Coverage Report

Created: 2025-11-16 06:23

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/php-src/ext/hash/murmur/PMurHash128.c
Line
Count
Source
1
/*-----------------------------------------------------------------------------
2
 * MurmurHash3 was written by Austin Appleby, and is placed in the public
3
 * domain.
4
 *
5
 * This is a c++ implementation of MurmurHash3_128 with support for progressive
6
 * processing based on PMurHash implementation written by Shane Day.
7
 */
8
9
/*-----------------------------------------------------------------------------
10
11
If you want to understand the MurmurHash algorithm you would be much better
12
off reading the original source. Just point your browser at:
13
http://code.google.com/p/smhasher/source/browse/trunk/MurmurHash3.cpp
14
15
16
What this version provides?
17
18
1. Progressive data feeding. Useful when the entire payload to be hashed
19
does not fit in memory or when the data is streamed through the application.
20
Also useful when hashing a number of strings with a common prefix. A partial
21
hash of a prefix string can be generated and reused for each suffix string.
22
23
How does it work?
24
25
We can only process entire 128 bit chunks of input, except for the very end
26
that may be shorter. So along with the partial hash we need to give back to
27
the caller a carry containing up to 15 bytes that we were unable to process.
28
This carry also needs to record the number of bytes the carry holds. I use
29
the low 4 bits as a count (0..15) and the carry bytes are shifted into the
30
high byte in stream order.
31
32
To handle endianess I simply use a macro that reads an uint and define
33
that macro to be a direct read on little endian machines, a read and swap
34
on big endian machines.
35
36
-----------------------------------------------------------------------------*/
37
38
39
#include "PMurHash128.h"
40
41
/*-----------------------------------------------------------------------------
42
 * Endianess, misalignment capabilities and util macros
43
 *
44
 * The following 5 macros are defined in this section. The other macros defined
45
 * are only needed to help derive these 5.
46
 *
47
 * READ_UINT32(x,i) Read a little endian unsigned 32-bit int at index
48
 * READ_UINT64(x,i) Read a little endian unsigned 64-bit int at index
49
 * UNALIGNED_SAFE   Defined if READ_UINTXX works on non-word boundaries
50
 * ROTL32(x,r)      Rotate x left by r bits
51
 * ROTL64(x,r)      Rotate x left by r bits
52
 * BIG_CONSTANT
53
 * FORCE_INLINE
54
 */
55
56
/* I386 or AMD64 */
57
#if defined(_M_I86) || defined(_M_IX86) || defined(_X86_) || defined(__i386__) || defined(__i386) || defined(i386) \
58
 || defined(_M_X64) || defined(__x86_64__) || defined(__x86_64) || defined(__amd64__) || defined(__amd64)
59
  #define UNALIGNED_SAFE
60
#endif
61
62
/* Find best way to ROTL */
63
#if defined(_MSC_VER)
64
  #define FORCE_INLINE  static __forceinline
