be perceptible for "not so large" keys (< 1 KB). |
1180 | | * `_withSecret()` has to generate the masks on the fly for "small" keys, |
1181 | | * which requires more instructions than _withSeed() variants. |
1182 | | * Therefore, _withSecretandSeed variant combines the best of both worlds. |
1183 | | * |
1184 | | * When @secret has been generated by XXH3_generateSecret_fromSeed(), |
1185 | | * this variant produces *exactly* the same results as `_withSeed()` variant, |
1186 | | * hence offering only a pure speed benefit on "large" input, |
1187 | | * by skipping the need to regenerate the secret for every large input. |
1188 | | * |
1189 | | * Another usage scenario is to hash the secret to a 64-bit hash value, |
1190 | | * for example with XXH3_64bits(), which then becomes the seed, |
1191 | | * and then employ both the seed and the secret in _withSecretandSeed(). |
1192 | | * On top of speed, an added benefit is that each bit in the secret |
1193 | | * has a 50% chance to swap each bit in the output, |
1194 | | * via its impact to the seed. |
1195 | | * This is not guaranteed when using the secret directly in "small data" scenarios, |
1196 | | * because only portions of the secret are employed for small data. |
1197 | | */ |
1198 | | XXH_PUBLIC_API XXH64_hash_t |
1199 | | XXH3_64bits_withSecretandSeed(const void* data, size_t len, |
1200 | | const void* secret, size_t secretSize, |
1201 | | XXH64_hash_t seed); |
1202 | | |
1203 | | XXH_PUBLIC_API XXH128_hash_t |
1204 | | XXH3_128bits_withSecretandSeed(const void* data, size_t len, |
1205 | | const void* secret, size_t secretSize, |
1206 | | XXH64_hash_t seed64); |
1207 | | |
1208 | | XXH_PUBLIC_API XXH_errorcode |
1209 | | XXH3_64bits_reset_withSecretandSeed(XXH3_state_t* statePtr, |
1210 | | const void* secret, size_t secretSize, |
1211 | | XXH64_hash_t seed64); |
1212 | | |
1213 | | XXH_PUBLIC_API XXH_errorcode |
1214 | | XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr, |
1215 | | const void* secret, size_t secretSize, |
1216 | | XXH64_hash_t seed64); |
1217 | | |
1218 | | |
1219 | | #endif /* XXH_NO_LONG_LONG */ |
1220 | | #if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) |
1221 | | # define XXH_IMPLEMENTATION |
1222 | | #endif |
1223 | | |
1224 | | #endif /* defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) */ |
1225 | | |
1226 | | |
1227 | | /* ======================================================================== */ |
1228 | | /* ======================================================================== */ |
1229 | | /* ======================================================================== */ |
1230 | | |
1231 | | |
1232 | | /*-********************************************************************** |
1233 | | * xxHash implementation |
1234 | | *-********************************************************************** |
1235 | | * xxHash's implementation used to be hosted inside xxhash.c. |
1236 | | * |
1237 | | * However, inlining requires implementation to be visible to the compiler, |
1238 | | * hence be included alongside the header. |
1239 | | * Previously, implementation was hosted inside xxhash.c, |
1240 | | * which was then #included when inlining was activated. |
1241 | | * This construction created issues with a few build and install systems, |
1242 | | * as it required xxhash.c to be stored in /include directory. |
1243 | | * |
1244 | | * xxHash implementation is now directly integrated within xxhash.h. |
1245 | | * As a consequence, xxhash.c is no longer needed in /include. |
1246 | | * |
1247 | | * xxhash.c is still available and is still useful. |
1248 | | * In a "normal" setup, when xxhash is not inlined, |
1249 | | * xxhash.h only exposes the prototypes and public symbols, |
1250 | | * while xxhash.c can be built into an object file xxhash.o |
1251 | | * which can then be linked into the final binary. |
1252 | | ************************************************************************/ |
1253 | | |
1254 | | #if ( defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) \ |
1255 | | || defined(XXH_IMPLEMENTATION) ) && !defined(XXH_IMPLEM_13a8737387) |
1256 | | # define XXH_IMPLEM_13a8737387 |
1257 | | |
1258 | | /* ************************************* |
1259 | | * Tuning parameters |
1260 | | ***************************************/ |
1261 | | |
1262 | | /*! |
1263 | | * @defgroup tuning Tuning parameters |
1264 | | * @{ |
1265 | | * |
1266 | | * Various macros to control xxHash's behavior. |
1267 | | */ |
1268 | | #ifdef XXH_DOXYGEN |
1269 | | /*! |
1270 | | * @brief Define this to disable 64-bit code. |
1271 | | * |
1272 | | * Useful if only using the @ref xxh32_family and you have a strict C90 compiler. |
1273 | | */ |
1274 | | # define XXH_NO_LONG_LONG |
1275 | | # undef XXH_NO_LONG_LONG /* don't actually */ |
1276 | | /*! |
1277 | | * @brief Controls how unaligned memory is accessed. |
1278 | | * |
1279 | | * By default, access to unaligned memory is controlled by `memcpy()`, which is |
1280 | | * safe and portable. |
1281 | | * |
1282 | | * Unfortunately, on some target/compiler combinations, the generated assembly |
1283 | | * is sub-optimal. |
1284 | | * |
1285 | | * The below switch allow selection of a different access method |
1286 | | * in the search for improved performance. |
1287 | | * |
1288 | | * @par Possible options: |
1289 | | * |
1290 | | * - `XXH_FORCE_MEMORY_ACCESS=0` (default): `memcpy` |
1291 | | * @par |
1292 | | * Use `memcpy()`. Safe and portable. Note that most modern compilers will |
1293 | | * eliminate the function call and treat it as an unaligned access. |
1294 | | * |
1295 | | * - `XXH_FORCE_MEMORY_ACCESS=1`: `__attribute__((packed))` |
1296 | | * @par |
1297 | | * Depends on compiler extensions and is therefore not portable. |
1298 | | * This method is safe _if_ your compiler supports it, |
1299 | | * and *generally* as fast or faster than `memcpy`. |
1300 | | * |
1301 | | * - `XXH_FORCE_MEMORY_ACCESS=2`: Direct cast |
1302 | | * @par |
1303 | | * Casts directly and dereferences. This method doesn't depend on the |
1304 | | * compiler, but it violates the C standard as it directly dereferences an |
1305 | | * unaligned pointer. It can generate buggy code on targets which do not |
1306 | | * support unaligned memory accesses, but in some circumstances, it's the |
1307 | | * only known way to get the most performance. |
1308 | | * |
1309 | | * - `XXH_FORCE_MEMORY_ACCESS=3`: Byteshift |
1310 | | * @par |
1311 | | * Also portable. This can generate the best code on old compilers which don't |
1312 | | * inline small `memcpy()` calls, and it might also be faster on big-endian |
1313 | | * systems which lack a native byteswap instruction. However, some compilers |
1314 | | * will emit literal byteshifts even if the target supports unaligned access. |
1315 | | * . |
1316 | | * |
1317 | | * @warning |
1318 | | * Methods 1 and 2 rely on implementation-defined behavior. Use these with |
1319 | | * care, as what works on one compiler/platform/optimization level may cause |
1320 | | * another to read garbage data or even crash. |
1321 | | * |
1322 | | * See http://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html for details. |
1323 | | * |
1324 | | * Prefer these methods in priority order (0 > 3 > 1 > 2) |
1325 | | */ |
1326 | | # define XXH_FORCE_MEMORY_ACCESS 0 |
1327 | | |
1328 | | /*! |
1329 | | * @def XXH_FORCE_ALIGN_CHECK |
1330 | | * @brief If defined to non-zero, adds a special path for aligned inputs (XXH32() |
1331 | | * and XXH64() only). |
1332 | | * |
1333 | | * This is an important performance trick for architectures without decent |
1334 | | * unaligned memory access performance. |
1335 | | * |
1336 | | * It checks for input alignment, and when conditions are met, uses a "fast |
1337 | | * path" employing direct 32-bit/64-bit reads, resulting in _dramatically |
1338 | | * faster_ read speed. |
1339 | | * |
1340 | | * The check costs one initial branch per hash, which is generally negligible, |
1341 | | * but not zero. |
1342 | | * |
1343 | | * Moreover, it's not useful to generate an additional code path if memory |
1344 | | * access uses the same instruction for both aligned and unaligned |
1345 | | * addresses (e.g. x86 and aarch64). |
1346 | | * |
1347 | | * In these cases, the alignment check can be removed by setting this macro to 0. |
1348 | | * Then the code will always use unaligned memory access. |
1349 | | * Align check is automatically disabled on x86, x64 & arm64, |
1350 | | * which are platforms known to offer good unaligned memory accesses performance. |
1351 | | * |
1352 | | * This option does not affect XXH3 (only XXH32 and XXH64). |
1353 | | */ |
1354 | | # define XXH_FORCE_ALIGN_CHECK 0 |
1355 | | |
1356 | | /*! |
1357 | | * @def XXH_NO_INLINE_HINTS |
1358 | | * @brief When non-zero, sets all functions to `static`. |
1359 | | * |
1360 | | * By default, xxHash tries to force the compiler to inline almost all internal |
1361 | | * functions. |
1362 | | * |
1363 | | * This can usually improve performance due to reduced jumping and improved |
1364 | | * constant folding, but significantly increases the size of the binary which |
1365 | | * might not be favorable. |
1366 | | * |
1367 | | * Additionally, sometimes the forced inlining can be detrimental to performance, |
1368 | | * depending on the architecture. |
1369 | | * |
1370 | | * XXH_NO_INLINE_HINTS marks all internal functions as static, giving the |
1371 | | * compiler full control on whether to inline or not. |
1372 | | * |
1373 | | * When not optimizing (-O0), optimizing for size (-Os, -Oz), or using |
1374 | | * -fno-inline with GCC or Clang, this will automatically be defined. |
1375 | | */ |
1376 | | # define XXH_NO_INLINE_HINTS 0 |
1377 | | |
1378 | | /*! |
1379 | | * @def XXH3_INLINE_SECRET |
1380 | | * @brief Determines whether to inline the XXH3 withSecret code. |
1381 | | * |
1382 | | * When the secret size is known, the compiler can improve the performance |
1383 | | * of XXH3_64bits_withSecret() and XXH3_128bits_withSecret(). |
1384 | | * |
1385 | | * However, if the secret size is not known, it doesn't have any benefit. This |
1386 | | * happens when xxHash is compiled into a global symbol. Therefore, if |
1387 | | * @ref XXH_INLINE_ALL is *not* defined, this will be defined to 0. |
1388 | | * |
1389 | | * Additionally, this defaults to 0 on GCC 12+, which has an issue with function pointers |
1390 | | * that are *sometimes* force inline on -Og, and it is impossible to automatically |
1391 | | * detect this optimization level. |
1392 | | */ |
1393 | | # define XXH3_INLINE_SECRET 0 |
1394 | | |
1395 | | /*! |
1396 | | * @def XXH32_ENDJMP |
1397 | | * @brief Whether to use a jump for `XXH32_finalize`. |
1398 | | * |
1399 | | * For performance, `XXH32_finalize` uses multiple branches in the finalizer. |
1400 | | * This is generally preferable for performance, |
1401 | | * but depending on exact architecture, a jmp may be preferable. |
1402 | | * |
1403 | | * This setting is only possibly making a difference for very small inputs. |
1404 | | */ |
1405 | | # define XXH32_ENDJMP 0 |
1406 | | |
1407 | | /*! |
1408 | | * @internal |
1409 | | * @brief Redefines old internal names. |
1410 | | * |
1411 | | * For compatibility with code that uses xxHash's internals before the names |
1412 | | * were changed to improve namespacing. There is no other reason to use this. |
1413 | | */ |
1414 | | # define XXH_OLD_NAMES |
1415 | | # undef XXH_OLD_NAMES /* don't actually use, it is ugly. */ |
1416 | | #endif /* XXH_DOXYGEN */ |
1417 | | /*! |
1418 | | * @} |
1419 | | */ |
1420 | | |
1421 | | #ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */ |
1422 | | /* prefer __packed__ structures (method 1) for gcc on armv7+ and mips */ |
1423 | | # if !defined(__clang__) && \ |
1424 | | ( \ |
1425 | | (defined(__INTEL_COMPILER) && !defined(_WIN32)) || \ |
1426 | | ( \ |
1427 | | defined(__GNUC__) && ( \ |
1428 | | (defined(__ARM_ARCH) && __ARM_ARCH >= 7) || \ |
1429 | | ( \ |
1430 | | defined(__mips__) && \ |
1431 | | (__mips <= 5 || __mips_isa_rev < 6) && \ |
1432 | | (!defined(__mips16) || defined(__mips_mips16e2)) \ |
1433 | | ) \ |
1434 | | ) \ |
1435 | | ) \ |
1436 | | ) |
1437 | | # define XXH_FORCE_MEMORY_ACCESS 1 |
1438 | | # endif |
1439 | | #endif |
1440 | | |
1441 | | #ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */ |
1442 | | # if defined(__i386) || defined(__x86_64__) || defined(__aarch64__) \ |
1443 | | || defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM64) /* visual */ |
1444 | | # define XXH_FORCE_ALIGN_CHECK 0 |
1445 | | # else |
1446 | | # define XXH_FORCE_ALIGN_CHECK 1 |
1447 | | # endif |
1448 | | #endif |
1449 | | |
1450 | | #ifndef XXH_NO_INLINE_HINTS |
1451 | | # if defined(__OPTIMIZE_SIZE__) /* -Os, -Oz */ \ |
1452 | | || defined(__NO_INLINE__) /* -O0, -fno-inline */ |
1453 | | # define XXH_NO_INLINE_HINTS 1 |
1454 | | # else |
1455 | | # define XXH_NO_INLINE_HINTS 0 |
1456 | | # endif |
1457 | | #endif |
1458 | | |
1459 | | #ifndef XXH3_INLINE_SECRET |
1460 | | # if (defined(__GNUC__) && !defined(__clang__) && __GNUC__ >= 12) \ |
1461 | | || !defined(XXH_INLINE_ALL) |
1462 | | # define XXH3_INLINE_SECRET 0 |
1463 | | # else |
1464 | | # define XXH3_INLINE_SECRET 1 |
1465 | | # endif |
1466 | | #endif |
1467 | | |
1468 | | #ifndef XXH32_ENDJMP |
1469 | | /* generally preferable for performance */ |
1470 | 82 | # define XXH32_ENDJMP 0 |
1471 | | #endif |
1472 | | |
1473 | | /*! |
1474 | | * @defgroup impl Implementation |
1475 | | * @{ |
1476 | | */ |
1477 | | |
1478 | | |
1479 | | /* ************************************* |
1480 | | * Includes & Memory related functions |
1481 | | ***************************************/ |
1482 | | /* |
1483 | | * Modify the local functions below should you wish to use |
1484 | | * different memory routines for malloc() and free() |
1485 | | */ |
1486 | | #include <stdlib.h> |
1487 | | |
1488 | | /*! |
1489 | | * @internal |
1490 | | * @brief Modify this function to use a different routine than malloc(). |
1491 | | */ |
1492 | 0 | static void* XXH_malloc(size_t s) { return malloc(s); } |
1493 | | |
1494 | | /*! |
1495 | | * @internal |
1496 | | * @brief Modify this function to use a different routine than free(). |
1497 | | */ |
1498 | 0 | static void XXH_free(void* p) { free(p); } |
1499 | | |
1500 | | #include <string.h> |
1501 | | |
1502 | | /*! |
1503 | | * @internal |
1504 | | * @brief Modify this function to use a different routine than memcpy(). |
1505 | | */ |
1506 | | static void* XXH_memcpy(void* dest, const void* src, size_t size) |
1507 | 421k | { |
1508 | 421k | return memcpy(dest,src,size); |
1509 | 421k | } |
1510 | | |
1511 | | #include <limits.h> /* ULLONG_MAX */ |
1512 | | |
1513 | | |
1514 | | /* ************************************* |
1515 | | * Compiler Specific Options |
1516 | | ***************************************/ |
1517 | | #ifdef _MSC_VER /* Visual Studio warning fix */ |
1518 | | # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ |
1519 | | #endif |
1520 | | |
1521 | | #if XXH_NO_INLINE_HINTS /* disable inlining hints */ |
1522 | | # if defined(__GNUC__) || defined(__clang__) |
1523 | | # define XXH_FORCE_INLINE static __attribute__((unused)) |
1524 | | # else |
1525 | | # define XXH_FORCE_INLINE static |
1526 | | # endif |
1527 | | # define XXH_NO_INLINE static |
1528 | | /* enable inlining hints */ |
1529 | | #elif defined(__GNUC__) || defined(__clang__) |
1530 | | # define XXH_FORCE_INLINE static __inline__ __attribute__((always_inline, unused)) |
1531 | | # define XXH_NO_INLINE static __attribute__((noinline)) |
1532 | | #elif defined(_MSC_VER) /* Visual Studio */ |
1533 | | # define XXH_FORCE_INLINE static __forceinline |
1534 | | # define XXH_NO_INLINE static __declspec(noinline) |
1535 | | #elif defined (__cplusplus) \ |
1536 | | || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) /* C99 */ |
1537 | | # define XXH_FORCE_INLINE static inline |
1538 | | # define XXH_NO_INLINE static |
1539 | | #else |
1540 | | # define XXH_FORCE_INLINE static |
1541 | | # define XXH_NO_INLINE static |
1542 | | #endif |
1543 | | |
1544 | | #if XXH3_INLINE_SECRET |
1545 | | # define XXH3_WITH_SECRET_INLINE XXH_FORCE_INLINE |
1546 | | #else |
1547 | | # define XXH3_WITH_SECRET_INLINE XXH_NO_INLINE |
1548 | | #endif |
1549 | | |
1550 | | |
1551 | | /* ************************************* |
1552 | | * Debug |
1553 | | ***************************************/ |
1554 | | /*! |
1555 | | * @ingroup tuning |
1556 | | * @def XXH_DEBUGLEVEL |
1557 | | * @brief Sets the debugging level. |
1558 | | * |
1559 | | * XXH_DEBUGLEVEL is expected to be defined externally, typically via the |
1560 | | * compiler's command line options. The value must be a number. |
1561 | | */ |
1562 | | #ifndef XXH_DEBUGLEVEL |
1563 | | # ifdef DEBUGLEVEL /* backwards compat */ |
1564 | | # define XXH_DEBUGLEVEL DEBUGLEVEL |
1565 | | # else |
1566 | | # define XXH_DEBUGLEVEL 0 |
1567 | | # endif |
1568 | | #endif |
1569 | | |
1570 | | #if (XXH_DEBUGLEVEL>=1) |
1571 | | # include <assert.h> /* note: can still be disabled with NDEBUG */ |
1572 | | # define XXH_ASSERT(c) assert(c) |
1573 | | #else |
1574 | 0 | # define XXH_ASSERT(c) ((void)0) |
1575 | | #endif |
1576 | | |
1577 | | /* note: use after variable declarations */ |
1578 | | #ifndef XXH_STATIC_ASSERT |
1579 | | # if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* C11 */ |
1580 | 140 | # define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { _Static_assert((c),m); } while(0) |
1581 | | # elif defined(__cplusplus) && (__cplusplus >= 201103L) /* C++11 */ |
1582 | | # define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { static_assert((c),m); } while(0) |
1583 | | # else |
1584 | | # define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { struct xxh_sa { char x[(c) ? 1 : -1]; }; } while(0) |
1585 | | # endif |
1586 | 140 | # define XXH_STATIC_ASSERT(c) XXH_STATIC_ASSERT_WITH_MESSAGE((c),#c) |
1587 | | #endif |
1588 | | |
1589 | | /*! |
1590 | | * @internal |
1591 | | * @def XXH_COMPILER_GUARD(var) |
1592 | | * @brief Used to prevent unwanted optimizations for @p var. |
1593 | | * |
1594 | | * It uses an empty GCC inline assembly statement with a register constraint |
1595 | | * which forces @p var into a general purpose register (eg eax, ebx, ecx |
1596 | | * on x86) and marks it as modified. |
1597 | | * |
1598 | | * This is used in a few places to avoid unwanted autovectorization (e.g. |
1599 | | * XXH32_round()). All vectorization we want is explicit via intrinsics, |
1600 | | * and _usually_ isn't wanted elsewhere. |
1601 | | * |
1602 | | * We also use it to prevent unwanted constant folding for AArch64 in |
1603 | | * XXH3_initCustomSecret_scalar(). |
1604 | | */ |
1605 | | #if defined(__GNUC__) || defined(__clang__) |
1606 | 0 | # define XXH_COMPILER_GUARD(var) __asm__ __volatile__("" : "+r" (var)) |
1607 | | #else |
1608 | | # define XXH_COMPILER_GUARD(var) ((void)0) |
1609 | | #endif |
1610 | | |
1611 | | /* ************************************* |
1612 | | * Basic Types |
1613 | | ***************************************/ |
1614 | | #if !defined (__VMS) \ |
1615 | | && (defined (__cplusplus) \ |
1616 | | || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
1617 | | # include <stdint.h> |
1618 | | typedef uint8_t xxh_u8; |
1619 | | #else |
1620 | | typedef unsigned char xxh_u8; |
1621 | | #endif |
1622 | | typedef XXH32_hash_t xxh_u32; |
1623 | | |
1624 | | #ifdef XXH_OLD_NAMES |
1625 | | # define BYTE xxh_u8 |
1626 | | # define U8 xxh_u8 |
1627 | | # define U32 xxh_u32 |
1628 | | #endif |
1629 | | |
1630 | | /* *** Memory access *** */ |
1631 | | |
1632 | | /*! |
1633 | | * @internal |
1634 | | * @fn xxh_u32 XXH_read32(const void* ptr) |
1635 | | * @brief Reads an unaligned 32-bit integer from @p ptr in native endianness. |
1636 | | * |
1637 | | * Affected by @ref XXH_FORCE_MEMORY_ACCESS. |
1638 | | * |
1639 | | * @param ptr The pointer to read from. |
1640 | | * @return The 32-bit native endian integer from the bytes at @p ptr. |
1641 | | */ |
1642 | | |
1643 | | /*! |
1644 | | * @internal |
1645 | | * @fn xxh_u32 XXH_readLE32(const void* ptr) |
1646 | | * @brief Reads an unaligned 32-bit little endian integer from @p ptr. |
1647 | | * |
1648 | | * Affected by @ref XXH_FORCE_MEMORY_ACCESS. |
1649 | | * |
1650 | | * @param ptr The pointer to read from. |
1651 | | * @return The 32-bit little endian integer from the bytes at @p ptr. |
1652 | | */ |
1653 | | |
1654 | | /*! |
1655 | | * @internal |
1656 | | * @fn xxh_u32 XXH_readBE32(const void* ptr) |
1657 | | * @brief Reads an unaligned 32-bit big endian integer from @p ptr. |
1658 | | * |
1659 | | * Affected by @ref XXH_FORCE_MEMORY_ACCESS. |
1660 | | * |
1661 | | * @param ptr The pointer to read from. |
1662 | | * @return The 32-bit big endian integer from the bytes at @p ptr. |
1663 | | */ |
1664 | | |
1665 | | /*! |
1666 | | * @internal |
1667 | | * @fn xxh_u32 XXH_readLE32_align(const void* ptr, XXH_alignment align) |
1668 | | * @brief Like @ref XXH_readLE32(), but has an option for aligned reads. |
1669 | | * |
1670 | | * Affected by @ref XXH_FORCE_MEMORY_ACCESS. |
1671 | | * Note that when @ref XXH_FORCE_ALIGN_CHECK == 0, the @p align parameter is |
1672 | | * always @ref XXH_alignment::XXH_unaligned. |
1673 | | * |
1674 | | * @param ptr The pointer to read from. |
1675 | | * @param align Whether @p ptr is aligned. |
1676 | | * @pre |
1677 | | * If @p align == @ref XXH_alignment::XXH_aligned, @p ptr must be 4 byte |
1678 | | * aligned. |
1679 | | * @return The 32-bit little endian integer from the bytes at @p ptr. |
1680 | | */ |
1681 | | |
1682 | | #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) |
1683 | | /* |
1684 | | * Manual byteshift. Best for old compilers which don't inline memcpy. |
1685 | | * We actually directly use XXH_readLE32 and XXH_readBE32. |
1686 | | */ |
1687 | | #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) |
1688 | | |
1689 | | /* |
1690 | | * Force direct memory access. Only works on CPU which support unaligned memory |
1691 | | * access in hardware. |
1692 | | */ |
1693 | | static xxh_u32 XXH_read32(const void* memPtr) { return *(const xxh_u32*) memPtr; } |
1694 | | |
1695 | | #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) |
1696 | | |
1697 | | /* |
1698 | | * __pack instructions are safer but compiler specific, hence potentially |
1699 | | * problematic for some compilers. |
1700 | | * |
1701 | | * Currently only defined for GCC and ICC. |
1702 | | */ |
1703 | | #ifdef XXH_OLD_NAMES |
1704 | | typedef union { xxh_u32 u32; } __attribute__((packed)) unalign; |
1705 | | #endif |
1706 | | static xxh_u32 XXH_read32(const void* ptr) |
1707 | | { |
1708 | | typedef union { xxh_u32 u32; } __attribute__((packed)) xxh_unalign; |
1709 | | return ((const xxh_unalign*)ptr)->u32; |
1710 | | } |
1711 | | |
1712 | | #else |
1713 | | |
1714 | | /* |
1715 | | * Portable and safe solution. Generally efficient. |
1716 | | * see: http://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html |
1717 | | */ |
1718 | | static xxh_u32 XXH_read32(const void* memPtr) |
1719 | 412k | { |
1720 | 412k | xxh_u32 val; |
1721 | 412k | XXH_memcpy(&val, memPtr, sizeof(val)); |
1722 | 412k | return val; |
1723 | 412k | } |
1724 | | |
1725 | | #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ |
1726 | | |
1727 | | |
1728 | | /* *** Endianness *** */ |
1729 | | |
1730 | | /*! |
1731 | | * @ingroup tuning |
1732 | | * @def XXH_CPU_LITTLE_ENDIAN |
1733 | | * @brief Whether the target is little endian. |
1734 | | * |
1735 | | * Defined to 1 if the target is little endian, or 0 if it is big endian. |
1736 | | * It can be defined externally, for example on the compiler command line. |
1737 | | * |
1738 | | * If it is not defined, |
1739 | | * a runtime check (which is usually constant folded) is used instead. |
1740 | | * |
1741 | | * @note |
