Coverage Report

Created: 2025-09-27 06:26

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/php-src/Zend/zend_strtod.c
Line
Count
Source
1
/****************************************************************
2
 *
3
 * The author of this software is David M. Gay.
4
 *
5
 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
6
 *
7
 * Permission to use, copy, modify, and distribute this software for any
8
 * purpose without fee is hereby granted, provided that this entire notice
9
 * is included in all copies of any software which is or includes a copy
10
 * or modification of this software and in all copies of the supporting
11
 * documentation for such software.
12
 *
13
 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
14
 * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
15
 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
16
 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
17
 *
18
 ***************************************************************/
19
20
/* Please send bug reports to David M. Gay (dmg at acm dot org,
21
 * with " at " changed at "@" and " dot " changed to ".").  */
22
23
/* On a machine with IEEE extended-precision registers, it is
24
 * necessary to specify double-precision (53-bit) rounding precision
25
 * before invoking strtod or dtoa.  If the machine uses (the equivalent
26
 * of) Intel 80x87 arithmetic, the call
27
 *  _control87(PC_53, MCW_PC);
28
 * does this with many compilers.  Whether this or another call is
29
 * appropriate depends on the compiler; for this to work, it may be
30
 * necessary to #include "float.h" or another system-dependent header
31
 * file.
32
 */
33
34
/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
35
 * (Note that IEEE arithmetic is disabled by gcc's -ffast-math flag.)
36
 *
37
 * This strtod returns a nearest machine number to the input decimal
38
 * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
39
 * broken by the IEEE round-even rule.  Otherwise ties are broken by
40
 * biased rounding (add half and chop).
41
 *
42
 * Inspired loosely by William D. Clinger's paper "How to Read Floating
43
 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
44
 *
45
 * Modifications:
46
 *
47
 *  1. We only require IEEE, IBM, or VAX double-precision
48
 *    arithmetic (not IEEE double-extended).
49
 *  2. We get by with floating-point arithmetic in a case that
50
 *    Clinger missed -- when we're computing d * 10^n
51
 *    for a small integer d and the integer n is not too
52
 *    much larger than 22 (the maximum integer k for which
53
 *    we can represent 10^k exactly), we may be able to
54
 *    compute (d*10^k) * 10^(e-k) with just one roundoff.
55
 *  3. Rather than a bit-at-a-time adjustment of the binary
56
 *    result in the hard case, we use floating-point
57
 *    arithmetic to determine the adjustment to within
58
 *    one bit; only in really hard cases do we need to
59
 *    compute a second residual.
60
 *  4. Because of 3., we don't need a large table of powers of 10
61
 *    for ten-to-e (just some small tables, e.g. of 10^k
62
 *    for 0 <= k <= 22).
63
 */
64
65
/*
66
 * #define IEEE_8087 for IEEE-arithmetic machines where the least
67
 *  significant byte has the lowest address.
68
 * #define IEEE_MC68k for IEEE-arithmetic machines where the most
69
 *  significant byte has the lowest address.
70
 * #define Long int on machines with 32-bit ints and 64-bit longs.
71
 * #define IBM for IBM mainframe-style floating-point arithmetic.
72
 * #define VAX for VAX-style floating-point arithmetic (D_floating).
73
 * #define No_leftright to omit left-right logic in fast floating-point
74
 *  computation of dtoa.  This will cause dtoa modes 4 and 5 to be
75
 *  treated the same as modes 2 and 3 for some inputs.
76
 * #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
77
 *  and strtod and dtoa should round accordingly.  Unless Trust_FLT_ROUNDS
78
 *  is also #defined, fegetround() will be queried for the rounding mode.
79
 *  Note that both FLT_ROUNDS and fegetround() are specified by the C99
80
 *  standard (and are specified to be consistent, with fesetround()
81
 *  affecting the value of FLT_ROUNDS), but that some (Linux) systems
82
 *  do not work correctly in this regard, so using fegetround() is more
83
 *  portable than using FLT_ROUNDS directly.
84
 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
85
 *  and Honor_FLT_ROUNDS is not #defined.
86
 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
87
 *  that use extended-precision instructions to compute rounded
88
 *  products and quotients) with IBM.
89
 * #define ROUND_BIASED for IEEE-format with biased rounding and arithmetic
90
 *  that rounds toward +Infinity.
91
 * #define ROUND_BIASED_without_Round_Up for IEEE-format with biased
92
 *  rounding when the underlying floating-point arithmetic uses
93
 *  unbiased rounding.  This prevent using ordinary floating-point
94
 *  arithmetic when the result could be computed with one rounding error.
95
 * #define Inaccurate_Divide for IEEE-format with correctly rounded
96
 *  products but inaccurate quotients, e.g., for Intel i860.
97
 * #define NO_LONG_LONG on machines that do not have a "long long"
98
 *  integer type (of >= 64 bits).  On such machines, you can
99
 *  #define Just_16 to store 16 bits per 32-bit Long when doing
100
 *  high-precision integer arithmetic.  Whether this speeds things
101
 *  up or slows things down depends on the machine and the number
102
 *  being converted.  If long long is available and the name is
103
 *  something other than "long long", #define Llong to be the name,
104
 *  and if "unsigned Llong" does not work as an unsigned version of
105
 *  Llong, #define #ULLong to be the corresponding unsigned type.
106
 * #define KR_headers for old-style C function headers.
107
 * #define Bad_float_h if your system lacks a float.h or if it does not
108
 *  define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
109
 *  FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
110
 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
111
 *  if memory is available and otherwise does something you deem
112
 *  appropriate.  If MALLOC is undefined, malloc will be invoked
113
 *  directly -- and assumed always to succeed.  Similarly, if you
114
 *  want something other than the system's free() to be called to
115
 *  recycle memory acquired from MALLOC, #define FREE to be the
116
 *  name of the alternate routine.  (FREE or free is only called in
117
 *  pathological cases, e.g., in a dtoa call after a dtoa return in
118
 *  mode 3 with thousands of digits requested.)
119
 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
120
 *  memory allocations from a private pool of memory when possible.
121
 *  When used, the private pool is PRIVATE_MEM bytes long:  2304 bytes,
122
 *  unless #defined to be a different length.  This default length
123
 *  suffices to get rid of MALLOC calls except for unusual cases,
124
 *  such as decimal-to-binary conversion of a very long string of
125
 *  digits.  The longest string dtoa can return is about 751 bytes
126
 *  long.  For conversions by strtod of strings of 800 digits and
127
 *  all dtoa conversions in single-threaded executions with 8-byte
128
 *  pointers, PRIVATE_MEM >= 7400 appears to suffice; with 4-byte
129
 *  pointers, PRIVATE_MEM >= 7112 appears adequate.
130
 * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK
131
 *  #defined automatically on IEEE systems.  On such systems,
132
 *  when INFNAN_CHECK is #defined, strtod checks
133
 *  for Infinity and NaN (case insensitively).  On some systems
134
 *  (e.g., some HP systems), it may be necessary to #define NAN_WORD0
135
 *  appropriately -- to the most significant word of a quiet NaN.
136
 *  (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
137
 *  When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
138
 *  strtod also accepts (case insensitively) strings of the form
139
 *  NaN(x), where x is a string of hexadecimal digits and spaces;
140
 *  if there is only one string of hexadecimal digits, it is taken
141
 *  for the 52 fraction bits of the resulting NaN; if there are two
142
 *  or more strings of hex digits, the first is for the high 20 bits,
143
 *  the second and subsequent for the low 32 bits, with intervening
144
 *  white space ignored; but if this results in none of the 52
145
 *  fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0
146
 *  and NAN_WORD1 are used instead.
147
 * #define MULTIPLE_THREADS if the system offers preemptively scheduled
148
 *  multiple threads.  In this case, you must provide (or suitably
149
 *  #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
150
 *  by FREE_DTOA_LOCK(n) for n = 0 or 1.  (The second lock, accessed
151
 *  in pow5mult, ensures lazy evaluation of only one copy of high
152
 *  powers of 5; omitting this lock would introduce a small
153
 *  probability of wasting memory, but would otherwise be harmless.)
154
 *  You must also invoke freedtoa(s) to free the value s returned by
155
 *  dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
156
 * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that
157
 *  avoids underflows on inputs whose result does not underflow.
158
 *  If you #define NO_IEEE_Scale on a machine that uses IEEE-format
159
 *  floating-point numbers and flushes underflows to zero rather
160
 *  than implementing gradual underflow, then you must also #define
161
 *  Sudden_Underflow.
162
 * #define USE_LOCALE to use the current locale's decimal_point value.
163
 * #define SET_INEXACT if IEEE arithmetic is being used and extra
164
 *  computation should be done to set the inexact flag when the
165
 *  result is inexact and avoid setting inexact when the result
166
 *  is exact.  In this case, dtoa.c must be compiled in
167
 *  an environment, perhaps provided by #include "dtoa.c" in a
168
 *  suitable wrapper, that defines two functions,
169
 *    int get_inexact(void);
170
 *    void clear_inexact(void);
171
 *  such that get_inexact() returns a nonzero value if the
172
 *  inexact bit is already set, and clear_inexact() sets the
173
 *  inexact bit to 0.  When SET_INEXACT is #defined, strtod
174
 *  also does extra computations to set the underflow and overflow
175
 *  flags when appropriate (i.e., when the result is tiny and
176
 *  inexact or when it is a numeric value rounded to +-infinity).
177
 * #define NO_ERRNO if strtod should not assign errno = ERANGE when
178
 *  the result overflows to +-Infinity or underflows to 0.
179
 * #define NO_HEX_FP to omit recognition of hexadecimal floating-point
180
 *  values by strtod.
181
 * #define NO_STRTOD_BIGCOMP (on IEEE-arithmetic systems only for now)
182
 *  to disable logic for "fast" testing of very long input strings
183
 *  to strtod.  This testing proceeds by initially truncating the
184
 *  input string, then if necessary comparing the whole string with
185
 *  a decimal expansion to decide close cases. This logic is only
186
 *  used for input more than STRTOD_DIGLIM digits long (default 40).
187
 */
188
189
#include <zend_operators.h>
190
#include <zend_strtod.h>
191
#include "zend_strtod_int.h"
192
#include "zend_globals.h"
193
194
#ifndef Long
195
1.60M
#define Long int32_t
196
#endif
197
#ifndef ULong
198
28.9M
#define ULong uint32_t
199
#endif
200
201
#undef Bigint
202
#undef freelist
203
#undef p5s
204
#undef dtoa_result
205
206
24.3M
#define Bigint      _zend_strtod_bigint
207
29.9M
#define freelist    (EG(strtod_state).freelist)
208
522k
#define p5s         (EG(strtod_state).p5s)
209
1.04M
#define dtoa_result (EG(strtod_state).result)
210
211
#ifdef DEBUG
212
static void Bug(const char *message) {
213
  fprintf(stderr, "%s\n", message);
214
}
215
#endif
216
217
#include "stdlib.h"
218
#include "string.h"
219
220
#ifdef USE_LOCALE
221
#include "locale.h"
222
#endif
223
224
#ifdef Honor_FLT_ROUNDS
225
#ifndef Trust_FLT_ROUNDS
226
#include <fenv.h>
227
#endif
228
#endif
229
230
#ifdef MALLOC
231
#ifdef KR_headers
232
extern char *MALLOC();
233
#else
234
extern void *MALLOC(size_t);
235
#endif
236
#else
237
270
#define MALLOC malloc
238
8
#define FREE   free
239
#endif
240
241
#ifndef Omit_Private_Memory
242
#ifndef PRIVATE_MEM
243
#define PRIVATE_MEM 2304
244
#endif
245
#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
246
static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
247
#endif
248
249
#undef IEEE_Arith
250
#undef Avoid_Underflow
251
#ifdef IEEE_MC68k
252
#define IEEE_Arith
253
#endif
254
#ifdef IEEE_8087
255
#define IEEE_Arith
256
#endif
257
258
#ifdef IEEE_Arith
259
#ifndef NO_INFNAN_CHECK
260
#undef INFNAN_CHECK
261
#define INFNAN_CHECK
262
#endif
263
#else
264
#undef INFNAN_CHECK
265
#define NO_STRTOD_BIGCOMP
266
#endif
267
268
#include "errno.h"
269
270
#ifdef Bad_float_h
271
272
#ifdef IEEE_Arith
273
#define DBL_DIG 15
274
#define DBL_MAX_10_EXP 308
275
#define DBL_MAX_EXP 1024
276
#define FLT_RADIX 2
277
#endif /*IEEE_Arith*/
278
279
#ifdef IBM
280
#define DBL_DIG 16
281
#define DBL_MAX_10_EXP 75
282
#define DBL_MAX_EXP 63
283
#define FLT_RADIX 16
284
#define DBL_MAX 7.2370055773322621e+75
285
#endif
286
287
#ifdef VAX
288
#define DBL_DIG 16
289
#define DBL_MAX_10_EXP 38
290
#define DBL_MAX_EXP 127
291
#define FLT_RADIX 2
292
#define DBL_MAX 1.7014118346046923e+38
293
#endif
294
295
#else /* ifndef Bad_float_h */
296
#include "float.h"
297
#endif /* Bad_float_h */
298
299
#ifndef __MATH_H__
300
#include "math.h"
301
#endif
302
303
#ifndef CONST
304
#ifdef KR_headers
305
#define CONST /* blank */
306
#else
307
764k
#define CONST const
308
#endif
309
#endif
310
311
#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
312
Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
313
#endif
314
315
typedef union { double d; ULong L[2]; } U;
316
317
#ifdef IEEE_8087
318
5.74M
#define word0(x) (x)->L[1]
319
2.42M
#define word1(x) (x)->L[0]
320
#else
321
#define word0(x) (x)->L[0]
322
#define word1(x) (x)->L[1]
323
#endif
324
12.6M
#define dval(x) (x)->d
325
326
#ifndef STRTOD_DIGLIM
327
390k
#define STRTOD_DIGLIM 40
328
#endif
329
330
#ifdef DIGLIM_DEBUG
331
extern int strtod_diglim;
332
#else
333
390k
#define strtod_diglim STRTOD_DIGLIM
334
#endif
335
336
/* The following definition of Storeinc is appropriate for MIPS processors.
337
 * An alternative that might be better on some machines is
338
 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
339
 */
340
#if defined(IEEE_8087) + defined(VAX) + defined(__arm__)
341
#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
342
((unsigned short *)a)[0] = (unsigned short)c, a++)
343
#else
344
#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
345
((unsigned short *)a)[1] = (unsigned short)c, a++)
346
#endif
347
348
/* #define P DBL_MANT_DIG */
349
/* Ten_pmax = floor(P*log(2)/log(5)) */
350
/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
351
/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
352
/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
353
354
#ifdef IEEE_Arith
355
826k
#define Exp_shift  20
356
437k
#define Exp_shift1 20
357
2.13M
#define Exp_msk1    0x100000
358
#define Exp_msk11   0x100000
359
1.70M
#define Exp_mask  0x7ff00000
360
3.37M
#define P 53
361
#define Nbits 53
362
1.49M
#define Bias 1023
363
#define Emax 1023
364
607k
#define Emin (-1022)
365
387k
#define Exp_1  0x3ff00000
366
205k
#define Exp_11 0x3ff00000
367
877k
#define Ebits 11
368
783k
#define Frac_mask  0xfffff
369
209k
#define Frac_mask1 0xfffff
370
344k
#define Ten_pmax 22
371
91.0k
#define Bletch 0x10
372
263k
#define Bndry_mask  0xfffff
373
25.3k
#define Bndry_mask1 0xfffff
374
478k
#define LSB 1
375
289k
#define Sign_bit 0x80000000
376
15.9k
#define Log2P 1
377
#define Tiny0 0
378
178k
#define Tiny1 1
379
346k
#define Quick_max 14
380
63.5k
#define Int_max 14
381
#ifndef NO_IEEE_Scale
382
#define Avoid_Underflow
383
#ifdef Flush_Denorm /* debugging option */
384
#undef Sudden_Underflow
385
#endif
386
#endif
387
388
#ifndef Flt_Rounds
389
#ifdef FLT_ROUNDS
390
395k
#define Flt_Rounds FLT_ROUNDS
391
#else
392
#define Flt_Rounds 1
393
#endif
394
#endif /*Flt_Rounds*/
395
396
#ifdef Honor_FLT_ROUNDS
397
#undef Check_FLT_ROUNDS
398
#define Check_FLT_ROUNDS
399
#else
400
#define Rounding Flt_Rounds
401
#endif
402
403
#else /* ifndef IEEE_Arith */
404
#undef Check_FLT_ROUNDS
405
#undef Honor_FLT_ROUNDS
406
#undef SET_INEXACT
407
#undef  Sudden_Underflow
408
#define Sudden_Underflow
409
#ifdef IBM
410
#undef Flt_Rounds
411
#define Flt_Rounds 0
412
#define Exp_shift  24
413
#define Exp_shift1 24
414
#define Exp_msk1   0x1000000
415
#define Exp_msk11  0x1000000
416
#define Exp_mask  0x7f000000
417
#define P 14
418
#define Nbits 56
419
#define Bias 65
420
#define Emax 248
421
#define Emin (-260)
422
#define Exp_1  0x41000000
423
#define Exp_11 0x41000000
424
#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
425
#define Frac_mask  0xffffff
426
#define Frac_mask1 0xffffff
427
#define Bletch 4
428
#define Ten_pmax 22
429
#define Bndry_mask  0xefffff
430
#define Bndry_mask1 0xffffff
431
#define LSB 1
432
#define Sign_bit 0x80000000
433
#define Log2P 4
434
#define Tiny0 0x100000
435
#define Tiny1 0
436
#define Quick_max 14
437
#define Int_max 15
438
#else /* VAX */
439
#undef Flt_Rounds
440
#define Flt_Rounds 1
441
#define Exp_shift  23
442
#define Exp_shift1 7
443
#define Exp_msk1    0x80
444
#define Exp_msk11   0x800000
445
#define Exp_mask  0x7f80
446
#define P 56
447
#define Nbits 56
448
#define Bias 129
449
#define Emax 126
450
#define Emin (-129)
451
#define Exp_1  0x40800000
452
#define Exp_11 0x4080
453
#define Ebits 8
454
#define Frac_mask  0x7fffff
455
#define Frac_mask1 0xffff007f
456
#define Ten_pmax 24
457
#define Bletch 2
458
#define Bndry_mask  0xffff007f
459
#define Bndry_mask1 0xffff007f
460
#define LSB 0x10000
461
#define Sign_bit 0x8000
462
#define Log2P 1
463
#define Tiny0 0x80
464
#define Tiny1 0
465
#define Quick_max 15
466
#define Int_max 15
467
#endif /* IBM, VAX */
468
#endif /* IEEE_Arith */
469
470
#ifndef IEEE_Arith
471
#define ROUND_BIASED
472
#else
473
#ifdef ROUND_BIASED_without_Round_Up
474
#undef  ROUND_BIASED
475
#define ROUND_BIASED
476
#endif
477
#endif
478
479
#ifdef RND_PRODQUOT
480
#define rounded_product(a,b) a = rnd_prod(a, b)
481
#define rounded_quotient(a,b) a = rnd_quot(a, b)
482
#ifdef KR_headers
483
extern double rnd_prod(), rnd_quot();
484
#else
485
extern double rnd_prod(double, double), rnd_quot(double, double);
486
#endif
487
#else
488
11.3k
#define rounded_product(a,b) a *= b
489
80.1k
#define rounded_quotient(a,b) a /= b
490
#endif
491
492
6.17k
#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
493
3.38k
#define Big1 0xffffffff
494
495
#ifndef Pack_32
496
#define Pack_32
497
#endif
498
499
typedef struct BCinfo BCinfo;
500
 struct
501
BCinfo { int dp0, dp1, dplen, dsign, e0, inexact, nd, nd0, rounding, scale, uflchk; };
502
503
#ifdef KR_headers
504
#define FFFFFFFF ((((unsigned long)0xffff)<<16)|(unsigned long)0xffff)
505
#else
506
104M
#define FFFFFFFF 0xffffffffUL
507
#endif
508
509
#ifdef NO_LONG_LONG
510
#undef ULLong
511
#ifdef Just_16
512
#undef Pack_32
513
/* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
514
 * This makes some inner loops simpler and sometimes saves work
515
 * during multiplications, but it often seems to make things slightly
516
 * slower.  Hence the default is now to store 32 bits per Long.