65
  #include <stdlib.h>  /* Microsoft put _rotl declaration in here */
66
  #define ROTL32(x,y)  _rotl(x,y)
67
  #define ROTL64(x,y)  _rotl64(x,y)
68
  #define BIG_CONSTANT(x) (x)
69
#else
70
  #define FORCE_INLINE static inline __attribute__((always_inline))
71
  /* gcc recognises this code and generates a rotate instruction for CPUs with one */
72
954k
  #define ROTL32(x,r)  (((uint32_t)x << r) | ((uint32_t)x >> (32 - r)))
73
200k
  #define ROTL64(x,r)  (((uint64_t)x << r) | ((uint64_t)x >> (64 - r)))
74
116
  #define BIG_CONSTANT(x) (x##LLU)
75
#endif
76
77
#include "endianness.h"
78
79
100k
#define READ_UINT64(ptr,i) getblock64((uint64_t *)ptr,i)
80
476k
#define READ_UINT32(ptr,i) getblock32((uint32_t *)ptr,i)
81
82
//-----------------------------------------------------------------------------
83
// Finalization mix - force all bits of a hash block to avalanche
84
85
FORCE_INLINE uint32_t fmix32 ( uint32_t h )
86
176
{
87
176
  h ^= h >> 16;
88
176
  h *= 0x85ebca6b;
89
176
  h ^= h >> 13;
90
176
  h *= 0xc2b2ae35;
91
176
  h ^= h >> 16;
92
93
176
  return h;
94
176
}
95
96
//----------
97
98
FORCE_INLINE uint64_t fmix64 ( uint64_t k )
99
58
{
100
58
  k ^= k >> 33;
101
58
  k *= BIG_CONSTANT(0xff51afd7ed558ccd);
102
58
  k ^= k >> 33;
103
58
  k *= BIG_CONSTANT(0xc4ceb9fe1a85ec53);
104
58
  k ^= k >> 33;
105
106
58
  return k;
107
58
}
108
109
/*-----------------------------------------------------------------------------*
110
                                 PMurHash128x86
111
 *-----------------------------------------------------------------------------*/
112
/*-----------------------------------------------------------------------------
113
 * Core murmurhash algorithm macros */
114
115
static const uint32_t kC1 = 0x239b961b;
116
static const uint32_t kC2 = 0xab0e9789;
117
static const uint32_t kC3 = 0x38b34ae5;
118
static const uint32_t kC4 = 0xa1e38b93;
119
120
/* This is the main processing body of the algorithm. It operates
121
 * on each full 128-bits of input. */
122
119k
#define doblock128x86(h1, h2, h3, h4, k1, k2, k3,k4)\
123
119k
do {\
124
119k
  k1 *= kC1; k1  = ROTL32(k1,15); k1 *= kC2; h1 ^= k1;\
125
119k
\
126
119k
  h1 = ROTL32(h1,19); h1 += h2; h1 = h1*5+0x561ccd1b;\
127
119k
\
128
119k
  k2 *= kC2; k2  = ROTL32(k2,16); k2 *= kC3; h2 ^= k2;\
129
119k
\
130
119k
  h2 = ROTL32(h2,17); h2 += h3; h2 = h2*5+0x0bcaa747;\
131
119k
\
132
119k
  k3 *= kC3; k3  = ROTL32(k3,17); k3 *= kC4; h3 ^= k3;\
133
119k
\
134
119k
  h3 = ROTL32(h3,15); h3 += h4; h3 = h3*5+0x96cd1c35;\
135
119k
\
136
119k
  k4 *= kC4; k4  = ROTL32(k4,18); k4 *= kC1; h4 ^= k4;\
137
119k
\
138
119k
  h4 = ROTL32(h4,13); h4 += h1; h4 = h4*5+0x32ac3b17;\
139
119k
} while(0)
140
141
/* Append unaligned bytes to carry, forcing hash churn if we have 16 bytes */
142
/* cnt=bytes to process, h1-h4=hash k1-k4=carry, n=bytes in carry, ptr/len=payload */
143
74