1742 | | * This is not necessarily defined to an integer constant. |
1743 | | * |
1744 | | * @see XXH_isLittleEndian() for the runtime check. |
1745 | | */ |
1746 | | #ifndef XXH_CPU_LITTLE_ENDIAN |
1747 | | /* |
1748 | | * Try to detect endianness automatically, to avoid the nonstandard behavior |
1749 | | * in `XXH_isLittleEndian()` |
1750 | | */ |
1751 | | # if defined(_WIN32) /* Windows is always little endian */ \ |
1752 | | || defined(__LITTLE_ENDIAN__) \ |
1753 | | || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) |
1754 | 421k | # define XXH_CPU_LITTLE_ENDIAN 1 |
1755 | | # elif defined(__BIG_ENDIAN__) \ |
1756 | | || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) |
1757 | | # define XXH_CPU_LITTLE_ENDIAN 0 |
1758 | | # else |
1759 | | /*! |
1760 | | * @internal |
1761 | | * @brief Runtime check for @ref XXH_CPU_LITTLE_ENDIAN. |
1762 | | * |
1763 | | * Most compilers will constant fold this. |
1764 | | */ |
1765 | | static int XXH_isLittleEndian(void) |
1766 | | { |
1767 | | /* |
1768 | | * Portable and well-defined behavior. |
1769 | | * Don't use static: it is detrimental to performance. |
1770 | | */ |
1771 | | const union { xxh_u32 u; xxh_u8 c[4]; } one = { 1 }; |
1772 | | return one.c[0]; |
1773 | | } |
1774 | | # define XXH_CPU_LITTLE_ENDIAN XXH_isLittleEndian() |
1775 | | # endif |
1776 | | #endif |
1777 | | |
1778 | | |
1779 | | |
1780 | | |
1781 | | /* **************************************** |
1782 | | * Compiler-specific Functions and Macros |
1783 | | ******************************************/ |
1784 | | #define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) |
1785 | | |
1786 | | #ifdef __has_builtin |
1787 | | # define XXH_HAS_BUILTIN(x) __has_builtin(x) |
1788 | | #else |
1789 | | # define XXH_HAS_BUILTIN(x) 0 |
1790 | | #endif |
1791 | | |
1792 | | /*! |
1793 | | * @internal |
1794 | | * @def XXH_rotl32(x,r) |
1795 | | * @brief 32-bit rotate left. |
1796 | | * |
1797 | | * @param x The 32-bit integer to be rotated. |
1798 | | * @param r The number of bits to rotate. |
1799 | | * @pre |
1800 | | * @p r > 0 && @p r < 32 |
1801 | | * @note |
1802 | | * @p x and @p r may be evaluated multiple times. |
1803 | | * @return The rotated result. |
1804 | | */ |
1805 | | #if !defined(NO_CLANG_BUILTIN) && XXH_HAS_BUILTIN(__builtin_rotateleft32) \ |
1806 | | && XXH_HAS_BUILTIN(__builtin_rotateleft64) |
1807 | 413k | # define XXH_rotl32 __builtin_rotateleft32 |
1808 | 8.81k | # define XXH_rotl64 __builtin_rotateleft64 |
1809 | | /* Note: although _rotl exists for minGW (GCC under windows), performance seems poor */ |
1810 | | #elif defined(_MSC_VER) |
1811 | | # define XXH_rotl32(x,r) _rotl(x,r) |
1812 | | # define XXH_rotl64(x,r) _rotl64(x,r) |
1813 | | #else |
1814 | | # define XXH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r)))) |
1815 | | # define XXH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r)))) |
1816 | | #endif |
1817 | | |
1818 | | /*! |
1819 | | * @internal |
1820 | | * @fn xxh_u32 XXH_swap32(xxh_u32 x) |
1821 | | * @brief A 32-bit byteswap. |
1822 | | * |
1823 | | * @param x The 32-bit integer to byteswap. |
1824 | | * @return @p x, byteswapped. |
1825 | | */ |
1826 | | #if defined(_MSC_VER) /* Visual Studio */ |
1827 | | # define XXH_swap32 _byteswap_ulong |
1828 | | #elif XXH_GCC_VERSION >= 403 |
1829 | | # define XXH_swap32 __builtin_bswap32 |
1830 | | #else |
1831 | | static xxh_u32 XXH_swap32 (xxh_u32 x) |
1832 | 82 | { |
1833 | 82 | return ((x << 24) & 0xff000000 ) | |
1834 | 82 | ((x << 8) & 0x00ff0000 ) | |
1835 | 82 | ((x >> 8) & 0x0000ff00 ) | |
1836 | 82 | ((x >> 24) & 0x000000ff ); |
1837 | 82 | } |
1838 | | #endif |
1839 | | |
1840 | | |
1841 | | /* *************************** |
1842 | | * Memory reads |
1843 | | *****************************/ |
1844 | | |
1845 | | /*! |
1846 | | * @internal |
1847 | | * @brief Enum to indicate whether a pointer is aligned. |
1848 | | */ |
1849 | | typedef enum { |
1850 | | XXH_aligned, /*!< Aligned */ |
1851 | | XXH_unaligned /*!< Possibly unaligned */ |
1852 | | } XXH_alignment; |
1853 | | |
1854 | | /* |
1855 | | * XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. |
1856 | | * |
1857 | | * This is ideal for older compilers which don't inline memcpy. |
1858 | | */ |
1859 | | #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) |
1860 | | |
1861 | | XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* memPtr) |
1862 | | { |
1863 | | const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; |
1864 | | return bytePtr[0] |
1865 | | | ((xxh_u32)bytePtr[1] << 8) |
1866 | | | ((xxh_u32)bytePtr[2] << 16) |
1867 | | | ((xxh_u32)bytePtr[3] << 24); |
1868 | | } |
1869 | | |
1870 | | XXH_FORCE_INLINE xxh_u32 XXH_readBE32(const void* memPtr) |
1871 | | { |
1872 | | const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; |
1873 | | return bytePtr[3] |
1874 | | | ((xxh_u32)bytePtr[2] << 8) |
1875 | | | ((xxh_u32)bytePtr[1] << 16) |
1876 | | | ((xxh_u32)bytePtr[0] << 24); |
1877 | | } |
1878 | | |
1879 | | #else |
1880 | | XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* ptr) |
1881 | 412k | { |
1882 | 412k | return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr)); |
1883 | 412k | } |
1884 | | |
1885 | | static xxh_u32 XXH_readBE32(const void* ptr) |
1886 | 0 | { |
1887 | 0 | return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr); |
1888 | 0 | } |
1889 | | #endif |
1890 | | |
1891 | | XXH_FORCE_INLINE xxh_u32 |
1892 | | XXH_readLE32_align(const void* ptr, XXH_alignment align) |
1893 | 141 | { |
1894 | 141 | if (align==XXH_unaligned) { |
1895 | 0 | return XXH_readLE32(ptr); |
1896 | 141 | } else { |
1897 | 141 | return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u32*)ptr : XXH_swap32(*(const xxh_u32*)ptr); |
1898 | 141 | } |
1899 | 141 | } |
1900 | | |
1901 | | |
1902 | | /* ************************************* |
1903 | | * Misc |
1904 | | ***************************************/ |
1905 | | /*! @ingroup public */ |
1906 | 0 | XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; } |
1907 | | |
1908 | | |
1909 | | /* ******************************************************************* |
1910 | | * 32-bit hash functions |
1911 | | *********************************************************************/ |
1912 | | /*! |
1913 | | * @} |
1914 | | * @defgroup xxh32_impl XXH32 implementation |
1915 | | * @ingroup impl |
1916 | | * @{ |
1917 | | */ |
1918 | | /* #define instead of static const, to be used as initializers */ |
1919 | 412k | #define XXH_PRIME32_1 0x9E3779B1U /*!< 0b10011110001101110111100110110001 */ |
1920 | 412k | #define XXH_PRIME32_2 0x85EBCA77U /*!< 0b10000101111010111100101001110111 */ |
1921 | 187 | #define XXH_PRIME32_3 0xC2B2AE3DU /*!< 0b11000010101100101010111000111101 */ |
1922 | 105 | #define XXH_PRIME32_4 0x27D4EB2FU /*!< 0b00100111110101001110101100101111 */ |
1923 | 130 | #define XXH_PRIME32_5 0x165667B1U /*!< 0b00010110010101100110011110110001 */ |
1924 | | |
1925 | | #ifdef XXH_OLD_NAMES |
1926 | | # define PRIME32_1 XXH_PRIME32_1 |
1927 | | # define PRIME32_2 XXH_PRIME32_2 |
1928 | | # define PRIME32_3 XXH_PRIME32_3 |
1929 | | # define PRIME32_4 XXH_PRIME32_4 |
1930 | | # define PRIME32_5 XXH_PRIME32_5 |
1931 | | #endif |
1932 | | |
1933 | | /*! |
1934 | | * @internal |
1935 | | * @brief Normal stripe processing routine. |
1936 | | * |
1937 | | * This shuffles the bits so that any bit from @p input impacts several bits in |
1938 | | * @p acc. |
1939 | | * |
1940 | | * @param acc The accumulator lane. |
1941 | | * @param input The stripe of input to mix. |
1942 | | * @return The mixed accumulator lane. |
1943 | | */ |
1944 | | static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input) |
1945 | 412k | { |
1946 | 412k | acc += input * XXH_PRIME32_2; |
1947 | 412k | acc = XXH_rotl32(acc, 13); |
1948 | 412k | acc *= XXH_PRIME32_1; |
1949 | | #if (defined(__SSE4_1__) || defined(__aarch64__)) && !defined(XXH_ENABLE_AUTOVECTORIZE) |
1950 | | /* |
1951 | | * UGLY HACK: |
1952 | | * A compiler fence is the only thing that prevents GCC and Clang from |
1953 | | * autovectorizing the XXH32 loop (pragmas and attributes don't work for some |
1954 | | * reason) without globally disabling SSE4.1. |
1955 | | * |
1956 | | * The reason we want to avoid vectorization is because despite working on |
1957 | | * 4 integers at a time, there are multiple factors slowing XXH32 down on |
1958 | | * SSE4: |
1959 | | * - There's a ridiculous amount of lag from pmulld (10 cycles of latency on |
1960 | | * newer chips!) making it slightly slower to multiply four integers at |
1961 | | * once compared to four integers independently. Even when pmulld was |
1962 | | * fastest, Sandy/Ivy Bridge, it is still not worth it to go into SSE |
1963 | | * just to multiply unless doing a long operation. |
1964 | | * |
1965 | | * - Four instructions are required to rotate, |
1966 | | * movqda tmp, v // not required with VEX encoding |
1967 | | * pslld tmp, 13 // tmp <<= 13 |
1968 | | * psrld v, 19 // x >>= 19 |
1969 | | * por v, tmp // x |= tmp |
1970 | | * compared to one for scalar: |
1971 | | * roll v, 13 // reliably fast across the board |
1972 | | * shldl v, v, 13 // Sandy Bridge and later prefer this for some reason |
1973 | | * |
1974 | | * - Instruction level parallelism is actually more beneficial here because |
1975 | | * the SIMD actually serializes this operation: While v1 is rotating, v2 |
1976 | | * can load data, while v3 can multiply. SSE forces them to operate |
1977 | | * together. |
1978 | | * |
1979 | | * This is also enabled on AArch64, as Clang autovectorizes it incorrectly |
1980 | | * and it is pointless writing a NEON implementation that is basically the |
1981 | | * same speed as scalar for XXH32. |
1982 | | */ |
1983 | | XXH_COMPILER_GUARD(acc); |
1984 | | #endif |
1985 | 412k | return acc; |
1986 | 412k | } |
1987 | | |
1988 | | /*! |
1989 | | * @internal |
1990 | | * @brief Mixes all bits to finalize the hash. |
1991 | | * |
1992 | | * The final mix ensures that all input bits have a chance to impact any bit in |
1993 | | * the output digest, resulting in an unbiased distribution. |
1994 | | * |
1995 | | * @param h32 The hash to avalanche. |
1996 | | * @return The avalanched hash. |
1997 | | */ |
1998 | | static xxh_u32 XXH32_avalanche(xxh_u32 h32) |
1999 | 82 | { |
2000 | 82 | h32 ^= h32 >> 15; |
2001 | 82 | h32 *= XXH_PRIME32_2; |
2002 | 82 | h32 ^= h32 >> 13; |
2003 | 82 | h32 *= XXH_PRIME32_3; |
2004 | 82 | h32 ^= h32 >> 16; |
2005 | 82 | return(h32); |
2006 | 82 | } |
2007 | | |
2008 | 141 | #define XXH_get32bits(p) XXH_readLE32_align(p, align) |
2009 | | |
2010 | | /*! |
2011 | | * @internal |
2012 | | * @brief Processes the last 0-15 bytes of @p ptr. |
2013 | | * |
2014 | | * There may be up to 15 bytes remaining to consume from the input. |
2015 | | * This final stage will digest them to ensure that all input bytes are present |
2016 | | * in the final mix. |
2017 | | * |
2018 | | * @param h32 The hash to finalize. |
2019 | | * @param ptr The pointer to the remaining input. |
2020 | | * @param len The remaining length, modulo 16. |
2021 | | * @param align Whether @p ptr is aligned. |
2022 | | * @return The finalized hash. |
2023 | | */ |
2024 | | static xxh_u32 |
2025 | | XXH32_finalize(xxh_u32 h32, const xxh_u8* ptr, size_t len, XXH_alignment align) |
2026 | 82 | { |
2027 | 117 | #define XXH_PROCESS1 do { \ |
2028 | 117 | h32 += (*ptr++) * XXH_PRIME32_5; \ |
2029 | 117 | h32 = XXH_rotl32(h32, 11) * XXH_PRIME32_1; \ |
2030 | 117 | } while (0) |
2031 | | |
2032 | 105 | #define XXH_PROCESS4 do { \ |
2033 | 105 | h32 += XXH_get32bits(ptr) * XXH_PRIME32_3; \ |
2034 | 105 | ptr += 4; \ |
2035 | 105 | h32 = XXH_rotl32(h32, 17) * XXH_PRIME32_4; \ |
2036 | 105 | } while (0) |
2037 | | |
2038 | 82 | if (ptr==NULL) XXH_ASSERT(len == 0); |
2039 | | |
2040 | | /* Compact rerolled version; generally faster */ |
2041 | 82 | if (!XXH32_ENDJMP) { |
2042 | 82 | len &= 15; |
2043 | 187 | while (len >= 4) { |
2044 | 105 | XXH_PROCESS4; |
2045 | 105 | len -= 4; |
2046 | 105 | } |
2047 | 199 | while (len > 0) { |
2048 | 117 | XXH_PROCESS1; |
2049 | 117 | --len; |
2050 | 117 | } |
2051 | 82 | return XXH32_avalanche(h32); |
2052 | 82 | } else { |
2053 | 0 | switch(len&15) /* or switch(bEnd - p) */ { |
2054 | 0 | case 12: XXH_PROCESS4; |
2055 | 0 | XXH_FALLTHROUGH; |
2056 | 0 | case 8: XXH_PROCESS4; |
2057 | 0 | XXH_FALLTHROUGH; |
2058 | 0 | case 4: XXH_PROCESS4; |
2059 | 0 | return XXH32_avalanche(h32); |
2060 | | |
2061 | 0 | case 13: XXH_PROCESS4; |
2062 | 0 | XXH_FALLTHROUGH; |
2063 | 0 | case 9: XXH_PROCESS4; |
2064 | 0 | XXH_FALLTHROUGH; |
2065 | 0 | case 5: XXH_PROCESS4; |
2066 | 0 | XXH_PROCESS1; |
2067 | 0 | return XXH32_avalanche(h32); |
2068 | | |
2069 | 0 | case 14: XXH_PROCESS4; |
2070 | 0 | XXH_FALLTHROUGH; |
2071 | 0 | case 10: XXH_PROCESS4; |
2072 | 0 | XXH_FALLTHROUGH; |
2073 | 0 | case 6: XXH_PROCESS4; |
2074 | 0 | XXH_PROCESS1; |
2075 | 0 | XXH_PROCESS1; |
2076 | 0 | return XXH32_avalanche(h32); |
2077 | | |
2078 | 0 | case 15: XXH_PROCESS4; |
2079 | 0 | XXH_FALLTHROUGH; |
2080 | 0 | case 11: XXH_PROCESS4; |
2081 | 0 | XXH_FALLTHROUGH; |
2082 | 0 | case 7: XXH_PROCESS4; |
2083 | 0 | XXH_FALLTHROUGH; |
2084 | 0 | case 3: XXH_PROCESS1; |
2085 | 0 | XXH_FALLTHROUGH; |
2086 | 0 | case 2: XXH_PROCESS1; |
2087 | 0 | XXH_FALLTHROUGH; |
2088 | 0 | case 1: XXH_PROCESS1; |
2089 | 0 | XXH_FALLTHROUGH; |
2090 | 0 | case 0: return XXH32_avalanche(h32); |
2091 | 0 | } |
2092 | 0 | XXH_ASSERT(0); |
2093 | 0 | return h32; /* reaching this point is deemed impossible */ |
2094 | 0 | } |
2095 | 82 | } |
2096 | | |
2097 | | #ifdef XXH_OLD_NAMES |
2098 | | # define PROCESS1 XXH_PROCESS1 |
2099 | | # define PROCESS4 XXH_PROCESS4 |
2100 | | #else |
2101 | | # undef XXH_PROCESS1 |
2102 | | # undef XXH_PROCESS4 |
2103 | | #endif |
2104 | | |
2105 | | /*! |
2106 | | * @internal |
2107 | | * @brief The implementation for @ref XXH32(). |
2108 | | * |
2109 | | * @param input , len , seed Directly passed from @ref XXH32(). |
2110 | | * @param align Whether @p input is aligned. |
2111 | | * @return The calculated hash. |
2112 | | */ |
2113 | | XXH_FORCE_INLINE xxh_u32 |
2114 | | XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment align) |
2115 | 0 | { |
2116 | 0 | xxh_u32 h32; |
2117 | 0 |
|
2118 | 0 | if (input==NULL) XXH_ASSERT(len == 0); |
2119 | 0 |
|
2120 | 0 | if (len>=16) { |
2121 | 0 | const xxh_u8* const bEnd = input + len; |
2122 | 0 | const xxh_u8* const limit = bEnd - 15; |
2123 | 0 | xxh_u32 v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2; |
2124 | 0 | xxh_u32 v2 = seed + XXH_PRIME32_2; |
2125 | 0 | xxh_u32 v3 = seed + 0; |
2126 | 0 | xxh_u32 v4 = seed - XXH_PRIME32_1; |
2127 | 0 |
|
2128 | 0 | do { |
2129 | 0 | v1 = XXH32_round(v1, XXH_get32bits(input)); input += 4; |
2130 | 0 | v2 = XXH32_round(v2, XXH_get32bits(input)); input += 4; |
2131 | 0 | v3 = XXH32_round(v3, XXH_get32bits(input)); input += 4; |
2132 | 0 | v4 = XXH32_round(v4, XXH_get32bits(input)); input += 4; |
2133 | 0 | } while (input < limit); |
2134 | 0 |
|
2135 | 0 | h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) |
2136 | 0 | + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18); |
2137 | 0 | } else { |
2138 | 0 | h32 = seed + XXH_PRIME32_5; |
2139 | 0 | } |
2140 | 0 |
|
2141 | 0 | h32 += (xxh_u32)len; |
2142 | 0 |
|
2143 | 0 | return XXH32_finalize(h32, input, len&15, align); |
2144 | 0 | } |
2145 | | |
2146 | | /*! @ingroup xxh32_family */ |
2147 | | XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t seed) |
2148 | 0 | { |
2149 | 0 | #if 0 |
2150 | 0 | /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ |
2151 | 0 | XXH32_state_t state; |
2152 | 0 | XXH32_reset(&state, seed); |
2153 | 0 | XXH32_update(&state, (const xxh_u8*)input, len); |
2154 | 0 | return XXH32_digest(&state); |
2155 | 0 | #else |
2156 | 0 | if (XXH_FORCE_ALIGN_CHECK) { |
2157 | 0 | if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */ |
2158 | 0 | return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_aligned); |
2159 | 0 | } } |
2160 | 0 |
|
2161 | 0 | return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned); |
2162 | 0 | #endif |
2163 | 0 | } |
2164 | | |
2165 | | |
2166 | | |
2167 | | /******* Hash streaming *******/ |
2168 | | /*! |
2169 | | * @ingroup xxh32_family |
2170 | | */ |
2171 | | XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void) |
2172 | 0 | { |
2173 | 0 | return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t)); |
2174 | 0 | } |
2175 | | /*! @ingroup xxh32_family */ |
2176 | | XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr) |
2177 | 0 | { |
2178 | 0 | XXH_free(statePtr); |
2179 | 0 | return XXH_OK; |
2180 | 0 | } |
2181 | | |
2182 | | /*! @ingroup xxh32_family */ |
2183 | | XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState) |
2184 | 0 | { |
2185 | 0 | XXH_memcpy(dstState, srcState, sizeof(*dstState)); |
2186 | 0 | } |
2187 | | |
2188 | | /*! @ingroup xxh32_family */ |
2189 | | XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t seed) |
2190 | 108 | { |
2191 | 108 | XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */ |
2192 | 108 | memset(&state, 0, sizeof(state)); |
2193 | 108 | state.v[0] = seed + XXH_PRIME32_1 + XXH_PRIME32_2; |
2194 | 108 | state.v[1] = seed + XXH_PRIME32_2; |
2195 | 108 | state.v[2] = seed + 0; |
2196 | 108 | state.v[3] = seed - XXH_PRIME32_1; |
2197 | | /* do not write into reserved, planned to be removed in a future version */ |
2198 | 108 | XXH_memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved)); |
2199 | 108 | return XXH_OK; |
2200 | 108 | } |
2201 | | |
2202 | | |
2203 | | /*! @ingroup xxh32_family */ |
2204 | | XXH_PUBLIC_API XXH_errorcode |
2205 | | XXH32_update(XXH32_state_t* state, const void* input, size_t len) |
2206 | 82 | { |
2207 | 82 | if (input==NULL) { |
2208 | 0 | XXH_ASSERT(len == 0); |
2209 | 0 | return XXH_OK; |
2210 | 0 | } |
2211 | | |
2212 | 82 | { const xxh_u8* p = (const xxh_u8*)input; |
2213 | 82 | const xxh_u8* const bEnd = p + len; |
2214 | | |
2215 | 82 | state->total_len_32 += (XXH32_hash_t)len; |
2216 | 82 | state->large_len |= (XXH32_hash_t)((len>=16) | (state->total_len_32>=16)); |
2217 | | |
2218 | 82 | if (state->memsize + len < 16) { /* fill in tmp buffer */ |
2219 | 31 | XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, len); |
2220 | 31 | state->memsize += (XXH32_hash_t)len; |
2221 | 31 | return XXH_OK; |
2222 | 31 | } |
2223 | | |
2224 | 51 | if (state->memsize) { /* some data left from previous update */ |
2225 | 28 | XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, 16-state->memsize); |
2226 | 28 | { const xxh_u32* p32 = state->mem32; |
2227 | 28 | state->v[0] = XXH32_round(state->v[0], XXH_readLE32(p32)); p32++; |
2228 | 28 | state->v[1] = XXH32_round(state->v[1], XXH_readLE32(p32)); p32++; |
2229 | 28 | state->v[2] = XXH32_round(state->v[2], XXH_readLE32(p32)); p32++; |
2230 | 28 | state->v[3] = XXH32_round(state->v[3], XXH_readLE32(p32)); |
2231 | 28 | } |
2232 | 28 | p += 16-state->memsize; |
2233 | 28 | state->memsize = 0; |
2234 | 28 | } |
2235 | | |
2236 | 51 | if (p <= bEnd-16) { |
2237 | 40 | const xxh_u8* const limit = bEnd - 16; |
2238 | | |
2239 | 103k | do { |
2240 | 103k | state->v[0] = XXH32_round(state->v[0], XXH_readLE32(p)); p+=4; |
2241 | 103k | state->v[1] = XXH32_round(state->v[1], XXH_readLE32(p)); p+=4; |
2242 | 103k | state->v[2] = XXH32_round(state->v[2], XXH_readLE32(p)); p+=4; |
2243 | 103k | state->v[3] = XXH32_round(state->v[3], XXH_readLE32(p)); p+=4; |
2244 | 103k | } while (p<=limit); |
2245 | | |
2246 | 40 | } |
2247 | | |
2248 | 51 | if (p < bEnd) { |
2249 | 38 | XXH_memcpy(state->mem32, p, (size_t)(bEnd-p)); |
2250 | 38 | state->memsize = (unsigned)(bEnd-p); |
2251 | 38 | } |
2252 | 51 | } |
2253 | | |
2254 | 51 | return XXH_OK; |
2255 | 82 | } |
2256 | | |
2257 | | |
2258 | | /*! @ingroup xxh32_family */ |
2259 | | XXH_PUBLIC_API XXH32_hash_t XXH32_digest(const XXH32_state_t* state) |
2260 | 82 | { |
2261 | 82 | xxh_u32 h32; |
2262 | | |
2263 | 82 | if (state->large_len) { |
2264 | 69 | h32 = XXH_rotl32(state->v[0], 1) |
2265 | 69 | + XXH_rotl32(state->v[1], 7) |
2266 | 69 | + XXH_rotl32(state->v[2], 12) |
2267 | 69 | + XXH_rotl32(state->v[3], 18); |
2268 | 69 | } else { |
2269 | 13 | h32 = state->v[2] /* == seed */ + XXH_PRIME32_5; |
2270 | 13 | } |
2271 | | |
2272 | 82 | h32 += state->total_len_32; |
2273 | | |
2274 | 82 | return XXH32_finalize(h32, (const xxh_u8*)state->mem32, state->memsize, XXH_aligned); |
2275 | 82 | } |
2276 | | |
2277 | | |
2278 | | /******* Canonical representation *******/ |
2279 | | |
2280 | | /*! |
2281 | | * @ingroup xxh32_family |
2282 | | * The default return values from XXH functions are unsigned 32 and 64 bit |
2283 | | * integers. |
2284 | | * |
2285 | | * The canonical representation uses big endian convention, the same convention |
2286 | | * as human-readable numbers (large digits first). |
2287 | | * |
2288 | | * This way, hash values can be written into a file or buffer, remaining |
2289 | | * comparable across different systems. |
2290 | | * |
2291 | | * The following functions allow transformation of hash values to and from their |
2292 | | * canonical format. |
2293 | | */ |
2294 | | XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash) |
2295 | 82 | { |
2296 | 82 | XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t)); |
2297 | 82 | if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash); |
2298 | 82 | XXH_memcpy(dst, &hash, sizeof(*dst)); |
2299 | 82 | } |
2300 | | /*! @ingroup xxh32_family */ |
2301 | | XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src) |
2302 | 0 | { |
2303 | 0 | return XXH_readBE32(src); |
2304 | 0 | } |
2305 | | |
2306 | | |
2307 | | #ifndef XXH_NO_LONG_LONG |
2308 | | |
2309 | | /* ******************************************************************* |
2310 | | * 64-bit hash functions |
2311 | | *********************************************************************/ |
2312 | | /*! |
2313 | | * @} |
2314 | | * @ingroup impl |
2315 | | * @{ |
2316 | | */ |
2317 | | /******* Memory access *******/ |
2318 | | |
2319 | | typedef XXH64_hash_t xxh_u64; |
2320 | | |
2321 | | #ifdef XXH_OLD_NAMES |
2322 | | # define U64 xxh_u64 |
2323 | | #endif |
2324 | | |
2325 | | #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) |
2326 | | /* |
2327 | | * Manual byteshift. Best for old compilers which don't inline memcpy. |
2328 | | * We actually directly use XXH_readLE64 and XXH_readBE64. |
2329 | | */ |
2330 | | #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) |
2331 | | |
2332 | | /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */ |
2333 | | static xxh_u64 XXH_read64(const void* memPtr) |
2334 | | { |
2335 | | return *(const xxh_u64*) memPtr; |
2336 | | } |
2337 | | |
2338 | | #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) |
2339 | | |
2340 | | /* |
2341 | | * __pack instructions are safer, but compiler specific, hence potentially |
2342 | | * problematic for some compilers. |
2343 | | * |
2344 | | * Currently only defined for GCC and ICC. |
2345 | | */ |
2346 | | #ifdef XXH_OLD_NAMES |
2347 | | typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) unalign64; |
2348 | | #endif |
2349 | | static xxh_u64 XXH_read64(const void* ptr) |
2350 | | { |
2351 | | typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) xxh_unalign64; |
2352 | | return ((const xxh_unalign64*)ptr)->u64; |
2353 | | } |
2354 | | |
2355 | | #else |
2356 | | |
2357 | | /* |
2358 | | * Portable and safe solution. Generally efficient. |
2359 | | * see: http://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html |
2360 | | */ |
2361 | | static xxh_u64 XXH_read64(const void* memPtr) |
2362 | 8.09k | { |
2363 | 8.09k | xxh_u64 val; |
2364 | 8.09k | XXH_memcpy(&val, memPtr, sizeof(val)); |
2365 | 8.09k | return val; |
2366 | 8.09k | } |
2367 | | |
2368 | | #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ |
2369 | | |
