Coverage Report

Created: 2025-11-16 06:23

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/php-src/Zend/zend_strtod.c
Line
Count
Source
1
/****************************************************************
2
 *
3
 * The author of this software is David M. Gay.
4
 *
5
 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
6
 *
7
 * Permission to use, copy, modify, and distribute this software for any
8
 * purpose without fee is hereby granted, provided that this entire notice
9
 * is included in all copies of any software which is or includes a copy
10
 * or modification of this software and in all copies of the supporting
11
 * documentation for such software.
12
 *
13
 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
14
 * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
15
 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
16
 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
17
 *
18
 ***************************************************************/
19
20
/* Please send bug reports to David M. Gay (dmg at acm dot org,
21
 * with " at " changed at "@" and " dot " changed to ".").  */
22
23
/* On a machine with IEEE extended-precision registers, it is
24
 * necessary to specify double-precision (53-bit) rounding precision
25
 * before invoking strtod or dtoa.  If the machine uses (the equivalent
26
 * of) Intel 80x87 arithmetic, the call
27
 *  _control87(PC_53, MCW_PC);
28
 * does this with many compilers.  Whether this or another call is
29
 * appropriate depends on the compiler; for this to work, it may be
30
 * necessary to #include "float.h" or another system-dependent header
31
 * file.
32
 */
33
34
/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
35
 * (Note that IEEE arithmetic is disabled by gcc's -ffast-math flag.)
36
 *
37
 * This strtod returns a nearest machine number to the input decimal
38
 * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
39
 * broken by the IEEE round-even rule.  Otherwise ties are broken by
40
 * biased rounding (add half and chop).
41
 *
42
 * Inspired loosely by William D. Clinger's paper "How to Read Floating
43
 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
44
 *
45
 * Modifications:
46
 *
47
 *  1. We only require IEEE, IBM, or VAX double-precision
48
 *    arithmetic (not IEEE double-extended).
49
 *  2. We get by with floating-point arithmetic in a case that
50
 *    Clinger missed -- when we're computing d * 10^n
51
 *    for a small integer d and the integer n is not too
52
 *    much larger than 22 (the maximum integer k for which
53
 *    we can represent 10^k exactly), we may be able to
54
 *    compute (d*10^k) * 10^(e-k) with just one roundoff.
55
 *  3. Rather than a bit-at-a-time adjustment of the binary
56
 *    result in the hard case, we use floating-point
57
 *    arithmetic to determine the adjustment to within
58
 *    one bit; only in really hard cases do we need to
59
 *    compute a second residual.
60
 *  4. Because of 3., we don't need a large table of powers of 10
61
 *    for ten-to-e (just some small tables, e.g. of 10^k
62
 *    for 0 <= k <= 22).
63
 */
64
65
/*
66
 * #define IEEE_8087 for IEEE-arithmetic machines where the least
67
 *  significant byte has the lowest address.
68
 * #define IEEE_MC68k for IEEE-arithmetic machines where the most
69
 *  significant byte has the lowest address.
70
 * #define Long int on machines with 32-bit ints and 64-bit longs.
71
 * #define IBM for IBM mainframe-style floating-point arithmetic.
72
 * #define VAX for VAX-style floating-point arithmetic (D_floating).
73
 * #define No_leftright to omit left-right logic in fast floating-point
74
 *  computation of dtoa.  This will cause dtoa modes 4 and 5 to be
75
 *  treated the same as modes 2 and 3 for some inputs.
76
 * #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
77
 *  and strtod and dtoa should round accordingly.  Unless Trust_FLT_ROUNDS
78
 *  is also #defined, fegetround() will be queried for the rounding mode.
79
 *  Note that both FLT_ROUNDS and fegetround() are specified by the C99
80
 *  standard (and are specified to be consistent, with fesetround()
81
 *  affecting the value of FLT_ROUNDS), but that some (Linux) systems
82
 *  do not work correctly in this regard, so using fegetround() is more
83
 *  portable than using FLT_ROUNDS directly.
84
 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
85
 *  and Honor_FLT_ROUNDS is not #defined.
86
 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
87
 *  that use extended-precision instructions to compute rounded
88
 *  products and quotients) with IBM.
89
 * #define ROUND_BIASED for IEEE-format with biased rounding and arithmetic
90
 *  that rounds toward +Infinity.
91
 * #define ROUND_BIASED_without_Round_Up for IEEE-format with biased
92
 *  rounding when the underlying floating-point arithmetic uses
93
 *  unbiased rounding.  This prevent using ordinary floating-point
94
 *  arithmetic when the result could be computed with one rounding error.
95
 * #define Inaccurate_Divide for IEEE-format with correctly rounded
96
 *  products but inaccurate quotients, e.g., for Intel i860.
97
 * #define NO_LONG_LONG on machines that do not have a "long long"
98
 *  integer type (of >= 64 bits).  On such machines, you can
99
 *  #define Just_16 to store 16 bits per 32-bit Long when doing
100
 *  high-precision integer arithmetic.  Whether this speeds things
101
 *  up or slows things down depends on the machine and the number
102
 *  being converted.  If long long is available and the name is
103
 *  something other than "long long", #define Llong to be the name,
104
 *  and if "unsigned Llong" does not work as an unsigned version of
105
 *  Llong, #define #ULLong to be the corresponding unsigned type.
106
 * #define KR_headers for old-style C function headers.
107
 * #define Bad_float_h if your system lacks a float.h or if it does not
108
 *  define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
109
 *  FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
110
 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
111
 *  if memory is available and otherwise does something you deem
112
 *  appropriate.  If MALLOC is undefined, malloc will be invoked
113
 *  directly -- and assumed always to succeed.  Similarly, if you
114
 *  want something other than the system's free() to be called to
115
 *  recycle memory acquired from MALLOC, #define FREE to be the
116
 *  name of the alternate routine.  (FREE or free is only called in
117
 *  pathological cases, e.g., in a dtoa call after a dtoa return in
118
 *  mode 3 with thousands of digits requested.)
119
 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
120
 *  memory allocations from a private pool of memory when possible.
121
 *  When used, the private pool is PRIVATE_MEM bytes long:  2304 bytes,
122
 *  unless #defined to be a different length.  This default length
123
 *  suffices to get rid of MALLOC calls except for unusual cases,
124
 *  such as decimal-to-binary conversion of a very long string of
125
 *  digits.  The longest string dtoa can return is about 751 bytes
126
 *  long.  For conversions by strtod of strings of 800 digits and
127
 *  all dtoa conversions in single-threaded executions with 8-byte
128
 *  pointers, PRIVATE_MEM >= 7400 appears to suffice; with 4-byte
129
 *  pointers, PRIVATE_MEM >= 7112 appears adequate.
130
 * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK
131
 *  #defined automatically on IEEE systems.  On such systems,
132
 *  when INFNAN_CHECK is #defined, strtod checks
133
 *  for Infinity and NaN (case insensitively).  On some systems
134
 *  (e.g., some HP systems), it may be necessary to #define NAN_WORD0
135
 *  appropriately -- to the most significant word of a quiet NaN.
136
 *  (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
137
 *  When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
138
 *  strtod also accepts (case insensitively) strings of the form
139
 *  NaN(x), where x is a string of hexadecimal digits and spaces;
140
 *  if there is only one string of hexadecimal digits, it is taken
141
 *  for the 52 fraction bits of the resulting NaN; if there are two
142
 *  or more strings of hex digits, the first is for the high 20 bits,
143
 *  the second and subsequent for the low 32 bits, with intervening
144
 *  white space ignored; but if this results in none of the 52
145
 *  fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0
146
 *  and NAN_WORD1 are used instead.
147
 * #define MULTIPLE_THREADS if the system offers preemptively scheduled
148
 *  multiple threads.  In this case, you must provide (or suitably
149
 *  #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
150
 *  by FREE_DTOA_LOCK(n) for n = 0 or 1.  (The second lock, accessed
151
 *  in pow5mult, ensures lazy evaluation of only one copy of high
152
 *  powers of 5; omitting this lock would introduce a small
153
 *  probability of wasting memory, but would otherwise be harmless.)
154
 *  You must also invoke freedtoa(s) to free the value s returned by
155
 *  dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
156
 * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that
157
 *  avoids underflows on inputs whose result does not underflow.
158
 *  If you #define NO_IEEE_Scale on a machine that uses IEEE-format
159
 *  floating-point numbers and flushes underflows to zero rather
160
 *  than implementing gradual underflow, then you must also #define
161
 *  Sudden_Underflow.
162
 * #define USE_LOCALE to use the current locale's decimal_point value.
163
 * #define SET_INEXACT if IEEE arithmetic is being used and extra
164
 *  computation should be done to set the inexact flag when the
165
 *  result is inexact and avoid setting inexact when the result
166
 *  is exact.  In this case, dtoa.c must be compiled in
167
 *  an environment, perhaps provided by #include "dtoa.c" in a
168
 *  suitable wrapper, that defines two functions,
169
 *    int get_inexact(void);
170
 *    void clear_inexact(void);
171
 *  such that get_inexact() returns a nonzero value if the
172
 *  inexact bit is already set, and clear_inexact() sets the
173
 *  inexact bit to 0.  When SET_INEXACT is #defined, strtod
174
 *  also does extra computations to set the underflow and overflow
175
 *  flags when appropriate (i.e., when the result is tiny and
176
 *  inexact or when it is a numeric value rounded to +-infinity).
177
 * #define NO_ERRNO if strtod should not assign errno = ERANGE when
178
 *  the result overflows to +-Infinity or underflows to 0.
179
 * #define NO_HEX_FP to omit recognition of hexadecimal floating-point
180
 *  values by strtod.
181
 * #define NO_STRTOD_BIGCOMP (on IEEE-arithmetic systems only for now)
182
 *  to disable logic for "fast" testing of very long input strings
183
 *  to strtod.  This testing proceeds by initially truncating the
184
 *  input string, then if necessary comparing the whole string with
185
 *  a decimal expansion to decide close cases. This logic is only
186
 *  used for input more than STRTOD_DIGLIM digits long (default 40).
187
 */
188
189
#include <zend_operators.h>
190
#include <zend_strtod.h>
191
#include "zend_strtod_int.h"
192
#include "zend_globals.h"
193
194
#ifndef Long
195
1.52M
#define Long int32_t
196
#endif
197
#ifndef ULong
198
32.3M
#define ULong uint32_t
199
#endif
200
201
#undef Bigint
202
#undef freelist
203
#undef p5s
204
#undef dtoa_result
205
206
25.9M
#define Bigint      _zend_strtod_bigint
207
31.9M
#define freelist    (EG(strtod_state).freelist)
208
491k
#define p5s         (EG(strtod_state).p5s)
209
1.10M
#define dtoa_result (EG(strtod_state).result)
210
211
#ifdef DEBUG
212
static void Bug(const char *message) {
213
  fprintf(stderr, "%s\n", message);
214
}
215
#endif
216
217
#include "stdlib.h"
218
#include "string.h"
219
220
#ifdef USE_LOCALE
221
#include "locale.h"
222
#endif
223
224
#ifdef Honor_FLT_ROUNDS
225
#ifndef Trust_FLT_ROUNDS
226
#include <fenv.h>
227
#endif
228
#endif
229
230
#ifdef MALLOC
231
#ifdef KR_headers
232
extern char *MALLOC();
233
#else
234
extern void *MALLOC(size_t);
235
#endif
236
#else
237
271
#define MALLOC malloc
238
8
#define FREE   free
239
#endif
240
241
#ifndef Omit_Private_Memory
242
#ifndef PRIVATE_MEM
243
#define PRIVATE_MEM 2304
244
#endif
245
#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
246
static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
247
#endif
248
249
#undef IEEE_Arith
250
#undef Avoid_Underflow
251
#ifdef IEEE_MC68k
252
#define IEEE_Arith
253
#endif
254
#ifdef IEEE_8087
255
#define IEEE_Arith
256
#endif
257
258
#ifdef IEEE_Arith
259
#ifndef NO_INFNAN_CHECK
260
#undef INFNAN_CHECK
261
#define INFNAN_CHECK
262
#endif
263
#else
264
#undef INFNAN_CHECK
265
#define NO_STRTOD_BIGCOMP
266
#endif
267
268
#include "errno.h"
269
270
#ifdef Bad_float_h
271
272
#ifdef IEEE_Arith
273
#define DBL_DIG 15
274
#define DBL_MAX_10_EXP 308
275
#define DBL_MAX_EXP 1024
276
#define FLT_RADIX 2
277
#endif /*IEEE_Arith*/
278
279
#ifdef IBM
280
#define DBL_DIG 16
281
#define DBL_MAX_10_EXP 75
282
#define DBL_MAX_EXP 63
283
#define FLT_RADIX 16
284
#define DBL_MAX 7.2370055773322621e+75
285
#endif
286
287
#ifdef VAX
288
#define DBL_DIG 16
289
#define DBL_MAX_10_EXP 38
290
#define DBL_MAX_EXP 127
291
#define FLT_RADIX 2
292
#define DBL_MAX 1.7014118346046923e+38
293
#endif
294
295
#else /* ifndef Bad_float_h */
296
#include "float.h"
297
#endif /* Bad_float_h */
298
299
#ifndef __MATH_H__
300
#include "math.h"
301
#endif
302
303
#ifndef CONST
304
#ifdef KR_headers
305
#define CONST /* blank */
306
#else
307
711k
#define CONST const
308
#endif
309
#endif
310
311
#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
312
Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
313
#endif
314
315
typedef union { double d; ULong L[2]; } U;
316
317
#ifdef IEEE_8087
318
5.51M
#define word0(x) (x)->L[1]
319
2.40M
#define word1(x) (x)->L[0]
320
#else
321
#define word0(x) (x)->L[0]
322
#define word1(x) (x)->L[1]
323
#endif
324
10.8M
#define dval(x) (x)->d
325
326
#ifndef STRTOD_DIGLIM
327
363k
#define STRTOD_DIGLIM 40
328
#endif
329
330
#ifdef DIGLIM_DEBUG
331
extern int strtod_diglim;
332
#else
333
363k
#define strtod_diglim STRTOD_DIGLIM
334
#endif
335
336
/* The following definition of Storeinc is appropriate for MIPS processors.
337
 * An alternative that might be better on some machines is
338
 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
339
 */
340
#if defined(IEEE_8087) + defined(VAX) + defined(__arm__)
341
#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
342
((unsigned short *)a)[0] = (unsigned short)c, a++)
343
#else
344
#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
345
((unsigned short *)a)[1] = (unsigned short)c, a++)
346
#endif
347
348
/* #define P DBL_MANT_DIG */
349
/* Ten_pmax = floor(P*log(2)/log(5)) */
350
/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
351
/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
352
/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
353
354
#ifdef IEEE_Arith
355
786k
#define Exp_shift  20
356
470k
#define Exp_shift1 20
357
1.95M
#define Exp_msk1    0x100000
358
#define Exp_msk11   0x100000
359
1.65M
#define Exp_mask  0x7ff00000
360
3.16M
#define P 53
361
#define Nbits 53
362
1.42M
#define Bias 1023
363
#define Emax 1023
364
550k
#define Emin (-1022)
365
356k
#define Exp_1  0x3ff00000
366
221k
#define Exp_11 0x3ff00000
367
790k
#define Ebits 11
368
748k
#define Frac_mask  0xfffff
369
224k
#define Frac_mask1 0xfffff
370
320k
#define Ten_pmax 22
371
69.9k
#define Bletch 0x10
372
258k
#define Bndry_mask  0xfffff
373
22.4k
#define Bndry_mask1 0xfffff
374
440k
#define LSB 1
375
306k
#define Sign_bit 0x80000000
376
14.6k
#define Log2P 1
377
#define Tiny0 0
378
182k
#define Tiny1 1
379
333k
#define Quick_max 14
380
50.9k
#define Int_max 14
381
#ifndef NO_IEEE_Scale
382
#define Avoid_Underflow
383
#ifdef Flush_Denorm /* debugging option */
384
#undef Sudden_Underflow
385
#endif
386
#endif
387
388
#ifndef Flt_Rounds
389
#ifdef FLT_ROUNDS
390
361k
#define Flt_Rounds FLT_ROUNDS
391
#else
392
#define Flt_Rounds 1
393
#endif
394
#endif /*Flt_Rounds*/
395
396
#ifdef Honor_FLT_ROUNDS
397
#undef Check_FLT_ROUNDS
398
#define Check_FLT_ROUNDS
399
#else
400
#define Rounding Flt_Rounds
401
#endif
402
403
#else /* ifndef IEEE_Arith */
404
#undef Check_FLT_ROUNDS
405
#undef Honor_FLT_ROUNDS
406
#undef SET_INEXACT
407
#undef  Sudden_Underflow
408
#define Sudden_Underflow
409
#ifdef IBM
410
#undef Flt_Rounds
411
#define Flt_Rounds 0
412
#define Exp_shift  24
413
#define Exp_shift1 24
414
#define Exp_msk1   0x1000000
415
#define Exp_msk11  0x1000000
416
#define Exp_mask  0x7f000000
417
#define P 14
418
#define Nbits 56
419
#define Bias 65
420
#define Emax 248
421
#define Emin (-260)
422
#define Exp_1  0x41000000
423
#define Exp_11 0x41000000
424
#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
425
#define Frac_mask  0xffffff
426
#define Frac_mask1 0xffffff
427
#define Bletch 4
428
#define Ten_pmax 22
429
#define Bndry_mask  0xefffff
430
#define Bndry_mask1 0xffffff
431
#define LSB 1
432
#define Sign_bit 0x80000000
433
#define Log2P 4
434
#define Tiny0 0x100000
435
#define Tiny1 0
436
#define Quick_max 14
437
#define Int_max 15
438
#else /* VAX */
439
#undef Flt_Rounds
440
#define Flt_Rounds 1
441
#define Exp_shift  23
442
#define Exp_shift1 7
443
#define Exp_msk1    0x80
444
#define Exp_msk11   0x800000
445
#define Exp_mask  0x7f80
446
#define P 56
447
#define Nbits 56
448
#define Bias 129
449
#define Emax 126
450
#define Emin (-129)
451
#define Exp_1  0x40800000
452
#define Exp_11 0x4080
453
#define Ebits 8
454
#define Frac_mask  0x7fffff
455
#define Frac_mask1 0xffff007f
456
#define Ten_pmax 24
457
#define Bletch 2
458
#define Bndry_mask  0xffff007f
459
#define Bndry_mask1 0xffff007f
460
#define LSB 0x10000
461
#define Sign_bit 0x8000
462
#define Log2P 1
463
#define Tiny0 0x80
464
#define Tiny1 0
465
#define Quick_max 15
466
#define Int_max 15
467
#endif /* IBM, VAX */
468
#endif /* IEEE_Arith */
469
470
#ifndef IEEE_Arith
471
#define ROUND_BIASED
472
#else
473
#ifdef ROUND_BIASED_without_Round_Up
474
#undef  ROUND_BIASED
475
#define ROUND_BIASED
476
#endif
477
#endif
478
479
#ifdef RND_PRODQUOT
480
#define rounded_product(a,b) a = rnd_prod(a, b)
481
#define rounded_quotient(a,b) a = rnd_quot(a, b)
482
#ifdef KR_headers
483
extern double rnd_prod(), rnd_quot();
484
#else
485
extern double rnd_prod(double, double), rnd_quot(double, double);
486
#endif
487
#else
488
11.4k
#define rounded_product(a,b) a *= b
489
73.8k
#define rounded_quotient(a,b) a /= b
490
#endif
491
492
3.93k
#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
493
1.81k
#define Big1 0xffffffff
494
495
#ifndef Pack_32
496
#define Pack_32
497
#endif
498
499
typedef struct BCinfo BCinfo;
500
 struct
501
BCinfo { int dp0, dp1, dplen, dsign, e0, inexact, nd, nd0, rounding, scale, uflchk; };
502
503
#ifdef KR_headers
504
#define FFFFFFFF ((((unsigned long)0xffff)<<16)|(unsigned long)0xffff)
505
#else
506
102M
#define FFFFFFFF 0xffffffffUL
507
#endif
508
509
#ifdef NO_LONG_LONG
510
#undef ULLong
511
#ifdef Just_16
512
#undef Pack_32
513
/* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
514
 * This makes some inner loops simpler and sometimes saves work
515
 * during multiplications, but it often seems to make things slightly
516
 * slower.  Hence the default is now to store 32 bits per Long.