#define dobytes128x86(cnt, h1, h2, h3, h4, k1, k2, k3, k4, n, ptr, len)\
144
74
do {\
145
74
  unsigned __cnt = cnt;\
146
438
  for(;__cnt--; len--) {\
147
364
    switch(n) {\
148
96
      case  0: case  1: case  2: case  3:\
149
96
        k1 = k1>>8 | (uint32_t)*ptr++<<24;\
150
96
        ++n; break;\
151
78
\
152
78
      case  4: case  5: case  6: case  7:\
153
61
        k2 = k2>>8 | (uint32_t)*ptr++<<24;\
154
61
        ++n; break;\
155
47
\
156
86
      case  8: case  9: case 10: case 11:\
157
86
        k3 = k3>>8 | (uint32_t)*ptr++<<24;\
158
86
        ++n; break;\
159
57
\
160
91
      case 12: case 13: case 14:\
161
91
        k4 = k4>>8 | (uint32_t)*ptr++<<24;\
162
91
        ++n; break;\
163
61
\
164
61
      case 15:\
165
30
        k4 = k4>>8 | (uint32_t)*ptr++<<24;\
166
30
        doblock128x86(h1, h2, h3, h4, k1, k2, k3, k4);\
167
30
        n = 0; break;\
168
364
    }\
169
364
  }\
170
74
} while(0)
171
172
/* Finalize a hash. To match the original Murmur3_128x86 the total_length must be provided */
173
void PMurHash128x86_Result(const uint32_t ph[4], const uint32_t pcarry[4], uint32_t total_length, uint32_t out[4])
174
44
{
175
44
  uint32_t h1 = ph[0];
176
44
  uint32_t h2 = ph[1];
177
44
  uint32_t h3 = ph[2];
178
44
  uint32_t h4 = ph[3];
179
180
44
  uint32_t k1, k2, k3, k4 = pcarry[3];
181
182
44
  int n = k4 & 15;
183
44
  switch(n) {
184
13
    case  1: case  2: case  3: case  4:
185
13
      k1 = pcarry[0] >> (4-n)*8;
186
13
      goto finrot_k1;
187
188
6
    case  5: case  6: case  7: case  8:
189
6
      k2 = pcarry[1] >> (8-n)*8;
190
6
      goto finrot_k21;
191
192
6
    case  9: case 10: case 11: case 12:
193
6
      k3 = pcarry[2] >> (12-n)*8;
194
6
      goto finrot_k321;
195
196
6
    case 13: case 14: case 15:
197
6
      k4 >>= (16-n)*8;
198
6
      goto finrot_k4321;
199
200
13
    default:
201
13
      goto skiprot;
202
44
  }
203
6
finrot_k4321:
204
6
  k4 *= kC4; k4  = ROTL32(k4,18); k4 *= kC1; h4 ^= k4;
205
6
  k3 = pcarry[2];
206
12
finrot_k321:
207
12
  k3 *= kC3; k3  = ROTL32(k3,17); k3 *= kC4; h3 ^= k3;
208
12
  k2 = pcarry[1];
209
18
finrot_k21:
210
18
  k2 *= kC2; k2  = ROTL32(k2,16); k2 *= kC3; h2 ^= k2;
211
18
  k1 = pcarry[0];
212
31
finrot_k1:
213
31
  k1 *= kC1; k1  = ROTL32(k1,15); k1 *= kC2; h1 ^= k1;
214
44
skiprot:
215
216
  //----------
217
  // finalization
218
219
44
  h1 ^= total_length; h2 ^= total_length;
220
44
  h3 ^= total_length; h4 ^= total_length;
221
222
44
  h1 += h2; h1 += h3; h1 += h4;
223
44
  h2 += h1; h3 += h1; h4 += h1;
224
225
44
  h1 = fmix32(h1);
226
44
  h2 = fmix32(h2);
227
44
  h3 = fmix32(h3);
228
44
  h4 = fmix32(h4);
229
230
44
  h1 += h2; h1 += h3; h1 += h4;
231
44
  h2 += h1; h3 += h1; h4 += h1;
232
233
44
  out[0] = h1;
234
44
  out[1] = h2;
235
44
  out[2] = h3;
236
44
  out[3] = h4;
237
44
}
238
239
/*---------------------------------------------------------------------------*/
240
241