2370 | | #if defined(_MSC_VER) /* Visual Studio */ |
2371 | | # define XXH_swap64 _byteswap_uint64 |
2372 | | #elif XXH_GCC_VERSION >= 403 |
2373 | | # define XXH_swap64 __builtin_bswap64 |
2374 | | #else |
2375 | | static xxh_u64 XXH_swap64(xxh_u64 x) |
2376 | 58 | { |
2377 | 58 | return ((x << 56) & 0xff00000000000000ULL) | |
2378 | 58 | ((x << 40) & 0x00ff000000000000ULL) | |
2379 | 58 | ((x << 24) & 0x0000ff0000000000ULL) | |
2380 | 58 | ((x << 8) & 0x000000ff00000000ULL) | |
2381 | 58 | ((x >> 8) & 0x00000000ff000000ULL) | |
2382 | 58 | ((x >> 24) & 0x0000000000ff0000ULL) | |
2383 | 58 | ((x >> 40) & 0x000000000000ff00ULL) | |
2384 | 58 | ((x >> 56) & 0x00000000000000ffULL); |
2385 | 58 | } |
2386 | | #endif |
2387 | | |
2388 | | |
2389 | | /* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. */ |
2390 | | #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) |
2391 | | |
2392 | | XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* memPtr) |
2393 | | { |
2394 | | const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; |
2395 | | return bytePtr[0] |
2396 | | | ((xxh_u64)bytePtr[1] << 8) |
2397 | | | ((xxh_u64)bytePtr[2] << 16) |
2398 | | | ((xxh_u64)bytePtr[3] << 24) |
2399 | | | ((xxh_u64)bytePtr[4] << 32) |
2400 | | | ((xxh_u64)bytePtr[5] << 40) |
2401 | | | ((xxh_u64)bytePtr[6] << 48) |
2402 | | | ((xxh_u64)bytePtr[7] << 56); |
2403 | | } |
2404 | | |
2405 | | XXH_FORCE_INLINE xxh_u64 XXH_readBE64(const void* memPtr) |
2406 | | { |
2407 | | const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; |
2408 | | return bytePtr[7] |
2409 | | | ((xxh_u64)bytePtr[6] << 8) |
2410 | | | ((xxh_u64)bytePtr[5] << 16) |
2411 | | | ((xxh_u64)bytePtr[4] << 24) |
2412 | | | ((xxh_u64)bytePtr[3] << 32) |
2413 | | | ((xxh_u64)bytePtr[2] << 40) |
2414 | | | ((xxh_u64)bytePtr[1] << 48) |
2415 | | | ((xxh_u64)bytePtr[0] << 56); |
2416 | | } |
2417 | | |
2418 | | #else |
2419 | | XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* ptr) |
2420 | 8.09k | { |
2421 | 8.09k | return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr)); |
2422 | 8.09k | } |
2423 | | |
2424 | | static xxh_u64 XXH_readBE64(const void* ptr) |
2425 | 0 | { |
2426 | 0 | return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr); |
2427 | 0 | } |
2428 | | #endif |
2429 | | |
2430 | | XXH_FORCE_INLINE xxh_u64 |
2431 | | XXH_readLE64_align(const void* ptr, XXH_alignment align) |
2432 | 79 | { |
2433 | 79 | if (align==XXH_unaligned) |
2434 | 0 | return XXH_readLE64(ptr); |
2435 | 79 | else |
2436 | 79 | return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u64*)ptr : XXH_swap64(*(const xxh_u64*)ptr); |
2437 | 79 | } |
2438 | | |
2439 | | |
2440 | | /******* xxh64 *******/ |
2441 | | /*! |
2442 | | * @} |
2443 | | * @defgroup xxh64_impl XXH64 implementation |
2444 | | * @ingroup impl |
2445 | | * @{ |
2446 | | */ |
2447 | | /* #define rather that static const, to be used as initializers */ |
2448 | 8.95k | #define XXH_PRIME64_1 0x9E3779B185EBCA87ULL /*!< 0b1001111000110111011110011011000110000101111010111100101010000111 */ |
2449 | 8.63k | #define XXH_PRIME64_2 0xC2B2AE3D27D4EB4FULL /*!< 0b1100001010110010101011100011110100100111110101001110101101001111 */ |
2450 | 94 | #define XXH_PRIME64_3 0x165667B19E3779F9ULL /*!< 0b0001011001010110011001111011000110011110001101110111100111111001 */ |
2451 | 307 | #define XXH_PRIME64_4 0x85EBCA77C2B2AE63ULL /*!< 0b1000010111101011110010100111011111000010101100101010111001100011 */ |
2452 | 78 | #define XXH_PRIME64_5 0x27D4EB2F165667C5ULL /*!< 0b0010011111010100111010110010111100010110010101100110011111000101 */ |
2453 | | |
2454 | | #ifdef XXH_OLD_NAMES |
2455 | | # define PRIME64_1 XXH_PRIME64_1 |
2456 | | # define PRIME64_2 XXH_PRIME64_2 |
2457 | | # define PRIME64_3 XXH_PRIME64_3 |
2458 | | # define PRIME64_4 XXH_PRIME64_4 |
2459 | | # define PRIME64_5 XXH_PRIME64_5 |
2460 | | #endif |
2461 | | |
2462 | | static xxh_u64 XXH64_round(xxh_u64 acc, xxh_u64 input) |
2463 | 8.39k | { |
2464 | 8.39k | acc += input * XXH_PRIME64_2; |
2465 | 8.39k | acc = XXH_rotl64(acc, 31); |
2466 | 8.39k | acc *= XXH_PRIME64_1; |
2467 | 8.39k | return acc; |
2468 | 8.39k | } |
2469 | | |
2470 | | static xxh_u64 XXH64_mergeRound(xxh_u64 acc, xxh_u64 val) |
2471 | 228 | { |
2472 | 228 | val = XXH64_round(0, val); |
2473 | 228 | acc ^= val; |
2474 | 228 | acc = acc * XXH_PRIME64_1 + XXH_PRIME64_4; |
2475 | 228 | return acc; |
2476 | 228 | } |
2477 | | |
2478 | | static xxh_u64 XXH64_avalanche(xxh_u64 h64) |
2479 | 58 | { |
2480 | 58 | h64 ^= h64 >> 33; |
2481 | 58 | h64 *= XXH_PRIME64_2; |
2482 | 58 | h64 ^= h64 >> 29; |
2483 | 58 | h64 *= XXH_PRIME64_3; |
2484 | 58 | h64 ^= h64 >> 32; |
2485 | 58 | return h64; |
2486 | 58 | } |
2487 | | |
2488 | | |
2489 | 79 | #define XXH_get64bits(p) XXH_readLE64_align(p, align) |
2490 | | |
2491 | | static xxh_u64 |
2492 | | XXH64_finalize(xxh_u64 h64, const xxh_u8* ptr, size_t len, XXH_alignment align) |
2493 | 58 | { |
2494 | 58 | if (ptr==NULL) XXH_ASSERT(len == 0); |
2495 | 58 | len &= 31; |
2496 | 137 | while (len >= 8) { |
2497 | 79 | xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr)); |
2498 | 79 | ptr += 8; |
2499 | 79 | h64 ^= k1; |
2500 | 79 | h64 = XXH_rotl64(h64,27) * XXH_PRIME64_1 + XXH_PRIME64_4; |
2501 | 79 | len -= 8; |
2502 | 79 | } |
2503 | 58 | if (len >= 4) { |
2504 | 36 | h64 ^= (xxh_u64)(XXH_get32bits(ptr)) * XXH_PRIME64_1; |
2505 | 36 | ptr += 4; |
2506 | 36 | h64 = XXH_rotl64(h64, 23) * XXH_PRIME64_2 + XXH_PRIME64_3; |
2507 | 36 | len -= 4; |
2508 | 36 | } |
2509 | 135 | while (len > 0) { |
2510 | 77 | h64 ^= (*ptr++) * XXH_PRIME64_5; |
2511 | 77 | h64 = XXH_rotl64(h64, 11) * XXH_PRIME64_1; |
2512 | 77 | --len; |
2513 | 77 | } |
2514 | 58 | return XXH64_avalanche(h64); |
2515 | 58 | } |
2516 | | |
2517 | | #ifdef XXH_OLD_NAMES |
2518 | | # define PROCESS1_64 XXH_PROCESS1_64 |
2519 | | # define PROCESS4_64 XXH_PROCESS4_64 |
2520 | | # define PROCESS8_64 XXH_PROCESS8_64 |
2521 | | #else |
2522 | | # undef XXH_PROCESS1_64 |
2523 | | # undef XXH_PROCESS4_64 |
2524 | | # undef XXH_PROCESS8_64 |
2525 | | #endif |
2526 | | |
2527 | | XXH_FORCE_INLINE xxh_u64 |
2528 | | XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment align) |
2529 | 0 | { |
2530 | 0 | xxh_u64 h64; |
2531 | 0 | if (input==NULL) XXH_ASSERT(len == 0); |
2532 | 0 |
|
2533 | 0 | if (len>=32) { |
2534 | 0 | const xxh_u8* const bEnd = input + len; |
2535 | 0 | const xxh_u8* const limit = bEnd - 31; |
2536 | 0 | xxh_u64 v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2; |
2537 | 0 | xxh_u64 v2 = seed + XXH_PRIME64_2; |
2538 | 0 | xxh_u64 v3 = seed + 0; |
2539 | 0 | xxh_u64 v4 = seed - XXH_PRIME64_1; |
2540 | 0 |
|
2541 | 0 | do { |
2542 | 0 | v1 = XXH64_round(v1, XXH_get64bits(input)); input+=8; |
2543 | 0 | v2 = XXH64_round(v2, XXH_get64bits(input)); input+=8; |
2544 | 0 | v3 = XXH64_round(v3, XXH_get64bits(input)); input+=8; |
2545 | 0 | v4 = XXH64_round(v4, XXH_get64bits(input)); input+=8; |
2546 | 0 | } while (input<limit); |
2547 | 0 |
|
2548 | 0 | h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); |
2549 | 0 | h64 = XXH64_mergeRound(h64, v1); |
2550 | 0 | h64 = XXH64_mergeRound(h64, v2); |
2551 | 0 | h64 = XXH64_mergeRound(h64, v3); |
2552 | 0 | h64 = XXH64_mergeRound(h64, v4); |
2553 | 0 |
|
2554 | 0 | } else { |
2555 | 0 | h64 = seed + XXH_PRIME64_5; |
2556 | 0 | } |
2557 | 0 |
|
2558 | 0 | h64 += (xxh_u64) len; |
2559 | 0 |
|
2560 | 0 | return XXH64_finalize(h64, input, len, align); |
2561 | 0 | } |
2562 | | |
2563 | | |
2564 | | /*! @ingroup xxh64_family */ |
2565 | | XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t len, XXH64_hash_t seed) |
2566 | 0 | { |
2567 | 0 | #if 0 |
2568 | 0 | /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ |
2569 | 0 | XXH64_state_t state; |
2570 | 0 | XXH64_reset(&state, seed); |
2571 | 0 | XXH64_update(&state, (const xxh_u8*)input, len); |
2572 | 0 | return XXH64_digest(&state); |
2573 | 0 | #else |
2574 | 0 | if (XXH_FORCE_ALIGN_CHECK) { |
2575 | 0 | if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */ |
2576 | 0 | return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_aligned); |
2577 | 0 | } } |
2578 | 0 |
|
2579 | 0 | return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned); |
2580 | 0 |
|
2581 | 0 | #endif |
2582 | 0 | } |
2583 | | |
2584 | | /******* Hash Streaming *******/ |
2585 | | |
2586 | | /*! @ingroup xxh64_family*/ |
2587 | | XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void) |
2588 | 0 | { |
2589 | 0 | return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t)); |
2590 | 0 | } |
2591 | | /*! @ingroup xxh64_family */ |
2592 | | XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr) |
2593 | 0 | { |
2594 | 0 | XXH_free(statePtr); |
2595 | 0 | return XXH_OK; |
2596 | 0 | } |
2597 | | |
2598 | | /*! @ingroup xxh64_family */ |
2599 | | XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState) |
2600 | 0 | { |
2601 | 0 | XXH_memcpy(dstState, srcState, sizeof(*dstState)); |
2602 | 0 | } |
2603 | | |
2604 | | /*! @ingroup xxh64_family */ |
2605 | | XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, XXH64_hash_t seed) |
2606 | 70 | { |
2607 | 70 | XXH64_state_t state; /* use a local state to memcpy() in order to avoid strict-aliasing warnings */ |
2608 | 70 | memset(&state, 0, sizeof(state)); |
2609 | 70 | state.v[0] = seed + XXH_PRIME64_1 + XXH_PRIME64_2; |
2610 | 70 | state.v[1] = seed + XXH_PRIME64_2; |
2611 | 70 | state.v[2] = seed + 0; |
2612 | 70 | state.v[3] = seed - XXH_PRIME64_1; |
2613 | | /* do not write into reserved64, might be removed in a future version */ |
2614 | 70 | XXH_memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved64)); |
2615 | 70 | return XXH_OK; |
2616 | 70 | } |
2617 | | |
2618 | | /*! @ingroup xxh64_family */ |
2619 | | XXH_PUBLIC_API XXH_errorcode |
2620 | | XXH64_update (XXH64_state_t* state, const void* input, size_t len) |
2621 | 58 | { |
2622 | 58 | if (input==NULL) { |
2623 | 0 | XXH_ASSERT(len == 0); |
2624 | 0 | return XXH_OK; |
2625 | 0 | } |
2626 | | |
2627 | 58 | { const xxh_u8* p = (const xxh_u8*)input; |
2628 | 58 | const xxh_u8* const bEnd = p + len; |
2629 | | |
2630 | 58 | state->total_len += len; |
2631 | | |
2632 | 58 | if (state->memsize + len < 32) { /* fill in tmp buffer */ |
2633 | 17 | XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, len); |
2634 | 17 | state->memsize += (xxh_u32)len; |
2635 | 17 | return XXH_OK; |
2636 | 17 | } |
2637 | | |
2638 | 41 | if (state->memsize) { /* tmp buffer is full */ |
2639 | 15 | XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, 32-state->memsize); |
2640 | 15 | state->v[0] = XXH64_round(state->v[0], XXH_readLE64(state->mem64+0)); |
2641 | 15 | state->v[1] = XXH64_round(state->v[1], XXH_readLE64(state->mem64+1)); |
2642 | 15 | state->v[2] = XXH64_round(state->v[2], XXH_readLE64(state->mem64+2)); |
2643 | 15 | state->v[3] = XXH64_round(state->v[3], XXH_readLE64(state->mem64+3)); |
2644 | 15 | p += 32 - state->memsize; |
2645 | 15 | state->memsize = 0; |
2646 | 15 | } |
2647 | | |
2648 | 41 | if (p+32 <= bEnd) { |
2649 | 33 | const xxh_u8* const limit = bEnd - 32; |
2650 | | |
2651 | 2.00k | do { |
2652 | 2.00k | state->v[0] = XXH64_round(state->v[0], XXH_readLE64(p)); p+=8; |
2653 | 2.00k | state->v[1] = XXH64_round(state->v[1], XXH_readLE64(p)); p+=8; |
2654 | 2.00k | state->v[2] = XXH64_round(state->v[2], XXH_readLE64(p)); p+=8; |
2655 | 2.00k | state->v[3] = XXH64_round(state->v[3], XXH_readLE64(p)); p+=8; |
2656 | 2.00k | } while (p<=limit); |
2657 | | |
2658 | 33 | } |
2659 | | |
2660 | 41 | if (p < bEnd) { |
2661 | 31 | XXH_memcpy(state->mem64, p, (size_t)(bEnd-p)); |
2662 | 31 | state->memsize = (unsigned)(bEnd-p); |
2663 | 31 | } |
2664 | 41 | } |
2665 | | |
2666 | 41 | return XXH_OK; |
2667 | 58 | } |
2668 | | |
2669 | | |
2670 | | /*! @ingroup xxh64_family */ |
2671 | | XXH_PUBLIC_API XXH64_hash_t XXH64_digest(const XXH64_state_t* state) |
2672 | 58 | { |
2673 | 58 | xxh_u64 h64; |
2674 | | |
2675 | 58 | if (state->total_len >= 32) { |
2676 | 57 | h64 = XXH_rotl64(state->v[0], 1) + XXH_rotl64(state->v[1], 7) + XXH_rotl64(state->v[2], 12) + XXH_rotl64(state->v[3], 18); |
2677 | 57 | h64 = XXH64_mergeRound(h64, state->v[0]); |
2678 | 57 | h64 = XXH64_mergeRound(h64, state->v[1]); |
2679 | 57 | h64 = XXH64_mergeRound(h64, state->v[2]); |
2680 | 57 | h64 = XXH64_mergeRound(h64, state->v[3]); |
2681 | 57 | } else { |
2682 | 1 | h64 = state->v[2] /*seed*/ + XXH_PRIME64_5; |
2683 | 1 | } |
2684 | | |
2685 | 58 | h64 += (xxh_u64) state->total_len; |
2686 | | |
2687 | 58 | return XXH64_finalize(h64, (const xxh_u8*)state->mem64, (size_t)state->total_len, XXH_aligned); |
2688 | 58 | } |
2689 | | |
2690 | | |
2691 | | /******* Canonical representation *******/ |
2692 | | |
2693 | | /*! @ingroup xxh64_family */ |
2694 | | XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash) |
2695 | 58 | { |
2696 | 58 | XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t)); |
2697 | 58 | if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash); |
2698 | 58 | XXH_memcpy(dst, &hash, sizeof(*dst)); |
2699 | 58 | } |
2700 | | |
2701 | | /*! @ingroup xxh64_family */ |
2702 | | XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src) |
2703 | 0 | { |
2704 | 0 | return XXH_readBE64(src); |
2705 | 0 | } |
2706 | | |
2707 | | #ifndef XXH_NO_XXH3 |
2708 | | |
2709 | | /* ********************************************************************* |
2710 | | * XXH3 |
2711 | | * New generation hash designed for speed on small keys and vectorization |
2712 | | ************************************************************************ */ |
2713 | | /*! |
2714 | | * @} |
2715 | | * @defgroup xxh3_impl XXH3 implementation |
2716 | | * @ingroup impl |
2717 | | * @{ |
2718 | | */ |
2719 | | |
2720 | | /* === Compiler specifics === */ |
2721 | | |
2722 | | #if ((defined(sun) || defined(__sun)) && __cplusplus) /* Solaris includes __STDC_VERSION__ with C++. Tested with GCC 5.5 */ |
2723 | | # define XXH_RESTRICT /* disable */ |
2724 | | #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* >= C99 */ |
2725 | | # define XXH_RESTRICT restrict |
2726 | | #else |
2727 | | /* Note: it might be useful to define __restrict or __restrict__ for some C++ compilers */ |
2728 | | # define XXH_RESTRICT /* disable */ |
2729 | | #endif |
2730 | | |
2731 | | #if (defined(__GNUC__) && (__GNUC__ >= 3)) \ |
2732 | | || (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) \ |
2733 | | || defined(__clang__) |
2734 | 0 | # define XXH_likely(x) __builtin_expect(x, 1) |
2735 | | # define XXH_unlikely(x) __builtin_expect(x, 0) |
2736 | | #else |
2737 | | # define XXH_likely(x) (x) |
2738 | | # define XXH_unlikely(x) (x) |
2739 | | #endif |
2740 | | |
2741 | | #if defined(__GNUC__) |
2742 | | # if defined(__AVX2__) |
2743 | | # include <immintrin.h> |
2744 | | # elif defined(__SSE2__) |
2745 | | # include <emmintrin.h> |
2746 | | # elif defined(__ARM_NEON__) || defined(__ARM_NEON) |
2747 | | # define inline __inline__ /* circumvent a clang bug */ |
2748 | | # include <arm_neon.h> |
2749 | | # undef inline |
2750 | | # endif |
2751 | | #elif defined(_MSC_VER) |
2752 | | # include <intrin.h> |
2753 | | #endif |
2754 | | |
2755 | | /* |
2756 | | * One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while |
2757 | | * remaining a true 64-bit/128-bit hash function. |
2758 | | * |
2759 | | * This is done by prioritizing a subset of 64-bit operations that can be |
2760 | | * emulated without too many steps on the average 32-bit machine. |
2761 | | * |
2762 | | * For example, these two lines seem similar, and run equally fast on 64-bit: |
2763 | | * |
2764 | | * xxh_u64 x; |
2765 | | * x ^= (x >> 47); // good |
2766 | | * x ^= (x >> 13); // bad |
2767 | | * |
2768 | | * However, to a 32-bit machine, there is a major difference. |
2769 | | * |
2770 | | * x ^= (x >> 47) looks like this: |
2771 | | * |
2772 | | * x.lo ^= (x.hi >> (47 - 32)); |
2773 | | * |
2774 | | * while x ^= (x >> 13) looks like this: |
2775 | | * |
2776 | | * // note: funnel shifts are not usually cheap. |
2777 | | * x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13)); |
2778 | | * x.hi ^= (x.hi >> 13); |
2779 | | * |
2780 | | * The first one is significantly faster than the second, simply because the |
2781 | | * shift is larger than 32. This means: |
2782 | | * - All the bits we need are in the upper 32 bits, so we can ignore the lower |
2783 | | * 32 bits in the shift. |
2784 | | * - The shift result will always fit in the lower 32 bits, and therefore, |
2785 | | * we can ignore the upper 32 bits in the xor. |
2786 | | * |
2787 | | * Thanks to this optimization, XXH3 only requires these features to be efficient: |
2788 | | * |
2789 | | * - Usable unaligned access |
2790 | | * - A 32-bit or 64-bit ALU |
2791 | | * - If 32-bit, a decent ADC instruction |
2792 | | * - A 32 or 64-bit multiply with a 64-bit result |
2793 | | * - For the 128-bit variant, a decent byteswap helps short inputs. |
2794 | | * |
2795 | | * The first two are already required by XXH32, and almost all 32-bit and 64-bit |
2796 | | * platforms which can run XXH32 can run XXH3 efficiently. |
2797 | | * |
2798 | | * Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one |
2799 | | * notable exception. |
2800 | | * |
2801 | | * First of all, Thumb-1 lacks support for the UMULL instruction which |
2802 | | * performs the important long multiply. This means numerous __aeabi_lmul |
2803 | | * calls. |
2804 | | * |
2805 | | * Second of all, the 8 functional registers are just not enough. |
2806 | | * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need |
2807 | | * Lo registers, and this shuffling results in thousands more MOVs than A32. |
2808 | | * |
2809 | | * A32 and T32 don't have this limitation. They can access all 14 registers, |
2810 | | * do a 32->64 multiply with UMULL, and the flexible operand allowing free |
2811 | | * shifts is helpful, too. |
2812 | | * |
2813 | | * Therefore, we do a quick sanity check. |
2814 | | * |
2815 | | * If compiling Thumb-1 for a target which supports ARM instructions, we will |
2816 | | * emit a warning, as it is not a "sane" platform to compile for. |
2817 | | * |
2818 | | * Usually, if this happens, it is because of an accident and you probably need |
2819 | | * to specify -march, as you likely meant to compile for a newer architecture. |
2820 | | * |
2821 | | * Credit: large sections of the vectorial and asm source code paths |
2822 | | * have been contributed by @easyaspi314 |
2823 | | */ |
2824 | | #if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM) |
2825 | | # warning "XXH3 is highly inefficient without ARM or Thumb-2." |
2826 | | #endif |
2827 | | |
2828 | | /* ========================================== |
2829 | | * Vectorization detection |
2830 | | * ========================================== */ |
2831 | | |
2832 | | #ifdef XXH_DOXYGEN |
2833 | | /*! |
2834 | | * @ingroup tuning |
2835 | | * @brief Overrides the vectorization implementation chosen for XXH3. |
2836 | | * |
2837 | | * Can be defined to 0 to disable SIMD or any of the values mentioned in |
2838 | | * @ref XXH_VECTOR_TYPE. |
2839 | | * |
2840 | | * If this is not defined, it uses predefined macros to determine the best |
2841 | | * implementation. |
2842 | | */ |
2843 | | # define XXH_VECTOR XXH_SCALAR |
2844 | | /*! |
2845 | | * @ingroup tuning |
2846 | | * @brief Possible values for @ref XXH_VECTOR. |
2847 | | * |
2848 | | * Note that these are actually implemented as macros. |
2849 | | * |
2850 | | * If this is not defined, it is detected automatically. |
2851 | | * @ref XXH_X86DISPATCH overrides this. |
2852 | | */ |
2853 | | enum XXH_VECTOR_TYPE /* fake enum */ { |
2854 | | XXH_SCALAR = 0, /*!< Portable scalar version */ |
2855 | | XXH_SSE2 = 1, /*!< |
2856 | | * SSE2 for Pentium 4, Opteron, all x86_64. |
2857 | | * |
2858 | | * @note SSE2 is also guaranteed on Windows 10, macOS, and |
2859 | | * Android x86. |
2860 | | */ |
2861 | | XXH_AVX2 = 2, /*!< AVX2 for Haswell and Bulldozer */ |
2862 | | XXH_AVX512 = 3, /*!< AVX512 for Skylake and Icelake */ |
2863 | | XXH_NEON = 4, /*!< NEON for most ARMv7-A and all AArch64 */ |
2864 | | XXH_VSX = 5, /*!< VSX and ZVector for POWER8/z13 (64-bit) */ |
2865 | | }; |
2866 | | /*! |
2867 | | * @ingroup tuning |
2868 | | * @brief Selects the minimum alignment for XXH3's accumulators. |
2869 | | * |
2870 | | * When using SIMD, this should match the alignment reqired for said vector |
2871 | | * type, so, for example, 32 for AVX2. |
2872 | | * |
2873 | | * Default: Auto detected. |
2874 | | */ |
2875 | | # define XXH_ACC_ALIGN 8 |
2876 | | #endif |
2877 | | |
2878 | | /* Actual definition */ |
2879 | | #ifndef XXH_DOXYGEN |
2880 | | # define XXH_SCALAR 0 |
2881 | | # define XXH_SSE2 1 |
2882 | | # define XXH_AVX2 2 |
2883 | | # define XXH_AVX512 3 |
2884 | | # define XXH_NEON 4 |
2885 | | # define XXH_VSX 5 |
2886 | | #endif |
2887 | | |
2888 | | #ifndef XXH_VECTOR /* can be defined on command line */ |
2889 | | # if defined(__AVX512F__) |
2890 | | # define XXH_VECTOR XXH_AVX512 |
2891 | | # elif defined(__AVX2__) |
2892 | | # define XXH_VECTOR XXH_AVX2 |
2893 | | # elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2)) |
2894 | | # define XXH_VECTOR XXH_SSE2 |
2895 | | # elif ( \ |
2896 | | defined(__ARM_NEON__) || defined(__ARM_NEON) /* gcc */ \ |
2897 | | || defined(_M_ARM64) || defined(_M_ARM_ARMV7VE) /* msvc */ \ |
2898 | | ) && ( \ |
2899 | | defined(_WIN32) || defined(__LITTLE_ENDIAN__) /* little endian only */ \ |
2900 | | || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \ |
2901 | | ) |
2902 | | # define XXH_VECTOR XXH_NEON |
2903 | | # elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) \ |
2904 | | || (defined(__s390x__) && defined(__VEC__)) \ |
2905 | | && defined(__GNUC__) /* TODO: IBM XL */ |
2906 | | # define XXH_VECTOR XXH_VSX |
2907 | | # else |
2908 | | # define XXH_VECTOR XXH_SCALAR |
2909 | | # endif |
2910 | | #endif |
2911 | | |
2912 | | /* |
2913 | | * Controls the alignment of the accumulator, |
2914 | | * for compatibility with aligned vector loads, which are usually faster. |
2915 | | */ |
2916 | | #ifndef XXH_ACC_ALIGN |
2917 | | # if defined(XXH_X86DISPATCH) |
2918 | | # define XXH_ACC_ALIGN 64 /* for compatibility with avx512 */ |
2919 | | # elif XXH_VECTOR == XXH_SCALAR /* scalar */ |
2920 | | # define XXH_ACC_ALIGN 8 |
2921 | | # elif XXH_VECTOR == XXH_SSE2 /* sse2 */ |
2922 | | # define XXH_ACC_ALIGN 16 |
2923 | | # elif XXH_VECTOR == XXH_AVX2 /* avx2 */ |
2924 | | # define XXH_ACC_ALIGN 32 |
2925 | | # elif XXH_VECTOR == XXH_NEON /* neon */ |
2926 | | # define XXH_ACC_ALIGN 16 |
2927 | | # elif XXH_VECTOR == XXH_VSX /* vsx */ |
2928 | | # define XXH_ACC_ALIGN 16 |
2929 | | # elif XXH_VECTOR == XXH_AVX512 /* avx512 */ |
2930 | | # define XXH_ACC_ALIGN 64 |
2931 | | # endif |
2932 | | #endif |
2933 | | |
2934 | | #if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 \ |
2935 | | || XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512 |
2936 | | # define XXH_SEC_ALIGN XXH_ACC_ALIGN |
2937 | | #else |
2938 | | # define XXH_SEC_ALIGN 8 |
2939 | | #endif |
2940 | | |
2941 | | /* |
2942 | | * UGLY HACK: |
2943 | | * GCC usually generates the best code with -O3 for xxHash. |
2944 | | * |
2945 | | * However, when targeting AVX2, it is overzealous in its unrolling resulting |
2946 | | * in code roughly 3/4 the speed of Clang. |
2947 | | * |
2948 | | * There are other issues, such as GCC splitting _mm256_loadu_si256 into |
2949 | | * _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which |
2950 | | * only applies to Sandy and Ivy Bridge... which don't even support AVX2. |
2951 | | * |
2952 | | * That is why when compiling the AVX2 version, it is recommended to use either |
2953 | | * -O2 -mavx2 -march=haswell |
2954 | | * or |
2955 | | * -O2 -mavx2 -mno-avx256-split-unaligned-load |
2956 | | * for decent performance, or to use Clang instead. |
2957 | | * |