517
 */
518
#endif
519
#else /* long long available */
520
#ifndef Llong
521
#define Llong long long
522
#endif
523
#ifndef ULLong
524
14.5M
#define ULLong unsigned Llong
525
#endif
526
#endif /* NO_LONG_LONG */
527
528
#ifndef MULTIPLE_THREADS
529
#define ACQUIRE_DTOA_LOCK(n)  /*nothing*/
530
#define FREE_DTOA_LOCK(n) /*nothing*/
531
#endif
532
533
14.9M
#define Kmax ZEND_STRTOD_K_MAX
534
535
 struct
536
Bigint {
537
  struct Bigint *next;
538
  int k, maxwds, sign, wds;
539
  ULong x[1];
540
  };
541
542
 typedef struct Bigint Bigint;
543
544
#ifndef Bigint
545
 static Bigint *freelist[Kmax+1];
546
#endif
547
548
static void destroy_freelist(void);
549
static void free_p5s(void);
550
551
#ifdef MULTIPLE_THREADS
552
static MUTEX_T dtoa_mutex;
553
static MUTEX_T pow5mult_mutex;
554
#endif /* ZTS */
555
556
ZEND_API int zend_shutdown_strtod(void) /* {{{ */
557
0
{
558
0
  destroy_freelist();
559
0
  free_p5s();
560
561
0
  return 1;
562
0
}
563
/* }}} */
564
565
 static Bigint *
566
Balloc
567
#ifdef KR_headers
568
  (k) int k;
569
#else
570
  (int k)
571
#endif
572
7.47M
{
573
7.47M
  int x;
574
7.47M
  Bigint *rv;
575
#ifndef Omit_Private_Memory
576
  unsigned int len;
577
#endif
578
579
7.47M
  ACQUIRE_DTOA_LOCK(0);
580
  /* The k > Kmax case does not need ACQUIRE_DTOA_LOCK(0), */
581
  /* but this case seems very unlikely. */
582
7.47M
  if (k <= Kmax && (rv = freelist[k]))
583
7.47M
    freelist[k] = rv->next;
584
270
  else {
585
270
    x = 1 << k;
586
270
#ifdef Omit_Private_Memory
587
270
    rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong));
588
270
    if (!rv) {
589
0
      FREE_DTOA_LOCK(0);
590
0
      zend_error_noreturn(E_ERROR, "Balloc() failed to allocate memory");
591
0
    }
592
#else
593
    len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
594
      /sizeof(double);
595
    if (k <= Kmax && pmem_next - private_mem + len <= PRIVATE_mem) {
596
      rv = (Bigint*)pmem_next;
597
      pmem_next += len;
598
      }
599
    else
600
      rv = (Bigint*)MALLOC(len*sizeof(double));
601
      if (!rv) {
602
        FREE_DTOA_LOCK(0);
603
        zend_error_noreturn(E_ERROR, "Balloc() failed to allocate memory");
604
      }
605
#endif
606
270
    rv->k = k;
607
270
    rv->maxwds = x;
608
270
    }
609
7.47M
  FREE_DTOA_LOCK(0);
610
7.47M
  rv->sign = rv->wds = 0;
611
7.47M
  return rv;
612
7.47M
  }
613
614
 static void
615
Bfree
616
#ifdef KR_headers
617
  (v) Bigint *v;
618
#else
619
  (Bigint *v)
620
#endif
621
7.47M
{
622
7.47M
  if (v) {
623
7.47M
    if (v->k > Kmax)
624
8
      FREE((void*)v);
625
7.47M
    else {
626
7.47M
      ACQUIRE_DTOA_LOCK(0);
627
7.47M
      v->next = freelist[v->k];
628
7.47M
      freelist[v->k] = v;
629
7.47M
      FREE_DTOA_LOCK(0);
630
7.47M
      }
631
7.47M
    }
632
7.47M
  }
633
634
517k
#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
635
517k
y->wds*sizeof(Long) + 2*sizeof(int))
636
637
 static Bigint *
638
multadd
639
#ifdef KR_headers
640
  (b, m, a) Bigint *b; int m, a;
641
#else
642
  (Bigint *b, int m, int a) /* multiply by m and add a */
643
#endif
644
8.23M
{
645
8.23M
  int i, wds;
646
8.23M
#ifdef ULLong
647
8.23M
  ULong *x;
648
8.23M
  ULLong carry, y;
649
#else
650
  ULong carry, *x, y;
651
#ifdef Pack_32
652
  ULong xi, z;
653
#endif
654
#endif
655
8.23M
  Bigint *b1;
656
657
8.23M
  wds = b->wds;
658
8.23M
  x = b->x;
659
8.23M
  i = 0;
660
8.23M
  carry = a;
661
36.8M
  do {
662
36.8M
#ifdef ULLong
663
36.8M
    y = *x * (ULLong)m + carry;
664
36.8M
    carry = y >> 32;
665
36.8M
    *x++ = y & FFFFFFFF;
666
#else
667
#ifdef Pack_32
668
    xi = *x;
669
    y = (xi & 0xffff) * m + carry;
670
    z = (xi >> 16) * m + (y >> 16);
671
    carry = z >> 16;
672
    *x++ = (z << 16) + (y & 0xffff);
673
#else
674
    y = *x * m + carry;
675
    carry = y >> 16;
676
    *x++ = y & 0xffff;
677
#endif
678
#endif
679
36.8M
    }
680
36.8M
    while(++i < wds);
681
8.23M
  if (carry) {
682
614k
    if (wds >= b->maxwds) {
683
36.5k
      b1 = Balloc(b->k+1);
684
36.5k
      Bcopy(b1, b);
685
36.5k
      Bfree(b);
686
36.5k
      b = b1;
687
36.5k
      }
688
614k
    b->x[wds++] = carry;
689
614k
    b->wds = wds;
690
614k
    }
691
8.23M
  return b;
692
8.23M
  }
693
694
 static Bigint *
695
s2b
696
#ifdef KR_headers
697
  (s, nd0, nd, y9, dplen) CONST char *s; int nd0, nd, dplen; ULong y9;
698
#else
699
  (const char *s, int nd0, int nd, ULong y9, int dplen)
700
#endif
701
390k
{
702
390k
  Bigint *b;
703
390k
  int i, k;
704
390k
  Long x, y;
705
706
390k
  x = (nd + 8) / 9;
707
851k
  for(k = 0, y = 1; x > y; y <<= 1, k++) ;
708
390k
#ifdef Pack_32
709
390k
  b = Balloc(k);
710
390k
  b->x[0] = y9;
711
390k
  b->wds = 1;
712
#else
713
  b = Balloc(k+1);
714
  b->x[0] = y9 & 0xffff;
715
  b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
716
#endif
717
718
390k
  i = 9;
719
390k
  if (9 < nd0) {
720
261k
    s += 9;
721
3.06M
    do b = multadd(b, 10, *s++ - '0');
722
3.06M
      while(++i < nd0);
723
261k
    s += dplen;
724
261k
    }
725
129k
  else
726
129k
    s += dplen + 9;
727
1.05M
  for(; i < nd; i++)
728
660k
    b = multadd(b, 10, *s++ - '0');
729
390k
  return b;
730
390k
  }
731
732
 static int
733
hi0bits
734
#ifdef KR_headers
735
  (x) ULong x;
736
#else
737
  (ULong x)
738
#endif
739
599k
{
740
599k
  int k = 0;
741
742
599k
  if (!(x & 0xffff0000)) {
743
387k
    k = 16;
744
387k
    x <<= 16;
745
387k
    }
746
599k
  if (!(x & 0xff000000)) {
747
355k
    k += 8;
748
355k
    x <<= 8;
749
355k
    }
750
599k
  if (!(x & 0xf0000000)) {
751
349k
    k += 4;
752
349k
    x <<= 4;
753
349k
    }
754
599k
  if (!(x & 0xc0000000)) {
755
291k
    k += 2;
756
291k
    x <<= 2;
757
291k
    }
758
599k
  if (!(x & 0x80000000)) {
759
372k
    k++;
760
372k
    if (!(x & 0x40000000))
761
0
      return 32;
762
372k
    }
763
599k
  return k;
764
599k
  }
765
766
 static int
767
lo0bits
768
#ifdef KR_headers
769
  (y) ULong *y;
770
#else
771
  (ULong *y)
772
#endif
773
783k
{
774
783k
  int k;
775
783k
  ULong x = *y;
776
777
783k
  if (x & 7) {
778
584k
    if (x & 1)
779
361k
      return 0;
780
222k
    if (x & 2) {
781
132k
      *y = x >> 1;
782
132k
      return 1;
783
132k
      }
784
90.4k
    *y = x >> 2;
785
90.4k
    return 2;
786
222k
    }
787
199k
  k = 0;
788
199k
  if (!(x & 0xffff)) {
789
57.1k
    k = 16;
790
57.1k
    x >>= 16;
791
57.1k
    }
792
199k
  if (!(x & 0xff)) {
793
32.6k
    k += 8;
794
32.6k
    x >>= 8;
795
32.6k
    }
796
199k
  if (!(x & 0xf)) {
797
126k
    k += 4;
798
126k
    x >>= 4;
799
126k
    }
800
199k
  if (!(x & 0x3)) {
801
101k
    k += 2;
802
101k
    x >>= 2;
803
101k
    }
804
199k
  if (!(x & 1)) {
805
85.3k
    k++;
806
85.3k
    x >>= 1;
807
85.3k
    if (!x)
808
0
      return 32;
809
85.3k
    }
810
199k
  *y = x;
811
199k
  return k;
812
199k
  }
813
814
 static Bigint *
815
i2b
816
#ifdef KR_headers
817
  (i) int i;
818
#else
819
  (int i)
820
#endif
821
798k
{
822
798k
  Bigint *b;
823
824
798k
  b = Balloc(1);
825
798k
  b->x[0] = i;
826
798k
  b->wds = 1;
827
798k
  return b;
828
798k
  }
829
830
 static Bigint *
831
mult
832
#ifdef KR_headers
833
  (a, b) Bigint *a, *b;
834
#else
835
  (Bigint *a, Bigint *b)
836
#endif
837
1.49M
{
838
1.49M
  Bigint *c;
839
1.49M
  int k, wa, wb, wc;
840
1.49M
  ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
841
1.49M
  ULong y;
842
1.49M
#ifdef ULLong
843
1.49M
  ULLong carry, z;
844
#else
845
  ULong carry, z;
846
#ifdef Pack_32
847
  ULong z2;
848
#endif
849
#endif
850
851
1.49M
  if (a->wds < b->wds) {
852
578k
    c = a;
853
578k
    a = b;
854
578k
    b = c;
855
578k
    }
856
1.49M
  k = a->k;
857
1.49M
  wa = a->wds;
858
1.49M
  wb = b->wds;
859
1.49M
  wc = wa + wb;
860
1.49M
  if (wc > a->maxwds)
861
625k
    k++;
862
1.49M
  c = Balloc(k);
863
11.1M
  for(x = c->x, xa = x + wc; x < xa; x++)
864
9.68M
    *x = 0;
865
1.49M
  xa = a->x;
866
1.49M
  xae = xa + wa;
867
1.49M
  xb = b->x;
868
1.49M
  xbe = xb + wb;
869
1.49M
  xc0 = c->x;
870
1.49M
#ifdef ULLong
871
4.33M
  for(; xb < xbe; xc0++) {
872
2.84M
    if ((y = *xb++)) {
873
2.84M
      x = xa;
874
2.84M
      xc = xc0;
875
2.84M
      carry = 0;
876
19.3M
      do {
877
19.3M
        z = *x++ * (ULLong)y + *xc + carry;
878
19.3M
        carry = z >> 32;
879
19.3M
        *xc++ = z & FFFFFFFF;
880
19.3M
        }
881
19.3M
        while(x < xae);
882
2.84M
      *xc = carry;
883
2.84M
      }
884
2.84M
    }
885
#else
886
#ifdef Pack_32
887
  for(; xb < xbe; xb++, xc0++) {
888
    if (y = *xb & 0xffff) {
889
      x = xa;
890
      xc = xc0;
891
      carry = 0;
892
      do {
893
        z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
894
        carry = z >> 16;
895
        z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
896
        carry = z2 >> 16;
897
        Storeinc(xc, z2, z);
898
        }
899
        while(x < xae);
900
      *xc = carry;
901
      }
902
    if (y = *xb >> 16) {
903
      x = xa;
904
      xc = xc0;
905
      carry = 0;
906
      z2 = *xc;
907
      do {
908
        z = (*x & 0xffff) * y + (*xc >> 16) + carry;
909
        carry = z >> 16;
910
        Storeinc(xc, z, z2);
911
        z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
912
        carry = z2 >> 16;
913
        }
914
        while(x < xae);
915
      *xc = z2;
916
      }
917
    }
918
#else
919
  for(; xb < xbe; xc0++) {
920
    if (y = *xb++) {
921
      x = xa;
922
      xc = xc0;
923
      carry = 0;
924
      do {
925
        z = *x++ * y + *xc + carry;
926
        carry = z >> 16;
927
        *xc++ = z & 0xffff;
928
        }
929
        while(x < xae);
930
      *xc = carry;
931
      }
932
    }
933
#endif
934
#endif
935
2.54M
  for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
936
1.49M
  c->wds = wc;
937
1.49M
  return c;
938
1.49M
  }
939
940
#ifndef p5s
941
 static Bigint *p5s;
942
#endif
943
944
 static Bigint *
945
pow5mult
946
#ifdef KR_headers
947
  (b, k) Bigint *b; int k;
948
#else
949
  (Bigint *b, int k)
950
#endif
951
563k
{
952
563k
  Bigint *b1, *p5, *p51;
953
563k
  int i;
954
563k
  static const int p05[3] = { 5, 25, 125 };
955
956
563k
  if ((i = k & 3))
957
431k
    b = multadd(b, p05[i-1], 0);
958
959
563k
  if (!(k >>= 2))
960
41.2k
    return b;
961
522k
  if (!(p5 = p5s)) {
962
    /* first time */
963
#ifdef MULTIPLE_THREADS
964
    ACQUIRE_DTOA_LOCK(1);
965
    if (!(p5 = p5s)) {
966
      p5 = p5s = i2b(625);
967
      p5->next = 0;
968
      }
969
    FREE_DTOA_LOCK(1);
970
#else
971
8
    p5 = p5s = i2b(625);
972
8
    p5->next = 0;
973
8
#endif
974
8
    }
975
2.31M
  for(;;) {
976
2.31M
    if (k & 1) {
977
1.29M
      b1 = mult(b, p5);
978
1.29M
      Bfree(b);
979
1.29M
      b = b1;
980
1.29M
      }
981
2.31M
    if (!(k >>= 1))
982
522k
      break;
983
1.78M
    if (!(p51 = p5->next)) {
984
#ifdef MULTIPLE_THREADS
985
      ACQUIRE_DTOA_LOCK(1);
986
      if (!(p51 = p5->next)) {
987
        p51 = p5->next = mult(p5,p5);
988
        p51->next = 0;
989
        }
990
      FREE_DTOA_LOCK(1);
991
#else
992
48
      p51 = p5->next = mult(p5,p5);
993
48
      p51->next = 0;
994
48
#endif
995
48
      }
996
1.78M
    p5 = p51;
997
1.78M
    }
998
522k
  return b;
999
563k
  }
1000
1001
 static Bigint *
1002
lshift
1003
#ifdef KR_headers
1004
  (b, k) Bigint *b; int k;
1005
#else
1006
  (Bigint *b, int k)
1007
#endif
1008
1.64M
{
1009
1.64M
  int i, k1, n, n1;
1010
1.64M
  Bigint *b1;
1011
1.64M
  ULong *x, *x1, *xe, z;
1012
1013
1.64M
#ifdef Pack_32
1014
1.64M
  n = k >> 5;
1015
#else
1016
  n = k >> 4;
1017
#endif
1018
1.64M
  k1 = b->k;
1019
1.64M
  n1 = n + b->wds + 1;
1020
3.64M
  for(i = b->maxwds; n1 > i; i <<= 1)
1021
1.99M
    k1++;
1022
1.64M
  b1 = Balloc(k1);
1023
1.64M
  x1 = b1->x;
1024
6.91M
  for(i = 0; i < n; i++)
1025
5.26M
    *x1++ = 0;
1026
1.64M
  x = b->x;
1027
1.64M
  xe = x + b->wds;
1028
1.64M
#ifdef Pack_32
1029
1.64M
  if (k &= 0x1f) {
1030
1.58M
    k1 = 32 - k;
1031
1.58M
    z = 0;
1032
5.77M
    do {
1033
5.77M
      *x1++ = *x << k | z;
1034
5.77M
      z = *x++ >> k1;
1035
5.77M
      }
1036
5.77M
      while(x < xe);
1037
1.58M
    if ((*x1 = z))
1038
262k
      ++n1;
1039
1.58M
    }
1040
#else
1041
  if (k &= 0xf) {
1042
    k1 = 16 - k;
1043
    z = 0;
1044
    do {
1045
      *x1++ = *x << k  & 0xffff | z;
1046
      z = *x++ >> k1;
1047
      }
1048
      while(x < xe);
1049
    if (*x1 = z)
1050
      ++n1;
1051
    }
1052
#endif
1053
56.9k
  else do
1054
94.5k
    *x1++ = *x++;
1055
94.5k
    while(x < xe);
1056
1.64M
  b1->wds = n1 - 1;
1057
1.64M
  Bfree(b);
1058
1.64M
  return b1;
1059
1.64M
  }
1060
1061
 static int
1062
cmp
1063
#ifdef KR_headers
1064
  (a, b) Bigint *a, *b;
1065
#else
1066
  (Bigint *a, Bigint *b)
1067
#endif
1068
7.56M
{
1069
7.56M
  ULong *xa, *xa0, *xb, *xb0;
1070
7.56M
  int i, j;
1071
1072
7.56M
  i = a->wds;
1073
7.56M
  j = b->wds;
1074
#ifdef DEBUG
1075
  if (i > 1 && !a->x[i-1])
1076
    Bug("cmp called with a->x[a->wds-1] == 0");
1077
  if (j > 1 && !b->x[j-1])
1078
    Bug("cmp called with b->x[b->wds-1] == 0");
1079
#endif
1080
7.56M
  if (i -= j)
1081
1.26M
    return i;
1082
6.29M
  xa0 = a->x;
1083
6.29M
  xa = xa0 + j;
1084
6.29M
  xb0 = b->x;
1085
6.29M
  xb = xb0 + j;
1086
7.05M
  for(;;) {
1087
7.05M
    if (*--xa != *--xb)
1088
6.23M
      return *xa < *xb ? -1 : 1;
1089
815k
    if (xa <= xa0)
1090
56.2k
      break;
1091
815k
    }
1092
56.2k
  return 0;
1093
6.29M
  }
1094
1095
 static Bigint *
1096
diff
1097
#ifdef KR_headers
1098
  (a, b) Bigint *a, *b;
1099
#else
1100
  (Bigint *a, Bigint *b)
1101
#endif
1102
1.59M
{
1103
1.59M
  Bigint *c;
1104
1.59M
  int i, wa, wb;
1105
1.59M
  ULong *xa, *xae, *xb, *xbe, *xc;
1106
1.59M
#ifdef ULLong
1107
1.59M
  ULLong borrow, y;
1108
#else
1109
  ULong borrow, y;
1110
#ifdef Pack_32
1111
  ULong z;
1112
#endif
1113
#endif
1114
1115
1.59M
  i = cmp(a,b);
1116
1.59M
  if (!i) {
1117
17.9k
    c = Balloc(0);
1118
17.9k
    c->wds = 1;
1119
17.9k
    c->x[0] = 0;
1120
17.9k
    return c;
1121
17.9k
    }
1122
1.57M
  if (i < 0) {
1123
247k
    c = a;
1124
247k
    a = b;
1125
247k
    b = c;
1126
247k
    i = 1;
1127
247k
    }
1128
1.32M
  else
1129
1.32M
    i = 0;
1130
1.57M
  c = Balloc(a->k);
1131
1.57M
  c->sign = i;
1132
1.57M
  wa = a->wds;
1133
1.57M
  xa = a->x;
1134
1.57M
  xae = xa + wa;
1135
1.57M
  wb = b->wds;
1136
1.57M
  xb = b->x;
1137
1.57M
  xbe = xb + wb;
1138
1.57M
  xc = c->x;
1139
1.57M
  borrow = 0;
1140
1.57M
#ifdef ULLong
1141
9.94M
  do {
1142
9.94M
    y = (ULLong)*xa++ - *xb++ - borrow;
1143
9.94M
    borrow = y >> 32 & (ULong)1;
1144
9.94M
    *xc++ = y & FFFFFFFF;
1145
9.94M
    }
1146
9.94M
    while(xb < xbe);
1147
2.19M
  while(xa < xae) {
1148
617k
    y = *xa++ - borrow;
1149
617k
    borrow = y >> 32 & (ULong)1;
1150
617k
    *xc++ = y & FFFFFFFF;
1151
617k
    }
1152
#else
1153
#ifdef Pack_32
1154
  do {
1155
    y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
1156
    borrow = (y & 0x10000) >> 16;
1157
    z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
1158
    borrow = (z & 0x10000) >> 16;
1159
    Storeinc(xc, z, y);
1160
    }
1161
    while(xb < xbe);
1162
  while(xa < xae) {
1163
    y = (*xa & 0xffff) - borrow;
1164
    borrow = (y & 0x10000) >> 16;
1165
    z = (*xa++ >> 16) - borrow;
1166
    borrow = (z & 0x10000) >> 16;
1167
    Storeinc(xc, z, y);
1168
    }
1169
#else
1170
  do {
1171
    y = *xa++ - *xb++ - borrow;
1172
    borrow = (y & 0x10000) >> 16;
1173
    *xc++ = y & 0xffff;
1174
    }
1175
    while(xb < xbe);
1176
  while(xa < xae) {
1177
    y = *xa++ - borrow;
1178
    borrow = (y & 0x10000) >> 16;
1179
    *xc++ = y & 0xffff;
1180
    }
1181
#endif
1182
#endif
1183
2.26M
  while(!*--xc)
1184
695k
    wa--;
1185
1.57M
  c->wds = wa;
1186
1.57M
  return c;
1187
1.59M
  }
1188
1189
 static double
1190
ulp
1191
#ifdef KR_headers
1192
  (x) U *x;
1193
#else
1194
  (U *x)
1195
#endif
1196
191k
{
1197
191k
  Long L;
1198
191k
  U u;
1199
1200
191k
  L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
1201
#ifndef Avoid_Underflow
1202
#ifndef Sudden_Underflow
1203
  if (L > 0) {
1204
#endif
1205
#endif
1206