517
 */
518
#endif
519
#else /* long long available */
520
#ifndef Llong
521
#define Llong long long
522
#endif
523
#ifndef ULLong
524
16.0M
#define ULLong unsigned Llong
525
#endif
526
#endif /* NO_LONG_LONG */
527
528
#ifndef MULTIPLE_THREADS
529
#define ACQUIRE_DTOA_LOCK(n)  /*nothing*/
530
#define FREE_DTOA_LOCK(n) /*nothing*/
531
#endif
532
533
15.9M
#define Kmax ZEND_STRTOD_K_MAX
534
535
 struct
536
Bigint {
537
  struct Bigint *next;
538
  int k, maxwds, sign, wds;
539
  ULong x[1];
540
  };
541
542
 typedef struct Bigint Bigint;
543
544
#ifndef Bigint
545
 static Bigint *freelist[Kmax+1];
546
#endif
547
548
static void destroy_freelist(void);
549
static void free_p5s(void);
550
551
#ifdef MULTIPLE_THREADS
552
static MUTEX_T dtoa_mutex;
553
static MUTEX_T pow5mult_mutex;
554
#endif /* ZTS */
555
556
ZEND_API int zend_shutdown_strtod(void) /* {{{ */
557
0
{
558
0
  destroy_freelist();
559
0
  free_p5s();
560
561
0
  return 1;
562
0
}
563
/* }}} */
564
565
 static Bigint *
566
Balloc
567
#ifdef KR_headers
568
  (k) int k;
569
#else
570
  (int k)
571
#endif
572
7.97M
{
573
7.97M
  int x;
574
7.97M
  Bigint *rv;
575
#ifndef Omit_Private_Memory
576
  unsigned int len;
577
#endif
578
579
7.97M
  ACQUIRE_DTOA_LOCK(0);
580
  /* The k > Kmax case does not need ACQUIRE_DTOA_LOCK(0), */
581
  /* but this case seems very unlikely. */
582
7.97M
  if (k <= Kmax && (rv = freelist[k]))
583
7.97M
    freelist[k] = rv->next;
584
271
  else {
585
271
    x = 1 << k;
586
271
#ifdef Omit_Private_Memory
587
271
    rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong));
588
271
    if (!rv) {
589
0
      FREE_DTOA_LOCK(0);
590
0
      zend_error_noreturn(E_ERROR, "Balloc() failed to allocate memory");
591
0
    }
592
#else
593
    len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
594
      /sizeof(double);
595
    if (k <= Kmax && pmem_next - private_mem + len <= PRIVATE_mem) {
596
      rv = (Bigint*)pmem_next;
597
      pmem_next += len;
598
      }
599
    else
600
      rv = (Bigint*)MALLOC(len*sizeof(double));
601
      if (!rv) {
602
        FREE_DTOA_LOCK(0);
603
        zend_error_noreturn(E_ERROR, "Balloc() failed to allocate memory");
604
      }
605
#endif
606
271
    rv->k = k;
607
271
    rv->maxwds = x;
608
271
    }
609
7.97M
  FREE_DTOA_LOCK(0);
610
7.97M
  rv->sign = rv->wds = 0;
611
7.97M
  return rv;
612
7.97M
  }
613
614
 static void
615
Bfree
616
#ifdef KR_headers
617
  (v) Bigint *v;
618
#else
619
  (Bigint *v)
620
#endif
621
7.97M
{
622
7.97M
  if (v) {
623
7.97M
    if (v->k > Kmax)
624
8
      FREE((void*)v);
625
7.97M
    else {
626
7.97M
      ACQUIRE_DTOA_LOCK(0);
627
7.97M
      v->next = freelist[v->k];
628
7.97M
      freelist[v->k] = v;
629
7.97M
      FREE_DTOA_LOCK(0);
630
7.97M
      }
631
7.97M
    }
632
7.97M
  }
633
634
507k
#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
635
507k
y->wds*sizeof(Long) + 2*sizeof(int))
636
637
 static Bigint *
638
multadd
639
#ifdef KR_headers
640
  (b, m, a) Bigint *b; int m, a;
641
#else
642
  (Bigint *b, int m, int a) /* multiply by m and add a */
643
#endif
644
8.91M
{
645
8.91M
  int i, wds;
646
8.91M
#ifdef ULLong
647
8.91M
  ULong *x;
648
8.91M
  ULLong carry, y;
649
#else
650
  ULong carry, *x, y;
651
#ifdef Pack_32
652
  ULong xi, z;
653
#endif
654
#endif
655
8.91M
  Bigint *b1;
656
657
8.91M
  wds = b->wds;
658
8.91M
  x = b->x;
659
8.91M
  i = 0;
660
8.91M
  carry = a;
661
37.3M
  do {
662
37.3M
#ifdef ULLong
663
37.3M
    y = *x * (ULLong)m + carry;
664
37.3M
    carry = y >> 32;
665
37.3M
    *x++ = y & FFFFFFFF;
666
#else
667
#ifdef Pack_32
668
    xi = *x;
669
    y = (xi & 0xffff) * m + carry;
670
    z = (xi >> 16) * m + (y >> 16);
671
    carry = z >> 16;
672
    *x++ = (z << 16) + (y & 0xffff);
673
#else
674
    y = *x * m + carry;
675
    carry = y >> 16;
676
    *x++ = y & 0xffff;
677
#endif
678
#endif
679
37.3M
    }
680
37.3M
    while(++i < wds);
681
8.91M
  if (carry) {
682
626k
    if (wds >= b->maxwds) {
683
64.9k
      b1 = Balloc(b->k+1);
684
64.9k
      Bcopy(b1, b);
685
64.9k
      Bfree(b);
686
64.9k
      b = b1;
687
64.9k
      }
688
626k
    b->x[wds++] = carry;
689
626k
    b->wds = wds;
690
626k
    }
691
8.91M
  return b;
692
8.91M
  }
693
694
 static Bigint *
695
s2b
696
#ifdef KR_headers
697
  (s, nd0, nd, y9, dplen) CONST char *s; int nd0, nd, dplen; ULong y9;
698
#else
699
  (const char *s, int nd0, int nd, ULong y9, int dplen)
700
#endif
701
363k
{
702
363k
  Bigint *b;
703
363k
  int i, k;
704
363k
  Long x, y;
705
706
363k
  x = (nd + 8) / 9;
707
803k
  for(k = 0, y = 1; x > y; y <<= 1, k++) ;
708
363k
#ifdef Pack_32
709
363k
  b = Balloc(k);
710
363k
  b->x[0] = y9;
711
363k
  b->wds = 1;
712
#else
713
  b = Balloc(k+1);
714
  b->x[0] = y9 & 0xffff;
715
  b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
716
#endif
717
718
363k
  i = 9;
719
363k
  if (9 < nd0) {
720
242k
    s += 9;
721
2.92M
    do b = multadd(b, 10, *s++ - '0');
722
2.92M
      while(++i < nd0);
723
242k
    s += dplen;
724
242k
    }
725
121k
  else
726
121k
    s += dplen + 9;
727
987k
  for(; i < nd; i++)
728
623k
    b = multadd(b, 10, *s++ - '0');
729
363k
  return b;
730
363k
  }
731
732
 static int
733
hi0bits
734
#ifdef KR_headers
735
  (x) ULong x;
736
#else
737
  (ULong x)
738
#endif
739
584k
{
740
584k
  int k = 0;
741
742
584k
  if (!(x & 0xffff0000)) {
743
413k
    k = 16;
744
413k
    x <<= 16;
745
413k
    }
746
584k
  if (!(x & 0xff000000)) {
747
373k
    k += 8;
748
373k
    x <<= 8;
749
373k
    }
750
584k
  if (!(x & 0xf0000000)) {
751
362k
    k += 4;
752
362k
    x <<= 4;
753
362k
    }
754
584k
  if (!(x & 0xc0000000)) {
755
295k
    k += 2;
756
295k
    x <<= 2;
757
295k
    }
758
584k
  if (!(x & 0x80000000)) {
759
375k
    k++;
760
375k
    if (!(x & 0x40000000))
761
0
      return 32;
762
375k
    }
763
584k
  return k;
764
584k
  }
765
766
 static int
767
lo0bits
768
#ifdef KR_headers
769
  (y) ULong *y;
770
#else
771
  (ULong *y)
772
#endif
773
748k
{
774
748k
  int k;
775
748k
  ULong x = *y;
776
777
748k
  if (x & 7) {
778
520k
    if (x & 1)
779
321k
      return 0;
780
199k
    if (x & 2) {
781
116k
      *y = x >> 1;
782
116k
      return 1;
783
116k
      }
784
82.1k
    *y = x >> 2;
785
82.1k
    return 2;
786
199k
    }
787
227k
  k = 0;
788
227k
  if (!(x & 0xffff)) {
789
88.1k
    k = 16;
790
88.1k
    x >>= 16;
791
88.1k
    }
792
227k
  if (!(x & 0xff)) {
793
74.3k
    k += 8;
794
74.3k
    x >>= 8;
795
74.3k
    }
796
227k
  if (!(x & 0xf)) {
797
161k
    k += 4;
798
161k
    x >>= 4;
799
161k
    }
800
227k
  if (!(x & 0x3)) {
801
132k
    k += 2;
802
132k
    x >>= 2;
803
132k
    }
804
227k
  if (!(x & 1)) {
805
117k
    k++;
806
117k
    x >>= 1;
807
117k
    if (!x)
808
0
      return 32;
809
117k
    }
810
227k
  *y = x;
811
227k
  return k;
812
227k
  }
813
814
 static Bigint *
815
i2b
816
#ifdef KR_headers
817
  (i) int i;
818
#else
819
  (int i)
820
#endif
821
818k
{
822
818k
  Bigint *b;
823
824
818k
  b = Balloc(1);
825
818k
  b->x[0] = i;
826
818k
  b->wds = 1;
827
818k
  return b;
828
818k
  }
829
830
 static Bigint *
831
mult
832
#ifdef KR_headers
833
  (a, b) Bigint *a, *b;
834
#else
835
  (Bigint *a, Bigint *b)
836
#endif
837
1.39M
{
838
1.39M
  Bigint *c;
839
1.39M
  int k, wa, wb, wc;
840
1.39M
  ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
841
1.39M
  ULong y;
842
1.39M
#ifdef ULLong
843
1.39M
  ULLong carry, z;
844
#else
845
  ULong carry, z;
846
#ifdef Pack_32
847
  ULong z2;
848
#endif
849
#endif
850
851
1.39M
  if (a->wds < b->wds) {
852
529k
    c = a;
853
529k
    a = b;
854
529k
    b = c;
855
529k
    }
856
1.39M
  k = a->k;
857
1.39M
  wa = a->wds;
858
1.39M
  wb = b->wds;
859
1.39M
  wc = wa + wb;
860
1.39M
  if (wc > a->maxwds)
861
559k
    k++;
862
1.39M
  c = Balloc(k);
863
9.92M
  for(x = c->x, xa = x + wc; x < xa; x++)
864
8.52M
    *x = 0;
865
1.39M
  xa = a->x;
866
1.39M
  xae = xa + wa;
867
1.39M
  xb = b->x;
868
1.39M
  xbe = xb + wb;
869
1.39M
  xc0 = c->x;
870
1.39M
#ifdef ULLong
871
3.87M
  for(; xb < xbe; xc0++) {
872
2.47M
    if ((y = *xb++)) {
873
2.47M
      x = xa;
874
2.47M
      xc = xc0;
875
2.47M
      carry = 0;
876
15.9M
      do {
877
15.9M
        z = *x++ * (ULLong)y + *xc + carry;
878
15.9M
        carry = z >> 32;
879
15.9M
        *xc++ = z & FFFFFFFF;
880
15.9M
        }
881
15.9M
        while(x < xae);
882
2.47M
      *xc = carry;
883
2.47M
      }
884
2.47M
    }
885
#else
886
#ifdef Pack_32
887
  for(; xb < xbe; xb++, xc0++) {
888
    if (y = *xb & 0xffff) {
889
      x = xa;
890
      xc = xc0;
891
      carry = 0;
892
      do {
893
        z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
894
        carry = z >> 16;
895
        z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
896
        carry = z2 >> 16;
897
        Storeinc(xc, z2, z);
898
        }
899
        while(x < xae);
900
      *xc = carry;
901
      }
902
    if (y = *xb >> 16) {
903
      x = xa;
904
      xc = xc0;
905
      carry = 0;
906
      z2 = *xc;
907
      do {
908
        z = (*x & 0xffff) * y + (*xc >> 16) + carry;
909
        carry = z >> 16;
910
        Storeinc(xc, z, z2);
911
        z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
912
        carry = z2 >> 16;
913
        }
914
        while(x < xae);
915
      *xc = z2;
916
      }
917
    }
918
#else
919
  for(; xb < xbe; xc0++) {
920
    if (y = *xb++) {
921
      x = xa;
922
      xc = xc0;
923
      carry = 0;
924
      do {
925
        z = *x++ * y + *xc + carry;
926
        carry = z >> 16;
927
        *xc++ = z & 0xffff;
928
        }
929
        while(x < xae);
930
      *xc = carry;
931
      }
932
    }
933
#endif
934
#endif
935
2.37M
  for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
936
1.39M
  c->wds = wc;
937
1.39M
  return c;
938
1.39M
  }
939
940
#ifndef p5s
941
 static Bigint *p5s;
942
#endif
943
944
 static Bigint *
945
pow5mult
946
#ifdef KR_headers
947
  (b, k) Bigint *b; int k;
948
#else
949
  (Bigint *b, int k)
950
#endif
951
542k
{
952
542k
  Bigint *b1, *p5, *p51;
953
542k
  int i;
954
542k
  static const int p05[3] = { 5, 25, 125 };
955
956
542k
  if ((i = k & 3))
957
430k
    b = multadd(b, p05[i-1], 0);
958
959
542k
  if (!(k >>= 2))
960
50.1k
    return b;
961
491k
  if (!(p5 = p5s)) {
962
    /* first time */
963
#ifdef MULTIPLE_THREADS
964
    ACQUIRE_DTOA_LOCK(1);
965
    if (!(p5 = p5s)) {
966
      p5 = p5s = i2b(625);
967
      p5->next = 0;
968
      }
969
    FREE_DTOA_LOCK(1);
970
#else
971
8
    p5 = p5s = i2b(625);
972
8
    p5->next = 0;
973
8
#endif
974
8
    }
975
2.10M
  for(;;) {
976
2.10M
    if (k & 1) {
977
1.18M
      b1 = mult(b, p5);
978
1.18M
      Bfree(b);
979
1.18M
      b = b1;
980
1.18M
      }
981
2.10M
    if (!(k >>= 1))
982
491k
      break;
983
1.60M
    if (!(p51 = p5->next)) {
984
#ifdef MULTIPLE_THREADS
985
      ACQUIRE_DTOA_LOCK(1);
986
      if (!(p51 = p5->next)) {
987
        p51 = p5->next = mult(p5,p5);
988
        p51->next = 0;
989
        }
990
      FREE_DTOA_LOCK(1);
991
#else
992
48
      p51 = p5->next = mult(p5,p5);
993
48
      p51->next = 0;
994
48
#endif
995
48
      }
996
1.60M
    p5 = p51;
997
1.60M
    }
998
491k
  return b;
999
542k
  }
1000
1001
 static Bigint *
1002
lshift
1003
#ifdef KR_headers
1004
  (b, k) Bigint *b; int k;
1005
#else
1006
  (Bigint *b, int k)
1007
#endif
1008
1.60M
{
1009
1.60M
  int i, k1, n, n1;
1010
1.60M
  Bigint *b1;
1011
1.60M
  ULong *x, *x1, *xe, z;
1012
1013
1.60M
#ifdef Pack_32
1014
1.60M
  n = k >> 5;
1015
#else
1016
  n = k >> 4;
1017
#endif
1018
1.60M
  k1 = b->k;
1019
1.60M
  n1 = n + b->wds + 1;
1020
3.46M
  for(i = b->maxwds; n1 > i; i <<= 1)
1021
1.85M
    k1++;
1022
1.60M
  b1 = Balloc(k1);
1023
1.60M
  x1 = b1->x;
1024
6.06M
  for(i = 0; i < n; i++)
1025
4.45M
    *x1++ = 0;
1026
1.60M
  x = b->x;
1027
1.60M
  xe = x + b->wds;
1028
1.60M
#ifdef Pack_32
1029
1.60M
  if (k &= 0x1f) {
1030
1.54M
    k1 = 32 - k;
1031
1.54M
    z = 0;
1032
5.21M
    do {
1033
5.21M
      *x1++ = *x << k | z;
1034
5.21M
      z = *x++ >> k1;
1035
5.21M
      }
1036
5.21M
      while(x < xe);
1037
1.54M
    if ((*x1 = z))
1038
268k
      ++n1;
1039
1.54M
    }
1040
#else
1041
  if (k &= 0xf) {
1042
    k1 = 16 - k;
1043
    z = 0;
1044
    do {
1045
      *x1++ = *x << k  & 0xffff | z;
1046
      z = *x++ >> k1;
1047
      }
1048
      while(x < xe);
1049
    if (*x1 = z)
1050
      ++n1;
1051
    }
1052
#endif
1053
60.1k
  else do
1054
104k
    *x1++ = *x++;
1055
104k
    while(x < xe);
1056
1.60M
  b1->wds = n1 - 1;
1057
1.60M
  Bfree(b);
1058
1.60M
  return b1;
1059
1.60M
  }
1060
1061
 static int
1062
cmp
1063
#ifdef KR_headers
1064
  (a, b) Bigint *a, *b;
1065
#else
1066
  (Bigint *a, Bigint *b)
1067
#endif
1068
9.82M
{
1069
9.82M
  ULong *xa, *xa0, *xb, *xb0;
1070
9.82M
  int i, j;
1071
1072
9.82M
  i = a->wds;
1073
9.82M
  j = b->wds;
1074
#ifdef DEBUG
1075
  if (i > 1 && !a->x[i-1])
1076
    Bug("cmp called with a->x[a->wds-1] == 0");
1077
  if (j > 1 && !b->x[j-1])
1078
    Bug("cmp called with b->x[b->wds-1] == 0");
1079
#endif
1080
9.82M
  if (i -= j)
1081
2.00M
    return i;
1082
7.82M
  xa0 = a->x;
1083
7.82M
  xa = xa0 + j;
1084
7.82M
  xb0 = b->x;
1085
7.82M
  xb = xb0 + j;
1086
8.52M
  for(;;) {
1087
8.52M
    if (*--xa != *--xb)
1088
7.76M
      return *xa < *xb ? -1 : 1;
1089
752k
    if (xa <= xa0)
1090
56.4k
      break;
1091
752k
    }
1092
56.4k
  return 0;
1093
7.82M
  }
1094
1095
 static Bigint *
1096
diff
1097
#ifdef KR_headers
1098
  (a, b) Bigint *a, *b;
1099
#else
1100
  (Bigint *a, Bigint *b)
1101
#endif
1102
2.25M
{
1103
2.25M
  Bigint *c;
1104
2.25M
  int i, wa, wb;
1105
2.25M
  ULong *xa, *xae, *xb, *xbe, *xc;
1106
2.25M
#ifdef ULLong
1107
2.25M
  ULLong borrow, y;
1108
#else
1109
  ULong borrow, y;
1110
#ifdef Pack_32
1111
  ULong z;
1112
#endif
1113
#endif
1114
1115
2.25M
  i = cmp(a,b);
1116
2.25M
  if (!i) {
1117
20.3k
    c = Balloc(0);
1118
20.3k
    c->wds = 1;
1119
20.3k
    c->x[0] = 0;
1120
20.3k
    return c;
1121
20.3k
    }
1122
2.23M
  if (i < 0) {
1123
218k
    c = a;
1124
218k
    a = b;
1125
218k
    b = c;
1126
218k
    i = 1;
1127
218k
    }
1128
2.01M
  else
1129
2.01M
    i = 0;
1130
2.23M
  c = Balloc(a->k);
1131
2.23M
  c->sign = i;
1132
2.23M
  wa = a->wds;
1133
2.23M
  xa = a->x;
1134
2.23M
  xae = xa + wa;
1135
2.23M
  wb = b->wds;
1136
2.23M
  xb = b->x;
1137
2.23M
  xbe = xb + wb;
1138
2.23M
  xc = c->x;
1139
2.23M
  borrow = 0;
1140
2.23M
#ifdef ULLong
1141
12.2M
  do {
1142
12.2M
    y = (ULLong)*xa++ - *xb++ - borrow;
1143
12.2M
    borrow = y >> 32 & (ULong)1;
1144
12.2M
    *xc++ = y & FFFFFFFF;
1145
12.2M
    }
1146
12.2M
    while(xb < xbe);
1147
3.21M
  while(xa < xae) {
1148
985k
    y = *xa++ - borrow;
1149
985k
    borrow = y >> 32 & (ULong)1;
1150
985k
    *xc++ = y & FFFFFFFF;
1151
985k
    }
1152
#else
1153
#ifdef Pack_32
1154
  do {
1155
    y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
1156
    borrow = (y & 0x10000) >> 16;
1157
    z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
1158
    borrow = (z & 0x10000) >> 16;
1159
    Storeinc(xc, z, y);
1160
    }
1161
    while(xb < xbe);
1162
  while(xa < xae) {
1163
    y = (*xa & 0xffff) - borrow;
1164
    borrow = (y & 0x10000) >> 16;
1165
    z = (*xa++ >> 16) - borrow;
1166
    borrow = (z & 0x10000) >> 16;
1167
    Storeinc(xc, z, y);
1168
    }
1169
#else
1170
  do {
1171
    y = *xa++ - *xb++ - borrow;
1172
    borrow = (y & 0x10000) >> 16;
1173
    *xc++ = y & 0xffff;
1174
    }
1175
    while(xb < xbe);
1176
  while(xa < xae) {
1177
    y = *xa++ - borrow;
1178
    borrow = (y & 0x10000) >> 16;
1179
    *xc++ = y & 0xffff;
1180
    }
1181
#endif
1182
#endif
1183
2.86M
  while(!*--xc)
1184
628k
    wa--;
1185
2.23M
  c->wds = wa;
1186
2.23M
  return c;
1187
2.25M
  }
1188
1189
 static double
1190
ulp
1191
#ifdef KR_headers
1192
  (x) U *x;
1193
#else
1194
  (U *x)
1195
#endif
1196
175k
{
1197
175k
  Long L;
1198
175k
  U u;
1199
1200
175k
  L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
1201
#ifndef Avoid_Underflow
1202
#ifndef Sudden_Underflow
1203
  if (L > 0) {
1204
#endif
1205
#endif
1206
