/src/php-src/ext/standard/crypt_sha256.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* SHA256-based Unix crypt implementation. |
2 | | Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>. */ |
3 | | /* Windows VC++ port by Pierre Joye <pierre@php.net> */ |
4 | | |
5 | | #include "php.h" |
6 | | #include "php_main.h" |
7 | | |
8 | | #include <errno.h> |
9 | | #include <limits.h> |
10 | | |
11 | | #ifdef PHP_WIN32 |
12 | | # define __alignof__ __alignof |
13 | | #else |
14 | | # ifndef HAVE_ALIGNOF |
15 | | # include <stddef.h> |
16 | | # define __alignof__(type) offsetof (struct { char c; type member;}, member) |
17 | | # endif |
18 | | #endif |
19 | | |
20 | | #include <stdio.h> |
21 | | #include <stdlib.h> |
22 | | |
23 | | #ifdef PHP_WIN32 |
24 | | # include <string.h> |
25 | | #else |
26 | | # include <sys/param.h> |
27 | | # include <sys/types.h> |
28 | | # include <string.h> |
29 | | #endif |
30 | | |
31 | | char * __php_stpncpy(char *dst, const char *src, size_t len) |
32 | 0 | { |
33 | 0 | size_t n = strlen(src); |
34 | 0 | if (n > len) { |
35 | 0 | n = len; |
36 | 0 | } |
37 | 0 | return strncpy(dst, src, len) + n; |
38 | 0 | } |
39 | | |
40 | | #ifndef MIN |
41 | | # define MIN(a, b) (((a) < (b)) ? (a) : (b)) |
42 | | #endif |
43 | | #ifndef MAX |
44 | | # define MAX(a, b) (((a) > (b)) ? (a) : (b)) |
45 | | #endif |
46 | | |
47 | | /* Structure to save state of computation between the single steps. */ |
48 | | struct sha256_ctx { |
49 | | uint32_t H[8]; |
50 | | |
51 | | uint32_t total[2]; |
52 | | uint32_t buflen; |
53 | | char buffer[128]; /* NB: always correctly aligned for uint32_t. */ |
54 | | }; |
55 | | |
56 | | #if defined(PHP_WIN32) || (!defined(WORDS_BIGENDIAN)) |
57 | | # define SWAP(n) \ |
58 | 0 | (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24)) |
59 | | #else |
60 | | # define SWAP(n) (n) |
61 | | #endif |
62 | | |
63 | | /* This array contains the bytes used to pad the buffer to the next |
64 | | 64-byte boundary. (FIPS 180-2:5.1.1) */ |
65 | | static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ }; |
66 | | |
67 | | |
68 | | /* Constants for SHA256 from FIPS 180-2:4.2.2. */ |
69 | | static const uint32_t K[64] = { |
70 | | 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, |
71 | | 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, |
72 | | 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, |
73 | | 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, |
74 | | 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, |
75 | | 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, |
76 | | 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, |
77 | | 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, |
78 | | 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, |
79 | | 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, |
80 | | 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, |
81 | | 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, |
82 | | 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, |
83 | | 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, |
84 | | 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, |
85 | | 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 |
86 | | }; |
87 | | |
88 | | |
89 | | /* Process LEN bytes of BUFFER, accumulating context into CTX. |
90 | | It is assumed that LEN % 64 == 0. */ |
91 | 0 | static void sha256_process_block (const void *buffer, size_t len, struct sha256_ctx *ctx) { |
92 | 0 | const uint32_t *words = buffer; |
93 | 0 | size_t nwords = len / sizeof (uint32_t); |
94 | 0 | unsigned int t; |
95 | |
|
96 | 0 | uint32_t a = ctx->H[0]; |
97 | 0 | uint32_t b = ctx->H[1]; |