#ifdef IBM
1207
    L |= Exp_msk1 >> 4;
1208
#endif
1209
191k
    word0(&u) = L;
1210
191k
    word1(&u) = 0;
1211
#ifndef Avoid_Underflow
1212
#ifndef Sudden_Underflow
1213
    }
1214
  else {
1215
    L = -L >> Exp_shift;
1216
    if (L < Exp_shift) {
1217
      word0(&u) = 0x80000 >> L;
1218
      word1(&u) = 0;
1219
      }
1220
    else {
1221
      word0(&u) = 0;
1222
      L -= Exp_shift;
1223
      word1(&u) = L >= 31 ? 1 : 1 << 31 - L;
1224
      }
1225
    }
1226
#endif
1227
#endif
1228
191k
  return dval(&u);
1229
191k
  }
1230
1231
 static double
1232
b2d
1233
#ifdef KR_headers
1234
  (a, e) Bigint *a; int *e;
1235
#else
1236
  (Bigint *a, int *e)
1237
#endif
1238
360k
{
1239
360k
  ULong *xa, *xa0, w, y, z;
1240
360k
  int k;
1241
360k
  U d;
1242
#ifdef VAX
1243
  ULong d0, d1;
1244
#else
1245
360k
#define d0 word0(&d)
1246
360k
#define d1 word1(&d)
1247
360k
#endif
1248
1249
360k
  xa0 = a->x;
1250
360k
  xa = xa0 + a->wds;
1251
360k
  y = *--xa;
1252
#ifdef DEBUG
1253
  if (!y) Bug("zero y in b2d");
1254
#endif
1255
360k
  k = hi0bits(y);
1256
360k
  *e = 32 - k;
1257
360k
#ifdef Pack_32
1258
360k
  if (k < Ebits) {
1259
77.7k
    d0 = Exp_1 | y >> (Ebits - k);
1260
77.7k
    w = xa > xa0 ? *--xa : 0;
1261
77.7k
    d1 = y << ((32-Ebits) + k) | w >> (Ebits - k);
1262
77.7k
    goto ret_d;
1263
77.7k
    }
1264
283k
  z = xa > xa0 ? *--xa : 0;
1265
283k
  if (k -= Ebits) {
1266
270k
    d0 = Exp_1 | y << k | z >> (32 - k);
1267
270k
    y = xa > xa0 ? *--xa : 0;
1268
270k
    d1 = z << k | y >> (32 - k);
1269
270k
    }
1270
12.6k
  else {
1271
12.6k
    d0 = Exp_1 | y;
1272
12.6k
    d1 = z;
1273
12.6k
    }
1274
#else
1275
  if (k < Ebits + 16) {
1276
    z = xa > xa0 ? *--xa : 0;
1277
    d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
1278
    w = xa > xa0 ? *--xa : 0;
1279
    y = xa > xa0 ? *--xa : 0;
1280
    d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
1281
    goto ret_d;
1282
    }
1283
  z = xa > xa0 ? *--xa : 0;
1284
  w = xa > xa0 ? *--xa : 0;
1285
  k -= Ebits + 16;
1286
  d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
1287
  y = xa > xa0 ? *--xa : 0;
1288
  d1 = w << k + 16 | y << k;
1289
#endif
1290
360k
 ret_d:
1291
#ifdef VAX
1292
  word0(&d) = d0 >> 16 | d0 << 16;
1293
  word1(&d) = d1 >> 16 | d1 << 16;
1294
#else
1295
360k
#undef d0
1296
360k
#undef d1
1297
360k
#endif
1298
360k
  return dval(&d);
1299
283k
  }
1300
1301
 static Bigint *
1302
d2b
1303
#ifdef KR_headers
1304
  (d, e, bits) U *d; int *e, *bits;
1305
#else
1306
  (U *d, int *e, int *bits)
1307
#endif
1308
783k
{
1309
783k
  Bigint *b;
1310
783k
  int de, k;
1311
783k
  ULong *x, y, z;
1312
783k
#ifndef Sudden_Underflow
1313
783k
  int i;
1314
783k
#endif
1315
#ifdef VAX
1316
  ULong d0, d1;
1317
  d0 = word0(d) >> 16 | word0(d) << 16;
1318
  d1 = word1(d) >> 16 | word1(d) << 16;
1319
#else
1320
2.35M
#define d0 word0(d)
1321
783k
#define d1 word1(d)
1322
783k
#endif
1323
1324
783k
#ifdef Pack_32
1325
783k
  b = Balloc(1);
1326
#else
1327
  b = Balloc(2);
1328
#endif
1329
783k
  x = b->x;
1330
1331
783k
  z = d0 & Frac_mask;
1332
783k
  d0 &= 0x7fffffff; /* clear sign bit, which we ignore */
1333
#ifdef Sudden_Underflow
1334
  de = (int)(d0 >> Exp_shift);
1335
#ifndef IBM
1336
  z |= Exp_msk11;
1337
#endif
1338
#else
1339
783k
  if ((de = (int)(d0 >> Exp_shift)))
1340
770k
    z |= Exp_msk1;
1341
783k
#endif
1342
783k
#ifdef Pack_32
1343
783k
  if ((y = d1)) {
1344
711k
    if ((k = lo0bits(&y))) {
1345
357k
      x[0] = y | z << (32 - k);
1346
357k
      z >>= k;
1347
357k
      }
1348
354k
    else
1349
354k
      x[0] = y;
1350
711k
#ifndef Sudden_Underflow
1351
711k
    i =
1352
711k
#endif
1353
711k
        b->wds = (x[1] = z) ? 2 : 1;
1354
711k
    }
1355
71.7k
  else {
1356
71.7k
    k = lo0bits(&z);
1357
71.7k
    x[0] = z;
1358
71.7k
#ifndef Sudden_Underflow
1359
71.7k
    i =
1360
71.7k
#endif
1361
71.7k
        b->wds = 1;
1362
71.7k
    k += 32;
1363
71.7k
    }
1364
#else
1365
  if (y = d1) {
1366
    if (k = lo0bits(&y))
1367
      if (k >= 16) {
1368
        x[0] = y | z << 32 - k & 0xffff;
1369
        x[1] = z >> k - 16 & 0xffff;
1370
        x[2] = z >> k;
1371
        i = 2;
1372
        }
1373
      else {
1374
        x[0] = y & 0xffff;
1375
        x[1] = y >> 16 | z << 16 - k & 0xffff;
1376
        x[2] = z >> k & 0xffff;
1377
        x[3] = z >> k+16;
1378
        i = 3;
1379
        }
1380
    else {
1381
      x[0] = y & 0xffff;
1382
      x[1] = y >> 16;
1383
      x[2] = z & 0xffff;
1384
      x[3] = z >> 16;
1385
      i = 3;
1386
      }
1387
    }
1388
  else {
1389
#ifdef DEBUG
1390
    if (!z)
1391
      Bug("Zero passed to d2b");
1392
#endif
1393
    k = lo0bits(&z);
1394
    if (k >= 16) {
1395
      x[0] = z;
1396
      i = 0;
1397
      }
1398
    else {
1399
      x[0] = z & 0xffff;
1400
      x[1] = z >> 16;
1401
      i = 1;
1402
      }
1403
    k += 32;
1404
    }
1405
  while(!x[i])
1406
    --i;
1407
  b->wds = i + 1;
1408
#endif
1409
783k
#ifndef Sudden_Underflow
1410
783k
  if (de) {
1411
770k
#endif
1412
#ifdef IBM
1413
    *e = (de - Bias - (P-1) << 2) + k;
1414
    *bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
1415
#else
1416
770k
    *e = de - Bias - (P-1) + k;
1417
770k
    *bits = P - k;
1418
770k
#endif
1419
770k
#ifndef Sudden_Underflow
1420
770k
    }
1421
13.0k
  else {
1422
13.0k
    *e = de - Bias - (P-1) + 1 + k;
1423
13.0k
#ifdef Pack_32
1424
13.0k
    *bits = 32*i - hi0bits(x[i-1]);
1425
#else
1426
    *bits = (i+2)*16 - hi0bits(x[i]);
1427
#endif
1428
13.0k
    }
1429
783k
#endif
1430
783k
  return b;
1431
783k
  }
1432
#undef d0
1433
#undef d1
1434
1435
 static double
1436
ratio
1437
#ifdef KR_headers
1438
  (a, b) Bigint *a, *b;
1439
#else
1440
  (Bigint *a, Bigint *b)
1441
#endif
1442
180k
{
1443
180k
  U da, db;
1444
180k
  int k, ka, kb;
1445
1446
180k
  dval(&da) = b2d(a, &ka);
1447
180k
  dval(&db) = b2d(b, &kb);
1448
180k
#ifdef Pack_32
1449
180k
  k = ka - kb + 32*(a->wds - b->wds);
1450
#else
1451
  k = ka - kb + 16*(a->wds - b->wds);
1452
#endif
1453
#ifdef IBM
1454
  if (k > 0) {
1455
    word0(&da) += (k >> 2)*Exp_msk1;
1456
    if (k &= 3)
1457
      dval(&da) *= 1 << k;
1458
    }
1459
  else {
1460
    k = -k;
1461
    word0(&db) += (k >> 2)*Exp_msk1;
1462
    if (k &= 3)
1463
      dval(&db) *= 1 << k;
1464
    }
1465
#else
1466
180k
  if (k > 0)
1467
67.7k
    word0(&da) += k*Exp_msk1;
1468
112k
  else {
1469
112k
    k = -k;
1470
112k
    word0(&db) += k*Exp_msk1;
1471
112k
    }
1472
180k
#endif
1473
180k
  return dval(&da) / dval(&db);
1474
180k
  }
1475
1476
 static CONST double
1477
tens[] = {
1478
    1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1479
    1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1480
    1e20, 1e21, 1e22
1481
#ifdef VAX
1482
    , 1e23, 1e24
1483
#endif
1484
    };
1485
1486
 static CONST double
1487
#ifdef IEEE_Arith
1488
bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1489
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
1490
#ifdef Avoid_Underflow
1491
    9007199254740992.*9007199254740992.e-256
1492
    /* = 2^106 * 1e-256 */
1493
#else
1494
    1e-256
1495
#endif
1496
    };
1497
/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
1498
/* flag unnecessarily.  It leads to a song and dance at the end of strtod. */
1499
89.1k
#define Scale_Bit 0x10
1500
94.5k
#define n_bigtens 5
1501
#else
1502
#ifdef IBM
1503
bigtens[] = { 1e16, 1e32, 1e64 };
1504
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 };
1505
#define n_bigtens 3
1506
#else
1507
bigtens[] = { 1e16, 1e32 };
1508
static CONST double tinytens[] = { 1e-16, 1e-32 };
1509
#define n_bigtens 2
1510
#endif
1511
#endif
1512
1513
#undef Need_Hexdig
1514
#ifdef INFNAN_CHECK
1515
#ifndef No_Hex_NaN
1516
#define Need_Hexdig
1517
#endif
1518
#endif
1519
1520
#ifndef Need_Hexdig
1521
#ifndef NO_HEX_FP
1522
#define Need_Hexdig
1523
#endif
1524
#endif
1525
1526
#ifdef Need_Hexdig /*{*/
1527
#if 0
1528
static unsigned char hexdig[256];
1529
1530
 static void
1531
htinit(unsigned char *h, unsigned char *s, int inc)
1532
{
1533
  int i, j;
1534
  for(i = 0; (j = s[i]) !=0; i++)
1535
    h[j] = i + inc;
1536
  }
1537
1538
 static void
1539
hexdig_init(void) /* Use of hexdig_init omitted 20121220 to avoid a */
1540
      /* race condition when multiple threads are used. */
1541
{
1542
#define USC (unsigned char *)
1543
  htinit(hexdig, USC "0123456789", 0x10);
1544
  htinit(hexdig, USC "abcdef", 0x10 + 10);
1545
  htinit(hexdig, USC "ABCDEF", 0x10 + 10);
1546
  }
1547
#else
1548
static const unsigned char hexdig[256] = {
1549
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1550
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1551
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1552
  16,17,18,19,20,21,22,23,24,25,0,0,0,0,0,0,
1553
  0,26,27,28,29,30,31,0,0,0,0,0,0,0,0,0,
1554
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1555
  0,26,27,28,29,30,31,0,0,0,0,0,0,0,0,0,
1556
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1557
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1558
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1559
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1560
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1561
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1562
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1563
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1564
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1565
  };
1566
#endif
1567
#endif /* } Need_Hexdig */
1568
1569
#ifdef INFNAN_CHECK
1570
1571
#ifndef NAN_WORD0
1572
#define NAN_WORD0 0x7ff80000
1573
#endif
1574
1575
#ifndef NAN_WORD1
1576
#define NAN_WORD1 0
1577
#endif
1578
1579
 static int
1580
match
1581
#ifdef KR_headers
1582
  (sp, t) char **sp, *t;
1583
#else
1584
  (const char **sp, const char *t)
1585
#endif
1586
{
1587
  int c, d;
1588
  CONST char *s = *sp;
1589
1590
  while((d = *t++)) {
1591
    if ((c = *++s) >= 'A' && c <= 'Z')
1592
      c += 'a' - 'A';
1593
    if (c != d)
1594
      return 0;
1595
    }
1596
  *sp = s + 1;
1597
  return 1;
1598
  }
1599
1600
#ifndef No_Hex_NaN
1601
 static void
1602
hexnan
1603
#ifdef KR_headers
1604
  (rvp, sp) U *rvp; CONST char **sp;
1605
#else
1606
  (U *rvp, const char **sp)
1607
#endif
1608
{
1609
  ULong c, x[2];
1610
  CONST char *s;
1611
  int c1, havedig, udx0, xshift;
1612
1613
  /**** if (!hexdig['0']) hexdig_init(); ****/
1614
  x[0] = x[1] = 0;
1615
  havedig = xshift = 0;
1616
  udx0 = 1;
1617
  s = *sp;
1618
  /* allow optional initial 0x or 0X */
1619
  while((c = *(CONST unsigned char*)(s+1)) && c <= ' ')
1620
    ++s;
1621
  if (s[1] == '0' && (s[2] == 'x' || s[2] == 'X'))
1622
    s += 2;
1623
  while((c = *(CONST unsigned char*)++s)) {
1624
    if ((c1 = hexdig[c]))
1625
      c  = c1 & 0xf;
1626
    else if (c <= ' ') {
1627
      if (udx0 && havedig) {
1628
        udx0 = 0;
1629
        xshift = 1;
1630
        }
1631
      continue;
1632
      }
1633
#ifdef GDTOA_NON_PEDANTIC_NANCHECK
1634
    else if (/*(*/ c == ')' && havedig) {
1635
      *sp = s + 1;
1636
      break;
1637
      }
1638
    else
1639
      return; /* invalid form: don't change *sp */
1640
#else
1641
    else {
1642
      do {
1643
        if (/*(*/ c == ')') {
1644
          *sp = s + 1;
1645
          break;
1646
          }
1647
        } while((c = *++s));
1648
      break;
1649
      }
1650
#endif
1651
    havedig = 1;
1652
    if (xshift) {
1653
      xshift = 0;
1654
      x[0] = x[1];
1655
      x[1] = 0;
1656
      }
1657
    if (udx0)
1658
      x[0] = (x[0] << 4) | (x[1] >> 28);
1659
    x[1] = (x[1] << 4) | c;
1660
    }
1661
  if ((x[0] &= 0xfffff) || x[1]) {
1662
    word0(rvp) = Exp_mask | x[0];
1663
    word1(rvp) = x[1];
1664
    }
1665
  }
1666
#endif /*No_Hex_NaN*/
1667
#endif /* INFNAN_CHECK */
1668
1669
#ifdef Pack_32
1670
#define ULbits 32
1671
#define kshift 5
1672
225k
#define kmask 31
1673
#else
1674
#define ULbits 16
1675
#define kshift 4
1676
#define kmask 15
1677
#endif
1678
1679
#if !defined(NO_HEX_FP) || defined(Honor_FLT_ROUNDS) /*{*/
1680
 static Bigint *
1681
#ifdef KR_headers
1682
increment(b) Bigint *b;
1683
#else
1684
increment(Bigint *b)
1685
#endif
1686
{
1687
  ULong *x, *xe;
1688
  Bigint *b1;
1689
1690
  x = b->x;
1691
  xe = x + b->wds;
1692
  do {
1693
    if (*x < (ULong)0xffffffffL) {
1694
      ++*x;
1695
      return b;
1696
      }
1697
    *x++ = 0;
1698
    } while(x < xe);
1699
  {
1700
    if (b->wds >= b->maxwds) {
1701
      b1 = Balloc(b->k+1);
1702
      Bcopy(b1,b);
1703
      Bfree(b);
1704
      b = b1;
1705
      }
1706
    b->x[b->wds++] = 1;
1707
    }
1708
  return b;
1709
  }
1710
1711
#endif /*}*/
1712
1713
#ifndef NO_HEX_FP /*{*/
1714
1715
 static void
1716
#ifdef KR_headers
1717
rshift(b, k) Bigint *b; int k;
1718
#else
1719
rshift(Bigint *b, int k)
1720
#endif
1721
{
1722
  ULong *x, *x1, *xe, y;
1723
  int n;
1724
1725
  x = x1 = b->x;
1726
  n = k >> kshift;
1727
  if (n < b->wds) {
1728
    xe = x + b->wds;
1729
    x += n;
1730
    if (k &= kmask) {
1731
      n = 32 - k;
1732
      y = *x++ >> k;
1733
      while(x < xe) {
1734
        *x1++ = (y | (*x << n)) & 0xffffffff;
1735
        y = *x++ >> k;
1736
        }
1737
      if ((*x1 = y) !=0)
1738
        x1++;
1739
      }
1740
    else
1741
      while(x < xe)
1742
        *x1++ = *x++;
1743
    }
1744
  if ((b->wds = x1 - b->x) == 0)
1745
    b->x[0] = 0;
1746
  }
1747
1748
 static ULong
1749
#ifdef KR_headers
1750
any_on(b, k) Bigint *b; int k;
1751
#else
1752
any_on(Bigint *b, int k)
1753
#endif
1754
{
1755
  int n, nwds;
1756
  ULong *x, *x0, x1, x2;
1757
1758
  x = b->x;
1759
  nwds = b->wds;
1760
  n = k >> kshift;
1761
  if (n > nwds)
1762
    n = nwds;
1763
  else if (n < nwds && (k &= kmask)) {
1764
    x1 = x2 = x[n];
1765
    x1 >>= k;
1766
    x1 <<= k;
1767
    if (x1 != x2)
1768
      return 1;
1769
    }
1770
  x0 = x;
1771
  x += n;
1772
  while(x > x0)
1773
    if (*--x)
1774
      return 1;
1775
  return 0;
1776
  }
1777
1778
enum {  /* rounding values: same as FLT_ROUNDS */
1779
  Round_zero = 0,
1780
  Round_near = 1,
1781
  Round_up = 2,
1782
  Round_down = 3
1783
  };
1784
1785
 void
1786
#ifdef KR_headers
1787
gethex(sp, rvp, rounding, sign)
1788
  CONST char **sp; U *rvp; int rounding, sign;
1789
#else
1790
gethex( CONST char **sp, U *rvp, int rounding, int sign)
1791
#endif
1792
{
1793
  Bigint *b;
1794
  CONST unsigned char *decpt, *s0, *s, *s1;
1795
  Long e, e1;
1796
  ULong L, lostbits, *x;
1797
  int big, denorm, esign, havedig, k, n, nbits, up, zret;
1798
#ifdef IBM
1799
  int j;
1800
#endif
1801
  enum {
1802
#ifdef IEEE_Arith /*{{*/
1803
    emax = 0x7fe - Bias - P + 1,
1804
    emin = Emin - P + 1
1805
#else /*}{*/
1806
    emin = Emin - P,
1807
#ifdef VAX
1808
    emax = 0x7ff - Bias - P + 1
1809
#endif
1810
#ifdef IBM
1811
    emax = 0x7f - Bias - P
1812
#endif
1813
#endif /*}}*/
1814
    };
1815
#ifdef USE_LOCALE
1816
  int i;
1817
#ifdef NO_LOCALE_CACHE
1818
  const unsigned char *decimalpoint = (unsigned char*)
1819
    localeconv()->decimal_point;
1820
#else
1821
  const unsigned char *decimalpoint;
1822
  static unsigned char *decimalpoint_cache;
1823
  if (!(s0 = decimalpoint_cache)) {
1824
    s0 = (unsigned char*)localeconv()->decimal_point;
1825
    if ((decimalpoint_cache = (unsigned char*)
1826
        MALLOC(strlen((CONST char*)s0) + 1))) {
1827
      strcpy((char*)decimalpoint_cache, (CONST char*)s0);
1828
      s0 = decimalpoint_cache;
1829
      }
1830
    }
1831
  decimalpoint = s0;
1832
#endif
1833
#endif
1834
1835
  /**** if (!hexdig['0']) hexdig_init(); ****/
1836
  havedig = 0;
1837
  s0 = *(CONST unsigned char **)sp + 2;
1838
  while(s0[havedig] == '0')
1839
    havedig++;
1840
  s0 += havedig;
1841
  s = s0;
1842
  decpt = 0;
1843
  zret = 0;
1844
  e = 0;
1845
  if (hexdig[*s])
1846
    havedig++;
1847
  else {
1848
    zret = 1;
1849
#ifdef USE_LOCALE
1850
    for(i = 0; decimalpoint[i]; ++i) {
1851
      if (s[i] != decimalpoint[i])
1852
        goto pcheck;
1853
      }
1854
    decpt = s += i;
1855
#else
1856
    if (*s != '.')
