Coverage Report

Created: 2025-12-31 07:28

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/php-src/Zend/zend_strtod.c
Line
Count
Source
1
/****************************************************************
2
 *
3
 * The author of this software is David M. Gay.
4
 *
5
 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
6
 *
7
 * Permission to use, copy, modify, and distribute this software for any
8
 * purpose without fee is hereby granted, provided that this entire notice
9
 * is included in all copies of any software which is or includes a copy
10
 * or modification of this software and in all copies of the supporting
11
 * documentation for such software.
12
 *
13
 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
14
 * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
15
 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
16
 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
17
 *
18
 ***************************************************************/
19
20
/* Please send bug reports to David M. Gay (dmg at acm dot org,
21
 * with " at " changed at "@" and " dot " changed to ".").  */
22
23
/* On a machine with IEEE extended-precision registers, it is
24
 * necessary to specify double-precision (53-bit) rounding precision
25
 * before invoking strtod or dtoa.  If the machine uses (the equivalent
26
 * of) Intel 80x87 arithmetic, the call
27
 *  _control87(PC_53, MCW_PC);
28
 * does this with many compilers.  Whether this or another call is
29
 * appropriate depends on the compiler; for this to work, it may be
30
 * necessary to #include "float.h" or another system-dependent header
31
 * file.
32
 */
33
34
/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
35
 * (Note that IEEE arithmetic is disabled by gcc's -ffast-math flag.)
36
 *
37
 * This strtod returns a nearest machine number to the input decimal
38
 * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
39
 * broken by the IEEE round-even rule.  Otherwise ties are broken by
40
 * biased rounding (add half and chop).
41
 *
42
 * Inspired loosely by William D. Clinger's paper "How to Read Floating
43
 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
44
 *
45
 * Modifications:
46
 *
47
 *  1. We only require IEEE, IBM, or VAX double-precision
48
 *    arithmetic (not IEEE double-extended).
49
 *  2. We get by with floating-point arithmetic in a case that
50
 *    Clinger missed -- when we're computing d * 10^n
51
 *    for a small integer d and the integer n is not too
52
 *    much larger than 22 (the maximum integer k for which
53
 *    we can represent 10^k exactly), we may be able to
54
 *    compute (d*10^k) * 10^(e-k) with just one roundoff.
55
 *  3. Rather than a bit-at-a-time adjustment of the binary
56
 *    result in the hard case, we use floating-point
57
 *    arithmetic to determine the adjustment to within
58
 *    one bit; only in really hard cases do we need to
59
 *    compute a second residual.
60
 *  4. Because of 3., we don't need a large table of powers of 10
61
 *    for ten-to-e (just some small tables, e.g. of 10^k
62
 *    for 0 <= k <= 22).
63
 */
64
65
/*
66
 * #define IEEE_8087 for IEEE-arithmetic machines where the least
67
 *  significant byte has the lowest address.
68
 * #define IEEE_MC68k for IEEE-arithmetic machines where the most
69
 *  significant byte has the lowest address.
70
 * #define Long int on machines with 32-bit ints and 64-bit longs.
71
 * #define IBM for IBM mainframe-style floating-point arithmetic.
72
 * #define VAX for VAX-style floating-point arithmetic (D_floating).
73
 * #define No_leftright to omit left-right logic in fast floating-point
74
 *  computation of dtoa.  This will cause dtoa modes 4 and 5 to be
75
 *  treated the same as modes 2 and 3 for some inputs.
76
 * #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
77
 *  and strtod and dtoa should round accordingly.  Unless Trust_FLT_ROUNDS
78
 *  is also #defined, fegetround() will be queried for the rounding mode.
79
 *  Note that both FLT_ROUNDS and fegetround() are specified by the C99
80
 *  standard (and are specified to be consistent, with fesetround()
81
 *  affecting the value of FLT_ROUNDS), but that some (Linux) systems
82
 *  do not work correctly in this regard, so using fegetround() is more
83
 *  portable than using FLT_ROUNDS directly.
84
 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
85
 *  and Honor_FLT_ROUNDS is not #defined.
86
 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
87
 *  that use extended-precision instructions to compute rounded
88
 *  products and quotients) with IBM.
89
 * #define ROUND_BIASED for IEEE-format with biased rounding and arithmetic
90
 *  that rounds toward +Infinity.
91
 * #define ROUND_BIASED_without_Round_Up for IEEE-format with biased
92
 *  rounding when the underlying floating-point arithmetic uses
93
 *  unbiased rounding.  This prevent using ordinary floating-point
94
 *  arithmetic when the result could be computed with one rounding error.
95
 * #define Inaccurate_Divide for IEEE-format with correctly rounded
96
 *  products but inaccurate quotients, e.g., for Intel i860.
97
 * #define NO_LONG_LONG on machines that do not have a "long long"
98
 *  integer type (of >= 64 bits).  On such machines, you can
99
 *  #define Just_16 to store 16 bits per 32-bit Long when doing
100
 *  high-precision integer arithmetic.  Whether this speeds things
101
 *  up or slows things down depends on the machine and the number
102
 *  being converted.  If long long is available and the name is
103
 *  something other than "long long", #define Llong to be the name,
104
 *  and if "unsigned Llong" does not work as an unsigned version of
105
 *  Llong, #define #ULLong to be the corresponding unsigned type.
106
 * #define KR_headers for old-style C function headers.
107
 * #define Bad_float_h if your system lacks a float.h or if it does not
108
 *  define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
109
 *  FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
110
 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
111
 *  if memory is available and otherwise does something you deem
112
 *  appropriate.  If MALLOC is undefined, malloc will be invoked
113
 *  directly -- and assumed always to succeed.  Similarly, if you
114
 *  want something other than the system's free() to be called to
115
 *  recycle memory acquired from MALLOC, #define FREE to be the
116
 *  name of the alternate routine.  (FREE or free is only called in
117
 *  pathological cases, e.g., in a dtoa call after a dtoa return in
118
 *  mode 3 with thousands of digits requested.)
119
 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
120
 *  memory allocations from a private pool of memory when possible.
121
 *  When used, the private pool is PRIVATE_MEM bytes long:  2304 bytes,
122
 *  unless #defined to be a different length.  This default length
123
 *  suffices to get rid of MALLOC calls except for unusual cases,
124
 *  such as decimal-to-binary conversion of a very long string of
125
 *  digits.  The longest string dtoa can return is about 751 bytes
126
 *  long.  For conversions by strtod of strings of 800 digits and
127
 *  all dtoa conversions in single-threaded executions with 8-byte
128
 *  pointers, PRIVATE_MEM >= 7400 appears to suffice; with 4-byte
129
 *  pointers, PRIVATE_MEM >= 7112 appears adequate.
130
 * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK
131
 *  #defined automatically on IEEE systems.  On such systems,
132
 *  when INFNAN_CHECK is #defined, strtod checks
133
 *  for Infinity and NaN (case insensitively).  On some systems
134
 *  (e.g., some HP systems), it may be necessary to #define NAN_WORD0
135
 *  appropriately -- to the most significant word of a quiet NaN.
136
 *  (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
137
 *  When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
138
 *  strtod also accepts (case insensitively) strings of the form
139
 *  NaN(x), where x is a string of hexadecimal digits and spaces;
140
 *  if there is only one string of hexadecimal digits, it is taken
141
 *  for the 52 fraction bits of the resulting NaN; if there are two
142
 *  or more strings of hex digits, the first is for the high 20 bits,
143
 *  the second and subsequent for the low 32 bits, with intervening
144
 *  white space ignored; but if this results in none of the 52
145
 *  fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0
146
 *  and NAN_WORD1 are used instead.
147
 * #define MULTIPLE_THREADS if the system offers preemptively scheduled
148
 *  multiple threads.  In this case, you must provide (or suitably
149
 *  #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
150
 *  by FREE_DTOA_LOCK(n) for n = 0 or 1.  (The second lock, accessed
151
 *  in pow5mult, ensures lazy evaluation of only one copy of high
152
 *  powers of 5; omitting this lock would introduce a small
153
 *  probability of wasting memory, but would otherwise be harmless.)
154
 *  You must also invoke freedtoa(s) to free the value s returned by
155
 *  dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
156
 * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that
157
 *  avoids underflows on inputs whose result does not underflow.
158
 *  If you #define NO_IEEE_Scale on a machine that uses IEEE-format
159
 *  floating-point numbers and flushes underflows to zero rather
160
 *  than implementing gradual underflow, then you must also #define
161
 *  Sudden_Underflow.
162
 * #define USE_LOCALE to use the current locale's decimal_point value.
163
 * #define SET_INEXACT if IEEE arithmetic is being used and extra
164
 *  computation should be done to set the inexact flag when the
165
 *  result is inexact and avoid setting inexact when the result
166
 *  is exact.  In this case, dtoa.c must be compiled in
167
 *  an environment, perhaps provided by #include "dtoa.c" in a
168
 *  suitable wrapper, that defines two functions,
169
 *    int get_inexact(void);
170
 *    void clear_inexact(void);
171
 *  such that get_inexact() returns a nonzero value if the
172
 *  inexact bit is already set, and clear_inexact() sets the
173
 *  inexact bit to 0.  When SET_INEXACT is #defined, strtod
174
 *  also does extra computations to set the underflow and overflow
175
 *  flags when appropriate (i.e., when the result is tiny and
176
 *  inexact or when it is a numeric value rounded to +-infinity).
177
 * #define NO_ERRNO if strtod should not assign errno = ERANGE when
178
 *  the result overflows to +-Infinity or underflows to 0.
179
 * #define NO_HEX_FP to omit recognition of hexadecimal floating-point
180
 *  values by strtod.
181
 * #define NO_STRTOD_BIGCOMP (on IEEE-arithmetic systems only for now)
182
 *  to disable logic for "fast" testing of very long input strings
183
 *  to strtod.  This testing proceeds by initially truncating the
184
 *  input string, then if necessary comparing the whole string with
185
 *  a decimal expansion to decide close cases. This logic is only
186
 *  used for input more than STRTOD_DIGLIM digits long (default 40).
187
 */
188
189
#include <zend_operators.h>
190
#include <zend_strtod.h>
191
#include "zend_strtod_int.h"
192
#include "zend_globals.h"
193
194
#ifndef Long
195
1.94M
#define Long int32_t
196
#endif
197
#ifndef ULong
198
34.5M
#define ULong uint32_t
199
#endif
200
201
#undef Bigint
202
#undef freelist
203
#undef p5s
204
#undef dtoa_result
205
206
29.3M
#define Bigint      _zend_strtod_bigint
207
36.7M
#define freelist    (EG(strtod_state).freelist)
208
667k
#define p5s         (EG(strtod_state).p5s)
209
1.58M
#define dtoa_result (EG(strtod_state).result)
210
211
#ifdef DEBUG
212
static void Bug(const char *message) {
213
  fprintf(stderr, "%s\n", message);
214
}
215
#endif
216
217
#include "stdlib.h"
218
#include "string.h"
219
220
#ifdef USE_LOCALE
221
#include "locale.h"
222
#endif
223
224
#ifdef Honor_FLT_ROUNDS
225
#ifndef Trust_FLT_ROUNDS
226
#include <fenv.h>
227
#endif
228
#endif
229
230
#ifdef MALLOC
231
#ifdef KR_headers
232
extern char *MALLOC();
233
#else
234
extern void *MALLOC(size_t);
235
#endif
236
#else
237
231
#define MALLOC malloc
238
1
#define FREE   free
239
#endif
240
241
#ifndef Omit_Private_Memory
242
#ifndef PRIVATE_MEM
243
#define PRIVATE_MEM 2304
244
#endif
245
#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
246
static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
247
#endif
248
249
#undef IEEE_Arith
250
#undef Avoid_Underflow
251
#ifdef IEEE_MC68k
252
#define IEEE_Arith
253
#endif
254
#ifdef IEEE_8087
255
#define IEEE_Arith
256
#endif
257
258
#ifdef IEEE_Arith
259
#ifndef NO_INFNAN_CHECK
260
#undef INFNAN_CHECK
261
#define INFNAN_CHECK
262
#endif
263
#else
264
#undef INFNAN_CHECK
265
#define NO_STRTOD_BIGCOMP
266
#endif
267
268
#include "errno.h"
269
270
#ifdef Bad_float_h
271
272
#ifdef IEEE_Arith
273
#define DBL_DIG 15
274
#define DBL_MAX_10_EXP 308
275
#define DBL_MAX_EXP 1024
276
#define FLT_RADIX 2
277
#endif /*IEEE_Arith*/
278
279
#ifdef IBM
280
#define DBL_DIG 16
281
#define DBL_MAX_10_EXP 75
282
#define DBL_MAX_EXP 63
283
#define FLT_RADIX 16
284
#define DBL_MAX 7.2370055773322621e+75
285
#endif
286
287
#ifdef VAX
288
#define DBL_DIG 16
289
#define DBL_MAX_10_EXP 38
290
#define DBL_MAX_EXP 127
291
#define FLT_RADIX 2
292
#define DBL_MAX 1.7014118346046923e+38
293
#endif
294
295
#else /* ifndef Bad_float_h */
296
#include "float.h"
297
#endif /* Bad_float_h */
298
299
#ifndef __MATH_H__
300
#include "math.h"
301
#endif
302
303
#ifndef CONST
304
#ifdef KR_headers
305
#define CONST /* blank */
306
#else
307
865k
#define CONST const
308
#endif
309
#endif
310
311
#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
312
Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
313
#endif
314
315
typedef union { double d; ULong L[2]; } U;
316
317
#ifdef IEEE_8087
318
7.29M
#define word0(x) (x)->L[1]
319
2.99M
#define word1(x) (x)->L[0]
320
#else
321
#define word0(x) (x)->L[0]
322
#define word1(x) (x)->L[1]
323
#endif
324
17.8M
#define dval(x) (x)->d
325
326
#ifndef STRTOD_DIGLIM
327
462k
#define STRTOD_DIGLIM 40
328
#endif
329
330
#ifdef DIGLIM_DEBUG
331
extern int strtod_diglim;
332
#else
333
462k
#define strtod_diglim STRTOD_DIGLIM
334
#endif
335
336
/* The following definition of Storeinc is appropriate for MIPS processors.