98 | 0 | uint32_t c = ctx->H[2]; |
99 | 0 | uint32_t d = ctx->H[3]; |
100 | 0 | uint32_t e = ctx->H[4]; |
101 | 0 | uint32_t f = ctx->H[5]; |
102 | 0 | uint32_t g = ctx->H[6]; |
103 | 0 | uint32_t h = ctx->H[7]; |
104 | | |
105 | | /* First increment the byte count. FIPS 180-2 specifies the possible |
106 | | length of the file up to 2^64 bits. Here we only compute the |
107 | | number of bytes. Do a double word increment. */ |
108 | 0 | ctx->total[0] += (uint32_t)len; |
109 | 0 | if (ctx->total[0] < len) { |
110 | 0 | ++ctx->total[1]; |
111 | 0 | } |
112 | | |
113 | | /* Process all bytes in the buffer with 64 bytes in each round of |
114 | | the loop. */ |
115 | 0 | while (nwords > 0) { |
116 | 0 | uint32_t W[64]; |
117 | 0 | uint32_t a_save = a; |
118 | 0 | uint32_t b_save = b; |
119 | 0 | uint32_t c_save = c; |
120 | 0 | uint32_t d_save = d; |
121 | 0 | uint32_t e_save = e; |
122 | 0 | uint32_t f_save = f; |
123 | 0 | uint32_t g_save = g; |
124 | 0 | uint32_t h_save = h; |
125 | | |
126 | | /* Operators defined in FIPS 180-2:4.1.2. */ |
127 | 0 | #define Ch(x, y, z) ((x & y) ^ (~x & z)) |
128 | 0 | #define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z)) |
129 | 0 | #define S0(x) (CYCLIC (x, 2) ^ CYCLIC (x, 13) ^ CYCLIC (x, 22)) |
130 | 0 | #define S1(x) (CYCLIC (x, 6) ^ CYCLIC (x, 11) ^ CYCLIC (x, 25)) |
131 | 0 | #define R0(x) (CYCLIC (x, 7) ^ CYCLIC (x, 18) ^ (x >> 3)) |
132 | 0 | #define R1(x) (CYCLIC (x, 17) ^ CYCLIC (x, 19) ^ (x >> 10)) |
133 | | |
134 | | /* It is unfortunate that C does not provide an operator for |
135 | | cyclic rotation. Hope the C compiler is smart enough. */ |
136 | 0 | #define CYCLIC(w, s) ((w >> s) | (w << (32 - s))) |
137 | | |
138 | | /* Compute the message schedule according to FIPS 180-2:6.2.2 step 2. */ |
139 | 0 | for (t = 0; t < 16; ++t) { |
140 | 0 | W[t] = SWAP (*words); |
141 | 0 | ++words; |
142 | 0 | } |
143 | 0 | for (t = 16; t < 64; ++t) |
144 | 0 | W[t] = R1 (W[t - 2]) + W[t - 7] + R0 (W[t - 15]) + W[t - 16]; |
145 | | |
146 | | /* The actual computation according to FIPS 180-2:6.2.2 step 3. */ |
147 | 0 | for (t = 0; t < 64; ++t) { |
148 | 0 | uint32_t T1 = h + S1 (e) + Ch (e, f, g) + K[t] + W[t]; |
149 | 0 | uint32_t T2 = S0 (a) + Maj (a, b, c); |
150 | 0 | h = g; |
151 | 0 | g = f; |
152 | 0 | f = e; |
153 | 0 | e = d + T1; |
154 | 0 | d = c; |
155 | 0 | c = b; |
156 | 0 | b = a; |
157 | 0 | a = T1 + T2; |
158 | 0 | } |
159 | | |
160 | | /* Add the starting values of the context according to FIPS 180-2:6.2.2 |
161 | | step 4. */ |
162 | 0 | a += a_save; |
163 | 0 | b += b_save; |
164 | 0 | c += c_save; |
165 | 0 | d += d_save; |
166 | 0 | e += e_save; |
167 | 0 | f += f_save; |
168 | 0 | g += g_save; |
169 | 0 | h += h_save; |
170 | | |
171 | | /* Prepare for the next round. */ |
172 | 0 | nwords -= 16; |
173 | 0 | } |
174 | | |
175 | | /* Put checksum in context given as argument. */ |
176 | 0 | ctx->H[0] = a; |
177 | 0 | ctx->H[1] = b; |
178 | 0 | ctx->H[2] = c; |
179 | 0 | ctx->H[3] = d; |
180 | 0 | ctx->H[4] = e; |
181 | 0 | ctx->H[5] = f; |
182 | 0 | ctx->H[6] = g; |
183 | 0 | ctx->H[7] = h; |
184 | 0 | } |
185 | | |
186 | | |
187 | | /* Initialize structure containing state of computation. |
188 | | (FIPS 180-2:5.3.2) */ |
189 | 0 | static void sha256_init_ctx(struct sha256_ctx *ctx) { |
190 | 0 | ctx->H[0] = 0x6a09e667; |
191 | 0 | ctx->H[1] = 0xbb67ae85; |
192 | 0 | ctx->H[2] = 0x3c6ef372; |
193 | 0 | ctx->H[3] = 0xa54ff53a; |
194 | 0 | ctx->H[4] = 0x510e527f; |
195 | 0 | ctx->H[5] = 0x9b05688c; |
196 | 0 | ctx->H[6] = 0x1f83d9ab; |
197 | 0 | ctx->H[7] = 0x5be0cd19; |
198 | |
|
199 | 0 | ctx->total[0] = ctx->total[1] = 0; |
200 | 0 | ctx->buflen = 0; |
201 | 0 | } |
202 | | |