#ifdef IBM
1207
    L |= Exp_msk1 >> 4;
1208
#endif
1209
175k
    word0(&u) = L;
1210
175k
    word1(&u) = 0;
1211
#ifndef Avoid_Underflow
1212
#ifndef Sudden_Underflow
1213
    }
1214
  else {
1215
    L = -L >> Exp_shift;
1216
    if (L < Exp_shift) {
1217
      word0(&u) = 0x80000 >> L;
1218
      word1(&u) = 0;
1219
      }
1220
    else {
1221
      word0(&u) = 0;
1222
      L -= Exp_shift;
1223
      word1(&u) = L >= 31 ? 1 : 1 << 31 - L;
1224
      }
1225
    }
1226
#endif
1227
#endif
1228
175k
  return dval(&u);
1229
175k
  }
1230
1231
 static double
1232
b2d
1233
#ifdef KR_headers
1234
  (a, e) Bigint *a; int *e;
1235
#else
1236
  (Bigint *a, int *e)
1237
#endif
1238
332k
{
1239
332k
  ULong *xa, *xa0, w, y, z;
1240
332k
  int k;
1241
332k
  U d;
1242
#ifdef VAX
1243
  ULong d0, d1;
1244
#else
1245
332k
#define d0 word0(&d)
1246
332k
#define d1 word1(&d)
1247
332k
#endif
1248
1249
332k
  xa0 = a->x;
1250
332k
  xa = xa0 + a->wds;
1251
332k
  y = *--xa;
1252
#ifdef DEBUG
1253
  if (!y) Bug("zero y in b2d");
1254
#endif
1255
332k
  k = hi0bits(y);
1256
332k
  *e = 32 - k;
1257
332k
#ifdef Pack_32
1258
332k
  if (k < Ebits) {
1259
62.6k
    d0 = Exp_1 | y >> (Ebits - k);
1260
62.6k
    w = xa > xa0 ? *--xa : 0;
1261
62.6k
    d1 = y << ((32-Ebits) + k) | w >> (Ebits - k);
1262
62.6k
    goto ret_d;
1263
62.6k
    }
1264
269k
  z = xa > xa0 ? *--xa : 0;
1265
269k
  if (k -= Ebits) {
1266
258k
    d0 = Exp_1 | y << k | z >> (32 - k);
1267
258k
    y = xa > xa0 ? *--xa : 0;
1268
258k
    d1 = z << k | y >> (32 - k);
1269
258k
    }
1270
10.9k
  else {
1271
10.9k
    d0 = Exp_1 | y;
1272
10.9k
    d1 = z;
1273
10.9k
    }
1274
#else
1275
  if (k < Ebits + 16) {
1276
    z = xa > xa0 ? *--xa : 0;
1277
    d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
1278
    w = xa > xa0 ? *--xa : 0;
1279
    y = xa > xa0 ? *--xa : 0;
1280
    d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
1281
    goto ret_d;
1282
    }
1283
  z = xa > xa0 ? *--xa : 0;
1284
  w = xa > xa0 ? *--xa : 0;
1285
  k -= Ebits + 16;
1286
  d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
1287
  y = xa > xa0 ? *--xa : 0;
1288
  d1 = w << k + 16 | y << k;
1289
#endif
1290
332k
 ret_d:
1291
#ifdef VAX
1292
  word0(&d) = d0 >> 16 | d0 << 16;
1293
  word1(&d) = d1 >> 16 | d1 << 16;
1294
#else
1295
332k
#undef d0
1296
332k
#undef d1
1297
332k
#endif
1298
332k
  return dval(&d);
1299
269k
  }
1300
1301
 static Bigint *
1302
d2b
1303
#ifdef KR_headers
1304
  (d, e, bits) U *d; int *e, *bits;
1305
#else
1306
  (U *d, int *e, int *bits)
1307
#endif
1308
748k
{
1309
748k
  Bigint *b;
1310
748k
  int de, k;
1311
748k
  ULong *x, y, z;
1312
748k
#ifndef Sudden_Underflow
1313
748k
  int i;
1314
748k
#endif
1315
#ifdef VAX
1316
  ULong d0, d1;
1317
  d0 = word0(d) >> 16 | word0(d) << 16;
1318
  d1 = word1(d) >> 16 | word1(d) << 16;
1319
#else
1320
2.24M
#define d0 word0(d)
1321
748k
#define d1 word1(d)
1322
748k
#endif
1323
1324
748k
#ifdef Pack_32
1325
748k
  b = Balloc(1);
1326
#else
1327
  b = Balloc(2);
1328
#endif
1329
748k
  x = b->x;
1330
1331
748k
  z = d0 & Frac_mask;
1332
748k
  d0 &= 0x7fffffff; /* clear sign bit, which we ignore */
1333
#ifdef Sudden_Underflow
1334
  de = (int)(d0 >> Exp_shift);
1335
#ifndef IBM
1336
  z |= Exp_msk11;
1337
#endif
1338
#else
1339
748k
  if ((de = (int)(d0 >> Exp_shift)))
1340
734k
    z |= Exp_msk1;
1341
748k
#endif
1342
748k
#ifdef Pack_32
1343
748k
  if ((y = d1)) {
1344
679k
    if ((k = lo0bits(&y))) {
1345
363k
      x[0] = y | z << (32 - k);
1346
363k
      z >>= k;
1347
363k
      }
1348
316k
    else
1349
316k
      x[0] = y;
1350
679k
#ifndef Sudden_Underflow
1351
679k
    i =
1352
679k
#endif
1353
679k
        b->wds = (x[1] = z) ? 2 : 1;
1354
679k
    }
1355
68.7k
  else {
1356
68.7k
    k = lo0bits(&z);
1357
68.7k
    x[0] = z;
1358
68.7k
#ifndef Sudden_Underflow
1359
68.7k
    i =
1360
68.7k
#endif
1361
68.7k
        b->wds = 1;
1362
68.7k
    k += 32;
1363
68.7k
    }
1364
#else
1365
  if (y = d1) {
1366
    if (k = lo0bits(&y))
1367
      if (k >= 16) {
1368
        x[0] = y | z << 32 - k & 0xffff;
1369
        x[1] = z >> k - 16 & 0xffff;
1370
        x[2] = z >> k;
1371
        i = 2;
1372
        }
1373
      else {
1374
        x[0] = y & 0xffff;
1375
        x[1] = y >> 16 | z << 16 - k & 0xffff;
1376
        x[2] = z >> k & 0xffff;
1377
        x[3] = z >> k+16;
1378
        i = 3;
1379
        }
1380
    else {
1381
      x[0] = y & 0xffff;
1382
      x[1] = y >> 16;
1383
      x[2] = z & 0xffff;
1384
      x[3] = z >> 16;
1385
      i = 3;
1386
      }
1387
    }
1388
  else {
1389
#ifdef DEBUG
1390
    if (!z)
1391
      Bug("Zero passed to d2b");
1392
#endif
1393
    k = lo0bits(&z);
1394
    if (k >= 16) {
1395
      x[0] = z;
1396
      i = 0;
1397
      }
1398
    else {
1399
      x[0] = z & 0xffff;
1400
      x[1] = z >> 16;
1401
      i = 1;
1402
      }
1403
    k += 32;
1404
    }
1405
  while(!x[i])
1406
    --i;
1407
  b->wds = i + 1;
1408
#endif
1409
748k
#ifndef Sudden_Underflow
1410
748k
  if (de) {
1411
734k
#endif
1412
#ifdef IBM
1413
    *e = (de - Bias - (P-1) << 2) + k;
1414
    *bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
1415
#else
1416
734k
    *e = de - Bias - (P-1) + k;
1417
734k
    *bits = P - k;
1418
734k
#endif
1419
734k
#ifndef Sudden_Underflow
1420
734k
    }
1421
13.7k
  else {
1422
13.7k
    *e = de - Bias - (P-1) + 1 + k;
1423
13.7k
#ifdef Pack_32
1424
13.7k
    *bits = 32*i - hi0bits(x[i-1]);
1425
#else
1426
    *bits = (i+2)*16 - hi0bits(x[i]);
1427
#endif
1428
13.7k
    }
1429
748k
#endif
1430
748k
  return b;
1431
748k
  }
1432
#undef d0
1433
#undef d1
1434
1435
 static double
1436
ratio
1437
#ifdef KR_headers
1438
  (a, b) Bigint *a, *b;
1439
#else
1440
  (Bigint *a, Bigint *b)
1441
#endif
1442
166k
{
1443
166k
  U da, db;
1444
166k
  int k, ka, kb;
1445
1446
166k
  dval(&da) = b2d(a, &ka);
1447
166k
  dval(&db) = b2d(b, &kb);
1448
166k
#ifdef Pack_32
1449
166k
  k = ka - kb + 32*(a->wds - b->wds);
1450
#else
1451
  k = ka - kb + 16*(a->wds - b->wds);
1452
#endif
1453
#ifdef IBM
1454
  if (k > 0) {
1455
    word0(&da) += (k >> 2)*Exp_msk1;
1456
    if (k &= 3)
1457
      dval(&da) *= 1 << k;
1458
    }
1459
  else {
1460
    k = -k;
1461
    word0(&db) += (k >> 2)*Exp_msk1;
1462
    if (k &= 3)
1463
      dval(&db) *= 1 << k;
1464
    }
1465
#else
1466
166k
  if (k > 0)
1467
60.9k
    word0(&da) += k*Exp_msk1;
1468
105k
  else {
1469
105k
    k = -k;
1470
105k
    word0(&db) += k*Exp_msk1;
1471
105k
    }
1472
166k
#endif
1473
166k
  return dval(&da) / dval(&db);
1474
166k
  }
1475
1476
 static CONST double
1477
tens[] = {
1478
    1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1479
    1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1480
    1e20, 1e21, 1e22
1481
#ifdef VAX
1482
    , 1e23, 1e24
1483
#endif
1484
    };
1485
1486
 static CONST double
1487
#ifdef IEEE_Arith
1488
bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1489
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
1490
#ifdef Avoid_Underflow
1491
    9007199254740992.*9007199254740992.e-256
1492
    /* = 2^106 * 1e-256 */
1493
#else
1494
    1e-256
1495
#endif
1496
    };
1497
/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
1498
/* flag unnecessarily.  It leads to a song and dance at the end of strtod. */
1499
74.3k
#define Scale_Bit 0x10
1500
78.0k
#define n_bigtens 5
1501
#else
1502
#ifdef IBM
1503
bigtens[] = { 1e16, 1e32, 1e64 };
1504
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 };
1505
#define n_bigtens 3
1506
#else
1507
bigtens[] = { 1e16, 1e32 };
1508
static CONST double tinytens[] = { 1e-16, 1e-32 };
1509
#define n_bigtens 2
1510
#endif
1511
#endif
1512
1513
#undef Need_Hexdig
1514
#ifdef INFNAN_CHECK
1515
#ifndef No_Hex_NaN
1516
#define Need_Hexdig
1517
#endif
1518
#endif
1519
1520
#ifndef Need_Hexdig
1521
#ifndef NO_HEX_FP
1522
#define Need_Hexdig
1523
#endif
1524
#endif
1525
1526
#ifdef Need_Hexdig /*{*/
1527
#if 0
1528
static unsigned char hexdig[256];
1529
1530
 static void
1531
htinit(unsigned char *h, unsigned char *s, int inc)
1532
{
1533
  int i, j;
1534
  for(i = 0; (j = s[i]) !=0; i++)
1535
    h[j] = i + inc;
1536
  }
1537
1538
 static void
1539
hexdig_init(void) /* Use of hexdig_init omitted 20121220 to avoid a */
1540
      /* race condition when multiple threads are used. */
1541
{
1542
#define USC (unsigned char *)
1543
  htinit(hexdig, USC "0123456789", 0x10);
1544
  htinit(hexdig, USC "abcdef", 0x10 + 10);
1545
  htinit(hexdig, USC "ABCDEF", 0x10 + 10);
1546
  }
1547
#else
1548
static const unsigned char hexdig[256] = {
1549
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1550
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1551
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1552
  16,17,18,19,20,21,22,23,24,25,0,0,0,0,0,0,
1553
  0,26,27,28,29,30,31,0,0,0,0,0,0,0,0,0,
1554
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1555
  0,26,27,28,29,30,31,0,0,0,0,0,0,0,0,0,
1556
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1557
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1558
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1559
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1560
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1561
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1562
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1563
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1564
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1565
  };
1566
#endif
1567
#endif /* } Need_Hexdig */
1568
1569
#ifdef INFNAN_CHECK
1570
1571
#ifndef NAN_WORD0
1572
#define NAN_WORD0 0x7ff80000
1573
#endif
1574
1575
#ifndef NAN_WORD1
1576
#define NAN_WORD1 0
1577
#endif
1578
1579
 static int
1580
match
1581
#ifdef KR_headers
1582
  (sp, t) char **sp, *t;
1583
#else
1584
  (const char **sp, const char *t)
1585
#endif
1586
{
1587
  int c, d;
1588
  CONST char *s = *sp;
1589
1590
  while((d = *t++)) {
1591
    if ((c = *++s) >= 'A' && c <= 'Z')
1592
      c += 'a' - 'A';
1593
    if (c != d)
1594
      return 0;
1595
    }
1596
  *sp = s + 1;
1597
  return 1;
1598
  }
1599
1600
#ifndef No_Hex_NaN
1601
 static void
1602
hexnan
1603
#ifdef KR_headers
1604
  (rvp, sp) U *rvp; CONST char **sp;
1605
#else
1606
  (U *rvp, const char **sp)
1607
#endif
1608
{
1609
  ULong c, x[2];
1610
  CONST char *s;
1611
  int c1, havedig, udx0, xshift;
1612
1613
  /**** if (!hexdig['0']) hexdig_init(); ****/
1614
  x[0] = x[1] = 0;
1615
  havedig = xshift = 0;
1616
  udx0 = 1;
1617
  s = *sp;
1618
  /* allow optional initial 0x or 0X */
1619
  while((c = *(CONST unsigned char*)(s+1)) && c <= ' ')
1620
    ++s;
1621
  if (s[1] == '0' && (s[2] == 'x' || s[2] == 'X'))
1622
    s += 2;
1623
  while((c = *(CONST unsigned char*)++s)) {
1624
    if ((c1 = hexdig[c]))
1625
      c  = c1 & 0xf;
1626
    else if (c <= ' ') {
1627
      if (udx0 && havedig) {
1628
        udx0 = 0;
1629
        xshift = 1;
1630
        }
1631
      continue;
1632
      }
1633
#ifdef GDTOA_NON_PEDANTIC_NANCHECK
1634
    else if (/*(*/ c == ')' && havedig) {
1635
      *sp = s + 1;
1636
      break;
1637
      }
1638
    else
1639
      return; /* invalid form: don't change *sp */
1640
#else
1641
    else {
1642
      do {
1643
        if (/*(*/ c == ')') {
1644
          *sp = s + 1;
1645
          break;
1646
          }
1647
        } while((c = *++s));
1648
      break;
1649
      }
1650
#endif
1651
    havedig = 1;
1652
    if (xshift) {
1653
      xshift = 0;
1654
      x[0] = x[1];
1655
      x[1] = 0;
1656
      }
1657
    if (udx0)
1658
      x[0] = (x[0] << 4) | (x[1] >> 28);
1659
    x[1] = (x[1] << 4) | c;
1660
    }
1661
  if ((x[0] &= 0xfffff) || x[1]) {
1662
    word0(rvp) = Exp_mask | x[0];
1663
    word1(rvp) = x[1];
1664
    }
1665
  }
1666
#endif /*No_Hex_NaN*/
1667
#endif /* INFNAN_CHECK */
1668
1669
#ifdef Pack_32
1670
#define ULbits 32
1671
#define kshift 5
1672
238k
#define kmask 31
1673
#else
1674
#define ULbits 16
1675
#define kshift 4
1676
#define kmask 15
1677
#endif
1678
1679
#if !defined(NO_HEX_FP) || defined(Honor_FLT_ROUNDS) /*{*/
1680
 static Bigint *
1681
#ifdef KR_headers
1682
increment(b) Bigint *b;
1683
#else
1684
increment(Bigint *b)
1685
#endif
1686
{
1687
  ULong *x, *xe;
1688
  Bigint *b1;
1689
1690
  x = b->x;
1691
  xe = x + b->wds;
1692
  do {
1693
    if (*x < (ULong)0xffffffffL) {
1694
      ++*x;
1695
      return b;
1696
      }
1697
    *x++ = 0;
1698
    } while(x < xe);
1699
  {
1700
    if (b->wds >= b->maxwds) {
1701
      b1 = Balloc(b->k+1);
1702
      Bcopy(b1,b);
1703
      Bfree(b);
1704
      b = b1;
1705
      }
1706
    b->x[b->wds++] = 1;
1707
    }
1708
  return b;
1709
  }
1710
1711
#endif /*}*/
1712
1713
#ifndef NO_HEX_FP /*{*/
1714
1715
 static void
1716
#ifdef KR_headers
1717
rshift(b, k) Bigint *b; int k;
1718
#else
1719
rshift(Bigint *b, int k)
1720
#endif
1721
{
1722
  ULong *x, *x1, *xe, y;
1723
  int n;
1724
1725
  x = x1 = b->x;
1726
  n = k >> kshift;
1727
  if (n < b->wds) {
1728
    xe = x + b->wds;
1729
    x += n;
1730
    if (k &= kmask) {
1731
      n = 32 - k;
1732
      y = *x++ >> k;
1733
      while(x < xe) {
1734
        *x1++ = (y | (*x << n)) & 0xffffffff;
1735
        y = *x++ >> k;
1736
        }
1737
      if ((*x1 = y) !=0)
1738
        x1++;
1739
      }
1740
    else
1741
      while(x < xe)
1742
        *x1++ = *x++;
1743
    }
1744
  if ((b->wds = x1 - b->x) == 0)
1745
    b->x[0] = 0;
1746
  }
1747
1748
 static ULong
1749
#ifdef KR_headers
1750
any_on(b, k) Bigint *b; int k;
1751
#else
1752
any_on(Bigint *b, int k)
1753
#endif
1754
{
1755
  int n, nwds;
1756
  ULong *x, *x0, x1, x2;
1757
1758
  x = b->x;
1759
  nwds = b->wds;
1760
  n = k >> kshift;
1761
  if (n > nwds)
1762
    n = nwds;
1763
  else if (n < nwds && (k &= kmask)) {
1764
    x1 = x2 = x[n];
1765
    x1 >>= k;
1766
    x1 <<= k;
1767
    if (x1 != x2)
1768
      return 1;
1769
    }
1770
  x0 = x;
1771
  x += n;
1772
  while(x > x0)
1773
    if (*--x)
1774
      return 1;
1775
  return 0;
1776
  }
1777
1778
enum {  /* rounding values: same as FLT_ROUNDS */
1779
  Round_zero = 0,
1780
  Round_near = 1,
1781
  Round_up = 2,
1782
  Round_down = 3
1783
  };
1784
1785
 void
1786
#ifdef KR_headers
1787
gethex(sp, rvp, rounding, sign)
1788
  CONST char **sp; U *rvp; int rounding, sign;
1789
#else
1790
gethex( CONST char **sp, U *rvp, int rounding, int sign)
1791
#endif
1792
{
1793
  Bigint *b;
1794
  CONST unsigned char *decpt, *s0, *s, *s1;
1795
  Long e, e1;
1796
  ULong L, lostbits, *x;
1797
  int big, denorm, esign, havedig, k, n, nbits, up, zret;
1798
#ifdef IBM
1799
  int j;
1800
#endif
1801
  enum {
1802
#ifdef IEEE_Arith /*{{*/
1803
    emax = 0x7fe - Bias - P + 1,
1804
    emin = Emin - P + 1
1805
#else /*}{*/
1806
    emin = Emin - P,
1807
#ifdef VAX
1808
    emax = 0x7ff - Bias - P + 1
1809
#endif
1810
#ifdef IBM
1811
    emax = 0x7f - Bias - P
1812
#endif
1813
#endif /*}}*/
1814
    };
1815
#ifdef USE_LOCALE
1816
  int i;
1817
#ifdef NO_LOCALE_CACHE
1818
  const unsigned char *decimalpoint = (unsigned char*)
1819
    localeconv()->decimal_point;
1820
#else
1821
  const unsigned char *decimalpoint;
1822
  static unsigned char *decimalpoint_cache;
1823
  if (!(s0 = decimalpoint_cache)) {
1824
    s0 = (unsigned char*)localeconv()->decimal_point;
1825
    if ((decimalpoint_cache = (unsigned char*)
1826
        MALLOC(strlen((CONST char*)s0) + 1))) {
1827
      strcpy((char*)decimalpoint_cache, (CONST char*)s0);
1828
      s0 = decimalpoint_cache;
1829
      }
1830
    }
1831
  decimalpoint = s0;
1832
#endif
1833
#endif
1834
1835
  /**** if (!hexdig['0']) hexdig_init(); ****/
1836
  havedig = 0;
1837
  s0 = *(CONST unsigned char **)sp + 2;
1838
  while(s0[havedig] == '0')
1839
    havedig++;
1840
  s0 += havedig;
1841
  s = s0;
1842
  decpt = 0;
1843
  zret = 0;
1844
  e = 0;
1845
  if (hexdig[*s])
1846
    havedig++;
1847
  else {
1848
    zret = 1;
1849
#ifdef USE_LOCALE
1850
    for(i = 0; decimalpoint[i]; ++i) {
1851
      if (s[i] != decimalpoint[i])
1852
        goto pcheck;
1853
      }
1854
    decpt = s += i;
1855
#else
1856
    if (*s != '.')