337
 * An alternative that might be better on some machines is
338
 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
339
 */
340
#if defined(IEEE_8087) + defined(VAX) + defined(__arm__)
341
#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
342
((unsigned short *)a)[0] = (unsigned short)c, a++)
343
#else
344
#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
345
((unsigned short *)a)[1] = (unsigned short)c, a++)
346
#endif
347
348
/* #define P DBL_MANT_DIG */
349
/* Ten_pmax = floor(P*log(2)/log(5)) */
350
/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
351
/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
352
/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
353
354
#ifdef IEEE_Arith
355
1.04M
#define Exp_shift  20
356
610k
#define Exp_shift1 20
357
2.60M
#define Exp_msk1    0x100000
358
#define Exp_msk11   0x100000
359
2.22M
#define Exp_mask  0x7ff00000
360
4.19M
#define P 53
361
#define Nbits 53
362
1.88M
#define Bias 1023
363
#define Emax 1023
364
737k
#define Emin (-1022)
365
486k
#define Exp_1  0x3ff00000
366
248k
#define Exp_11 0x3ff00000
367
1.01M
#define Ebits 11
368
964k
#define Frac_mask  0xfffff
369
252k
#define Frac_mask1 0xfffff
370
384k
#define Ten_pmax 22
371
130k
#define Bletch 0x10
372
322k
#define Bndry_mask  0xfffff
373
22.7k
#define Bndry_mask1 0xfffff
374
567k
#define LSB 1
375
431k
#define Sign_bit 0x80000000
376
9.94k
#define Log2P 1
377
#define Tiny0 0
378
215k
#define Tiny1 1
379
511k
#define Quick_max 14
380
76.5k
#define Int_max 14
381
#ifndef NO_IEEE_Scale
382
#define Avoid_Underflow
383
#ifdef Flush_Denorm /* debugging option */
384
#undef Sudden_Underflow
385
#endif
386
#endif
387
388
#ifndef Flt_Rounds
389
#ifdef FLT_ROUNDS
390
444k
#define Flt_Rounds FLT_ROUNDS
391
#else
392
#define Flt_Rounds 1
393
#endif
394
#endif /*Flt_Rounds*/
395
396
#ifdef Honor_FLT_ROUNDS
397
#undef Check_FLT_ROUNDS
398
#define Check_FLT_ROUNDS
399
#else
400
#define Rounding Flt_Rounds
401
#endif
402
403
#else /* ifndef IEEE_Arith */
404
#undef Check_FLT_ROUNDS
405
#undef Honor_FLT_ROUNDS
406
#undef SET_INEXACT
407
#undef  Sudden_Underflow
408
#define Sudden_Underflow
409
#ifdef IBM
410
#undef Flt_Rounds
411
#define Flt_Rounds 0
412
#define Exp_shift  24
413
#define Exp_shift1 24
414
#define Exp_msk1   0x1000000
415
#define Exp_msk11  0x1000000
416
#define Exp_mask  0x7f000000
417
#define P 14
418
#define Nbits 56
419
#define Bias 65
420
#define Emax 248
421
#define Emin (-260)
422
#define Exp_1  0x41000000
423
#define Exp_11 0x41000000
424
#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
425
#define Frac_mask  0xffffff
426
#define Frac_mask1 0xffffff
427
#define Bletch 4
428
#define Ten_pmax 22
429
#define Bndry_mask  0xefffff
430
#define Bndry_mask1 0xffffff
431
#define LSB 1
432
#define Sign_bit 0x80000000
433
#define Log2P 4
434
#define Tiny0 0x100000
435
#define Tiny1 0
436
#define Quick_max 14
437
#define Int_max 15
438
#else /* VAX */
439
#undef Flt_Rounds
440
#define Flt_Rounds 1
441
#define Exp_shift  23
442
#define Exp_shift1 7
443
#define Exp_msk1    0x80
444
#define Exp_msk11   0x800000
445
#define Exp_mask  0x7f80
446
#define P 56
447
#define Nbits 56
448
#define Bias 129
449
#define Emax 126
450
#define Emin (-129)
451
#define Exp_1  0x40800000
452
#define Exp_11 0x4080
453
#define Ebits 8
454
#define Frac_mask  0x7fffff
455
#define Frac_mask1 0xffff007f
456
#define Ten_pmax 24
457
#define Bletch 2
458
#define Bndry_mask  0xffff007f
459
#define Bndry_mask1 0xffff007f
460
#define LSB 0x10000
461
#define Sign_bit 0x8000
462
#define Log2P 1
463
#define Tiny0 0x80
464
#define Tiny1 0
465
#define Quick_max 15
466
#define Int_max 15
467
#endif /* IBM, VAX */
468
#endif /* IEEE_Arith */
469
470
#ifndef IEEE_Arith
471
#define ROUND_BIASED
472
#else
473
#ifdef ROUND_BIASED_without_Round_Up
474
#undef  ROUND_BIASED
475
#define ROUND_BIASED
476
#endif
477
#endif
478
479
#ifdef RND_PRODQUOT
480
#define rounded_product(a,b) a = rnd_prod(a, b)
481
#define rounded_quotient(a,b) a = rnd_quot(a, b)
482
#ifdef KR_headers
483
extern double rnd_prod(), rnd_quot();
484
#else
485
extern double rnd_prod(double, double), rnd_quot(double, double);
486
#endif
487
#else
488
10.8k
#define rounded_product(a,b) a *= b
489
68.4k
#define rounded_quotient(a,b) a /= b
490
#endif
491
492
6.05k
#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
493
3.39k
#define Big1 0xffffffff
494
495
#ifndef Pack_32
496
#define Pack_32
497
#endif
498
499
typedef struct BCinfo BCinfo;
500
 struct
501
BCinfo { int dp0, dp1, dplen, dsign, e0, inexact, nd, nd0, rounding, scale, uflchk; };
502
503
#ifdef KR_headers
504
#define FFFFFFFF ((((unsigned long)0xffff)<<16)|(unsigned long)0xffff)
505
#else
506
163M
#define FFFFFFFF 0xffffffffUL
507
#endif
508
509
#ifdef NO_LONG_LONG
510
#undef ULLong
511
#ifdef Just_16
512
#undef Pack_32
513
/* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
514
 * This makes some inner loops simpler and sometimes saves work
515
 * during multiplications, but it often seems to make things slightly
516
 * slower.  Hence the default is now to store 32 bits per Long.
517
 */
518
#endif
519
#else /* long long available */
520
#ifndef Llong
521
#define Llong long long
522
#endif
523
#ifndef ULLong
524
17.2M
#define ULLong unsigned Llong
525
#endif
526
#endif /* NO_LONG_LONG */
527
528
#ifndef MULTIPLE_THREADS
529
#define ACQUIRE_DTOA_LOCK(n)  /*nothing*/
530
#define FREE_DTOA_LOCK(n) /*nothing*/
531
#endif
532
533
18.3M
#define Kmax ZEND_STRTOD_K_MAX
534
535
 struct
536
Bigint {
537
  struct Bigint *next;
538
  int k, maxwds, sign, wds;
539
  ULong x[1];
540
  };
541
542
 typedef struct Bigint Bigint;
543
544
#ifndef Bigint
545
 static Bigint *freelist[Kmax+1];
546
#endif
547
548
static void destroy_freelist(void);
549
static void free_p5s(void);
550
551
#ifdef MULTIPLE_THREADS
552
static MUTEX_T dtoa_mutex;
553
static MUTEX_T pow5mult_mutex;
554
#endif /* ZTS */
555
556
ZEND_API int zend_shutdown_strtod(void) /* {{{ */
557
0
{
558
0
  destroy_freelist();
559
0
  free_p5s();
560
561
0
  return 1;
562
0
}
563
/* }}} */
564
565
 static Bigint *
566
Balloc
567
#ifdef KR_headers
568
  (k) int k;
569
#else
570
  (int k)
571
#endif
572
9.18M
{
573
9.18M
  int x;
574
9.18M
  Bigint *rv;
575
#ifndef Omit_Private_Memory
576
  unsigned int len;
577
#endif
578
579
9.18M
  ACQUIRE_DTOA_LOCK(0);
580
  /* The k > Kmax case does not need ACQUIRE_DTOA_LOCK(0), */
581
  /* but this case seems very unlikely. */
582
9.18M
  if (k <= Kmax && (rv = freelist[k]))
583
9.18M
    freelist[k] = rv->next;
584
231
  else {
585
231
    x = 1 << k;
586
231
#ifdef Omit_Private_Memory
587
231
    rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong));
588
231
    if (!rv) {
589
0
      FREE_DTOA_LOCK(0);
590
0
      zend_error_noreturn(E_ERROR, "Balloc() failed to allocate memory");
591
0
    }
592
#else
593
    len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
594
      /sizeof(double);
595
    if (k <= Kmax && pmem_next - private_mem + len <= PRIVATE_mem) {
596
      rv = (Bigint*)pmem_next;
597
      pmem_next += len;
598
      }
599
    else
600
      rv = (Bigint*)MALLOC(len*sizeof(double));
601
      if (!rv) {
602
        FREE_DTOA_LOCK(0);
603
        zend_error_noreturn(E_ERROR, "Balloc() failed to allocate memory");
604
      }
605
#endif
606
231
    rv->k = k;
607
231
    rv->maxwds = x;
608
231
    }
609
9.18M
  FREE_DTOA_LOCK(0);
610
9.18M
  rv->sign = rv->wds = 0;
611
9.18M
  return rv;
612
9.18M
  }
613
614
 static void
615
Bfree
616
#ifdef KR_headers
617
  (v) Bigint *v;
618
#else
619
  (Bigint *v)
620
#endif
621
9.18M
{
622
9.18M
  if (v) {
623
9.18M
    if (v->k > Kmax)
624
1
      FREE((void*)v);
625
9.18M
    else {
626
9.18M
      ACQUIRE_DTOA_LOCK(0);
627
9.18M
      v->next = freelist[v->k];
628
9.18M
      freelist[v->k] = v;
629
9.18M
      FREE_DTOA_LOCK(0);
630
9.18M
      }
631
9.18M
    }
632
9.18M
  }
633
634
611k
#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
635
611k
y->wds*sizeof(Long) + 2*sizeof(int))
636
637
 static Bigint *
638
multadd
639
#ifdef KR_headers
640
  (b, m, a) Bigint *b; int m, a;
641
#else
642
  (Bigint *b, int m, int a) /* multiply by m and add a */
643
#endif
644
9.55M
{
645
9.55M
  int i, wds;
646
9.55M
#ifdef ULLong
647
9.55M
  ULong *x;
648
9.55M
  ULLong carry, y;
649
#else
650
  ULong carry, *x, y;
651
#ifdef Pack_32
652
  ULong xi, z;
653
#endif
654
#endif
655
9.55M
  Bigint *b1;
656
657
9.55M
  wds = b->wds;
658
9.55M
  x = b->x;
659
9.55M
  i = 0;
660
9.55M
  carry = a;
661
55.8M
  do {
662
55.8M
#ifdef ULLong
663
55.8M
    y = *x * (ULLong)m + carry;
664
55.8M
    carry = y >> 32;
665
55.8M
    *x++ = y & FFFFFFFF;
666
#else
667
#ifdef Pack_32
668
    xi = *x;
669
    y = (xi & 0xffff) * m + carry;
670
    z = (xi >> 16) * m + (y >> 16);
671
    carry = z >> 16;
672
    *x++ = (z << 16) + (y & 0xffff);
673
#else
674
    y = *x * m + carry;
675
    carry = y >> 16;
676
    *x++ = y & 0xffff;
677
#endif
678
#endif
679
55.8M
    }
680
55.8M
    while(++i < wds);
681
9.55M
  if (carry) {
682
712k
    if (wds >= b->maxwds) {
683
43.2k
      b1 = Balloc(b->k+1);
684
43.2k
      Bcopy(b1, b);
685
43.2k
      Bfree(b);
686
43.2k
      b = b1;
687
43.2k
      }
688
712k
    b->x[wds++] = carry;
689
712k
    b->wds = wds;
690
712k
    }
691
9.55M
  return b;
692
9.55M
  }
693
694
 static Bigint *
695
s2b
696
#ifdef KR_headers
697
  (s, nd0, nd, y9, dplen) CONST char *s; int nd0, nd, dplen; ULong y9;
698
#else
699
  (const char *s, int nd0, int nd, ULong y9, int dplen)
700
#endif
701
462k
{
702
462k
  Bigint *b;
703
462k
  int i, k;
704
462k
  Long x, y;
705
706
462k
  x = (nd + 8) / 9;
707
1.00M
  for(k = 0, y = 1; x > y; y <<= 1, k++) ;
708
462k
#ifdef Pack_32
709
462k
  b = Balloc(k);
710
462k
  b->x[0] = y9;
711
462k
  b->wds = 1;
712
#else
713
  b = Balloc(k+1);
714
  b->x[0] = y9 & 0xffff;
715
  b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
716
#endif
717
718
462k
  i = 9;
719
462k
  if (9 < nd0) {
720
295k
    s += 9;
721
3.38M
    do b = multadd(b, 10, *s++ - '0');
722
3.38M
      while(++i < nd0);
723
295k
    s += dplen;
724
295k
    }
725
167k
  else
726
167k
    s += dplen + 9;
727
1.40M
  for(; i < nd; i++)
728
944k
    b = multadd(b, 10, *s++ - '0');
729
462k
  return b;
730
462k
  }
731
732
 static int
733
hi0bits
734
#ifdef KR_headers
735
  (x) ULong x;
736
#else
737
  (ULong x)
738
#endif
739
736k
{
740
736k
  int k = 0;
741
742
736k
  if (!(x & 0xffff0000)) {
743
487k
    k = 16;
744
487k
    x <<= 16;
745
487k
    }
746
736k