2958 | | * Fortunately, we can control the first one with a pragma that forces GCC into |
2959 | | * -O2, but the other one we can't control without "failed to inline always |
2960 | | * inline function due to target mismatch" warnings. |
2961 | | */ |
2962 | | #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \ |
2963 | | && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ |
2964 | | && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */ |
2965 | | # pragma GCC push_options |
2966 | | # pragma GCC optimize("-O2") |
2967 | | #endif |
2968 | | |
2969 | | |
2970 | | #if XXH_VECTOR == XXH_NEON |
2971 | | /* |
2972 | | * NEON's setup for vmlal_u32 is a little more complicated than it is on |
2973 | | * SSE2, AVX2, and VSX. |
2974 | | * |
2975 | | * While PMULUDQ and VMULEUW both perform a mask, VMLAL.U32 performs an upcast. |
2976 | | * |
2977 | | * To do the same operation, the 128-bit 'Q' register needs to be split into |
2978 | | * two 64-bit 'D' registers, performing this operation:: |
2979 | | * |
2980 | | * [ a | b ] |
2981 | | * | '---------. .--------' | |
2982 | | * | x | |
2983 | | * | .---------' '--------. | |
2984 | | * [ a & 0xFFFFFFFF | b & 0xFFFFFFFF ],[ a >> 32 | b >> 32 ] |
2985 | | * |
2986 | | * Due to significant changes in aarch64, the fastest method for aarch64 is |
2987 | | * completely different than the fastest method for ARMv7-A. |
2988 | | * |
2989 | | * ARMv7-A treats D registers as unions overlaying Q registers, so modifying |
2990 | | * D11 will modify the high half of Q5. This is similar to how modifying AH |
2991 | | * will only affect bits 8-15 of AX on x86. |
2992 | | * |
2993 | | * VZIP takes two registers, and puts even lanes in one register and odd lanes |
2994 | | * in the other. |
2995 | | * |
2996 | | * On ARMv7-A, this strangely modifies both parameters in place instead of |
2997 | | * taking the usual 3-operand form. |
2998 | | * |
2999 | | * Therefore, if we want to do this, we can simply use a D-form VZIP.32 on the |
3000 | | * lower and upper halves of the Q register to end up with the high and low |
3001 | | * halves where we want - all in one instruction. |
3002 | | * |
3003 | | * vzip.32 d10, d11 @ d10 = { d10[0], d11[0] }; d11 = { d10[1], d11[1] } |
3004 | | * |
3005 | | * Unfortunately we need inline assembly for this: Instructions modifying two |
3006 | | * registers at once is not possible in GCC or Clang's IR, and they have to |
3007 | | * create a copy. |
3008 | | * |
3009 | | * aarch64 requires a different approach. |
3010 | | * |
3011 | | * In order to make it easier to write a decent compiler for aarch64, many |
3012 | | * quirks were removed, such as conditional execution. |
3013 | | * |
3014 | | * NEON was also affected by this. |
3015 | | * |
3016 | | * aarch64 cannot access the high bits of a Q-form register, and writes to a |
3017 | | * D-form register zero the high bits, similar to how writes to W-form scalar |
3018 | | * registers (or DWORD registers on x86_64) work. |
3019 | | * |
3020 | | * The formerly free vget_high intrinsics now require a vext (with a few |
3021 | | * exceptions) |
3022 | | * |
3023 | | * Additionally, VZIP was replaced by ZIP1 and ZIP2, which are the equivalent |
3024 | | * of PUNPCKL* and PUNPCKH* in SSE, respectively, in order to only modify one |
3025 | | * operand. |
3026 | | * |
3027 | | * The equivalent of the VZIP.32 on the lower and upper halves would be this |
3028 | | * mess: |
3029 | | * |
3030 | | * ext v2.4s, v0.4s, v0.4s, #2 // v2 = { v0[2], v0[3], v0[0], v0[1] } |
3031 | | * zip1 v1.2s, v0.2s, v2.2s // v1 = { v0[0], v2[0] } |
3032 | | * zip2 v0.2s, v0.2s, v1.2s // v0 = { v0[1], v2[1] } |
3033 | | * |
3034 | | * Instead, we use a literal downcast, vmovn_u64 (XTN), and vshrn_n_u64 (SHRN): |
3035 | | * |
3036 | | * shrn v1.2s, v0.2d, #32 // v1 = (uint32x2_t)(v0 >> 32); |
3037 | | * xtn v0.2s, v0.2d // v0 = (uint32x2_t)(v0 & 0xFFFFFFFF); |
3038 | | * |
3039 | | * This is available on ARMv7-A, but is less efficient than a single VZIP.32. |
3040 | | */ |
3041 | | |
3042 | | /*! |
3043 | | * Function-like macro: |
3044 | | * void XXH_SPLIT_IN_PLACE(uint64x2_t &in, uint32x2_t &outLo, uint32x2_t &outHi) |
3045 | | * { |
3046 | | * outLo = (uint32x2_t)(in & 0xFFFFFFFF); |
3047 | | * outHi = (uint32x2_t)(in >> 32); |
3048 | | * in = UNDEFINED; |
3049 | | * } |
3050 | | */ |
3051 | | # if !defined(XXH_NO_VZIP_HACK) /* define to disable */ \ |
3052 | | && defined(__GNUC__) \ |
3053 | | && !defined(__aarch64__) && !defined(__arm64__) && !defined(_M_ARM64) |
3054 | | # define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \ |
3055 | | do { \ |
3056 | | /* Undocumented GCC/Clang operand modifier: %e0 = lower D half, %f0 = upper D half */ \ |
3057 | | /* https://github.com/gcc-mirror/gcc/blob/38cf91e5/gcc/config/arm/arm.c#L22486 */ \ |
3058 | | /* https://github.com/llvm-mirror/llvm/blob/2c4ca683/lib/Target/ARM/ARMAsmPrinter.cpp#L399 */ \ |
3059 | | __asm__("vzip.32 %e0, %f0" : "+w" (in)); \ |
3060 | | (outLo) = vget_low_u32 (vreinterpretq_u32_u64(in)); \ |
3061 | | (outHi) = vget_high_u32(vreinterpretq_u32_u64(in)); \ |
3062 | | } while (0) |
3063 | | # else |
3064 | | # define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \ |
3065 | | do { \ |
3066 | | (outLo) = vmovn_u64 (in); \ |
3067 | | (outHi) = vshrn_n_u64 ((in), 32); \ |
3068 | | } while (0) |
3069 | | # endif |
3070 | | #endif /* XXH_VECTOR == XXH_NEON */ |
3071 | | |
3072 | | /* |
3073 | | * VSX and Z Vector helpers. |
3074 | | * |
3075 | | * This is very messy, and any pull requests to clean this up are welcome. |
3076 | | * |
3077 | | * There are a lot of problems with supporting VSX and s390x, due to |
3078 | | * inconsistent intrinsics, spotty coverage, and multiple endiannesses. |
3079 | | */ |
3080 | | #if XXH_VECTOR == XXH_VSX |
3081 | | # if defined(__s390x__) |
3082 | | # include <s390intrin.h> |
3083 | | # else |
3084 | | /* gcc's altivec.h can have the unwanted consequence to unconditionally |
3085 | | * #define bool, vector, and pixel keywords, |
3086 | | * with bad consequences for programs already using these keywords for other purposes. |
3087 | | * The paragraph defining these macros is skipped when __APPLE_ALTIVEC__ is defined. |
3088 | | * __APPLE_ALTIVEC__ is _generally_ defined automatically by the compiler, |
3089 | | * but it seems that, in some cases, it isn't. |
3090 | | * Force the build macro to be defined, so that keywords are not altered. |
3091 | | */ |
3092 | | # if defined(__GNUC__) && !defined(__APPLE_ALTIVEC__) |
3093 | | # define __APPLE_ALTIVEC__ |
3094 | | # endif |
3095 | | # include <altivec.h> |
3096 | | # endif |
3097 | | |
3098 | | typedef __vector unsigned long long xxh_u64x2; |
3099 | | typedef __vector unsigned char xxh_u8x16; |
3100 | | typedef __vector unsigned xxh_u32x4; |
3101 | | |
3102 | | # ifndef XXH_VSX_BE |
3103 | | # if defined(__BIG_ENDIAN__) \ |
3104 | | || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) |
3105 | | # define XXH_VSX_BE 1 |
3106 | | # elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__ |
3107 | | # warning "-maltivec=be is not recommended. Please use native endianness." |
3108 | | # define XXH_VSX_BE 1 |
3109 | | # else |
3110 | | # define XXH_VSX_BE 0 |
3111 | | # endif |
3112 | | # endif /* !defined(XXH_VSX_BE) */ |
3113 | | |
3114 | | # if XXH_VSX_BE |
3115 | | # if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__)) |
3116 | | # define XXH_vec_revb vec_revb |
3117 | | # else |
3118 | | /*! |
3119 | | * A polyfill for POWER9's vec_revb(). |
3120 | | */ |
3121 | | XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val) |
3122 | | { |
3123 | | xxh_u8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, |
3124 | | 0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 }; |
3125 | | return vec_perm(val, val, vByteSwap); |
3126 | | } |
3127 | | # endif |
3128 | | # endif /* XXH_VSX_BE */ |
3129 | | |
3130 | | /*! |
3131 | | * Performs an unaligned vector load and byte swaps it on big endian. |
3132 | | */ |
3133 | | XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr) |
3134 | | { |
3135 | | xxh_u64x2 ret; |
3136 | | XXH_memcpy(&ret, ptr, sizeof(xxh_u64x2)); |
3137 | | # if XXH_VSX_BE |
3138 | | ret = XXH_vec_revb(ret); |
3139 | | # endif |
3140 | | return ret; |
3141 | | } |
3142 | | |
3143 | | /* |
3144 | | * vec_mulo and vec_mule are very problematic intrinsics on PowerPC |
3145 | | * |
3146 | | * These intrinsics weren't added until GCC 8, despite existing for a while, |
3147 | | * and they are endian dependent. Also, their meaning swap depending on version. |
3148 | | * */ |
3149 | | # if defined(__s390x__) |
3150 | | /* s390x is always big endian, no issue on this platform */ |
3151 | | # define XXH_vec_mulo vec_mulo |
3152 | | # define XXH_vec_mule vec_mule |
3153 | | # elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw) |
3154 | | /* Clang has a better way to control this, we can just use the builtin which doesn't swap. */ |
3155 | | # define XXH_vec_mulo __builtin_altivec_vmulouw |
3156 | | # define XXH_vec_mule __builtin_altivec_vmuleuw |
3157 | | # else |
3158 | | /* gcc needs inline assembly */ |
3159 | | /* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */ |
3160 | | XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b) |
3161 | | { |
3162 | | xxh_u64x2 result; |
3163 | | __asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b)); |
3164 | | return result; |
3165 | | } |
3166 | | XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b) |
3167 | | { |
3168 | | xxh_u64x2 result; |
3169 | | __asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b)); |
3170 | | return result; |
3171 | | } |
3172 | | # endif /* XXH_vec_mulo, XXH_vec_mule */ |
3173 | | #endif /* XXH_VECTOR == XXH_VSX */ |
3174 | | |
3175 | | |
3176 | | /* prefetch |
3177 | | * can be disabled, by declaring XXH_NO_PREFETCH build macro */ |
3178 | | #if defined(XXH_NO_PREFETCH) |
3179 | | # define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */ |
3180 | | #else |
3181 | | # if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86)) /* _mm_prefetch() not defined outside of x86/x64 */ |
3182 | | # include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */ |
3183 | | # define XXH_PREFETCH(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0) |
3184 | | # elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) ) |
3185 | 0 | # define XXH_PREFETCH(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */) |
3186 | | # else |
3187 | | # define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */ |
3188 | | # endif |
3189 | | #endif /* XXH_NO_PREFETCH */ |
3190 | | |
3191 | | |
3192 | | /* ========================================== |
3193 | | * XXH3 default settings |
3194 | | * ========================================== */ |
3195 | | |
3196 | 0 | #define XXH_SECRET_DEFAULT_SIZE 192 /* minimum XXH3_SECRET_SIZE_MIN */ |
3197 | | |
3198 | | #if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN) |
3199 | | # error "default keyset is not large enough" |
3200 | | #endif |
3201 | | |
3202 | | /*! Pseudorandom secret taken directly from FARSH. */ |
3203 | | XXH_ALIGN(64) static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = { |
3204 | | 0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c, |
3205 | | 0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f, |
3206 | | 0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21, |
3207 | | 0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c, |
3208 | | 0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3, |
3209 | | 0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8, |
3210 | | 0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d, |
3211 | | 0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64, |
3212 | | 0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb, |
3213 | | 0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e, |
3214 | | 0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce, |
3215 | | 0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e, |
3216 | | }; |
3217 | | |
3218 | | |
3219 | | #ifdef XXH_OLD_NAMES |
3220 | | # define kSecret XXH3_kSecret |
3221 | | #endif |
3222 | | |
3223 | | #ifdef XXH_DOXYGEN |
3224 | | /*! |
3225 | | * @brief Calculates a 32-bit to 64-bit long multiply. |
3226 | | * |
3227 | | * Implemented as a macro. |
3228 | | * |
3229 | | * Wraps `__emulu` on MSVC x86 because it tends to call `__allmul` when it doesn't |
3230 | | * need to (but it shouldn't need to anyways, it is about 7 instructions to do |
3231 | | * a 64x64 multiply...). Since we know that this will _always_ emit `MULL`, we |
3232 | | * use that instead of the normal method. |
3233 | | * |
3234 | | * If you are compiling for platforms like Thumb-1 and don't have a better option, |
3235 | | * you may also want to write your own long multiply routine here. |
3236 | | * |
3237 | | * @param x, y Numbers to be multiplied |
3238 | | * @return 64-bit product of the low 32 bits of @p x and @p y. |
3239 | | */ |
3240 | | XXH_FORCE_INLINE xxh_u64 |
3241 | | XXH_mult32to64(xxh_u64 x, xxh_u64 y) |
3242 | | { |
3243 | | return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF); |
3244 | | } |
3245 | | #elif defined(_MSC_VER) && defined(_M_IX86) |
3246 | | # include <intrin.h> |
3247 | | # define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y)) |
3248 | | #else |
3249 | | /* |
3250 | | * Downcast + upcast is usually better than masking on older compilers like |
3251 | | * GCC 4.2 (especially 32-bit ones), all without affecting newer compilers. |
3252 | | * |
3253 | | * The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands |
3254 | | * and perform a full 64x64 multiply -- entirely redundant on 32-bit. |
3255 | | */ |
3256 | 0 | # define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y)) |
3257 | | #endif |
3258 | | |
3259 | | /*! |
3260 | | * @brief Calculates a 64->128-bit long multiply. |
3261 | | * |
3262 | | * Uses `__uint128_t` and `_umul128` if available, otherwise uses a scalar |
3263 | | * version. |
3264 | | * |
3265 | | * @param lhs , rhs The 64-bit integers to be multiplied |
3266 | | * @return The 128-bit result represented in an @ref XXH128_hash_t. |
3267 | | */ |
3268 | | static XXH128_hash_t |
3269 | | XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs) |
3270 | 0 | { |
3271 | | /* |
3272 | | * GCC/Clang __uint128_t method. |
3273 | | * |
3274 | | * On most 64-bit targets, GCC and Clang define a __uint128_t type. |
3275 | | * This is usually the best way as it usually uses a native long 64-bit |
3276 | | * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64. |
3277 | | * |
3278 | | * Usually. |
3279 | | * |
3280 | | * Despite being a 32-bit platform, Clang (and emscripten) define this type |
3281 | | * despite not having the arithmetic for it. This results in a laggy |
3282 | | * compiler builtin call which calculates a full 128-bit multiply. |
3283 | | * In that case it is best to use the portable one. |
3284 | | * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677 |
3285 | | */ |
3286 | 0 | #if defined(__GNUC__) && !defined(__wasm__) \ |
3287 | 0 | && defined(__SIZEOF_INT128__) \ |
3288 | 0 | || (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128) |
3289 | |
|
3290 | 0 | __uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs; |
3291 | 0 | XXH128_hash_t r128; |
3292 | 0 | r128.low64 = (xxh_u64)(product); |
3293 | 0 | r128.high64 = (xxh_u64)(product >> 64); |
3294 | 0 | return r128; |
3295 | | |
3296 | | /* |
3297 | | * MSVC for x64's _umul128 method. |
3298 | | * |
3299 | | * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct); |
3300 | | * |
3301 | | * This compiles to single operand MUL on x64. |
3302 | | */ |
3303 | | #elif defined(_M_X64) || defined(_M_IA64) |
3304 | | |
3305 | | #ifndef _MSC_VER |
3306 | | # pragma intrinsic(_umul128) |
3307 | | #endif |
3308 | | xxh_u64 product_high; |
3309 | | xxh_u64 const product_low = _umul128(lhs, rhs, &product_high); |
3310 | | XXH128_hash_t r128; |
3311 | | r128.low64 = product_low; |
3312 | | r128.high64 = product_high; |
3313 | | return r128; |
3314 | | |
3315 | | /* |
3316 | | * MSVC for ARM64's __umulh method. |
3317 | | * |
3318 | | * This compiles to the same MUL + UMULH as GCC/Clang's __uint128_t method. |
3319 | | */ |
3320 | | #elif defined(_M_ARM64) |
3321 | | |
3322 | | #ifndef _MSC_VER |
3323 | | # pragma intrinsic(__umulh) |
3324 | | #endif |
3325 | | XXH128_hash_t r128; |
3326 | | r128.low64 = lhs * rhs; |
3327 | | r128.high64 = __umulh(lhs, rhs); |
3328 | | return r128; |
3329 | | |
3330 | | #else |
3331 | | /* |
3332 | | * Portable scalar method. Optimized for 32-bit and 64-bit ALUs. |
3333 | | * |
3334 | | * This is a fast and simple grade school multiply, which is shown below |
3335 | | * with base 10 arithmetic instead of base 0x100000000. |
3336 | | * |
3337 | | * 9 3 // D2 lhs = 93 |
3338 | | * x 7 5 // D2 rhs = 75 |
3339 | | * ---------- |
3340 | | * 1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15 |
3341 | | * 4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45 |
3342 | | * 2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21 |
3343 | | * + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63 |
3344 | | * --------- |
3345 | | * 2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27 |
3346 | | * + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67 |
3347 | | * --------- |
3348 | | * 6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975 |
3349 | | * |
3350 | | * The reasons for adding the products like this are: |
3351 | | * 1. It avoids manual carry tracking. Just like how |
3352 | | * (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX. |
3353 | | * This avoids a lot of complexity. |
3354 | | * |
3355 | | * 2. It hints for, and on Clang, compiles to, the powerful UMAAL |
3356 | | * instruction available in ARM's Digital Signal Processing extension |
3357 | | * in 32-bit ARMv6 and later, which is shown below: |
3358 | | * |
3359 | | * void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm) |
3360 | | * { |
3361 | | * xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm; |
3362 | | * *RdLo = (xxh_u32)(product & 0xFFFFFFFF); |
3363 | | * *RdHi = (xxh_u32)(product >> 32); |
3364 | | * } |
3365 | | * |
3366 | | * This instruction was designed for efficient long multiplication, and |
3367 | | * allows this to be calculated in only 4 instructions at speeds |
3368 | | * comparable to some 64-bit ALUs. |
3369 | | * |
3370 | | * 3. It isn't terrible on other platforms. Usually this will be a couple |
3371 | | * of 32-bit ADD/ADCs. |
3372 | | */ |
3373 | | |
3374 | | /* First calculate all of the cross products. */ |
3375 | | xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF); |
3376 | | xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32, rhs & 0xFFFFFFFF); |
3377 | | xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32); |
3378 | | xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32, rhs >> 32); |
3379 | | |
3380 | | /* Now add the products together. These will never overflow. */ |
3381 | | xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi; |
3382 | | xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32) + hi_hi; |
3383 | | xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF); |
3384 | | |
3385 | | XXH128_hash_t r128; |
3386 | | r128.low64 = lower; |
3387 | | r128.high64 = upper; |
3388 | | return r128; |
3389 | | #endif |
3390 | 0 | } |
3391 | | |
3392 | | /*! |
3393 | | * @brief Calculates a 64-bit to 128-bit multiply, then XOR folds it. |
3394 | | * |
3395 | | * The reason for the separate function is to prevent passing too many structs |
3396 | | * around by value. This will hopefully inline the multiply, but we don't force it. |
3397 | | * |
3398 | | * @param lhs , rhs The 64-bit integers to multiply |
3399 | | * @return The low 64 bits of the product XOR'd by the high 64 bits. |
3400 | | * @see XXH_mult64to128() |
3401 | | */ |
3402 | | static xxh_u64 |
3403 | | XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs) |
3404 | 0 | { |
3405 | 0 | XXH128_hash_t product = XXH_mult64to128(lhs, rhs); |
3406 | 0 | return product.low64 ^ product.high64; |
3407 | 0 | } |
3408 | | |
3409 | | /*! Seems to produce slightly better code on GCC for some reason. */ |
3410 | | XXH_FORCE_INLINE xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift) |
3411 | 0 | { |
3412 | 0 | XXH_ASSERT(0 <= shift && shift < 64); |
3413 | 0 | return v64 ^ (v64 >> shift); |
3414 | 0 | } |
3415 | | |
3416 | | /* |
3417 | | * This is a fast avalanche stage, |
3418 | | * suitable when input bits are already partially mixed |
3419 | | */ |
3420 | | static XXH64_hash_t XXH3_avalanche(xxh_u64 h64) |
3421 | 0 | { |
3422 | 0 | h64 = XXH_xorshift64(h64, 37); |
3423 | 0 | h64 *= 0x165667919E3779F9ULL; |
3424 | 0 | h64 = XXH_xorshift64(h64, 32); |
3425 | 0 | return h64; |
3426 | 0 | } |
3427 | | |
3428 | | /* |
3429 | | * This is a stronger avalanche, |
3430 | | * inspired by Pelle Evensen's rrmxmx |
3431 | | * preferable when input has not been previously mixed |
3432 | | */ |
3433 | | static XXH64_hash_t XXH3_rrmxmx(xxh_u64 h64, xxh_u64 len) |
3434 | 0 | { |
3435 | | /* this mix is inspired by Pelle Evensen's rrmxmx */ |
3436 | 0 | h64 ^= XXH_rotl64(h64, 49) ^ XXH_rotl64(h64, 24); |
3437 | 0 | h64 *= 0x9FB21C651E98DF25ULL; |
3438 | 0 | h64 ^= (h64 >> 35) + len ; |
3439 | 0 | h64 *= 0x9FB21C651E98DF25ULL; |
3440 | 0 | return XXH_xorshift64(h64, 28); |
3441 | 0 | } |
3442 | | |
3443 | | |
3444 | | /* ========================================== |
3445 | | * Short keys |
3446 | | * ========================================== |
3447 | | * One of the shortcomings of XXH32 and XXH64 was that their performance was |
3448 | | * sub-optimal on short lengths. It used an iterative algorithm which strongly |
3449 | | * favored lengths that were a multiple of 4 or 8. |
3450 | | * |
3451 | | * Instead of iterating over individual inputs, we use a set of single shot |
3452 | | * functions which piece together a range of lengths and operate in constant time. |
3453 | | * |
3454 | | * Additionally, the number of multiplies has been significantly reduced. This |
3455 | | * reduces latency, especially when emulating 64-bit multiplies on 32-bit. |
3456 | | * |
3457 | | * Depending on the platform, this may or may not be faster than XXH32, but it |
3458 | | * is almost guaranteed to be faster than XXH64. |
3459 | | */ |
3460 | | |
3461 | | /* |
3462 | | * At very short lengths, there isn't enough input to fully hide secrets, or use |
3463 | | * the entire secret. |
3464 | | * |
3465 | | * There is also only a limited amount of mixing we can do before significantly |
3466 | | * impacting performance. |
3467 | | * |
3468 | | * Therefore, we use different sections of the secret and always mix two secret |
3469 | | * samples with an XOR. This should have no effect on performance on the |
3470 | | * seedless or withSeed variants because everything _should_ be constant folded |
3471 | | * by modern compilers. |
3472 | | * |
3473 | | * The XOR mixing hides individual parts of the secret and increases entropy. |
3474 | | * |
3475 | | * This adds an extra layer of strength for custom secrets. |
3476 | | */ |
3477 | | XXH_FORCE_INLINE XXH64_hash_t |
3478 | | XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
3479 | 0 | { |
3480 | 0 | XXH_ASSERT(input != NULL); |
3481 | 0 | XXH_ASSERT(1 <= len && len <= 3); |
3482 | 0 | XXH_ASSERT(secret != NULL); |
3483 | | /* |
3484 | | * len = 1: combined = { input[0], 0x01, input[0], input[0] } |
3485 | | * len = 2: combined = { input[1], 0x02, input[0], input[1] } |
3486 | | * len = 3: combined = { input[2], 0x03, input[0], input[1] } |
3487 | | */ |
3488 | 0 | { xxh_u8 const c1 = input[0]; |
3489 | 0 | xxh_u8 const c2 = input[len >> 1]; |
3490 | 0 | xxh_u8 const c3 = input[len - 1]; |
3491 | 0 | xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2 << 24) |
3492 | 0 | | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8); |