203 | | |
204 | | /* Process the remaining bytes in the internal buffer and the usual |
205 | | prolog according to the standard and write the result to RESBUF. |
206 | | |
207 | | IMPORTANT: On some systems it is required that RESBUF is correctly |
208 | | aligned for a 32 bits value. */ |
209 | 0 | static void * sha256_finish_ctx(struct sha256_ctx *ctx, void *resbuf) { |
210 | | /* Take yet unprocessed bytes into account. */ |
211 | 0 | uint32_t bytes = ctx->buflen; |
212 | 0 | size_t pad; |
213 | 0 | unsigned int i; |
214 | | |
215 | | /* Now count remaining bytes. */ |
216 | 0 | ctx->total[0] += bytes; |
217 | 0 | if (ctx->total[0] < bytes) { |
218 | 0 | ++ctx->total[1]; |
219 | 0 | } |
220 | |
|
221 | 0 | pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes; |
222 | 0 | memcpy(&ctx->buffer[bytes], fillbuf, pad); |
223 | | |
224 | | /* Put the 64-bit file length in *bits* at the end of the buffer. */ |
225 | 0 | *(uint32_t *) &ctx->buffer[bytes + pad + 4] = SWAP (ctx->total[0] << 3); |
226 | 0 | *(uint32_t *) &ctx->buffer[bytes + pad] = SWAP ((ctx->total[1] << 3) | |
227 | 0 | (ctx->total[0] >> 29)); |
228 | | |
229 | | /* Process last bytes. */ |
230 | 0 | sha256_process_block(ctx->buffer, bytes + pad + 8, ctx); |
231 | | |
232 | | /* Put result from CTX in first 32 bytes following RESBUF. */ |
233 | 0 | for (i = 0; i < 8; ++i) { |
234 | 0 | ((uint32_t *) resbuf)[i] = SWAP(ctx->H[i]); |
235 | 0 | } |
236 | |
|
237 | 0 | return resbuf; |
238 | 0 | } |
239 | | |
240 | | |
241 | 0 | static void sha256_process_bytes(const void *buffer, size_t len, struct sha256_ctx *ctx) { |
242 | | /* When we already have some bits in our internal buffer concatenate |
243 | | both inputs first. */ |
244 | 0 | if (ctx->buflen != 0) { |
245 | 0 | size_t left_over = ctx->buflen; |
246 | 0 | size_t add = 128 - left_over > len ? len : 128 - left_over; |
247 | |
|
248 | 0 | memcpy(&ctx->buffer[left_over], buffer, add); |
249 | 0 | ctx->buflen += (uint32_t)add; |
250 | |
|
251 | 0 | if (ctx->buflen > 64) { |
252 | 0 | sha256_process_block(ctx->buffer, ctx->buflen & ~63, ctx); |
253 | 0 | ctx->buflen &= 63; |
254 | | /* The regions in the following copy operation cannot overlap. */ |
255 | 0 | memcpy(ctx->buffer, &ctx->buffer[(left_over + add) & ~63], ctx->buflen); |
256 | 0 | } |
257 | |
|
258 | 0 | buffer = (const char *) buffer + add; |
259 | 0 | len -= add; |
260 | 0 | } |
261 | | |
262 | | /* Process available complete blocks. */ |
263 | 0 | if (len >= 64) { |
264 | | /* To check alignment gcc has an appropriate operator. Other |
265 | | compilers don't. */ |
266 | 0 | #if __GNUC__ >= 2 |
267 | 0 | # define UNALIGNED_P(p) (((uintptr_t) p) % __alignof__ (uint32_t) != 0) |
268 | | #else |
269 | | # define UNALIGNED_P(p) (((uintptr_t) p) % sizeof (uint32_t) != 0) |
270 | | #endif |
271 | 0 | if (UNALIGNED_P (buffer)) |
272 | 0 | while (len > 64) { |
273 | 0 | sha256_process_block(memcpy(ctx->buffer, buffer, 64), 64, ctx); |
274 | 0 | buffer = (const char *) buffer + 64; |
275 | 0 | len -= 64; |
276 | 0 | } else { |
277 | 0 | sha256_process_block(buffer, len & ~63, ctx); |
278 | 0 | buffer = (const char *) buffer + (len & ~63); |
279 | 0 | len &= 63; |
280 | 0 | } |
281 | 0 | } |
282 | | |
283 | | /* Move remaining bytes into internal buffer. */ |
284 | 0 | if (len > 0) { |
285 | 0 | size_t left_over = ctx->buflen; |
286 | |
|
287 | 0 | memcpy(&ctx->buffer[left_over], buffer, len); |
288 | 0 | left_over += len; |
289 | 0 | if (left_over >= 64) { |
290 | 0 | sha256_process_block(ctx->buffer, 64, ctx); |
291 | 0 | left_over -= 64; |
292 | 0 | memcpy(ctx->buffer, &ctx->buffer[64], left_over); |
293 | 0 | } |
294 | 0 | ctx->buflen = (uint32_t)left_over; |