  if (!(x & 0xff000000)) {
747
409k
    k += 8;
748
409k
    x <<= 8;
749
409k
    }
750
736k
  if (!(x & 0xf0000000)) {
751
461k
    k += 4;
752
461k
    x <<= 4;
753
461k
    }
754
736k
  if (!(x & 0xc0000000)) {
755
347k
    k += 2;
756
347k
    x <<= 2;
757
347k
    }
758
736k
  if (!(x & 0x80000000)) {
759
422k
    k++;
760
422k
    if (!(x & 0x40000000))
761
0
      return 32;
762
422k
    }
763
736k
  return k;
764
736k
  }
765
766
 static int
767
lo0bits
768
#ifdef KR_headers
769
  (y) ULong *y;
770
#else
771
  (ULong *y)
772
#endif
773
964k
{
774
964k
  int k;
775
964k
  ULong x = *y;
776
777
964k
  if (x & 7) {
778
663k
    if (x & 1)
779
403k
      return 0;
780
259k
    if (x & 2) {
781
141k
      *y = x >> 1;
782
141k
      return 1;
783
141k
      }
784
118k
    *y = x >> 2;
785
118k
    return 2;
786
259k
    }
787
301k
  k = 0;
788
301k
  if (!(x & 0xffff)) {
789
64.7k
    k = 16;
790
64.7k
    x >>= 16;
791
64.7k
    }
792
301k
  if (!(x & 0xff)) {
793
84.4k
    k += 8;
794
84.4k
    x >>= 8;
795
84.4k
    }
796
301k
  if (!(x & 0xf)) {
797
190k
    k += 4;
798
190k
    x >>= 4;
799
190k
    }
800
301k
  if (!(x & 0x3)) {
801
169k
    k += 2;
802
169k
    x >>= 2;
803
169k
    }
804
301k
  if (!(x & 1)) {
805
124k
    k++;
806
124k
    x >>= 1;
807
124k
    if (!x)
808
0
      return 32;
809
124k
    }
810
301k
  *y = x;
811
301k
  return k;
812
301k
  }
813
814
 static Bigint *
815
i2b
816
#ifdef KR_headers
817
  (i) int i;
818
#else
819
  (int i)
820
#endif
821
924k
{
822
924k
  Bigint *b;
823
824
924k
  b = Balloc(1);
825
924k
  b->x[0] = i;
826
924k
  b->wds = 1;
827
924k
  return b;
828
924k
  }
829
830
 static Bigint *
831
mult
832
#ifdef KR_headers
833
  (a, b) Bigint *a, *b;
834
#else
835
  (Bigint *a, Bigint *b)
836
#endif
837
2.04M
{
838
2.04M
  Bigint *c;
839
2.04M
  int k, wa, wb, wc;
840
2.04M
  ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
841
2.04M
  ULong y;
842
2.04M
#ifdef ULLong
843
2.04M
  ULLong carry, z;
844
#else
845
  ULong carry, z;
846
#ifdef Pack_32
847
  ULong z2;
848
#endif
849
#endif
850
851
2.04M
  if (a->wds < b->wds) {
852
844k
    c = a;
853
844k
    a = b;
854
844k
    b = c;
855
844k
    }
856
2.04M
  k = a->k;
857
2.04M
  wa = a->wds;
858
2.04M
  wb = b->wds;
859
2.04M
  wc = wa + wb;
860
2.04M
  if (wc > a->maxwds)
861
819k
    k++;
862
2.04M
  c = Balloc(k);
863
16.6M
  for(x = c->x, xa = x + wc; x < xa; x++)
864
14.6M
    *x = 0;
865
2.04M
  xa = a->x;
866
2.04M
  xae = xa + wa;
867
2.04M
  xb = b->x;
868
2.04M
  xbe = xb + wb;
869
2.04M
  xc0 = c->x;
870
2.04M
#ifdef ULLong
871
5.94M
  for(; xb < xbe; xc0++) {
872
3.90M
    if ((y = *xb++)) {
873
3.90M
      x = xa;
874
3.90M
      xc = xc0;
875
3.90M
      carry = 0;
876
30.3M
      do {
877
30.3M
        z = *x++ * (ULLong)y + *xc + carry;
878
30.3M
        carry = z >> 32;
879
30.3M
        *xc++ = z & FFFFFFFF;
880
30.3M
        }
881
30.3M
        while(x < xae);
882
3.90M
      *xc = carry;
883
3.90M
      }
884
3.90M
    }
885
#else
886
#ifdef Pack_32
887
  for(; xb < xbe; xb++, xc0++) {
888
    if (y = *xb & 0xffff) {
889
      x = xa;
890
      xc = xc0;
891
      carry = 0;
892
      do {
893
        z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
894
        carry = z >> 16;
895
        z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
896
        carry = z2 >> 16;
897
        Storeinc(xc, z2, z);
898
        }
899
        while(x < xae);
900
      *xc = carry;
901
      }
902
    if (y = *xb >> 16) {
903
      x = xa;
904
      xc = xc0;
905
      carry = 0;
906
      z2 = *xc;
907
      do {
908
        z = (*x & 0xffff) * y + (*xc >> 16) + carry;
909
        carry = z >> 16;
910
        Storeinc(xc, z, z2);
911
        z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
912
        carry = z2 >> 16;
913
        }
914
        while(x < xae);
915
      *xc = z2;
916
      }
917
    }
918
#else
919
  for(; xb < xbe; xc0++) {
920
    if (y = *xb++) {
921
      x = xa;
922
      xc = xc0;
923
      carry = 0;
924
      do {
925
        z = *x++ * y + *xc + carry;
926
        carry = z >> 16;
927
        *xc++ = z & 0xffff;
928
        }
929
        while(x < xae);
930
      *xc = carry;
931
      }
932
    }
933
#endif
934
#endif
935
3.49M
  for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
936
2.04M
  c->wds = wc;
937
2.04M
  return c;
938
2.04M
  }
939
940
#ifndef p5s
941
 static Bigint *p5s;
942
#endif
943
944
 static Bigint *
945
pow5mult
946
#ifdef KR_headers
947
  (b, k) Bigint *b; int k;
948
#else
949
  (Bigint *b, int k)
950
#endif
951
685k
{
952
685k
  Bigint *b1, *p5, *p51;
953
685k
  int i;
954
685k
  static const int p05[3] = { 5, 25, 125 };
955
956
685k
  if ((i = k & 3))
957
522k
    b = multadd(b, p05[i-1], 0);
958
959
685k
  if (!(k >>= 2))
960
17.9k
    return b;
961
667k
  if (!(p5 = p5s)) {
962
    /* first time */
963
#ifdef MULTIPLE_THREADS
964
    ACQUIRE_DTOA_LOCK(1);
965
    if (!(p5 = p5s)) {
966
      p5 = p5s = i2b(625);
967
      p5->next = 0;
968
      }
969
    FREE_DTOA_LOCK(1);
970
#else
971
7
    p5 = p5s = i2b(625);
972
7
    p5->next = 0;
973
7
#endif
974
7
    }
975
3.09M
  for(;;) {
976
3.09M
    if (k & 1) {
977
1.75M
      b1 = mult(b, p5);
978
1.75M
      Bfree(b);
979
1.75M
      b = b1;
980
1.75M
      }
981
3.09M
    if (!(k >>= 1))
982
667k
      break;
983
2.42M
    if (!(p51 = p5->next)) {
984
#ifdef MULTIPLE_THREADS
985
      ACQUIRE_DTOA_LOCK(1);
986
      if (!(p51 = p5->next)) {
987
        p51 = p5->next = mult(p5,p5);
988
        p51->next = 0;
989
        }
990
      FREE_DTOA_LOCK(1);
991
#else
992
42
      p51 = p5->next = mult(p5,p5);
993
42
      p51->next = 0;
994
42
#endif
995
42
      }
996
2.42M
    p5 = p51;
997
2.42M
    }
998
667k
  return b;
999
685k
  }
1000
1001
 static Bigint *
1002
lshift
1003
#ifdef KR_headers
1004
  (b, k) Bigint *b; int k;
1005
#else
1006
  (Bigint *b, int k)
1007
#endif
1008
1.91M
{
1009
1.91M
  int i, k1, n, n1;
1010
1.91M
  Bigint *b1;
1011
1.91M
  ULong *x, *x1, *xe, z;
1012
1013
1.91M
#ifdef Pack_32
1014
1.91M
  n = k >> 5;
1015
#else
1016
  n = k >> 4;
1017
#endif
1018
1.91M
  k1 = b->k;
1019
1.91M
  n1 = n + b->wds + 1;
1020
4.40M
  for(i = b->maxwds; n1 > i; i <<= 1)
1021
2.49M
    k1++;
1022
1.91M
  b1 = Balloc(k1);
1023
1.91M
  x1 = b1->x;
1024
9.42M
  for(i = 0; i < n; i++)
1025
7.50M
    *x1++ = 0;
1026
1.91M
  x = b->x;
1027
1.91M
  xe = x + b->wds;
1028
1.91M
#ifdef Pack_32
1029
1.91M
  if (k &= 0x1f) {
1030
1.84M
    k1 = 32 - k;
1031
1.84M
    z = 0;
1032
8.94M
    do {
1033
8.94M
      *x1++ = *x << k | z;
1034
8.94M
      z = *x++ >> k1;
1035
8.94M
      }
1036
8.94M
      while(x < xe);
1037
1.84M
    if ((*x1 = z))
1038
384k
      ++n1;
1039
1.84M
    }
1040
#else
1041
  if (k &= 0xf) {
1042
    k1 = 16 - k;
1043
    z = 0;
1044
    do {
1045
      *x1++ = *x << k  & 0xffff | z;
1046
      z = *x++ >> k1;
1047
      }
1048
      while(x < xe);
1049
    if (*x1 = z)
1050
      ++n1;
1051
    }
1052
#endif
1053
68.4k
  else do
1054
123k
    *x1++ = *x++;
1055
123k
    while(x < xe);
1056
1.91M
  b1->wds = n1 - 1;
1057
1.91M
  Bfree(b);
1058
1.91M
  return b1;
1059
1.91M
  }
1060
1061
 static int
1062
cmp
1063
#ifdef KR_headers
1064
  (a, b) Bigint *a, *b;
1065
#else
1066
  (Bigint *a, Bigint *b)
1067
#endif
1068
8.85M
{
1069
8.85M
  ULong *xa, *xa0, *xb, *xb0;
1070
8.85M
  int i, j;
1071
1072
8.85M
  i = a->wds;
1073
8.85M
  j = b->wds;
1074
#ifdef DEBUG
1075
  if (i > 1 && !a->x[i-1])
1076
    Bug("cmp called with a->x[a->wds-1] == 0");
1077
  if (j > 1 && !b->x[j-1])
1078
    Bug("cmp called with b->x[b->wds-1] == 0");
1079
#endif
1080
8.85M
  if (i -= j)
1081
1.28M
    return i;
1082
7.56M
  xa0 = a->x;
1083
7.56M
  xa = xa0 + j;
1084
7.56M
  xb0 = b->x;
1085
7.56M
  xb = xb0 + j;
1086
8.48M
  for(;;) {
1087
8.48M
    if (*--xa != *--xb)
1088
7.49M
      return *xa < *xb ? -1 : 1;
1089
981k
    if (xa <= xa0)
1090
63.8k
      break;
1091
981k
    }
1092
63.8k
  return 0;
1093
7.56M
  }
1094
1095
 static Bigint *
1096
diff
1097
#ifdef KR_headers
1098
  (a, b) Bigint *a, *b;
1099
#else
1100
  (Bigint *a, Bigint *b)
1101
#endif
1102
1.86M
{
1103
1.86M
  Bigint *c;
1104
1.86M
  int i, wa, wb;
1105
1.86M
  ULong *xa, *xae, *xb, *xbe, *xc;
1106
1.86M
#ifdef ULLong
1107
1.86M
  ULLong borrow, y;
1108
#else
1109
  ULong borrow, y;
1110
#ifdef Pack_32
1111
  ULong z;
1112
#endif
1113
#endif
1114
1115
1.86M
  i = cmp(a,b);
1116
1.86M
  if (!i) {
1117
19.4k
    c = Balloc(0);
1118
19.4k
    c->wds = 1;
1119
19.4k
    c->x[0] = 0;
1120
19.4k
    return c;
1121
19.4k
    }
1122
1.85M
  if (i < 0) {
1123
314k
    c = a;
1124
314k
    a = b;
1125
314k
    b = c;
1126
314k
    i = 1;
1127
314k
    }
1128
1.53M
  else
1129
1.53M
    i = 0;
1130
1.85M
  c = Balloc(a->k);
1131
1.85M
  c->sign = i;
1132
1.85M
  wa = a->wds;
1133
1.85M
  xa = a->x;
1134
1.85M
  xae = xa + wa;
1135
1.85M
  wb = b->wds;
1136
1.85M
  xb = b->x;
1137
1.85M
  xbe = xb + wb;
1138
1.85M
  xc = c->x;
1139
1.85M
  borrow = 0;
1140
1.85M
#ifdef ULLong
1141
19.2M
  do {
1142
19.2M
    y = (ULLong)*xa++ - *xb++ - borrow;
1143
19.2M
    borrow = y >> 32 & (ULong)1;
1144
19.2M
    *xc++ = y & FFFFFFFF;
1145
19.2M
    }
1146
19.2M
    while(xb < xbe);
1147
2.47M
  while(xa < xae) {
1148
627k
    y = *xa++ - borrow;
1149
627k
    borrow = y >> 32 & (ULong)1;
1150
627k
    *xc++ = y & FFFFFFFF;
1151
627k
    }
1152
#else
1153
#ifdef Pack_32
1154
  do {
1155
    y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
1156
    borrow = (y & 0x10000) >> 16;
1157
    z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
1158
    borrow = (z & 0x10000) >> 16;
1159
    Storeinc(xc, z, y);
1160
    }
1161
    while(xb < xbe);
1162
  while(xa < xae) {
1163
    y = (*xa & 0xffff) - borrow;
1164
    borrow = (y & 0x10000) >> 16;
1165
    z = (*xa++ >> 16) - borrow;
1166
    borrow = (z & 0x10000) >> 16;
1167
    Storeinc(xc, z, y);
1168
    }
1169
#else
1170
  do {
1171
    y = *xa++ - *xb++ - borrow;
1172
    borrow = (y & 0x10000) >> 16;
1173
    *xc++ = y & 0xffff;
1174
    }
1175
    while(xb < xbe);
1176
  while(xa < xae) {
1177
    y = *xa++ - borrow;
1178
    borrow = (y & 0x10000) >> 16;
1179
    *xc++ = y & 0xffff;
1180
    }
1181
#endif
1182
#endif
1183
2.69M
  while(!*--xc)
1184
845k
    wa--;
1185
1.85M
  c->wds = wa;
1186
1.85M
  return c;
1187
1.86M
  }
1188
1189
 static double
1190
ulp
1191
#ifdef KR_headers
1192
  (x) U *x;
1193
#else
1194
  (U *x)
1195
#endif
1196
223k
{
1197
223k
  Long L;
1198
223k
  U u;
1199
1200
223k