1857
      goto pcheck;
1858
    decpt = ++s;
1859
#endif
1860
    if (!hexdig[*s])
1861
      goto pcheck;
1862
    while(*s == '0')
1863
      s++;
1864
    if (hexdig[*s])
1865
      zret = 0;
1866
    havedig = 1;
1867
    s0 = s;
1868
    }
1869
  while(hexdig[*s])
1870
    s++;
1871
#ifdef USE_LOCALE
1872
  if (*s == *decimalpoint && !decpt) {
1873
    for(i = 1; decimalpoint[i]; ++i) {
1874
      if (s[i] != decimalpoint[i])
1875
        goto pcheck;
1876
      }
1877
    decpt = s += i;
1878
#else
1879
  if (*s == '.' && !decpt) {
1880
    decpt = ++s;
1881
#endif
1882
    while(hexdig[*s])
1883
      s++;
1884
    }/*}*/
1885
  if (decpt)
1886
    e = -(((Long)(s-decpt)) << 2);
1887
 pcheck:
1888
  s1 = s;
1889
  big = esign = 0;
1890
  switch(*s) {
1891
    case 'p':
1892
    case 'P':
1893
    switch(*++s) {
1894
      case '-':
1895
      esign = 1;
1896
      ZEND_FALLTHROUGH;
1897
      case '+':
1898
      s++;
1899
      }
1900
    if ((n = hexdig[*s]) == 0 || n > 0x19) {
1901
      s = s1;
1902
      break;
1903
      }
1904
    e1 = n - 0x10;
1905
    while((n = hexdig[*++s]) !=0 && n <= 0x19) {
1906
      if (e1 & 0xf8000000)
1907
        big = 1;
1908
      e1 = 10*e1 + n - 0x10;
1909
      }
1910
    if (esign)
1911
      e1 = -e1;
1912
    e += e1;
1913
    }
1914
  *sp = (char*)s;
1915
  if (!havedig)
1916
    *sp = (char*)s0 - 1;
1917
  if (zret)
1918
    goto retz1;
1919
  if (big) {
1920
    if (esign) {
1921
#ifdef IEEE_Arith
1922
      switch(rounding) {
1923
        case Round_up:
1924
        if (sign)
1925
          break;
1926
        goto ret_tiny;
1927
        case Round_down:
1928
        if (!sign)
1929
          break;
1930
        goto ret_tiny;
1931
        }
1932
#endif
1933
      goto retz;
1934
#ifdef IEEE_Arith
1935
 ret_tinyf:
1936
      Bfree(b);
1937
 ret_tiny:
1938
#ifndef NO_ERRNO
1939
      errno = ERANGE;
1940
#endif
1941
      word0(rvp) = 0;
1942
      word1(rvp) = 1;
1943
      return;
1944
#endif /* IEEE_Arith */
1945
      }
1946
    switch(rounding) {
1947
      case Round_near:
1948
      goto ovfl1;
1949
      case Round_up:
1950
      if (!sign)
1951
        goto ovfl1;
1952
      goto ret_big;
1953
      case Round_down:
1954
      if (sign)
1955
        goto ovfl1;
1956
      goto ret_big;
1957
      }
1958
 ret_big:
1959
    word0(rvp) = Big0;
1960
    word1(rvp) = Big1;
1961
    return;
1962
    }
1963
  n = s1 - s0 - 1;
1964
  for(k = 0; n > (1 << (kshift-2)) - 1; n >>= 1)
1965
    k++;
1966
  b = Balloc(k);
1967
  x = b->x;
1968
  n = 0;
1969
  L = 0;
1970
#ifdef USE_LOCALE
1971
  for(i = 0; decimalpoint[i+1]; ++i);
1972
#endif
1973
  while(s1 > s0) {
1974
#ifdef USE_LOCALE
1975
    if (*--s1 == decimalpoint[i]) {
1976
      s1 -= i;
1977
      continue;
1978
      }
1979
#else
1980
    if (*--s1 == '.')
1981
      continue;
1982
#endif
1983
    if (n == ULbits) {
1984
      *x++ = L;
1985
      L = 0;
1986
      n = 0;
1987
      }
1988
    L |= (hexdig[*s1] & 0x0f) << n;
1989
    n += 4;
1990
    }
1991
  *x++ = L;
1992
  b->wds = n = x - b->x;
1993
  n = ULbits*n - hi0bits(L);
1994
  nbits = Nbits;
1995
  lostbits = 0;
1996
  x = b->x;
1997
  if (n > nbits) {
1998
    n -= nbits;
1999
    if (any_on(b,n)) {
2000
      lostbits = 1;
2001
      k = n - 1;
2002
      if (x[k>>kshift] & 1 << (k & kmask)) {
2003
        lostbits = 2;
2004
        if (k > 0 && any_on(b,k))
2005
          lostbits = 3;
2006
        }
2007
      }
2008
    rshift(b, n);
2009
    e += n;
2010
    }
2011
  else if (n < nbits) {
2012
    n = nbits - n;
2013
    b = lshift(b, n);
2014
    e -= n;
2015
    x = b->x;
2016
    }
2017
  if (e > Emax) {
2018
 ovfl:
2019
    Bfree(b);
2020
 ovfl1:
2021
#ifndef NO_ERRNO
2022
    errno = ERANGE;
2023
#endif
2024
    word0(rvp) = Exp_mask;
2025
    word1(rvp) = 0;
2026
    return;
2027
    }
2028
  denorm = 0;
2029
  if (e < emin) {
2030
    denorm = 1;
2031
    n = emin - e;
2032
    if (n >= nbits) {
2033
#ifdef IEEE_Arith /*{*/
2034
      switch (rounding) {
2035
        case Round_near:
2036
        if (n == nbits && (n < 2 || any_on(b,n-1)))
2037
          goto ret_tinyf;
2038
        break;
2039
        case Round_up:
2040
        if (!sign)
2041
          goto ret_tinyf;
2042
        break;
2043
        case Round_down:
2044
        if (sign)
2045
          goto ret_tinyf;
2046
        }
2047
#endif /* } IEEE_Arith */
2048
      Bfree(b);
2049
 retz:
2050
#ifndef NO_ERRNO
2051
      errno = ERANGE;
2052
#endif
2053
 retz1:
2054
      rvp->d = 0.;
2055
      return;
2056
      }
2057
    k = n - 1;
2058
    if (lostbits)
2059
      lostbits = 1;
2060
    else if (k > 0)
2061
      lostbits = any_on(b,k);
2062
    if (x[k>>kshift] & 1 << (k & kmask))
2063
      lostbits |= 2;
2064
    nbits -= n;
2065
    rshift(b,n);
2066
    e = emin;
2067
    }
2068
  if (lostbits) {
2069
    up = 0;
2070
    switch(rounding) {
2071
      case Round_zero:
2072
      break;
2073
      case Round_near:
2074
      if (lostbits & 2
2075
       && (lostbits & 1) | (x[0] & 1))
2076
        up = 1;
2077
      break;
2078
      case Round_up:
2079
      up = 1 - sign;
2080
      break;
2081
      case Round_down:
2082
      up = sign;
2083
      }
2084
    if (up) {
2085
      k = b->wds;
2086
      b = increment(b);
2087
      x = b->x;
2088
      if (denorm) {
2089
#if 0
2090
        if (nbits == Nbits - 1
2091
         && x[nbits >> kshift] & 1 << (nbits & kmask))
2092
          denorm = 0; /* not currently used */
2093
#endif
2094
        }
2095
      else if (b->wds > k
2096
       || ((n = nbits & kmask) !=0
2097
           && hi0bits(x[k-1]) < 32-n)) {
2098
        rshift(b,1);
2099
        if (++e > Emax)
2100
          goto ovfl;
2101
        }
2102
      }
2103
    }
2104
#ifdef IEEE_Arith
2105
  if (denorm)
2106
    word0(rvp) = b->wds > 1 ? b->x[1] & ~0x100000 : 0;
2107
  else
2108
    word0(rvp) = (b->x[1] & ~0x100000) | ((e + 0x3ff + 52) << 20);
2109
  word1(rvp) = b->x[0];
2110
#endif
2111
#ifdef IBM
2112
  if ((j = e & 3)) {
2113
    k = b->x[0] & ((1 << j) - 1);
2114
    rshift(b,j);
2115
    if (k) {
2116
      switch(rounding) {
2117
        case Round_up:
2118
        if (!sign)
2119
          increment(b);
2120
        break;
2121
        case Round_down:
2122
        if (sign)
2123
          increment(b);
2124
        break;
2125
        case Round_near:
2126
        j = 1 << (j-1);
2127
        if (k & j && ((k & (j-1)) | lostbits))
2128
          increment(b);
2129
        }
2130
      }
2131
    }
2132
  e >>= 2;
2133
  word0(rvp) = b->x[1] | ((e + 65 + 13) << 24);
2134
  word1(rvp) = b->x[0];
2135
#endif
2136
#ifdef VAX
2137
  /* The next two lines ignore swap of low- and high-order 2 bytes. */
2138
  /* word0(rvp) = (b->x[1] & ~0x800000) | ((e + 129 + 55) << 23); */
2139
  /* word1(rvp) = b->x[0]; */
2140
  word0(rvp) = ((b->x[1] & ~0x800000) >> 16) | ((e + 129 + 55) << 7) | (b->x[1] << 16);
2141
  word1(rvp) = (b->x[0] >> 16) | (b->x[0] << 16);
2142
#endif
2143
  Bfree(b);
2144
  }
2145
#endif /*!NO_HEX_FP}*/
2146
2147
 static int
2148
#ifdef KR_headers
2149
dshift(b, p2) Bigint *b; int p2;
2150
#else
2151
dshift(Bigint *b, int p2)
2152
#endif
2153
238k
{
2154
238k
  int rv = hi0bits(b->x[b->wds-1]) - 4;
2155
238k
  if (p2 > 0)
2156
153k
    rv -= p2;
2157
238k
  return rv & kmask;
2158
238k
  }
2159
2160
 static int
2161
quorem
2162
#ifdef KR_headers
2163
  (b, S) Bigint *b, *S;
2164
#else
2165
  (Bigint *b, Bigint *S)
2166
#endif
2167
3.45M
{
2168
3.45M
  int n;
2169
3.45M
  ULong *bx, *bxe, q, *sx, *sxe;
2170
3.45M
#ifdef ULLong
2171
3.45M
  ULLong borrow, carry, y, ys;
2172
#else
2173
  ULong borrow, carry, y, ys;
2174
#ifdef Pack_32
2175
  ULong si, z, zs;
2176
#endif
2177
#endif
2178
2179
3.45M
  n = S->wds;
2180
#ifdef DEBUG
2181
  /*debug*/ if (b->wds > n)
2182
  /*debug*/ Bug("oversize b in quorem");
2183
#endif
2184
3.45M
  if (b->wds < n)
2185
87.7k
    return 0;
2186
3.36M
  sx = S->x;
2187
3.36M
  sxe = sx + --n;
2188
3.36M
  bx = b->x;
2189
3.36M
  bxe = bx + n;
2190
3.36M
  q = *bxe / (*sxe + 1);  /* ensure q <= true quotient */
2191
#ifdef DEBUG
2192
#ifdef NO_STRTOD_BIGCOMP
2193
  /*debug*/ if (q > 9)
2194
#else
2195
  /* An oversized q is possible when quorem is called from bigcomp and */
2196
  /* the input is near, e.g., twice the smallest denormalized number. */
2197
  /*debug*/ if (q > 15)
2198
#endif
2199
  /*debug*/ Bug("oversized quotient in quorem");
2200
#endif
2201
3.36M
  if (q) {
2202
2.69M
    borrow = 0;
2203
2.69M
    carry = 0;
2204
17.5M
    do {
2205
17.5M
#ifdef ULLong
2206
17.5M
      ys = *sx++ * (ULLong)q + carry;
2207
17.5M
      carry = ys >> 32;
2208
17.5M
      y = *bx - (ys & FFFFFFFF) - borrow;
2209
17.5M
      borrow = y >> 32 & (ULong)1;
2210
17.5M
      *bx++ = y & FFFFFFFF;
2211
#else
2212
#ifdef Pack_32
2213
      si = *sx++;
2214
      ys = (si & 0xffff) * q + carry;
2215
      zs = (si >> 16) * q + (ys >> 16);
2216
      carry = zs >> 16;
2217
      y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
2218
      borrow = (y & 0x10000) >> 16;
2219
      z = (*bx >> 16) - (zs & 0xffff) - borrow;
2220
      borrow = (z & 0x10000) >> 16;
2221
      Storeinc(bx, z, y);
2222
#else
2223
      ys = *sx++ * q + carry;
2224
      carry = ys >> 16;
2225
      y = *bx - (ys & 0xffff) - borrow;
2226
      borrow = (y & 0x10000) >> 16;
2227
      *bx++ = y & 0xffff;
2228
#endif
2229
#endif
2230
17.5M
      }
2231
17.5M
      while(sx <= sxe);
2232
2.69M
    if (!*bxe) {
2233
4.25k
      bx = b->x;
2234
4.25k
      while(--bxe > bx && !*bxe)
2235
0
        --n;
2236
4.25k
      b->wds = n;
2237
4.25k
      }
2238
2.69M
    }
2239
3.36M
  if (cmp(b, S) >= 0) {
2240
63.0k
    q++;
2241
63.0k
    borrow = 0;
2242
63.0k
    carry = 0;
2243
63.0k
    bx = b->x;
2244
63.0k
    sx = S->x;
2245
245k
    do {
2246
245k
#ifdef ULLong
2247
245k
      ys = *sx++ + carry;
2248
245k
      carry = ys >> 32;
2249
245k
      y = *bx - (ys & FFFFFFFF) - borrow;
2250
245k
      borrow = y >> 32 & (ULong)1;
2251
245k
      *bx++ = y & FFFFFFFF;
2252
#else
2253
#ifdef Pack_32
2254
      si = *sx++;
2255
      ys = (si & 0xffff) + carry;
2256
      zs = (si >> 16) + (ys >> 16);
2257
      carry = zs >> 16;
2258
      y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
2259
      borrow = (y & 0x10000) >> 16;
2260
      z = (*bx >> 16) - (zs & 0xffff) - borrow;
2261
      borrow = (z & 0x10000) >> 16;
2262
      Storeinc(bx, z, y);
2263
#else
2264
      ys = *sx++ + carry;
2265
      carry = ys >> 16;
2266
      y = *bx - (ys & 0xffff) - borrow;
2267
      borrow = (y & 0x10000) >> 16;
2268
      *bx++ = y & 0xffff;
2269
#endif
2270
#endif
2271
245k
      }
2272
245k
      while(sx <= sxe);
2273
63.0k
    bx = b->x;
2274
63.0k
    bxe = bx + n;
2275
63.0k
    if (!*bxe) {
2276
58.7k
      while(--bxe > bx && !*bxe)
2277
7.51k
        --n;
2278
51.2k
      b->wds = n;
2279
51.2k
      }
2280
63.0k
    }
2281
3.36M
  return q;
2282
3.45M
  }
2283
2284
#if defined(Avoid_Underflow) || !defined(NO_STRTOD_BIGCOMP) /*{*/
2285
 static double
2286
sulp
2287
#ifdef KR_headers
2288
  (x, bc) U *x; BCinfo *bc;
2289
#else
2290
  (U *x, BCinfo *bc)
2291
#endif
2292
9.50k
{
2293
9.50k
  U u;
2294
9.50k
  double rv;
2295
9.50k
  int i;
2296
2297
9.50k
  rv = ulp(x);
2298
9.50k
  if (!bc->scale || (i = 2*P + 1 - ((word0(x) & Exp_mask) >> Exp_shift)) <= 0)
2299
9.04k
    return rv; /* Is there an example where i <= 0 ? */
2300
465
  word0(&u) = Exp_1 + (i << Exp_shift);
2301
465
  word1(&u) = 0;
2302
465
  return rv * u.d;
2303
9.50k
  }
2304
#endif /*}*/
2305
2306
#ifndef NO_STRTOD_BIGCOMP
2307
 static void
2308
bigcomp
2309
#ifdef KR_headers
2310
  (rv, s0, bc)
2311
  U *rv; CONST char *s0; BCinfo *bc;
2312
#else
2313
  (U *rv, const char *s0, BCinfo *bc)
2314
#endif
2315
76.5k
{
2316
76.5k
  Bigint *b, *d;
2317
76.5k
  int b2, bbits, d2, dd, dig, dsign, i, j, nd, nd0, p2, p5, speccase;
2318
2319
76.5k
  dsign = bc->dsign;
2320
76.5k
  nd = bc->nd;
2321
76.5k
  nd0 = bc->nd0;
2322
76.5k
  p5 = nd + bc->e0 - 1;
2323
76.5k
  speccase = 0;
2324
76.5k
#ifndef Sudden_Underflow
2325
76.5k
  if (rv->d == 0.) { /* special case: value near underflow-to-zero */
2326
        /* threshold was rounded to zero */
2327
4.24k
    b = i2b(1);
2328
4.24k
    p2 = Emin - P + 1;
2329
4.24k
    bbits = 1;
2330
4.24k
#ifdef Avoid_Underflow
2331
4.24k
    word0(rv) = (P+2) << Exp_shift;
2332
#else
2333
    word1(rv) = 1;
2334
#endif
2335
4.24k
    i = 0;
2336
#ifdef Honor_FLT_ROUNDS
2337
    if (bc->rounding == 1)
2338
#endif
2339
4.24k
      {
2340
4.24k
      speccase = 1;
2341
4.24k
      --p2;
2342
4.24k
      dsign = 0;
2343
4.24k
      goto have_i;
2344
4.24k
      }
2345
4.24k
    }
2346
72.2k
  else
2347
72.2k
#endif
2348
72.2k
    b = d2b(rv, &p2, &bbits);
2349
72.2k
#ifdef Avoid_Underflow
2350
72.2k
  p2 -= bc->scale;
2351
72.2k
#endif
2352
  /* floor(log2(rv)) == bbits - 1 + p2 */
2353
  /* Check for denormal case. */
2354
72.2k
  i = P - bbits;
2355
72.2k
  if (i > (j = P - Emin - 1 + p2)) {
2356
#ifdef Sudden_Underflow
2357
    Bfree(b);
2358
    b = i2b(1);
2359
    p2 = Emin;
2360
    i = P - 1;
2361
#ifdef Avoid_Underflow
2362
    word0(rv) = (1 + bc->scale) << Exp_shift;
2363
#else
2364
    word0(rv) = Exp_msk1;
2365
#endif
2366
    word1(rv) = 0;
2367
#else
2368
1.62k
    i = j;
2369
1.62k
#endif
2370
1.62k
    }
2371
#ifdef Honor_FLT_ROUNDS
2372
  if (bc->rounding != 1) {
2373
    if (i > 0)
2374
      b = lshift(b, i);
2375
    if (dsign)
2376
      b = increment(b);
2377
    }
2378
  else
2379
#endif
2380
72.2k
    {
2381
72.2k
    b = lshift(b, ++i);
2382
72.2k
    b->x[0] |= 1;
2383
72.2k
    }
2384
72.2k
#ifndef Sudden_Underflow
2385
76.5k
 have_i:
2386
76.5k
#endif
2387
76.5k
  p2 -= p5 + i;
2388
76.5k
  d = i2b(1);
2389
  /* Arrange for convenient computation of quotients:
2390
   * shift left if necessary so divisor has 4 leading 0 bits.