3493 | 0 | xxh_u64 const bitflip = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed; |
3494 | 0 | xxh_u64 const keyed = (xxh_u64)combined ^ bitflip; |
3495 | 0 | return XXH64_avalanche(keyed); |
3496 | 0 | } |
3497 | 0 | } |
3498 | | |
3499 | | XXH_FORCE_INLINE XXH64_hash_t |
3500 | | XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
3501 | 0 | { |
3502 | 0 | XXH_ASSERT(input != NULL); |
3503 | 0 | XXH_ASSERT(secret != NULL); |
3504 | 0 | XXH_ASSERT(4 <= len && len <= 8); |
3505 | 0 | seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32; |
3506 | 0 | { xxh_u32 const input1 = XXH_readLE32(input); |
3507 | 0 | xxh_u32 const input2 = XXH_readLE32(input + len - 4); |
3508 | 0 | xxh_u64 const bitflip = (XXH_readLE64(secret+8) ^ XXH_readLE64(secret+16)) - seed; |
3509 | 0 | xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32); |
3510 | 0 | xxh_u64 const keyed = input64 ^ bitflip; |
3511 | 0 | return XXH3_rrmxmx(keyed, len); |
3512 | 0 | } |
3513 | 0 | } |
3514 | | |
3515 | | XXH_FORCE_INLINE XXH64_hash_t |
3516 | | XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
3517 | 0 | { |
3518 | 0 | XXH_ASSERT(input != NULL); |
3519 | 0 | XXH_ASSERT(secret != NULL); |
3520 | 0 | XXH_ASSERT(9 <= len && len <= 16); |
3521 | 0 | { xxh_u64 const bitflip1 = (XXH_readLE64(secret+24) ^ XXH_readLE64(secret+32)) + seed; |
3522 | 0 | xxh_u64 const bitflip2 = (XXH_readLE64(secret+40) ^ XXH_readLE64(secret+48)) - seed; |
3523 | 0 | xxh_u64 const input_lo = XXH_readLE64(input) ^ bitflip1; |
3524 | 0 | xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2; |
3525 | 0 | xxh_u64 const acc = len |
3526 | 0 | + XXH_swap64(input_lo) + input_hi |
3527 | 0 | + XXH3_mul128_fold64(input_lo, input_hi); |
3528 | 0 | return XXH3_avalanche(acc); |
3529 | 0 | } |
3530 | 0 | } |
3531 | | |
3532 | | XXH_FORCE_INLINE XXH64_hash_t |
3533 | | XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
3534 | 0 | { |
3535 | 0 | XXH_ASSERT(len <= 16); |
3536 | 0 | { if (XXH_likely(len > 8)) return XXH3_len_9to16_64b(input, len, secret, seed); |
3537 | 0 | if (XXH_likely(len >= 4)) return XXH3_len_4to8_64b(input, len, secret, seed); |
3538 | 0 | if (len) return XXH3_len_1to3_64b(input, len, secret, seed); |
3539 | 0 | return XXH64_avalanche(seed ^ (XXH_readLE64(secret+56) ^ XXH_readLE64(secret+64))); |
3540 | 0 | } |
3541 | 0 | } |
3542 | | |
3543 | | /* |
3544 | | * DISCLAIMER: There are known *seed-dependent* multicollisions here due to |
3545 | | * multiplication by zero, affecting hashes of lengths 17 to 240. |
3546 | | * |
3547 | | * However, they are very unlikely. |
3548 | | * |
3549 | | * Keep this in mind when using the unseeded XXH3_64bits() variant: As with all |
3550 | | * unseeded non-cryptographic hashes, it does not attempt to defend itself |
3551 | | * against specially crafted inputs, only random inputs. |
3552 | | * |
3553 | | * Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes |
3554 | | * cancelling out the secret is taken an arbitrary number of times (addressed |
3555 | | * in XXH3_accumulate_512), this collision is very unlikely with random inputs |
3556 | | * and/or proper seeding: |
3557 | | * |
3558 | | * This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a |
3559 | | * function that is only called up to 16 times per hash with up to 240 bytes of |
3560 | | * input. |
3561 | | * |
3562 | | * This is not too bad for a non-cryptographic hash function, especially with |
3563 | | * only 64 bit outputs. |
3564 | | * |
3565 | | * The 128-bit variant (which trades some speed for strength) is NOT affected |
3566 | | * by this, although it is always a good idea to use a proper seed if you care |
3567 | | * about strength. |
3568 | | */ |
3569 | | XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input, |
3570 | | const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64) |
3571 | 0 | { |
3572 | | #if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ |
3573 | | && defined(__i386__) && defined(__SSE2__) /* x86 + SSE2 */ \ |
3574 | | && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable like XXH32 hack */ |
3575 | | /* |
3576 | | * UGLY HACK: |
3577 | | * GCC for x86 tends to autovectorize the 128-bit multiply, resulting in |
3578 | | * slower code. |
3579 | | * |
3580 | | * By forcing seed64 into a register, we disrupt the cost model and |
3581 | | * cause it to scalarize. See `XXH32_round()` |
3582 | | * |
3583 | | * FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600, |
3584 | | * XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on |
3585 | | * GCC 9.2, despite both emitting scalar code. |
3586 | | * |
3587 | | * GCC generates much better scalar code than Clang for the rest of XXH3, |
3588 | | * which is why finding a more optimal codepath is an interest. |
3589 | | */ |
3590 | | XXH_COMPILER_GUARD(seed64); |
3591 | | #endif |
3592 | 0 | { xxh_u64 const input_lo = XXH_readLE64(input); |
3593 | 0 | xxh_u64 const input_hi = XXH_readLE64(input+8); |
3594 | 0 | return XXH3_mul128_fold64( |
3595 | 0 | input_lo ^ (XXH_readLE64(secret) + seed64), |
3596 | 0 | input_hi ^ (XXH_readLE64(secret+8) - seed64) |
3597 | 0 | ); |
3598 | 0 | } |
3599 | 0 | } |
3600 | | |
3601 | | /* For mid range keys, XXH3 uses a Mum-hash variant. */ |
3602 | | XXH_FORCE_INLINE XXH64_hash_t |
3603 | | XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len, |
3604 | | const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
3605 | | XXH64_hash_t seed) |
3606 | 0 | { |
3607 | 0 | XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; |
3608 | 0 | XXH_ASSERT(16 < len && len <= 128); |
3609 | |
|
3610 | 0 | { xxh_u64 acc = len * XXH_PRIME64_1; |
3611 | 0 | if (len > 32) { |
3612 | 0 | if (len > 64) { |
3613 | 0 | if (len > 96) { |
3614 | 0 | acc += XXH3_mix16B(input+48, secret+96, seed); |
3615 | 0 | acc += XXH3_mix16B(input+len-64, secret+112, seed); |
3616 | 0 | } |
3617 | 0 | acc += XXH3_mix16B(input+32, secret+64, seed); |
3618 | 0 | acc += XXH3_mix16B(input+len-48, secret+80, seed); |
3619 | 0 | } |
3620 | 0 | acc += XXH3_mix16B(input+16, secret+32, seed); |
3621 | 0 | acc += XXH3_mix16B(input+len-32, secret+48, seed); |
3622 | 0 | } |
3623 | 0 | acc += XXH3_mix16B(input+0, secret+0, seed); |
3624 | 0 | acc += XXH3_mix16B(input+len-16, secret+16, seed); |
3625 | |
|
3626 | 0 | return XXH3_avalanche(acc); |
3627 | 0 | } |
3628 | 0 | } |
3629 | | |
3630 | 0 | #define XXH3_MIDSIZE_MAX 240 |
3631 | | |
3632 | | XXH_NO_INLINE XXH64_hash_t |
3633 | | XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len, |
3634 | | const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
3635 | | XXH64_hash_t seed) |
3636 | 0 | { |
3637 | 0 | XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; |
3638 | 0 | XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX); |
3639 | |
|
3640 | 0 | #define XXH3_MIDSIZE_STARTOFFSET 3 |
3641 | 0 | #define XXH3_MIDSIZE_LASTOFFSET 17 |
3642 | |
|
3643 | 0 | { xxh_u64 acc = len * XXH_PRIME64_1; |
3644 | 0 | int const nbRounds = (int)len / 16; |
3645 | 0 | int i; |
3646 | 0 | for (i=0; i<8; i++) { |
3647 | 0 | acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed); |
3648 | 0 | } |
3649 | 0 | acc = XXH3_avalanche(acc); |
3650 | 0 | XXH_ASSERT(nbRounds >= 8); |
3651 | | #if defined(__clang__) /* Clang */ \ |
3652 | | && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \ |
3653 | | && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */ |
3654 | | /* |
3655 | | * UGLY HACK: |
3656 | | * Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86. |
3657 | | * In everywhere else, it uses scalar code. |
3658 | | * |
3659 | | * For 64->128-bit multiplies, even if the NEON was 100% optimal, it |
3660 | | * would still be slower than UMAAL (see XXH_mult64to128). |
3661 | | * |
3662 | | * Unfortunately, Clang doesn't handle the long multiplies properly and |
3663 | | * converts them to the nonexistent "vmulq_u64" intrinsic, which is then |
3664 | | * scalarized into an ugly mess of VMOV.32 instructions. |
3665 | | * |
3666 | | * This mess is difficult to avoid without turning autovectorization |
3667 | | * off completely, but they are usually relatively minor and/or not |
3668 | | * worth it to fix. |
3669 | | * |
3670 | | * This loop is the easiest to fix, as unlike XXH32, this pragma |
3671 | | * _actually works_ because it is a loop vectorization instead of an |
3672 | | * SLP vectorization. |
3673 | | */ |
3674 | | #pragma clang loop vectorize(disable) |
3675 | | #endif |
3676 | 0 | for (i=8 ; i < nbRounds; i++) { |
3677 | 0 | acc += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed); |
3678 | 0 | } |
3679 | | /* last bytes */ |
3680 | 0 | acc += XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed); |
3681 | 0 | return XXH3_avalanche(acc); |
3682 | 0 | } |
3683 | 0 | } |
3684 | | |
3685 | | |
3686 | | /* ======= Long Keys ======= */ |
3687 | | |
3688 | 0 | #define XXH_STRIPE_LEN 64 |
3689 | 0 | #define XXH_SECRET_CONSUME_RATE 8 /* nb of secret bytes consumed at each accumulation */ |
3690 | | #define XXH_ACC_NB (XXH_STRIPE_LEN / sizeof(xxh_u64)) |
3691 | | |
3692 | | #ifdef XXH_OLD_NAMES |
3693 | | # define STRIPE_LEN XXH_STRIPE_LEN |
3694 | | # define ACC_NB XXH_ACC_NB |
3695 | | #endif |
3696 | | |
3697 | | XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64) |
3698 | 0 | { |
3699 | 0 | if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64); |
3700 | 0 | XXH_memcpy(dst, &v64, sizeof(v64)); |
3701 | 0 | } |
3702 | | |
3703 | | /* Several intrinsic functions below are supposed to accept __int64 as argument, |
3704 | | * as documented in https://software.intel.com/sites/landingpage/IntrinsicsGuide/ . |
3705 | | * However, several environments do not define __int64 type, |
3706 | | * requiring a workaround. |
3707 | | */ |
3708 | | #if !defined (__VMS) \ |
3709 | | && (defined (__cplusplus) \ |
3710 | | || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
3711 | | typedef int64_t xxh_i64; |
3712 | | #else |
3713 | | /* the following type must have a width of 64-bit */ |
3714 | | typedef long long xxh_i64; |
3715 | | #endif |
3716 | | |
3717 | | /* |
3718 | | * XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most optimized. |
3719 | | * |
3720 | | * It is a hardened version of UMAC, based off of FARSH's implementation. |
3721 | | * |
3722 | | * This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD |
3723 | | * implementations, and it is ridiculously fast. |
3724 | | * |
3725 | | * We harden it by mixing the original input to the accumulators as well as the product. |
3726 | | * |
3727 | | * This means that in the (relatively likely) case of a multiply by zero, the |
3728 | | * original input is preserved. |
3729 | | * |
3730 | | * On 128-bit inputs, we swap 64-bit pairs when we add the input to improve |
3731 | | * cross-pollination, as otherwise the upper and lower halves would be |
3732 | | * essentially independent. |
3733 | | * |
3734 | | * This doesn't matter on 64-bit hashes since they all get merged together in |
3735 | | * the end, so we skip the extra step. |
3736 | | * |
3737 | | * Both XXH3_64bits and XXH3_128bits use this subroutine. |
3738 | | */ |
3739 | | |
3740 | | #if (XXH_VECTOR == XXH_AVX512) \ |
3741 | | || (defined(XXH_DISPATCH_AVX512) && XXH_DISPATCH_AVX512 != 0) |
3742 | | |
3743 | | #ifndef XXH_TARGET_AVX512 |
3744 | | # define XXH_TARGET_AVX512 /* disable attribute target */ |
3745 | | #endif |
3746 | | |
3747 | | XXH_FORCE_INLINE XXH_TARGET_AVX512 void |
3748 | | XXH3_accumulate_512_avx512(void* XXH_RESTRICT acc, |
3749 | | const void* XXH_RESTRICT input, |
3750 | | const void* XXH_RESTRICT secret) |
3751 | | { |
3752 | | __m512i* const xacc = (__m512i *) acc; |
3753 | | XXH_ASSERT((((size_t)acc) & 63) == 0); |
3754 | | XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i)); |
3755 | | |
3756 | | { |
3757 | | /* data_vec = input[0]; */ |
3758 | | __m512i const data_vec = _mm512_loadu_si512 (input); |
3759 | | /* key_vec = secret[0]; */ |
3760 | | __m512i const key_vec = _mm512_loadu_si512 (secret); |
3761 | | /* data_key = data_vec ^ key_vec; */ |
3762 | | __m512i const data_key = _mm512_xor_si512 (data_vec, key_vec); |
3763 | | /* data_key_lo = data_key >> 32; */ |
3764 | | __m512i const data_key_lo = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1)); |
3765 | | /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ |
3766 | | __m512i const product = _mm512_mul_epu32 (data_key, data_key_lo); |
3767 | | /* xacc[0] += swap(data_vec); */ |
3768 | | __m512i const data_swap = _mm512_shuffle_epi32(data_vec, (_MM_PERM_ENUM)_MM_SHUFFLE(1, 0, 3, 2)); |
3769 | | __m512i const sum = _mm512_add_epi64(*xacc, data_swap); |
3770 | | /* xacc[0] += product; */ |
3771 | | *xacc = _mm512_add_epi64(product, sum); |
3772 | | } |
3773 | | } |
3774 | | |
3775 | | /* |
3776 | | * XXH3_scrambleAcc: Scrambles the accumulators to improve mixing. |
3777 | | * |
3778 | | * Multiplication isn't perfect, as explained by Google in HighwayHash: |
3779 | | * |
3780 | | * // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to |
3781 | | * // varying degrees. In descending order of goodness, bytes |
3782 | | * // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32. |
3783 | | * // As expected, the upper and lower bytes are much worse. |
3784 | | * |
3785 | | * Source: https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291 |
3786 | | * |
3787 | | * Since our algorithm uses a pseudorandom secret to add some variance into the |
3788 | | * mix, we don't need to (or want to) mix as often or as much as HighwayHash does. |
3789 | | * |
3790 | | * This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid |
3791 | | * extraction. |
3792 | | * |
3793 | | * Both XXH3_64bits and XXH3_128bits use this subroutine. |
3794 | | */ |
3795 | | |
3796 | | XXH_FORCE_INLINE XXH_TARGET_AVX512 void |
3797 | | XXH3_scrambleAcc_avx512(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
3798 | | { |
3799 | | XXH_ASSERT((((size_t)acc) & 63) == 0); |
3800 | | XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i)); |
3801 | | { __m512i* const xacc = (__m512i*) acc; |
3802 | | const __m512i prime32 = _mm512_set1_epi32((int)XXH_PRIME32_1); |
3803 | | |
3804 | | /* xacc[0] ^= (xacc[0] >> 47) */ |
3805 | | __m512i const acc_vec = *xacc; |
3806 | | __m512i const shifted = _mm512_srli_epi64 (acc_vec, 47); |
3807 | | __m512i const data_vec = _mm512_xor_si512 (acc_vec, shifted); |
3808 | | /* xacc[0] ^= secret; */ |
3809 | | __m512i const key_vec = _mm512_loadu_si512 (secret); |
3810 | | __m512i const data_key = _mm512_xor_si512 (data_vec, key_vec); |
3811 | | |
3812 | | /* xacc[0] *= XXH_PRIME32_1; */ |
3813 | | __m512i const data_key_hi = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1)); |
3814 | | __m512i const prod_lo = _mm512_mul_epu32 (data_key, prime32); |
3815 | | __m512i const prod_hi = _mm512_mul_epu32 (data_key_hi, prime32); |
3816 | | *xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32)); |
3817 | | } |
3818 | | } |
3819 | | |
3820 | | XXH_FORCE_INLINE XXH_TARGET_AVX512 void |
3821 | | XXH3_initCustomSecret_avx512(void* XXH_RESTRICT customSecret, xxh_u64 seed64) |
3822 | | { |
3823 | | XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 63) == 0); |
3824 | | XXH_STATIC_ASSERT(XXH_SEC_ALIGN == 64); |
3825 | | XXH_ASSERT(((size_t)customSecret & 63) == 0); |
3826 | | (void)(&XXH_writeLE64); |
3827 | | { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m512i); |
3828 | | __m512i const seed = _mm512_mask_set1_epi64(_mm512_set1_epi64((xxh_i64)seed64), 0xAA, (xxh_i64)(0U - seed64)); |
3829 | | |
3830 | | const __m512i* const src = (const __m512i*) ((const void*) XXH3_kSecret); |
3831 | | __m512i* const dest = ( __m512i*) customSecret; |
3832 | | int i; |
3833 | | XXH_ASSERT(((size_t)src & 63) == 0); /* control alignment */ |
3834 | | XXH_ASSERT(((size_t)dest & 63) == 0); |
3835 | | for (i=0; i < nbRounds; ++i) { |
3836 | | /* GCC has a bug, _mm512_stream_load_si512 accepts 'void*', not 'void const*', |
3837 | | * this will warn "discards 'const' qualifier". */ |
3838 | | union { |
3839 | | const __m512i* cp; |
3840 | | void* p; |
3841 | | } remote_const_void; |
3842 | | remote_const_void.cp = src + i; |
3843 | | dest[i] = _mm512_add_epi64(_mm512_stream_load_si512(remote_const_void.p), seed); |
3844 | | } } |
3845 | | } |
3846 | | |
3847 | | #endif |
3848 | | |
3849 | | #if (XXH_VECTOR == XXH_AVX2) \ |
3850 | | || (defined(XXH_DISPATCH_AVX2) && XXH_DISPATCH_AVX2 != 0) |
3851 | | |
3852 | | #ifndef XXH_TARGET_AVX2 |
3853 | | # define XXH_TARGET_AVX2 /* disable attribute target */ |
3854 | | #endif |
3855 | | |
3856 | | XXH_FORCE_INLINE XXH_TARGET_AVX2 void |
3857 | | XXH3_accumulate_512_avx2( void* XXH_RESTRICT acc, |
3858 | | const void* XXH_RESTRICT input, |
3859 | | const void* XXH_RESTRICT secret) |
3860 | | { |
3861 | | XXH_ASSERT((((size_t)acc) & 31) == 0); |
3862 | | { __m256i* const xacc = (__m256i *) acc; |
3863 | | /* Unaligned. This is mainly for pointer arithmetic, and because |
3864 | | * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ |
3865 | | const __m256i* const xinput = (const __m256i *) input; |
3866 | | /* Unaligned. This is mainly for pointer arithmetic, and because |
3867 | | * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ |
3868 | | const __m256i* const xsecret = (const __m256i *) secret; |
3869 | | |
3870 | | size_t i; |
3871 | | for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) { |
3872 | | /* data_vec = xinput[i]; */ |
3873 | | __m256i const data_vec = _mm256_loadu_si256 (xinput+i); |
3874 | | /* key_vec = xsecret[i]; */ |
3875 | | __m256i const key_vec = _mm256_loadu_si256 (xsecret+i); |
3876 | | /* data_key = data_vec ^ key_vec; */ |
3877 | | __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec); |
3878 | | /* data_key_lo = data_key >> 32; */ |
3879 | | __m256i const data_key_lo = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); |
3880 | | /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ |
3881 | | __m256i const product = _mm256_mul_epu32 (data_key, data_key_lo); |
3882 | | /* xacc[i] += swap(data_vec); */ |
3883 | | __m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2)); |
3884 | | __m256i const sum = _mm256_add_epi64(xacc[i], data_swap); |
3885 | | /* xacc[i] += product; */ |
3886 | | xacc[i] = _mm256_add_epi64(product, sum); |
3887 | | } } |
3888 | | } |
3889 | | |
3890 | | XXH_FORCE_INLINE XXH_TARGET_AVX2 void |
3891 | | XXH3_scrambleAcc_avx2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
3892 | | { |
3893 | | XXH_ASSERT((((size_t)acc) & 31) == 0); |
3894 | | { __m256i* const xacc = (__m256i*) acc; |
3895 | | /* Unaligned. This is mainly for pointer arithmetic, and because |
3896 | | * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ |
3897 | | const __m256i* const xsecret = (const __m256i *) secret; |
3898 | | const __m256i prime32 = _mm256_set1_epi32((int)XXH_PRIME32_1); |
3899 | | |
3900 | | size_t i; |
3901 | | for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) { |
3902 | | /* xacc[i] ^= (xacc[i] >> 47) */ |
3903 | | __m256i const acc_vec = xacc[i]; |
3904 | | __m256i const shifted = _mm256_srli_epi64 (acc_vec, 47); |
3905 | | __m256i const data_vec = _mm256_xor_si256 (acc_vec, shifted); |
3906 | | /* xacc[i] ^= xsecret; */ |
3907 | | __m256i const key_vec = _mm256_loadu_si256 (xsecret+i); |
3908 | | __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec); |
3909 | | |
3910 | | /* xacc[i] *= XXH_PRIME32_1; */ |
3911 | | __m256i const data_key_hi = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); |
3912 | | __m256i const prod_lo = _mm256_mul_epu32 (data_key, prime32); |
3913 | | __m256i const prod_hi = _mm256_mul_epu32 (data_key_hi, prime32); |
3914 | | xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32)); |
3915 | | } |
3916 | | } |
3917 | | } |
3918 | | |
3919 | | XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_initCustomSecret_avx2(void* XXH_RESTRICT customSecret, xxh_u64 seed64) |
3920 | | { |
3921 | | XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 31) == 0); |
3922 | | XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE / sizeof(__m256i)) == 6); |
3923 | | XXH_STATIC_ASSERT(XXH_SEC_ALIGN <= 64); |
3924 | | (void)(&XXH_writeLE64); |
3925 | | XXH_PREFETCH(customSecret); |
3926 | | { __m256i const seed = _mm256_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64, (xxh_i64)(0U - seed64), (xxh_i64)seed64); |
3927 | | |
3928 | | const __m256i* const src = (const __m256i*) ((const void*) XXH3_kSecret); |
3929 | | __m256i* dest = ( __m256i*) customSecret; |
3930 | | |
3931 | | # if defined(__GNUC__) || defined(__clang__) |
3932 | | /* |
3933 | | * On GCC & Clang, marking 'dest' as modified will cause the compiler: |
3934 | | * - do not extract the secret from sse registers in the internal loop |
3935 | | * - use less common registers, and avoid pushing these reg into stack |
3936 | | */ |
3937 | | XXH_COMPILER_GUARD(dest); |
3938 | | # endif |
3939 | | XXH_ASSERT(((size_t)src & 31) == 0); /* control alignment */ |
3940 | | XXH_ASSERT(((size_t)dest & 31) == 0); |
3941 | | |
3942 | | /* GCC -O2 need unroll loop manually */ |
3943 | | dest[0] = _mm256_add_epi64(_mm256_stream_load_si256(src+0), seed); |
3944 | | dest[1] = _mm256_add_epi64(_mm256_stream_load_si256(src+1), seed); |
3945 | | dest[2] = _mm256_add_epi64(_mm256_stream_load_si256(src+2), seed); |
3946 | | dest[3] = _mm256_add_epi64(_mm256_stream_load_si256(src+3), seed); |
3947 | | dest[4] = _mm256_add_epi64(_mm256_stream_load_si256(src+4), seed); |
3948 | | dest[5] = _mm256_add_epi64(_mm256_stream_load_si256(src+5), seed); |
3949 | | } |
3950 | | } |
3951 | | |
3952 | | #endif |
3953 | | |
3954 | | /* x86dispatch always generates SSE2 */ |
3955 | | #if (XXH_VECTOR == XXH_SSE2) || defined(XXH_X86DISPATCH) |
3956 | | |
3957 | | #ifndef XXH_TARGET_SSE2 |
3958 | | # define XXH_TARGET_SSE2 /* disable attribute target */ |
3959 | | #endif |
3960 | | |
3961 | | XXH_FORCE_INLINE XXH_TARGET_SSE2 void |
3962 | | XXH3_accumulate_512_sse2( void* XXH_RESTRICT acc, |
3963 | | const void* XXH_RESTRICT input, |
3964 | | const void* XXH_RESTRICT secret) |
3965 | 0 | { |
3966 | | /* SSE2 is just a half-scale version of the AVX2 version. */ |
3967 | 0 | XXH_ASSERT((((size_t)acc) & 15) == 0); |
3968 | 0 | { __m128i* const xacc = (__m128i *) acc; |
3969 | | /* Unaligned. This is mainly for pointer arithmetic, and because |
3970 | | * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ |
3971 | 0 | const __m128i* const xinput = (const __m128i *) input; |
3972 | | /* Unaligned. This is mainly for pointer arithmetic, and because |
3973 | | * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ |
3974 | 0 | const __m128i* const xsecret = (const __m128i *) secret; |
3975 | |
|
3976 | 0 | size_t i; |
3977 | 0 | for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) { |
3978 | | /* data_vec = xinput[i]; */ |
3979 | 0 | __m128i const data_vec = _mm_loadu_si128 (xinput+i); |
3980 | | /* key_vec = xsecret[i]; */ |
3981 | 0 | __m128i const key_vec = _mm_loadu_si128 (xsecret+i); |
3982 | | /* data_key = data_vec ^ key_vec; */ |
3983 | 0 | __m128i const data_key = _mm_xor_si128 (data_vec, key_vec); |
3984 | | /* data_key_lo = data_key >> 32; */ |
3985 | 0 | __m128i const data_key_lo = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); |
3986 | | /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ |
3987 | 0 | __m128i const product = _mm_mul_epu32 (data_key, data_key_lo); |
3988 | | /* xacc[i] += swap(data_vec); */ |
3989 | 0 | __m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2)); |
3990 | 0 | __m128i const sum = _mm_add_epi64(xacc[i], data_swap); |
3991 | | /* xacc[i] += product; */ |
3992 | 0 | xacc[i] = _mm_add_epi64(product, sum); |
3993 | 0 | } } |
3994 | 0 | } |
3995 | | |
3996 | | XXH_FORCE_INLINE XXH_TARGET_SSE2 void |
3997 | | XXH3_scrambleAcc_sse2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
3998 | 0 | { |