  L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
1201
#ifndef Avoid_Underflow
1202
#ifndef Sudden_Underflow
1203
  if (L > 0) {
1204
#endif
1205
#endif
1206
#ifdef IBM
1207
    L |= Exp_msk1 >> 4;
1208
#endif
1209
223k
    word0(&u) = L;
1210
223k
    word1(&u) = 0;
1211
#ifndef Avoid_Underflow
1212
#ifndef Sudden_Underflow
1213
    }
1214
  else {
1215
    L = -L >> Exp_shift;
1216
    if (L < Exp_shift) {
1217
      word0(&u) = 0x80000 >> L;
1218
      word1(&u) = 0;
1219
      }
1220
    else {
1221
      word0(&u) = 0;
1222
      L -= Exp_shift;
1223
      word1(&u) = L >= 31 ? 1 : 1 << 31 - L;
1224
      }
1225
    }
1226
#endif
1227
#endif
1228
223k
  return dval(&u);
1229
223k
  }
1230
1231
 static double
1232
b2d
1233
#ifdef KR_headers
1234
  (a, e) Bigint *a; int *e;
1235
#else
1236
  (Bigint *a, int *e)
1237
#endif
1238
425k
{
1239
425k
  ULong *xa, *xa0, w, y, z;
1240
425k
  int k;
1241
425k
  U d;
1242
#ifdef VAX
1243
  ULong d0, d1;
1244
#else
1245
425k
#define d0 word0(&d)
1246
425k
#define d1 word1(&d)
1247
425k
#endif
1248
1249
425k
  xa0 = a->x;
1250
425k
  xa = xa0 + a->wds;
1251
425k
  y = *--xa;
1252
#ifdef DEBUG
1253
  if (!y) Bug("zero y in b2d");
1254
#endif
1255
425k
  k = hi0bits(y);
1256
425k
  *e = 32 - k;
1257
425k
#ifdef Pack_32
1258
425k
  if (k < Ebits) {
1259
83.3k
    d0 = Exp_1 | y >> (Ebits - k);
1260
83.3k
    w = xa > xa0 ? *--xa : 0;
1261
83.3k
    d1 = y << ((32-Ebits) + k) | w >> (Ebits - k);
1262
83.3k
    goto ret_d;
1263
83.3k
    }
1264
342k
  z = xa > xa0 ? *--xa : 0;
1265
342k
  if (k -= Ebits) {
1266
328k
    d0 = Exp_1 | y << k | z >> (32 - k);
1267
328k
    y = xa > xa0 ? *--xa : 0;
1268
328k
    d1 = z << k | y >> (32 - k);
1269
328k
    }
1270
13.7k
  else {
1271
13.7k
    d0 = Exp_1 | y;
1272
13.7k
    d1 = z;
1273
13.7k
    }
1274
#else
1275
  if (k < Ebits + 16) {
1276
    z = xa > xa0 ? *--xa : 0;
1277
    d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
1278
    w = xa > xa0 ? *--xa : 0;
1279
    y = xa > xa0 ? *--xa : 0;
1280
    d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
1281
    goto ret_d;
1282
    }
1283
  z = xa > xa0 ? *--xa : 0;
1284
  w = xa > xa0 ? *--xa : 0;
1285
  k -= Ebits + 16;
1286
  d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
1287
  y = xa > xa0 ? *--xa : 0;
1288
  d1 = w << k + 16 | y << k;
1289
#endif
1290
425k
 ret_d:
1291
#ifdef VAX
1292
  word0(&d) = d0 >> 16 | d0 << 16;
1293
  word1(&d) = d1 >> 16 | d1 << 16;
1294
#else
1295
425k
#undef d0
1296
425k
#undef d1
1297
425k
#endif
1298
425k
  return dval(&d);
1299
342k
  }
1300
1301
 static Bigint *
1302
d2b
1303
#ifdef KR_headers
1304
  (d, e, bits) U *d; int *e, *bits;
1305
#else
1306
  (U *d, int *e, int *bits)
1307
#endif
1308
964k
{
1309
964k
  Bigint *b;
1310
964k
  int de, k;
1311
964k
  ULong *x, y, z;
1312
964k
#ifndef Sudden_Underflow
1313
964k
  int i;
1314
964k
#endif
1315
#ifdef VAX
1316
  ULong d0, d1;
1317
  d0 = word0(d) >> 16 | word0(d) << 16;
1318
  d1 = word1(d) >> 16 | word1(d) << 16;
1319
#else
1320
2.89M
#define d0 word0(d)
1321
964k
#define d1 word1(d)
1322
964k
#endif
1323
1324
964k
#ifdef Pack_32
1325
964k
  b = Balloc(1);
1326
#else
1327
  b = Balloc(2);
1328
#endif
1329
964k
  x = b->x;
1330
1331
964k
  z = d0 & Frac_mask;
1332
964k
  d0 &= 0x7fffffff; /* clear sign bit, which we ignore */
1333
#ifdef Sudden_Underflow
1334
  de = (int)(d0 >> Exp_shift);
1335
#ifndef IBM
1336
  z |= Exp_msk11;
1337
#endif
1338
#else
1339
964k
  if ((de = (int)(d0 >> Exp_shift)))
1340
907k
    z |= Exp_msk1;
1341
964k
#endif
1342
964k
#ifdef Pack_32
1343
964k
  if ((y = d1)) {
1344
873k
    if ((k = lo0bits(&y))) {
1345
476k
      x[0] = y | z << (32 - k);
1346
476k
      z >>= k;
1347
476k
      }
1348
397k
    else
1349
397k
      x[0] = y;
1350
873k
#ifndef Sudden_Underflow
1351
873k
    i =
1352
873k
#endif
1353
873k
        b->wds = (x[1] = z) ? 2 : 1;
1354
873k
    }
1355
90.8k
  else {
1356
90.8k
    k = lo0bits(&z);
1357
90.8k
    x[0] = z;
1358
90.8k
#ifndef Sudden_Underflow
1359
90.8k
    i =
1360
90.8k
#endif
1361
90.8k
        b->wds = 1;
1362
90.8k
    k += 32;
1363
90.8k
    }
1364
#else
1365
  if (y = d1) {
1366
    if (k = lo0bits(&y))
1367
      if (k >= 16) {
1368
        x[0] = y | z << 32 - k & 0xffff;
1369
        x[1] = z >> k - 16 & 0xffff;
1370
        x[2] = z >> k;
1371
        i = 2;
1372
        }
1373
      else {
1374
        x[0] = y & 0xffff;
1375
        x[1] = y >> 16 | z << 16 - k & 0xffff;
1376
        x[2] = z >> k & 0xffff;
1377
        x[3] = z >> k+16;
1378
        i = 3;
1379
        }
1380
    else {
1381
      x[0] = y & 0xffff;
1382
      x[1] = y >> 16;
1383
      x[2] = z & 0xffff;
1384
      x[3] = z >> 16;
1385
      i = 3;
1386
      }
1387
    }
1388
  else {
1389
#ifdef DEBUG
1390
    if (!z)
1391
      Bug("Zero passed to d2b");
1392
#endif
1393
    k = lo0bits(&z);
1394
    if (k >= 16) {
1395
      x[0] = z;
1396
      i = 0;
1397
      }
1398
    else {
1399
      x[0] = z & 0xffff;
1400
      x[1] = z >> 16;
1401
      i = 1;
1402
      }
1403
    k += 32;
1404
    }
1405
  while(!x[i])
1406
    --i;
1407
  b->wds = i + 1;
1408
#endif
1409
964k
#ifndef Sudden_Underflow
1410
964k
  if (de) {
1411
907k
#endif
1412
#ifdef IBM
1413
    *e = (de - Bias - (P-1) << 2) + k;
1414
    *bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
1415
#else
1416
907k
    *e = de - Bias - (P-1) + k;
1417
907k
    *bits = P - k;
1418
907k
#endif
1419
907k
#ifndef Sudden_Underflow
1420
907k
    }
1421
56.7k
  else {
1422
56.7k
    *e = de - Bias - (P-1) + 1 + k;
1423
56.7k
#ifdef Pack_32
1424
56.7k
    *bits = 32*i - hi0bits(x[i-1]);
1425
#else
1426
    *bits = (i+2)*16 - hi0bits(x[i]);
1427
#endif
1428
56.7k
    }
1429
964k
#endif
1430
964k
  return b;
1431
964k
  }
1432
#undef d0
1433
#undef d1
1434
1435
 static double
1436
ratio
1437
#ifdef KR_headers
1438
  (a, b) Bigint *a, *b;
1439
#else
1440
  (Bigint *a, Bigint *b)
1441
#endif
1442
212k
{
1443
212k
  U da, db;
1444
212k
  int k, ka, kb;
1445
1446
212k
  dval(&da) = b2d(a, &ka);
1447
212k
  dval(&db) = b2d(b, &kb);
1448
212k
#ifdef Pack_32
1449
212k
  k = ka - kb + 32*(a->wds - b->wds);
1450
#else
1451
  k = ka - kb + 16*(a->wds - b->wds);
1452
#endif
1453
#ifdef IBM
1454
  if (k > 0) {
1455
    word0(&da) += (k >> 2)*Exp_msk1;
1456
    if (k &= 3)
1457
      dval(&da) *= 1 << k;
1458
    }
1459
  else {
1460
    k = -k;
1461
    word0(&db) += (k >> 2)*Exp_msk1;
1462
    if (k &= 3)
1463
      dval(&db) *= 1 << k;
1464
    }
1465
#else
1466
212k
  if (k > 0)
1467
87.2k
    word0(&da) += k*Exp_msk1;
1468
125k
  else {
1469
125k
    k = -k;
1470
125k
    word0(&db) += k*Exp_msk1;
1471
125k
    }
1472
212k
#endif
1473
212k
  return dval(&da) / dval(&db);
1474
212k
  }
1475
1476
 static CONST double
1477
tens[] = {
1478
    1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1479
    1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1480
    1e20, 1e21, 1e22
1481
#ifdef VAX
1482
    , 1e23, 1e24
1483
#endif
1484
    };
1485
1486
 static CONST double
1487
#ifdef IEEE_Arith
1488
bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1489
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
1490
#ifdef Avoid_Underflow
1491
    9007199254740992.*9007199254740992.e-256
1492
    /* = 2^106 * 1e-256 */
1493
#else
1494
    1e-256
1495
#endif
1496
    };
1497
/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
1498
/* flag unnecessarily.  It leads to a song and dance at the end of strtod. */
1499
115k
#define Scale_Bit 0x10
1500
120k
#define n_bigtens 5
1501
#else
1502
#ifdef IBM
1503
bigtens[] = { 1e16, 1e32, 1e64 };
1504
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 };
1505
#define n_bigtens 3
1506
#else
1507
bigtens[] = { 1e16, 1e32 };
1508
static CONST double tinytens[] = { 1e-16, 1e-32 };
1509
#define n_bigtens 2
1510
#endif
1511
#endif
1512
1513
#undef Need_Hexdig
1514
#ifdef INFNAN_CHECK
1515
#ifndef No_Hex_NaN
1516
#define Need_Hexdig
1517
#endif
1518
#endif
1519
1520
#ifndef Need_Hexdig
1521
#ifndef NO_HEX_FP
1522
#define Need_Hexdig
1523
#endif
1524
#endif
1525
1526
#ifdef Need_Hexdig /*{*/
1527
#if 0
1528
static unsigned char hexdig[256];
1529
1530
 static void
1531
htinit(unsigned char *h, unsigned char *s, int inc)
1532
{
1533
  int i, j;
1534
  for(i = 0; (j = s[i]) !=0; i++)
1535
    h[j] = i + inc;
1536
  }
1537
1538
 static void
1539
hexdig_init(void) /* Use of hexdig_init omitted 20121220 to avoid a */
1540
      /* race condition when multiple threads are used. */
1541
{
1542
#define USC (unsigned char *)
1543
  htinit(hexdig, USC "0123456789", 0x10);
1544
  htinit(hexdig, USC "abcdef", 0x10 + 10);
1545
  htinit(hexdig, USC "ABCDEF", 0x10 + 10);
1546
  }
1547
#else
1548
static const unsigned char hexdig[256] = {
1549
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1550
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1551
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1552
  16,17,18,19,20,21,22,23,24,25,0,0,0,0,0,0,
1553
  0,26,27,28,29,30,31,0,0,0,0,0,0,0,0,0,
1554
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1555
  0,26,27,28,29,30,31,0,0,0,0,0,0,0,0,0,
1556
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1557
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1558
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1559
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1560
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1561
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1562
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1563
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1564
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1565
  };
1566
#endif
1567
#endif /* } Need_Hexdig */
1568
1569
#ifdef INFNAN_CHECK
1570
1571
#ifndef NAN_WORD0
1572
#define NAN_WORD0 0x7ff80000
1573
#endif
1574
1575
#ifndef NAN_WORD1
1576
#define NAN_WORD1 0
1577
#endif
1578
1579
 static int
1580
match
1581
#ifdef KR_headers
1582
  (sp, t) char **sp, *t;
1583
#else
1584
  (const char **sp, const char *t)
1585
#endif
1586
{
1587
  int c, d;
1588
  CONST char *s = *sp;
1589
1590
  while((d = *t++)) {
1591
    if ((c = *++s) >= 'A' && c <= 'Z')
1592
      c += 'a' - 'A';
1593
    if (c != d)
1594
      return 0;
1595
    }
1596
  *sp = s + 1;
1597
  return 1;
1598
  }
1599
1600
#ifndef No_Hex_NaN
1601
 static void
1602
hexnan
1603
#ifdef KR_headers
1604
  (rvp, sp) U *rvp; CONST char **sp;
1605
#else
1606
  (U *rvp, const char **sp)
1607
#endif
1608
{
1609
  ULong c, x[2];
1610
  CONST char *s;
1611
  int c1, havedig, udx0, xshift;