1857
      goto pcheck;
1858
    decpt = ++s;
1859
#endif
1860
    if (!hexdig[*s])
1861
      goto pcheck;
1862
    while(*s == '0')
1863
      s++;
1864
    if (hexdig[*s])
1865
      zret = 0;
1866
    havedig = 1;
1867
    s0 = s;
1868
    }
1869
  while(hexdig[*s])
1870
    s++;
1871
#ifdef USE_LOCALE
1872
  if (*s == *decimalpoint && !decpt) {
1873
    for(i = 1; decimalpoint[i]; ++i) {
1874
      if (s[i] != decimalpoint[i])
1875
        goto pcheck;
1876
      }
1877
    decpt = s += i;
1878
#else
1879
  if (*s == '.' && !decpt) {
1880
    decpt = ++s;
1881
#endif
1882
    while(hexdig[*s])
1883
      s++;
1884
    }/*}*/
1885
  if (decpt)
1886
    e = -(((Long)(s-decpt)) << 2);
1887
 pcheck:
1888
  s1 = s;
1889
  big = esign = 0;
1890
  switch(*s) {
1891
    case 'p':
1892
    case 'P':
1893
    switch(*++s) {
1894
      case '-':
1895
      esign = 1;
1896
      ZEND_FALLTHROUGH;
1897
      case '+':
1898
      s++;
1899
      }
1900
    if ((n = hexdig[*s]) == 0 || n > 0x19) {
1901
      s = s1;
1902
      break;
1903
      }
1904
    e1 = n - 0x10;
1905
    while((n = hexdig[*++s]) !=0 && n <= 0x19) {
1906
      if (e1 & 0xf8000000)
1907
        big = 1;
1908
      e1 = 10*e1 + n - 0x10;
1909
      }
1910
    if (esign)
1911
      e1 = -e1;
1912
    e += e1;
1913
    }
1914
  *sp = (char*)s;
1915
  if (!havedig)
1916
    *sp = (char*)s0 - 1;
1917
  if (zret)
1918
    goto retz1;
1919
  if (big) {
1920
    if (esign) {
1921
#ifdef IEEE_Arith
1922
      switch(rounding) {
1923
        case Round_up:
1924
        if (sign)
1925
          break;
1926
        goto ret_tiny;
1927
        case Round_down:
1928
        if (!sign)
1929
          break;
1930
        goto ret_tiny;
1931
        }
1932
#endif
1933
      goto retz;
1934
#ifdef IEEE_Arith
1935
 ret_tinyf:
1936
      Bfree(b);
1937
 ret_tiny:
1938
#ifndef NO_ERRNO
1939
      errno = ERANGE;
1940
#endif
1941
      word0(rvp) = 0;
1942
      word1(rvp) = 1;
1943
      return;
1944
#endif /* IEEE_Arith */
1945
      }
1946
    switch(rounding) {
1947
      case Round_near:
1948
      goto ovfl1;
1949
      case Round_up:
1950
      if (!sign)
1951
        goto ovfl1;
1952
      goto ret_big;
1953
      case Round_down:
1954
      if (sign)
1955
        goto ovfl1;
1956
      goto ret_big;
1957
      }
1958
 ret_big:
1959
    word0(rvp) = Big0;
1960
    word1(rvp) = Big1;
1961
    return;
1962
    }
1963
  n = s1 - s0 - 1;
1964
  for(k = 0; n > (1 << (kshift-2)) - 1; n >>= 1)
1965
    k++;
1966
  b = Balloc(k);
1967
  x = b->x;
1968
  n = 0;
1969
  L = 0;
1970
#ifdef USE_LOCALE
1971
  for(i = 0; decimalpoint[i+1]; ++i);
1972
#endif
1973
  while(s1 > s0) {
1974
#ifdef USE_LOCALE
1975
    if (*--s1 == decimalpoint[i]) {
1976
      s1 -= i;
1977
      continue;
1978
      }
1979
#else
1980
    if (*--s1 == '.')
1981
      continue;
1982
#endif
1983
    if (n == ULbits) {
1984
      *x++ = L;
1985
      L = 0;
1986
      n = 0;
1987
      }
1988
    L |= (hexdig[*s1] & 0x0f) << n;
1989
    n += 4;
1990
    }
1991
  *x++ = L;
1992
  b->wds = n = x - b->x;
1993
  n = ULbits*n - hi0bits(L);
1994
  nbits = Nbits;
1995
  lostbits = 0;
1996
  x = b->x;
1997
  if (n > nbits) {
1998
    n -= nbits;
1999
    if (any_on(b,n)) {
2000
      lostbits = 1;
2001
      k = n - 1;
2002
      if (x[k>>kshift] & 1 << (k & kmask)) {
2003
        lostbits = 2;
2004
        if (k > 0 && any_on(b,k))
2005
          lostbits = 3;
2006
        }
2007
      }
2008
    rshift(b, n);
2009
    e += n;
2010
    }
2011
  else if (n < nbits) {
2012
    n = nbits - n;
2013
    b = lshift(b, n);
2014
    e -= n;
2015
    x = b->x;
2016
    }
2017
  if (e > Emax) {
2018
 ovfl:
2019
    Bfree(b);
2020
 ovfl1:
2021
#ifndef NO_ERRNO
2022
    errno = ERANGE;
2023
#endif
2024
    word0(rvp) = Exp_mask;
2025
    word1(rvp) = 0;
2026
    return;
2027
    }
2028
  denorm = 0;
2029
  if (e < emin) {
2030
    denorm = 1;
2031
    n = emin - e;
2032
    if (n >= nbits) {
2033
#ifdef IEEE_Arith /*{*/
2034
      switch (rounding) {
2035
        case Round_near:
2036
        if (n == nbits && (n < 2 || any_on(b,n-1)))
2037
          goto ret_tinyf;
2038
        break;
2039
        case Round_up:
2040
        if (!sign)
2041
          goto ret_tinyf;
2042
        break;
2043
        case Round_down:
2044
        if (sign)
2045
          goto ret_tinyf;
2046
        }
2047
#endif /* } IEEE_Arith */
2048
      Bfree(b);
2049
 retz:
2050
#ifndef NO_ERRNO
2051
      errno = ERANGE;
2052
#endif
2053
 retz1:
2054
      rvp->d = 0.;
2055
      return;
2056
      }
2057
    k = n - 1;
2058
    if (lostbits)
2059
      lostbits = 1;
2060
    else if (k > 0)
2061
      lostbits = any_on(b,k);
2062
    if (x[k>>kshift] & 1 << (k & kmask))
2063
      lostbits |= 2;
2064
    nbits -= n;
2065
    rshift(b,n);
2066
    e = emin;
2067
    }
2068
  if (lostbits) {
2069
    up = 0;
2070
    switch(rounding) {
2071
      case Round_zero:
2072
      break;
2073
      case Round_near:
2074
      if (lostbits & 2
2075
       && (lostbits & 1) | (x[0] & 1))
2076
        up = 1;
2077
      break;
2078
      case Round_up:
2079
      up = 1 - sign;
2080
      break;
2081
      case Round_down:
2082
      up = sign;
2083
      }
2084
    if (up) {
2085
      k = b->wds;
2086
      b = increment(b);
2087
      x = b->x;
2088
      if (denorm) {
2089
#if 0
2090
        if (nbits == Nbits - 1
2091
         && x[nbits >> kshift] & 1 << (nbits & kmask))
2092
          denorm = 0; /* not currently used */
2093
#endif
2094
        }
2095
      else if (b->wds > k
2096
       || ((n = nbits & kmask) !=0
2097
           && hi0bits(x[k-1]) < 32-n)) {
2098
        rshift(b,1);
2099
        if (++e > Emax)
2100
          goto ovfl;
2101
        }
2102
      }
2103
    }
2104
#ifdef IEEE_Arith
2105
  if (denorm)
2106
    word0(rvp) = b->wds > 1 ? b->x[1] & ~0x100000 : 0;
2107
  else
2108
    word0(rvp) = (b->x[1] & ~0x100000) | ((e + 0x3ff + 52) << 20);
2109
  word1(rvp) = b->x[0];
2110
#endif
2111
#ifdef IBM
2112
  if ((j = e & 3)) {
2113
    k = b->x[0] & ((1 << j) - 1);
2114
    rshift(b,j);
2115
    if (k) {
2116
      switch(rounding) {
2117
        case Round_up:
2118
        if (!sign)
2119
          increment(b);
2120
        break;
2121
        case Round_down:
2122
        if (sign)
2123
          increment(b);
2124
        break;
2125
        case Round_near:
2126
        j = 1 << (j-1);
2127
        if (k & j && ((k & (j-1)) | lostbits))
2128
          increment(b);
2129
        }
2130
      }
2131
    }
2132
  e >>= 2;
2133
  word0(rvp) = b->x[1] | ((e + 65 + 13) << 24);
2134
  word1(rvp) = b->x[0];
2135
#endif
2136
#ifdef VAX
2137
  /* The next two lines ignore swap of low- and high-order 2 bytes. */
2138
  /* word0(rvp) = (b->x[1] & ~0x800000) | ((e + 129 + 55) << 23); */
2139
  /* word1(rvp) = b->x[0]; */
2140
  word0(rvp) = ((b->x[1] & ~0x800000) >> 16) | ((e + 129 + 55) << 7) | (b->x[1] << 16);
2141
  word1(rvp) = (b->x[0] >> 16) | (b->x[0] << 16);
2142
#endif
2143
  Bfree(b);
2144
  }
2145
#endif /*!NO_HEX_FP}*/
2146
2147
 static int
2148
#ifdef KR_headers
2149
dshift(b, p2) Bigint *b; int p2;
2150
#else
2151
dshift(Bigint *b, int p2)
2152
#endif
2153
225k
{
2154
225k
  int rv = hi0bits(b->x[b->wds-1]) - 4;
2155
225k
  if (p2 > 0)
2156
119k
    rv -= p2;
2157
225k
  return rv & kmask;
2158
225k
  }
2159
2160
 static int
2161
quorem
2162
#ifdef KR_headers
2163
  (b, S) Bigint *b, *S;
2164
#else
2165
  (Bigint *b, Bigint *S)
2166
#endif
2167
3.23M
{
2168
3.23M
  int n;
2169
3.23M
  ULong *bx, *bxe, q, *sx, *sxe;
2170
3.23M
#ifdef ULLong
2171
3.23M
  ULLong borrow, carry, y, ys;
2172
#else
2173
  ULong borrow, carry, y, ys;
2174
#ifdef Pack_32
2175
  ULong si, z, zs;
2176
#endif
2177
#endif
2178
2179
3.23M
  n = S->wds;
2180
#ifdef DEBUG
2181
  /*debug*/ if (b->wds > n)
2182
  /*debug*/ Bug("oversize b in quorem");
2183
#endif
2184
3.23M
  if (b->wds < n)
2185
105k
    return 0;
2186
3.13M
  sx = S->x;
2187
3.13M
  sxe = sx + --n;
2188
3.13M
  bx = b->x;
2189
3.13M
  bxe = bx + n;
2190
3.13M
  q = *bxe / (*sxe + 1);  /* ensure q <= true quotient */
2191
#ifdef DEBUG
2192
#ifdef NO_STRTOD_BIGCOMP
2193
  /*debug*/ if (q > 9)
2194
#else
2195
  /* An oversized q is possible when quorem is called from bigcomp and */
2196
  /* the input is near, e.g., twice the smallest denormalized number. */
2197
  /*debug*/ if (q > 15)
2198
#endif
2199
  /*debug*/ Bug("oversized quotient in quorem");
2200
#endif
2201
3.13M
  if (q) {
2202
2.37M
    borrow = 0;
2203
2.37M
    carry = 0;
2204
18.7M
    do {
2205
18.7M
#ifdef ULLong
2206
18.7M
      ys = *sx++ * (ULLong)q + carry;
2207
18.7M
      carry = ys >> 32;
2208
18.7M
      y = *bx - (ys & FFFFFFFF) - borrow;
2209
18.7M
      borrow = y >> 32 & (ULong)1;
2210
18.7M
      *bx++ = y & FFFFFFFF;
2211
#else
2212
#ifdef Pack_32
2213
      si = *sx++;
2214
      ys = (si & 0xffff) * q + carry;
2215
      zs = (si >> 16) * q + (ys >> 16);
2216
      carry = zs >> 16;
2217
      y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
2218
      borrow = (y & 0x10000) >> 16;
2219
      z = (*bx >> 16) - (zs & 0xffff) - borrow;
2220
      borrow = (z & 0x10000) >> 16;
2221
      Storeinc(bx, z, y);
2222
#else
2223
      ys = *sx++ * q + carry;
2224
      carry = ys >> 16;
2225
      y = *bx - (ys & 0xffff) - borrow;
2226
      borrow = (y & 0x10000) >> 16;
2227
      *bx++ = y & 0xffff;
2228
#endif
2229
#endif
2230
18.7M
      }
2231
18.7M
      while(sx <= sxe);
2232
2.37M
    if (!*bxe) {
2233
4.66k
      bx = b->x;
2234
4.66k
      while(--bxe > bx && !*bxe)
2235
0
        --n;
2236
4.66k
      b->wds = n;
2237
4.66k
      }
2238
2.37M
    }
2239
3.13M
  if (cmp(b, S) >= 0) {
2240
67.8k
    q++;
2241
67.8k
    borrow = 0;
2242
67.8k
    carry = 0;
2243
67.8k
    bx = b->x;
2244
67.8k
    sx = S->x;
2245
261k
    do {
2246
261k
#ifdef ULLong
2247
261k
      ys = *sx++ + carry;
2248
261k
      carry = ys >> 32;
2249
261k
      y = *bx - (ys & FFFFFFFF) - borrow;
2250
261k
      borrow = y >> 32 & (ULong)1;
2251
261k
      *bx++ = y & FFFFFFFF;
2252
#else
2253
#ifdef Pack_32
2254
      si = *sx++;
2255
      ys = (si & 0xffff) + carry;
2256
      zs = (si >> 16) + (ys >> 16);
2257
      carry = zs >> 16;
2258
      y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
2259
      borrow = (y & 0x10000) >> 16;
2260
      z = (*bx >> 16) - (zs & 0xffff) - borrow;
2261
      borrow = (z & 0x10000) >> 16;
2262
      Storeinc(bx, z, y);
2263
#else
2264
      ys = *sx++ + carry;
2265
      carry = ys >> 16;
2266
      y = *bx - (ys & 0xffff) - borrow;
2267
      borrow = (y & 0x10000) >> 16;
2268
      *bx++ = y & 0xffff;
2269
#endif
2270
#endif
2271
261k
      }
2272
261k
      while(sx <= sxe);
2273
67.8k
    bx = b->x;
2274
67.8k
    bxe = bx + n;
2275
67.8k
    if (!*bxe) {
2276
65.7k
      while(--bxe > bx && !*bxe)
2277
8.49k
        --n;
2278
57.2k
      b->wds = n;
2279
57.2k
      }
2280
67.8k
    }
2281
3.13M
  return q;
2282
3.23M
  }
2283
2284
#if defined(Avoid_Underflow) || !defined(NO_STRTOD_BIGCOMP) /*{*/
2285
 static double
2286
sulp
2287
#ifdef KR_headers
2288
  (x, bc) U *x; BCinfo *bc;
2289
#else
2290
  (U *x, BCinfo *bc)
2291
#endif
2292
11.3k
{
2293
11.3k
  U u;
2294
11.3k
  double rv;
2295
11.3k
  int i;
2296
2297
11.3k
  rv = ulp(x);
2298
11.3k
  if (!bc->scale || (i = 2*P + 1 - ((word0(x) & Exp_mask) >> Exp_shift)) <= 0)
2299
10.6k
    return rv; /* Is there an example where i <= 0 ? */
2300
658
  word0(&u) = Exp_1 + (i << Exp_shift);
2301
658
  word1(&u) = 0;
2302
658
  return rv * u.d;
2303
11.3k
  }
2304
#endif /*}*/
2305
2306
#ifndef NO_STRTOD_BIGCOMP
2307
 static void
2308
bigcomp
2309
#ifdef KR_headers
2310
  (rv, s0, bc)
2311
  U *rv; CONST char *s0; BCinfo *bc;
2312
#else
2313
  (U *rv, const char *s0, BCinfo *bc)
2314
#endif
2315
91.9k
{
2316
91.9k
  Bigint *b, *d;
2317
91.9k
  int b2, bbits, d2, dd, dig, dsign, i, j, nd, nd0, p2, p5, speccase;
2318
2319
91.9k
  dsign = bc->dsign;
2320
91.9k
  nd = bc->nd;
2321
91.9k
  nd0 = bc->nd0;
2322
91.9k
  p5 = nd + bc->e0 - 1;
2323
91.9k
  speccase = 0;
2324
91.9k
#ifndef Sudden_Underflow
2325
91.9k
  if (rv->d == 0.) { /* special case: value near underflow-to-zero */
2326
        /* threshold was rounded to zero */
2327
5.56k
    b = i2b(1);
2328
5.56k
    p2 = Emin - P + 1;
2329
5.56k
    bbits = 1;
2330
5.56k
#ifdef Avoid_Underflow
2331
5.56k
    word0(rv) = (P+2) << Exp_shift;
2332
#else
2333
    word1(rv) = 1;
2334
#endif
2335
5.56k
    i = 0;
2336
#ifdef Honor_FLT_ROUNDS
2337
    if (bc->rounding == 1)
2338
#endif
2339
5.56k
      {
2340
5.56k
      speccase = 1;
2341
5.56k
      --p2;
2342
5.56k
      dsign = 0;
2343
5.56k
      goto have_i;
2344
5.56k
      }
2345
5.56k
    }
2346
86.4k
  else
2347
86.4k
#endif
2348
86.4k
    b = d2b(rv, &p2, &bbits);
2349
86.4k
#ifdef Avoid_Underflow
2350
86.4k
  p2 -= bc->scale;
2351
86.4k
#endif
2352
  /* floor(log2(rv)) == bbits - 1 + p2 */
2353
  /* Check for denormal case. */
2354
86.4k
  i = P - bbits;
2355
86.4k
  if (i > (j = P - Emin - 1 + p2)) {
2356
#ifdef Sudden_Underflow
2357
    Bfree(b);
2358
    b = i2b(1);
2359
    p2 = Emin;
2360
    i = P - 1;
2361
#ifdef Avoid_Underflow
2362
    word0(rv) = (1 + bc->scale) << Exp_shift;
2363
#else
2364
    word0(rv) = Exp_msk1;
2365
#endif
2366
    word1(rv) = 0;
2367
#else
2368
2.03k
    i = j;
2369
2.03k
#endif
2370
2.03k
    }
2371
#ifdef Honor_FLT_ROUNDS
2372
  if (bc->rounding != 1) {
2373
    if (i > 0)
2374
      b = lshift(b, i);
2375
    if (dsign)
2376
      b = increment(b);
2377
    }
2378
  else
2379
#endif
2380
86.4k
    {
2381
86.4k
    b = lshift(b, ++i);
2382
86.4k
    b->x[0] |= 1;
2383
86.4k
    }
2384
86.4k
#ifndef Sudden_Underflow
2385
91.9k
 have_i:
2386
91.9k
#endif
2387
91.9k
  p2 -= p5 + i;
2388
91.9k
  d = i2b(1);
2389
  /* Arrange for convenient computation of quotients:
2390
   * shift left if necessary so divisor has 4 leading 0 bits.