/* Main hashing function. Initialise carry[4] to {0,0,0,0} and h[4] to an initial {seed,seed,seed,seed}
242
 * if wanted. Both ph and pcarry are required arguments. */
243
void PMurHash128x86_Process(uint32_t ph[4], uint32_t pcarry[4], const void * const key, int len)
244
44
{
245
44
  uint32_t h1 = ph[0];
246
44
  uint32_t h2 = ph[1];
247
44
  uint32_t h3 = ph[2];
248
44
  uint32_t h4 = ph[3];
249
250
44
  uint32_t k1 = pcarry[0];
251
44
  uint32_t k2 = pcarry[1];
252
44
  uint32_t k3 = pcarry[2];
253
44
  uint32_t k4 = pcarry[3];
254
255
44
  const uint8_t *ptr = (uint8_t*)key;
256
44
  const uint8_t *end;
257
258
  /* Extract carry count from low 4 bits of c value */
259
44
  int n = k4 & 15;
260
261
44
#if defined(UNALIGNED_SAFE)
262
  /* This CPU handles unaligned word access */
263
// #pragma message ( "UNALIGNED_SAFE" )
264
  /* Consume any carry bytes */
265
44
  int i = (16-n) & 15;
266
44
  if(i && i <= len) {
267
30
    dobytes128x86(i, h1, h2, h3, h4, k1, k2, k3, k4, n, ptr, len);
268
30
  }
269
270
  /* Process 128-bit chunks */
271
44
  end = ptr + (len & ~15);
272
119k
  for( ; ptr < end ; ptr+=16) {
273
119k
    k1 = READ_UINT32(ptr, 0);
274
119k
    k2 = READ_UINT32(ptr, 1);
275
119k
    k3 = READ_UINT32(ptr, 2);
276
119k
    k4 = READ_UINT32(ptr, 3);
277
119k
    doblock128x86(h1, h2, h3, h4, k1, k2, k3, k4);
278
119k
  }
279
280
#else /*UNALIGNED_SAFE*/
281
  /* This CPU does not handle unaligned word access */
282
// #pragma message ( "ALIGNED" )
283
  /* Consume enough so that the next data byte is word aligned */
284
  int i = -(intptr_t)(void *)ptr & 3;
285
  if(i && i <= len) {
286
    dobytes128x86(i, h1, h2, h3, h4, k1, k2, k3, k4, n, ptr, len);
287
  }
288
  /* We're now aligned. Process in aligned blocks. Specialise for each possible carry count */
289
  end = ptr + (len & ~15);
290
291
  switch(n) { /* how many bytes in c */
292
  case 0: /*
293
  k1=[----] k2=[----] k2=[----] k4=[----] w=[3210 7654 ba98 fedc] b=[3210 7654 ba98 fedc] */
294
    for( ; ptr < end ; ptr+=16) {
295
      k1 = READ_UINT32(ptr, 0);
296
      k2 = READ_UINT32(ptr, 1);
297
      k3 = READ_UINT32(ptr, 2);
298
      k4 = READ_UINT32(ptr, 3);
299
      doblock128x86(h1, h2, h3, h4, k1, k2, k3, k4);
300
    }
301
    break;
302
  case 1: case 2: case 3: /*
303
  k1=[10--] k2=[----] k3=[----] k4=[----] w=[5432 9876 dcba hgfe] b=[3210 7654 ba98 fedc] k1'=[hg--] */
304
    {
305
      const int lshift = n*8, rshift = 32-lshift;
306
      for( ; ptr < end ; ptr+=16) {
307
        uint32_t c = k1>>rshift;      // --10
308
        k2 = READ_UINT32(ptr, 0);     // 5432
309
        c |= k2<<lshift;              // 3210.
310
        k1 = READ_UINT32(ptr, 1);     // 9876
311
        k2 = k1<<lshift | k2>>rshift; // 7654.
312
        k4 = READ_UINT32(ptr, 2);     // dcba
313
        k3 = k4<<lshift | k1>>rshift; // ba98.
314
        k1 = READ_UINT32(ptr, 3);     // hgfe.
315
        k4 = k1<<lshift | k4>>rshift; // fedc.