1612
1613
  /**** if (!hexdig['0']) hexdig_init(); ****/
1614
  x[0] = x[1] = 0;
1615
  havedig = xshift = 0;
1616
  udx0 = 1;
1617
  s = *sp;
1618
  /* allow optional initial 0x or 0X */
1619
  while((c = *(CONST unsigned char*)(s+1)) && c <= ' ')
1620
    ++s;
1621
  if (s[1] == '0' && (s[2] == 'x' || s[2] == 'X'))
1622
    s += 2;
1623
  while((c = *(CONST unsigned char*)++s)) {
1624
    if ((c1 = hexdig[c]))
1625
      c  = c1 & 0xf;
1626
    else if (c <= ' ') {
1627
      if (udx0 && havedig) {
1628
        udx0 = 0;
1629
        xshift = 1;
1630
        }
1631
      continue;
1632
      }
1633
#ifdef GDTOA_NON_PEDANTIC_NANCHECK
1634
    else if (/*(*/ c == ')' && havedig) {
1635
      *sp = s + 1;
1636
      break;
1637
      }
1638
    else
1639
      return; /* invalid form: don't change *sp */
1640
#else
1641
    else {
1642
      do {
1643
        if (/*(*/ c == ')') {
1644
          *sp = s + 1;
1645
          break;
1646
          }
1647
        } while((c = *++s));
1648
      break;
1649
      }
1650
#endif
1651
    havedig = 1;
1652
    if (xshift) {
1653
      xshift = 0;
1654
      x[0] = x[1];
1655
      x[1] = 0;
1656
      }
1657
    if (udx0)
1658
      x[0] = (x[0] << 4) | (x[1] >> 28);
1659
    x[1] = (x[1] << 4) | c;
1660
    }
1661
  if ((x[0] &= 0xfffff) || x[1]) {
1662
    word0(rvp) = Exp_mask | x[0];
1663
    word1(rvp) = x[1];
1664
    }
1665
  }
1666
#endif /*No_Hex_NaN*/
1667
#endif /* INFNAN_CHECK */
1668
1669
#ifdef Pack_32
1670
#define ULbits 32
1671
#define kshift 5
1672
254k
#define kmask 31
1673
#else
1674
#define ULbits 16
1675
#define kshift 4
1676
#define kmask 15
1677
#endif
1678
1679
#if !defined(NO_HEX_FP) || defined(Honor_FLT_ROUNDS) /*{*/
1680
 static Bigint *
1681
#ifdef KR_headers
1682
increment(b) Bigint *b;
1683
#else
1684
increment(Bigint *b)
1685
#endif
1686
{
1687
  ULong *x, *xe;
1688
  Bigint *b1;
1689
1690
  x = b->x;
1691
  xe = x + b->wds;
1692
  do {
1693
    if (*x < (ULong)0xffffffffL) {
1694
      ++*x;
1695
      return b;
1696
      }
1697
    *x++ = 0;
1698
    } while(x < xe);
1699
  {
1700
    if (b->wds >= b->maxwds) {
1701
      b1 = Balloc(b->k+1);
1702
      Bcopy(b1,b);
1703
      Bfree(b);
1704
      b = b1;
1705
      }
1706
    b->x[b->wds++] = 1;
1707
    }
1708
  return b;
1709
  }
1710
1711
#endif /*}*/
1712
1713
#ifndef NO_HEX_FP /*{*/
1714
1715
 static void
1716
#ifdef KR_headers
1717
rshift(b, k) Bigint *b; int k;
1718
#else
1719
rshift(Bigint *b, int k)
1720
#endif
1721
{
1722
  ULong *x, *x1, *xe, y;
1723
  int n;
1724
1725
  x = x1 = b->x;
1726
  n = k >> kshift;
1727
  if (n < b->wds) {
1728
    xe = x + b->wds;
1729
    x += n;
1730
    if (k &= kmask) {
1731
      n = 32 - k;
1732
      y = *x++ >> k;
1733
      while(x < xe) {
1734
        *x1++ = (y | (*x << n)) & 0xffffffff;
1735
        y = *x++ >> k;
1736
        }
1737
      if ((*x1 = y) !=0)
1738
        x1++;
1739
      }
1740
    else
1741
      while(x < xe)
1742
        *x1++ = *x++;
1743
    }
1744
  if ((b->wds = x1 - b->x) == 0)
1745
    b->x[0] = 0;
1746
  }
1747
1748
 static ULong
1749
#ifdef KR_headers
1750
any_on(b, k) Bigint *b; int k;
1751
#else
1752
any_on(Bigint *b, int k)
1753
#endif
1754
{
1755
  int n, nwds;
1756
  ULong *x, *x0, x1, x2;
1757
1758
  x = b->x;
1759
  nwds = b->wds;
1760
  n = k >> kshift;
1761
  if (n > nwds)
1762
    n = nwds;
1763
  else if (n < nwds && (k &= kmask)) {
1764
    x1 = x2 = x[n];
1765
    x1 >>= k;
1766
    x1 <<= k;
1767
    if (x1 != x2)
1768
      return 1;
1769
    }
1770
  x0 = x;
1771
  x += n;
1772
  while(x > x0)
1773
    if (*--x)
1774
      return 1;
1775
  return 0;
1776
  }
1777
1778
enum {  /* rounding values: same as FLT_ROUNDS */
1779
  Round_zero = 0,
1780
  Round_near = 1,
1781
  Round_up = 2,
1782
  Round_down = 3
1783
  };
1784
1785
 void
1786
#ifdef KR_headers
1787
gethex(sp, rvp, rounding, sign)
1788
  CONST char **sp; U *rvp; int rounding, sign;
1789
#else
1790
gethex( CONST char **sp, U *rvp, int rounding, int sign)
1791
#endif
1792
{
1793
  Bigint *b;
1794
  CONST unsigned char *decpt, *s0, *s, *s1;
1795
  Long e, e1;
1796
  ULong L, lostbits, *x;
1797
  int big, denorm, esign, havedig, k, n, nbits, up, zret;
1798
#ifdef IBM
1799
  int j;
1800
#endif
1801
  enum {
1802
#ifdef IEEE_Arith /*{{*/
1803
    emax = 0x7fe - Bias - P + 1,
1804
    emin = Emin - P + 1
1805
#else /*}{*/
1806
    emin = Emin - P,
1807
#ifdef VAX
1808
    emax = 0x7ff - Bias - P + 1
1809
#endif
1810
#ifdef IBM
1811
    emax = 0x7f - Bias - P
1812
#endif
1813
#endif /*}}*/
1814
    };
1815
#ifdef USE_LOCALE
1816
  int i;
1817
#ifdef NO_LOCALE_CACHE
1818
  const unsigned char *decimalpoint = (unsigned char*)
1819
    localeconv()->decimal_point;
1820
#else
1821
  const unsigned char *decimalpoint;
1822
  static unsigned char *decimalpoint_cache;
1823
  if (!(s0 = decimalpoint_cache)) {
1824
    s0 = (unsigned char*)localeconv()->decimal_point;
1825
    if ((decimalpoint_cache = (unsigned char*)
1826
        MALLOC(strlen((CONST char*)s0) + 1))) {
1827
      strcpy((char*)decimalpoint_cache, (CONST char*)s0);
1828
      s0 = decimalpoint_cache;
1829
      }
1830
    }
1831
  decimalpoint = s0;
1832
#endif
1833
#endif
1834
1835
  /**** if (!hexdig['0']) hexdig_init(); ****/
1836
  havedig = 0;
1837
  s0 = *(CONST unsigned char **)sp + 2;
1838
  while(s0[havedig] == '0')
1839
    havedig++;
1840
  s0 += havedig;
1841
  s = s0;
1842
  decpt = 0;
1843
  zret = 0;
1844
  e = 0;
1845
  if (hexdig[*s])
1846
    havedig++;
1847
  else {
1848
    zret = 1;
1849
#ifdef USE_LOCALE
1850
    for(i = 0; decimalpoint[i]; ++i) {
1851
      if (s[i] != decimalpoint[i])
1852
        goto pcheck;
1853
      }
1854
    decpt = s += i;
1855
#else
1856
    if (*s != '.')
1857
      goto pcheck;
1858
    decpt = ++s;
1859
#endif
1860
    if (!hexdig[*s])
1861
      goto pcheck;
1862
    while(*s == '0')
1863
      s++;
1864
    if (hexdig[*s])
1865
      zret = 0;
1866
    havedig = 1;
1867
    s0 = s;
1868
    }
1869
  while(hexdig[*s])
1870
    s++;
1871
#ifdef USE_LOCALE
1872
  if (*s == *decimalpoint && !decpt) {
1873
    for(i = 1; decimalpoint[i]; ++i) {
1874
      if (s[i] != decimalpoint[i])
1875
        goto pcheck;
1876
      }
1877
    decpt = s += i;
1878
#else
1879
  if (*s == '.' && !decpt) {
1880
    decpt = ++s;
1881
#endif
1882
    while(hexdig[*s])
1883
      s++;
1884
    }/*}*/
1885
  if (decpt)
1886
    e = -(((Long)(s-decpt)) << 2);
1887
 pcheck:
1888
  s1 = s;
1889
  big = esign = 0;
1890
  switch(*s) {
1891
    case 'p':
1892
    case 'P':
1893
    switch(*++s) {
1894
      case '-':
1895
      esign = 1;
1896
      ZEND_FALLTHROUGH;
1897
      case '+':
1898
      s++;
1899
      }
1900
    if ((n = hexdig[*s]) == 0 || n > 0x19) {
1901
      s = s1;
1902
      break;
1903
      }
1904
    e1 = n - 0x10;
1905
    while((n = hexdig[*++s]) !=0 && n <= 0x19) {
1906
      if (e1 & 0xf8000000)
1907
        big = 1;
1908
      e1 = 10*e1 + n - 0x10;
1909
      }
1910
    if (esign)
1911
      e1 = -e1;
1912
    e += e1;
1913
    }
1914
  *sp = (char*)s;
1915
  if (!havedig)
1916
    *sp = (char*)s0 - 1;
1917
  if (zret)
1918
    goto retz1;
1919
  if (big) {
1920
    if (esign) {
1921
#ifdef IEEE_Arith
1922
      switch(rounding) {
1923
        case Round_up:
1924
        if (sign)
1925
          break;
1926
        goto ret_tiny;
1927
        case Round_down:
1928
        if (!sign)
1929
          break;
1930
        goto ret_tiny;
1931
        }
1932
#endif
1933
      goto retz;
1934
#ifdef IEEE_Arith
1935
 ret_tinyf:
1936
      Bfree(b);
1937
 ret_tiny:
1938
#ifndef NO_ERRNO
1939
      errno = ERANGE;
1940
#endif
1941
      word0(rvp) = 0;
1942
      word1(rvp) = 1;
1943
      return;
1944
#endif /* IEEE_Arith */
1945
      }
1946
    switch(rounding) {
1947
      case Round_near:
1948
      goto ovfl1;
1949
      case Round_up:
1950
      if (!sign)
1951
        goto ovfl1;
1952
      goto ret_big;
1953
      case Round_down:
1954
      if (sign)
1955
        goto ovfl1;
1956
      goto ret_big;
1957
      }
1958
 ret_big:
1959
    word0(rvp) = Big0;
1960
    word1(rvp) = Big1;
1961
    return;
1962
    }
1963
  n = s1 - s0 - 1;
1964
  for(k = 0; n > (1 << (kshift-2)) - 1; n >>= 1)
1965
    k++;
1966
  b = Balloc(k);
1967
  x = b->x;
1968
  n = 0;
1969
  L = 0;
1970
#ifdef USE_LOCALE
1971
  for(i = 0; decimalpoint[i+1]; ++i);
1972
#endif
1973
  while(s1 > s0) {
1974
#ifdef USE_LOCALE
1975
    if (*--s1 == decimalpoint[i]) {
1976
      s1 -= i;
1977
      continue;
1978
      }
1979
#else
1980
    if (*--s1 == '.')
1981
      continue;
1982
#endif
1983
    if (n == ULbits) {
1984
      *x++ = L;
1985
      L = 0;
1986
      n = 0;
1987
      }
1988
    L |= (hexdig[*s1] & 0x0f) << n;
1989
    n += 4;
1990
    }
1991
  *x++ = L;
1992
  b->wds = n = x - b->x;
1993
  n = ULbits*n - hi0bits(L);
1994
  nbits = Nbits;
1995
  lostbits = 0;
1996
  x = b->x;
1997
  if (n > nbits) {
1998
    n -= nbits;
1999
    if (any_on(b,n)) {
2000
      lostbits = 1;
2001
      k = n - 1;
2002
      if (x[k>>kshift] & 1 << (k & kmask)) {
2003
        lostbits = 2;
2004
        if (k > 0 && any_on(b,k))
2005
          lostbits = 3;
2006
        }
2007
      }
2008
    rshift(b, n);
2009
    e += n;
2010
    }
2011
  else if (n < nbits) {
2012
    n = nbits - n;
2013
    b = lshift(b, n);
2014
    e -= n;
2015
    x = b->x;
2016
    }
2017
  if (e > Emax) {
2018
 ovfl:
2019
    Bfree(b);
2020
 ovfl1:
2021
#ifndef NO_ERRNO
2022
    errno = ERANGE;
2023
#endif
2024
    word0(rvp) = Exp_mask;
2025
    word1(rvp) = 0;
2026
    return;
2027
    }
2028
  denorm = 0;
2029
  if (e < emin) {
2030
    denorm = 1;
2031
    n = emin - e;
2032
    if (n >= nbits) {
2033
#ifdef IEEE_Arith /*{*/
2034
      switch (rounding) {
2035
        case Round_near:
2036
        if (n == nbits && (n < 2 || any_on(b,n-1)))
2037
          goto ret_tinyf;
2038
        break;
2039
        case Round_up:
2040
        if (!sign)
2041
          goto ret_tinyf;
2042
        break;
2043
        case Round_down:
2044
        if (sign)
2045
          goto ret_tinyf;
2046
        }
2047
#endif /* } IEEE_Arith */
2048
      Bfree(b);
2049
 retz:
2050
#ifndef NO_ERRNO
2051
      errno = ERANGE;
2052
#endif
2053
 retz1:
2054
      rvp->d = 0.;
2055
      return;
2056
      }
2057
    k = n - 1;
2058
    if (lostbits)
2059
      lostbits = 1;
2060
    else if (k > 0)
2061
      lostbits = any_on(b,k);
2062
    if (x[k>>kshift] & 1 << (k & kmask))
2063
      lostbits |= 2;
2064
    nbits -= n;
2065