2391
   */
2392
91.9k
  if (p5 > 0)
2393
71.7k
    d = pow5mult(d, p5);
2394
20.1k
  else if (p5 < 0)
2395
16.9k
    b = pow5mult(b, -p5);
2396
91.9k
  if (p2 > 0) {
2397
59.7k
    b2 = p2;
2398
59.7k
    d2 = 0;
2399
59.7k
    }
2400
32.1k
  else {
2401
32.1k
    b2 = 0;
2402
32.1k
    d2 = -p2;
2403
32.1k
    }
2404
91.9k
  i = dshift(d, d2);
2405
91.9k
  if ((b2 += i) > 0)
2406
90.2k
    b = lshift(b, b2);
2407
91.9k
  if ((d2 += i) > 0)
2408
87.2k
    d = lshift(d, d2);
2409
2410
  /* Now b/d = exactly half-way between the two floating-point values */
2411
  /* on either side of the input string.  Compute first digit of b/d. */
2412
2413
91.9k
  if (!(dig = quorem(b,d))) {
2414
0
    b = multadd(b, 10, 0);  /* very unlikely */
2415
0
    dig = quorem(b,d);
2416
0
    }
2417
2418
  /* Compare b/d with s0 */
2419
2420
1.38M
  for(i = 0; i < nd0; ) {
2421
1.36M
    if ((dd = s0[i++] - '0' - dig))
2422
66.8k
      goto ret;
2423
1.30M
    if (!b->x[0] && b->wds == 1) {
2424
5.61k
      if (i < nd)
2425
3.21k
        dd = 1;
2426
5.61k
      goto ret;
2427
5.61k
      }
2428
1.29M
    b = multadd(b, 10, 0);
2429
1.29M
    dig = quorem(b,d);
2430
1.29M
    }
2431
137k
  for(j = bc->dp1; i++ < nd;) {
2432
133k
    if ((dd = s0[j++] - '0' - dig))
2433
14.5k
      goto ret;
2434
118k
    if (!b->x[0] && b->wds == 1) {
2435
578
      if (i < nd)
2436
384
        dd = 1;
2437
578
      goto ret;
2438
578
      }
2439
118k
    b = multadd(b, 10, 0);
2440
118k
    dig = quorem(b,d);
2441
118k
    }
2442
4.36k
  if (dig > 0 || b->x[0] || b->wds > 1)
2443
4.36k
    dd = -1;
2444
91.9k
 ret:
2445
91.9k
  Bfree(b);
2446
91.9k
  Bfree(d);
2447
#ifdef Honor_FLT_ROUNDS
2448
  if (bc->rounding != 1) {
2449
    if (dd < 0) {
2450
      if (bc->rounding == 0) {
2451
        if (!dsign)
2452
          goto retlow1;
2453
        }
2454
      else if (dsign)
2455
        goto rethi1;
2456
      }
2457
    else if (dd > 0) {
2458
      if (bc->rounding == 0) {
2459
        if (dsign)
2460
          goto rethi1;
2461
        goto ret1;
2462
        }
2463
      if (!dsign)
2464
        goto rethi1;
2465
      dval(rv) += 2.*sulp(rv,bc);
2466
      }
2467
    else {
2468
      bc->inexact = 0;
2469
      if (dsign)
2470
        goto rethi1;
2471
      }
2472
    }
2473
  else
2474
#endif
2475
91.9k
  if (speccase) {
2476
5.56k
    if (dd <= 0)
2477
5.36k
      rv->d = 0.;
2478
5.56k
    }
2479
86.4k
  else if (dd < 0) {
2480
77.9k
    if (!dsign)  /* does not happen for round-near */
2481
0
retlow1:
2482
0
      dval(rv) -= sulp(rv,bc);
2483
77.9k
    }
2484
8.48k
  else if (dd > 0) {
2485
5.89k
    if (dsign) {
2486
6.78k
 rethi1:
2487
6.78k
      dval(rv) += sulp(rv,bc);
2488
6.78k
      }
2489
5.89k
    }
2490
2.59k
  else {
2491
    /* Exact half-way case:  apply round-even rule. */
2492
2.59k
    if ((j = ((word0(rv) & Exp_mask) >> Exp_shift) - bc->scale) <= 0) {
2493
0
      i = 1 - j;
2494
0
      if (i <= 31) {
2495
0
        if (word1(rv) & (0x1 << i))
2496
0
          goto odd;
2497
0
        }
2498
0
      else if (word0(rv) & (0x1 << (i-32)))
2499
0
        goto odd;
2500
0
      }
2501
2.59k
    else if (word1(rv) & 1) {
2502
892
 odd:
2503
892
      if (dsign)
2504
892
        goto rethi1;
2505
0
      goto retlow1;
2506
892
      }
2507
2.59k
    }
2508
2509
#ifdef Honor_FLT_ROUNDS
2510
 ret1:
2511
#endif
2512
91.9k
  return;
2513
91.9k
  }
2514
#endif /* NO_STRTOD_BIGCOMP */
2515
2516
ZEND_API double
2517
zend_strtod
2518
#ifdef KR_headers
2519
  (s00, se) CONST char *s00; char **se;
2520
#else
2521
  (const char *s00, const char **se)
2522
#endif
2523
764k
{
2524
764k
  int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, e, e1;
2525
764k
  int esign, i, j, k, nd, nd0, nf, nz, nz0, nz1, sign;
2526
764k
  CONST char *s, *s0, *s1;
2527
764k
  volatile double aadj, aadj1;
2528
764k
  Long L;
2529
764k
  U aadj2, adj, rv, rv0;
2530
764k
  ULong y, z;
2531
764k
  BCinfo bc;
2532
764k
  Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
2533
764k
#ifdef Avoid_Underflow
2534
764k
  ULong Lsb, Lsb1;
2535
764k
#endif
2536
#ifdef SET_INEXACT
2537
  int oldinexact;
2538
#endif
2539
764k
#ifndef NO_STRTOD_BIGCOMP
2540
764k
  int req_bigcomp = 0;
2541
764k
#endif
2542
#ifdef Honor_FLT_ROUNDS /*{*/
2543
#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
2544
  bc.rounding = Flt_Rounds;
2545
#else /*}{*/
2546
  bc.rounding = 1;
2547
  switch(fegetround()) {
2548
    case FE_TOWARDZERO: bc.rounding = 0; break;
2549
    case FE_UPWARD: bc.rounding = 2; break;
2550
    case FE_DOWNWARD: bc.rounding = 3;
2551
    }
2552
#endif /*}}*/
2553
#endif /*}*/
2554
#ifdef USE_LOCALE
2555
  CONST char *s2;
2556
#endif
2557
2558
764k
  sign = nz0 = nz1 = nz = bc.dplen = bc.uflchk = 0;
2559
764k
  dval(&rv) = 0.;
2560
769k
  for(s = s00;;s++) switch(*s) {
2561
45.3k
    case '-':
2562
45.3k
      sign = 1;
2563
45.3k
      ZEND_FALLTHROUGH;
2564
72.0k
    case '+':
2565
72.0k
      if (*++s)
2566
72.0k
        goto break2;
2567
57
      ZEND_FALLTHROUGH;
2568
276
    case 0:
2569
276
      goto ret0;
2570
636
    case '\t':
2571
1.56k
    case '\n':
2572
2.50k
    case '\v':
2573
3.01k
    case '\f':
2574
3.49k
    case '\r':
2575
4.18k
    case ' ':
2576
4.18k
      continue;
2577
692k
    default:
2578
692k
      goto break2;
2579
769k
    }
2580
764k
 break2:
2581
764k
  if (*s == '0') {
2582
#ifndef NO_HEX_FP /*{*/
2583
    switch(s[1]) {
2584
      case 'x':
2585
      case 'X':
2586
#ifdef Honor_FLT_ROUNDS
2587
      gethex(&s, &rv, bc.rounding, sign);
2588
#else
2589
      gethex(&s, &rv, 1, sign);
2590
#endif
2591
      goto ret;
2592
      }
2593
#endif /*}*/
2594
197k
    nz0 = 1;
2595
1.19M
    while(*++s == '0') ;
2596
197k
    if (!*s)
2597
205
      goto ret;
2598
197k
    }
2599
764k
  s0 = s;
2600
764k
  y = z = 0;
2601
133M
  for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
2602
133M
    if (nd < 9)
2603
3.93M
      y = 10*y + c - '0';
2604
129M
    else if (nd < DBL_DIG + 2)
2605
2.32M
      z = 10*z + c - '0';
2606
764k
  nd0 = nd;
2607
764k
  bc.dp0 = bc.dp1 = s - s0;
2608
2.55M
  for(s1 = s; s1 > s0 && *--s1 == '0'; )
2609
1.79M
    ++nz1;
2610
#ifdef USE_LOCALE
2611
  s1 = localeconv()->decimal_point;
2612
  if (c == *s1) {
2613
    c = '.';
2614
    if (*++s1) {
2615
      s2 = s;
2616
      for(;;) {
2617
        if (*++s2 != *s1) {
2618
          c = 0;
2619
          break;
2620
          }
2621
        if (!*++s1) {
2622
          s = s2;
2623
          break;
2624
          }
2625
        }
2626
      }
2627
    }
2628
#endif
2629
764k
  if (c == '.') {
2630
272k
    c = *++s;
2631
272k
    bc.dp1 = s - s0;
2632
272k
    bc.dplen = bc.dp1 - bc.dp0;
2633
272k
    if (!nd) {
2634
39.3M
      for(; c == '0'; c = *++s)
2635
39.2M
        nz++;
2636
115k
      if (c > '0' && c <= '9') {
2637
90.0k
        bc.dp0 = s0 - s;
2638
90.0k
        bc.dp1 = bc.dp0 + bc.dplen;
2639
90.0k
        s0 = s;
2640
90.0k
        nf += nz;
2641
90.0k
        nz = 0;
2642
90.0k
        goto have_dig;
2643
90.0k
        }
2644
25.7k
      goto dig_done;
2645
115k
      }
2646
54.9M
    for(; c >= '0' && c <= '9'; c = *++s) {
2647
54.7M
 have_dig:
2648
54.7M
      nz++;
2649
54.7M
      if (c -= '0') {
2650
2.31M
        nf += nz;
2651
53.0M
        for(i = 1; i < nz; i++)
2652
50.6M
          if (nd++ < 9)
2653
415k
            y *= 10;
2654
50.2M
          else if (nd <= DBL_DIG + 2)
2655
497k
            z *= 10;
2656
2.31M
        if (nd++ < 9)
2657
489k
          y = 10*y + c;
2658
1.82M
        else if (nd <= DBL_DIG + 2)
2659
306k
          z = 10*z + c;
2660
2.31M
        nz = nz1 = 0;
2661
2.31M
        }
2662
54.7M
      }
2663
156k
    }
2664
764k
 dig_done:
2665
764k
  if (nd < 0) {
2666
    /* overflow */
2667
0
    nd = DBL_DIG + 2;
2668
0
  }
2669
764k
  if (nf < 0) {
2670
    /* overflow */
2671
0
    nf = DBL_DIG + 2;
2672
0
  }
2673
764k
  e = 0;
2674
764k
  if (c == 'e' || c == 'E') {
2675
123k
    if (!nd && !nz && !nz0) {
2676
154
      goto ret0;
2677
154
      }
2678
123k
    s00 = s;
2679
123k
    esign = 0;
2680
123k
    switch(c = *++s) {
2681
40.8k
      case '-':
2682
40.8k
        esign = 1;
2683
40.8k
        ZEND_FALLTHROUGH;
2684
47.1k
      case '+':
2685
47.1k
        c = *++s;
2686
123k
      }
2687
123k
    if (c >= '0' && c <= '9') {
2688
1.80M
      while(c == '0')
2689
1.68M
        c = *++s;
2690
119k
      if (c > '0' && c <= '9') {
2691
110k
        L = c - '0';
2692
110k
        s1 = s;
2693
3.72M
        while((c = *++s) >= '0' && c <= '9')
2694
3.61M
          L = (Long) (10*(ULong)L + (c - '0'));
2695
110k
        if (s - s1 > 8 || L > 19999)
2696
          /* Avoid confusion from exponents
2697
           * so large that e might overflow.
2698
           */
2699
12.5k
          e = 19999; /* safe for 16 bit ints */
2700
98.2k
        else
2701
98.2k
          e = (int)L;
2702
110k
        if (esign)
2703
40.1k
          e = -e;
2704
110k
        }
2705
8.62k
      else
2706
8.62k
        e = 0;
2707
119k
      }
2708
3.70k
    else
2709
3.70k
      s = s00;
2710
123k
    }
2711
764k
  if (!nd) {
2712
52.8k
    if (!nz && !nz0) {
2713
#ifdef INFNAN_CHECK
2714
      /* Check for Nan and Infinity */
2715
      if (!bc.dplen)
2716
       switch(c) {
2717
        case 'i':
2718
        case 'I':
2719
        if (match(&s,"nf")) {
2720
          --s;
2721
          if (!match(&s,"inity"))
2722
            ++s;
2723
          word0(&rv) = 0x7ff00000;
2724
          word1(&rv) = 0;
2725
          goto ret;
2726
          }
2727
        break;
2728
        case 'n':
2729
        case 'N':
2730
        if (match(&s, "an")) {
2731
          word0(&rv) = NAN_WORD0;
2732
          word1(&rv) = NAN_WORD1;
2733
#ifndef No_Hex_NaN
2734
          if (*s == '(') /*)*/
2735
            hexnan(&rv, &s);
2736
#endif
2737
          goto ret;
2738
          }
2739
        }
2740
#endif /* INFNAN_CHECK */
2741
1.72k
 ret0:
2742
1.72k
      s = s00;
2743
1.72k
      sign = 0;
2744
1.72k
      }
2745
53.2k
    goto ret;
2746
52.8k
    }
2747
711k
  bc.e0 = e1 = e -= nf;
2748
2749
  /* Now we have nd0 digits, starting at s0, followed by a
2750
   * decimal point, followed by nd-nd0 digits.  The number we're
2751
   * after is the integer represented by those digits times
2752
   * 10**e */
2753
2754
711k
  if (!nd0)
2755
90.0k
    nd0 = nd;
2756
711k
  k = nd < DBL_DIG + 2 ? nd : DBL_DIG + 2;
2757
711k
  dval(&rv) = y;
2758
711k
  if (k > 9) {
2759
#ifdef SET_INEXACT
2760
    if (k > DBL_DIG)
2761
      oldinexact = get_inexact();
2762
#endif
2763
440k
    dval(&rv) = tens[k - 9] * dval(&rv) + z;
2764
440k
    }
2765
711k
  bd0 = 0;
2766
711k
  if (nd <= DBL_DIG
2767
360k
#ifndef RND_PRODQUOT
2768
360k
#ifndef Honor_FLT_ROUNDS
2769
360k
    && Flt_Rounds == 1
2770
711k
#endif
2771
711k
#endif
2772
711k
      ) {
2773
360k
    if (!e)
2774
203k
      goto ret;
2775
156k
#ifndef ROUND_BIASED_without_Round_Up
2776
156k
    if (e > 0) {
2777
36.4k
      if (e <= Ten_pmax) {
2778
#ifdef VAX
2779
        goto vax_ovfl_check;
2780
#else
2781
#ifdef Honor_FLT_ROUNDS
2782
        /* round correctly FLT_ROUNDS = 2 or 3 */
2783
        if (sign) {
2784
          rv.d = -rv.d;
2785
          sign = 0;
2786
          }
2787
#endif
2788
10.0k
        /* rv = */ rounded_product(dval(&rv), tens[e]);
2789
10.0k
        goto ret;
2790
10.0k
#endif
2791
10.0k
        }
2792
26.4k
      i = DBL_DIG - nd;
2793
26.4k
      if (e <= Ten_pmax + i) {
2794
        /* A fancier test would sometimes let us do
2795
         * this for larger i values.
2796
         */
2797
#ifdef Honor_FLT_ROUNDS
2798
        /* round correctly FLT_ROUNDS = 2 or 3 */
2799
        if (sign) {
2800
          rv.d = -rv.d;
2801
          sign = 0;
2802
          }
2803
#endif
2804
1.33k
        e -= i;
2805
1.33k
        dval(&rv) *= tens[i];
2806
#ifdef VAX
2807
        /* VAX exponent range is so narrow we must
2808
         * worry about overflow here...
2809
         */
2810
 vax_ovfl_check:
2811
        word0(&rv) -= P*Exp_msk1;
2812
        /* rv = */ rounded_product(dval(&rv), tens[e]);
2813
        if ((word0(&rv) & Exp_mask)
2814
         > Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
2815
          goto ovfl;
2816
        word0(&rv) += P*Exp_msk1;
2817
#else
2818
1.33k
        /* rv = */ rounded_product(dval(&rv), tens[e]);
2819
1.33k
#endif
2820
1.33k
        goto ret;
2821
1.33k
        }
2822
26.4k
      }
2823
120k
#ifndef Inaccurate_Divide
2824
120k
    else if (e >= -Ten_pmax) {
2825
#ifdef Honor_FLT_ROUNDS
2826
      /* round correctly FLT_ROUNDS = 2 or 3 */
2827
      if (sign) {
2828
        rv.d = -rv.d;
2829
        sign = 0;
2830
        }
2831
#endif
2832
80.1k
      /* rv = */ rounded_quotient(dval(&rv), tens[-e]);
2833
80.1k
      goto ret;
2834
80.1k
      }
2835
156k
#endif
2836
156k
#endif /* ROUND_BIASED_without_Round_Up */
2837
156k
    }
2838
416k
  e1 += nd - k;
2839
2840
416k
#ifdef IEEE_Arith
2841
#ifdef SET_INEXACT
2842
  bc.inexact = 1;
2843
  if (k <= DBL_DIG)
2844
    oldinexact = get_inexact();
2845
#endif
2846
416k
#ifdef Avoid_Underflow
2847
416k
  bc.scale = 0;
2848
416k
#endif
2849
#ifdef Honor_FLT_ROUNDS
2850
  if (bc.rounding >= 2) {
2851
    if (sign)
2852
      bc.rounding = bc.rounding == 2 ? 0 : 2;
2853
    else
2854
      if (bc.rounding != 2)
2855
        bc.rounding = 0;
2856
    }
2857
#endif
2858
416k
#endif /*IEEE_Arith*/
2859
2860
  /* Get starting approximation = rv * 10**e1 */
2861
2862
416k
  if (e1 > 0) {
2863
257k
    if ((i = e1 & 15))
2864
250k
      dval(&rv) *= tens[i];
2865
257k
    if (e1 &= ~15) {
2866
159k
      if (e1 > DBL_MAX_10_EXP) {
2867
21.7k
 ovfl:
2868
        /* Can't trust HUGE_VAL */
2869
21.7k
#ifdef IEEE_Arith
2870
#ifdef Honor_FLT_ROUNDS
2871
        switch(bc.rounding) {
2872
          case 0: /* toward 0 */
2873
          case 3: /* toward -infinity */
2874
          word0(&rv) = Big0;
2875
          word1(&rv) = Big1;
2876
          break;
2877
          default:
2878
          word0(&rv) = Exp_mask;
2879
          word1(&rv) = 0;
2880
          }
2881
#else /*Honor_FLT_ROUNDS*/
2882
21.7k
        word0(&rv) = Exp_mask;
2883
21.7k
        word1(&rv) = 0;
2884
21.7k
#endif /*Honor_FLT_ROUNDS*/
2885
#ifdef SET_INEXACT
2886
        /* set overflow bit */
2887
        dval(&rv0) = 1e300;
2888
        dval(&rv0) *= dval(&rv0);
2889
#endif
2890
#else /*IEEE_Arith*/
2891
        word0(&rv) = Big0;
2892
        word1(&rv) = Big1;
2893
#endif /*IEEE_Arith*/
2894
32.6k
 range_err:
2895
32.6k
        if (bd0) {
2896
1.59k
          Bfree(bb);
2897
1.59k
          Bfree(bd);
2898
1.59k
          Bfree(bs);
2899
1.59k
          Bfree(bd0);
2900
1.59k
          Bfree(delta);
2901
1.59k
          }
2902
#ifndef NO_ERRNO
2903
        errno = ERANGE;
2904
#endif
2905
32.6k
        goto ret;
2906
21.7k
        }
2907
143k
      e1 >>= 4;
2908
376k
      for(j = 0; e1 > 1; j++, e1 >>= 1)
2909
233k
        if (e1 & 1)
2910
97.7k
          dval(&rv) *= bigtens[j];
2911
    /* The last multiplication could overflow. */
2912
143k
      word0(&rv) -= P*Exp_msk1;
2913
143k
      dval(&rv) *= bigtens[j];
2914
143k
      if ((z = word0(&rv) & Exp_mask)
2915
143k
       > Exp_msk1*(DBL_MAX_EXP+Bias-P))
2916
4.50k
        goto ovfl;
2917
139k
      if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
2918
        /* set to largest number */
2919
        /* (Can't trust DBL_MAX) */
2920
1.79k
        word0(&rv) = Big0;
2921
1.79k
        word1(&rv) = Big1;
2922
1.79k
        }
2923
137k
      else
2924
137k
        word0(&rv) += P*Exp_msk1;
2925
139k
      }
2926
257k
    }
2927
158k
  else if (e1 < 0) {
2928
145k
    e1 = -e1;
2929
145k
    if ((i = e1 & 15))
2930
132k
      dval(&rv) /= tens[i];
2931
145k
    if (e1 >>= 4) {
2932
92.3k
      if (e1 >= 1 << n_bigtens)
2933
3.20k
        goto undfl;
2934
89.1k
#ifdef Avoid_Underflow
2935
89.1k
      if (e1 & Scale_Bit)
2936
33.3k
        bc.scale = 2*P;
2937
365k
      for(j = 0; e1 > 0; j++, e1 >>= 1)
2938
276k
        if (e1 & 1)
2939
159k
          dval(&rv) *= tinytens[j];
2940
89.1k
      if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask)
2941
33.3k
            >> Exp_shift)) > 0) {
2942
        /* scaled rv is denormal; clear j low bits */
2943
27.4k
        if (j >= 32) {
2944
15.0k
          if (j > 54)
2945
2.27k
            goto undfl;
2946
12.8k
          word1(&rv) = 0;
2947
12.8k
          if (j >= 53)
2948
6.11k
           word0(&rv) = (P+2)*Exp_msk1;
2949
6.69k
          else
2950
6.69k
           word0(&rv) &= 0xffffffff << (j-32);
2951
12.8k
          }
2952
12.3k
        else
2953
12.3k
          word1(&rv) &= 0xffffffff << j;
2954
27.4k
        }
2955
#else
2956
      for(j = 0; e1 > 1; j++, e1 >>= 1)
2957
        if (e1 & 1)
2958
          dval(&rv) *= tinytens[j];
2959
      /* The last multiplication could underflow. */
2960
      dval(&rv0) = dval(&rv);
2961
      dval(&rv) *= tinytens[j];
2962
      if (!dval(&rv)) {
2963
        dval(&rv) = 2.*dval(&rv0);
2964
        dval(&rv) *= tinytens[j];
2965
#endif
2966
86.8k
        if (!dval(&rv)) {
2967
10.8k
 undfl:
2968
10.8k
          dval(&rv) = 0.;
2969
10.8k
          goto range_err;
2970
0
          }
2971
#ifndef Avoid_Underflow
2972
        word0(&rv) = Tiny0;
2973
        word1(&rv) = Tiny1;
2974
        /* The refinement below will clean
2975
         * this approximation up.