2391
   */
2392
76.5k
  if (p5 > 0)
2393
61.3k
    d = pow5mult(d, p5);
2394
15.1k
  else if (p5 < 0)
2395
13.9k
    b = pow5mult(b, -p5);
2396
76.5k
  if (p2 > 0) {
2397
52.2k
    b2 = p2;
2398
52.2k
    d2 = 0;
2399
52.2k
    }
2400
24.2k
  else {
2401
24.2k
    b2 = 0;
2402
24.2k
    d2 = -p2;
2403
24.2k
    }
2404
76.5k
  i = dshift(d, d2);
2405
76.5k
  if ((b2 += i) > 0)
2406
75.5k
    b = lshift(b, b2);
2407
76.5k
  if ((d2 += i) > 0)
2408
71.6k
    d = lshift(d, d2);
2409
2410
  /* Now b/d = exactly half-way between the two floating-point values */
2411
  /* on either side of the input string.  Compute first digit of b/d. */
2412
2413
76.5k
  if (!(dig = quorem(b,d))) {
2414
0
    b = multadd(b, 10, 0);  /* very unlikely */
2415
0
    dig = quorem(b,d);
2416
0
    }
2417
2418
  /* Compare b/d with s0 */
2419
2420
1.19M
  for(i = 0; i < nd0; ) {
2421
1.18M
    if ((dd = s0[i++] - '0' - dig))
2422
57.7k
      goto ret;
2423
1.12M
    if (!b->x[0] && b->wds == 1) {
2424
4.37k
      if (i < nd)
2425
1.78k
        dd = 1;
2426
4.37k
      goto ret;
2427
4.37k
      }
2428
1.12M
    b = multadd(b, 10, 0);
2429
1.12M
    dig = quorem(b,d);
2430
1.12M
    }
2431
86.6k
  for(j = bc->dp1; i++ < nd;) {
2432
83.6k
    if ((dd = s0[j++] - '0' - dig))
2433
10.0k
      goto ret;
2434
73.5k
    if (!b->x[0] && b->wds == 1) {
2435
1.37k
      if (i < nd)
2436
1.18k
        dd = 1;
2437
1.37k
      goto ret;
2438
1.37k
      }
2439
72.1k
    b = multadd(b, 10, 0);
2440
72.1k
    dig = quorem(b,d);
2441
72.1k
    }
2442
2.99k
  if (dig > 0 || b->x[0] || b->wds > 1)
2443
2.99k
    dd = -1;
2444
76.5k
 ret:
2445
76.5k
  Bfree(b);
2446
76.5k
  Bfree(d);
2447
#ifdef Honor_FLT_ROUNDS
2448
  if (bc->rounding != 1) {
2449
    if (dd < 0) {
2450
      if (bc->rounding == 0) {
2451
        if (!dsign)
2452
          goto retlow1;
2453
        }
2454
      else if (dsign)
2455
        goto rethi1;
2456
      }
2457
    else if (dd > 0) {
2458
      if (bc->rounding == 0) {
2459
        if (dsign)
2460
          goto rethi1;
2461
        goto ret1;
2462
        }
2463
      if (!dsign)
2464
        goto rethi1;
2465
      dval(rv) += 2.*sulp(rv,bc);
2466
      }
2467
    else {
2468
      bc->inexact = 0;
2469
      if (dsign)
2470
        goto rethi1;
2471
      }
2472
    }
2473
  else
2474
#endif
2475
76.5k
  if (speccase) {
2476
4.24k
    if (dd <= 0)
2477
4.04k
      rv->d = 0.;
2478
4.24k
    }
2479
72.2k
  else if (dd < 0) {
2480
64.9k
    if (!dsign)  /* does not happen for round-near */
2481
0
retlow1:
2482
0
      dval(rv) -= sulp(rv,bc);
2483
64.9k
    }
2484
7.34k
  else if (dd > 0) {
2485
4.56k
    if (dsign) {
2486
5.37k
 rethi1:
2487
5.37k
      dval(rv) += sulp(rv,bc);
2488
5.37k
      }
2489
4.56k
    }
2490
2.78k
  else {
2491
    /* Exact half-way case:  apply round-even rule. */
2492
2.78k
    if ((j = ((word0(rv) & Exp_mask) >> Exp_shift) - bc->scale) <= 0) {
2493
0
      i = 1 - j;
2494
0
      if (i <= 31) {
2495
0
        if (word1(rv) & (0x1 << i))
2496
0
          goto odd;
2497
0
        }
2498
0
      else if (word0(rv) & (0x1 << (i-32)))
2499
0
        goto odd;
2500
0
      }
2501
2.78k
    else if (word1(rv) & 1) {
2502
808
 odd:
2503
808
      if (dsign)
2504
808
        goto rethi1;
2505
0
      goto retlow1;
2506
808
      }
2507
2.78k
    }
2508
2509
#ifdef Honor_FLT_ROUNDS
2510
 ret1:
2511
#endif
2512
76.5k
  return;
2513
76.5k
  }
2514
#endif /* NO_STRTOD_BIGCOMP */
2515
2516
ZEND_API double
2517
zend_strtod
2518
#ifdef KR_headers
2519
  (s00, se) CONST char *s00; char **se;
2520
#else
2521
  (const char *s00, const char **se)
2522
#endif
2523
711k
{
2524
711k
  int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, e, e1;
2525
711k
  int esign, i, j, k, nd, nd0, nf, nz, nz0, nz1, sign;
2526
711k
  CONST char *s, *s0, *s1;
2527
711k
  volatile double aadj, aadj1;
2528
711k
  Long L;
2529
711k
  U aadj2, adj, rv, rv0;
2530
711k
  ULong y, z;
2531
711k
  BCinfo bc;
2532
711k
  Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
2533
711k
#ifdef Avoid_Underflow
2534
711k
  ULong Lsb, Lsb1;
2535
711k
#endif
2536
#ifdef SET_INEXACT
2537
  int oldinexact;
2538
#endif
2539
711k
#ifndef NO_STRTOD_BIGCOMP
2540
711k
  int req_bigcomp = 0;
2541
711k
#endif
2542
#ifdef Honor_FLT_ROUNDS /*{*/
2543
#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
2544
  bc.rounding = Flt_Rounds;
2545
#else /*}{*/
2546
  bc.rounding = 1;
2547
  switch(fegetround()) {
2548
    case FE_TOWARDZERO: bc.rounding = 0; break;
2549
    case FE_UPWARD: bc.rounding = 2; break;
2550
    case FE_DOWNWARD: bc.rounding = 3;
2551
    }
2552
#endif /*}}*/
2553
#endif /*}*/
2554
#ifdef USE_LOCALE
2555
  CONST char *s2;
2556
#endif
2557
2558
711k
  sign = nz0 = nz1 = nz = bc.dplen = bc.uflchk = 0;
2559
711k
  dval(&rv) = 0.;
2560
714k
  for(s = s00;;s++) switch(*s) {
2561
47.3k
    case '-':
2562
47.3k
      sign = 1;
2563
47.3k
      ZEND_FALLTHROUGH;
2564
76.7k
    case '+':
2565
76.7k
      if (*++s)
2566
76.6k
        goto break2;
2567
86
      ZEND_FALLTHROUGH;
2568
291
    case 0:
2569
291
      goto ret0;
2570
716
    case '\t':
2571
1.27k
    case '\n':
2572
2.30k
    case '\v':
2573
2.83k
    case '\f':
2574
3.28k
    case '\r':
2575
3.93k
    case ' ':
2576
3.93k
      continue;
2577
634k
    default:
2578
634k
      goto break2;
2579
714k
    }
2580
710k
 break2:
2581
710k
  if (*s == '0') {
2582
#ifndef NO_HEX_FP /*{*/
2583
    switch(s[1]) {
2584
      case 'x':
2585
      case 'X':
2586
#ifdef Honor_FLT_ROUNDS
2587
      gethex(&s, &rv, bc.rounding, sign);
2588
#else
2589
      gethex(&s, &rv, 1, sign);
2590
#endif
2591
      goto ret;
2592
      }
2593
#endif /*}*/
2594
184k
    nz0 = 1;
2595
977k
    while(*++s == '0') ;
2596
184k
    if (!*s)
2597
106
      goto ret;
2598
184k
    }
2599
710k
  s0 = s;
2600
710k
  y = z = 0;
2601
420M
  for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
2602
420M
    if (nd < 9)
2603
3.59M
      y = 10*y + c - '0';
2604
416M
    else if (nd < DBL_DIG + 2)
2605
2.12M
      z = 10*z + c - '0';
2606
710k
  nd0 = nd;
2607
710k
  bc.dp0 = bc.dp1 = s - s0;
2608
3.60M
  for(s1 = s; s1 > s0 && *--s1 == '0'; )
2609
2.89M
    ++nz1;
2610
#ifdef USE_LOCALE
2611
  s1 = localeconv()->decimal_point;
2612
  if (c == *s1) {
2613
    c = '.';
2614
    if (*++s1) {
2615
      s2 = s;
2616
      for(;;) {
2617
        if (*++s2 != *s1) {
2618
          c = 0;
2619
          break;
2620
          }
2621
        if (!*++s1) {
2622
          s = s2;
2623
          break;
2624
          }
2625
        }
2626
      }
2627
    }
2628
#endif
2629
710k
  if (c == '.') {
2630
248k
    c = *++s;
2631
248k
    bc.dp1 = s - s0;
2632
248k
    bc.dplen = bc.dp1 - bc.dp0;
2633
248k
    if (!nd) {
2634
28.0M
      for(; c == '0'; c = *++s)
2635
27.9M
        nz++;
2636
102k
      if (c > '0' && c <= '9') {
2637
79.5k
        bc.dp0 = s0 - s;
2638
79.5k
        bc.dp1 = bc.dp0 + bc.dplen;
2639
79.5k
        s0 = s;
2640
79.5k
        nf += nz;
2641
79.5k
        nz = 0;
2642
79.5k
        goto have_dig;
2643
79.5k
        }
2644
22.4k
      goto dig_done;
2645
102k
      }
2646
49.5M
    for(; c >= '0' && c <= '9'; c = *++s) {
2647
49.4M
 have_dig:
2648
49.4M
      nz++;
2649
49.4M
      if (c -= '0') {
2650
1.64M
        nf += nz;
2651
47.6M
        for(i = 1; i < nz; i++)
2652
46.0M
          if (nd++ < 9)
2653
428k
            y *= 10;
2654
45.6M
          else if (nd <= DBL_DIG + 2)
2655
471k
            z *= 10;
2656
1.64M
        if (nd++ < 9)
2657
419k
          y = 10*y + c;
2658
1.22M
        else if (nd <= DBL_DIG + 2)
2659
260k
          z = 10*z + c;
2660
1.64M
        nz = nz1 = 0;
2661
1.64M
        }
2662
49.4M
      }
2663
146k
    }
2664
710k
 dig_done:
2665
710k
  if (nd < 0) {
2666
    /* overflow */
2667
0
    nd = DBL_DIG + 2;
2668
0
  }
2669
710k
  if (nf < 0) {
2670
    /* overflow */
2671
0
    nf = DBL_DIG + 2;
2672
0
  }
2673
710k
  e = 0;
2674
710k
  if (c == 'e' || c == 'E') {
2675
120k
    if (!nd && !nz && !nz0) {
2676
164
      goto ret0;
2677
164
      }
2678
120k
    s00 = s;
2679
120k
    esign = 0;
2680
120k
    switch(c = *++s) {
2681
37.2k
      case '-':
2682
37.2k
        esign = 1;
2683
37.2k
        ZEND_FALLTHROUGH;
2684
43.4k
      case '+':
2685
43.4k
        c = *++s;
2686
120k
      }
2687
120k
    if (c >= '0' && c <= '9') {
2688
903k
      while(c == '0')
2689
786k
        c = *++s;
2690
116k
      if (c > '0' && c <= '9') {
2691
110k
        L = c - '0';
2692
110k
        s1 = s;
2693
5.00M
        while((c = *++s) >= '0' && c <= '9')
2694
4.89M
          L = (Long) (10*(ULong)L + (c - '0'));
2695
110k
        if (s - s1 > 8 || L > 19999)
2696
          /* Avoid confusion from exponents
2697
           * so large that e might overflow.
2698
           */
2699
10.8k
          e = 19999; /* safe for 16 bit ints */
2700
99.7k
        else
2701
99.7k
          e = (int)L;
2702
110k
        if (esign)
2703
36.7k
          e = -e;
2704
110k
        }
2705
5.82k
      else
2706
5.82k
        e = 0;
2707
116k
      }
2708
3.64k
    else
2709
3.64k
      s = s00;
2710
120k
    }
2711
710k
  if (!nd) {
2712
54.2k
    if (!nz && !nz0) {
2713
#ifdef INFNAN_CHECK
2714
      /* Check for Nan and Infinity */
2715
      if (!bc.dplen)
2716
       switch(c) {
2717
        case 'i':
2718
        case 'I':
2719
        if (match(&s,"nf")) {
2720
          --s;
2721
          if (!match(&s,"inity"))
2722
            ++s;
2723
          word0(&rv) = 0x7ff00000;
2724
          word1(&rv) = 0;
2725
          goto ret;
2726
          }
2727
        break;
2728
        case 'n':
2729
        case 'N':
2730
        if (match(&s, "an")) {
2731
          word0(&rv) = NAN_WORD0;
2732
          word1(&rv) = NAN_WORD1;
2733
#ifndef No_Hex_NaN
2734
          if (*s == '(') /*)*/
2735
            hexnan(&rv, &s);
2736
#endif
2737
          goto ret;
2738
          }
2739
        }
2740
#endif /* INFNAN_CHECK */
2741
1.43k
 ret0:
2742
1.43k
      s = s00;
2743
1.43k
      sign = 0;
2744
1.43k
      }
2745
54.7k
    goto ret;
2746
54.2k
    }
2747
656k
  bc.e0 = e1 = e -= nf;
2748
2749
  /* Now we have nd0 digits, starting at s0, followed by a
2750
   * decimal point, followed by nd-nd0 digits.  The number we're
2751
   * after is the integer represented by those digits times
2752
   * 10**e */
2753
2754
656k
  if (!nd0)
2755
79.5k
    nd0 = nd;
2756
656k
  k = nd < DBL_DIG + 2 ? nd : DBL_DIG + 2;
2757
656k
  dval(&rv) = y;
2758
656k
  if (k > 9) {
2759
#ifdef SET_INEXACT
2760
    if (k > DBL_DIG)
2761
      oldinexact = get_inexact();
2762
#endif
2763
401k
    dval(&rv) = tens[k - 9] * dval(&rv) + z;
2764
401k
    }
2765
656k
  bd0 = 0;
2766
656k
  if (nd <= DBL_DIG
2767
334k
#ifndef RND_PRODQUOT
2768
334k
#ifndef Honor_FLT_ROUNDS
2769
334k
    && Flt_Rounds == 1
2770
656k
#endif
2771
656k
#endif
2772
656k
      ) {
2773
334k
    if (!e)
2774
186k
      goto ret;
2775
148k
#ifndef ROUND_BIASED_without_Round_Up
2776
148k
    if (e > 0) {
2777
36.5k
      if (e <= Ten_pmax) {
2778
#ifdef VAX
2779
        goto vax_ovfl_check;
2780
#else
2781
#ifdef Honor_FLT_ROUNDS
2782
        /* round correctly FLT_ROUNDS = 2 or 3 */
2783
        if (sign) {
2784
          rv.d = -rv.d;
2785
          sign = 0;
2786
          }
2787
#endif
2788
9.65k
        /* rv = */ rounded_product(dval(&rv), tens[e]);
2789
9.65k
        goto ret;
2790
9.65k
#endif
2791
9.65k
        }
2792
26.8k
      i = DBL_DIG - nd;
2793
26.8k
      if (e <= Ten_pmax + i) {
2794
        /* A fancier test would sometimes let us do
2795
         * this for larger i values.
2796
         */
2797
#ifdef Honor_FLT_ROUNDS
2798
        /* round correctly FLT_ROUNDS = 2 or 3 */
2799
        if (sign) {
2800
          rv.d = -rv.d;
2801
          sign = 0;
2802
          }
2803
#endif
2804
1.75k
        e -= i;
2805
1.75k
        dval(&rv) *= tens[i];
2806
#ifdef VAX
2807
        /* VAX exponent range is so narrow we must
2808
         * worry about overflow here...
2809
         */
2810
 vax_ovfl_check:
2811
        word0(&rv) -= P*Exp_msk1;
2812
        /* rv = */ rounded_product(dval(&rv), tens[e]);
2813
        if ((word0(&rv) & Exp_mask)
2814
         > Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
2815
          goto ovfl;
2816
        word0(&rv) += P*Exp_msk1;
2817
#else
2818
1.75k
        /* rv = */ rounded_product(dval(&rv), tens[e]);
2819
1.75k
#endif
2820
1.75k
        goto ret;
2821
1.75k
        }
2822
26.8k
      }
2823
111k
#ifndef Inaccurate_Divide
2824
111k
    else if (e >= -Ten_pmax) {
2825
#ifdef Honor_FLT_ROUNDS
2826
      /* round correctly FLT_ROUNDS = 2 or 3 */
2827
      if (sign) {
2828
        rv.d = -rv.d;
2829
        sign = 0;
2830
        }
2831
#endif
2832
73.8k
      /* rv = */ rounded_quotient(dval(&rv), tens[-e]);
2833
73.8k
      goto ret;
2834
73.8k
      }
2835
148k
#endif
2836
148k
#endif /* ROUND_BIASED_without_Round_Up */
2837
148k
    }
2838
384k
  e1 += nd - k;
2839
2840
384k
#ifdef IEEE_Arith
2841
#ifdef SET_INEXACT
2842
  bc.inexact = 1;
2843
  if (k <= DBL_DIG)
2844
    oldinexact = get_inexact();
2845
#endif
2846
384k
#ifdef Avoid_Underflow
2847
384k
  bc.scale = 0;
2848
384k
#endif
2849
#ifdef Honor_FLT_ROUNDS
2850
  if (bc.rounding >= 2) {
2851
    if (sign)
2852
      bc.rounding = bc.rounding == 2 ? 0 : 2;
2853
    else
2854
      if (bc.rounding != 2)
2855
        bc.rounding = 0;
2856
    }
2857
#endif
2858
384k
#endif /*IEEE_Arith*/
2859
2860
  /* Get starting approximation = rv * 10**e1 */
2861
2862
384k
  if (e1 > 0) {
2863
238k
    if ((i = e1 & 15))
2864
232k
      dval(&rv) *= tens[i];
2865
238k
    if (e1 &= ~15) {
2866
142k
      if (e1 > DBL_MAX_10_EXP) {
2867
17.2k
 ovfl:
2868
        /* Can't trust HUGE_VAL */
2869
17.2k
#ifdef IEEE_Arith
2870
#ifdef Honor_FLT_ROUNDS
2871
        switch(bc.rounding) {
2872
          case 0: /* toward 0 */
2873
          case 3: /* toward -infinity */
2874
          word0(&rv) = Big0;
2875
          word1(&rv) = Big1;
2876
          break;
2877
          default:
2878
          word0(&rv) = Exp_mask;
2879
          word1(&rv) = 0;
2880
          }
2881
#else /*Honor_FLT_ROUNDS*/
2882
17.2k
        word0(&rv) = Exp_mask;
2883
17.2k
        word1(&rv) = 0;
2884
17.2k
#endif /*Honor_FLT_ROUNDS*/
2885
#ifdef SET_INEXACT
2886
        /* set overflow bit */
2887
        dval(&rv0) = 1e300;
2888
        dval(&rv0) *= dval(&rv0);
2889
#endif
2890
#else /*IEEE_Arith*/
2891
        word0(&rv) = Big0;
2892
        word1(&rv) = Big1;
2893
#endif /*IEEE_Arith*/
2894
25.8k
 range_err:
2895
25.8k
        if (bd0) {
2896
803
          Bfree(bb);
2897
803
          Bfree(bd);
2898
803
          Bfree(bs);
2899
803
          Bfree(bd0);
2900
803
          Bfree(delta);
2901
803
          }
2902
#ifndef NO_ERRNO
2903
        errno = ERANGE;
2904
#endif
2905
25.8k
        goto ret;
2906
17.2k
        }
2907
128k
      e1 >>= 4;
2908
310k
      for(j = 0; e1 > 1; j++, e1 >>= 1)
2909
181k
        if (e1 & 1)
2910
74.5k
          dval(&rv) *= bigtens[j];
2911
    /* The last multiplication could overflow. */
2912
128k
      word0(&rv) -= P*Exp_msk1;
2913
128k
      dval(&rv) *= bigtens[j];
2914
128k
      if ((z = word0(&rv) & Exp_mask)
2915
128k
       > Exp_msk1*(DBL_MAX_EXP+Bias-P))
2916
2.80k
        goto ovfl;
2917
125k
      if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
2918
        /* set to largest number */
2919
        /* (Can't trust DBL_MAX) */
2920
1.01k
        word0(&rv) = Big0;
2921
1.01k
        word1(&rv) = Big1;
2922
1.01k
        }
2923
124k
      else
2924
124k
        word0(&rv) += P*Exp_msk1;
2925
125k
      }
2926
238k
    }
2927
145k
  else if (e1 < 0) {
2928
131k
    e1 = -e1;
2929
131k
    if ((i = e1 & 15))
2930
121k
      dval(&rv) /= tens[i];
2931
131k
    if (e1 >>= 4) {
2932
77.0k
      if (e1 >= 1 << n_bigtens)
2933
2.67k
        goto undfl;
2934
74.3k
#ifdef Avoid_Underflow
2935
74.3k
      if (e1 & Scale_Bit)
2936
29.8k
        bc.scale = 2*P;
2937
311k
      for(j = 0; e1 > 0; j++, e1 >>= 1)
2938
236k
        if (e1 & 1)
2939
132k
          dval(&rv) *= tinytens[j];
2940
74.3k
      if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask)
2941
29.8k
            >> Exp_shift)) > 0) {
2942
        /* scaled rv is denormal; clear j low bits */
2943
25.0k
        if (j >= 32) {
2944
13.3k
          if (j > 54)
2945
1.87k
            goto undfl;
2946
11.4k
          word1(&rv) = 0;
2947
11.4k
          if (j >= 53)
2948
5.65k
           word0(&rv) = (P+2)*Exp_msk1;
2949
5.80k
          else
2950
5.80k
           word0(&rv) &= 0xffffffff << (j-32);
2951
11.4k
          }
2952
11.7k
        else
2953
11.7k
          word1(&rv) &= 0xffffffff << j;
2954
25.0k
        }
2955
#else
2956
      for(j = 0; e1 > 1; j++, e1 >>= 1)
2957
        if (e1 & 1)
2958
          dval(&rv) *= tinytens[j];
2959
      /* The last multiplication could underflow. */
2960
      dval(&rv0) = dval(&rv);
2961
      dval(&rv) *= tinytens[j];
2962
      if (!dval(&rv)) {
2963
        dval(&rv) = 2.*dval(&rv0);
2964
        dval(&rv) *= tinytens[j];
2965
#endif
2966
72.5k
        if (!dval(&rv)) {
2967
8.59k
 undfl:
2968
8.59k
          dval(&rv) = 0.;
2969
8.59k
          goto range_err;
2970
0
          }
2971
#ifndef Avoid_Underflow
2972
        word0(&rv) = Tiny0;
2973
        word1(&rv) = Tiny1;
2974
        /* The refinement below will clean
2975
         * this approximation up.