    rshift(b,n);
2066
    e = emin;
2067
    }
2068
  if (lostbits) {
2069
    up = 0;
2070
    switch(rounding) {
2071
      case Round_zero:
2072
      break;
2073
      case Round_near:
2074
      if (lostbits & 2
2075
       && (lostbits & 1) | (x[0] & 1))
2076
        up = 1;
2077
      break;
2078
      case Round_up:
2079
      up = 1 - sign;
2080
      break;
2081
      case Round_down:
2082
      up = sign;
2083
      }
2084
    if (up) {
2085
      k = b->wds;
2086
      b = increment(b);
2087
      x = b->x;
2088
      if (denorm) {
2089
#if 0
2090
        if (nbits == Nbits - 1
2091
         && x[nbits >> kshift] & 1 << (nbits & kmask))
2092
          denorm = 0; /* not currently used */
2093
#endif
2094
        }
2095
      else if (b->wds > k
2096
       || ((n = nbits & kmask) !=0
2097
           && hi0bits(x[k-1]) < 32-n)) {
2098
        rshift(b,1);
2099
        if (++e > Emax)
2100
          goto ovfl;
2101
        }
2102
      }
2103
    }
2104
#ifdef IEEE_Arith
2105
  if (denorm)
2106
    word0(rvp) = b->wds > 1 ? b->x[1] & ~0x100000 : 0;
2107
  else
2108
    word0(rvp) = (b->x[1] & ~0x100000) | ((e + 0x3ff + 52) << 20);
2109
  word1(rvp) = b->x[0];
2110
#endif
2111
#ifdef IBM
2112
  if ((j = e & 3)) {
2113
    k = b->x[0] & ((1 << j) - 1);
2114
    rshift(b,j);
2115
    if (k) {
2116
      switch(rounding) {
2117
        case Round_up:
2118
        if (!sign)
2119
          increment(b);
2120
        break;
2121
        case Round_down:
2122
        if (sign)
2123
          increment(b);
2124
        break;
2125
        case Round_near:
2126
        j = 1 << (j-1);
2127
        if (k & j && ((k & (j-1)) | lostbits))
2128
          increment(b);
2129
        }
2130
      }
2131
    }
2132
  e >>= 2;
2133
  word0(rvp) = b->x[1] | ((e + 65 + 13) << 24);
2134
  word1(rvp) = b->x[0];
2135
#endif
2136
#ifdef VAX
2137
  /* The next two lines ignore swap of low- and high-order 2 bytes. */
2138
  /* word0(rvp) = (b->x[1] & ~0x800000) | ((e + 129 + 55) << 23); */
2139
  /* word1(rvp) = b->x[0]; */
2140
  word0(rvp) = ((b->x[1] & ~0x800000) >> 16) | ((e + 129 + 55) << 7) | (b->x[1] << 16);
2141
  word1(rvp) = (b->x[0] >> 16) | (b->x[0] << 16);
2142
#endif
2143
  Bfree(b);
2144
  }
2145
#endif /*!NO_HEX_FP}*/
2146
2147
 static int
2148
#ifdef KR_headers
2149
dshift(b, p2) Bigint *b; int p2;
2150
#else
2151
dshift(Bigint *b, int p2)
2152
#endif
2153
254k
{
2154
254k
  int rv = hi0bits(b->x[b->wds-1]) - 4;
2155
254k
  if (p2 > 0)
2156
125k
    rv -= p2;
2157
254k
  return rv & kmask;
2158
254k
  }
2159
2160
 static int
2161
quorem
2162
#ifdef KR_headers
2163
  (b, S) Bigint *b, *S;
2164
#else
2165
  (Bigint *b, Bigint *S)
2166
#endif
2167
3.73M
{
2168
3.73M
  int n;
2169
3.73M
  ULong *bx, *bxe, q, *sx, *sxe;
2170
3.73M
#ifdef ULLong
2171
3.73M
  ULLong borrow, carry, y, ys;
2172
#else
2173
  ULong borrow, carry, y, ys;
2174
#ifdef Pack_32
2175
  ULong si, z, zs;
2176
#endif
2177
#endif
2178
2179
3.73M
  n = S->wds;
2180
#ifdef DEBUG
2181
  /*debug*/ if (b->wds > n)
2182
  /*debug*/ Bug("oversize b in quorem");
2183
#endif
2184
3.73M
  if (b->wds < n)
2185
118k
    return 0;
2186
3.61M
  sx = S->x;
2187
3.61M
  sxe = sx + --n;
2188
3.61M
  bx = b->x;
2189
3.61M
  bxe = bx + n;
2190
3.61M
  q = *bxe / (*sxe + 1);  /* ensure q <= true quotient */
2191
#ifdef DEBUG
2192
#ifdef NO_STRTOD_BIGCOMP
2193
  /*debug*/ if (q > 9)
2194
#else
2195
  /* An oversized q is possible when quorem is called from bigcomp and */
2196
  /* the input is near, e.g., twice the smallest denormalized number. */
2197
  /*debug*/ if (q > 15)
2198
#endif
2199
  /*debug*/ Bug("oversized quotient in quorem");
2200
#endif
2201
3.61M
  if (q) {
2202
2.69M
    borrow = 0;
2203
2.69M
    carry = 0;
2204
28.2M
    do {
2205
28.2M
#ifdef ULLong
2206
28.2M
      ys = *sx++ * (ULLong)q + carry;
2207
28.2M
      carry = ys >> 32;
2208
28.2M
      y = *bx - (ys & FFFFFFFF) - borrow;
2209
28.2M
      borrow = y >> 32 & (ULong)1;
2210
28.2M
      *bx++ = y & FFFFFFFF;
2211
#else
2212
#ifdef Pack_32
2213
      si = *sx++;
2214
      ys = (si & 0xffff) * q + carry;
2215
      zs = (si >> 16) * q + (ys >> 16);
2216
      carry = zs >> 16;
2217
      y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
2218
      borrow = (y & 0x10000) >> 16;
2219
      z = (*bx >> 16) - (zs & 0xffff) - borrow;
2220
      borrow = (z & 0x10000) >> 16;
2221
      Storeinc(bx, z, y);
2222
#else
2223
      ys = *sx++ * q + carry;
2224
      carry = ys >> 16;
2225
      y = *bx - (ys & 0xffff) - borrow;
2226
      borrow = (y & 0x10000) >> 16;
2227
      *bx++ = y & 0xffff;
2228
#endif
2229
#endif
2230
28.2M
      }
2231
28.2M
      while(sx <= sxe);
2232
2.69M
    if (!*bxe) {
2233
4.72k
      bx = b->x;
2234
4.72k
      while(--bxe > bx && !*bxe)
2235
0
        --n;
2236
4.72k
      b->wds = n;
2237
4.72k
      }
2238
2.69M
    }
2239
3.61M
  if (cmp(b, S) >= 0) {
2240
72.8k
    q++;
2241
72.8k
    borrow = 0;
2242
72.8k
    carry = 0;
2243
72.8k
    bx = b->x;
2244
72.8k
    sx = S->x;
2245
314k
    do {
2246
314k
#ifdef ULLong
2247
314k
      ys = *sx++ + carry;
2248
314k
      carry = ys >> 32;
2249
314k
      y = *bx - (ys & FFFFFFFF) - borrow;
2250
314k
      borrow = y >> 32 & (ULong)1;
2251
314k
      *bx++ = y & FFFFFFFF;
2252
#else
2253
#ifdef Pack_32
2254
      si = *sx++;
2255
      ys = (si & 0xffff) + carry;
2256
      zs = (si >> 16) + (ys >> 16);
2257
      carry = zs >> 16;
2258
      y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
2259
      borrow = (y & 0x10000) >> 16;
2260
      z = (*bx >> 16) - (zs & 0xffff) - borrow;
2261
      borrow = (z & 0x10000) >> 16;
2262
      Storeinc(bx, z, y);
2263
#else
2264
      ys = *sx++ + carry;
2265
      carry = ys >> 16;
2266
      y = *bx - (ys & 0xffff) - borrow;
2267
      borrow = (y & 0x10000) >> 16;
2268
      *bx++ = y & 0xffff;
2269
#endif
2270
#endif
2271
314k
      }
2272
314k
      while(sx <= sxe);
2273
72.8k
    bx = b->x;
2274
72.8k
    bxe = bx + n;
2275
72.8k
    if (!*bxe) {
2276
77.0k
      while(--bxe > bx && !*bxe)
2277
7.89k
        --n;
2278
69.2k
      b->wds = n;
2279
69.2k
      }
2280
72.8k
    }
2281
3.61M
  return q;
2282
3.73M
  }
2283
2284
#if defined(Avoid_Underflow) || !defined(NO_STRTOD_BIGCOMP) /*{*/
2285
 static double
2286
sulp
2287
#ifdef KR_headers
2288
  (x, bc) U *x; BCinfo *bc;
2289
#else
2290
  (U *x, BCinfo *bc)
2291
#endif
2292
10.4k
{
2293
10.4k
  U u;
2294
10.4k
  double rv;
2295
10.4k
  int i;
2296
2297
10.4k
  rv = ulp(x);
2298
10.4k
  if (!bc->scale || (i = 2*P + 1 - ((word0(x) & Exp_mask) >> Exp_shift)) <= 0)
2299
9.75k
    return rv; /* Is there an example where i <= 0 ? */
2300
716
  word0(&u) = Exp_1 + (i << Exp_shift);
2301
716
  word1(&u) = 0;
2302
716
  return rv * u.d;
2303
10.4k
  }
2304
#endif /*}*/
2305
2306
#ifndef NO_STRTOD_BIGCOMP
2307
 static void
2308
bigcomp
2309
#ifdef KR_headers
2310
  (rv, s0, bc)
2311
  U *rv; CONST char *s0; BCinfo *bc;
2312
#else
2313
  (U *rv, const char *s0, BCinfo *bc)
2314
#endif
2315
97.5k
{
2316
97.5k
  Bigint *b, *d;
2317
97.5k
  int b2, bbits, d2, dd, dig, dsign, i, j, nd, nd0, p2, p5, speccase;
2318
2319
97.5k
  dsign = bc->dsign;
2320
97.5k
  nd = bc->nd;
2321
97.5k
  nd0 = bc->nd0;
2322
97.5k
  p5 = nd + bc->e0 - 1;
2323
97.5k
  speccase = 0;
2324
97.5k
#ifndef Sudden_Underflow
2325
97.5k
  if (rv->d == 0.) { /* special case: value near underflow-to-zero */
2326
        /* threshold was rounded to zero */
2327
5.40k
    b = i2b(1);
2328
5.40k
    p2 = Emin - P + 1;
2329
5.40k
    bbits = 1;
2330
5.40k
#ifdef Avoid_Underflow
2331
5.40k
    word0(rv) = (P+2) << Exp_shift;
2332
#else
2333
    word1(rv) = 1;
2334
#endif
2335
5.40k
    i = 0;
2336
#ifdef Honor_FLT_ROUNDS
2337
    if (bc->rounding == 1)
2338
#endif
2339
5.40k
      {
2340
5.40k
      speccase = 1;
2341
5.40k
      --p2;
2342
5.40k
      dsign = 0;
2343
5.40k
      goto have_i;
2344
5.40k
      }
2345
5.40k
    }
2346
92.1k
  else
2347
92.1k
#endif
2348
92.1k
    b = d2b(rv, &p2, &bbits);
2349
92.1k
#ifdef Avoid_Underflow
2350
92.1k
  p2 -= bc->scale;
2351
92.1k
#endif
2352
  /* floor(log2(rv)) == bbits - 1 + p2 */
2353
  /* Check for denormal case. */
2354
92.1k
  i = P - bbits;
2355
92.1k
  if (i > (j = P - Emin - 1 + p2)) {
2356
#ifdef Sudden_Underflow
2357
    Bfree(b);
2358
    b = i2b(1);
2359
    p2 = Emin;
2360
    i = P - 1;
2361
#ifdef Avoid_Underflow
2362
    word0(rv) = (1 + bc->scale) << Exp_shift;
2363
#else
2364
    word0(rv) = Exp_msk1;
2365
#endif
2366
    word1(rv) = 0;
2367
#else
2368
2.58k
    i = j;
2369
2.58k
#endif
2370
2.58k
    }
2371
#ifdef Honor_FLT_ROUNDS
2372
  if (bc->rounding != 1) {
2373
    if (i > 0)
2374
      b = lshift(b, i);
2375
    if (dsign)
2376
      b = increment(b);
2377
    }
2378
  else
2379
#endif
2380
92.1k
    {
2381
92.1k
    b = lshift(b, ++i);
2382
92.1k
    b->x[0] |= 1;
2383
92.1k
    }
2384
92.1k
#ifndef Sudden_Underflow
2385
97.5k
 have_i:
2386
97.5k
#endif
2387
97.5k
  p2 -= p5 + i;
2388
97.5k
  d = i2b(1);
2389
  /* Arrange for convenient computation of quotients:
2390
   * shift left if necessary so divisor has 4 leading 0 bits.
2391
   */
2392
97.5k
  if (p5 > 0)
2393
77.5k
    d = pow5mult(d, p5);
2394
19.9k
  else if (p5 < 0)
2395
18.5k
    b = pow5mult(b, -p5);
2396
97.5k
  if (p2 > 0) {
2397
63.5k
    b2 = p2;
2398
63.5k
    d2 = 0;
2399
63.5k
    }
2400
33.9k
  else {
2401
33.9k
    b2 = 0;
2402
33.9k
    d2 = -p2;
2403
33.9k
    }
2404
97.5k
  i = dshift(d, d2);
2405
97.5k
  if ((b2 += i) > 0)
2406
95.3k
    b = lshift(b, b2);
2407
97.5k
  if ((d2 += i) > 0)
2408
91.3k
    d = lshift(d, d2);
2409
2410
  /* Now b/d = exactly half-way between the two floating-point values */
2411
  /* on either side of the input string.  Compute first digit of b/d. */
2412
2413
97.5k
  if (!(dig = quorem(b,d))) {
2414
0
    b = multadd(b, 10, 0);  /* very unlikely */
2415
0
    dig = quorem(b,d);
2416
0
    }
2417
2418
  /* Compare b/d with s0 */
2419
2420
1.50M
  for(i = 0; i < nd0; ) {
2421
1.47M
    if ((dd = s0[i++] - '0' - dig))
2422
71.3k
      goto ret;
2423
1.40M
    if (!b->x[0] && b->wds == 1) {
2424
4.78k
      if (i < nd)
2425
2.17k
        dd = 1;
2426
4.78k
      goto ret;
2427
4.78k
      }
2428
1.40M
    b = multadd(b, 10, 0);
2429
1.40M
    dig = quorem(b,d);
2430
1.40M
    }
2431
129k
  for(j = bc->dp1; i++ < nd;) {
2432
125k
    if ((dd = s0[j++] - '0' - dig))
2433
16.8k
      goto ret;
2434
109k
    if (!b->x[0] && b->wds == 1) {
2435
645
      if (i < nd)
2436
451
        dd = 1;
2437
645
      goto ret;