2976
         */
2977
        }
2978
#endif
2979
86.8k
      }
2980
145k
    }
2981
2982
  /* Now the hard part -- adjusting rv to the correct value.*/
2983
2984
  /* Put digits into bd: true value = bd * 10^e */
2985
2986
390k
  bc.nd = nd - nz1;
2987
390k
#ifndef NO_STRTOD_BIGCOMP
2988
390k
  bc.nd0 = nd0; /* Only needed if nd > strtod_diglim, but done here */
2989
      /* to silence an erroneous warning about bc.nd0 */
2990
      /* possibly not being initialized. */
2991
390k
  if (nd > strtod_diglim) {
2992
    /* ASSERT(strtod_diglim >= 18); 18 == one more than the */
2993
    /* minimum number of decimal digits to distinguish double values */
2994
    /* in IEEE arithmetic. */
2995
141k
    i = j = 18;
2996
141k
    if (i > nd0)
2997
21.2k
      j += bc.dplen;
2998
820k
    for(;;) {
2999
820k
      if (--j < bc.dp1 && j >= bc.dp0)
3000
4.56k
        j = bc.dp0 - 1;
3001
820k
      if (s0[j] != '0')
3002
141k
        break;
3003
678k
      --i;
3004
678k
      }
3005
141k
    e += nd - i;
3006
141k
    nd = i;
3007
141k
    if (nd0 > nd)
3008
120k
      nd0 = nd;
3009
141k
    if (nd < 9) { /* must recompute y */
3010
40.5k
      y = 0;
3011
156k
      for(i = 0; i < nd0; ++i)
3012
115k
        y = 10*y + s0[i] - '0';
3013
49.7k
      for(j = bc.dp1; i < nd; ++i)
3014
9.19k
        y = 10*y + s0[j++] - '0';
3015
40.5k
      }
3016
141k
    }
3017
390k
#endif
3018
390k
  bd0 = s2b(s0, nd0, nd, y, bc.dplen);
3019
3020
478k
  for(;;) {
3021
478k
    bd = Balloc(bd0->k);
3022
478k
    Bcopy(bd, bd0);
3023
478k
    bb = d2b(&rv, &bbe, &bbbits); /* rv = bb * 2^bbe */
3024
478k
    bs = i2b(1);
3025
3026
478k
    if (e >= 0) {
3027
306k
      bb2 = bb5 = 0;
3028
306k
      bd2 = bd5 = e;
3029
306k
      }
3030
172k
    else {
3031
172k
      bb2 = bb5 = -e;
3032
172k
      bd2 = bd5 = 0;
3033
172k
      }
3034
478k
    if (bbe >= 0)
3035
324k
      bb2 += bbe;
3036
154k
    else
3037
154k
      bd2 -= bbe;
3038
478k
    bs2 = bb2;
3039
#ifdef Honor_FLT_ROUNDS
3040
    if (bc.rounding != 1)
3041
      bs2++;
3042
#endif
3043
478k
#ifdef Avoid_Underflow
3044
478k
    Lsb = LSB;
3045
478k
    Lsb1 = 0;
3046
478k
    j = bbe - bc.scale;
3047
478k
    i = j + bbbits - 1; /* logb(rv) */
3048
478k
    j = P + 1 - bbbits;
3049
478k
    if (i < Emin) { /* denormal */
3050
36.8k
      i = Emin - i;
3051
36.8k
      j -= i;
3052
36.8k
      if (i < 32)
3053
18.8k
        Lsb <<= i;
3054
18.0k
      else if (i < 52)
3055
11.4k
        Lsb1 = Lsb << (i-32);
3056
6.53k
      else
3057
6.53k
        Lsb1 = Exp_mask;
3058
36.8k
      }
3059
#else /*Avoid_Underflow*/
3060
#ifdef Sudden_Underflow
3061
#ifdef IBM
3062
    j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
3063
#else
3064
    j = P + 1 - bbbits;
3065
#endif
3066
#else /*Sudden_Underflow*/
3067
    j = bbe;
3068
    i = j + bbbits - 1; /* logb(rv) */
3069
    if (i < Emin) /* denormal */
3070
      j += P - Emin;
3071
    else
3072
      j = P + 1 - bbbits;
3073
#endif /*Sudden_Underflow*/
3074
#endif /*Avoid_Underflow*/
3075
478k
    bb2 += j;
3076
478k
    bd2 += j;
3077
478k
#ifdef Avoid_Underflow
3078
478k
    bd2 += bc.scale;
3079
478k
#endif
3080
478k
    i = bb2 < bd2 ? bb2 : bd2;
3081
478k
    if (i > bs2)
3082
163k
      i = bs2;
3083
478k
    if (i > 0) {
3084
474k
      bb2 -= i;
3085
474k
      bd2 -= i;
3086
474k
      bs2 -= i;
3087
474k
      }
3088
478k
    if (bb5 > 0) {
3089
172k
      bs = pow5mult(bs, bb5);
3090
172k
      bb1 = mult(bs, bb);
3091
172k
      Bfree(bb);
3092
172k
      bb = bb1;
3093
172k
      }
3094
478k
    if (bb2 > 0)
3095
478k
      bb = lshift(bb, bb2);
3096
478k
    if (bd5 > 0)
3097
175k
      bd = pow5mult(bd, bd5);
3098
478k
    if (bd2 > 0)
3099
163k
      bd = lshift(bd, bd2);
3100
478k
    if (bs2 > 0)
3101
306k
      bs = lshift(bs, bs2);
3102
478k
    delta = diff(bb, bd);
3103
478k
    bc.dsign = delta->sign;
3104
478k
    delta->sign = 0;
3105
478k
    i = cmp(delta, bs);
3106
478k
#ifndef NO_STRTOD_BIGCOMP /*{*/
3107
478k
    if (bc.nd > nd && i <= 0) {
3108
139k
      if (bc.dsign) {
3109
        /* Must use bigcomp(). */
3110
86.4k
        req_bigcomp = 1;
3111
86.4k
        break;
3112
86.4k
        }
3113
#ifdef Honor_FLT_ROUNDS
3114
      if (bc.rounding != 1) {
3115
        if (i < 0) {
3116
          req_bigcomp = 1;
3117
          break;
3118
          }
3119
        }
3120
      else
3121
#endif
3122
53.2k
        i = -1; /* Discarded digits make delta smaller. */
3123
53.2k
      }
3124
391k
#endif /*}*/
3125
#ifdef Honor_FLT_ROUNDS /*{*/
3126
    if (bc.rounding != 1) {
3127
      if (i < 0) {
3128
        /* Error is less than an ulp */
3129
        if (!delta->x[0] && delta->wds <= 1) {
3130
          /* exact */
3131
#ifdef SET_INEXACT
3132
          bc.inexact = 0;
3133
#endif
3134
          break;
3135
          }
3136
        if (bc.rounding) {
3137
          if (bc.dsign) {
3138
            adj.d = 1.;
3139
            goto apply_adj;
3140
            }
3141
          }
3142
        else if (!bc.dsign) {
3143
          adj.d = -1.;
3144
          if (!word1(&rv)
3145
           && !(word0(&rv) & Frac_mask)) {
3146
            y = word0(&rv) & Exp_mask;
3147
#ifdef Avoid_Underflow
3148
            if (!bc.scale || y > 2*P*Exp_msk1)
3149
#else
3150
            if (y)
3151
#endif
3152
              {
3153
              delta = lshift(delta,Log2P);
3154
              if (cmp(delta, bs) <= 0)
3155
              adj.d = -0.5;
3156
              }
3157
            }
3158
 apply_adj:
3159
#ifdef Avoid_Underflow /*{*/
3160
          if (bc.scale && (y = word0(&rv) & Exp_mask)
3161
            <= 2*P*Exp_msk1)
3162
            word0(&adj) += (2*P+1)*Exp_msk1 - y;
3163
#else
3164
#ifdef Sudden_Underflow
3165
          if ((word0(&rv) & Exp_mask) <=
3166
              P*Exp_msk1) {
3167
            word0(&rv) += P*Exp_msk1;
3168
            dval(&rv) += adj.d*ulp(dval(&rv));
3169
            word0(&rv) -= P*Exp_msk1;
3170
            }
3171
          else
3172
#endif /*Sudden_Underflow*/
3173
#endif /*Avoid_Underflow}*/
3174
          dval(&rv) += adj.d*ulp(&rv);
3175
          }
3176
        break;
3177
        }
3178
      adj.d = ratio(delta, bs);
3179
      if (adj.d < 1.)
3180
        adj.d = 1.;
3181
      if (adj.d <= 0x7ffffffe) {
3182
        /* adj = rounding ? ceil(adj) : floor(adj); */
3183
        y = adj.d;
3184
        if (y != adj.d) {
3185
          if (!((bc.rounding>>1) ^ bc.dsign))
3186
            y++;
3187
          adj.d = y;
3188
          }
3189
        }
3190
#ifdef Avoid_Underflow /*{*/
3191
      if (bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1)
3192
        word0(&adj) += (2*P+1)*Exp_msk1 - y;
3193
#else
3194
#ifdef Sudden_Underflow
3195
      if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) {
3196
        word0(&rv) += P*Exp_msk1;
3197
        adj.d *= ulp(dval(&rv));
3198
        if (bc.dsign)
3199
          dval(&rv) += adj.d;
3200
        else
3201
          dval(&rv) -= adj.d;
3202
        word0(&rv) -= P*Exp_msk1;
3203
        goto cont;
3204
        }
3205
#endif /*Sudden_Underflow*/
3206
#endif /*Avoid_Underflow}*/
3207
      adj.d *= ulp(&rv);
3208
      if (bc.dsign) {
3209
        if (word0(&rv) == Big0 && word1(&rv) == Big1)
3210
          goto ovfl;
3211
        dval(&rv) += adj.d;
3212
        }
3213
      else
3214
        dval(&rv) -= adj.d;
3215
      goto cont;
3216
      }
3217
#endif /*}Honor_FLT_ROUNDS*/
3218
3219
391k
    if (i < 0) {
3220
      /* Error is less than half an ulp -- check for
3221
       * special case of mantissa a power of two.
3222
       */
3223
197k
      if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask
3224
15.2k
#ifdef IEEE_Arith /*{*/
3225
15.2k
#ifdef Avoid_Underflow
3226
15.2k
       || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1
3227
#else
3228
       || (word0(&rv) & Exp_mask) <= Exp_msk1
3229
#endif
3230
197k
#endif /*}*/
3231
197k
        ) {
3232
#ifdef SET_INEXACT
3233
        if (!delta->x[0] && delta->wds <= 1)
3234
          bc.inexact = 0;
3235
#endif
3236
183k
        break;
3237
183k
        }
3238
13.8k
      if (!delta->x[0] && delta->wds <= 1) {
3239
        /* exact result */
3240
#ifdef SET_INEXACT
3241
        bc.inexact = 0;
3242
#endif
3243
4.59k
        break;
3244
4.59k
        }
3245
9.28k
      delta = lshift(delta,Log2P);
3246
9.28k
      if (cmp(delta, bs) > 0)
3247
2.69k
        goto drop_down;
3248
6.59k
      break;
3249
9.28k
      }
3250
194k
    if (i == 0) {
3251
      /* exactly half-way between */
3252
14.1k
      if (bc.dsign) {
3253
7.56k
        if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
3254
2.66k
         &&  word1(&rv) == (
3255
2.66k
#ifdef Avoid_Underflow
3256
2.66k
      (bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1)
3257
2.66k
    ? (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
3258
2.66k
#endif
3259
2.66k
               0xffffffff)) {
3260
          /*boundary case -- increment exponent*/
3261
597
          if (word0(&rv) == Big0 && word1(&rv) == Big1)
3262
0
            goto ovfl;
3263
597
          word0(&rv) = (word0(&rv) & Exp_mask)
3264
597
            + Exp_msk1
3265
#ifdef IBM
3266
            | Exp_msk1 >> 4
3267
#endif
3268
597
            ;
3269
597
          word1(&rv) = 0;
3270
597
#ifdef Avoid_Underflow
3271
597
          bc.dsign = 0;
3272
597
#endif
3273
597
          break;
3274
597
          }
3275
7.56k
        }
3276
6.58k
      else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) {
3277
2.69k
 drop_down:
3278
        /* boundary case -- decrement exponent */
3279
#ifdef Sudden_Underflow /*{{*/
3280
        L = word0(&rv) & Exp_mask;
3281
#ifdef IBM
3282
        if (L <  Exp_msk1)
3283
#else
3284
#ifdef Avoid_Underflow
3285
        if (L <= (bc.scale ? (2*P+1)*Exp_msk1 : Exp_msk1))
3286
#else
3287
        if (L <= Exp_msk1)
3288
#endif /*Avoid_Underflow*/
3289
#endif /*IBM*/
3290
          {
3291
          if (bc.nd >nd) {
3292
            bc.uflchk = 1;
3293
            break;
3294
            }
3295
          goto undfl;
3296
          }
3297
        L -= Exp_msk1;
3298
#else /*Sudden_Underflow}{*/
3299
2.69k
#ifdef Avoid_Underflow
3300
2.69k
        if (bc.scale) {
3301
0
          L = word0(&rv) & Exp_mask;
3302
0
          if (L <= (2*P+1)*Exp_msk1) {
3303
0
            if (L > (P+2)*Exp_msk1)
3304
              /* round even ==> */
3305
              /* accept rv */
3306
0
              break;
3307
            /* rv = smallest denormal */
3308
0
            if (bc.nd >nd) {
3309
0
              bc.uflchk = 1;
3310
0
              break;
3311
0
              }
3312
0
            goto undfl;
3313
0
            }
3314
0
          }
3315
2.69k
#endif /*Avoid_Underflow*/
3316
2.69k
        L = (word0(&rv) & Exp_mask) - Exp_msk1;
3317
2.69k
#endif /*Sudden_Underflow}}*/
3318
2.69k
        word0(&rv) = L | Bndry_mask1;
3319
2.69k
        word1(&rv) = 0xffffffff;
3320
#ifdef IBM
3321
        goto cont;
3322
#else
3323
2.69k
#ifndef NO_STRTOD_BIGCOMP
3324
2.69k
        if (bc.nd > nd)
3325
837
          goto cont;
3326
1.85k
#endif
3327
1.85k
        break;
3328
2.69k
#endif
3329
2.69k
        }
3330
13.5k
#ifndef ROUND_BIASED
3331
13.5k
#ifdef Avoid_Underflow
3332
13.5k
      if (Lsb1) {
3333
0
        if (!(word0(&rv) & Lsb1))
3334
0
          break;
3335
0
        }
3336
13.5k
      else if (!(word1(&rv) & Lsb))
3337
8.98k
        break;
3338
#else
3339
      if (!(word1(&rv) & LSB))
3340
        break;
3341
#endif
3342
4.56k
#endif
3343
4.56k
      if (bc.dsign)
3344
2.40k
#ifdef Avoid_Underflow
3345
2.40k
        dval(&rv) += sulp(&rv, &bc);
3346
#else
3347
        dval(&rv) += ulp(&rv);
3348
#endif
3349
2.16k
#ifndef ROUND_BIASED
3350
2.16k
      else {
3351
2.16k
#ifdef Avoid_Underflow
3352
2.16k
        dval(&rv) -= sulp(&rv, &bc);
3353
#else
3354
        dval(&rv) -= ulp(&rv);
3355
#endif
3356
2.16k
#ifndef Sudden_Underflow
3357
2.16k
        if (!dval(&rv)) {
3358
0
          if (bc.nd >nd) {
3359
0
            bc.uflchk = 1;
3360
0
            break;
3361
0
            }
3362
0
          goto undfl;
3363
0
          }
3364
2.16k
#endif
3365
2.16k
        }
3366
4.56k
#ifdef Avoid_Underflow
3367
4.56k
      bc.dsign = 1 - bc.dsign;
3368
4.56k
#endif
3369
4.56k
#endif
3370
4.56k
      break;
3371
4.56k
      }
3372
180k
    if ((aadj = ratio(delta, bs)) <= 2.) {
3373
145k
      if (bc.dsign)
3374
50.8k
        aadj = aadj1 = 1.;
3375
94.6k
      else if (word1(&rv) || word0(&rv) & Bndry_mask) {
3376
89.0k
#ifndef Sudden_Underflow
3377
89.0k
        if (word1(&rv) == Tiny1 && !word0(&rv)) {
3378
0
          if (bc.nd >nd) {
3379
0
            bc.uflchk = 1;
3380
0
            break;
3381
0
            }
3382
0
          goto undfl;
3383
0
          }
3384
89.0k
#endif
3385
89.0k
        aadj = 1.;
3386
89.0k
        aadj1 = -1.;
3387
89.0k
        }
3388
5.56k
      else {
3389
        /* special case -- power of FLT_RADIX to be */
3390
        /* rounded down... */
3391
3392
5.56k
        if (aadj < 2./FLT_RADIX)
3393
0
          aadj = 1./FLT_RADIX;
3394
5.56k
        else
3395
5.56k
          aadj *= 0.5;
3396
5.56k
        aadj1 = -aadj;
3397
5.56k
        }
3398
145k
      }
3399
34.9k
    else {
3400
34.9k
      aadj *= 0.5;
3401
34.9k
      aadj1 = bc.dsign ? aadj : -aadj;
3402
#ifdef Check_FLT_ROUNDS
3403
      switch(bc.rounding) {
3404
        case 2: /* towards +infinity */
3405
          aadj1 -= 0.5;
3406
          break;
3407
        case 0: /* towards 0 */
3408
        case 3: /* towards -infinity */
3409
          aadj1 += 0.5;
3410
        }
3411
#else
3412
34.9k
      if (Flt_Rounds == 0)
3413
0
        aadj1 += 0.5;
3414
34.9k
#endif /*Check_FLT_ROUNDS*/
3415
34.9k
      }
3416
180k
    y = word0(&rv) & Exp_mask;
3417
3418
    /* Check for overflow */
3419
3420
180k
    if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
3421
3.40k
      dval(&rv0) = dval(&rv);
3422
3.40k
      word0(&rv) -= P*Exp_msk1;
3423
3.40k
      adj.d = aadj1 * ulp(&rv);
3424
3.40k
      dval(&rv) += adj.d;
3425
3.40k
      if ((word0(&rv) & Exp_mask) >=
3426
3.40k
          Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
3427
1.59k
        if (word0(&rv0) == Big0 && word1(&rv0) == Big1)
3428
1.59k
          goto ovfl;
3429
0
        word0(&rv) = Big0;
3430
0
        word1(&rv) = Big1;
3431
0
        goto cont;
3432
1.59k
        }
3433
1.81k
      else
3434
1.81k
        word0(&rv) += P*Exp_msk1;
3435
3.40k
      }
3436
177k
    else {
3437
177k
#ifdef Avoid_Underflow
3438
177k
      if (bc.scale && y <= 2*P*Exp_msk1) {
3439
17.3k
        if (aadj <= 0x7fffffff) {
3440
17.3k
          if ((z = aadj) <= 0)
3441
5.56k
            z = 1;
3442
17.3k
          aadj = z;
3443
17.3k
          aadj1 = bc.dsign ? aadj : -aadj;
3444
17.3k
          }
3445
17.3k
        dval(&aadj2) = aadj1;
3446
17.3k
        word0(&aadj2) += (2*P+1)*Exp_msk1 - y;
3447
17.3k
        aadj1 = dval(&aadj2);
3448
17.3k
        adj.d = aadj1 * ulp(&rv);
3449
17.3k
        dval(&rv) += adj.d;
3450
17.3k
        if (rv.d == 0.)
3451
#ifdef NO_STRTOD_BIGCOMP
3452
          goto undfl;
3453
#else
3454
5.56k
          {
3455
5.56k
          req_bigcomp = 1;
3456
5.56k
          break;
3457
5.56k
          }
3458
17.3k
#endif
3459
17.3k
        }
3460
159k
      else {
3461
159k
        adj.d = aadj1 * ulp(&rv);
3462
159k
        dval(&rv) += adj.d;
3463
159k
        }
3464
#else
3465
#ifdef Sudden_Underflow
3466
      if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) {
3467
        dval(&rv0) = dval(&rv);
3468
        word0(&rv) += P*Exp_msk1;
3469
        adj.d = aadj1 * ulp(&rv);
3470
        dval(&rv) += adj.d;
3471
#ifdef IBM
3472
        if ((word0(&rv) & Exp_mask) <  P*Exp_msk1)
3473
#else
3474
        if ((word0(&rv) & Exp_mask) <= P*Exp_msk1)
3475
#endif
3476
          {
3477
          if (word0(&rv0) == Tiny0
3478
           && word1(&rv0) == Tiny1) {
3479
            if (bc.nd >nd) {
3480
              bc.uflchk = 1;
3481
              break;
3482
              }
3483
            goto undfl;
3484
            }
3485
          word0(&rv) = Tiny0;
3486
          word1(&rv) = Tiny1;
3487
          goto cont;
3488
          }
3489
        else
3490
          word0(&rv) -= P*Exp_msk1;
3491
        }
3492
      else {
3493
        adj.d = aadj1 * ulp(&rv);
3494
        dval(&rv) += adj.d;
3495
        }
3496
#else /*Sudden_Underflow*/
3497
      /* Compute adj so that the IEEE rounding rules will
3498
       * correctly round rv + adj in some half-way cases.
3499
       * If rv * ulp(rv) is denormalized (i.e.,
3500
       * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
3501
       * trouble from bits lost to denormalization;
3502
       * example: 1.2e-307 .
3503
       */
3504
      if (y <= (P-1)*Exp_msk1 && aadj > 1.) {
3505
        aadj1 = (double)(int)(aadj + 0.5);
3506
        if (!bc.dsign)
3507
          aadj1 = -aadj1;
3508
        }
3509
      adj.d = aadj1 * ulp(&rv);
3510
      dval(&rv) += adj.d;
3511
#endif /*Sudden_Underflow*/
3512
#endif /*Avoid_Underflow*/
3513
177k
      }
3514
173k
    z = word0(&rv) & Exp_mask;
3515
173k
#ifndef SET_INEXACT
3516
173k
    if (bc.nd == nd) {
3517
103k
#ifdef Avoid_Underflow
3518
103k
    if (!bc.scale)
3519
90.0k
#endif
3520
90.0k
    if (y == z) {
3521
      /* Can we stop now? */
3522
89.2k
      L = (Long)aadj;
3523
89.2k
      aadj -= L;
3524
      /* The tolerances below are conservative. */
3525
89.2k
      if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
3526
68.6k
        if (aadj < .4999999 || aadj > .5000001)
3527
65.9k
          break;
3528
68.6k
        }
3529
20.6k
      else if (aadj < .4999999/FLT_RADIX)
3530
20.6k
        break;
3531
89.2k
      }
3532
103k
    }
3533
86.7k
#endif
3534
87.5k
 cont:
3535
87.5k
    Bfree(bb);
3536
87.5k
    Bfree(bd);
3537
87.5k
    Bfree(bs);
3538
87.5k
    Bfree(delta);
3539
87.5k
    }
3540
389k
  Bfree(bb);
3541
389k
  Bfree(bd);
3542
389k
  Bfree(bs);
3543
389k
  Bfree(bd0);
3544
389k
  Bfree(delta);
3545
389k
#ifndef NO_STRTOD_BIGCOMP
3546
389k
  if (req_bigcomp) {
3547
91.9k
    bd0 = 0;
3548
91.9k
    bc.e0 += nz1;
3549
91.9k
    bigcomp(&rv, s0, &bc);
3550
91.9k
    y = word0(&rv) & Exp_mask;
3551
91.9k
    if (y == Exp_mask)
3552
194
      goto ovfl;
3553
91.7k
    if (y == 0 && rv.d == 0.)