3999 | 0 | XXH_ASSERT((((size_t)acc) & 15) == 0); |
4000 | 0 | { __m128i* const xacc = (__m128i*) acc; |
4001 | | /* Unaligned. This is mainly for pointer arithmetic, and because |
4002 | | * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ |
4003 | 0 | const __m128i* const xsecret = (const __m128i *) secret; |
4004 | 0 | const __m128i prime32 = _mm_set1_epi32((int)XXH_PRIME32_1); |
4005 | |
|
4006 | 0 | size_t i; |
4007 | 0 | for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) { |
4008 | | /* xacc[i] ^= (xacc[i] >> 47) */ |
4009 | 0 | __m128i const acc_vec = xacc[i]; |
4010 | 0 | __m128i const shifted = _mm_srli_epi64 (acc_vec, 47); |
4011 | 0 | __m128i const data_vec = _mm_xor_si128 (acc_vec, shifted); |
4012 | | /* xacc[i] ^= xsecret[i]; */ |
4013 | 0 | __m128i const key_vec = _mm_loadu_si128 (xsecret+i); |
4014 | 0 | __m128i const data_key = _mm_xor_si128 (data_vec, key_vec); |
4015 | | |
4016 | | /* xacc[i] *= XXH_PRIME32_1; */ |
4017 | 0 | __m128i const data_key_hi = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); |
4018 | 0 | __m128i const prod_lo = _mm_mul_epu32 (data_key, prime32); |
4019 | 0 | __m128i const prod_hi = _mm_mul_epu32 (data_key_hi, prime32); |
4020 | 0 | xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32)); |
4021 | 0 | } |
4022 | 0 | } |
4023 | 0 | } |
4024 | | |
4025 | | XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_initCustomSecret_sse2(void* XXH_RESTRICT customSecret, xxh_u64 seed64) |
4026 | 0 | { |
4027 | 0 | XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0); |
4028 | 0 | (void)(&XXH_writeLE64); |
4029 | 0 | { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m128i); |
4030 | |
|
4031 | | # if defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER < 1900 |
4032 | | /* MSVC 32bit mode does not support _mm_set_epi64x before 2015 */ |
4033 | | XXH_ALIGN(16) const xxh_i64 seed64x2[2] = { (xxh_i64)seed64, (xxh_i64)(0U - seed64) }; |
4034 | | __m128i const seed = _mm_load_si128((__m128i const*)seed64x2); |
4035 | | # else |
4036 | 0 | __m128i const seed = _mm_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64); |
4037 | 0 | # endif |
4038 | 0 | int i; |
4039 | |
|
4040 | 0 | const void* const src16 = XXH3_kSecret; |
4041 | 0 | __m128i* dst16 = (__m128i*) customSecret; |
4042 | 0 | # if defined(__GNUC__) || defined(__clang__) |
4043 | | /* |
4044 | | * On GCC & Clang, marking 'dest' as modified will cause the compiler: |
4045 | | * - do not extract the secret from sse registers in the internal loop |
4046 | | * - use less common registers, and avoid pushing these reg into stack |
4047 | | */ |
4048 | 0 | XXH_COMPILER_GUARD(dst16); |
4049 | 0 | # endif |
4050 | 0 | XXH_ASSERT(((size_t)src16 & 15) == 0); /* control alignment */ |
4051 | 0 | XXH_ASSERT(((size_t)dst16 & 15) == 0); |
4052 | |
|
4053 | 0 | for (i=0; i < nbRounds; ++i) { |
4054 | 0 | dst16[i] = _mm_add_epi64(_mm_load_si128((const __m128i *)src16+i), seed); |
4055 | 0 | } } |
4056 | 0 | } |
4057 | | |
4058 | | #endif |
4059 | | |
4060 | | #if (XXH_VECTOR == XXH_NEON) |
4061 | | |
4062 | | XXH_FORCE_INLINE void |
4063 | | XXH3_accumulate_512_neon( void* XXH_RESTRICT acc, |
4064 | | const void* XXH_RESTRICT input, |
4065 | | const void* XXH_RESTRICT secret) |
4066 | | { |
4067 | | XXH_ASSERT((((size_t)acc) & 15) == 0); |
4068 | | { |
4069 | | uint64x2_t* const xacc = (uint64x2_t *) acc; |
4070 | | /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */ |
4071 | | uint8_t const* const xinput = (const uint8_t *) input; |
4072 | | uint8_t const* const xsecret = (const uint8_t *) secret; |
4073 | | |
4074 | | size_t i; |
4075 | | for (i=0; i < XXH_STRIPE_LEN / sizeof(uint64x2_t); i++) { |
4076 | | /* data_vec = xinput[i]; */ |
4077 | | uint8x16_t data_vec = vld1q_u8(xinput + (i * 16)); |
4078 | | /* key_vec = xsecret[i]; */ |
4079 | | uint8x16_t key_vec = vld1q_u8(xsecret + (i * 16)); |
4080 | | uint64x2_t data_key; |
4081 | | uint32x2_t data_key_lo, data_key_hi; |
4082 | | /* xacc[i] += swap(data_vec); */ |
4083 | | uint64x2_t const data64 = vreinterpretq_u64_u8(data_vec); |
4084 | | uint64x2_t const swapped = vextq_u64(data64, data64, 1); |
4085 | | xacc[i] = vaddq_u64 (xacc[i], swapped); |
4086 | | /* data_key = data_vec ^ key_vec; */ |
4087 | | data_key = vreinterpretq_u64_u8(veorq_u8(data_vec, key_vec)); |
4088 | | /* data_key_lo = (uint32x2_t) (data_key & 0xFFFFFFFF); |
4089 | | * data_key_hi = (uint32x2_t) (data_key >> 32); |
4090 | | * data_key = UNDEFINED; */ |
4091 | | XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi); |
4092 | | /* xacc[i] += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */ |
4093 | | xacc[i] = vmlal_u32 (xacc[i], data_key_lo, data_key_hi); |
4094 | | |
4095 | | } |
4096 | | } |
4097 | | } |
4098 | | |
4099 | | XXH_FORCE_INLINE void |
4100 | | XXH3_scrambleAcc_neon(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
4101 | | { |
4102 | | XXH_ASSERT((((size_t)acc) & 15) == 0); |
4103 | | |
4104 | | { uint64x2_t* xacc = (uint64x2_t*) acc; |
4105 | | uint8_t const* xsecret = (uint8_t const*) secret; |
4106 | | uint32x2_t prime = vdup_n_u32 (XXH_PRIME32_1); |
4107 | | |
4108 | | size_t i; |
4109 | | for (i=0; i < XXH_STRIPE_LEN/sizeof(uint64x2_t); i++) { |
4110 | | /* xacc[i] ^= (xacc[i] >> 47); */ |
4111 | | uint64x2_t acc_vec = xacc[i]; |
4112 | | uint64x2_t shifted = vshrq_n_u64 (acc_vec, 47); |
4113 | | uint64x2_t data_vec = veorq_u64 (acc_vec, shifted); |
4114 | | |
4115 | | /* xacc[i] ^= xsecret[i]; */ |
4116 | | uint8x16_t key_vec = vld1q_u8 (xsecret + (i * 16)); |
4117 | | uint64x2_t data_key = veorq_u64 (data_vec, vreinterpretq_u64_u8(key_vec)); |
4118 | | |
4119 | | /* xacc[i] *= XXH_PRIME32_1 */ |
4120 | | uint32x2_t data_key_lo, data_key_hi; |
4121 | | /* data_key_lo = (uint32x2_t) (xacc[i] & 0xFFFFFFFF); |
4122 | | * data_key_hi = (uint32x2_t) (xacc[i] >> 32); |
4123 | | * xacc[i] = UNDEFINED; */ |
4124 | | XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi); |
4125 | | { /* |
4126 | | * prod_hi = (data_key >> 32) * XXH_PRIME32_1; |
4127 | | * |
4128 | | * Avoid vmul_u32 + vshll_n_u32 since Clang 6 and 7 will |
4129 | | * incorrectly "optimize" this: |
4130 | | * tmp = vmul_u32(vmovn_u64(a), vmovn_u64(b)); |
4131 | | * shifted = vshll_n_u32(tmp, 32); |
4132 | | * to this: |
4133 | | * tmp = "vmulq_u64"(a, b); // no such thing! |
4134 | | * shifted = vshlq_n_u64(tmp, 32); |
4135 | | * |
4136 | | * However, unlike SSE, Clang lacks a 64-bit multiply routine |
4137 | | * for NEON, and it scalarizes two 64-bit multiplies instead. |
4138 | | * |
4139 | | * vmull_u32 has the same timing as vmul_u32, and it avoids |
4140 | | * this bug completely. |
4141 | | * See https://bugs.llvm.org/show_bug.cgi?id=39967 |
4142 | | */ |
4143 | | uint64x2_t prod_hi = vmull_u32 (data_key_hi, prime); |
4144 | | /* xacc[i] = prod_hi << 32; */ |
4145 | | xacc[i] = vshlq_n_u64(prod_hi, 32); |
4146 | | /* xacc[i] += (prod_hi & 0xFFFFFFFF) * XXH_PRIME32_1; */ |
4147 | | xacc[i] = vmlal_u32(xacc[i], data_key_lo, prime); |
4148 | | } |
4149 | | } } |
4150 | | } |
4151 | | |
4152 | | #endif |
4153 | | |
4154 | | #if (XXH_VECTOR == XXH_VSX) |
4155 | | |
4156 | | XXH_FORCE_INLINE void |
4157 | | XXH3_accumulate_512_vsx( void* XXH_RESTRICT acc, |
4158 | | const void* XXH_RESTRICT input, |
4159 | | const void* XXH_RESTRICT secret) |
4160 | | { |
4161 | | /* presumed aligned */ |
4162 | | unsigned int* const xacc = (unsigned int*) acc; |
4163 | | xxh_u64x2 const* const xinput = (xxh_u64x2 const*) input; /* no alignment restriction */ |
4164 | | xxh_u64x2 const* const xsecret = (xxh_u64x2 const*) secret; /* no alignment restriction */ |
4165 | | xxh_u64x2 const v32 = { 32, 32 }; |
4166 | | size_t i; |
4167 | | for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) { |
4168 | | /* data_vec = xinput[i]; */ |
4169 | | xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + i); |
4170 | | /* key_vec = xsecret[i]; */ |
4171 | | xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i); |
4172 | | xxh_u64x2 const data_key = data_vec ^ key_vec; |
4173 | | /* shuffled = (data_key << 32) | (data_key >> 32); */ |
4174 | | xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32); |
4175 | | /* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */ |
4176 | | xxh_u64x2 const product = XXH_vec_mulo((xxh_u32x4)data_key, shuffled); |
4177 | | /* acc_vec = xacc[i]; */ |
4178 | | xxh_u64x2 acc_vec = (xxh_u64x2)vec_xl(0, xacc + 4 * i); |
4179 | | acc_vec += product; |
4180 | | |
4181 | | /* swap high and low halves */ |
4182 | | #ifdef __s390x__ |
4183 | | acc_vec += vec_permi(data_vec, data_vec, 2); |
4184 | | #else |
4185 | | acc_vec += vec_xxpermdi(data_vec, data_vec, 2); |
4186 | | #endif |
4187 | | /* xacc[i] = acc_vec; */ |
4188 | | vec_xst((xxh_u32x4)acc_vec, 0, xacc + 4 * i); |
4189 | | } |
4190 | | } |
4191 | | |
4192 | | XXH_FORCE_INLINE void |
4193 | | XXH3_scrambleAcc_vsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
4194 | | { |
4195 | | XXH_ASSERT((((size_t)acc) & 15) == 0); |
4196 | | |
4197 | | { xxh_u64x2* const xacc = (xxh_u64x2*) acc; |
4198 | | const xxh_u64x2* const xsecret = (const xxh_u64x2*) secret; |
4199 | | /* constants */ |
4200 | | xxh_u64x2 const v32 = { 32, 32 }; |
4201 | | xxh_u64x2 const v47 = { 47, 47 }; |
4202 | | xxh_u32x4 const prime = { XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1 }; |
4203 | | size_t i; |
4204 | | for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) { |
4205 | | /* xacc[i] ^= (xacc[i] >> 47); */ |
4206 | | xxh_u64x2 const acc_vec = xacc[i]; |
4207 | | xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47); |
4208 | | |
4209 | | /* xacc[i] ^= xsecret[i]; */ |
4210 | | xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i); |
4211 | | xxh_u64x2 const data_key = data_vec ^ key_vec; |
4212 | | |
4213 | | /* xacc[i] *= XXH_PRIME32_1 */ |
4214 | | /* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & 0xFFFFFFFF); */ |
4215 | | xxh_u64x2 const prod_even = XXH_vec_mule((xxh_u32x4)data_key, prime); |
4216 | | /* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32); */ |
4217 | | xxh_u64x2 const prod_odd = XXH_vec_mulo((xxh_u32x4)data_key, prime); |
4218 | | xacc[i] = prod_odd + (prod_even << v32); |
4219 | | } } |
4220 | | } |
4221 | | |
4222 | | #endif |
4223 | | |
4224 | | /* scalar variants - universal */ |
4225 | | |
4226 | | XXH_FORCE_INLINE void |
4227 | | XXH3_accumulate_512_scalar(void* XXH_RESTRICT acc, |
4228 | | const void* XXH_RESTRICT input, |
4229 | | const void* XXH_RESTRICT secret) |
4230 | 0 | { |
4231 | 0 | xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */ |
4232 | 0 | const xxh_u8* const xinput = (const xxh_u8*) input; /* no alignment restriction */ |
4233 | 0 | const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */ |
4234 | 0 | size_t i; |
4235 | 0 | XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0); |
4236 | 0 | for (i=0; i < XXH_ACC_NB; i++) { |
4237 | 0 | xxh_u64 const data_val = XXH_readLE64(xinput + 8*i); |
4238 | 0 | xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + i*8); |
4239 | 0 | xacc[i ^ 1] += data_val; /* swap adjacent lanes */ |
4240 | 0 | xacc[i] += XXH_mult32to64(data_key & 0xFFFFFFFF, data_key >> 32); |
4241 | 0 | } |
4242 | 0 | } |
4243 | | |
4244 | | XXH_FORCE_INLINE void |
4245 | | XXH3_scrambleAcc_scalar(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
4246 | 0 | { |
4247 | 0 | xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */ |
4248 | 0 | const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */ |
4249 | 0 | size_t i; |
4250 | 0 | XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0); |
4251 | 0 | for (i=0; i < XXH_ACC_NB; i++) { |
4252 | 0 | xxh_u64 const key64 = XXH_readLE64(xsecret + 8*i); |
4253 | 0 | xxh_u64 acc64 = xacc[i]; |
4254 | 0 | acc64 = XXH_xorshift64(acc64, 47); |
4255 | 0 | acc64 ^= key64; |
4256 | 0 | acc64 *= XXH_PRIME32_1; |
4257 | 0 | xacc[i] = acc64; |
4258 | 0 | } |
4259 | 0 | } |
4260 | | |
4261 | | XXH_FORCE_INLINE void |
4262 | | XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64) |
4263 | 0 | { |
4264 | 0 | /* |
4265 | 0 | * We need a separate pointer for the hack below, |
4266 | 0 | * which requires a non-const pointer. |
4267 | 0 | * Any decent compiler will optimize this out otherwise. |
4268 | 0 | */ |
4269 | 0 | const xxh_u8* kSecretPtr = XXH3_kSecret; |
4270 | 0 | XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0); |
4271 | 0 |
|
4272 | 0 | #if defined(__clang__) && defined(__aarch64__) |
4273 | 0 | /* |
4274 | 0 | * UGLY HACK: |
4275 | 0 | * Clang generates a bunch of MOV/MOVK pairs for aarch64, and they are |
4276 | 0 | * placed sequentially, in order, at the top of the unrolled loop. |
4277 | 0 | * |
4278 | 0 | * While MOVK is great for generating constants (2 cycles for a 64-bit |
4279 | 0 | * constant compared to 4 cycles for LDR), long MOVK chains stall the |
4280 | 0 | * integer pipelines: |
4281 | 0 | * I L S |
4282 | 0 | * MOVK |
4283 | 0 | * MOVK |
4284 | 0 | * MOVK |
4285 | 0 | * MOVK |
4286 | 0 | * ADD |
4287 | 0 | * SUB STR |
4288 | 0 | * STR |
4289 | 0 | * By forcing loads from memory (as the asm line causes Clang to assume |
4290 | 0 | * that XXH3_kSecretPtr has been changed), the pipelines are used more |
4291 | 0 | * efficiently: |
4292 | 0 | * I L S |
4293 | 0 | * LDR |
4294 | 0 | * ADD LDR |
4295 | 0 | * SUB STR |
4296 | 0 | * STR |
4297 | 0 | * XXH3_64bits_withSeed, len == 256, Snapdragon 835 |
4298 | 0 | * without hack: 2654.4 MB/s |
4299 | 0 | * with hack: 3202.9 MB/s |
4300 | 0 | */ |
4301 | 0 | XXH_COMPILER_GUARD(kSecretPtr); |
4302 | 0 | #endif |
4303 | 0 | /* |
4304 | 0 | * Note: in debug mode, this overrides the asm optimization |
4305 | 0 | * and Clang will emit MOVK chains again. |
4306 | 0 | */ |
4307 | 0 | XXH_ASSERT(kSecretPtr == XXH3_kSecret); |
4308 | 0 |
|
4309 | 0 | { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16; |
4310 | 0 | int i; |
4311 | 0 | for (i=0; i < nbRounds; i++) { |
4312 | 0 | /* |
4313 | 0 | * The asm hack causes Clang to assume that kSecretPtr aliases with |
4314 | 0 | * customSecret, and on aarch64, this prevented LDP from merging two |
4315 | 0 | * loads together for free. Putting the loads together before the stores |
4316 | 0 | * properly generates LDP. |
4317 | 0 | */ |
4318 | 0 | xxh_u64 lo = XXH_readLE64(kSecretPtr + 16*i) + seed64; |
4319 | 0 | xxh_u64 hi = XXH_readLE64(kSecretPtr + 16*i + 8) - seed64; |
4320 | 0 | XXH_writeLE64((xxh_u8*)customSecret + 16*i, lo); |
4321 | 0 | XXH_writeLE64((xxh_u8*)customSecret + 16*i + 8, hi); |
4322 | 0 | } } |
4323 | 0 | } |
4324 | | |
4325 | | |
4326 | | typedef void (*XXH3_f_accumulate_512)(void* XXH_RESTRICT, const void*, const void*); |
4327 | | typedef void (*XXH3_f_scrambleAcc)(void* XXH_RESTRICT, const void*); |
4328 | | typedef void (*XXH3_f_initCustomSecret)(void* XXH_RESTRICT, xxh_u64); |
4329 | | |
4330 | | |
4331 | | #if (XXH_VECTOR == XXH_AVX512) |
4332 | | |
4333 | | #define XXH3_accumulate_512 XXH3_accumulate_512_avx512 |
4334 | | #define XXH3_scrambleAcc XXH3_scrambleAcc_avx512 |
4335 | | #define XXH3_initCustomSecret XXH3_initCustomSecret_avx512 |
4336 | | |
4337 | | #elif (XXH_VECTOR == XXH_AVX2) |
4338 | | |
4339 | | #define XXH3_accumulate_512 XXH3_accumulate_512_avx2 |
4340 | | #define XXH3_scrambleAcc XXH3_scrambleAcc_avx2 |
4341 | | #define XXH3_initCustomSecret XXH3_initCustomSecret_avx2 |
4342 | | |
4343 | | #elif (XXH_VECTOR == XXH_SSE2) |
4344 | | |
4345 | 0 | #define XXH3_accumulate_512 XXH3_accumulate_512_sse2 |
4346 | 0 | #define XXH3_scrambleAcc XXH3_scrambleAcc_sse2 |
4347 | 0 | #define XXH3_initCustomSecret XXH3_initCustomSecret_sse2 |
4348 | | |
4349 | | #elif (XXH_VECTOR == XXH_NEON) |
4350 | | |
4351 | | #define XXH3_accumulate_512 XXH3_accumulate_512_neon |
4352 | | #define XXH3_scrambleAcc XXH3_scrambleAcc_neon |
4353 | | #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar |
4354 | | |
4355 | | #elif (XXH_VECTOR == XXH_VSX) |
4356 | | |
4357 | | #define XXH3_accumulate_512 XXH3_accumulate_512_vsx |
4358 | | #define XXH3_scrambleAcc XXH3_scrambleAcc_vsx |
4359 | | #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar |
4360 | | |
4361 | | #else /* scalar */ |
4362 | | |
4363 | | #define XXH3_accumulate_512 XXH3_accumulate_512_scalar |
4364 | | #define XXH3_scrambleAcc XXH3_scrambleAcc_scalar |
4365 | | #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar |
4366 | | |
4367 | | #endif |
4368 | | |
4369 | | |
4370 | | |
4371 | | #ifndef XXH_PREFETCH_DIST |
4372 | | # ifdef __clang__ |
4373 | | # define XXH_PREFETCH_DIST 320 |
4374 | | # else |
4375 | | # if (XXH_VECTOR == XXH_AVX512) |
4376 | | # define XXH_PREFETCH_DIST 512 |
4377 | | # else |
4378 | | # define XXH_PREFETCH_DIST 384 |
4379 | | # endif |
4380 | | # endif /* __clang__ */ |
4381 | | #endif /* XXH_PREFETCH_DIST */ |
4382 | | |
4383 | | /* |
4384 | | * XXH3_accumulate() |
4385 | | * Loops over XXH3_accumulate_512(). |
4386 | | * Assumption: nbStripes will not overflow the secret size |
4387 | | */ |
4388 | | XXH_FORCE_INLINE void |
4389 | | XXH3_accumulate( xxh_u64* XXH_RESTRICT acc, |
4390 | | const xxh_u8* XXH_RESTRICT input, |
4391 | | const xxh_u8* XXH_RESTRICT secret, |
4392 | | size_t nbStripes, |
4393 | | XXH3_f_accumulate_512 f_acc512) |
4394 | 0 | { |
4395 | 0 | size_t n; |
4396 | 0 | for (n = 0; n < nbStripes; n++ ) { |
4397 | 0 | const xxh_u8* const in = input + n*XXH_STRIPE_LEN; |
4398 | 0 | XXH_PREFETCH(in + XXH_PREFETCH_DIST); |
4399 | 0 | f_acc512(acc, |
4400 | 0 | in, |
4401 | 0 | secret + n*XXH_SECRET_CONSUME_RATE); |
4402 | 0 | } |
4403 | 0 | } |
4404 | | |
4405 | | XXH_FORCE_INLINE void |
4406 | | XXH3_hashLong_internal_loop(xxh_u64* XXH_RESTRICT acc, |
4407 | | const xxh_u8* XXH_RESTRICT input, size_t len, |
4408 | | const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
4409 | | XXH3_f_accumulate_512 f_acc512, |
4410 | | XXH3_f_scrambleAcc f_scramble) |
4411 | 0 | { |
4412 | 0 | size_t const nbStripesPerBlock = (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE; |
4413 | 0 | size_t const block_len = XXH_STRIPE_LEN * nbStripesPerBlock; |
4414 | 0 | size_t const nb_blocks = (len - 1) / block_len; |
4415 | |
|
4416 | 0 | size_t n; |
4417 | |
|
4418 | 0 | XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); |
4419 | |
|
4420 | 0 | for (n = 0; n < nb_blocks; n++) { |
4421 | 0 | XXH3_accumulate(acc, input + n*block_len, secret, nbStripesPerBlock, f_acc512); |
4422 | 0 | f_scramble(acc, secret + secretSize - XXH_STRIPE_LEN); |
4423 | 0 | } |
4424 | | |
4425 | | /* last partial block */ |
4426 | 0 | XXH_ASSERT(len > XXH_STRIPE_LEN); |
4427 | 0 | { size_t const nbStripes = ((len - 1) - (block_len * nb_blocks)) / XXH_STRIPE_LEN; |
4428 | 0 | XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE)); |
4429 | 0 | XXH3_accumulate(acc, input + nb_blocks*block_len, secret, nbStripes, f_acc512); |
4430 | | |
4431 | | /* last stripe */ |
4432 | 0 | { const xxh_u8* const p = input + len - XXH_STRIPE_LEN; |
4433 | 0 | #define XXH_SECRET_LASTACC_START 7 /* not aligned on 8, last secret is different from acc & scrambler */ |
4434 | 0 | f_acc512(acc, p, secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START); |
4435 | 0 | } } |
4436 | 0 | } |
4437 | | |
4438 | | XXH_FORCE_INLINE xxh_u64 |
4439 | | XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret) |
4440 | 0 | { |
4441 | 0 | return XXH3_mul128_fold64( |
4442 | 0 | acc[0] ^ XXH_readLE64(secret), |
4443 | 0 | acc[1] ^ XXH_readLE64(secret+8) ); |
4444 | 0 | } |
4445 | | |
4446 | | static XXH64_hash_t |
4447 | | XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start) |
4448 | 0 | { |
4449 | 0 | xxh_u64 result64 = start; |
4450 | 0 | size_t i = 0; |
4451 | |
|
4452 | 0 | for (i = 0; i < 4; i++) { |
4453 | 0 | result64 += XXH3_mix2Accs(acc+2*i, secret + 16*i); |
4454 | | #if defined(__clang__) /* Clang */ \ |
4455 | | && (defined(__arm__) || defined(__thumb__)) /* ARMv7 */ \ |
4456 | | && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \ |
4457 | | && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */ |
4458 | | /* |
4459 | | * UGLY HACK: |
4460 | | * Prevent autovectorization on Clang ARMv7-a. Exact same problem as |
4461 | | * the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b. |
4462 | | * XXH3_64bits, len == 256, Snapdragon 835: |
4463 | | * without hack: 2063.7 MB/s |
4464 | | * with hack: 2560.7 MB/s |
4465 | | */ |
4466 | | XXH_COMPILER_GUARD(result64); |
4467 | | #endif |
4468 | 0 | } |
4469 | |
|
4470 | 0 | return XXH3_avalanche(result64); |
4471 | 0 | } |
4472 | | |
4473 | 0 | #define XXH3_INIT_ACC { XXH_PRIME32_3, XXH_PRIME64_1, XXH_PRIME64_2, XXH_PRIME64_3, \ |
4474 | 0 | XXH_PRIME64_4, XXH_PRIME32_2, XXH_PRIME64_5, XXH_PRIME32_1 } |
4475 | | |
4476 | | XXH_FORCE_INLINE XXH64_hash_t |
4477 | | XXH3_hashLong_64b_internal(const void* XXH_RESTRICT input, size_t len, |
4478 | | const void* XXH_RESTRICT secret, size_t secretSize, |
4479 | | XXH3_f_accumulate_512 f_acc512, |
4480 | | XXH3_f_scrambleAcc f_scramble) |
4481 | 0 | { |
4482 | 0 | XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC; |
4483 | |
|
4484 | 0 | XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, f_acc512, f_scramble); |
4485 | | |
4486 | | /* converge into final hash */ |
4487 | 0 | XXH_STATIC_ASSERT(sizeof(acc) == 64); |
4488 | | /* do not align on 8, so that the secret is different from the accumulator */ |
4489 | 0 | #define XXH_SECRET_MERGEACCS_START 11 |
4490 | 0 | XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); |
4491 | 0 | return XXH3_mergeAccs(acc, (const xxh_u8*)secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * XXH_PRIME64_1); |
4492 | 0 | } |
4493 | | |
4494 | | /* |
4495 | | * It's important for performance to transmit secret's size (when it's static) |
4496 | | * so that the compiler can properly optimize the vectorized loop. |
4497 | | * This makes a big performance difference for "medium" keys (<1 KB) when using AVX instruction set. |
4498 | | */ |
4499 | | XXH3_WITH_SECRET_INLINE XXH64_hash_t |
4500 | | XXH3_hashLong_64b_withSecret(const void* XXH_RESTRICT input, size_t len, |
4501 | | XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen) |
4502 | 0 | { |
4503 | 0 | (void)seed64; |
4504 | 0 | return XXH3_hashLong_64b_internal(input, len, secret, secretLen, XXH3_accumulate_512, XXH3_scrambleAcc); |
4505 | 0 | } |
4506 | | |
4507 | | /* |
4508 | | * It's preferable for performance that XXH3_hashLong is not inlined, |
4509 | | * as it results in a smaller function for small data, easier to the instruction cache. |
4510 | | * Note that inside this no_inline function, we do inline the internal loop, |
4511 | | * and provide a statically defined secret size to allow optimization of vector loop. |
4512 | | */ |
4513 | | XXH_NO_INLINE XXH64_hash_t |
4514 | | XXH3_hashLong_64b_default(const void* XXH_RESTRICT input, size_t len, |
4515 | | XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen) |
4516 | 0 | { |
4517 | 0 | (void)seed64; (void)secret; (void)secretLen; |
4518 | 0 | return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_accumulate_512, XXH3_scrambleAcc); |
4519 | 0 | } |
4520 | | |
4521 | | /* |
4522 | | * XXH3_hashLong_64b_withSeed(): |
4523 | | * Generate a custom key based on alteration of default XXH3_kSecret with the seed, |
4524 | | * and then use this key for long mode hashing. |
4525 | | * |
4526 | | * This operation is decently fast but nonetheless costs a little bit of time. |
4527 | | * Try to avoid it whenever possible (typically when seed==0). |
4528 | | * |
4529 | | * It's important for performance that XXH3_hashLong is not inlined. Not sure |
4530 | | * why (uop cache maybe?), but the difference is large and easily measurable. |
4531 | | */ |
4532 | | XXH_FORCE_INLINE XXH64_hash_t |
4533 | | XXH3_hashLong_64b_withSeed_internal(const void* input, size_t len, |
4534 | | XXH64_hash_t seed, |
4535 | | XXH3_f_accumulate_512 f_acc512, |
4536 | | XXH3_f_scrambleAcc f_scramble, |
4537 | | XXH3_f_initCustomSecret f_initSec) |