2438
645
      }
2439
108k
    b = multadd(b, 10, 0);
2440
108k
    dig = quorem(b,d);
2441
108k
    }
2442
3.88k
  if (dig > 0 || b->x[0] || b->wds > 1)
2443
3.88k
    dd = -1;
2444
97.5k
 ret:
2445
97.5k
  Bfree(b);
2446
97.5k
  Bfree(d);
2447
#ifdef Honor_FLT_ROUNDS
2448
  if (bc->rounding != 1) {
2449
    if (dd < 0) {
2450
      if (bc->rounding == 0) {
2451
        if (!dsign)
2452
          goto retlow1;
2453
        }
2454
      else if (dsign)
2455
        goto rethi1;
2456
      }
2457
    else if (dd > 0) {
2458
      if (bc->rounding == 0) {
2459
        if (dsign)
2460
          goto rethi1;
2461
        goto ret1;
2462
        }
2463
      if (!dsign)
2464
        goto rethi1;
2465
      dval(rv) += 2.*sulp(rv,bc);
2466
      }
2467
    else {
2468
      bc->inexact = 0;
2469
      if (dsign)
2470
        goto rethi1;
2471
      }
2472
    }
2473
  else
2474
#endif
2475
97.5k
  if (speccase) {
2476
5.40k
    if (dd <= 0)
2477
5.20k
      rv->d = 0.;
2478
5.40k
    }
2479
92.1k
  else if (dd < 0) {
2480
84.6k
    if (!dsign)  /* does not happen for round-near */
2481
0
retlow1:
2482
0
      dval(rv) -= sulp(rv,bc);
2483
84.6k
    }
2484
7.50k
  else if (dd > 0) {
2485
4.70k
    if (dsign) {
2486
5.59k
 rethi1:
2487
5.59k
      dval(rv) += sulp(rv,bc);
2488
5.59k
      }
2489
4.70k
    }
2490
2.79k
  else {
2491
    /* Exact half-way case:  apply round-even rule. */
2492
2.79k
    if ((j = ((word0(rv) & Exp_mask) >> Exp_shift) - bc->scale) <= 0) {
2493
0
      i = 1 - j;
2494
0
      if (i <= 31) {
2495
0
        if (word1(rv) & (0x1 << i))
2496
0
          goto odd;
2497
0
        }
2498
0
      else if (word0(rv) & (0x1 << (i-32)))
2499
0
        goto odd;
2500
0
      }
2501
2.79k
    else if (word1(rv) & 1) {
2502
890
 odd:
2503
890
      if (dsign)
2504
890
        goto rethi1;
2505
0
      goto retlow1;
2506
890
      }
2507
2.79k
    }
2508
2509
#ifdef Honor_FLT_ROUNDS
2510
 ret1:
2511
#endif
2512
97.5k
  return;
2513
97.5k
  }
2514
#endif /* NO_STRTOD_BIGCOMP */
2515
2516
ZEND_API double
2517
zend_strtod
2518
#ifdef KR_headers
2519
  (s00, se) CONST char *s00; char **se;
2520
#else
2521
  (const char *s00, const char **se)
2522
#endif
2523
865k
{
2524
865k
  int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, e, e1;
2525
865k
  int esign, i, j, k, nd, nd0, nf, nz, nz0, nz1, sign;
2526
865k
  CONST char *s, *s0, *s1;
2527
865k
  volatile double aadj, aadj1;
2528
865k
  Long L;
2529
865k
  U aadj2, adj, rv, rv0;
2530
865k
  ULong y, z;
2531
865k
  BCinfo bc;
2532
865k
  Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
2533
865k
#ifdef Avoid_Underflow
2534
865k
  ULong Lsb, Lsb1;
2535
865k
#endif
2536
#ifdef SET_INEXACT
2537
  int oldinexact;
2538
#endif
2539
865k
#ifndef NO_STRTOD_BIGCOMP
2540
865k
  int req_bigcomp = 0;
2541
865k
#endif
2542
#ifdef Honor_FLT_ROUNDS /*{*/
2543
#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
2544
  bc.rounding = Flt_Rounds;
2545
#else /*}{*/
2546
  bc.rounding = 1;
2547
  switch(fegetround()) {
2548
    case FE_TOWARDZERO: bc.rounding = 0; break;
2549
    case FE_UPWARD: bc.rounding = 2; break;
2550
    case FE_DOWNWARD: bc.rounding = 3;
2551
    }
2552
#endif /*}}*/
2553
#endif /*}*/
2554
#ifdef USE_LOCALE
2555
  CONST char *s2;
2556
#endif
2557
2558
865k
  sign = nz0 = nz1 = nz = bc.dplen = bc.uflchk = 0;
2559
865k
  dval(&rv) = 0.;
2560
870k
  for(s = s00;;s++) switch(*s) {
2561
73.9k
    case '-':
2562
73.9k
      sign = 1;
2563
73.9k
      ZEND_FALLTHROUGH;
2564
110k
    case '+':
2565
110k
      if (*++s)
2566
110k
        goto break2;
2567
56
      ZEND_FALLTHROUGH;
2568
489
    case 0:
2569
489
      goto ret0;
2570
683
    case '\t':
2571
1.27k
    case '\n':
2572
2.47k
    case '\v':
2573
3.24k
    case '\f':
2574
3.73k
    case '\r':
2575
4.89k
    case ' ':
2576
4.89k
      continue;
2577
755k
    default:
2578
755k
      goto break2;
2579
870k
    }
2580
865k
 break2:
2581
865k
  if (*s == '0') {
2582
#ifndef NO_HEX_FP /*{*/
2583
    switch(s[1]) {
2584
      case 'x':
2585
      case 'X':
2586
#ifdef Honor_FLT_ROUNDS
2587
      gethex(&s, &rv, bc.rounding, sign);
2588
#else
2589
      gethex(&s, &rv, 1, sign);
2590
#endif
2591
      goto ret;
2592
      }
2593
#endif /*}*/
2594
251k
    nz0 = 1;
2595
1.60M
    while(*++s == '0') ;
2596
251k
    if (!*s)
2597
138
      goto ret;
2598
251k
    }
2599
865k
  s0 = s;
2600
865k
  y = z = 0;
2601
145M
  for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
2602
144M
    if (nd < 9)
2603
4.44M
      y = 10*y + c - '0';
2604
140M
    else if (nd < DBL_DIG + 2)
2605
2.57M
      z = 10*z + c - '0';
2606
865k
  nd0 = nd;
2607
865k
  bc.dp0 = bc.dp1 = s - s0;
2608
4.97M
  for(s1 = s; s1 > s0 && *--s1 == '0'; )
2609
4.10M
    ++nz1;
2610
#ifdef USE_LOCALE
2611
  s1 = localeconv()->decimal_point;
2612
  if (c == *s1) {
2613
    c = '.';
2614
    if (*++s1) {
2615
      s2 = s;
2616
      for(;;) {
2617
        if (*++s2 != *s1) {
2618
          c = 0;
2619
          break;
2620
          }
2621
        if (!*++s1) {
2622
          s = s2;
2623
          break;
2624
          }
2625
        }
2626
      }
2627
    }
2628
#endif
2629
865k
  if (c == '.') {
2630
289k
    c = *++s;
2631
289k
    bc.dp1 = s - s0;
2632
289k
    bc.dplen = bc.dp1 - bc.dp0;
2633
289k
    if (!nd) {
2634
37.4M
      for(; c == '0'; c = *++s)
2635
37.3M
        nz++;
2636
111k
      if (c > '0' && c <= '9') {
2637
88.0k
        bc.dp0 = s0 - s;
2638
88.0k
        bc.dp1 = bc.dp0 + bc.dplen;
2639
88.0k
        s0 = s;
2640
88.0k
        nf += nz;
2641
88.0k
        nz = 0;
2642
88.0k
        goto have_dig;
2643
88.0k
        }
2644
23.5k
      goto dig_done;
2645
111k
      }
2646
49.6M
    for(; c >= '0' && c <= '9'; c = *++s) {
2647
49.5M
 have_dig:
2648
49.5M
      nz++;
2649
49.5M
      if (c -= '0') {
2650
1.91M
        nf += nz;
2651
47.6M
        for(i = 1; i < nz; i++)
2652
45.6M
          if (nd++ < 9)
2653
529k
            y *= 10;
2654
45.1M
          else if (nd <= DBL_DIG + 2)
2655
618k
            z *= 10;
2656
1.91M
        if (nd++ < 9)
2657
425k
          y = 10*y + c;
2658
1.49M
        else if (nd <= DBL_DIG + 2)
2659
287k
          z = 10*z + c;
2660
1.91M
        nz = nz1 = 0;
2661
1.91M
        }
2662
49.5M
      }
2663
177k
    }
2664
865k
 dig_done:
2665
865k
  if (nd < 0) {
2666
    /* overflow */
2667
0
    nd = DBL_DIG + 2;
2668
0
  }
2669
865k
  if (nf < 0) {
2670
    /* overflow */
2671
0
    nf = DBL_DIG + 2;
2672
0
  }
2673
865k
  e = 0;
2674
865k
  if (c == 'e' || c == 'E') {
2675
186k
    if (!nd && !nz && !nz0) {
2676
410
      goto ret0;
2677
410
      }
2678
186k
    s00 = s;
2679
186k
    esign = 0;
2680
186k
    switch(c = *++s) {
2681
75.4k
      case '-':
2682
75.4k
        esign = 1;
2683
75.4k
        ZEND_FALLTHROUGH;
2684
80.4k
      case '+':
2685
80.4k
        c = *++s;
2686
186k
      }
2687
186k
    if (c >= '0' && c <= '9') {
2688
1.80M
      while(c == '0')
2689
1.61M
        c = *++s;
2690
182k
      if (c > '0' && c <= '9') {
2691
173k
        L = c - '0';
2692
173k
        s1 = s;
2693
3.87M
        while((c = *++s) >= '0' && c <= '9')
2694
3.69M
          L = (Long) (10*(ULong)L + (c - '0'));
2695
173k
        if (s - s1 > 8 || L > 19999)
2696
          /* Avoid confusion from exponents
2697
           * so large that e might overflow.
2698
           */
2699
9.09k
          e = 19999; /* safe for 16 bit ints */
2700
164k
        else
2701
164k
          e = (int)L;
2702
173k
        if (esign)
2703
74.7k
          e = -e;
2704
173k
        }
2705
9.63k
      else
2706
9.63k
        e = 0;
2707
182k
      }
2708
3.46k
    else
2709
3.46k
      s = s00;
2710
186k
    }
2711
864k
  if (!nd) {
2712
64.7k
    if (!nz && !nz0) {
2713
#ifdef INFNAN_CHECK
2714
      /* Check for Nan and Infinity */
2715
      if (!bc.dplen)
2716
       switch(c) {
2717
        case 'i':
2718
        case 'I':
2719
        if (match(&s,"nf")) {
2720
          --s;
2721
          if (!match(&s,"inity"))
2722
            ++s;
2723
          word0(&rv) = 0x7ff00000;
2724
          word1(&rv) = 0;
2725
          goto ret;
2726
          }
2727
        break;
2728
        case 'n':
2729
        case 'N':
2730
        if (match(&s, "an")) {
2731
          word0(&rv) = NAN_WORD0;
2732
          word1(&rv) = NAN_WORD1;
2733
#ifndef No_Hex_NaN
2734
          if (*s == '(') /*)*/
2735
            hexnan(&rv, &s);
2736
#endif
2737
          goto ret;
2738
          }
2739
        }
2740
#endif /* INFNAN_CHECK */
2741
1.30k
 ret0:
2742
1.30k
      s = s00;
2743
1.30k
      sign = 0;
2744
1.30k
      }
2745
65.6k
    goto ret;
2746
64.7k
    }
2747
800k
  bc.e0 = e1 = e -= nf;
2748
2749
  /* Now we have nd0 digits, starting at s0, followed by a
2750
   * decimal point, followed by nd-nd0 digits.  The number we're
2751
   * after is the integer represented by those digits times
2752
   * 10**e */
2753
2754
800k
  if (!nd0)
2755
88.0k
    nd0 = nd;
2756
800k
  k = nd < DBL_DIG + 2 ? nd : DBL_DIG + 2;
2757
800k
  dval(&rv) = y;
2758
800k
  if (k > 9) {
2759
#ifdef SET_INEXACT
2760
    if (k > DBL_DIG)
2761
      oldinexact = get_inexact();
2762
#endif
2763
482k
    dval(&rv) = tens[k - 9] * dval(&rv) + z;
2764
482k
    }
2765
800k
  bd0 = 0;
2766
800k
  if (nd <= DBL_DIG
2767
403k
#ifndef RND_PRODQUOT
2768
403k
#ifndef Honor_FLT_ROUNDS
2769
403k
    && Flt_Rounds == 1
2770
800k
#endif
2771
800k
#endif
2772
800k
      ) {
2773
403k
    if (!e)
2774
231k
      goto ret;
2775
171k
#ifndef ROUND_BIASED_without_Round_Up
2776
171k
    if (e > 0) {
2777
36.0k
      if (e <= Ten_pmax) {
2778
#ifdef VAX
2779
        goto vax_ovfl_check;
2780
#else
2781
#ifdef Honor_FLT_ROUNDS
2782
        /* round correctly FLT_ROUNDS = 2 or 3 */
2783
        if (sign) {
2784
          rv.d = -rv.d;
2785
          sign = 0;
2786
          }
2787
#endif
2788
9.48k
        /* rv = */ rounded_product(dval(&rv), tens[e]);
2789
9.48k
        goto ret;
2790
9.48k
#endif
2791
9.48k
        }
2792
26.5k
      i = DBL_DIG - nd;
2793
26.5k
      if (e <= Ten_pmax + i) {
2794
        /* A fancier test would sometimes let us do
2795
         * this for larger i values.
2796
         */
2797
#ifdef Honor_FLT_ROUNDS
2798
        /* round correctly FLT_ROUNDS = 2 or 3 */
2799
        if (sign) {
2800
          rv.d = -rv.d;
2801
          sign = 0;
2802
          }
2803
#endif
2804
1.38k
        e -= i;
2805
1.38k
        dval(&rv) *= tens[i];
2806
#ifdef VAX
2807
        /* VAX exponent range is so narrow we must
2808
         * worry about overflow here...