3554
5.36k
      goto undfl;
3555
91.7k
    }
3556
383k
#endif
3557
#ifdef SET_INEXACT
3558
  if (bc.inexact) {
3559
    if (!oldinexact) {
3560
      word0(&rv0) = Exp_1 + (70 << Exp_shift);
3561
      word1(&rv0) = 0;
3562
      dval(&rv0) += 1.;
3563
      }
3564
    }
3565
  else if (!oldinexact)
3566
    clear_inexact();
3567
#endif
3568
383k
#ifdef Avoid_Underflow
3569
383k
  if (bc.scale) {
3570
25.6k
    word0(&rv0) = Exp_1 - 2*P*Exp_msk1;
3571
25.6k
    word1(&rv0) = 0;
3572
25.6k
    dval(&rv) *= dval(&rv0);
3573
#ifndef NO_ERRNO
3574
    /* try to avoid the bug of testing an 8087 register value */
3575
#ifdef IEEE_Arith
3576
    if (!(word0(&rv) & Exp_mask))
3577
#else
3578
    if (word0(&rv) == 0 && word1(&rv) == 0)
3579
#endif
3580
      errno = ERANGE;
3581
#endif
3582
25.6k
    }
3583
383k
#endif /* Avoid_Underflow */
3584
#ifdef SET_INEXACT
3585
  if (bc.inexact && !(word0(&rv) & Exp_mask)) {
3586
    /* set underflow bit */
3587
    dval(&rv0) = 1e-300;
3588
    dval(&rv0) *= dval(&rv0);
3589
    }
3590
#endif
3591
764k
 ret:
3592
764k
  if (se)
3593
166k
    *se = (char *)s;
3594
764k
  return sign ? -dval(&rv) : dval(&rv);
3595
383k
  }
3596
3597
#if !defined(MULTIPLE_THREADS) && !defined(dtoa_result)
3598
 ZEND_TLS char *dtoa_result;
3599
#endif
3600
3601
 static char *
3602
#ifdef KR_headers
3603
rv_alloc(i) int i;
3604
#else
3605
rv_alloc(int i)
3606
#endif
3607
261k
{
3608
3609
261k
  int j, k, *r;
3610
261k
  size_t rem;
3611
3612
261k
  rem = sizeof(Bigint) - sizeof(ULong) - sizeof(int);
3613
3614
3615
261k
  j = sizeof(ULong);
3616
261k
  if (i > ((INT_MAX >> 2) + rem))
3617
8
    i = (INT_MAX >> 2) + rem;
3618
261k
  for(k = 0;
3619
262k
    rem + j <= (size_t)i; j <<= 1)
3620
286
      k++;
3621
3622
261k
  r = (int*)Balloc(k);
3623
261k
  *r = k;
3624
261k
  return
3625
261k
#ifndef MULTIPLE_THREADS
3626
261k
  dtoa_result =
3627
261k
#endif
3628
261k
    (char *)(r+1);
3629
261k
  }
3630
3631
 static char *
3632
#ifdef KR_headers
3633
nrv_alloc(s, rve, n) char *s, **rve; int n;
3634
#else
3635
nrv_alloc(const char *s, char **rve, int n)
3636
#endif
3637
43.0k
{
3638
43.0k
  char *rv, *t;
3639
3640
43.0k
  t = rv = rv_alloc(n);
3641
227k
  while((*t = *s++)) t++;
3642
43.0k
  if (rve)
3643
0
    *rve = t;
3644
43.0k
  return rv;
3645
43.0k
  }
3646
3647
/* freedtoa(s) must be used to free values s returned by dtoa
3648
 * when MULTIPLE_THREADS is #defined.  It should be used in all cases,
3649
 * but for consistency with earlier versions of dtoa, it is optional
3650
 * when MULTIPLE_THREADS is not defined.
3651
 */
3652
3653
ZEND_API void
3654
#ifdef KR_headers
3655
zend_freedtoa(s) char *s;
3656
#else
3657
zend_freedtoa(char *s)
3658
#endif
3659
261k
{
3660
261k
  Bigint *b = (Bigint *)((int *)s - 1);
3661
261k
  b->maxwds = 1 << (b->k = *(int*)b);
3662
261k
  Bfree(b);
3663
261k
#ifndef MULTIPLE_THREADS
3664
261k
  if (s == dtoa_result)
3665
261k
    dtoa_result = 0;
3666
261k
#endif
3667
261k
  }
3668
3669
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
3670
 *
3671
 * Inspired by "How to Print Floating-Point Numbers Accurately" by
3672
 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
3673
 *
3674
 * Modifications:
3675
 *  1. Rather than iterating, we use a simple numeric overestimate
3676
 *     to determine k = floor(log10(d)).  We scale relevant
3677
 *     quantities using O(log2(k)) rather than O(k) multiplications.
3678
 *  2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
3679
 *     try to generate digits strictly left to right.  Instead, we
3680
 *     compute with fewer bits and propagate the carry if necessary
3681
 *     when rounding the final digit up.  This is often faster.
3682
 *  3. Under the assumption that input will be rounded nearest,
3683
 *     mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
3684
 *     That is, we allow equality in stopping tests when the
3685
 *     round-nearest rule will give the same floating-point value
3686
 *     as would satisfaction of the stopping test with strict
3687
 *     inequality.
3688
 *  4. We remove common factors of powers of 2 from relevant
3689
 *     quantities.
3690
 *  5. When converting floating-point integers less than 1e16,
3691
 *     we use floating-point arithmetic rather than resorting
3692
 *     to multiple-precision integers.
3693
 *  6. When asked to produce fewer than 15 digits, we first try
3694
 *     to get by with floating-point arithmetic; we resort to
3695
 *     multiple-precision integer arithmetic only if we cannot
3696
 *     guarantee that the floating-point calculation has given
3697
 *     the correctly rounded result.  For k requested digits and
3698
 *     "uniformly" distributed input, the probability is
3699
 *     something like 10^(k-15) that we must resort to the Long
3700
 *     calculation.
3701
 */
3702
3703
ZEND_API char *zend_dtoa(double dd, int mode, int ndigits, int *decpt, bool *sign, char **rve)
3704
261k
{
3705
 /* Arguments ndigits, decpt, sign are similar to those
3706
  of ecvt and fcvt; trailing zeros are suppressed from
3707
  the returned string.  If not null, *rve is set to point
3708
  to the end of the return value.  If d is +-Infinity or NaN,
3709
  then *decpt is set to 9999.
3710
3711
  mode:
3712
    0 ==> shortest string that yields d when read in
3713
      and rounded to nearest.
3714
    1 ==> like 0, but with Steele & White stopping rule;
3715
      e.g. with IEEE P754 arithmetic , mode 0 gives
3716
      1e23 whereas mode 1 gives 9.999999999999999e22.
3717
    2 ==> max(1,ndigits) significant digits.  This gives a
3718
      return value similar to that of ecvt, except
3719
      that trailing zeros are suppressed.
3720
    3 ==> through ndigits past the decimal point.  This
3721
      gives a return value similar to that from fcvt,
3722
      except that trailing zeros are suppressed, and
3723
      ndigits can be negative.
3724
    4,5 ==> similar to 2 and 3, respectively, but (in
3725
      round-nearest mode) with the tests of mode 0 to
3726
      possibly return a shorter string that rounds to d.
3727
      With IEEE arithmetic and compilation with
3728
      -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
3729
      as modes 2 and 3 when FLT_ROUNDS != 1.
3730
    6-9 ==> Debugging modes similar to mode - 4:  don't try
3731
      fast floating-point estimate (if applicable).
3732
3733
    Values of mode other than 0-9 are treated as mode 0.
3734
3735
    Sufficient space is allocated to the return value
3736
    to hold the suppressed trailing zeros.
3737
  */
3738
3739
261k
  int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1,
3740
261k
    j, j1 = 0, k, k0, k_check, leftright, m2, m5, s2, s5,
3741
261k
    spec_case = 0, try_quick;
3742
261k
  Long L;
3743
261k
#ifndef Sudden_Underflow
3744
261k
  int denorm;
3745
261k
  ULong x;
3746
261k
#endif
3747
261k
  Bigint *b, *b1, *delta, *mlo, *mhi, *S;
3748
261k
  U d2, eps, u;
3749
261k
  double ds;
3750
261k
  char *s, *s0;
3751
261k
#ifndef No_leftright
3752
261k
#ifdef IEEE_Arith
3753
261k
  U eps1;
3754
261k
#endif
3755
261k
#endif
3756
#ifdef SET_INEXACT
3757
  int inexact, oldinexact;
3758
#endif
3759
#ifdef Honor_FLT_ROUNDS /*{*/
3760
  int Rounding;
3761
#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
3762
  Rounding = Flt_Rounds;
3763
#else /*}{*/
3764
  Rounding = 1;
3765
  switch(fegetround()) {
3766
    case FE_TOWARDZERO: Rounding = 0; break;
3767
    case FE_UPWARD: Rounding = 2; break;
3768
    case FE_DOWNWARD: Rounding = 3;
3769
    }
3770
#endif /*}}*/
3771
#endif /*}*/
3772
3773
261k
#ifndef MULTIPLE_THREADS
3774
261k
  if (dtoa_result) {
3775
0
    zend_freedtoa(dtoa_result);
3776
0
    dtoa_result = 0;
3777
0
    }
3778
261k
#endif
3779
3780
261k
  u.d = dd;
3781
261k
  if (word0(&u) & Sign_bit) {
3782
    /* set sign for everything, including 0's and NaNs */
3783
27.7k
    *sign = 1;
3784
27.7k
    word0(&u) &= ~Sign_bit; /* clear sign bit */
3785
27.7k
    }
3786
233k
  else
3787
233k
    *sign = 0;
3788
3789
261k
#if defined(IEEE_Arith) + defined(VAX)
3790
261k
#ifdef IEEE_Arith
3791
261k
  if ((word0(&u) & Exp_mask) == Exp_mask)
3792
#else
3793
  if (word0(&u)  == 0x8000)
3794
#endif
3795
20.4k
    {
3796
    /* Infinity or NaN */
3797
20.4k
    *decpt = 9999;
3798
20.4k
#ifdef IEEE_Arith
3799
20.4k
    if (!word1(&u) && !(word0(&u) & 0xfffff))
3800
20.0k
      return nrv_alloc("Infinity", rve, 8);
3801
395
#endif
3802
395
    return nrv_alloc("NaN", rve, 3);
3803
20.4k
    }
3804
241k
#endif
3805
#ifdef IBM
3806
  dval(&u) += 0; /* normalize */
3807
#endif
3808
241k
  if (!dval(&u)) {
3809
22.6k
    *decpt = 1;
3810
22.6k
    return nrv_alloc("0", rve, 1);
3811
22.6k
    }
3812
3813
#ifdef SET_INEXACT
3814
  try_quick = oldinexact = get_inexact();
3815
  inexact = 1;
3816
#endif
3817
#ifdef Honor_FLT_ROUNDS
3818
  if (Rounding >= 2) {
3819
    if (*sign)
3820
      Rounding = Rounding == 2 ? 0 : 2;
3821
    else
3822
      if (Rounding != 2)
3823
        Rounding = 0;
3824
    }
3825
#endif
3826
3827
218k
  b = d2b(&u, &be, &bbits);
3828
#ifdef Sudden_Underflow
3829
  i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
3830
#else
3831
218k
  if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
3832
205k
#endif
3833
205k
    dval(&d2) = dval(&u);
3834
205k
    word0(&d2) &= Frac_mask1;
3835
205k
    word0(&d2) |= Exp_11;
3836
#ifdef IBM
3837
    if (j = 11 - hi0bits(word0(&d2) & Frac_mask))
3838
      dval(&d2) /= 1 << j;
3839
#endif
3840
3841
    /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
3842
     * log10(x)  =  log(x) / log(10)
3843
     *    ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
3844
     * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
3845
     *
3846
     * This suggests computing an approximation k to log10(d) by
3847
     *
3848
     * k = (i - Bias)*0.301029995663981
3849
     *  + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
3850
     *
3851
     * We want k to be too large rather than too small.
3852
     * The error in the first-order Taylor series approximation
3853
     * is in our favor, so we just round up the constant enough
3854
     * to compensate for any error in the multiplication of
3855
     * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
3856
     * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
3857
     * adding 1e-13 to the constant term more than suffices.
3858
     * Hence we adjust the constant term to 0.1760912590558.
3859
     * (We could get a more accurate k by invoking log10,
3860
     *  but this is probably not worthwhile.)
3861
     */
3862
3863
205k
    i -= Bias;
3864
#ifdef IBM
3865
    i <<= 2;
3866
    i += j;
3867
#endif
3868
205k
#ifndef Sudden_Underflow
3869
205k
    denorm = 0;
3870
205k
    }
3871
13.0k
  else {
3872
    /* d is denormalized */
3873
3874
13.0k
    i = bbits + be + (Bias + (P-1) - 1);
3875
13.0k
    x = i > 32  ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)
3876
13.0k
          : word1(&u) << (32 - i);
3877
13.0k
    dval(&d2) = x;
3878
13.0k
    word0(&d2) -= 31*Exp_msk1; /* adjust exponent */
3879
13.0k
    i -= (Bias + (P-1) - 1) + 1;
3880
13.0k
    denorm = 1;
3881
13.0k
    }
3882
218k
#endif
3883
218k
  ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
3884
218k
  k = (int)ds;
3885
218k
  if (ds < 0. && ds != k)
3886
57.2k
    k--; /* want k = floor(ds) */
3887
218k
  k_check = 1;
3888
218k
  if (k >= 0 && k <= Ten_pmax) {
3889
101k
    if (dval(&u) < tens[k])
3890
2.41k
      k--;
3891
101k
    k_check = 0;
3892
101k
    }
3893
218k
  j = bbits - i - 1;
3894
218k
  if (j >= 0) {
3895
119k
    b2 = 0;
3896
119k
    s2 = j;
3897
119k
    }
3898
99.1k
  else {
3899
99.1k
    b2 = -j;
3900
99.1k
    s2 = 0;
3901
99.1k
    }
3902
218k
  if (k >= 0) {
3903
161k
    b5 = 0;
3904
161k
    s5 = k;
3905
161k
    s2 += k;
3906
161k
    }
3907
57.5k
  else {
3908
57.5k
    b2 -= k;
3909
57.5k
    b5 = -k;
3910
57.5k
    s5 = 0;
3911
57.5k
    }
3912
218k
  if (mode < 0 || mode > 9)
3913
0
    mode = 0;
3914
3915
218k
#ifndef SET_INEXACT
3916
#ifdef Check_FLT_ROUNDS
3917
  try_quick = Rounding == 1;
3918
#else
3919
218k
  try_quick = 1;
3920
218k
#endif
3921
218k
#endif /*SET_INEXACT*/
3922
3923
218k
  if (mode > 5) {
3924
0
    mode -= 4;
3925
0
    try_quick = 0;
3926
0
    }
3927
218k
  leftright = 1;
3928
218k
  ilim = ilim1 = -1;  /* Values for cases 0 and 1; done here to */
3929
        /* silence erroneous "gcc -Wall" warning. */
3930
218k
  switch(mode) {
3931
90.4k
    case 0:
3932
90.4k
    case 1:
3933
90.4k
      i = 18;
3934
90.4k
      ndigits = 0;
3935
90.4k
      break;
3936
127k
    case 2:
3937
127k
      leftright = 0;
3938
127k
      ZEND_FALLTHROUGH;
3939
127k
    case 4:
3940
127k
      if (ndigits <= 0)
3941
0
        ndigits = 1;
3942
127k
      ilim = ilim1 = i = ndigits;
3943
127k
      break;
3944
885
    case 3:
3945
885
      leftright = 0;
3946
885
      ZEND_FALLTHROUGH;
3947
885
    case 5:
3948
885
      i = ndigits + k + 1;
3949
885
      ilim = i;
3950
885
      ilim1 = i - 1;
3951
885
      if (i <= 0)
3952
125
        i = 1;
3953
218k
    }
3954
218k
  s = s0 = rv_alloc(i);
3955
3956
#ifdef Honor_FLT_ROUNDS
3957
  if (mode > 1 && Rounding != 1)
3958
    leftright = 0;
3959
#endif
3960
3961
218k
  if (ilim >= 0 && ilim <= Quick_max && try_quick) {
3962
3963
    /* Try to get by with floating-point arithmetic. */
3964
3965
127k
    i = 0;
3966
127k
    dval(&d2) = dval(&u);
3967
127k
    k0 = k;
3968
127k
    ilim0 = ilim;
3969
127k
    ieps = 2; /* conservative */
3970
127k
    if (k > 0) {
3971
88.8k
      ds = tens[k&0xf];
3972
88.8k
      j = k >> 4;
3973
88.8k
      if (j & Bletch) {
3974
        /* prevent overflows */
3975
2.17k
        j &= Bletch - 1;
3976
2.17k
        dval(&u) /= bigtens[n_bigtens-1];
3977
2.17k
        ieps++;
3978
2.17k
        }
3979
214k
      for(; j; j >>= 1, i++)
3980
125k
        if (j & 1) {
3981
81.9k
          ieps++;
3982
81.9k
          ds *= bigtens[i];
3983
81.9k
          }
3984
88.8k
      dval(&u) /= ds;
3985
88.8k
      }
3986
38.8k
    else if ((j1 = -k)) {
3987
35.8k
      dval(&u) *= tens[j1 & 0xf];
3988
113k
      for(j = j1 >> 4; j; j >>= 1, i++)
3989
77.9k
        if (j & 1) {
3990
44.6k
          ieps++;
3991
44.6k
          dval(&u) *= bigtens[i];
3992
44.6k
          }
3993
35.8k
      }
3994
127k
    if (k_check && dval(&u) < 1. && ilim > 0) {
3995
9.24k
      if (ilim1 <= 0)
3996
25
        goto fast_failed;
3997
9.22k
      ilim = ilim1;
3998
9.22k
      k--;
3999
9.22k
      dval(&u) *= 10.;
4000
9.22k
      ieps++;
4001
9.22k
      }
4002
127k
    dval(&eps) = ieps*dval(&u) + 7.;
4003
127k
    word0(&eps) -= (P-1)*Exp_msk1;
4004
127k
    if (ilim == 0) {
4005
24
      S = mhi = 0;
4006
24
      dval(&u) -= 5.;
4007
24
      if (dval(&u) > dval(&eps))
4008
10
        goto one_digit;
4009
14
      if (dval(&u) < -dval(&eps))
4010
14
        goto no_digits;
4011
0
      goto fast_failed;
4012
14
      }
4013
127k
#ifndef No_leftright
4014
127k
    if (leftright) {
4015
      /* Use Steele & White method of only
4016
       * generating digits needed.