295 | 0 | } |
296 | 0 | } |
297 | | |
298 | | |
299 | | /* Define our magic string to mark salt for SHA256 "encryption" |
300 | | replacement. */ |
301 | | static const char sha256_salt_prefix[] = "$5$"; |
302 | | |
303 | | /* Prefix for optional rounds specification. */ |
304 | | static const char sha256_rounds_prefix[] = "rounds="; |
305 | | |
306 | | /* Maximum salt string length. */ |
307 | | #define SALT_LEN_MAX 16 |
308 | | /* Default number of rounds if not explicitly specified. */ |
309 | 0 | #define ROUNDS_DEFAULT 5000 |
310 | | /* Minimum number of rounds. */ |
311 | 0 | #define ROUNDS_MIN 1000 |
312 | | /* Maximum number of rounds. */ |
313 | 0 | #define ROUNDS_MAX 999999999 |
314 | | |
315 | | /* Table with characters for base64 transformation. */ |
316 | | static const char b64t[64] ZEND_NONSTRING = |
317 | | "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; |
318 | | |
319 | | char * php_sha256_crypt_r(const char *key, const char *salt, char *buffer, int buflen) |
320 | 0 | { |
321 | | #ifdef PHP_WIN32 |
322 | | ZEND_SET_ALIGNED(32, unsigned char alt_result[32]); |
323 | | ZEND_SET_ALIGNED(32, unsigned char temp_result[32]); |
324 | | #else |
325 | 0 | ZEND_SET_ALIGNED(__alignof__ (uint32_t), unsigned char alt_result[32]); |
326 | 0 | ZEND_SET_ALIGNED(__alignof__ (uint32_t), unsigned char temp_result[32]); |
327 | 0 | #endif |
328 | |
|
329 | 0 | struct sha256_ctx ctx; |
330 | 0 | struct sha256_ctx alt_ctx; |
331 | 0 | size_t salt_len; |
332 | 0 | size_t key_len; |
333 | 0 | size_t cnt; |
334 | 0 | char *cp; |
335 | 0 | char *copied_key = NULL; |
336 | 0 | char *copied_salt = NULL; |
337 | 0 | char *p_bytes; |
338 | 0 | char *s_bytes; |
339 | | /* Default number of rounds. */ |
340 | 0 | size_t rounds = ROUNDS_DEFAULT; |
341 | 0 | bool rounds_custom = 0; |
342 | | |
343 | | /* Find beginning of salt string. The prefix should normally always |
344 | | be present. Just in case it is not. */ |
345 | 0 | if (strncmp(sha256_salt_prefix, salt, sizeof(sha256_salt_prefix) - 1) == 0) { |
346 | | /* Skip salt prefix. */ |
347 | 0 | salt += sizeof(sha256_salt_prefix) - 1; |
348 | 0 | } |
349 | |
|
350 | 0 | if (strncmp(salt, sha256_rounds_prefix, sizeof(sha256_rounds_prefix) - 1) == 0) { |
351 | 0 | const char *num = salt + sizeof(sha256_rounds_prefix) - 1; |
352 | 0 | char *endp; |
353 | 0 | zend_ulong srounds = ZEND_STRTOUL(num, &endp, 10); |
354 | 0 | if (*endp == '$') { |
355 | 0 | salt = endp + 1; |
356 | 0 | if (srounds < ROUNDS_MIN || srounds > ROUNDS_MAX) { |
357 | 0 | return NULL; |
358 | 0 | } |
359 | | |
360 | 0 | rounds = srounds; |
361 | 0 | rounds_custom = 1; |
362 | 0 | } |
363 | 0 | } |
364 | | |
365 | 0 | salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX); |
366 | 0 | key_len = strlen(key); |
367 | 0 | char *tmp_key = NULL; |
368 | 0 | ALLOCA_FLAG(use_heap_key); |
369 | 0 | char *tmp_salt = NULL; |
370 | 0 | ALLOCA_FLAG(use_heap_salt); |
371 | |
|
372 | 0 | SET_ALLOCA_FLAG(use_heap_key); |
373 | 0 | SET_ALLOCA_FLAG(use_heap_salt); |
374 | |
|
375 | 0 | if ((uintptr_t)key % __alignof__ (uint32_t) != 0) { |
376 | 0 | tmp_key = (char *) do_alloca(key_len + __alignof__(uint32_t), use_heap_key); |
377 | 0 | key = copied_key = memcpy(tmp_key + __alignof__(uint32_t) - (uintptr_t)tmp_key % __alignof__(uint32_t), key, key_len); |
378 | 0 | } |
379 | |
|
380 | 0 | if ((uintptr_t)salt % __alignof__(uint32_t) != 0) { |
381 | 0 | tmp_salt = (char *) do_alloca(salt_len + 1 + __alignof__(uint32_t), use_heap_salt); |
382 | 0 | salt = copied_salt = |
383 | 0 | memcpy(tmp_salt + __alignof__(uint32_t) - (uintptr_t)tmp_salt % __alignof__ (uint32_t), salt, salt_len); |
384 | 0 | copied_salt[salt_len] = 0; |