2976
         */
2977
        }
2978
#endif
2979
72.5k
      }
2980
131k
    }
2981
2982
  /* Now the hard part -- adjusting rv to the correct value.*/
2983
2984
  /* Put digits into bd: true value = bd * 10^e */
2985
2986
363k
  bc.nd = nd - nz1;
2987
363k
#ifndef NO_STRTOD_BIGCOMP
2988
363k
  bc.nd0 = nd0; /* Only needed if nd > strtod_diglim, but done here */
2989
      /* to silence an erroneous warning about bc.nd0 */
2990
      /* possibly not being initialized. */
2991
363k
  if (nd > strtod_diglim) {
2992
    /* ASSERT(strtod_diglim >= 18); 18 == one more than the */
2993
    /* minimum number of decimal digits to distinguish double values */
2994
    /* in IEEE arithmetic. */
2995
119k
    i = j = 18;
2996
119k
    if (i > nd0)
2997
17.9k
      j += bc.dplen;
2998
680k
    for(;;) {
2999
680k
      if (--j < bc.dp1 && j >= bc.dp0)
3000
4.33k
        j = bc.dp0 - 1;
3001
680k
      if (s0[j] != '0')
3002
119k
        break;
3003
560k
      --i;
3004
560k
      }
3005
119k
    e += nd - i;
3006
119k
    nd = i;
3007
119k
    if (nd0 > nd)
3008
101k
      nd0 = nd;
3009
119k
    if (nd < 9) { /* must recompute y */
3010
33.4k
      y = 0;
3011
134k
      for(i = 0; i < nd0; ++i)
3012
101k
        y = 10*y + s0[i] - '0';
3013
41.5k
      for(j = bc.dp1; i < nd; ++i)
3014
8.14k
        y = 10*y + s0[j++] - '0';
3015
33.4k
      }
3016
119k
    }
3017
363k
#endif
3018
363k
  bd0 = s2b(s0, nd0, nd, y, bc.dplen);
3019
3020
440k
  for(;;) {
3021
440k
    bd = Balloc(bd0->k);
3022
440k
    Bcopy(bd, bd0);
3023
440k
    bb = d2b(&rv, &bbe, &bbbits); /* rv = bb * 2^bbe */
3024
440k
    bs = i2b(1);
3025
3026
440k
    if (e >= 0) {
3027
286k
      bb2 = bb5 = 0;
3028
286k
      bd2 = bd5 = e;
3029
286k
      }
3030
154k
    else {
3031
154k
      bb2 = bb5 = -e;
3032
154k
      bd2 = bd5 = 0;
3033
154k
      }
3034
440k
    if (bbe >= 0)
3035
302k
      bb2 += bbe;
3036
138k
    else
3037
138k
      bd2 -= bbe;
3038
440k
    bs2 = bb2;
3039
#ifdef Honor_FLT_ROUNDS
3040
    if (bc.rounding != 1)
3041
      bs2++;
3042
#endif
3043
440k
#ifdef Avoid_Underflow
3044
440k
    Lsb = LSB;
3045
440k
    Lsb1 = 0;
3046
440k
    j = bbe - bc.scale;
3047
440k
    i = j + bbbits - 1; /* logb(rv) */
3048
440k
    j = P + 1 - bbbits;
3049
440k
    if (i < Emin) { /* denormal */
3050
33.4k
      i = Emin - i;
3051
33.4k
      j -= i;
3052
33.4k
      if (i < 32)
3053
17.3k
        Lsb <<= i;
3054
16.0k
      else if (i < 52)
3055
10.0k
        Lsb1 = Lsb << (i-32);
3056
6.00k
      else
3057
6.00k
        Lsb1 = Exp_mask;
3058
33.4k
      }
3059
#else /*Avoid_Underflow*/
3060
#ifdef Sudden_Underflow
3061
#ifdef IBM
3062
    j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
3063
#else
3064
    j = P + 1 - bbbits;
3065
#endif
3066
#else /*Sudden_Underflow*/
3067
    j = bbe;
3068
    i = j + bbbits - 1; /* logb(rv) */
3069
    if (i < Emin) /* denormal */
3070
      j += P - Emin;
3071
    else
3072
      j = P + 1 - bbbits;
3073
#endif /*Sudden_Underflow*/
3074
#endif /*Avoid_Underflow*/
3075
440k
    bb2 += j;
3076
440k
    bd2 += j;
3077
440k
#ifdef Avoid_Underflow
3078
440k
    bd2 += bc.scale;
3079
440k
#endif
3080
440k
    i = bb2 < bd2 ? bb2 : bd2;
3081
440k
    if (i > bs2)
3082
146k
      i = bs2;
3083
440k
    if (i > 0) {
3084
436k
      bb2 -= i;
3085
436k
      bd2 -= i;
3086
436k
      bs2 -= i;
3087
436k
      }
3088
440k
    if (bb5 > 0) {
3089
154k
      bs = pow5mult(bs, bb5);
3090
154k
      bb1 = mult(bs, bb);
3091
154k
      Bfree(bb);
3092
154k
      bb = bb1;
3093
154k
      }
3094
440k
    if (bb2 > 0)
3095
440k
      bb = lshift(bb, bb2);
3096
440k
    if (bd5 > 0)
3097
156k
      bd = pow5mult(bd, bd5);
3098
440k
    if (bd2 > 0)
3099
146k
      bd = lshift(bd, bd2);
3100
440k
    if (bs2 > 0)
3101
286k
      bs = lshift(bs, bs2);
3102
440k
    delta = diff(bb, bd);
3103
440k
    bc.dsign = delta->sign;
3104
440k
    delta->sign = 0;
3105
440k
    i = cmp(delta, bs);
3106
440k
#ifndef NO_STRTOD_BIGCOMP /*{*/
3107
440k
    if (bc.nd > nd && i <= 0) {
3108
118k
      if (bc.dsign) {
3109
        /* Must use bigcomp(). */
3110
72.2k
        req_bigcomp = 1;
3111
72.2k
        break;
3112
72.2k
        }
3113
#ifdef Honor_FLT_ROUNDS
3114
      if (bc.rounding != 1) {
3115
        if (i < 0) {
3116
          req_bigcomp = 1;
3117
          break;
3118
          }
3119
        }
3120
      else
3121
#endif
3122
46.6k
        i = -1; /* Discarded digits make delta smaller. */
3123
46.6k
      }
3124
368k
#endif /*}*/
3125
#ifdef Honor_FLT_ROUNDS /*{*/
3126
    if (bc.rounding != 1) {
3127
      if (i < 0) {
3128
        /* Error is less than an ulp */
3129
        if (!delta->x[0] && delta->wds <= 1) {
3130
          /* exact */
3131
#ifdef SET_INEXACT
3132
          bc.inexact = 0;
3133
#endif
3134
          break;
3135
          }
3136
        if (bc.rounding) {
3137
          if (bc.dsign) {
3138
            adj.d = 1.;
3139
            goto apply_adj;
3140
            }
3141
          }
3142
        else if (!bc.dsign) {
3143
          adj.d = -1.;
3144
          if (!word1(&rv)
3145
           && !(word0(&rv) & Frac_mask)) {
3146
            y = word0(&rv) & Exp_mask;
3147
#ifdef Avoid_Underflow
3148
            if (!bc.scale || y > 2*P*Exp_msk1)
3149
#else
3150
            if (y)
3151
#endif
3152
              {
3153
              delta = lshift(delta,Log2P);
3154
              if (cmp(delta, bs) <= 0)
3155
              adj.d = -0.5;
3156
              }
3157
            }
3158
 apply_adj:
3159
#ifdef Avoid_Underflow /*{*/
3160
          if (bc.scale && (y = word0(&rv) & Exp_mask)
3161
            <= 2*P*Exp_msk1)
3162
            word0(&adj) += (2*P+1)*Exp_msk1 - y;
3163
#else
3164
#ifdef Sudden_Underflow
3165
          if ((word0(&rv) & Exp_mask) <=
3166
              P*Exp_msk1) {
3167
            word0(&rv) += P*Exp_msk1;
3168
            dval(&rv) += adj.d*ulp(dval(&rv));
3169
            word0(&rv) -= P*Exp_msk1;
3170
            }
3171
          else
3172
#endif /*Sudden_Underflow*/
3173
#endif /*Avoid_Underflow}*/
3174
          dval(&rv) += adj.d*ulp(&rv);
3175
          }
3176
        break;
3177
        }
3178
      adj.d = ratio(delta, bs);
3179
      if (adj.d < 1.)
3180
        adj.d = 1.;
3181
      if (adj.d <= 0x7ffffffe) {
3182
        /* adj = rounding ? ceil(adj) : floor(adj); */
3183
        y = adj.d;
3184
        if (y != adj.d) {
3185
          if (!((bc.rounding>>1) ^ bc.dsign))
3186
            y++;
3187
          adj.d = y;
3188
          }
3189
        }
3190
#ifdef Avoid_Underflow /*{*/
3191
      if (bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1)
3192
        word0(&adj) += (2*P+1)*Exp_msk1 - y;
3193
#else
3194
#ifdef Sudden_Underflow
3195
      if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) {
3196
        word0(&rv) += P*Exp_msk1;
3197
        adj.d *= ulp(dval(&rv));
3198
        if (bc.dsign)
3199
          dval(&rv) += adj.d;
3200
        else
3201
          dval(&rv) -= adj.d;
3202
        word0(&rv) -= P*Exp_msk1;
3203
        goto cont;
3204
        }
3205
#endif /*Sudden_Underflow*/
3206
#endif /*Avoid_Underflow}*/
3207
      adj.d *= ulp(&rv);
3208
      if (bc.dsign) {
3209
        if (word0(&rv) == Big0 && word1(&rv) == Big1)
3210
          goto ovfl;
3211
        dval(&rv) += adj.d;
3212
        }
3213
      else
3214
        dval(&rv) -= adj.d;
3215
      goto cont;
3216
      }
3217
#endif /*}Honor_FLT_ROUNDS*/
3218
3219
368k
    if (i < 0) {
3220
      /* Error is less than half an ulp -- check for
3221
       * special case of mantissa a power of two.
3222
       */
3223
189k
      if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask
3224
16.1k
#ifdef IEEE_Arith /*{*/
3225
16.1k
#ifdef Avoid_Underflow
3226
16.1k
       || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1
3227
#else
3228
       || (word0(&rv) & Exp_mask) <= Exp_msk1
3229
#endif
3230
189k
#endif /*}*/
3231
189k
        ) {
3232
#ifdef SET_INEXACT
3233
        if (!delta->x[0] && delta->wds <= 1)
3234
          bc.inexact = 0;
3235
#endif
3236
175k
        break;
3237
175k
        }
3238
14.0k
      if (!delta->x[0] && delta->wds <= 1) {
3239
        /* exact result */
3240
#ifdef SET_INEXACT
3241
        bc.inexact = 0;
3242
#endif
3243
5.89k
        break;
3244
5.89k
        }
3245
8.15k
      delta = lshift(delta,Log2P);
3246
8.15k
      if (cmp(delta, bs) > 0)
3247
3.32k
        goto drop_down;
3248
4.83k
      break;
3249
8.15k
      }
3250
178k
    if (i == 0) {
3251
      /* exactly half-way between */
3252
12.6k
      if (bc.dsign) {
3253
6.37k
        if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
3254
2.82k
         &&  word1(&rv) == (
3255
2.82k
#ifdef Avoid_Underflow
3256
2.82k
      (bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1)
3257
2.82k
    ? (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
3258
2.82k
#endif
3259
2.82k
               0xffffffff)) {
3260
          /*boundary case -- increment exponent*/
3261
659
          if (word0(&rv) == Big0 && word1(&rv) == Big1)
3262
0
            goto ovfl;
3263
659
          word0(&rv) = (word0(&rv) & Exp_mask)
3264
659
            + Exp_msk1
3265
#ifdef IBM
3266
            | Exp_msk1 >> 4
3267
#endif
3268
659
            ;
3269
659
          word1(&rv) = 0;
3270
659
#ifdef Avoid_Underflow
3271
659
          bc.dsign = 0;
3272
659
#endif
3273
659
          break;
3274
659
          }
3275
6.37k
        }
3276
6.23k
      else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) {
3277
3.32k
 drop_down:
3278
        /* boundary case -- decrement exponent */
3279
#ifdef Sudden_Underflow /*{{*/
3280
        L = word0(&rv) & Exp_mask;
3281
#ifdef IBM
3282
        if (L <  Exp_msk1)
3283
#else
3284
#ifdef Avoid_Underflow
3285
        if (L <= (bc.scale ? (2*P+1)*Exp_msk1 : Exp_msk1))
3286
#else
3287
        if (L <= Exp_msk1)
3288
#endif /*Avoid_Underflow*/
3289
#endif /*IBM*/
3290
          {
3291
          if (bc.nd >nd) {
3292
            bc.uflchk = 1;
3293
            break;
3294
            }
3295
          goto undfl;
3296
          }
3297
        L -= Exp_msk1;
3298
#else /*Sudden_Underflow}{*/
3299
3.32k
#ifdef Avoid_Underflow
3300
3.32k
        if (bc.scale) {
3301
0
          L = word0(&rv) & Exp_mask;
3302
0
          if (L <= (2*P+1)*Exp_msk1) {
3303
0
            if (L > (P+2)*Exp_msk1)
3304
              /* round even ==> */
3305
              /* accept rv */
3306
0
              break;
3307
            /* rv = smallest denormal */
3308
0
            if (bc.nd >nd) {
3309
0
              bc.uflchk = 1;
3310
0
              break;
3311
0
              }
3312
0
            goto undfl;
3313
0
            }
3314
0
          }
3315
3.32k
#endif /*Avoid_Underflow*/
3316
3.32k
        L = (word0(&rv) & Exp_mask) - Exp_msk1;
3317
3.32k
#endif /*Sudden_Underflow}}*/
3318
3.32k
        word0(&rv) = L | Bndry_mask1;
3319
3.32k
        word1(&rv) = 0xffffffff;
3320
#ifdef IBM
3321
        goto cont;
3322
#else
3323
3.32k
#ifndef NO_STRTOD_BIGCOMP
3324
3.32k
        if (bc.nd > nd)
3325
1.32k
          goto cont;
3326
1.99k
#endif
3327
1.99k
        break;
3328
3.32k
#endif
3329
3.32k
        }
3330
11.9k
#ifndef ROUND_BIASED
3331
11.9k
#ifdef Avoid_Underflow
3332
11.9k
      if (Lsb1) {
3333
0
        if (!(word0(&rv) & Lsb1))
3334
0
          break;
3335
0
        }
3336
11.9k
      else if (!(word1(&rv) & Lsb))
3337
7.80k
        break;
3338
#else
3339
      if (!(word1(&rv) & LSB))
3340
        break;
3341
#endif
3342
4.13k
#endif
3343
4.13k
      if (bc.dsign)
3344
2.09k
#ifdef Avoid_Underflow
3345
2.09k
        dval(&rv) += sulp(&rv, &bc);
3346
#else
3347
        dval(&rv) += ulp(&rv);
3348
#endif
3349
2.03k
#ifndef ROUND_BIASED
3350
2.03k
      else {
3351
2.03k
#ifdef Avoid_Underflow
3352
2.03k
        dval(&rv) -= sulp(&rv, &bc);
3353
#else
3354
        dval(&rv) -= ulp(&rv);
3355
#endif
3356
2.03k
#ifndef Sudden_Underflow
3357
2.03k
        if (!dval(&rv)) {
3358
0
          if (bc.nd >nd) {
3359
0
            bc.uflchk = 1;
3360
0
            break;
3361
0
            }
3362
0
          goto undfl;
3363
0
          }
3364
2.03k
#endif
3365
2.03k
        }
3366
4.13k
#ifdef Avoid_Underflow
3367
4.13k
      bc.dsign = 1 - bc.dsign;
3368
4.13k
#endif
3369
4.13k
#endif
3370
4.13k
      break;
3371
4.13k
      }
3372
166k
    if ((aadj = ratio(delta, bs)) <= 2.) {
3373
138k
      if (bc.dsign)
3374
43.5k
        aadj = aadj1 = 1.;
3375
95.2k
      else if (word1(&rv) || word0(&rv) & Bndry_mask) {
3376
91.0k
#ifndef Sudden_Underflow
3377
91.0k
        if (word1(&rv) == Tiny1 && !word0(&rv)) {
3378
0
          if (bc.nd >nd) {
3379
0
            bc.uflchk = 1;
3380
0
            break;
3381
0
            }
3382
0
          goto undfl;
3383
0
          }
3384
91.0k
#endif
3385
91.0k
        aadj = 1.;
3386
91.0k
        aadj1 = -1.;
3387
91.0k
        }
3388
4.24k
      else {
3389
        /* special case -- power of FLT_RADIX to be */
3390
        /* rounded down... */
3391
3392
4.24k
        if (aadj < 2./FLT_RADIX)
3393
0
          aadj = 1./FLT_RADIX;
3394
4.24k
        else
3395
4.24k
          aadj *= 0.5;
3396
4.24k
        aadj1 = -aadj;
3397
4.24k
        }
3398
138k
      }
3399
27.4k
    else {
3400
27.4k
      aadj *= 0.5;
3401
27.4k
      aadj1 = bc.dsign ? aadj : -aadj;
3402
#ifdef Check_FLT_ROUNDS
3403
      switch(bc.rounding) {
3404
        case 2: /* towards +infinity */
3405
          aadj1 -= 0.5;
3406
          break;
3407
        case 0: /* towards 0 */
3408
        case 3: /* towards -infinity */
3409
          aadj1 += 0.5;
3410
        }
3411
#else
3412
27.4k
      if (Flt_Rounds == 0)
3413
0
        aadj1 += 0.5;
3414
27.4k
#endif /*Check_FLT_ROUNDS*/
3415
27.4k
      }
3416
166k
    y = word0(&rv) & Exp_mask;
3417
3418
    /* Check for overflow */
3419
3420
166k
    if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
3421
2.56k
      dval(&rv0) = dval(&rv);
3422
2.56k
      word0(&rv) -= P*Exp_msk1;
3423
2.56k
      adj.d = aadj1 * ulp(&rv);
3424
2.56k
      dval(&rv) += adj.d;
3425
2.56k
      if ((word0(&rv) & Exp_mask) >=
3426
2.56k
          Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
3427
803
        if (word0(&rv0) == Big0 && word1(&rv0) == Big1)
3428
803
          goto ovfl;
3429
0
        word0(&rv) = Big0;
3430
0
        word1(&rv) = Big1;
3431
0
        goto cont;
3432
803
        }
3433
1.75k
      else
3434
1.75k
        word0(&rv) += P*Exp_msk1;
3435
2.56k
      }
3436
163k
    else {
3437
163k
#ifdef Avoid_Underflow
3438
163k
      if (bc.scale && y <= 2*P*Exp_msk1) {
3439
14.4k
        if (aadj <= 0x7fffffff) {
3440
14.4k
          if ((z = aadj) <= 0)
3441
4.24k
            z = 1;
3442
14.4k
          aadj = z;
3443
14.4k
          aadj1 = bc.dsign ? aadj : -aadj;
3444
14.4k
          }
3445
14.4k
        dval(&aadj2) = aadj1;
3446
14.4k
        word0(&aadj2) += (2*P+1)*Exp_msk1 - y;
3447
14.4k
        aadj1 = dval(&aadj2);
3448
14.4k
        adj.d = aadj1 * ulp(&rv);
3449
14.4k
        dval(&rv) += adj.d;
3450
14.4k
        if (rv.d == 0.)
3451
#ifdef NO_STRTOD_BIGCOMP
3452
          goto undfl;
3453
#else
3454
4.24k
          {
3455
4.24k
          req_bigcomp = 1;
3456
4.24k
          break;
3457
4.24k
          }
3458
14.4k
#endif
3459
14.4k
        }
3460
149k
      else {
3461
149k
        adj.d = aadj1 * ulp(&rv);
3462
149k
        dval(&rv) += adj.d;
3463
149k
        }
3464
#else
3465
#ifdef Sudden_Underflow
3466
      if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) {
3467
        dval(&rv0) = dval(&rv);
3468
        word0(&rv) += P*Exp_msk1;
3469
        adj.d = aadj1 * ulp(&rv);
3470
        dval(&rv) += adj.d;
3471
#ifdef IBM
3472
        if ((word0(&rv) & Exp_mask) <  P*Exp_msk1)
3473
#else
3474
        if ((word0(&rv) & Exp_mask) <= P*Exp_msk1)
3475
#endif
3476
          {
3477
          if (word0(&rv0) == Tiny0
3478
           && word1(&rv0) == Tiny1) {
3479
            if (bc.nd >nd) {
3480
              bc.uflchk = 1;
3481
              break;
3482
              }
3483
            goto undfl;
3484
            }
3485
          word0(&rv) = Tiny0;
3486
          word1(&rv) = Tiny1;
3487
          goto cont;
3488
          }
3489
        else
3490
          word0(&rv) -= P*Exp_msk1;
3491
        }
3492
      else {
3493
        adj.d = aadj1 * ulp(&rv);
3494
        dval(&rv) += adj.d;
3495
        }
3496
#else /*Sudden_Underflow*/
3497
      /* Compute adj so that the IEEE rounding rules will
3498
       * correctly round rv + adj in some half-way cases.
3499
       * If rv * ulp(rv) is denormalized (i.e.,
3500
       * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
3501
       * trouble from bits lost to denormalization;
3502
       * example: 1.2e-307 .
3503
       */
3504
      if (y <= (P-1)*Exp_msk1 && aadj > 1.) {
3505
        aadj1 = (double)(int)(aadj + 0.5);
3506
        if (!bc.dsign)
3507
          aadj1 = -aadj1;
3508
        }
3509
      adj.d = aadj1 * ulp(&rv);
3510
      dval(&rv) += adj.d;
3511
#endif /*Sudden_Underflow*/
3512
#endif /*Avoid_Underflow*/
3513
163k
      }
3514
161k
    z = word0(&rv) & Exp_mask;
3515
161k
#ifndef SET_INEXACT
3516
161k
    if (bc.nd == nd) {
3517
100k
#ifdef Avoid_Underflow
3518
100k
    if (!bc.scale)
3519
88.8k
#endif
3520
88.8k
    if (y == z) {
3521
      /* Can we stop now? */
3522
88.0k
      L = (Long)aadj;
3523
88.0k
      aadj -= L;
3524
      /* The tolerances below are conservative. */
3525
88.0k
      if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
3526
62.7k
        if (aadj < .4999999 || aadj > .5000001)
3527
60.5k
          break;
3528
62.7k
        }
3529
25.3k
      else if (aadj < .4999999/FLT_RADIX)
3530
25.3k
        break;
3531
88.0k
      }
3532
100k
    }
3533
75.3k
#endif
3534
76.6k
 cont:
3535
76.6k
    Bfree(bb);
3536
76.6k
    Bfree(bd);
3537
76.6k
    Bfree(bs);
3538
76.6k
    Bfree(delta);
3539
76.6k
    }
3540
363k
  Bfree(bb);
3541
363k
  Bfree(bd);
3542
363k
  Bfree(bs);
3543
363k
  Bfree(bd0);
3544
363k
  Bfree(delta);
3545
363k
#ifndef NO_STRTOD_BIGCOMP
3546
363k
  if (req_bigcomp) {
3547
76.5k
    bd0 = 0;
3548
76.5k
    bc.e0 += nz1;
3549
76.5k
    bigcomp(&rv, s0, &bc);
3550
76.5k
    y = word0(&rv) & Exp_mask;
3551
76.5k
    if (y == Exp_mask)
3552
210
      goto ovfl;
3553
76.3k
    if (y == 0 && rv.d == 0.)