4017
       */
4018
0
      dval(&eps) = 0.5/tens[ilim-1] - dval(&eps);
4019
0
#ifdef IEEE_Arith
4020
0
      if (k0 < 0 && j1 >= 307) {
4021
0
        eps1.d = 1.01e256; /* 1.01 allows roundoff in the next few lines */
4022
0
        word0(&eps1) -= Exp_msk1 * (Bias+P-1);
4023
0
        dval(&eps1) *= tens[j1 & 0xf];
4024
0
        for(i = 0, j = (j1-256) >> 4; j; j >>= 1, i++)
4025
0
          if (j & 1)
4026
0
            dval(&eps1) *= bigtens[i];
4027
0
        if (eps.d < eps1.d)
4028
0
          eps.d = eps1.d;
4029
0
        }
4030
0
#endif
4031
0
      for(i = 0;;) {
4032
0
        L = dval(&u);
4033
0
        dval(&u) -= L;
4034
0
        *s++ = '0' + (int)L;
4035
0
        if (1. - dval(&u) < dval(&eps))
4036
0
          goto bump_up;
4037
0
        if (dval(&u) < dval(&eps))
4038
0
          goto ret1;
4039
0
        if (++i >= ilim)
4040
0
          break;
4041
0
        dval(&eps) *= 10.;
4042
0
        dval(&u) *= 10.;
4043
0
        }
4044
0
      }
4045
127k
    else {
4046
127k
#endif
4047
      /* Generate ilim digits, then fix them up. */
4048
127k
      dval(&eps) *= tens[ilim-1];
4049
1.52M
      for(i = 1;; i++, dval(&u) *= 10.) {
4050
1.52M
        L = (Long)(dval(&u));
4051
1.52M
        if (!(dval(&u) -= L))
4052
20.2k
          ilim = i;
4053
1.52M
        *s++ = '0' + (int)L;
4054
1.52M
        if (i == ilim) {
4055
127k
          if (dval(&u) > 0.5 + dval(&eps))
4056
32.1k
            goto bump_up;
4057
95.5k
          else if (dval(&u) < 0.5 - dval(&eps)) {
4058
158k
            while(*--s == '0');
4059
48.2k
            s++;
4060
48.2k
            goto ret1;
4061
48.2k
            }
4062
47.2k
          break;
4063
127k
          }
4064
1.52M
        }
4065
127k
#ifndef No_leftright
4066
127k
      }
4067
47.2k
#endif
4068
47.2k
 fast_failed:
4069
47.2k
    s = s0;
4070
47.2k
    dval(&u) = dval(&d2);
4071
47.2k
    k = k0;
4072
47.2k
    ilim = ilim0;
4073
47.2k
    }
4074
4075
  /* Do we have a "small" integer? */
4076
4077
138k
  if (be >= 0 && k <= Int_max) {
4078
    /* Yes. */
4079
4.91k
    ds = tens[k];
4080
4.91k
    if (ndigits < 0 && ilim <= 0) {
4081
0
      S = mhi = 0;
4082
0
      if (ilim < 0 || dval(&u) <= 5*ds)
4083
0
        goto no_digits;
4084
0
      goto one_digit;
4085
0
      }
4086
57.2k
    for(i = 1;; i++, dval(&u) *= 10.) {
4087
57.2k
      L = (Long)(dval(&u) / ds);
4088
57.2k
      dval(&u) -= L*ds;
4089
#ifdef Check_FLT_ROUNDS
4090
      /* If FLT_ROUNDS == 2, L will usually be high by 1 */
4091
      if (dval(&u) < 0) {
4092
        L--;
4093
        dval(&u) += ds;
4094
        }
4095
#endif
4096
57.2k
      *s++ = '0' + (int)L;
4097
57.2k
      if (!dval(&u)) {
4098
#ifdef SET_INEXACT
4099
        inexact = 0;
4100
#endif
4101
1.28k
        break;
4102
1.28k
        }
4103
55.9k
      if (i == ilim) {
4104
#ifdef Honor_FLT_ROUNDS
4105
        if (mode > 1)
4106
        switch(Rounding) {
4107
          case 0: goto ret1;
4108
          case 2: goto bump_up;
4109
          }
4110
#endif
4111
3.62k
        dval(&u) += dval(&u);
4112
#ifdef ROUND_BIASED
4113
        if (dval(&u) >= ds)
4114
#else
4115
3.62k
        if (dval(&u) > ds || (dval(&u) == ds && L & 1))
4116
250
#endif
4117
250
          {
4118
32.4k
 bump_up:
4119
133k
          while(*--s == '9')
4120
102k
            if (s == s0) {
4121
1.31k
              k++;
4122
1.31k
              *s = '0';
4123
1.31k
              break;
4124
1.31k
              }
4125
32.4k
          ++*s++;
4126
32.4k
          }
4127
35.7k
        break;
4128
3.62k
        }
4129
55.9k
      }
4130
37.0k
    goto ret1;
4131
4.91k
    }
4132
4133
133k
  m2 = b2;
4134
133k
  m5 = b5;
4135
133k
  mhi = mlo = 0;
4136
133k
  if (leftright) {
4137
89.3k
    i =
4138
89.3k
#ifndef Sudden_Underflow
4139
89.3k
      denorm ? be + (Bias + (P-1) - 1 + 1) :
4140
89.3k
#endif
4141
#ifdef IBM
4142
      1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
4143
#else
4144
89.3k
      1 + P - bbits;
4145
89.3k
#endif
4146
89.3k
    b2 += i;
4147
89.3k
    s2 += i;
4148
89.3k
    mhi = i2b(1);
4149
89.3k
    }
4150
133k
  if (m2 > 0 && s2 > 0) {
4151
88.4k
    i = m2 < s2 ? m2 : s2;
4152
88.4k
    b2 -= i;
4153
88.4k
    m2 -= i;
4154
88.4k
    s2 -= i;
4155
88.4k
    }
4156
133k
  if (b5 > 0) {
4157
29.8k
    if (leftright) {
4158
21.4k
      if (m5 > 0) {
4159
21.4k
        mhi = pow5mult(mhi, m5);
4160
21.4k
        b1 = mult(mhi, b);
4161
21.4k
        Bfree(b);
4162
21.4k
        b = b1;
4163
21.4k
        }
4164
21.4k
      if ((j = b5 - m5))
4165
0
        b = pow5mult(b, j);
4166
21.4k
      }
4167
8.36k
    else
4168
8.36k
      b = pow5mult(b, b5);
4169
29.8k
    }
4170
133k
  S = i2b(1);
4171
133k
  if (s5 > 0)
4172
96.9k
    S = pow5mult(S, s5);
4173
4174
  /* Check for special case that d is a normalized power of 2. */
4175
4176
133k
  spec_case = 0;
4177
133k
  if ((mode < 2 || leftright)
4178
#ifdef Honor_FLT_ROUNDS
4179
      && Rounding == 1
4180
#endif
4181
133k
        ) {
4182
89.3k
    if (!word1(&u) && !(word0(&u) & Bndry_mask)
4183
2.43k
#ifndef Sudden_Underflow
4184
2.43k
     && word0(&u) & (Exp_mask & ~Exp_msk1)
4185
89.3k
#endif
4186
89.3k
        ) {
4187
      /* The special case */
4188
2.23k
      b2 += Log2P;
4189
2.23k
      s2 += Log2P;
4190
2.23k
      spec_case = 1;
4191
2.23k
      }
4192
89.3k
    }
4193
4194
  /* Arrange for convenient computation of quotients:
4195
   * shift left if necessary so divisor has 4 leading 0 bits.
4196
   *
4197
   * Perhaps we should just compute leading 28 bits of S once
4198
   * and for all and pass them and a shift to quorem, so it
4199
   * can do shifts and ORs to compute the numerator for q.
4200
   */
4201
133k
  i = dshift(S, s2);
4202
133k
  b2 += i;
4203
133k
  m2 += i;
4204
133k
  s2 += i;
4205
133k
  if (b2 > 0)
4206
131k
    b = lshift(b, b2);
4207
133k
  if (s2 > 0)
4208
131k
    S = lshift(S, s2);
4209
133k
  if (k_check) {
4210
75.2k
    if (cmp(b,S) < 0) {
4211
8.64k
      k--;
4212
8.64k
      b = multadd(b, 10, 0);  /* we botched the k estimate */
4213
8.64k
      if (leftright)
4214
1.15k
        mhi = multadd(mhi, 10, 0);
4215
8.64k
      ilim = ilim1;
4216
8.64k
      }
4217
75.2k
    }
4218
133k
  if (ilim <= 0 && (mode == 3 || mode == 5)) {
4219
126
    if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
4220
      /* no digits, fcvt style */
4221
115
 no_digits:
4222
115
      k = -1 - ndigits;
4223
115
      goto ret;
4224
101
      }
4225
35
 one_digit:
4226
35
    *s++ = '1';
4227
35
    k++;
4228
35
    goto ret;
4229
126
    }
4230
133k
  if (leftright) {
4231
89.3k
    if (m2 > 0)
4232
86.9k
      mhi = lshift(mhi, m2);
4233
4234
    /* Compute mlo -- check for special case
4235
     * that d is a normalized power of 2.
4236
     */
4237
4238
89.3k
    mlo = mhi;
4239
89.3k
    if (spec_case) {
4240
2.23k
      mhi = Balloc(mhi->k);
4241
2.23k
      Bcopy(mhi, mlo);
4242
2.23k
      mhi = lshift(mhi, Log2P);
4243
2.23k
      }
4244
4245
1.11M
    for(i = 1;;i++) {
4246
1.11M
      dig = quorem(b,S) + '0';
4247
      /* Do we yet have the shortest decimal string
4248
       * that will round to d?
4249
       */
4250
1.11M
      j = cmp(b, mlo);
4251
1.11M
      delta = diff(S, mhi);
4252
1.11M
      j1 = delta->sign ? 1 : cmp(b, delta);
4253
1.11M
      Bfree(delta);
4254
1.11M
#ifndef ROUND_BIASED
4255
1.11M
      if (j1 == 0 && mode != 1 && !(word1(&u) & 1)
4256
#ifdef Honor_FLT_ROUNDS
4257
        && Rounding >= 1
4258
#endif
4259
1.11M
                   ) {
4260
594
        if (dig == '9')
4261
3
          goto round_9_up;
4262
591
        if (j > 0)
4263
229
          dig++;
4264
#ifdef SET_INEXACT
4265
        else if (!b->x[0] && b->wds <= 1)
4266
          inexact = 0;
4267
#endif
4268
591
        *s++ = dig;
4269
591
        goto ret;
4270
594
        }
4271
1.11M
#endif
4272
1.11M
      if (j < 0 || (j == 0 && mode != 1
4273
473
#ifndef ROUND_BIASED
4274
473
              && !(word1(&u) & 1)
4275
1.05M
#endif
4276
1.05M
          )) {
4277
61.8k
        if (!b->x[0] && b->wds <= 1) {
4278
#ifdef SET_INEXACT
4279
          inexact = 0;
4280
#endif
4281
2.07k
          goto accept_dig;
4282
2.07k
          }
4283
#ifdef Honor_FLT_ROUNDS
4284
        if (mode > 1)
4285
         switch(Rounding) {
4286
          case 0: goto accept_dig;
4287
          case 2: goto keep_dig;
4288
          }
4289
#endif /*Honor_FLT_ROUNDS*/
4290
59.8k
        if (j1 > 0) {
4291
25.5k
          b = lshift(b, 1);
4292
25.5k
          j1 = cmp(b, S);
4293
#ifdef ROUND_BIASED
4294
          if (j1 >= 0 /*)*/
4295
#else
4296
25.5k
          if ((j1 > 0 || (j1 == 0 && dig & 1))
4297
13.9k
#endif
4298
13.9k
          && dig++ == '9')
4299
380
            goto round_9_up;
4300
25.5k
          }
4301
61.5k
 accept_dig:
4302
61.5k
        *s++ = dig;
4303
61.5k
        goto ret;
4304
59.8k
        }
4305
1.05M
      if (j1 > 0) {
4306
#ifdef Honor_FLT_ROUNDS
4307
        if (!Rounding)
4308
          goto accept_dig;
4309
#endif
4310
26.8k
        if (dig == '9') { /* possible if i == 1 */
4311
713
 round_9_up:
4312
713
          *s++ = '9';
4313
713
          goto roundoff;
4314
330
          }
4315
26.5k
        *s++ = dig + 1;
4316
26.5k
        goto ret;
4317
26.8k
        }
4318
#ifdef Honor_FLT_ROUNDS
4319
 keep_dig:
4320
#endif
4321
1.02M
      *s++ = dig;
4322
1.02M
      if (i == ilim)
4323
0
        break;
4324
1.02M
      b = multadd(b, 10, 0);
4325
1.02M
      if (mlo == mhi)
4326
993k
        mlo = mhi = multadd(mhi, 10, 0);
4327
31.6k
      else {
4328
31.6k
        mlo = multadd(mlo, 10, 0);
4329
31.6k
        mhi = multadd(mhi, 10, 0);
4330
31.6k
        }
4331
1.02M
      }
4332
89.3k
    }
4333
43.8k
  else
4334
614k
    for(i = 1;; i++) {
4335
614k
      *s++ = dig = quorem(b,S) + '0';
4336
614k
      if (!b->x[0] && b->wds <= 1) {
4337
#ifdef SET_INEXACT
4338
        inexact = 0;
4339
#endif
4340
69
        goto ret;
4341
69
        }
4342
614k
      if (i >= ilim)
4343
43.7k
        break;
4344
570k
      b = multadd(b, 10, 0);
4345
570k
      }
4346
4347
  /* Round off last digit */
4348
4349
#ifdef Honor_FLT_ROUNDS
4350
  switch(Rounding) {
4351
    case 0: goto trimzeros;
4352
    case 2: goto roundoff;
4353
    }
4354
#endif
4355
43.7k
  b = lshift(b, 1);
4356
43.7k
  j = cmp(b, S);
4357
#ifdef ROUND_BIASED
4358
  if (j >= 0)
4359
#else
4360
43.7k
  if (j > 0 || (j == 0 && dig & 1))
4361
26.0k
#endif
4362
26.0k
    {
4363
26.7k
 roundoff:
4364
33.4k
    while(*--s == '9')
4365
7.88k
      if (s == s0) {
4366
1.20k
        k++;
4367
1.20k
        *s++ = '1';
4368
1.20k
        goto ret;
4369
1.20k
        }
4370
25.5k
    ++*s++;
4371
25.5k
    }
4372
17.7k
  else {
4373
#ifdef Honor_FLT_ROUNDS
4374
 trimzeros:
4375
#endif
4376
41.0k
    while(*--s == '0');
4377
17.7k
    s++;
4378
17.7k
    }
4379
133k
 ret:
4380
133k
  Bfree(S);
4381
133k
  if (mhi) {
4382
89.3k
    if (mlo && mlo != mhi)
4383
2.23k
      Bfree(mlo);
4384
89.3k
    Bfree(mhi);
4385
89.3k
    }
4386
218k
 ret1:
4387
#ifdef SET_INEXACT
4388
  if (inexact) {
4389
    if (!oldinexact) {
4390
      word0(&u) = Exp_1 + (70 << Exp_shift);
4391
      word1(&u) = 0;
4392
      dval(&u) += 1.;
4393
      }
4394
    }
4395
  else if (!oldinexact)
4396
    clear_inexact();
4397
#endif
4398
218k
  Bfree(b);
4399
218k
  *s = 0;
4400
218k
  *decpt = k + 1;
4401
218k
  if (rve)
4402
885
    *rve = s;
4403
218k
  return s0;
4404
133k
  }
4405
4406
ZEND_API double zend_hex_strtod(const char *str, const char **endptr)
4407
1.94k
{
4408
1.94k
  const char *s = str;
4409
1.94k
  char c;
4410
1.94k
  int any = 0;
4411
1.94k
  double value = 0;
4412
4413
1.94k
  if (*s == '0' && (s[1] == 'x' || s[1] == 'X')) {
4414
0
    s += 2;
4415
0
  }
4416
4417
37.0k
  while ((c = *s++)) {
4418
36.6k
    if (c >= '0' && c <= '9') {
4419
31.0k
      c -= '0';
4420
31.0k
    } else if (c >= 'A' && c <= 'F') {
4421
2.81k
      c -= 'A' - 10;
4422
2.81k
    } else if (c >= 'a' && c <= 'f') {
4423
1.24k
      c -= 'a' - 10;
4424
1.55k
    } else {
4425
1.55k
      break;
4426
1.55k
    }
4427
4428
35.0k
    any = 1;
4429
35.0k
    value = value * 16 + c;
4430
35.0k
  }
4431
4432
1.94k
  if (endptr != NULL) {
4433
1.94k
    *endptr = any ? s - 1 : str;
4434
1.94k
  }
4435
4436
1.94k
  return value;
4437
1.94k
}
4438
4439
ZEND_API double zend_oct_strtod(const char *str, const char **endptr)
4440
1.18k
{
4441
1.18k
  const char *s = str;
4442
1.18k
  char c;
4443
1.18k
  double value = 0;
4444
1.18k
  int any = 0;
4445
4446
1.18k
  if (str[0] == '\0') {
4447
0
    if (endptr != NULL) {
4448
0
      *endptr = str;
4449
0
    }
4450
0
    return 0.0;
4451
0
  }
4452
4453
46.4k
  while ((c = *s++)) {
4454
46.1k
    if (c < '0' || c > '7') {
4455
      /* break and return the current value if the number is not well-formed
4456
       * that's what Linux strtol() does
4457
       */
4458
930
      break;
4459
930
    }
4460
45.2k
    value = value * 8 + c - '0';
4461
45.2k
    any = 1;
4462
45.2k
  }
4463
4464
1.18k
  if (endptr != NULL) {
4465
1.18k
    *endptr = any ? s - 1 : str;
4466
1.18k
  }
4467
4468
1.18k
  return value;
4469
1.18k
}
4470
4471
ZEND_API double zend_bin_strtod(const char *str, const char **endptr)
4472
369
{
4473
369
  const char *s = str;
4474
369
  char    c;
4475
369
  double    value = 0;
4476
369
  int     any = 0;
4477
4478
369
  if ('0' == *s && ('b' == s[1] || 'B' == s[1])) {
4479
0
    s += 2;
4480
0
  }
4481
4482
26.0k
  while ((c = *s++)) {
4483
    /*
4484
     * Verify the validity of the current character as a base-2 digit.  In
4485
     * the event that an invalid digit is found, halt the conversion and
4486
     * return the portion which has been converted thus far.
4487
     */
4488
25.8k
    if ('0' == c || '1' == c)
4489
25.6k
      value = value * 2 + c - '0';
4490
165
    else
4491
165
      break;
4492
4493
25.6k
    any = 1;
4494
25.6k
  }
4495
4496
  /*
4497
   * As with many strtoX implementations, should the subject sequence be
4498
   * empty or not well-formed, no conversion is performed and the original
4499
   * value of str is stored in *endptr, provided that endptr is not a null
4500
   * pointer.
4501
   */
4502
369
  if (NULL != endptr) {
4503
369
    *endptr = (char *)(any ? s - 1 : str);
4504
369
  }
4505
4506
369
  return value;
4507
369
}
4508
4509
ZEND_API char *zend_gcvt(double value, int ndigit, char dec_point, char exponent, char *buf)
4510
260k
{
4511
260k
  char *digits, *dst, *src;
4512
260k
  int i, decpt;
4513
260k
  bool sign;
4514
260k
  int mode = ndigit >= 0 ? 2 : 0;
4515
4516
260k
  if (mode == 0) {
4517
91.1k
    ndigit = 17;
4518
91.1k
  }
4519
260k
  digits = zend_dtoa(value, mode, ndigit, &decpt, &sign, NULL);
4520
260k
  if (decpt == 9999) {
4521
    /*
4522
     * Infinity or NaN, convert to inf or nan with sign.
4523
     * We assume the buffer is at least ndigit long.
4524
     */
4525
20.4k
    snprintf(buf, ndigit + 1, "%s%s", (sign && *digits == 'I') ? "-" : "", *digits == 'I' ? "INF" : "NAN");
4526
20.4k
    zend_freedtoa(digits);
4527
20.4k
    return (buf);
4528
20.4k
  }
4529
4530
240k
  dst = buf;
4531
240k
  if (sign) {
4532
26.8k
    *dst++ = '-';
4533
26.8k
  }
4534
4535
240k
  if ((decpt >= 0 && decpt > ndigit) || decpt < -3) { /* use E-style */
4536
    /* exponential format (e.g. 1.2345e+13) */
4537
126k
    if (--decpt < 0) {
4538
36.0k
      sign = true;
4539
36.0k
      decpt = -decpt;
4540
90.4k
    } else {
4541
90.4k
      sign = false;
4542
90.4k
    }
4543
126k
    src = digits;
4544
126k
    *dst++ = *src++;
4545
126k
    *dst++ = dec_point;
4546
126k
    if (*src == '\0') {
4547
8.94k
      *dst++ = '0';
4548
117k
    } else {
4549
1.51M
      do {
4550
1.51M
        *dst++ = *src++;
4551
1.51M
      } while (*src != '\0');
4552
117k
    }
4553
126k
    *dst++ = exponent;
4554
126k
    if (sign) {
4555
36.0k
      *dst++ = '-';
4556
90.4k
    } else {
4557
90.4k
      *dst++ = '+';
4558
90.4k
    }
4559
126k
    if (decpt < 10) {
4560
2.15k
      *dst++ = '0' + decpt;
4561
2.15k
      *dst = '\0';
4562
124k
    } else {
4563
      /* XXX - optimize */
4564
124k
      int n;
4565
303k
      for (n = decpt, i = 0; (n /= 10) != 0; i++);
4566
124k
      dst[i + 1] = '\0';
4567
427k
      while (decpt != 0) {
4568
303k
        dst[i--] = '0' + decpt % 10;
4569
303k
        decpt /= 10;
4570
303k
      }
4571
124k
    }
4572
126k
  } else if (decpt < 0) {
4573
    /* standard format 0. */
4574
5.45k
    *dst++ = '0';   /* zero before decimal point */
4575
5.45k
    *dst++ = dec_point;
4576
8.63k
    do {
4577
8.63k
      *dst++ = '0';
4578
8.63k
    } while (++decpt < 0);
4579
5.45k
    src = digits;
4580
38.7k
    while (*src != '\0') {
4581
33.2k
      *dst++ = *src++;
4582
33.2k
    }
4583
5.45k
    *dst = '\0';
4584
108k
  } else {
4585
    /* standard format */
4586
569k
    for (i = 0, src = digits; i < decpt; i++) {
4587
461k
      if (*src != '\0') {
4588
415k
        *dst++ = *src++;
4589
415k
      } else {
4590
45.5k
        *dst++ = '0';
4591
45.5k
      }
4592
461k
    }
4593
108k
    if (*src != '\0') {
4594
59.2k
      if (src == digits) {
4595
15.6k
        *dst++ = '0';   /* zero before decimal point */
4596
15.6k
      }
4597
59.2k
      *dst++ = dec_point;
4598
388k
      for (i = decpt; digits[i] != '\0'; i++) {
4599
329k
        *dst++ = digits[i];
4600
329k
      }
4601
59.2k
    }
4602
108k
    *dst = '\0';
4603
108k
  }
4604
240k
  zend_freedtoa(digits);
4605
240k
  return (buf);
4606
260k
}
4607
4608
static void destroy_freelist(void)
4609
0
{
4610
0
  int i;
4611
0
  Bigint *tmp;
4612
4613
0
  ACQUIRE_DTOA_LOCK(0)
4614
0
  for (i = 0; i <= Kmax; i++) {
4615
0
    Bigint **listp = &freelist[i];
4616
0
    while ((tmp = *listp) != NULL) {
4617
0
      *listp = tmp->next;
4618
0
      FREE(tmp);
4619
0
    }
4620
0
    freelist[i] = NULL;
4621
0
  }
4622
0
  FREE_DTOA_LOCK(0)
4623
0
}
4624
4625
static void free_p5s(void)
4626
0
{
4627
0
  Bigint **listp, *tmp;
4628
4629
0
  ACQUIRE_DTOA_LOCK(1)
4630
0
  listp = &p5s;
4631
0
  while ((tmp = *listp) != NULL) {
4632
0
    *listp = tmp->next;
4633
0
    FREE(tmp);
4634
0
  }
4635
0
  p5s = NULL;
4636
0
  FREE_DTOA_LOCK(1)
4637
0
}