385 | 0 | } |
386 | | |
387 | | /* Prepare for the real work. */ |
388 | 0 | sha256_init_ctx(&ctx); |
389 | | |
390 | | /* Add the key string. */ |
391 | 0 | sha256_process_bytes(key, key_len, &ctx); |
392 | | |
393 | | /* The last part is the salt string. This must be at most 16 |
394 | | characters and it ends at the first `$' character (for |
395 | | compatibility with existing implementations). */ |
396 | 0 | sha256_process_bytes(salt, salt_len, &ctx); |
397 | | |
398 | | |
399 | | /* Compute alternate SHA256 sum with input KEY, SALT, and KEY. The |
400 | | final result will be added to the first context. */ |
401 | 0 | sha256_init_ctx(&alt_ctx); |
402 | | |
403 | | /* Add key. */ |
404 | 0 | sha256_process_bytes(key, key_len, &alt_ctx); |
405 | | |
406 | | /* Add salt. */ |
407 | 0 | sha256_process_bytes(salt, salt_len, &alt_ctx); |
408 | | |
409 | | /* Add key again. */ |
410 | 0 | sha256_process_bytes(key, key_len, &alt_ctx); |
411 | | |
412 | | /* Now get result of this (32 bytes) and add it to the other |
413 | | context. */ |
414 | 0 | sha256_finish_ctx(&alt_ctx, alt_result); |
415 | | |
416 | | /* Add for any character in the key one byte of the alternate sum. */ |
417 | 0 | for (cnt = key_len; cnt > 32; cnt -= 32) { |
418 | 0 | sha256_process_bytes(alt_result, 32, &ctx); |
419 | 0 | } |
420 | 0 | sha256_process_bytes(alt_result, cnt, &ctx); |
421 | | |
422 | | /* Take the binary representation of the length of the key and for every |
423 | | 1 add the alternate sum, for every 0 the key. */ |
424 | 0 | for (cnt = key_len; cnt > 0; cnt >>= 1) { |
425 | 0 | if ((cnt & 1) != 0) { |
426 | 0 | sha256_process_bytes(alt_result, 32, &ctx); |
427 | 0 | } else { |
428 | 0 | sha256_process_bytes(key, key_len, &ctx); |
429 | 0 | } |
430 | 0 | } |
431 | | |
432 | | /* Create intermediate result. */ |
433 | 0 | sha256_finish_ctx(&ctx, alt_result); |
434 | | |
435 | | /* Start computation of P byte sequence. */ |
436 | 0 | sha256_init_ctx(&alt_ctx); |
437 | | |
438 | | /* For every character in the password add the entire password. */ |
439 | 0 | for (cnt = 0; cnt < key_len; ++cnt) { |
440 | 0 | sha256_process_bytes(key, key_len, &alt_ctx); |
441 | 0 | } |
442 | | |
443 | | /* Finish the digest. */ |
444 | 0 | sha256_finish_ctx(&alt_ctx, temp_result); |
445 | | |
446 | | /* Create byte sequence P. */ |
447 | 0 | ALLOCA_FLAG(use_heap_p_bytes); |
448 | 0 | cp = p_bytes = do_alloca(key_len, use_heap_p_bytes); |
449 | 0 | for (cnt = key_len; cnt >= 32; cnt -= 32) { |
450 | 0 | cp = zend_mempcpy((void *)cp, (const void *)temp_result, 32); |
451 | 0 | } |
452 | 0 | memcpy(cp, temp_result, cnt); |
453 | | |
454 | | /* Start computation of S byte sequence. */ |
455 | 0 | sha256_init_ctx(&alt_ctx); |
456 | | |
457 | | /* For every character in the password add the entire password. */ |
458 | 0 | for (cnt = 0; cnt < (size_t) (16 + alt_result[0]); ++cnt) { |
459 | 0 | sha256_process_bytes(salt, salt_len, &alt_ctx); |
460 | 0 | } |
461 | | |
462 | | /* Finish the digest. */ |
463 | 0 | sha256_finish_ctx(&alt_ctx, temp_result); |
464 | | |
465 | | /* Create byte sequence S. */ |
466 | 0 | ALLOCA_FLAG(use_heap_s_bytes); |
467 | 0 | cp = s_bytes = do_alloca(salt_len, use_heap_s_bytes); |
468 | 0 | for (cnt = salt_len; cnt >= 32; cnt -= 32) { |
469 | 0 | cp = zend_mempcpy(cp, temp_result, 32); |
470 | 0 | } |
471 | 0 | memcpy(cp, temp_result, cnt); |
472 | | |
473 | | /* Repeatedly run the collected hash value through SHA256 to burn |
474 | | CPU cycles. */ |
475 | 0 | for (cnt = 0; cnt < rounds; ++cnt) { |
476 | | /* New context. */ |
477 | 0 | sha256_init_ctx(&ctx); |
478 | | |
479 | | /* Add key or last result. */ |
480 | 0 | if ((cnt & 1) != 0) { |