3554
4.04k
      goto undfl;
3555
76.3k
    }
3556
358k
#endif
3557
#ifdef SET_INEXACT
3558
  if (bc.inexact) {
3559
    if (!oldinexact) {
3560
      word0(&rv0) = Exp_1 + (70 << Exp_shift);
3561
      word1(&rv0) = 0;
3562
      dval(&rv0) += 1.;
3563
      }
3564
    }
3565
  else if (!oldinexact)
3566
    clear_inexact();
3567
#endif
3568
358k
#ifdef Avoid_Underflow
3569
358k
  if (bc.scale) {
3570
23.9k
    word0(&rv0) = Exp_1 - 2*P*Exp_msk1;
3571
23.9k
    word1(&rv0) = 0;
3572
23.9k
    dval(&rv) *= dval(&rv0);
3573
#ifndef NO_ERRNO
3574
    /* try to avoid the bug of testing an 8087 register value */
3575
#ifdef IEEE_Arith
3576
    if (!(word0(&rv) & Exp_mask))
3577
#else
3578
    if (word0(&rv) == 0 && word1(&rv) == 0)
3579
#endif
3580
      errno = ERANGE;
3581
#endif
3582
23.9k
    }
3583
358k
#endif /* Avoid_Underflow */
3584
#ifdef SET_INEXACT
3585
  if (bc.inexact && !(word0(&rv) & Exp_mask)) {
3586
    /* set underflow bit */
3587
    dval(&rv0) = 1e-300;
3588
    dval(&rv0) *= dval(&rv0);
3589
    }
3590
#endif
3591
711k
 ret:
3592
711k
  if (se)
3593
171k
    *se = (char *)s;
3594
711k
  return sign ? -dval(&rv) : dval(&rv);
3595
358k
  }
3596
3597
#if !defined(MULTIPLE_THREADS) && !defined(dtoa_result)
3598
 ZEND_TLS char *dtoa_result;
3599
#endif
3600
3601
 static char *
3602
#ifdef KR_headers
3603
rv_alloc(i) int i;
3604
#else
3605
rv_alloc(int i)
3606
#endif
3607
275k
{
3608
3609
275k
  int j, k, *r;
3610
275k
  size_t rem;
3611
3612
275k
  rem = sizeof(Bigint) - sizeof(ULong) - sizeof(int);
3613
3614
3615
275k
  j = sizeof(ULong);
3616
275k
  if (i > ((INT_MAX >> 2) + rem))
3617
8
    i = (INT_MAX >> 2) + rem;
3618
275k
  for(k = 0;
3619
276k
    rem + j <= (size_t)i; j <<= 1)
3620
304
      k++;
3621
3622
275k
  r = (int*)Balloc(k);
3623
275k
  *r = k;
3624
275k
  return
3625
275k
#ifndef MULTIPLE_THREADS
3626
275k
  dtoa_result =
3627
275k
#endif
3628
275k
    (char *)(r+1);
3629
275k
  }
3630
3631
 static char *
3632
#ifdef KR_headers
3633
nrv_alloc(s, rve, n) char *s, **rve; int n;
3634
#else
3635
nrv_alloc(const char *s, char **rve, int n)
3636
#endif
3637
40.5k
{
3638
40.5k
  char *rv, *t;
3639
3640
40.5k
  t = rv = rv_alloc(n);
3641
168k
  while((*t = *s++)) t++;
3642
40.5k
  if (rve)
3643
0
    *rve = t;
3644
40.5k
  return rv;
3645
40.5k
  }
3646
3647
/* freedtoa(s) must be used to free values s returned by dtoa
3648
 * when MULTIPLE_THREADS is #defined.  It should be used in all cases,
3649
 * but for consistency with earlier versions of dtoa, it is optional
3650
 * when MULTIPLE_THREADS is not defined.
3651
 */
3652
3653
ZEND_API void
3654
#ifdef KR_headers
3655
zend_freedtoa(s) char *s;
3656
#else
3657
zend_freedtoa(char *s)
3658
#endif
3659
275k
{
3660
275k
  Bigint *b = (Bigint *)((int *)s - 1);
3661
275k
  b->maxwds = 1 << (b->k = *(int*)b);
3662
275k
  Bfree(b);
3663
275k
#ifndef MULTIPLE_THREADS
3664
275k
  if (s == dtoa_result)
3665
275k
    dtoa_result = 0;
3666
275k
#endif
3667
275k
  }
3668
3669
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
3670
 *
3671
 * Inspired by "How to Print Floating-Point Numbers Accurately" by
3672
 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
3673
 *
3674
 * Modifications:
3675
 *  1. Rather than iterating, we use a simple numeric overestimate
3676
 *     to determine k = floor(log10(d)).  We scale relevant
3677
 *     quantities using O(log2(k)) rather than O(k) multiplications.
3678
 *  2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
3679
 *     try to generate digits strictly left to right.  Instead, we
3680
 *     compute with fewer bits and propagate the carry if necessary
3681
 *     when rounding the final digit up.  This is often faster.
3682
 *  3. Under the assumption that input will be rounded nearest,
3683
 *     mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
3684
 *     That is, we allow equality in stopping tests when the
3685
 *     round-nearest rule will give the same floating-point value
3686
 *     as would satisfaction of the stopping test with strict
3687
 *     inequality.
3688
 *  4. We remove common factors of powers of 2 from relevant
3689
 *     quantities.
3690
 *  5. When converting floating-point integers less than 1e16,
3691
 *     we use floating-point arithmetic rather than resorting
3692
 *     to multiple-precision integers.
3693
 *  6. When asked to produce fewer than 15 digits, we first try
3694
 *     to get by with floating-point arithmetic; we resort to
3695
 *     multiple-precision integer arithmetic only if we cannot
3696
 *     guarantee that the floating-point calculation has given
3697
 *     the correctly rounded result.  For k requested digits and
3698
 *     "uniformly" distributed input, the probability is
3699
 *     something like 10^(k-15) that we must resort to the Long
3700
 *     calculation.
3701
 */
3702
3703
ZEND_API char *zend_dtoa(double dd, int mode, int ndigits, int *decpt, bool *sign, char **rve)
3704
275k
{
3705
 /* Arguments ndigits, decpt, sign are similar to those
3706
  of ecvt and fcvt; trailing zeros are suppressed from
3707
  the returned string.  If not null, *rve is set to point
3708
  to the end of the return value.  If d is +-Infinity or NaN,
3709
  then *decpt is set to 9999.
3710
3711
  mode:
3712
    0 ==> shortest string that yields d when read in
3713
      and rounded to nearest.
3714
    1 ==> like 0, but with Steele & White stopping rule;
3715
      e.g. with IEEE P754 arithmetic , mode 0 gives
3716
      1e23 whereas mode 1 gives 9.999999999999999e22.
3717
    2 ==> max(1,ndigits) significant digits.  This gives a
3718
      return value similar to that of ecvt, except
3719
      that trailing zeros are suppressed.
3720
    3 ==> through ndigits past the decimal point.  This
3721
      gives a return value similar to that from fcvt,
3722
      except that trailing zeros are suppressed, and
3723
      ndigits can be negative.
3724
    4,5 ==> similar to 2 and 3, respectively, but (in
3725
      round-nearest mode) with the tests of mode 0 to
3726
      possibly return a shorter string that rounds to d.
3727
      With IEEE arithmetic and compilation with
3728
      -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
3729
      as modes 2 and 3 when FLT_ROUNDS != 1.
3730
    6-9 ==> Debugging modes similar to mode - 4:  don't try
3731
      fast floating-point estimate (if applicable).
3732
3733
    Values of mode other than 0-9 are treated as mode 0.
3734
3735
    Sufficient space is allocated to the return value
3736
    to hold the suppressed trailing zeros.
3737
  */
3738
3739
275k
  int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1,
3740
275k
    j, j1 = 0, k, k0, k_check, leftright, m2, m5, s2, s5,
3741
275k
    spec_case = 0, try_quick;
3742
275k
  Long L;
3743
275k
#ifndef Sudden_Underflow
3744
275k
  int denorm;
3745
275k
  ULong x;
3746
275k
#endif
3747
275k
  Bigint *b, *b1, *delta, *mlo, *mhi, *S;
3748
275k
  U d2, eps, u;
3749
275k
  double ds;
3750
275k
  char *s, *s0;
3751
275k
#ifndef No_leftright
3752
275k
#ifdef IEEE_Arith
3753
275k
  U eps1;
3754
275k
#endif
3755
275k
#endif
3756
#ifdef SET_INEXACT
3757
  int inexact, oldinexact;
3758
#endif
3759
#ifdef Honor_FLT_ROUNDS /*{*/
3760
  int Rounding;
3761
#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
3762
  Rounding = Flt_Rounds;
3763
#else /*}{*/
3764
  Rounding = 1;
3765
  switch(fegetround()) {
3766
    case FE_TOWARDZERO: Rounding = 0; break;
3767
    case FE_UPWARD: Rounding = 2; break;
3768
    case FE_DOWNWARD: Rounding = 3;
3769
    }
3770
#endif /*}}*/
3771
#endif /*}*/
3772
3773
275k
#ifndef MULTIPLE_THREADS
3774
275k
  if (dtoa_result) {
3775
0
    zend_freedtoa(dtoa_result);
3776
0
    dtoa_result = 0;
3777
0
    }
3778
275k
#endif
3779
3780
275k
  u.d = dd;
3781
275k
  if (word0(&u) & Sign_bit) {
3782
    /* set sign for everything, including 0's and NaNs */
3783
30.7k
    *sign = 1;
3784
30.7k
    word0(&u) &= ~Sign_bit; /* clear sign bit */
3785
30.7k
    }
3786
245k
  else
3787
245k
    *sign = 0;
3788
3789
275k
#if defined(IEEE_Arith) + defined(VAX)
3790
275k
#ifdef IEEE_Arith
3791
275k
  if ((word0(&u) & Exp_mask) == Exp_mask)
3792
#else
3793
  if (word0(&u)  == 0x8000)
3794
#endif
3795
12.7k
    {
3796
    /* Infinity or NaN */
3797
12.7k
    *decpt = 9999;
3798
12.7k
#ifdef IEEE_Arith
3799
12.7k
    if (!word1(&u) && !(word0(&u) & 0xfffff))
3800
12.3k
      return nrv_alloc("Infinity", rve, 8);
3801
352
#endif
3802
352
    return nrv_alloc("NaN", rve, 3);
3803
12.7k
    }
3804
263k
#endif
3805
#ifdef IBM
3806
  dval(&u) += 0; /* normalize */
3807
#endif
3808
263k
  if (!dval(&u)) {
3809
27.8k
    *decpt = 1;
3810
27.8k
    return nrv_alloc("0", rve, 1);
3811
27.8k
    }
3812
3813
#ifdef SET_INEXACT
3814
  try_quick = oldinexact = get_inexact();
3815
  inexact = 1;
3816
#endif
3817
#ifdef Honor_FLT_ROUNDS
3818
  if (Rounding >= 2) {
3819
    if (*sign)
3820
      Rounding = Rounding == 2 ? 0 : 2;
3821
    else
3822
      if (Rounding != 2)
3823
        Rounding = 0;
3824
    }
3825
#endif
3826
3827
235k
  b = d2b(&u, &be, &bbits);
3828
#ifdef Sudden_Underflow
3829
  i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
3830
#else
3831
235k
  if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
3832
221k
#endif
3833
221k
    dval(&d2) = dval(&u);
3834
221k
    word0(&d2) &= Frac_mask1;
3835
221k
    word0(&d2) |= Exp_11;
3836
#ifdef IBM
3837
    if (j = 11 - hi0bits(word0(&d2) & Frac_mask))
3838
      dval(&d2) /= 1 << j;
3839
#endif
3840
3841
    /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
3842
     * log10(x)  =  log(x) / log(10)
3843
     *    ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
3844
     * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
3845
     *
3846
     * This suggests computing an approximation k to log10(d) by
3847
     *
3848
     * k = (i - Bias)*0.301029995663981
3849
     *  + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
3850
     *
3851
     * We want k to be too large rather than too small.
3852
     * The error in the first-order Taylor series approximation
3853
     * is in our favor, so we just round up the constant enough
3854
     * to compensate for any error in the multiplication of
3855
     * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
3856
     * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
3857
     * adding 1e-13 to the constant term more than suffices.
3858
     * Hence we adjust the constant term to 0.1760912590558.
3859
     * (We could get a more accurate k by invoking log10,
3860
     *  but this is probably not worthwhile.)
3861
     */
3862
3863
221k
    i -= Bias;
3864
#ifdef IBM
3865
    i <<= 2;
3866
    i += j;
3867
#endif
3868
221k
#ifndef Sudden_Underflow
3869
221k
    denorm = 0;
3870
221k
    }
3871
13.7k
  else {
3872
    /* d is denormalized */
3873
3874
13.7k
    i = bbits + be + (Bias + (P-1) - 1);
3875
13.7k
    x = i > 32  ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)
3876
13.7k
          : word1(&u) << (32 - i);
3877
13.7k
    dval(&d2) = x;
3878
13.7k
    word0(&d2) -= 31*Exp_msk1; /* adjust exponent */
3879
13.7k
    i -= (Bias + (P-1) - 1) + 1;
3880
13.7k
    denorm = 1;
3881
13.7k
    }
3882
235k
#endif
3883
235k
  ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
3884
235k
  k = (int)ds;
3885
235k
  if (ds < 0. && ds != k)
3886
90.0k
    k--; /* want k = floor(ds) */
3887
235k
  k_check = 1;
3888
235k
  if (k >= 0 && k <= Ten_pmax) {
3889
102k
    if (dval(&u) < tens[k])
3890
2.06k
      k--;
3891
102k
    k_check = 0;
3892
102k
    }
3893
235k
  j = bbits - i - 1;
3894
235k
  if (j >= 0) {
3895
157k
    b2 = 0;
3896
157k
    s2 = j;
3897
157k
    }
3898
78.0k
  else {
3899
78.0k
    b2 = -j;
3900
78.0k
    s2 = 0;
3901
78.0k
    }
3902
235k
  if (k >= 0) {
3903
144k
    b5 = 0;
3904
144k
    s5 = k;
3905
144k
    s2 += k;
3906
144k
    }
3907
90.5k
  else {
3908
90.5k
    b2 -= k;
3909
90.5k
    b5 = -k;
3910
90.5k
    s5 = 0;
3911
90.5k
    }
3912
235k
  if (mode < 0 || mode > 9)
3913
0
    mode = 0;
3914
3915
235k
#ifndef SET_INEXACT
3916
#ifdef Check_FLT_ROUNDS
3917
  try_quick = Rounding == 1;
3918
#else
3919
235k
  try_quick = 1;
3920
235k
#endif
3921
235k
#endif /*SET_INEXACT*/
3922
3923
235k
  if (mode > 5) {
3924
0
    mode -= 4;
3925
0
    try_quick = 0;
3926
0
    }
3927
235k
  leftright = 1;
3928
235k
  ilim = ilim1 = -1;  /* Values for cases 0 and 1; done here to */
3929
        /* silence erroneous "gcc -Wall" warning. */
3930
235k
  switch(mode) {
3931
136k
    case 0:
3932
136k
    case 1:
3933
136k
      i = 18;
3934
136k
      ndigits = 0;
3935
136k
      break;
3936
97.8k
    case 2:
3937
97.8k
      leftright = 0;
3938
97.8k
      ZEND_FALLTHROUGH;
3939
97.8k
    case 4:
3940
97.8k
      if (ndigits <= 0)
3941
0
        ndigits = 1;
3942
97.8k
      ilim = ilim1 = i = ndigits;
3943
97.8k
      break;
3944
820
    case 3:
3945
820
      leftright = 0;
3946
820
      ZEND_FALLTHROUGH;
3947
820
    case 5:
3948
820
      i = ndigits + k + 1;
3949
820
      ilim = i;
3950
820
      ilim1 = i - 1;
3951
820
      if (i <= 0)
3952
110
        i = 1;
3953
235k
    }
3954
235k
  s = s0 = rv_alloc(i);
3955
3956
#ifdef Honor_FLT_ROUNDS
3957
  if (mode > 1 && Rounding != 1)
3958
    leftright = 0;
3959
#endif
3960
3961
235k
  if (ilim >= 0 && ilim <= Quick_max && try_quick) {
3962
3963
    /* Try to get by with floating-point arithmetic. */
3964
3965
98.2k
    i = 0;
3966
98.2k
    dval(&d2) = dval(&u);
3967
98.2k
    k0 = k;
3968
98.2k
    ilim0 = ilim;
3969
98.2k
    ieps = 2; /* conservative */
3970
98.2k
    if (k > 0) {
3971
69.0k
      ds = tens[k&0xf];
3972
69.0k
      j = k >> 4;
3973
69.0k
      if (j & Bletch) {
3974
        /* prevent overflows */
3975
941
        j &= Bletch - 1;
3976
941
        dval(&u) /= bigtens[n_bigtens-1];
3977
941
        ieps++;
3978
941
        }
3979
145k
      for(; j; j >>= 1, i++)
3980
76.8k
        if (j & 1) {
3981
51.8k
          ieps++;
3982
51.8k
          ds *= bigtens[i];
3983
51.8k
          }
3984
69.0k
      dval(&u) /= ds;
3985
69.0k
      }
3986
29.2k
    else if ((j1 = -k)) {
3987
26.5k
      dval(&u) *= tens[j1 & 0xf];
3988
83.1k
      for(j = j1 >> 4; j; j >>= 1, i++)
3989
56.6k
        if (j & 1) {
3990
32.4k
          ieps++;
3991
32.4k
          dval(&u) *= bigtens[i];
3992
32.4k
          }
3993
26.5k
      }
3994
98.2k
    if (k_check && dval(&u) < 1. && ilim > 0) {
3995
6.24k
      if (ilim1 <= 0)
3996
18
        goto fast_failed;
3997
6.22k
      ilim = ilim1;
3998
6.22k
      k--;
3999
6.22k
      dval(&u) *= 10.;
4000
6.22k
      ieps++;
4001
6.22k
      }
4002
98.2k
    dval(&eps) = ieps*dval(&u) + 7.;
4003
98.2k
    word0(&eps) -= (P-1)*Exp_msk1;
4004
98.2k
    if (ilim == 0) {
4005
24
      S = mhi = 0;
4006
24
      dval(&u) -= 5.;
4007
24
      if (dval(&u) > dval(&eps))
4008
10
        goto one_digit;
4009
14
      if (dval(&u) < -dval(&eps))
4010
14
        goto no_digits;
4011
0
      goto fast_failed;
4012
14
      }
4013
98.2k
#ifndef No_leftright
4014
98.2k
    if (leftright) {
4015
      /* Use Steele & White method of only
4016
       * generating digits needed.