316
        doblock128x86(h1, h2, h3, h4, c, k2, k3, k4);
317
      }
318
    }
319
    break;
320
  case 4: /*
321
  k1=[3210] k2=[----] k3=[----] k4=[----] w=[7654 ba98 fedc jihg] b=[3210 7654 ba98 fedc] k1'=[jihg] */
322
    for( ; ptr < end ; ptr+=16) {
323
      k2 = READ_UINT32(ptr, 0);
324
      k3 = READ_UINT32(ptr, 1);
325
      k4 = READ_UINT32(ptr, 2);
326
      doblock128x86(h1, h2, h3, h4, k1, k2, k3, k4);
327
      k1 = READ_UINT32(ptr, 3);
328
    }
329
    break;
330
  case 5: case 6: case 7: /*
331
  k1=[3210] k2=[54--] k3=[----] k4=[----] w=[9876 dcba hgfe lkji] b=[3210 7654 ba98 fedc] k1'=[jihg] k2'=[lk--] */
332
    {
333
      const int lshift = n*8-32, rshift = 32-lshift;
334
      for( ; ptr < end ; ptr+=16) {
335
        uint32_t c = k2>>rshift;      // --54
336
        k3 = READ_UINT32(ptr, 0);     // 9876
337
        c |= k3<<lshift;              // 7654.
338
        k4 = READ_UINT32(ptr, 1);     // dcba
339
        k3 = k4<<lshift | k3>>rshift; // ba98.
340
        k2 = READ_UINT32(ptr, 2);     // hgfe
341
        k4 = k2<<lshift | k4>>rshift; // fedc.
342
        doblock128x86(h1, h2, h3, h4, k1, c, k3, k4);
343
        k1 = k2>>rshift;              // --hg
344
        k2 = READ_UINT32(ptr, 3);     // lkji.
345
        k1 |= k2<<lshift;             // jihg.
346
      }
347
    }
348
  case 8: /*
349
  k1=[3210] k2=[7654] k3=[----] k4=[----] w=[ba98 fedc jihg nmlk] b=[3210 7654 ba98 fedc] k1'=[jihg] k2'=[nmlk] */
350
    for( ; ptr < end ; ptr+=16) {
351
      k3 = READ_UINT32(ptr, 0);
352
      k4 = READ_UINT32(ptr, 1);
353
      doblock128x86(h1, h2, h3, h4, k1, k2, k3, k4);
354
      k1 = READ_UINT32(ptr, 2);
355
      k2 = READ_UINT32(ptr, 3);
356
    }
357
    break;
358
  case 9: case 10: case 11: /*
359
  k1=[3210] k2=[7654] k3=[98--] k4=[----] w=[dcba hgfe lkji ponm] b=[3210 7654 ba98 fedc] k1'=[jihg] k2'=[nmlk] k3'=[po--] */
360
    {
361
      const int lshift = n*8-64, rshift = 32-lshift;
362
      for( ; ptr < end ; ptr+=16) {
363
        uint32_t c = k3>>rshift;      // --98
364
        k4 = READ_UINT32(ptr, 0);     // dcba
365
        c |= k4<<lshift;              // ba98.
366
        k3 = READ_UINT32(ptr, 1);     // hgfe
367
        k4 = k3<<lshift | k4>>rshift; // fedc.
368
        doblock128x86(h1, h2, h3, h4, k1, k2, c, k4);
369
        k2 = READ_UINT32(ptr, 2);     // lkji
370
        k1 = k2<<lshift | k3>>rshift; // jihg.
371
        k3 = READ_UINT32(ptr, 3);     // ponm.
372
        k2 = k3<<lshift | k2>>rshift; // nmlk.
373
      }
374
    }
375
  case 12: /*
376
  k1=[3210] k2=[7654] k3=[ba98] k4=[----] w=[fedc jihg nmlk rqpo] b=[3210 7654 ba98 fedc] k1'=[jihg] k2'=[nmlk] k3'=[rqpo] */
377
    for( ; ptr < end ; ptr+=16) {
378
      k4 = READ_UINT32(ptr, 0);
379
      doblock128x86(h1, h2, h3, h4, k1, k2, k3, k4);
380
      k1 = READ_UINT32(ptr, 1);
381
      k2 = READ_UINT32(ptr, 2);
382
      k3 = READ_UINT32(ptr, 3);
383
    }
384
    break;
385
  default: /* 12 < n <= 15
386
  k1=[3210] k2=[7654] k3=[ba98] k4=[dc--] w=[hgfe lkji ponm tsrq] b=[3210 7654 ba98 fedc] k1'=[jihg] k2'=[nmlk] k3'=[rqpo] k3'=[ts--] */
387
    {
388
      const int lshift = n*8-96, rshift = 32-lshift;
389
      for( ; ptr < end ; ptr+=16) {
390
        uint32_t c = k4>>rshift;      // --dc
391
        k4 = READ_UINT32(ptr, 0);     // hgfe
392
        c |= k4<<lshift;              // fedc.