481 | 0 | sha256_process_bytes(p_bytes, key_len, &ctx); |
482 | 0 | } else { |
483 | 0 | sha256_process_bytes(alt_result, 32, &ctx); |
484 | 0 | } |
485 | | |
486 | | /* Add salt for numbers not divisible by 3. */ |
487 | 0 | if (cnt % 3 != 0) { |
488 | 0 | sha256_process_bytes(s_bytes, salt_len, &ctx); |
489 | 0 | } |
490 | | |
491 | | /* Add key for numbers not divisible by 7. */ |
492 | 0 | if (cnt % 7 != 0) { |
493 | 0 | sha256_process_bytes(p_bytes, key_len, &ctx); |
494 | 0 | } |
495 | | |
496 | | /* Add key or last result. */ |
497 | 0 | if ((cnt & 1) != 0) { |
498 | 0 | sha256_process_bytes(alt_result, 32, &ctx); |
499 | 0 | } else { |
500 | 0 | sha256_process_bytes(p_bytes, key_len, &ctx); |
501 | 0 | } |
502 | | |
503 | | /* Create intermediate result. */ |
504 | 0 | sha256_finish_ctx(&ctx, alt_result); |
505 | 0 | } |
506 | | |
507 | | /* Now we can construct the result string. It consists of three |
508 | | parts. */ |
509 | 0 | cp = __php_stpncpy(buffer, sha256_salt_prefix, MAX(0, buflen)); |
510 | 0 | buflen -= sizeof(sha256_salt_prefix) - 1; |
511 | |
|
512 | 0 | if (rounds_custom) { |
513 | | #ifdef PHP_WIN32 |
514 | | int n = _snprintf(cp, MAX(0, buflen), "%s" ZEND_ULONG_FMT "$", sha256_rounds_prefix, rounds); |
515 | | #else |
516 | 0 | int n = snprintf(cp, MAX(0, buflen), "%s%zu$", sha256_rounds_prefix, rounds); |
517 | 0 | #endif |
518 | 0 | cp += n; |
519 | 0 | buflen -= n; |
520 | 0 | } |
521 | |
|
522 | 0 | cp = __php_stpncpy(cp, salt, MIN ((size_t) MAX (0, buflen), salt_len)); |
523 | 0 | buflen -= MIN(MAX (0, buflen), (int)salt_len); |
524 | |
|
525 | 0 | if (buflen > 0) { |
526 | 0 | *cp++ = '$'; |
527 | 0 | --buflen; |
528 | 0 | } |
529 | |
|
530 | 0 | #define b64_from_24bit(B2, B1, B0, N) \ |
531 | 0 | do { \ |
532 | 0 | unsigned int w = ((B2) << 16) | ((B1) << 8) | (B0); \ |
533 | 0 | int n = (N); \ |
534 | 0 | while (n-- > 0 && buflen > 0) \ |
535 | 0 | { \ |
536 | 0 | *cp++ = b64t[w & 0x3f]; \ |
537 | 0 | --buflen; \ |
538 | 0 | w >>= 6; \ |
539 | 0 | } \ |
540 | 0 | } while (0) |
541 | |
|
542 | 0 | b64_from_24bit(alt_result[0], alt_result[10], alt_result[20], 4); |
543 | 0 | b64_from_24bit(alt_result[21], alt_result[1], alt_result[11], 4); |
544 | 0 | b64_from_24bit(alt_result[12], alt_result[22], alt_result[2], 4); |
545 | 0 | b64_from_24bit(alt_result[3], alt_result[13], alt_result[23], 4); |
546 | 0 | b64_from_24bit(alt_result[24], alt_result[4], alt_result[14], 4); |
547 | 0 | b64_from_24bit(alt_result[15], alt_result[25], alt_result[5], 4); |
548 | 0 | b64_from_24bit(alt_result[6], alt_result[16], alt_result[26], 4); |
549 | 0 | b64_from_24bit(alt_result[27], alt_result[7], alt_result[17], 4); |
550 | 0 | b64_from_24bit(alt_result[18], alt_result[28], alt_result[8], 4); |
551 | 0 | b64_from_24bit(alt_result[9], alt_result[19], alt_result[29], 4); |
552 | 0 | b64_from_24bit(0, alt_result[31], alt_result[30], 3); |
553 | 0 | if (buflen <= 0) { |
554 | 0 | errno = ERANGE; |
555 | 0 | buffer = NULL; |
556 | 0 | } else |
557 | 0 | *cp = '\0'; /* Terminate the string. */ |
558 | | |
559 | | /* Clear the buffer for the intermediate result so that people |
560 | | attaching to processes or reading core dumps cannot get any |
561 | | information. We do it in this way to clear correct_words[] |
562 | | inside the SHA256 implementation as well. */ |
563 | 0 | sha256_init_ctx(&ctx); |
564 | 0 | sha256_finish_ctx(&ctx, alt_result); |
565 | 0 | ZEND_SECURE_ZERO(temp_result, sizeof(temp_result)); |
566 | 0 | ZEND_SECURE_ZERO(p_bytes, key_len); |
567 | 0 | ZEND_SECURE_ZERO(s_bytes, salt_len); |
568 | 0 | ZEND_SECURE_ZERO(&ctx, sizeof(ctx)); |
569 | 0 | ZEND_SECURE_ZERO(&alt_ctx, sizeof(alt_ctx)); |
570 | |