4538 | 0 | { |
4539 | 0 | if (seed == 0) |
4540 | 0 | return XXH3_hashLong_64b_internal(input, len, |
4541 | 0 | XXH3_kSecret, sizeof(XXH3_kSecret), |
4542 | 0 | f_acc512, f_scramble); |
4543 | 0 | { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; |
4544 | 0 | f_initSec(secret, seed); |
4545 | 0 | return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret), |
4546 | 0 | f_acc512, f_scramble); |
4547 | 0 | } |
4548 | 0 | } |
4549 | | |
4550 | | /* |
4551 | | * It's important for performance that XXH3_hashLong is not inlined. |
4552 | | */ |
4553 | | XXH_NO_INLINE XXH64_hash_t |
4554 | | XXH3_hashLong_64b_withSeed(const void* input, size_t len, |
4555 | | XXH64_hash_t seed, const xxh_u8* secret, size_t secretLen) |
4556 | 0 | { |
4557 | 0 | (void)secret; (void)secretLen; |
4558 | 0 | return XXH3_hashLong_64b_withSeed_internal(input, len, seed, |
4559 | 0 | XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret); |
4560 | 0 | } |
4561 | | |
4562 | | |
4563 | | typedef XXH64_hash_t (*XXH3_hashLong64_f)(const void* XXH_RESTRICT, size_t, |
4564 | | XXH64_hash_t, const xxh_u8* XXH_RESTRICT, size_t); |
4565 | | |
4566 | | XXH_FORCE_INLINE XXH64_hash_t |
4567 | | XXH3_64bits_internal(const void* XXH_RESTRICT input, size_t len, |
4568 | | XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen, |
4569 | | XXH3_hashLong64_f f_hashLong) |
4570 | 0 | { |
4571 | 0 | XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN); |
4572 | | /* |
4573 | | * If an action is to be taken if `secretLen` condition is not respected, |
4574 | | * it should be done here. |
4575 | | * For now, it's a contract pre-condition. |
4576 | | * Adding a check and a branch here would cost performance at every hash. |
4577 | | * Also, note that function signature doesn't offer room to return an error. |
4578 | | */ |
4579 | 0 | if (len <= 16) |
4580 | 0 | return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64); |
4581 | 0 | if (len <= 128) |
4582 | 0 | return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); |
4583 | 0 | if (len <= XXH3_MIDSIZE_MAX) |
4584 | 0 | return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); |
4585 | 0 | return f_hashLong(input, len, seed64, (const xxh_u8*)secret, secretLen); |
4586 | 0 | } |
4587 | | |
4588 | | |
4589 | | /* === Public entry point === */ |
4590 | | |
4591 | | /*! @ingroup xxh3_family */ |
4592 | | XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* input, size_t len) |
4593 | 0 | { |
4594 | 0 | return XXH3_64bits_internal(input, len, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_default); |
4595 | 0 | } |
4596 | | |
4597 | | /*! @ingroup xxh3_family */ |
4598 | | XXH_PUBLIC_API XXH64_hash_t |
4599 | | XXH3_64bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize) |
4600 | 0 | { |
4601 | 0 | return XXH3_64bits_internal(input, len, 0, secret, secretSize, XXH3_hashLong_64b_withSecret); |
4602 | 0 | } |
4603 | | |
4604 | | /*! @ingroup xxh3_family */ |
4605 | | XXH_PUBLIC_API XXH64_hash_t |
4606 | | XXH3_64bits_withSeed(const void* input, size_t len, XXH64_hash_t seed) |
4607 | 0 | { |
4608 | 0 | return XXH3_64bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed); |
4609 | 0 | } |
4610 | | |
4611 | | XXH_PUBLIC_API XXH64_hash_t |
4612 | | XXH3_64bits_withSecretandSeed(const void* input, size_t len, const void* secret, size_t secretSize, XXH64_hash_t seed) |
4613 | 0 | { |
4614 | 0 | if (len <= XXH3_MIDSIZE_MAX) |
4615 | 0 | return XXH3_64bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL); |
4616 | 0 | return XXH3_hashLong_64b_withSecret(input, len, seed, (const xxh_u8*)secret, secretSize); |
4617 | 0 | } |
4618 | | |
4619 | | |
4620 | | /* === XXH3 streaming === */ |
4621 | | |
4622 | | /* |
4623 | | * Malloc's a pointer that is always aligned to align. |
4624 | | * |
4625 | | * This must be freed with `XXH_alignedFree()`. |
4626 | | * |
4627 | | * malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte |
4628 | | * alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2 |
4629 | | * or on 32-bit, the 16 byte aligned loads in SSE2 and NEON. |
4630 | | * |
4631 | | * This underalignment previously caused a rather obvious crash which went |
4632 | | * completely unnoticed due to XXH3_createState() not actually being tested. |
4633 | | * Credit to RedSpah for noticing this bug. |
4634 | | * |
4635 | | * The alignment is done manually: Functions like posix_memalign or _mm_malloc |
4636 | | * are avoided: To maintain portability, we would have to write a fallback |
4637 | | * like this anyways, and besides, testing for the existence of library |
4638 | | * functions without relying on external build tools is impossible. |
4639 | | * |
4640 | | * The method is simple: Overallocate, manually align, and store the offset |
4641 | | * to the original behind the returned pointer. |
4642 | | * |
4643 | | * Align must be a power of 2 and 8 <= align <= 128. |
4644 | | */ |
4645 | | static void* XXH_alignedMalloc(size_t s, size_t align) |
4646 | 0 | { |
4647 | 0 | XXH_ASSERT(align <= 128 && align >= 8); /* range check */ |
4648 | 0 | XXH_ASSERT((align & (align-1)) == 0); /* power of 2 */ |
4649 | 0 | XXH_ASSERT(s != 0 && s < (s + align)); /* empty/overflow */ |
4650 | 0 | { /* Overallocate to make room for manual realignment and an offset byte */ |
4651 | 0 | xxh_u8* base = (xxh_u8*)XXH_malloc(s + align); |
4652 | 0 | if (base != NULL) { |
4653 | 0 | /* |
4654 | 0 | * Get the offset needed to align this pointer. |
4655 | 0 | * |
4656 | 0 | * Even if the returned pointer is aligned, there will always be |
4657 | 0 | * at least one byte to store the offset to the original pointer. |
4658 | 0 | */ |
4659 | 0 | size_t offset = align - ((size_t)base & (align - 1)); /* base % align */ |
4660 | 0 | /* Add the offset for the now-aligned pointer */ |
4661 | 0 | xxh_u8* ptr = base + offset; |
4662 | 0 |
|
4663 | 0 | XXH_ASSERT((size_t)ptr % align == 0); |
4664 | 0 |
|
4665 | 0 | /* Store the offset immediately before the returned pointer. */ |
4666 | 0 | ptr[-1] = (xxh_u8)offset; |
4667 | 0 | return ptr; |
4668 | 0 | } |
4669 | 0 | return NULL; |
4670 | 0 | } |
4671 | 0 | } |
4672 | | /* |
4673 | | * Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass |
4674 | | * normal malloc'd pointers, XXH_alignedMalloc has a specific data layout. |
4675 | | */ |
4676 | | static void XXH_alignedFree(void* p) |
4677 | 0 | { |
4678 | 0 | if (p != NULL) { |
4679 | 0 | xxh_u8* ptr = (xxh_u8*)p; |
4680 | 0 | /* Get the offset byte we added in XXH_malloc. */ |
4681 | 0 | xxh_u8 offset = ptr[-1]; |
4682 | 0 | /* Free the original malloc'd pointer */ |
4683 | 0 | xxh_u8* base = ptr - offset; |
4684 | 0 | XXH_free(base); |
4685 | 0 | } |
4686 | 0 | } |
4687 | | /*! @ingroup xxh3_family */ |
4688 | | XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void) |
4689 | 0 | { |
4690 | 0 | XXH3_state_t* const state = (XXH3_state_t*)XXH_alignedMalloc(sizeof(XXH3_state_t), 64); |
4691 | 0 | if (state==NULL) return NULL; |
4692 | 0 | XXH3_INITSTATE(state); |
4693 | 0 | return state; |
4694 | 0 | } |
4695 | | |
4696 | | /*! @ingroup xxh3_family */ |
4697 | | XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr) |
4698 | 0 | { |
4699 | 0 | XXH_alignedFree(statePtr); |
4700 | 0 | return XXH_OK; |
4701 | 0 | } |
4702 | | |
4703 | | /*! @ingroup xxh3_family */ |
4704 | | XXH_PUBLIC_API void |
4705 | | XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state) |
4706 | 0 | { |
4707 | 0 | XXH_memcpy(dst_state, src_state, sizeof(*dst_state)); |
4708 | 0 | } |
4709 | | |
4710 | | static void |
4711 | | XXH3_reset_internal(XXH3_state_t* statePtr, |
4712 | | XXH64_hash_t seed, |
4713 | | const void* secret, size_t secretSize) |
4714 | 0 | { |
4715 | 0 | size_t const initStart = offsetof(XXH3_state_t, bufferedSize); |
4716 | 0 | size_t const initLength = offsetof(XXH3_state_t, nbStripesPerBlock) - initStart; |
4717 | 0 | XXH_ASSERT(offsetof(XXH3_state_t, nbStripesPerBlock) > initStart); |
4718 | 0 | XXH_ASSERT(statePtr != NULL); |
4719 | | /* set members from bufferedSize to nbStripesPerBlock (excluded) to 0 */ |
4720 | 0 | memset((char*)statePtr + initStart, 0, initLength); |
4721 | 0 | statePtr->acc[0] = XXH_PRIME32_3; |
4722 | 0 | statePtr->acc[1] = XXH_PRIME64_1; |
4723 | 0 | statePtr->acc[2] = XXH_PRIME64_2; |
4724 | 0 | statePtr->acc[3] = XXH_PRIME64_3; |
4725 | 0 | statePtr->acc[4] = XXH_PRIME64_4; |
4726 | 0 | statePtr->acc[5] = XXH_PRIME32_2; |
4727 | 0 | statePtr->acc[6] = XXH_PRIME64_5; |
4728 | 0 | statePtr->acc[7] = XXH_PRIME32_1; |
4729 | 0 | statePtr->seed = seed; |
4730 | 0 | statePtr->useSeed = (seed != 0); |
4731 | 0 | statePtr->extSecret = (const unsigned char*)secret; |
4732 | 0 | XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); |
4733 | 0 | statePtr->secretLimit = secretSize - XXH_STRIPE_LEN; |
4734 | 0 | statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE; |
4735 | 0 | } |
4736 | | |
4737 | | /*! @ingroup xxh3_family */ |
4738 | | XXH_PUBLIC_API XXH_errorcode |
4739 | | XXH3_64bits_reset(XXH3_state_t* statePtr) |
4740 | 0 | { |
4741 | 0 | if (statePtr == NULL) return XXH_ERROR; |
4742 | 0 | XXH3_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE); |
4743 | 0 | return XXH_OK; |
4744 | 0 | } |
4745 | | |
4746 | | /*! @ingroup xxh3_family */ |
4747 | | XXH_PUBLIC_API XXH_errorcode |
4748 | | XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize) |
4749 | 0 | { |
4750 | 0 | if (statePtr == NULL) return XXH_ERROR; |
4751 | 0 | XXH3_reset_internal(statePtr, 0, secret, secretSize); |
4752 | 0 | if (secret == NULL) return XXH_ERROR; |
4753 | 0 | if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR; |
4754 | 0 | return XXH_OK; |
4755 | 0 | } |
4756 | | |
4757 | | /*! @ingroup xxh3_family */ |
4758 | | XXH_PUBLIC_API XXH_errorcode |
4759 | | XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed) |
4760 | 0 | { |
4761 | 0 | if (statePtr == NULL) return XXH_ERROR; |
4762 | 0 | if (seed==0) return XXH3_64bits_reset(statePtr); |
4763 | 0 | if ((seed != statePtr->seed) || (statePtr->extSecret != NULL)) |
4764 | 0 | XXH3_initCustomSecret(statePtr->customSecret, seed); |
4765 | 0 | XXH3_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE); |
4766 | 0 | return XXH_OK; |
4767 | 0 | } |
4768 | | |
4769 | | /*! @ingroup xxh3_family */ |
4770 | | XXH_PUBLIC_API XXH_errorcode |
4771 | | XXH3_64bits_reset_withSecretandSeed(XXH3_state_t* statePtr, const void* secret, size_t secretSize, XXH64_hash_t seed64) |
4772 | 0 | { |
4773 | 0 | if (statePtr == NULL) return XXH_ERROR; |
4774 | 0 | if (secret == NULL) return XXH_ERROR; |
4775 | 0 | if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR; |
4776 | 0 | XXH3_reset_internal(statePtr, seed64, secret, secretSize); |
4777 | 0 | statePtr->useSeed = 1; /* always, even if seed64==0 */ |
4778 | 0 | return XXH_OK; |
4779 | 0 | } |
4780 | | |
4781 | | /* Note : when XXH3_consumeStripes() is invoked, |
4782 | | * there must be a guarantee that at least one more byte must be consumed from input |
4783 | | * so that the function can blindly consume all stripes using the "normal" secret segment */ |
4784 | | XXH_FORCE_INLINE void |
4785 | | XXH3_consumeStripes(xxh_u64* XXH_RESTRICT acc, |
4786 | | size_t* XXH_RESTRICT nbStripesSoFarPtr, size_t nbStripesPerBlock, |
4787 | | const xxh_u8* XXH_RESTRICT input, size_t nbStripes, |
4788 | | const xxh_u8* XXH_RESTRICT secret, size_t secretLimit, |
4789 | | XXH3_f_accumulate_512 f_acc512, |
4790 | | XXH3_f_scrambleAcc f_scramble) |
4791 | 0 | { |
4792 | 0 | XXH_ASSERT(nbStripes <= nbStripesPerBlock); /* can handle max 1 scramble per invocation */ |
4793 | 0 | XXH_ASSERT(*nbStripesSoFarPtr < nbStripesPerBlock); |
4794 | 0 | if (nbStripesPerBlock - *nbStripesSoFarPtr <= nbStripes) { |
4795 | | /* need a scrambling operation */ |
4796 | 0 | size_t const nbStripesToEndofBlock = nbStripesPerBlock - *nbStripesSoFarPtr; |
4797 | 0 | size_t const nbStripesAfterBlock = nbStripes - nbStripesToEndofBlock; |
4798 | 0 | XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripesToEndofBlock, f_acc512); |
4799 | 0 | f_scramble(acc, secret + secretLimit); |
4800 | 0 | XXH3_accumulate(acc, input + nbStripesToEndofBlock * XXH_STRIPE_LEN, secret, nbStripesAfterBlock, f_acc512); |
4801 | 0 | *nbStripesSoFarPtr = nbStripesAfterBlock; |
4802 | 0 | } else { |
4803 | 0 | XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripes, f_acc512); |
4804 | 0 | *nbStripesSoFarPtr += nbStripes; |
4805 | 0 | } |
4806 | 0 | } |
4807 | | |
4808 | | #ifndef XXH3_STREAM_USE_STACK |
4809 | | # ifndef __clang__ /* clang doesn't need additional stack space */ |
4810 | | # define XXH3_STREAM_USE_STACK 1 |
4811 | | # endif |
4812 | | #endif |
4813 | | /* |
4814 | | * Both XXH3_64bits_update and XXH3_128bits_update use this routine. |
4815 | | */ |
4816 | | XXH_FORCE_INLINE XXH_errorcode |
4817 | | XXH3_update(XXH3_state_t* XXH_RESTRICT const state, |
4818 | | const xxh_u8* XXH_RESTRICT input, size_t len, |
4819 | | XXH3_f_accumulate_512 f_acc512, |
4820 | | XXH3_f_scrambleAcc f_scramble) |
4821 | 0 | { |
4822 | 0 | if (input==NULL) { |
4823 | 0 | XXH_ASSERT(len == 0); |
4824 | 0 | return XXH_OK; |
4825 | 0 | } |
4826 | | |
4827 | 0 | XXH_ASSERT(state != NULL); |
4828 | 0 | { const xxh_u8* const bEnd = input + len; |
4829 | 0 | const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret; |
4830 | | #if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1 |
4831 | | /* For some reason, gcc and MSVC seem to suffer greatly |
4832 | | * when operating accumulators directly into state. |
4833 | | * Operating into stack space seems to enable proper optimization. |
4834 | | * clang, on the other hand, doesn't seem to need this trick */ |
4835 | | XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[8]; memcpy(acc, state->acc, sizeof(acc)); |
4836 | | #else |
4837 | 0 | xxh_u64* XXH_RESTRICT const acc = state->acc; |
4838 | 0 | #endif |
4839 | 0 | state->totalLen += len; |
4840 | 0 | XXH_ASSERT(state->bufferedSize <= XXH3_INTERNALBUFFER_SIZE); |
4841 | | |
4842 | | /* small input : just fill in tmp buffer */ |
4843 | 0 | if (state->bufferedSize + len <= XXH3_INTERNALBUFFER_SIZE) { |
4844 | 0 | XXH_memcpy(state->buffer + state->bufferedSize, input, len); |
4845 | 0 | state->bufferedSize += (XXH32_hash_t)len; |
4846 | 0 | return XXH_OK; |
4847 | 0 | } |
4848 | | |
4849 | | /* total input is now > XXH3_INTERNALBUFFER_SIZE */ |
4850 | 0 | #define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / XXH_STRIPE_LEN) |
4851 | 0 | XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % XXH_STRIPE_LEN == 0); /* clean multiple */ |
4852 | | |
4853 | | /* |
4854 | | * Internal buffer is partially filled (always, except at beginning) |
4855 | | * Complete it, then consume it. |
4856 | | */ |
4857 | 0 | if (state->bufferedSize) { |
4858 | 0 | size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize; |
4859 | 0 | XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize); |
4860 | 0 | input += loadSize; |
4861 | 0 | XXH3_consumeStripes(acc, |
4862 | 0 | &state->nbStripesSoFar, state->nbStripesPerBlock, |
4863 | 0 | state->buffer, XXH3_INTERNALBUFFER_STRIPES, |
4864 | 0 | secret, state->secretLimit, |
4865 | 0 | f_acc512, f_scramble); |
4866 | 0 | state->bufferedSize = 0; |
4867 | 0 | } |
4868 | 0 | XXH_ASSERT(input < bEnd); |
4869 | | |
4870 | | /* large input to consume : ingest per full block */ |
4871 | 0 | if ((size_t)(bEnd - input) > state->nbStripesPerBlock * XXH_STRIPE_LEN) { |
4872 | 0 | size_t nbStripes = (size_t)(bEnd - 1 - input) / XXH_STRIPE_LEN; |
4873 | 0 | XXH_ASSERT(state->nbStripesPerBlock >= state->nbStripesSoFar); |
4874 | | /* join to current block's end */ |
4875 | 0 | { size_t const nbStripesToEnd = state->nbStripesPerBlock - state->nbStripesSoFar; |
4876 | 0 | XXH_ASSERT(nbStripes <= nbStripes); |
4877 | 0 | XXH3_accumulate(acc, input, secret + state->nbStripesSoFar * XXH_SECRET_CONSUME_RATE, nbStripesToEnd, f_acc512); |
4878 | 0 | f_scramble(acc, secret + state->secretLimit); |
4879 | 0 | state->nbStripesSoFar = 0; |
4880 | 0 | input += nbStripesToEnd * XXH_STRIPE_LEN; |
4881 | 0 | nbStripes -= nbStripesToEnd; |
4882 | 0 | } |
4883 | | /* consume per entire blocks */ |
4884 | 0 | while(nbStripes >= state->nbStripesPerBlock) { |
4885 | 0 | XXH3_accumulate(acc, input, secret, state->nbStripesPerBlock, f_acc512); |
4886 | 0 | f_scramble(acc, secret + state->secretLimit); |
4887 | 0 | input += state->nbStripesPerBlock * XXH_STRIPE_LEN; |
4888 | 0 | nbStripes -= state->nbStripesPerBlock; |
4889 | 0 | } |
4890 | | /* consume last partial block */ |
4891 | 0 | XXH3_accumulate(acc, input, secret, nbStripes, f_acc512); |
4892 | 0 | input += nbStripes * XXH_STRIPE_LEN; |
4893 | 0 | XXH_ASSERT(input < bEnd); /* at least some bytes left */ |
4894 | 0 | state->nbStripesSoFar = nbStripes; |
4895 | | /* buffer predecessor of last partial stripe */ |
4896 | 0 | XXH_memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN); |
4897 | 0 | XXH_ASSERT(bEnd - input <= XXH_STRIPE_LEN); |
4898 | 0 | } else { |
4899 | | /* content to consume <= block size */ |
4900 | | /* Consume input by a multiple of internal buffer size */ |
4901 | 0 | if (bEnd - input > XXH3_INTERNALBUFFER_SIZE) { |
4902 | 0 | const xxh_u8* const limit = bEnd - XXH3_INTERNALBUFFER_SIZE; |
4903 | 0 | do { |
4904 | 0 | XXH3_consumeStripes(acc, |
4905 | 0 | &state->nbStripesSoFar, state->nbStripesPerBlock, |
4906 | 0 | input, XXH3_INTERNALBUFFER_STRIPES, |
4907 | 0 | secret, state->secretLimit, |
4908 | 0 | f_acc512, f_scramble); |
4909 | 0 | input += XXH3_INTERNALBUFFER_SIZE; |
4910 | 0 | } while (input<limit); |
4911 | | /* buffer predecessor of last partial stripe */ |
4912 | 0 | XXH_memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN); |
4913 | 0 | } |
4914 | 0 | } |
4915 | | |
4916 | | /* Some remaining input (always) : buffer it */ |
4917 | 0 | XXH_ASSERT(input < bEnd); |
4918 | 0 | XXH_ASSERT(bEnd - input <= XXH3_INTERNALBUFFER_SIZE); |
4919 | 0 | XXH_ASSERT(state->bufferedSize == 0); |
4920 | 0 | XXH_memcpy(state->buffer, input, (size_t)(bEnd-input)); |
4921 | 0 | state->bufferedSize = (XXH32_hash_t)(bEnd-input); |
4922 | | #if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1 |
4923 | | /* save stack accumulators into state */ |
4924 | | memcpy(state->acc, acc, sizeof(acc)); |
4925 | | #endif |
4926 | 0 | } |
4927 | | |
4928 | 0 | return XXH_OK; |
4929 | 0 | } |
4930 | | |
4931 | | /*! @ingroup xxh3_family */ |
4932 | | XXH_PUBLIC_API XXH_errorcode |
4933 | | XXH3_64bits_update(XXH3_state_t* state, const void* input, size_t len) |
4934 | 0 | { |
4935 | 0 | return XXH3_update(state, (const xxh_u8*)input, len, |
4936 | 0 | XXH3_accumulate_512, XXH3_scrambleAcc); |
4937 | 0 | } |
4938 | | |
4939 | | |
4940 | | XXH_FORCE_INLINE void |
4941 | | XXH3_digest_long (XXH64_hash_t* acc, |
4942 | | const XXH3_state_t* state, |
4943 | | const unsigned char* secret) |
4944 | 0 | { |
4945 | | /* |
4946 | | * Digest on a local copy. This way, the state remains unaltered, and it can |
4947 | | * continue ingesting more input afterwards. |
4948 | | */ |
4949 | 0 | XXH_memcpy(acc, state->acc, sizeof(state->acc)); |
4950 | 0 | if (state->bufferedSize >= XXH_STRIPE_LEN) { |
4951 | 0 | size_t const nbStripes = (state->bufferedSize - 1) / XXH_STRIPE_LEN; |
4952 | 0 | size_t nbStripesSoFar = state->nbStripesSoFar; |
4953 | 0 | XXH3_consumeStripes(acc, |
4954 | 0 | &nbStripesSoFar, state->nbStripesPerBlock, |
4955 | 0 | state->buffer, nbStripes, |
4956 | 0 | secret, state->secretLimit, |
4957 | 0 | XXH3_accumulate_512, XXH3_scrambleAcc); |
4958 | | /* last stripe */ |
4959 | 0 | XXH3_accumulate_512(acc, |
4960 | 0 | state->buffer + state->bufferedSize - XXH_STRIPE_LEN, |
4961 | 0 | secret + state->secretLimit - XXH_SECRET_LASTACC_START); |
4962 | 0 | } else { /* bufferedSize < XXH_STRIPE_LEN */ |
4963 | 0 | xxh_u8 lastStripe[XXH_STRIPE_LEN]; |
4964 | 0 | size_t const catchupSize = XXH_STRIPE_LEN - state->bufferedSize; |
4965 | 0 | XXH_ASSERT(state->bufferedSize > 0); /* there is always some input buffered */ |
4966 | 0 | XXH_memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize); |
4967 | 0 | XXH_memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize); |
4968 | 0 | XXH3_accumulate_512(acc, |
4969 | 0 | lastStripe, |
4970 | 0 | secret + state->secretLimit - XXH_SECRET_LASTACC_START); |
4971 | 0 | } |
4972 | 0 | } |
4973 | | |
4974 | | /*! @ingroup xxh3_family */ |
4975 | | XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* state) |
4976 | 0 | { |
4977 | 0 | const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret; |
4978 | 0 | if (state->totalLen > XXH3_MIDSIZE_MAX) { |
4979 | 0 | XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB]; |
4980 | 0 | XXH3_digest_long(acc, state, secret); |
4981 | 0 | return XXH3_mergeAccs(acc, |
4982 | 0 | secret + XXH_SECRET_MERGEACCS_START, |
4983 | 0 | (xxh_u64)state->totalLen * XXH_PRIME64_1); |
4984 | 0 | } |
4985 | | /* totalLen <= XXH3_MIDSIZE_MAX: digesting a short input */ |
4986 | 0 | if (state->useSeed) |
4987 | 0 | return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed); |
4988 | 0 | return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen), |
4989 | 0 | secret, state->secretLimit + XXH_STRIPE_LEN); |
4990 | 0 | } |
4991 | | |
4992 | | |
4993 | | |
4994 | | /* ========================================== |
4995 | | * XXH3 128 bits (a.k.a XXH128) |
4996 | | * ========================================== |
4997 | | * XXH3's 128-bit variant has better mixing and strength than the 64-bit variant, |
4998 | | * even without counting the significantly larger output size. |
4999 | | * |
5000 | | * For example, extra steps are taken to avoid the seed-dependent collisions |
5001 | | * in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B). |
5002 | | * |
5003 | | * This strength naturally comes at the cost of some speed, especially on short |
5004 | | * lengths. Note that longer hashes are about as fast as the 64-bit version |
5005 | | * due to it using only a slight modification of the 64-bit loop. |
5006 | | * |
5007 | | * XXH128 is also more oriented towards 64-bit machines. It is still extremely |
5008 | | * fast for a _128-bit_ hash on 32-bit (it usually clears XXH64). |
5009 | | */ |
5010 | | |
5011 | | XXH_FORCE_INLINE XXH128_hash_t |
5012 | | XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
5013 | 0 | { |
5014 | | /* A doubled version of 1to3_64b with different constants. */ |
5015 | 0 | XXH_ASSERT(input != NULL); |
5016 | 0 | XXH_ASSERT(1 <= len && len <= 3); |
5017 | 0 | XXH_ASSERT(secret != NULL); |
5018 | | /* |
5019 | | * len = 1: combinedl = { input[0], 0x01, input[0], input[0] } |
5020 | | * len = 2: combinedl = { input[1], 0x02, input[0], input[1] } |
5021 | | * len = 3: combinedl = { input[2], 0x03, input[0], input[1] } |
5022 | | */ |
5023 | 0 | { xxh_u8 const c1 = input[0]; |
5024 | 0 | xxh_u8 const c2 = input[len >> 1]; |
5025 | 0 | xxh_u8 const c3 = input[len - 1]; |
5026 | 0 | xxh_u32 const combinedl = ((xxh_u32)c1 <<16) | ((xxh_u32)c2 << 24) |
5027 | 0 | | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8); |
5028 | 0 | xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13); |
5029 | 0 | xxh_u64 const bitflipl = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed; |
5030 | 0 | xxh_u64 const bitfliph = (XXH_readLE32(secret+8) ^ XXH_readLE32(secret+12)) - seed; |
5031 | 0 | xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl; |
5032 | 0 | xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph; |
5033 | 0 | XXH128_hash_t h128; |
5034 | 0 | h128.low64 = XXH64_avalanche(keyed_lo); |
5035 | 0 | h128.high64 = XXH64_avalanche(keyed_hi); |
5036 | 0 | return h128; |
5037 | 0 | } |
5038 | 0 | } |
5039 | | |
5040 | | XXH_FORCE_INLINE XXH128_hash_t |
5041 | | XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
5042 | 0 | { |
5043 | 0 | XXH_ASSERT(input != NULL); |
5044 | 0 | XXH_ASSERT(secret != NULL); |
5045 | 0 | XXH_ASSERT(4 <= len && len <= 8); |