393
        doblock128x86(h1, h2, h3, h4, k1, k2, k3, c);
394
        k3 = READ_UINT32(ptr, 1);     // lkji
395
        k1 = k3<<lshift | k4>>rshift; // jihg.
396
        c  = READ_UINT32(ptr, 2);     // ponm
397
        k2 = c<<lshift | k3>>rshift;  // nmlk.
398
        k4 = READ_UINT32(ptr, 3);     // tsrq.
399
        k3 = k4<<lshift | c>>rshift;  // rqpo.
400
      }
401
    }
402
  }
403
#endif /*UNALIGNED_SAFE*/
404
405
  /* Advance over whole 128-bit chunks, possibly leaving 1..15 bytes */
406
44
  len -= len & ~15;
407
408
  /* Append any remaining bytes into carry */
409
44
  dobytes128x86(len, h1, h2, h3, h4, k1, k2, k3, k4, n, ptr, len);
410
411
  /* Copy out new running hash and carry */
412
44
  ph[0] = h1;
413
44
  ph[1] = h2;
414
44
  ph[2] = h3;
415
44
  ph[3] = h4;
416
44
  pcarry[0] = k1;
417
44
  pcarry[1] = k2;
418
44
  pcarry[2] = k3;
419
44
  pcarry[3] = (k4 & ~0xff) | n;
420
44
}
421
422
/*---------------------------------------------------------------------------*/
423
424
/* All in one go */
425
426
/* MurmurHash3_x86_128 api */
427
void PMurHash128x86(const void * key, const int len, uint32_t seed, void * out)
428
0
{
429
0
  uint32_t carry[4] = {0, 0, 0, 0};
430
0
  uint32_t h[4] = {seed, seed, seed, seed};
431
0
  PMurHash128x86_Process(h, carry, key, len);
432
0
  PMurHash128x86_Result(h, carry, (uint32_t) len, (uint32_t *) out);
433
0
}
434
435
/*-----------------------------------------------------------------------------*
436
                                 PMurHash128x64
437
 *-----------------------------------------------------------------------------*/
438
/*-----------------------------------------------------------------------------
439
 * Core murmurhash algorithm macros */
440
441
static const uint64_t kC1L = BIG_CONSTANT(0x87c37b91114253d5);
442
static const uint64_t kC2L = BIG_CONSTANT(0x4cf5ad432745937f);
443
444
/* This is the main processing body of the algorithm. It operates
445
 * on each full 128-bits of input. */
446
50.1k
#define doblock128x64(h1, h2, k1, k2)\
447
50.1k
do {\
448
50.1k
  k1 *= kC1L; k1  = ROTL64(k1,31); k1 *= kC2L; h1 ^= k1;\
449
50.1k
\
450
50.1k
  h1 = ROTL64(h1,27); h1 += h2; h1 = h1*5+0x52dce729;\
451
50.1k
\
452
50.1k
  k2 *= kC2L; k2  = ROTL64(k2,33); k2 *= kC1L; h2 ^= k2;\
453
50.1k
\
454
50.1k
  h2 = ROTL64(h2,31); h2 += h1; h2 = h2*5+0x38495ab5;\
455
50.1k
} while(0)
456
457
/* Append unaligned bytes to carry, forcing hash churn if we have 16 bytes */
458
/* cnt=bytes to process, h1,h2=hash k1,k2=carry, n=bytes in carry, ptr/len=payload */
459
48
#define dobytes128x64(cnt, h1, h2, k1, k2, n, ptr, len) \
460
48
do {\
461
48
  unsigned __cnt = cnt;\
462
235
  for(;__cnt--; len--) {\
463
187
    switch(n) {\
464
62
      case  0: case  1: case  2: case  3:\
465
99
      case  4: case  5: case  6: case  7:\
466
99