|
571 | 0 | if (copied_key != NULL) { |
572 | 0 | ZEND_SECURE_ZERO(copied_key, key_len); |
573 | 0 | } |
574 | 0 | if (copied_salt != NULL) { |
575 | 0 | ZEND_SECURE_ZERO(copied_salt, salt_len); |
576 | 0 | } |
577 | 0 | if (tmp_key != NULL) { |
578 | 0 | free_alloca(tmp_key, use_heap_key); |
579 | 0 | } |
580 | 0 | if (tmp_salt != NULL) { |
581 | 0 | free_alloca(tmp_salt, use_heap_salt); |
582 | 0 | } |
583 | 0 | free_alloca(p_bytes, use_heap_p_bytes); |
584 | 0 | free_alloca(s_bytes, use_heap_s_bytes); |
585 | |
|
586 | 0 | return buffer; |
587 | 0 | } |
588 | | |
589 | | |
590 | | /* This entry point is equivalent to the `crypt' function in Unix |
591 | | libcs. */ |
592 | | char * php_sha256_crypt(const char *key, const char *salt) |
593 | 0 | { |
594 | | /* We don't want to have an arbitrary limit in the size of the |
595 | | password. We can compute an upper bound for the size of the |
596 | | result in advance and so we can prepare the buffer we pass to |
597 | | `sha256_crypt_r'. */ |
598 | 0 | ZEND_TLS char *buffer; |
599 | 0 | ZEND_TLS int buflen = 0; |
600 | 0 | int needed = (sizeof(sha256_salt_prefix) - 1 |
601 | 0 | + sizeof(sha256_rounds_prefix) + 9 + 1 |
602 | 0 | + (int)strlen(salt) + 1 + 43 + 1); |
603 | |
|
604 | 0 | if (buflen < needed) { |
605 | 0 | char *new_buffer = (char *) realloc(buffer, needed); |
606 | 0 | if (new_buffer == NULL) { |
607 | 0 | return NULL; |
608 | 0 | } |
609 | | |
610 | 0 | buffer = new_buffer; |
611 | 0 | buflen = needed; |
612 | 0 | } |
613 | | |
614 | 0 | return php_sha256_crypt_r(key, salt, buffer, buflen); |
615 | 0 | } |
616 | | |
617 | | |
618 | | #ifdef TEST |
619 | | static const struct |
620 | | { |
621 | | const char *input; |
622 | | const char result[32]; |
623 | | } tests[] = |
624 | | { |
625 | | /* Test vectors from FIPS 180-2: appendix B.1. */ |
626 | | { "abc", |
627 | | "\xba\x78\x16\xbf\x8f\x01\xcf\xea\x41\x41\x40\xde\x5d\xae\x22\x23" |
628 | | "\xb0\x03\x61\xa3\x96\x17\x7a\x9c\xb4\x10\xff\x61\xf2\x00\x15\xad" }, |
629 | | /* Test vectors from FIPS 180-2: appendix B.2. */ |
630 | | { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", |
631 | | "\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39" |
632 | | "\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1" }, |
633 | | /* Test vectors from the NESSIE project. */ |
634 | | { "", |
635 | | "\xe3\xb0\xc4\x42\x98\xfc\x1c\x14\x9a\xfb\xf4\xc8\x99\x6f\xb9\x24" |
636 | | "\x27\xae\x41\xe4\x64\x9b\x93\x4c\xa4\x95\x99\x1b\x78\x52\xb8\x55" }, |
637 | | { "a", |
638 | | "\xca\x97\x81\x12\xca\x1b\xbd\xca\xfa\xc2\x31\xb3\x9a\x23\xdc\x4d" |
639 | | "\xa7\x86\xef\xf8\x14\x7c\x4e\x72\xb9\x80\x77\x85\xaf\xee\x48\xbb" }, |
640 | | { "message digest", |
641 | | "\xf7\x84\x6f\x55\xcf\x23\xe1\x4e\xeb\xea\xb5\xb4\xe1\x55\x0c\xad" |
642 | | "\x5b\x50\x9e\x33\x48\xfb\xc4\xef\xa3\xa1\x41\x3d\x39\x3c\xb6\x50" }, |
643 | | { "abcdefghijklmnopqrstuvwxyz", |
644 | | "\x71\xc4\x80\xdf\x93\xd6\xae\x2f\x1e\xfa\xd1\x44\x7c\x66\xc9\x52" |
645 | | "\x5e\x31\x62\x18\xcf\x51\xfc\x8d\x9e\xd8\x32\xf2\xda\xf1\x8b\x73" }, |
646 | | { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", |
647 | | "\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39" |
648 | | "\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1" }, |
649 | | { "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", |
650 | | "\xdb\x4b\xfc\xbd\x4d\xa0\xcd\x85\xa6\x0c\x3c\x37\xd3\xfb\xd8\x80" |
651 | | "\x5c\x77\xf1\x5f\xc6\xb1\xfd\xfe\x61\x4e\xe0\xa7\xc8\xfd\xb4\xc0" }, |
652 | | { "123456789012345678901234567890123456789012345678901234567890" |
653 | | "12345678901234567890", |
654 | | "\xf3\x71\xbc\x4a\x31\x1f\x2b\x00\x9e\xef\x95\x2d\xd8\x3c\xa8\x0e" |