4017
       */
4018
0
      dval(&eps) = 0.5/tens[ilim-1] - dval(&eps);
4019
0
#ifdef IEEE_Arith
4020
0
      if (k0 < 0 && j1 >= 307) {
4021
0
        eps1.d = 1.01e256; /* 1.01 allows roundoff in the next few lines */
4022
0
        word0(&eps1) -= Exp_msk1 * (Bias+P-1);
4023
0
        dval(&eps1) *= tens[j1 & 0xf];
4024
0
        for(i = 0, j = (j1-256) >> 4; j; j >>= 1, i++)
4025
0
          if (j & 1)
4026
0
            dval(&eps1) *= bigtens[i];
4027
0
        if (eps.d < eps1.d)
4028
0
          eps.d = eps1.d;
4029
0
        }
4030
0
#endif
4031
0
      for(i = 0;;) {
4032
0
        L = dval(&u);
4033
0
        dval(&u) -= L;
4034
0
        *s++ = '0' + (int)L;
4035
0
        if (1. - dval(&u) < dval(&eps))
4036
0
          goto bump_up;
4037
0
        if (dval(&u) < dval(&eps))
4038
0
          goto ret1;
4039
0
        if (++i >= ilim)
4040
0
          break;
4041
0
        dval(&eps) *= 10.;
4042
0
        dval(&u) *= 10.;
4043
0
        }
4044
0
      }
4045
98.2k
    else {
4046
98.2k
#endif
4047
      /* Generate ilim digits, then fix them up. */
4048
98.2k
      dval(&eps) *= tens[ilim-1];
4049
1.16M
      for(i = 1;; i++, dval(&u) *= 10.) {
4050
1.16M
        L = (Long)(dval(&u));
4051
1.16M
        if (!(dval(&u) -= L))
4052
15.9k
          ilim = i;
4053
1.16M
        *s++ = '0' + (int)L;
4054
1.16M
        if (i == ilim) {
4055
98.2k
          if (dval(&u) > 0.5 + dval(&eps))
4056
24.8k
            goto bump_up;
4057
73.3k
          else if (dval(&u) < 0.5 - dval(&eps)) {
4058
189k
            while(*--s == '0');
4059
44.2k
            s++;
4060
44.2k
            goto ret1;
4061
44.2k
            }
4062
29.1k
          break;
4063
98.2k
          }
4064
1.16M
        }
4065
98.2k
#ifndef No_leftright
4066
98.2k
      }
4067
29.1k
#endif
4068
29.1k
 fast_failed:
4069
29.1k
    s = s0;
4070
29.1k
    dval(&u) = dval(&d2);
4071
29.1k
    k = k0;
4072
29.1k
    ilim = ilim0;
4073
29.1k
    }
4074
4075
  /* Do we have a "small" integer? */
4076
4077
166k
  if (be >= 0 && k <= Int_max) {
4078
    /* Yes. */
4079
4.16k
    ds = tens[k];
4080
4.16k
    if (ndigits < 0 && ilim <= 0) {
4081
0
      S = mhi = 0;
4082
0
      if (ilim < 0 || dval(&u) <= 5*ds)
4083
0
        goto no_digits;
4084
0
      goto one_digit;
4085
0
      }
4086
46.6k
    for(i = 1;; i++, dval(&u) *= 10.) {
4087
46.6k
      L = (Long)(dval(&u) / ds);
4088
46.6k
      dval(&u) -= L*ds;
4089
#ifdef Check_FLT_ROUNDS
4090
      /* If FLT_ROUNDS == 2, L will usually be high by 1 */
4091
      if (dval(&u) < 0) {
4092
        L--;
4093
        dval(&u) += ds;
4094
        }
4095
#endif
4096
46.6k
      *s++ = '0' + (int)L;
4097
46.6k
      if (!dval(&u)) {
4098
#ifdef SET_INEXACT
4099
        inexact = 0;
4100
#endif
4101
1.34k
        break;
4102
1.34k
        }
4103
45.3k
      if (i == ilim) {
4104
#ifdef Honor_FLT_ROUNDS
4105
        if (mode > 1)
4106
        switch(Rounding) {
4107
          case 0: goto ret1;
4108
          case 2: goto bump_up;
4109
          }
4110
#endif
4111
2.82k
        dval(&u) += dval(&u);
4112
#ifdef ROUND_BIASED
4113
        if (dval(&u) >= ds)
4114
#else
4115
2.82k
        if (dval(&u) > ds || (dval(&u) == ds && L & 1))
4116
53
#endif
4117
53
          {
4118
24.8k
 bump_up:
4119
107k
          while(*--s == '9')
4120
83.4k
            if (s == s0) {
4121
1.31k
              k++;
4122
1.31k
              *s = '0';
4123
1.31k
              break;
4124
1.31k
              }
4125
24.8k
          ++*s++;
4126
24.8k
          }
4127
27.6k
        break;
4128
2.82k
        }
4129
45.3k
      }
4130
28.9k
    goto ret1;
4131
4.16k
    }
4132
4133
162k
  m2 = b2;
4134
162k
  m5 = b5;
4135
162k
  mhi = mlo = 0;
4136
162k
  if (leftright) {
4137
135k
    i =
4138
135k
#ifndef Sudden_Underflow
4139
135k
      denorm ? be + (Bias + (P-1) - 1 + 1) :
4140
135k
#endif
4141
#ifdef IBM
4142
      1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
4143
#else
4144
135k
      1 + P - bbits;
4145
135k
#endif
4146
135k
    b2 += i;
4147
135k
    s2 += i;
4148
135k
    mhi = i2b(1);
4149
135k
    }
4150
162k
  if (m2 > 0 && s2 > 0) {
4151
115k
    i = m2 < s2 ? m2 : s2;
4152
115k
    b2 -= i;
4153
115k
    m2 -= i;
4154
115k
    s2 -= i;
4155
115k
    }
4156
162k
  if (b5 > 0) {
4157
68.8k
    if (leftright) {
4158
63.8k
      if (m5 > 0) {
4159
63.8k
        mhi = pow5mult(mhi, m5);
4160
63.8k
        b1 = mult(mhi, b);
4161
63.8k
        Bfree(b);
4162
63.8k
        b = b1;
4163
63.8k
        }
4164
63.8k
      if ((j = b5 - m5))
4165
0
        b = pow5mult(b, j);
4166
63.8k
      }
4167
4.98k
    else
4168
4.98k
      b = pow5mult(b, b5);
4169
68.8k
    }
4170
162k
  S = i2b(1);
4171
162k
  if (s5 > 0)
4172
87.3k
    S = pow5mult(S, s5);
4173
4174
  /* Check for special case that d is a normalized power of 2. */
4175
4176
162k
  spec_case = 0;
4177
162k
  if ((mode < 2 || leftright)
4178
#ifdef Honor_FLT_ROUNDS
4179
      && Rounding == 1
4180
#endif
4181
162k
        ) {
4182
135k
    if (!word1(&u) && !(word0(&u) & Bndry_mask)
4183
2.37k
#ifndef Sudden_Underflow
4184
2.37k
     && word0(&u) & (Exp_mask & ~Exp_msk1)
4185
135k
#endif
4186
135k
        ) {
4187
      /* The special case */
4188
2.17k
      b2 += Log2P;
4189
2.17k
      s2 += Log2P;
4190
2.17k
      spec_case = 1;
4191
2.17k
      }
4192
135k
    }
4193
4194
  /* Arrange for convenient computation of quotients:
4195
   * shift left if necessary so divisor has 4 leading 0 bits.
4196
   *
4197
   * Perhaps we should just compute leading 28 bits of S once
4198
   * and for all and pass them and a shift to quorem, so it
4199
   * can do shifts and ORs to compute the numerator for q.
4200
   */
4201
162k
  i = dshift(S, s2);
4202
162k
  b2 += i;
4203
162k
  m2 += i;
4204
162k
  s2 += i;
4205
162k
  if (b2 > 0)
4206
161k
    b = lshift(b, b2);
4207
162k
  if (s2 > 0)
4208
159k
    S = lshift(S, s2);
4209
162k
  if (k_check) {
4210
101k
    if (cmp(b,S) < 0) {
4211
6.43k
      k--;
4212
6.43k
      b = multadd(b, 10, 0);  /* we botched the k estimate */
4213
6.43k
      if (leftright)
4214
2.01k
        mhi = multadd(mhi, 10, 0);
4215
6.43k
      ilim = ilim1;
4216
6.43k
      }
4217
101k
    }
4218
162k
  if (ilim <= 0 && (mode == 3 || mode == 5)) {
4219
104
    if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
4220
      /* no digits, fcvt style */
4221
100
 no_digits:
4222
100
      k = -1 - ndigits;
4223
100
      goto ret;
4224
86
      }
4225
28
 one_digit:
4226
28
    *s++ = '1';
4227
28
    k++;
4228
28
    goto ret;
4229
104
    }
4230
162k
  if (leftright) {
4231
135k
    if (m2 > 0)
4232
133k
      mhi = lshift(mhi, m2);
4233
4234
    /* Compute mlo -- check for special case
4235
     * that d is a normalized power of 2.
4236
     */
4237
4238
135k
    mlo = mhi;
4239
135k
    if (spec_case) {
4240
2.17k
      mhi = Balloc(mhi->k);
4241
2.17k
      Bcopy(mhi, mlo);
4242
2.17k
      mhi = lshift(mhi, Log2P);
4243
2.17k
      }
4244
4245
1.81M
    for(i = 1;;i++) {
4246
1.81M
      dig = quorem(b,S) + '0';
4247
      /* Do we yet have the shortest decimal string
4248
       * that will round to d?
4249
       */
4250
1.81M
      j = cmp(b, mlo);
4251
1.81M
      delta = diff(S, mhi);
4252
1.81M
      j1 = delta->sign ? 1 : cmp(b, delta);
4253
1.81M
      Bfree(delta);
4254
1.81M
#ifndef ROUND_BIASED
4255
1.81M
      if (j1 == 0 && mode != 1 && !(word1(&u) & 1)
4256
#ifdef Honor_FLT_ROUNDS
4257
        && Rounding >= 1
4258
#endif
4259
1.81M
                   ) {
4260
494
        if (dig == '9')
4261
21
          goto round_9_up;
4262
473
        if (j > 0)
4263
254
          dig++;
4264
#ifdef SET_INEXACT
4265
        else if (!b->x[0] && b->wds <= 1)
4266
          inexact = 0;
4267
#endif
4268
473
        *s++ = dig;
4269
473
        goto ret;
4270
494
        }
4271
1.81M
#endif
4272
1.81M
      if (j < 0 || (j == 0 && mode != 1
4273
705
#ifndef ROUND_BIASED
4274
705
              && !(word1(&u) & 1)
4275
1.74M
#endif
4276
1.74M
          )) {
4277
66.9k
        if (!b->x[0] && b->wds <= 1) {
4278
#ifdef SET_INEXACT
4279
          inexact = 0;
4280
#endif
4281
3.49k
          goto accept_dig;
4282
3.49k
          }
4283
#ifdef Honor_FLT_ROUNDS
4284
        if (mode > 1)
4285
         switch(Rounding) {
4286
          case 0: goto accept_dig;
4287
          case 2: goto keep_dig;
4288
          }
4289
#endif /*Honor_FLT_ROUNDS*/
4290
63.4k
        if (j1 > 0) {
4291
24.4k
          b = lshift(b, 1);
4292
24.4k
          j1 = cmp(b, S);
4293
#ifdef ROUND_BIASED
4294
          if (j1 >= 0 /*)*/
4295
#else
4296
24.4k
          if ((j1 > 0 || (j1 == 0 && dig & 1))
4297
12.3k
#endif
4298
12.3k
          && dig++ == '9')
4299
398
            goto round_9_up;
4300
24.4k
          }
4301
66.5k
 accept_dig:
4302
66.5k
        *s++ = dig;
4303
66.5k
        goto ret;
4304
63.4k
        }
4305
1.74M
      if (j1 > 0) {
4306
#ifdef Honor_FLT_ROUNDS
4307
        if (!Rounding)
4308
          goto accept_dig;
4309
#endif
4310
68.1k
        if (dig == '9') { /* possible if i == 1 */
4311
861
 round_9_up:
4312
861
          *s++ = '9';
4313
861
          goto roundoff;
4314
442
          }
4315
67.6k
        *s++ = dig + 1;
4316
67.6k
        goto ret;
4317
68.1k
        }
4318
#ifdef Honor_FLT_ROUNDS
4319
 keep_dig:
4320
#endif
4321
1.67M
      *s++ = dig;
4322
1.67M
      if (i == ilim)
4323
0
        break;
4324
1.67M
      b = multadd(b, 10, 0);
4325
1.67M
      if (mlo == mhi)
4326
1.64M
        mlo = mhi = multadd(mhi, 10, 0);
4327
30.4k
      else {
4328
30.4k
        mlo = multadd(mlo, 10, 0);
4329
30.4k
        mhi = multadd(mhi, 10, 0);
4330
30.4k
        }
4331
1.67M
      }
4332
135k
    }
4333
26.5k
  else
4334
371k
    for(i = 1;; i++) {
4335
371k
      *s++ = dig = quorem(b,S) + '0';
4336
371k
      if (!b->x[0] && b->wds <= 1) {
4337
#ifdef SET_INEXACT
4338
        inexact = 0;
4339
#endif
4340
68
        goto ret;
4341
68
        }
4342
371k
      if (i >= ilim)
4343
26.4k
        break;
4344
345k
      b = multadd(b, 10, 0);
4345
345k
      }
4346
4347
  /* Round off last digit */
4348
4349
#ifdef Honor_FLT_ROUNDS
4350
  switch(Rounding) {
4351
    case 0: goto trimzeros;
4352
    case 2: goto roundoff;
4353
    }
4354
#endif
4355
26.4k
  b = lshift(b, 1);
4356
26.4k
  j = cmp(b, S);
4357
#ifdef ROUND_BIASED
4358
  if (j >= 0)
4359
#else
4360
26.4k
  if (j > 0 || (j == 0 && dig & 1))
4361
14.1k
#endif
4362
14.1k
    {
4363
14.9k
 roundoff:
4364
20.7k
    while(*--s == '9')
4365
7.02k
      if (s == s0) {
4366
1.28k
        k++;
4367
1.28k
        *s++ = '1';
4368
1.28k
        goto ret;
4369
1.28k
        }
4370
13.7k
    ++*s++;
4371
13.7k
    }
4372
12.3k
  else {
4373
#ifdef Honor_FLT_ROUNDS
4374
 trimzeros:
4375
#endif
4376
27.5k
    while(*--s == '0');
4377
12.3k
    s++;
4378
12.3k
    }
4379
162k
 ret:
4380
162k
  Bfree(S);
4381
162k
  if (mhi) {
4382
135k
    if (mlo && mlo != mhi)
4383
2.17k
      Bfree(mlo);
4384
135k
    Bfree(mhi);
4385
135k
    }
4386
235k
 ret1:
4387
#ifdef SET_INEXACT
4388
  if (inexact) {
4389
    if (!oldinexact) {
4390
      word0(&u) = Exp_1 + (70 << Exp_shift);
4391
      word1(&u) = 0;
4392
      dval(&u) += 1.;
4393
      }
4394
    }
4395
  else if (!oldinexact)
4396
    clear_inexact();
4397
#endif
4398
235k
  Bfree(b);
4399
235k
  *s = 0;
4400
235k
  *decpt = k + 1;
4401
235k
  if (rve)
4402
820
    *rve = s;
4403
235k
  return s0;
4404
162k
  }
4405
4406
ZEND_API double zend_hex_strtod(const char *str, const char **endptr)
4407
1.40k
{
4408
1.40k
  const char *s = str;
4409
1.40k
  char c;
4410
1.40k
  int any = 0;
4411
1.40k
  double value = 0;
4412
4413
1.40k
  if (*s == '0' && (s[1] == 'x' || s[1] == 'X')) {
4414
0
    s += 2;
4415
0
  }
4416
4417
29.0k
  while ((c = *s++)) {
4418
28.6k
    if (c >= '0' && c <= '9') {
4419
24.2k
      c -= '0';
4420
24.2k
    } else if (c >= 'A' && c <= 'F') {
4421
2.55k
      c -= 'A' - 10;
4422
2.55k
    } else if (c >= 'a' && c <= 'f') {
4423
837
      c -= 'a' - 10;
4424
1.00k
    } else {
4425
1.00k
      break;
4426
1.00k
    }
4427
4428
27.6k
    any = 1;
4429
27.6k
    value = value * 16 + c;
4430
27.6k
  }
4431
4432
1.40k
  if (endptr != NULL) {
4433
1.40k
    *endptr = any ? s - 1 : str;
4434
1.40k
  }
4435
4436
1.40k
  return value;
4437
1.40k
}
4438
4439
ZEND_API double zend_oct_strtod(const char *str, const char **endptr)
4440
1.15k
{
4441
1.15k
  const char *s = str;
4442
1.15k
  char c;
4443
1.15k
  double value = 0;
4444
1.15k
  int any = 0;
4445
4446
1.15k
  if (str[0] == '\0') {
4447
0
    if (endptr != NULL) {
4448
0
      *endptr = str;
4449
0
    }
4450
0
    return 0.0;
4451
0
  }
4452
4453
42.7k
  while ((c = *s++)) {
4454
42.4k
    if (c < '0' || c > '7') {
4455
      /* break and return the current value if the number is not well-formed
4456
       * that's what Linux strtol() does
4457
       */
4458
873
      break;
4459
873
    }
4460
41.5k
    value = value * 8 + c - '0';
4461
41.5k
    any = 1;
4462
41.5k
  }
4463
4464
1.15k
  if (endptr != NULL) {
4465
1.15k
    *endptr = any ? s - 1 : str;
4466
1.15k
  }
4467
4468
1.15k
  return value;
4469
1.15k
}
4470
4471
ZEND_API double zend_bin_strtod(const char *str, const char **endptr)
4472
501
{
4473
501
  const char *s = str;
4474
501
  char    c;
4475
501
  double    value = 0;
4476
501
  int     any = 0;
4477
4478
501
  if ('0' == *s && ('b' == s[1] || 'B' == s[1])) {
4479
0
    s += 2;
4480
0
  }
4481
4482
33.1k
  while ((c = *s++)) {
4483
    /*
4484
     * Verify the validity of the current character as a base-2 digit.  In
4485
     * the event that an invalid digit is found, halt the conversion and
4486
     * return the portion which has been converted thus far.
4487
     */
4488
32.9k
    if ('0' == c || '1' == c)
4489
32.6k
      value = value * 2 + c - '0';
4490
256
    else
4491
256
      break;
4492
4493
32.6k
    any = 1;
4494
32.6k
  }
4495
4496
  /*
4497
   * As with many strtoX implementations, should the subject sequence be
4498
   * empty or not well-formed, no conversion is performed and the original
4499
   * value of str is stored in *endptr, provided that endptr is not a null
4500
   * pointer.
4501
   */
4502
501
  if (NULL != endptr) {
4503
501
    *endptr = (char *)(any ? s - 1 : str);
4504
501
  }
4505
4506
501
  return value;
4507
501
}
4508
4509
ZEND_API char *zend_gcvt(double value, int ndigit, char dec_point, char exponent, char *buf)
4510
275k
{
4511
275k
  char *digits, *dst, *src;
4512
275k
  int i, decpt;
4513
275k
  bool sign;
4514
275k
  int mode = ndigit >= 0 ? 2 : 0;
4515
4516
275k
  if (mode == 0) {
4517
137k
    ndigit = 17;
4518
137k
  }
4519
275k
  digits = zend_dtoa(value, mode, ndigit, &decpt, &sign, NULL);
4520
275k
  if (decpt == 9999) {
4521
    /*
4522
     * Infinity or NaN, convert to inf or nan with sign.
4523
     * We assume the buffer is at least ndigit long.
4524
     */
4525
12.7k
    snprintf(buf, ndigit + 1, "%s%s", (sign && *digits == 'I') ? "-" : "", *digits == 'I' ? "INF" : "NAN");
4526
12.7k
    zend_freedtoa(digits);
4527
12.7k
    return (buf);
4528
12.7k
  }
4529
4530
262k
  dst = buf;
4531
262k
  if (sign) {
4532
30.0k
    *dst++ = '-';
4533
30.0k
  }
4534
4535
262k
  if ((decpt >= 0 && decpt > ndigit) || decpt < -3) { /* use E-style */
4536
    /* exponential format (e.g. 1.2345e+13) */
4537
139k
    if (--decpt < 0) {
4538
69.2k
      sign = true;
4539
69.2k
      decpt = -decpt;
4540
70.3k
    } else {
4541
70.3k
      sign = false;
4542
70.3k
    }
4543
139k
    src = digits;
4544
139k
    *dst++ = *src++;
4545
139k
    *dst++ = dec_point;
4546
139k
    if (*src == '\0') {
4547
6.75k
      *dst++ = '0';
4548
132k
    } else {
4549
1.80M
      do {
4550
1.80M
        *dst++ = *src++;
4551
1.80M
      } while (*src != '\0');
4552
132k
    }
4553
139k
    *dst++ = exponent;
4554
139k
    if (sign) {
4555
69.2k
      *dst++ = '-';
4556
70.3k
    } else {
4557
70.3k
      *dst++ = '+';
4558
70.3k
    }
4559
139k
    if (decpt < 10) {
4560
1.88k
      *dst++ = '0' + decpt;
4561
1.88k
      *dst = '\0';
4562
137k
    } else {
4563
      /* XXX - optimize */
4564
137k
      int n;
4565
316k
      for (n = decpt, i = 0; (n /= 10) != 0; i++);
4566
137k
      dst[i + 1] = '\0';
4567
453k
      while (decpt != 0) {
4568
316k
        dst[i--] = '0' + decpt % 10;
4569
316k
        decpt /= 10;
4570
316k
      }
4571
137k
    }
4572
139k
  } else if (decpt < 0) {
4573
    /* standard format 0. */
4574
5.16k
    *dst++ = '0';   /* zero before decimal point */
4575
5.16k
    *dst++ = dec_point;
4576
7.82k
    do {
4577
7.82k
      *dst++ = '0';
4578
7.82k
    } while (++decpt < 0);
4579
5.16k
    src = digits;
4580
32.5k
    while (*src != '\0') {
4581
27.3k
      *dst++ = *src++;
4582
27.3k
    }
4583
5.16k
    *dst = '\0';
4584
117k
  } else {
4585
    /* standard format */
4586
565k
    for (i = 0, src = digits; i < decpt; i++) {
4587
447k
      if (*src != '\0') {
4588
414k
        *dst++ = *src++;
4589
414k
      } else {
4590
33.0k
        *dst++ = '0';
4591
33.0k
      }
4592
447k
    }
4593
117k
    if (*src != '\0') {
4594
61.6k
      if (src == digits) {
4595
15.7k
        *dst++ = '0';   /* zero before decimal point */
4596
15.7k
      }
4597
61.6k
      *dst++ = dec_point;
4598
441k
      for (i = decpt; digits[i] != '\0'; i++) {
4599
379k
        *dst++ = digits[i];
4600
379k
      }
4601
61.6k
    }
4602
117k
    *dst = '\0';
4603
117k
  }
4604
262k
  zend_freedtoa(digits);
4605
262k
  return (buf);
4606
275k
}
4607
4608
static void destroy_freelist(void)
4609
0
{
4610
0
  int i;
4611
0
  Bigint *tmp;
4612
4613
0
  ACQUIRE_DTOA_LOCK(0)
4614
0
  for (i = 0; i <= Kmax; i++) {
4615
0
    Bigint **listp = &freelist[i];
4616
0
    while ((tmp = *listp) != NULL) {
4617
0
      *listp = tmp->next;
4618
0
      FREE(tmp);
4619
0
    }
4620
0
    freelist[i] = NULL;
4621
0
  }
4622
0
  FREE_DTOA_LOCK(0)
4623
0
}
4624
4625
static void free_p5s(void)
4626
0
{
4627
0
  Bigint **listp, *tmp;
4628
4629
0
  ACQUIRE_DTOA_LOCK(1)
4630
0
  listp = &p5s;
4631
0
  while ((tmp = *listp) != NULL) {
4632
0
    *listp = tmp->next;
4633
0
    FREE(tmp);
4634
0
  }
4635
0
  p5s = NULL;
4636
0
  FREE_DTOA_LOCK(1)
4637
0
}