        k1 = k1>>8 | (uint64_t)*ptr++<<56;\
467
99
        n++; break;\
468
92
\
469
92
      case  8: case  9: case 10: case 11:\
470
69
      case 12: case 13: case 14:\
471
69
        k2 = k2>>8 | (uint64_t)*ptr++<<56;\
472
69
        n++; break;\
473
55
\
474
55
      case 15:\
475
19
        k2 = k2>>8 | (uint64_t)*ptr++<<56;\
476
19
        doblock128x64(h1, h2, k1, k2);\
477
19
        n = 0; break;\
478
187
    }\
479
187
  }\
480
48
} while(0)
481
482
/* Finalize a hash. To match the original Murmur3_128x64 the total_length must be provided */
483
void PMurHash128x64_Result(const uint64_t ph[2], const uint64_t pcarry[2],
484
                        const uint32_t total_length, uint64_t out[2])
485
29
{
486
29
  uint64_t h1 = ph[0];
487
29
  uint64_t h2 = ph[1];
488
489
29
  uint64_t k1;
490
29
  uint64_t k2 = pcarry[1];
491
492
29
  int n = k2 & 15;
493
29
  if (n) {
494
21
    k1 = pcarry[0];
495
21
    if (n > 8) {
496
4
      k2 >>= (16-n)*8;
497
4
      k2 *= kC2L; k2  = ROTL64(k2,33); k2 *= kC1L; h2 ^= k2;
498
17
    } else {
499
17
      k1 >>= (8-n)*8;
500
17
    }
501
21
    k1 *= kC1L; k1  = ROTL64(k1,31); k1 *= kC2L; h1 ^= k1;
502
21
  }
503
504
  //----------
505
  // finalization
506
507
29
  h1 ^= total_length; h2 ^= total_length;
508
509
29
  h1 += h2;
510
29
  h2 += h1;
511
512
29
  h1 = fmix64(h1);
513
29
  h2 = fmix64(h2);
514
515
29
  h1 += h2;
516
29
  h2 += h1;
517
518
29
  out[0] = h1;
519
29
  out[1] = h2;
520
29
}
521
522
/*---------------------------------------------------------------------------*/
523
524
/* Main hashing function. Initialise carry[2] to {0,0} and h[2] to an initial {seed,seed}
525
 * if wanted. Both ph and pcarry are required arguments. */
526
void PMurHash128x64_Process(uint64_t ph[2], uint64_t pcarry[2], const void * const key, int len)
527
29
{
528
29
  uint64_t h1 = ph[0];
529
29
  uint64_t h2 = ph[1];
530
531
29
  uint64_t k1 = pcarry[0];
532
29
  uint64_t k2 = pcarry[1];
533
534
29
  const uint8_t *ptr = (uint8_t*)key;
535
29
  const uint8_t *end;
536
537
  /* Extract carry count from low 4 bits of c value */
538
29
  int n = k2 & 15;
539
540
29
#if defined(UNALIGNED_SAFE)
541
  /* This CPU handles unaligned word access */
542
// #pragma message ( "UNALIGNED_SAFE" )
543
  /* Consume any carry bytes */
544
29
  int i = (16-n) & 15;
545
29
  if(i && i <= len) {
546
19
    dobytes128x64(i, h1, h2, k1, k2, n, ptr, len);
547
19
  }
548
549
  /* Process 128-bit chunks */
550
29
  end = ptr + (len & ~15);
551
50.1k
  for( ; ptr < end ; ptr+=16) {
552
50.1k
    k1 = READ_UINT64(ptr, 0);
553
50.1k
    k2 = READ_UINT64(ptr, 1);
554
50.1k
    doblock128x64(h1, h2, k1, k2);
555
50.1k
  }
556
557
#else /*UNALIGNED_SAFE*/
558
  /* This CPU does not handle unaligned word access */
559
// #pragma message ( "ALIGNED" )
560