655 | | "\x2b\x60\x02\x6c\x8e\x93\x55\x92\xd0\xf9\xc3\x08\x45\x3c\x81\x3e" } |
656 | | }; |
657 | | #define ntests (sizeof (tests) / sizeof (tests[0])) |
658 | | |
659 | | |
660 | | static const struct |
661 | | { |
662 | | const char *salt; |
663 | | const char *input; |
664 | | const char *expected; |
665 | | } tests2[] = |
666 | | { |
667 | | { "$5$saltstring", "Hello world!", |
668 | | "$5$saltstring$5B8vYYiY.CVt1RlTTf8KbXBH3hsxY/GNooZaBBGWEc5" }, |
669 | | { "$5$rounds=10000$saltstringsaltstring", "Hello world!", |
670 | | "$5$rounds=10000$saltstringsaltst$3xv.VbSHBb41AL9AvLeujZkZRBAwqFMz2." |
671 | | "opqey6IcA" }, |
672 | | { "$5$rounds=5000$toolongsaltstring", "This is just a test", |
673 | | "$5$rounds=5000$toolongsaltstrin$Un/5jzAHMgOGZ5.mWJpuVolil07guHPvOW8" |
674 | | "mGRcvxa5" }, |
675 | | { "$5$rounds=1400$anotherlongsaltstring", |
676 | | "a very much longer text to encrypt. This one even stretches over more" |
677 | | "than one line.", |
678 | | "$5$rounds=1400$anotherlongsalts$Rx.j8H.h8HjEDGomFU8bDkXm3XIUnzyxf12" |
679 | | "oP84Bnq1" }, |
680 | | { "$5$rounds=77777$short", |
681 | | "we have a short salt string but not a short password", |
682 | | "$5$rounds=77777$short$JiO1O3ZpDAxGJeaDIuqCoEFysAe1mZNJRs3pw0KQRd/" }, |
683 | | { "$5$rounds=123456$asaltof16chars..", "a short string", |
684 | | "$5$rounds=123456$asaltof16chars..$gP3VQ/6X7UUEW3HkBn2w1/Ptq2jxPyzV/" |
685 | | "cZKmF/wJvD" }, |
686 | | { "$5$rounds=10$roundstoolow", "the minimum number is still observed", |
687 | | "$5$rounds=1000$roundstoolow$yfvwcWrQ8l/K0DAWyuPMDNHpIVlTQebY9l/gL97" |
688 | | "2bIC" }, |
689 | | }; |
690 | | #define ntests2 (sizeof (tests2) / sizeof (tests2[0])) |
691 | | |
692 | | |
693 | | int main(void) { |
694 | | struct sha256_ctx ctx; |
695 | | char sum[32]; |
696 | | int result = 0; |
697 | | int cnt, i; |
698 | | char buf[1000]; |
699 | | static const char expected[32] = |
700 | | "\xcd\xc7\x6e\x5c\x99\x14\xfb\x92\x81\xa1\xc7\xe2\x84\xd7\x3e\x67" |
701 | | "\xf1\x80\x9a\x48\xa4\x97\x20\x0e\x04\x6d\x39\xcc\xc7\x11\x2c\xd0"; |
702 | | |
703 | | for (cnt = 0; cnt < (int) ntests; ++cnt) { |
704 | | sha256_init_ctx(&ctx); |
705 | | sha256_process_bytes(tests[cnt].input, strlen(tests[cnt].input), &ctx); |
706 | | sha256_finish_ctx(&ctx, sum); |
707 | | if (memcmp(tests[cnt].result, sum, 32) != 0) { |
708 | | printf("test %d run %d failed\n", cnt, 1); |
709 | | result = 1; |
710 | | } |
711 | | |
712 | | sha256_init_ctx(&ctx); |
713 | | for (i = 0; tests[cnt].input[i] != '\0'; ++i) { |
714 | | sha256_process_bytes(&tests[cnt].input[i], 1, &ctx); |
715 | | } |
716 | | sha256_finish_ctx(&ctx, sum); |
717 | | if (memcmp(tests[cnt].result, sum, 32) != 0) { |
718 | | printf("test %d run %d failed\n", cnt, 2); |
719 | | result = 1; |
720 | | } |
721 | | } |
722 | | |
723 | | /* Test vector from FIPS 180-2: appendix B.3. */ |
724 | | |
725 | | memset(buf, 'a', sizeof(buf)); |
726 | | sha256_init_ctx(&ctx); |
727 | | for (i = 0; i < 1000; ++i) { |
728 | | sha256_process_bytes (buf, sizeof (buf), &ctx); |
729 | | } |
730 | | |
731 | | sha256_finish_ctx(&ctx, sum); |
732 | | |
733 | | if (memcmp(expected, sum, 32) != 0) { |
734 | | printf("test %d failed\n", cnt); |
735 | | result = 1; |
736 | | } |
737 | | |
738 | | for (cnt = 0; cnt < ntests2; ++cnt) { |
739 | | char *cp = php_sha256_crypt(tests2[cnt].input, tests2[cnt].salt); |
740 | | if (strcmp(cp, tests2[cnt].expected) != 0) { |
741 | | printf("test %d: expected \"%s\", got \"%s\"\n", cnt, tests2[cnt].expected, cp); |
742 | | result = 1; |
743 | | } |
744 | | } |
745 | | |
746 | | if (result == 0) |
747 | | puts("all tests OK"); |
748 | | |
749 | | return result; |
750 | | } |
751 | | #endif |