5046 | 0 | seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32; |
5047 | 0 | { xxh_u32 const input_lo = XXH_readLE32(input); |
5048 | 0 | xxh_u32 const input_hi = XXH_readLE32(input + len - 4); |
5049 | 0 | xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32); |
5050 | 0 | xxh_u64 const bitflip = (XXH_readLE64(secret+16) ^ XXH_readLE64(secret+24)) + seed; |
5051 | 0 | xxh_u64 const keyed = input_64 ^ bitflip; |
5052 | | |
5053 | | /* Shift len to the left to ensure it is even, this avoids even multiplies. */ |
5054 | 0 | XXH128_hash_t m128 = XXH_mult64to128(keyed, XXH_PRIME64_1 + (len << 2)); |
5055 | |
|
5056 | 0 | m128.high64 += (m128.low64 << 1); |
5057 | 0 | m128.low64 ^= (m128.high64 >> 3); |
5058 | |
|
5059 | 0 | m128.low64 = XXH_xorshift64(m128.low64, 35); |
5060 | 0 | m128.low64 *= 0x9FB21C651E98DF25ULL; |
5061 | 0 | m128.low64 = XXH_xorshift64(m128.low64, 28); |
5062 | 0 | m128.high64 = XXH3_avalanche(m128.high64); |
5063 | 0 | return m128; |
5064 | 0 | } |
5065 | 0 | } |
5066 | | |
5067 | | XXH_FORCE_INLINE XXH128_hash_t |
5068 | | XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
5069 | 0 | { |
5070 | 0 | XXH_ASSERT(input != NULL); |
5071 | 0 | XXH_ASSERT(secret != NULL); |
5072 | 0 | XXH_ASSERT(9 <= len && len <= 16); |
5073 | 0 | { xxh_u64 const bitflipl = (XXH_readLE64(secret+32) ^ XXH_readLE64(secret+40)) - seed; |
5074 | 0 | xxh_u64 const bitfliph = (XXH_readLE64(secret+48) ^ XXH_readLE64(secret+56)) + seed; |
5075 | 0 | xxh_u64 const input_lo = XXH_readLE64(input); |
5076 | 0 | xxh_u64 input_hi = XXH_readLE64(input + len - 8); |
5077 | 0 | XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, XXH_PRIME64_1); |
5078 | | /* |
5079 | | * Put len in the middle of m128 to ensure that the length gets mixed to |
5080 | | * both the low and high bits in the 128x64 multiply below. |
5081 | | */ |
5082 | 0 | m128.low64 += (xxh_u64)(len - 1) << 54; |
5083 | 0 | input_hi ^= bitfliph; |
5084 | | /* |
5085 | | * Add the high 32 bits of input_hi to the high 32 bits of m128, then |
5086 | | * add the long product of the low 32 bits of input_hi and XXH_PRIME32_2 to |
5087 | | * the high 64 bits of m128. |
5088 | | * |
5089 | | * The best approach to this operation is different on 32-bit and 64-bit. |
5090 | | */ |
5091 | 0 | if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */ |
5092 | | /* |
5093 | | * 32-bit optimized version, which is more readable. |
5094 | | * |
5095 | | * On 32-bit, it removes an ADC and delays a dependency between the two |
5096 | | * halves of m128.high64, but it generates an extra mask on 64-bit. |
5097 | | */ |
5098 | 0 | m128.high64 += (input_hi & 0xFFFFFFFF00000000ULL) + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2); |
5099 | 0 | } else { |
5100 | | /* |
5101 | | * 64-bit optimized (albeit more confusing) version. |
5102 | | * |
5103 | | * Uses some properties of addition and multiplication to remove the mask: |
5104 | | * |
5105 | | * Let: |
5106 | | * a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF) |
5107 | | * b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000) |
5108 | | * c = XXH_PRIME32_2 |
5109 | | * |
5110 | | * a + (b * c) |
5111 | | * Inverse Property: x + y - x == y |
5112 | | * a + (b * (1 + c - 1)) |
5113 | | * Distributive Property: x * (y + z) == (x * y) + (x * z) |
5114 | | * a + (b * 1) + (b * (c - 1)) |
5115 | | * Identity Property: x * 1 == x |
5116 | | * a + b + (b * (c - 1)) |
5117 | | * |
5118 | | * Substitute a, b, and c: |
5119 | | * input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1)) |
5120 | | * |
5121 | | * Since input_hi.hi + input_hi.lo == input_hi, we get this: |
5122 | | * input_hi + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1)) |
5123 | | */ |
5124 | 0 | m128.high64 += input_hi + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2 - 1); |
5125 | 0 | } |
5126 | | /* m128 ^= XXH_swap64(m128 >> 64); */ |
5127 | 0 | m128.low64 ^= XXH_swap64(m128.high64); |
5128 | |
|
5129 | 0 | { /* 128x64 multiply: h128 = m128 * XXH_PRIME64_2; */ |
5130 | 0 | XXH128_hash_t h128 = XXH_mult64to128(m128.low64, XXH_PRIME64_2); |
5131 | 0 | h128.high64 += m128.high64 * XXH_PRIME64_2; |
5132 | |
|
5133 | 0 | h128.low64 = XXH3_avalanche(h128.low64); |
5134 | 0 | h128.high64 = XXH3_avalanche(h128.high64); |
5135 | 0 | return h128; |
5136 | 0 | } } |
5137 | 0 | } |
5138 | | |
5139 | | /* |
5140 | | * Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN |
5141 | | */ |
5142 | | XXH_FORCE_INLINE XXH128_hash_t |
5143 | | XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
5144 | 0 | { |
5145 | 0 | XXH_ASSERT(len <= 16); |
5146 | 0 | { if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed); |
5147 | 0 | if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed); |
5148 | 0 | if (len) return XXH3_len_1to3_128b(input, len, secret, seed); |
5149 | 0 | { XXH128_hash_t h128; |
5150 | 0 | xxh_u64 const bitflipl = XXH_readLE64(secret+64) ^ XXH_readLE64(secret+72); |
5151 | 0 | xxh_u64 const bitfliph = XXH_readLE64(secret+80) ^ XXH_readLE64(secret+88); |
5152 | 0 | h128.low64 = XXH64_avalanche(seed ^ bitflipl); |
5153 | 0 | h128.high64 = XXH64_avalanche( seed ^ bitfliph); |
5154 | 0 | return h128; |
5155 | 0 | } } |
5156 | 0 | } |
5157 | | |
5158 | | /* |
5159 | | * A bit slower than XXH3_mix16B, but handles multiply by zero better. |
5160 | | */ |
5161 | | XXH_FORCE_INLINE XXH128_hash_t |
5162 | | XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2, |
5163 | | const xxh_u8* secret, XXH64_hash_t seed) |
5164 | 0 | { |
5165 | 0 | acc.low64 += XXH3_mix16B (input_1, secret+0, seed); |
5166 | 0 | acc.low64 ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8); |
5167 | 0 | acc.high64 += XXH3_mix16B (input_2, secret+16, seed); |
5168 | 0 | acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8); |
5169 | 0 | return acc; |
5170 | 0 | } |
5171 | | |
5172 | | |
5173 | | XXH_FORCE_INLINE XXH128_hash_t |
5174 | | XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len, |
5175 | | const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
5176 | | XXH64_hash_t seed) |
5177 | 0 | { |
5178 | 0 | XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; |
5179 | 0 | XXH_ASSERT(16 < len && len <= 128); |
5180 | |
|
5181 | 0 | { XXH128_hash_t acc; |
5182 | 0 | acc.low64 = len * XXH_PRIME64_1; |
5183 | 0 | acc.high64 = 0; |
5184 | 0 | if (len > 32) { |
5185 | 0 | if (len > 64) { |
5186 | 0 | if (len > 96) { |
5187 | 0 | acc = XXH128_mix32B(acc, input+48, input+len-64, secret+96, seed); |
5188 | 0 | } |
5189 | 0 | acc = XXH128_mix32B(acc, input+32, input+len-48, secret+64, seed); |
5190 | 0 | } |
5191 | 0 | acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed); |
5192 | 0 | } |
5193 | 0 | acc = XXH128_mix32B(acc, input, input+len-16, secret, seed); |
5194 | 0 | { XXH128_hash_t h128; |
5195 | 0 | h128.low64 = acc.low64 + acc.high64; |
5196 | 0 | h128.high64 = (acc.low64 * XXH_PRIME64_1) |
5197 | 0 | + (acc.high64 * XXH_PRIME64_4) |
5198 | 0 | + ((len - seed) * XXH_PRIME64_2); |
5199 | 0 | h128.low64 = XXH3_avalanche(h128.low64); |
5200 | 0 | h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64); |
5201 | 0 | return h128; |
5202 | 0 | } |
5203 | 0 | } |
5204 | 0 | } |
5205 | | |
5206 | | XXH_NO_INLINE XXH128_hash_t |
5207 | | XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len, |
5208 | | const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
5209 | | XXH64_hash_t seed) |
5210 | 0 | { |
5211 | 0 | XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; |
5212 | 0 | XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX); |
5213 | |
|
5214 | 0 | { XXH128_hash_t acc; |
5215 | 0 | int const nbRounds = (int)len / 32; |
5216 | 0 | int i; |
5217 | 0 | acc.low64 = len * XXH_PRIME64_1; |
5218 | 0 | acc.high64 = 0; |
5219 | 0 | for (i=0; i<4; i++) { |
5220 | 0 | acc = XXH128_mix32B(acc, |
5221 | 0 | input + (32 * i), |
5222 | 0 | input + (32 * i) + 16, |
5223 | 0 | secret + (32 * i), |
5224 | 0 | seed); |
5225 | 0 | } |
5226 | 0 | acc.low64 = XXH3_avalanche(acc.low64); |
5227 | 0 | acc.high64 = XXH3_avalanche(acc.high64); |
5228 | 0 | XXH_ASSERT(nbRounds >= 4); |
5229 | 0 | for (i=4 ; i < nbRounds; i++) { |
5230 | 0 | acc = XXH128_mix32B(acc, |
5231 | 0 | input + (32 * i), |
5232 | 0 | input + (32 * i) + 16, |
5233 | 0 | secret + XXH3_MIDSIZE_STARTOFFSET + (32 * (i - 4)), |
5234 | 0 | seed); |
5235 | 0 | } |
5236 | | /* last bytes */ |
5237 | 0 | acc = XXH128_mix32B(acc, |
5238 | 0 | input + len - 16, |
5239 | 0 | input + len - 32, |
5240 | 0 | secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16, |
5241 | 0 | 0ULL - seed); |
5242 | |
|
5243 | 0 | { XXH128_hash_t h128; |
5244 | 0 | h128.low64 = acc.low64 + acc.high64; |
5245 | 0 | h128.high64 = (acc.low64 * XXH_PRIME64_1) |
5246 | 0 | + (acc.high64 * XXH_PRIME64_4) |
5247 | 0 | + ((len - seed) * XXH_PRIME64_2); |
5248 | 0 | h128.low64 = XXH3_avalanche(h128.low64); |
5249 | 0 | h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64); |
5250 | 0 | return h128; |
5251 | 0 | } |
5252 | 0 | } |
5253 | 0 | } |
5254 | | |
5255 | | XXH_FORCE_INLINE XXH128_hash_t |
5256 | | XXH3_hashLong_128b_internal(const void* XXH_RESTRICT input, size_t len, |
5257 | | const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
5258 | | XXH3_f_accumulate_512 f_acc512, |
5259 | | XXH3_f_scrambleAcc f_scramble) |
5260 | 0 | { |
5261 | 0 | XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC; |
5262 | |
|
5263 | 0 | XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, secret, secretSize, f_acc512, f_scramble); |
5264 | | |
5265 | | /* converge into final hash */ |
5266 | 0 | XXH_STATIC_ASSERT(sizeof(acc) == 64); |
5267 | 0 | XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); |
5268 | 0 | { XXH128_hash_t h128; |
5269 | 0 | h128.low64 = XXH3_mergeAccs(acc, |
5270 | 0 | secret + XXH_SECRET_MERGEACCS_START, |
5271 | 0 | (xxh_u64)len * XXH_PRIME64_1); |
5272 | 0 | h128.high64 = XXH3_mergeAccs(acc, |
5273 | 0 | secret + secretSize |
5274 | 0 | - sizeof(acc) - XXH_SECRET_MERGEACCS_START, |
5275 | 0 | ~((xxh_u64)len * XXH_PRIME64_2)); |
5276 | 0 | return h128; |
5277 | 0 | } |
5278 | 0 | } |
5279 | | |
5280 | | /* |
5281 | | * It's important for performance that XXH3_hashLong is not inlined. |
5282 | | */ |
5283 | | XXH_NO_INLINE XXH128_hash_t |
5284 | | XXH3_hashLong_128b_default(const void* XXH_RESTRICT input, size_t len, |
5285 | | XXH64_hash_t seed64, |
5286 | | const void* XXH_RESTRICT secret, size_t secretLen) |
5287 | 0 | { |
5288 | 0 | (void)seed64; (void)secret; (void)secretLen; |
5289 | 0 | return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), |
5290 | 0 | XXH3_accumulate_512, XXH3_scrambleAcc); |
5291 | 0 | } |
5292 | | |
5293 | | /* |
5294 | | * It's important for performance to pass @secretLen (when it's static) |
5295 | | * to the compiler, so that it can properly optimize the vectorized loop. |
5296 | | */ |
5297 | | XXH3_WITH_SECRET_INLINE XXH128_hash_t |
5298 | | XXH3_hashLong_128b_withSecret(const void* XXH_RESTRICT input, size_t len, |
5299 | | XXH64_hash_t seed64, |
5300 | | const void* XXH_RESTRICT secret, size_t secretLen) |
5301 | 0 | { |
5302 | 0 | (void)seed64; |
5303 | 0 | return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, secretLen, |
5304 | 0 | XXH3_accumulate_512, XXH3_scrambleAcc); |
5305 | 0 | } |
5306 | | |
5307 | | XXH_FORCE_INLINE XXH128_hash_t |
5308 | | XXH3_hashLong_128b_withSeed_internal(const void* XXH_RESTRICT input, size_t len, |
5309 | | XXH64_hash_t seed64, |
5310 | | XXH3_f_accumulate_512 f_acc512, |
5311 | | XXH3_f_scrambleAcc f_scramble, |
5312 | | XXH3_f_initCustomSecret f_initSec) |
5313 | 0 | { |
5314 | 0 | if (seed64 == 0) |
5315 | 0 | return XXH3_hashLong_128b_internal(input, len, |
5316 | 0 | XXH3_kSecret, sizeof(XXH3_kSecret), |
5317 | 0 | f_acc512, f_scramble); |
5318 | 0 | { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; |
5319 | 0 | f_initSec(secret, seed64); |
5320 | 0 | return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, sizeof(secret), |
5321 | 0 | f_acc512, f_scramble); |
5322 | 0 | } |
5323 | 0 | } |
5324 | | |
5325 | | /* |
5326 | | * It's important for performance that XXH3_hashLong is not inlined. |
5327 | | */ |
5328 | | XXH_NO_INLINE XXH128_hash_t |
5329 | | XXH3_hashLong_128b_withSeed(const void* input, size_t len, |
5330 | | XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen) |
5331 | 0 | { |
5332 | 0 | (void)secret; (void)secretLen; |
5333 | 0 | return XXH3_hashLong_128b_withSeed_internal(input, len, seed64, |
5334 | 0 | XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret); |
5335 | 0 | } |
5336 | | |
5337 | | typedef XXH128_hash_t (*XXH3_hashLong128_f)(const void* XXH_RESTRICT, size_t, |
5338 | | XXH64_hash_t, const void* XXH_RESTRICT, size_t); |
5339 | | |
5340 | | XXH_FORCE_INLINE XXH128_hash_t |
5341 | | XXH3_128bits_internal(const void* input, size_t len, |
5342 | | XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen, |
5343 | | XXH3_hashLong128_f f_hl128) |
5344 | 0 | { |
5345 | 0 | XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN); |
5346 | | /* |
5347 | | * If an action is to be taken if `secret` conditions are not respected, |
5348 | | * it should be done here. |
5349 | | * For now, it's a contract pre-condition. |
5350 | | * Adding a check and a branch here would cost performance at every hash. |
5351 | | */ |
5352 | 0 | if (len <= 16) |
5353 | 0 | return XXH3_len_0to16_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64); |
5354 | 0 | if (len <= 128) |
5355 | 0 | return XXH3_len_17to128_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); |
5356 | 0 | if (len <= XXH3_MIDSIZE_MAX) |
5357 | 0 | return XXH3_len_129to240_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); |
5358 | 0 | return f_hl128(input, len, seed64, secret, secretLen); |
5359 | 0 | } |
5360 | | |
5361 | | |
5362 | | /* === Public XXH128 API === */ |
5363 | | |
5364 | | /*! @ingroup xxh3_family */ |
5365 | | XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* input, size_t len) |
5366 | 0 | { |
5367 | 0 | return XXH3_128bits_internal(input, len, 0, |
5368 | 0 | XXH3_kSecret, sizeof(XXH3_kSecret), |
5369 | 0 | XXH3_hashLong_128b_default); |
5370 | 0 | } |
5371 | | |
5372 | | /*! @ingroup xxh3_family */ |
5373 | | XXH_PUBLIC_API XXH128_hash_t |
5374 | | XXH3_128bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize) |
5375 | 0 | { |
5376 | 0 | return XXH3_128bits_internal(input, len, 0, |
5377 | 0 | (const xxh_u8*)secret, secretSize, |
5378 | 0 | XXH3_hashLong_128b_withSecret); |
5379 | 0 | } |
5380 | | |
5381 | | /*! @ingroup xxh3_family */ |
5382 | | XXH_PUBLIC_API XXH128_hash_t |
5383 | | XXH3_128bits_withSeed(const void* input, size_t len, XXH64_hash_t seed) |
5384 | 0 | { |
5385 | 0 | return XXH3_128bits_internal(input, len, seed, |
5386 | 0 | XXH3_kSecret, sizeof(XXH3_kSecret), |
5387 | 0 | XXH3_hashLong_128b_withSeed); |
5388 | 0 | } |
5389 | | |
5390 | | /*! @ingroup xxh3_family */ |
5391 | | XXH_PUBLIC_API XXH128_hash_t |
5392 | | XXH3_128bits_withSecretandSeed(const void* input, size_t len, const void* secret, size_t secretSize, XXH64_hash_t seed) |
5393 | 0 | { |
5394 | 0 | if (len <= XXH3_MIDSIZE_MAX) |
5395 | 0 | return XXH3_128bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL); |
5396 | 0 | return XXH3_hashLong_128b_withSecret(input, len, seed, secret, secretSize); |
5397 | 0 | } |
5398 | | |
5399 | | /*! @ingroup xxh3_family */ |
5400 | | XXH_PUBLIC_API XXH128_hash_t |
5401 | | XXH128(const void* input, size_t len, XXH64_hash_t seed) |
5402 | 0 | { |
5403 | 0 | return XXH3_128bits_withSeed(input, len, seed); |
5404 | 0 | } |
5405 | | |
5406 | | |
5407 | | /* === XXH3 128-bit streaming === */ |
5408 | | |
5409 | | /* |
5410 | | * All initialization and update functions are identical to 64-bit streaming variant. |
5411 | | * The only difference is the finalization routine. |
5412 | | */ |
5413 | | |
5414 | | /*! @ingroup xxh3_family */ |
5415 | | XXH_PUBLIC_API XXH_errorcode |
5416 | | XXH3_128bits_reset(XXH3_state_t* statePtr) |
5417 | 0 | { |
5418 | 0 | return XXH3_64bits_reset(statePtr); |
5419 | 0 | } |
5420 | | |
5421 | | /*! @ingroup xxh3_family */ |
5422 | | XXH_PUBLIC_API XXH_errorcode |
5423 | | XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize) |
5424 | 0 | { |
5425 | 0 | return XXH3_64bits_reset_withSecret(statePtr, secret, secretSize); |
5426 | 0 | } |
5427 | | |
5428 | | /*! @ingroup xxh3_family */ |
5429 | | XXH_PUBLIC_API XXH_errorcode |
5430 | | XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed) |
5431 | 0 | { |
5432 | 0 | return XXH3_64bits_reset_withSeed(statePtr, seed); |
5433 | 0 | } |
5434 | | |
5435 | | /*! @ingroup xxh3_family */ |
5436 | | XXH_PUBLIC_API XXH_errorcode |
5437 | | XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr, const void* secret, size_t secretSize, XXH64_hash_t seed) |
5438 | 0 | { |
5439 | 0 | return XXH3_64bits_reset_withSecretandSeed(statePtr, secret, secretSize, seed); |
5440 | 0 | } |
5441 | | |
5442 | | /*! @ingroup xxh3_family */ |
5443 | | XXH_PUBLIC_API XXH_errorcode |
5444 | | XXH3_128bits_update(XXH3_state_t* state, const void* input, size_t len) |
5445 | 0 | { |
5446 | 0 | return XXH3_update(state, (const xxh_u8*)input, len, |
5447 | 0 | XXH3_accumulate_512, XXH3_scrambleAcc); |
5448 | 0 | } |
5449 | | |
5450 | | /*! @ingroup xxh3_family */ |
5451 | | XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* state) |
5452 | 0 | { |
5453 | 0 | const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret; |
5454 | 0 | if (state->totalLen > XXH3_MIDSIZE_MAX) { |
5455 | 0 | XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB]; |
5456 | 0 | XXH3_digest_long(acc, state, secret); |
5457 | 0 | XXH_ASSERT(state->secretLimit + XXH_STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); |
5458 | 0 | { XXH128_hash_t h128; |
5459 | 0 | h128.low64 = XXH3_mergeAccs(acc, |
5460 | 0 | secret + XXH_SECRET_MERGEACCS_START, |
5461 | 0 | (xxh_u64)state->totalLen * XXH_PRIME64_1); |
5462 | 0 | h128.high64 = XXH3_mergeAccs(acc, |
5463 | 0 | secret + state->secretLimit + XXH_STRIPE_LEN |
5464 | 0 | - sizeof(acc) - XXH_SECRET_MERGEACCS_START, |
5465 | 0 | ~((xxh_u64)state->totalLen * XXH_PRIME64_2)); |
5466 | 0 | return h128; |
5467 | 0 | } |
5468 | 0 | } |
5469 | | /* len <= XXH3_MIDSIZE_MAX : short code */ |
5470 | 0 | if (state->seed) |
5471 | 0 | return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed); |
5472 | 0 | return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen), |
5473 | 0 | secret, state->secretLimit + XXH_STRIPE_LEN); |
5474 | 0 | } |
5475 | | |
5476 | | /* 128-bit utility functions */ |
5477 | | |
5478 | | #include <string.h> /* memcmp, memcpy */ |
5479 | | |
5480 | | /* return : 1 is equal, 0 if different */ |
5481 | | /*! @ingroup xxh3_family */ |
5482 | | XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2) |
5483 | 0 | { |
5484 | 0 | /* note : XXH128_hash_t is compact, it has no padding byte */ |
5485 | 0 | return !(memcmp(&h1, &h2, sizeof(h1))); |
5486 | 0 | } |
5487 | | |
5488 | | /* This prototype is compatible with stdlib's qsort(). |
5489 | | * return : >0 if *h128_1 > *h128_2 |
5490 | | * <0 if *h128_1 < *h128_2 |
5491 | | * =0 if *h128_1 == *h128_2 */ |
5492 | | /*! @ingroup xxh3_family */ |
5493 | | XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2) |
5494 | 0 | { |
5495 | 0 | XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1; |
5496 | 0 | XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2; |
5497 | 0 | int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64); |
5498 | 0 | /* note : bets that, in most cases, hash values are different */ |
5499 | 0 | if (hcmp) return hcmp; |
5500 | 0 | return (h1.low64 > h2.low64) - (h2.low64 > h1.low64); |
5501 | 0 | } |
5502 | | |
5503 | | |
5504 | | /*====== Canonical representation ======*/ |
5505 | | /*! @ingroup xxh3_family */ |
5506 | | static zend_always_inline void |
5507 | | XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash) |
5508 | 0 | { |
5509 | 0 | XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t)); |
5510 | 0 | if (XXH_CPU_LITTLE_ENDIAN) { |
5511 | 0 | hash.high64 = XXH_swap64(hash.high64); |
5512 | 0 | hash.low64 = XXH_swap64(hash.low64); |
5513 | 0 | } |
5514 | 0 | XXH_memcpy(dst, &hash.high64, sizeof(hash.high64)); |
5515 | 0 | XXH_memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64)); |
5516 | 0 | } |
5517 | | |
5518 | | /*! @ingroup xxh3_family */ |
5519 | | XXH_PUBLIC_API XXH128_hash_t |
5520 | | XXH128_hashFromCanonical(const XXH128_canonical_t* src) |
5521 | 0 | { |
5522 | 0 | XXH128_hash_t h; |
5523 | 0 | h.high64 = XXH_readBE64(src); |
5524 | 0 | h.low64 = XXH_readBE64(src->digest + 8); |
5525 | 0 | return h; |
5526 | 0 | } |
5527 | | |
5528 | | |
5529 | | |
5530 | | /* ========================================== |
5531 | | * Secret generators |
5532 | | * ========================================== |
5533 | | */ |
5534 | | #define XXH_MIN(x, y) (((x) > (y)) ? (y) : (x)) |
5535 | | |
5536 | | static void XXH3_combine16(void* dst, XXH128_hash_t h128) |
5537 | 0 | { |
5538 | 0 | XXH_writeLE64( dst, XXH_readLE64(dst) ^ h128.low64 ); |
5539 | 0 | XXH_writeLE64( (char*)dst+8, XXH_readLE64((char*)dst+8) ^ h128.high64 ); |
5540 | 0 | } |
5541 | | |
5542 | | /*! @ingroup xxh3_family */ |
5543 | | XXH_PUBLIC_API XXH_errorcode |
5544 | | XXH3_generateSecret(void* secretBuffer, size_t secretSize, const void* customSeed, size_t customSeedSize) |
5545 | 0 | { |
5546 | 0 | XXH_ASSERT(secretBuffer != NULL); |
5547 | 0 | if (secretBuffer == NULL) return XXH_ERROR; |
5548 | 0 | XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); |
5549 | 0 | if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR; |
5550 | 0 | if (customSeedSize == 0) { |
5551 | 0 | customSeed = XXH3_kSecret; |
5552 | 0 | customSeedSize = XXH_SECRET_DEFAULT_SIZE; |
5553 | 0 | } |
5554 | 0 | XXH_ASSERT(customSeed != NULL); |
5555 | 0 | if (customSeed == NULL) return XXH_ERROR; |
5556 | 0 |
|
5557 | 0 | /* Fill secretBuffer with a copy of customSeed - repeat as needed */ |
5558 | 0 | { size_t pos = 0; |
5559 | 0 | while (pos < secretSize) { |
5560 | 0 | size_t const toCopy = XXH_MIN((secretSize - pos), customSeedSize); |
5561 | 0 | memcpy((char*)secretBuffer + pos, customSeed, toCopy); |
5562 | 0 | pos += toCopy; |
5563 | 0 | } } |
5564 | 0 |
|
5565 | 0 | { size_t const nbSeg16 = secretSize / 16; |
5566 | 0 | size_t n; |
5567 | 0 | XXH128_canonical_t scrambler; |
5568 | 0 | XXH128_canonicalFromHash(&scrambler, XXH128(customSeed, customSeedSize, 0)); |
5569 | 0 | for (n=0; n<nbSeg16; n++) { |
5570 | 0 | XXH128_hash_t const h128 = XXH128(&scrambler, sizeof(scrambler), n); |
5571 | 0 | XXH3_combine16((char*)secretBuffer + n*16, h128); |
5572 | 0 | } |
5573 | 0 | /* last segment */ |
5574 | 0 | XXH3_combine16((char*)secretBuffer + secretSize - 16, XXH128_hashFromCanonical(&scrambler)); |
5575 | 0 | } |
5576 | 0 | return XXH_OK; |
5577 | 0 | } |
5578 | | |
5579 | | /*! @ingroup xxh3_family */ |
5580 | | XXH_PUBLIC_API void |
5581 | | XXH3_generateSecret_fromSeed(void* secretBuffer, XXH64_hash_t seed) |
5582 | 0 | { |
5583 | 0 | XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; |
5584 | 0 | XXH3_initCustomSecret(secret, seed); |
5585 | 0 | XXH_ASSERT(secretBuffer != NULL); |
5586 | 0 | memcpy(secretBuffer, secret, XXH_SECRET_DEFAULT_SIZE); |
5587 | 0 | } |
5588 | | |
5589 | | |
5590 | | |
5591 | | /* Pop our optimization override from above */ |
5592 | | #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \ |
5593 | | && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ |
5594 | | && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */ |
5595 | | # pragma GCC pop_options |
5596 | | #endif |
5597 | | |
5598 | | #endif /* XXH_NO_LONG_LONG */ |
5599 | | |
5600 | | #endif /* XXH_NO_XXH3 */ |
5601 | | |
5602 | | /*! |
5603 | | * @} |
5604 | | */ |
5605 | | #endif /* XXH_IMPLEMENTATION */ |
5606 | | |
5607 | | |
5608 | | #if defined (__cplusplus) |
5609 | | } |
5610 | | #endif |