  /* Consume enough so that the next data byte is word aligned */
561
  int i = -(intptr_t)(void *)ptr & 7;
562
  if(i && i <= len) {
563
    dobytes128x64(i, h1, h2, k1, k2, n, ptr, len);
564
  }
565
  /* We're now aligned. Process in aligned blocks. Specialise for each possible carry count */
566
  end = ptr + (len & ~15);
567
568
  switch(n) { /* how many bytes in c */
569
  case 0: /*
570
    k1=[--------] k2=[--------] w=[76543210 fedcba98] b=[76543210 fedcba98] */
571
    for( ; ptr < end ; ptr+=16) {
572
      k1 = READ_UINT64(ptr, 0);
573
      k2 = READ_UINT64(ptr, 1);
574
      doblock128x64(h1, h2, k1, k2);
575
    }
576
    break;
577
  case 1: case 2: case 3: case 4: case 5: case 6: case 7: /*
578
    k1=[10------] k2=[--------] w=[98765432 hgfedcba] b=[76543210 fedcba98] k1'=[hg------] */
579
    {
580
      const int lshift = n*8, rshift = 64-lshift;
581
      for( ; ptr < end ; ptr+=16) {
582
        uint64_t c = k1>>rshift;
583
        k2 = READ_UINT64(ptr, 0);
584
        c |= k2<<lshift;
585
        k1 = READ_UINT64(ptr, 1);
586
        k2 = k2>>rshift | k1<<lshift;
587
        doblock128x64(h1, h2, c, k2);
588
      }
589
    }
590
    break;
591
  case 8: /*
592
  k1=[76543210] k2=[--------] w=[fedcba98 nmlkjihg] b=[76543210 fedcba98] k1`=[nmlkjihg] */
593
    for( ; ptr < end ; ptr+=16) {
594
      k2 = READ_UINT64(ptr, 0);
595
      doblock128x64(h1, h2, k1, k2);
596
      k1 = READ_UINT64(ptr, 1);
597
    }
598
    break;
599
  default: /* 8 < n <= 15
600
  k1=[76543210] k2=[98------] w=[hgfedcba ponmlkji] b=[76543210 fedcba98] k1`=[nmlkjihg] k2`=[po------] */
601
    {
602
      const int lshift = n*8-64, rshift = 64-lshift;
603
      for( ; ptr < end ; ptr+=16) {
604
        uint64_t c = k2 >> rshift;
605
        k2 = READ_UINT64(ptr, 0);
606
        c |= k2 << lshift;
607
        doblock128x64(h1, h2, k1, c);
608
        k1 = k2 >> rshift;
609
        k2 = READ_UINT64(ptr, 1);
610
        k1 |= k2 << lshift;
611
      }
612
    }
613
  }
614
#endif /*UNALIGNED_SAFE*/
615
616
  /* Advance over whole 128-bit chunks, possibly leaving 1..15 bytes */
617
29
  len -= len & ~15;
618
619
  /* Append any remaining bytes into carry */
620
29
  dobytes128x64(len, h1, h2, k1, k2, n, ptr, len);
621
622
  /* Copy out new running hash and carry */
623
29
  ph[0] = h1;
624
29
  ph[1] = h2;
625
29
  pcarry[0] = k1;
626
29
  pcarry[1] = (k2 & ~0xff) | n;
627
29
}
628
629
/*---------------------------------------------------------------------------*/
630
631
/* All in one go */
632
633
/* MurmurHash3_x64_128 api */
634
void PMurHash128x64(const void * key, const int len, uint32_t seed, void * out)
635
0
{
636
0
  uint64_t carry[2] = {0, 0};
637
0
  uint64_t h[2] = {seed, seed};
638
0
  PMurHash128x64_Process(h, carry, key, len);
639
0
  PMurHash128x64_Result(h, carry, (uint32_t) len, (uint64_t *) out);
640
0
}