2809
         */
2810
 vax_ovfl_check:
2811
        word0(&rv) -= P*Exp_msk1;
2812
        /* rv = */ rounded_product(dval(&rv), tens[e]);
2813
        if ((word0(&rv) & Exp_mask)
2814
         > Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
2815
          goto ovfl;
2816
        word0(&rv) += P*Exp_msk1;
2817
#else
2818
1.38k
        /* rv = */ rounded_product(dval(&rv), tens[e]);
2819
1.38k
#endif
2820
1.38k
        goto ret;
2821
1.38k
        }
2822
26.5k
      }
2823
135k
#ifndef Inaccurate_Divide
2824
135k
    else if (e >= -Ten_pmax) {
2825
#ifdef Honor_FLT_ROUNDS
2826
      /* round correctly FLT_ROUNDS = 2 or 3 */
2827
      if (sign) {
2828
        rv.d = -rv.d;
2829
        sign = 0;
2830
        }
2831
#endif
2832
68.4k
      /* rv = */ rounded_quotient(dval(&rv), tens[-e]);
2833
68.4k
      goto ret;
2834
68.4k
      }
2835
171k
#endif
2836
171k
#endif /* ROUND_BIASED_without_Round_Up */
2837
171k
    }
2838
489k
  e1 += nd - k;
2839
2840
489k
#ifdef IEEE_Arith
2841
#ifdef SET_INEXACT
2842
  bc.inexact = 1;
2843
  if (k <= DBL_DIG)
2844
    oldinexact = get_inexact();
2845
#endif
2846
489k
#ifdef Avoid_Underflow
2847
489k
  bc.scale = 0;
2848
489k
#endif
2849
#ifdef Honor_FLT_ROUNDS
2850
  if (bc.rounding >= 2) {
2851
    if (sign)
2852
      bc.rounding = bc.rounding == 2 ? 0 : 2;
2853
    else
2854
      if (bc.rounding != 2)
2855
        bc.rounding = 0;
2856
    }
2857
#endif
2858
489k
#endif /*IEEE_Arith*/
2859
2860
  /* Get starting approximation = rv * 10**e1 */
2861
2862
489k
  if (e1 > 0) {
2863
276k
    if ((i = e1 & 15))
2864
269k
      dval(&rv) *= tens[i];
2865
276k
    if (e1 &= ~15) {
2866
176k
      if (e1 > DBL_MAX_10_EXP) {
2867
24.4k
 ovfl:
2868
        /* Can't trust HUGE_VAL */
2869
24.4k
#ifdef IEEE_Arith
2870
#ifdef Honor_FLT_ROUNDS
2871
        switch(bc.rounding) {
2872
          case 0: /* toward 0 */
2873
          case 3: /* toward -infinity */
2874
          word0(&rv) = Big0;
2875
          word1(&rv) = Big1;
2876
          break;
2877
          default:
2878
          word0(&rv) = Exp_mask;
2879
          word1(&rv) = 0;
2880
          }
2881
#else /*Honor_FLT_ROUNDS*/
2882
24.4k
        word0(&rv) = Exp_mask;
2883
24.4k
        word1(&rv) = 0;
2884
24.4k
#endif /*Honor_FLT_ROUNDS*/
2885
#ifdef SET_INEXACT
2886
        /* set overflow bit */
2887
        dval(&rv0) = 1e300;
2888
        dval(&rv0) *= dval(&rv0);
2889
#endif
2890
#else /*IEEE_Arith*/
2891
        word0(&rv) = Big0;
2892
        word1(&rv) = Big1;
2893
#endif /*IEEE_Arith*/
2894
33.8k
 range_err:
2895
33.8k
        if (bd0) {
2896
1.59k
          Bfree(bb);
2897
1.59k
          Bfree(bd);
2898
1.59k
          Bfree(bs);
2899
1.59k
          Bfree(bd0);
2900
1.59k
          Bfree(delta);
2901
1.59k
          }
2902
#ifndef NO_ERRNO
2903
        errno = ERANGE;
2904
#endif
2905
33.8k
        goto ret;
2906
24.4k
        }
2907
161k
      e1 >>= 4;
2908
435k
      for(j = 0; e1 > 1; j++, e1 >>= 1)
2909
274k
        if (e1 & 1)
2910
116k
          dval(&rv) *= bigtens[j];
2911
    /* The last multiplication could overflow. */
2912
161k
      word0(&rv) -= P*Exp_msk1;
2913
161k
      dval(&rv) *= bigtens[j];
2914
161k
      if ((z = word0(&rv) & Exp_mask)
2915
161k
       > Exp_msk1*(DBL_MAX_EXP+Bias-P))
2916
7.42k
        goto ovfl;
2917
153k
      if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
2918
        /* set to largest number */
2919
        /* (Can't trust DBL_MAX) */
2920
1.79k
        word0(&rv) = Big0;
2921
1.79k
        word1(&rv) = Big1;
2922
1.79k
        }
2923
151k
      else
2924
151k
        word0(&rv) += P*Exp_msk1;
2925
153k
      }
2926
276k
    }
2927
212k
  else if (e1 < 0) {
2928
196k
    e1 = -e1;
2929
196k
    if ((i = e1 & 15))
2930
184k
      dval(&rv) /= tens[i];
2931
196k
    if (e1 >>= 4) {
2932
117k
      if (e1 >= 1 << n_bigtens)
2933
2.04k
        goto undfl;
2934
115k
#ifdef Avoid_Underflow
2935
115k
      if (e1 & Scale_Bit)
2936
67.8k
        bc.scale = 2*P;
2937
556k
      for(j = 0; e1 > 0; j++, e1 >>= 1)
2938
441k
        if (e1 & 1)
2939
249k
          dval(&rv) *= tinytens[j];
2940
115k
      if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask)
2941
67.8k
            >> Exp_shift)) > 0) {
2942
        /* scaled rv is denormal; clear j low bits */
2943
53.4k
        if (j >= 32) {
2944
15.2k
          if (j > 54)
2945
2.14k
            goto undfl;
2946
13.0k
          word1(&rv) = 0;
2947
13.0k
          if (j >= 53)
2948
6.08k
           word0(&rv) = (P+2)*Exp_msk1;
2949
7.00k
          else
2950
7.00k
           word0(&rv) &= 0xffffffff << (j-32);
2951
13.0k
          }
2952
38.2k
        else
2953
38.2k
          word1(&rv) &= 0xffffffff << j;
2954
53.4k
        }
2955
#else
2956
      for(j = 0; e1 > 1; j++, e1 >>= 1)
2957
        if (e1 & 1)
2958
          dval(&rv) *= tinytens[j];
2959
      /* The last multiplication could underflow. */
2960
      dval(&rv0) = dval(&rv);
2961
      dval(&rv) *= tinytens[j];
2962
      if (!dval(&rv)) {
2963
        dval(&rv) = 2.*dval(&rv0);
2964
        dval(&rv) *= tinytens[j];
2965
#endif
2966
113k
        if (!dval(&rv)) {
2967
9.39k
 undfl:
2968
9.39k
          dval(&rv) = 0.;
2969
9.39k
          goto range_err;
2970
0
          }
2971
#ifndef Avoid_Underflow
2972
        word0(&rv) = Tiny0;
2973
        word1(&rv) = Tiny1;
2974
        /* The refinement below will clean
2975
         * this approximation up.
2976
         */
2977
        }
2978
#endif
2979
113k
      }
2980
196k
    }
2981
2982
  /* Now the hard part -- adjusting rv to the correct value.*/
2983
2984
  /* Put digits into bd: true value = bd * 10^e */
2985
2986
462k
  bc.nd = nd - nz1;
2987
462k
#ifndef NO_STRTOD_BIGCOMP
2988
462k
  bc.nd0 = nd0; /* Only needed if nd > strtod_diglim, but done here */
2989
      /* to silence an erroneous warning about bc.nd0 */
2990
      /* possibly not being initialized. */
2991
462k
  if (nd > strtod_diglim) {
2992
    /* ASSERT(strtod_diglim >= 18); 18 == one more than the */
2993
    /* minimum number of decimal digits to distinguish double values */
2994
    /* in IEEE arithmetic. */
2995
149k
    i = j = 18;
2996
149k
    if (i > nd0)
2997
24.2k
      j += bc.dplen;
2998
836k
    for(;;) {
2999
836k
      if (--j < bc.dp1 && j >= bc.dp0)
3000
4.87k
        j = bc.dp0 - 1;
3001
836k
      if (s0[j] != '0')
3002
149k
        break;
3003
686k
      --i;
3004
686k
      }
3005
149k
    e += nd - i;
3006
149k
    nd = i;
3007
149k
    if (nd0 > nd)
3008
125k
      nd0 = nd;
3009
149k
    if (nd < 9) { /* must recompute y */
3010
40.3k
      y = 0;
3011
145k
      for(i = 0; i < nd0; ++i)
3012
104k
        y = 10*y + s0[i] - '0';
3013
50.1k
      for(j = bc.dp1; i < nd; ++i)
3014
9.79k
        y = 10*y + s0[j++] - '0';
3015
40.3k
      }
3016
149k
    }
3017
462k
#endif
3018
462k
  bd0 = s2b(s0, nd0, nd, y, bc.dplen);
3019
3020
567k
  for(;;) {
3021
567k
    bd = Balloc(bd0->k);
3022
567k
    Bcopy(bd, bd0);
3023
567k
    bb = d2b(&rv, &bbe, &bbbits); /* rv = bb * 2^bbe */
3024
567k
    bs = i2b(1);
3025
3026
567k
    if (e >= 0) {
3027
327k
      bb2 = bb5 = 0;
3028
327k
      bd2 = bd5 = e;
3029
327k
      }
3030
239k
    else {
3031
239k
      bb2 = bb5 = -e;
3032
239k
      bd2 = bd5 = 0;
3033
239k
      }
3034
567k
    if (bbe >= 0)
3035
348k
      bb2 += bbe;
3036
218k
    else
3037
218k
      bd2 -= bbe;
3038
567k
    bs2 = bb2;
3039
#ifdef Honor_FLT_ROUNDS
3040
    if (bc.rounding != 1)
3041
      bs2++;
3042
#endif
3043
567k
#ifdef Avoid_Underflow
3044
567k
    Lsb = LSB;
3045
567k
    Lsb1 = 0;
3046
567k
    j = bbe - bc.scale;
3047
567k
    i = j + bbbits - 1; /* logb(rv) */
3048
567k
    j = P + 1 - bbbits;
3049
567k
    if (i < Emin) { /* denormal */
3050
72.7k
      i = Emin - i;
3051
72.7k
      j -= i;
3052
72.7k
      if (i < 32)
3053
54.4k
        Lsb <<= i;
3054
18.2k
      else if (i < 52)
3055
11.8k
        Lsb1 = Lsb << (i-32);
3056
6.46k
      else
3057
6.46k
        Lsb1 = Exp_mask;
3058
72.7k
      }
3059
#else /*Avoid_Underflow*/
3060
#ifdef Sudden_Underflow
3061
#ifdef IBM
3062
    j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
3063
#else
3064
    j = P + 1 - bbbits;
3065
#endif
3066
#else /*Sudden_Underflow*/
3067
    j = bbe;
3068
    i = j + bbbits - 1; /* logb(rv) */
3069
    if (i < Emin) /* denormal */
3070
      j += P - Emin;
3071
    else
3072
      j = P + 1 - bbbits;
3073
#endif /*Sudden_Underflow*/
3074
#endif /*Avoid_Underflow*/
3075
567k
    bb2 += j;
3076
567k
    bd2 += j;
3077
567k
#ifdef Avoid_Underflow
3078
567k
    bd2 += bc.scale;
3079
567k
#endif
3080
567k
    i = bb2 < bd2 ? bb2 : bd2;
3081
567k
    if (i > bs2)
3082
223k
      i = bs2;
3083
567k
    if (i > 0) {
3084
563k
      bb2 -= i;
3085
563k
      bd2 -= i;
3086
563k
      bs2 -= i;
3087
563k
      }
3088
567k
    if (bb5 > 0) {
3089
239k
      bs = pow5mult(bs, bb5);
3090
239k
      bb1 = mult(bs, bb);
3091
239k
      Bfree(bb);
3092
239k
      bb = bb1;
3093
239k
      }
3094
567k
    if (bb2 > 0)
3095
567k
      bb = lshift(bb, bb2);
3096
567k
    if (bd5 > 0)
3097
194k
      bd = pow5mult(bd, bd5);
3098
567k
    if (bd2 > 0)
3099
223k
      bd = lshift(bd, bd2);
3100
567k
    if (bs2 > 0)
3101
335k
      bs = lshift(bs, bs2);
3102
567k
    delta = diff(bb, bd);
3103
567k
    bc.dsign = delta->sign;
3104
567k
    delta->sign = 0;
3105
567k
    i = cmp(delta, bs);
3106
567k
#ifndef NO_STRTOD_BIGCOMP /*{*/
3107
567k
    if (bc.nd > nd && i <= 0) {
3108
148k
      if (bc.dsign) {
3109
        /* Must use bigcomp(). */
3110
92.1k
        req_bigcomp = 1;
3111
92.1k
        break;
3112
92.1k
        }
3113
#ifdef Honor_FLT_ROUNDS
3114
      if (bc.rounding != 1) {
3115
        if (i < 0) {
3116
          req_bigcomp = 1;
3117
          break;
3118
          }
3119
        }
3120
      else
3121
#endif
3122
56.0k
        i = -1; /* Discarded digits make delta smaller. */
3123
56.0k
      }
3124
475k
#endif /*}*/
3125
#ifdef Honor_FLT_ROUNDS /*{*/
3126
    if (bc.rounding != 1) {
3127
      if (i < 0) {
3128
        /* Error is less than an ulp */
3129
        if (!delta->x[0] && delta->wds <= 1) {
3130
          /* exact */
3131
#ifdef SET_INEXACT
3132
          bc.inexact = 0;
3133
#endif
3134
          break;
3135
          }
3136
        if (bc.rounding) {
3137
          if (bc.dsign) {
3138
            adj.d = 1.;
3139
            goto apply_adj;
3140
            }
3141
          }
3142
        else if (!bc.dsign) {
3143
          adj.d = -1.;
3144
          if (!word1(&rv)
3145
           && !(word0(&rv) & Frac_mask)) {
3146
            y = word0(&rv) & Exp_mask;
3147
#ifdef Avoid_Underflow
3148
            if (!bc.scale || y > 2*P*Exp_msk1)
3149
#else
3150
            if (y)
3151
#endif
3152
              {
3153
              delta = lshift(delta,Log2P);
3154
              if (cmp(delta, bs) <= 0)
3155
              adj.d = -0.5;
3156
              }
3157
            }
3158
 apply_adj:
3159
#ifdef Avoid_Underflow /*{*/
3160
          if (bc.scale && (y = word0(&rv) & Exp_mask)
3161
            <= 2*P*Exp_msk1)
3162
            word0(&adj) += (2*P+1)*Exp_msk1 - y;
3163
#else
3164
#ifdef Sudden_Underflow
3165
          if ((word0(&rv) & Exp_mask) <=
3166
              P*Exp_msk1) {
3167
            word0(&rv) += P*Exp_msk1;
3168
            dval(&rv) += adj.d*ulp(dval(&rv));
3169
            word0(&rv) -= P*Exp_msk1;
3170
            }
3171
          else
3172
#endif /*Sudden_Underflow*/
3173
#endif /*Avoid_Underflow}*/
3174
          dval(&rv) += adj.d*ulp(&rv);
3175
          }
3176
        break;
3177
        }
3178
      adj.d = ratio(delta, bs);
3179
      if (adj.d < 1.)
3180
        adj.d = 1.;
3181
      if (adj.d <= 0x7ffffffe) {
3182
        /* adj = rounding ? ceil(adj) : floor(adj); */
3183
        y = adj.d;
3184
        if (y != adj.d) {
3185
          if (!((bc.rounding>>1) ^ bc.dsign))
3186
            y++;
3187
          adj.d = y;
3188
          }
3189
        }
3190
#ifdef Avoid_Underflow /*{*/
3191
      if (bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1)
3192
        word0(&adj) += (2*P+1)*Exp_msk1 - y;
3193
#else
3194
#ifdef Sudden_Underflow
3195
      if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) {
3196
        word0(&rv) += P*Exp_msk1;
3197
        adj.d *= ulp(dval(&rv));
3198
        if (bc.dsign)
3199
          dval(&rv) += adj.d;
3200
        else
3201
          dval(&rv) -= adj.d;
3202
        word0(&rv) -= P*Exp_msk1;
3203
        goto cont;
3204
        }
3205
#endif /*Sudden_Underflow*/
3206
#endif /*Avoid_Underflow}*/
3207
      adj.d *= ulp(&rv);
3208
      if (bc.dsign) {
3209
        if (word0(&rv) == Big0 && word1(&rv) == Big1)
3210
          goto ovfl;
3211
        dval(&rv) += adj.d;
3212
        }
3213
      else
3214
        dval(&rv) -= adj.d;
3215
      goto cont;
3216
      }
3217
#endif /*}Honor_FLT_ROUNDS*/
3218
3219
475k
    if (i < 0) {
3220
      /* Error is less than half an ulp -- check for
3221
       * special case of mantissa a power of two.
3222
       */
3223
249k
      if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask
3224
15.4k
#ifdef IEEE_Arith /*{*/
3225
15.4k
#ifdef Avoid_Underflow
3226
15.4k
       || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1
3227
#else
3228
       || (word0(&rv) & Exp_mask) <= Exp_msk1
3229
#endif
3230
249k
#endif /*}*/
3231
249k
        ) {
3232
#ifdef SET_INEXACT
3233
        if (!delta->x[0] && delta->wds <= 1)
3234
          bc.inexact = 0;
3235
#endif
3236
235k
        break;
3237
235k
        }
3238
13.9k
      if (!delta->x[0] && delta->wds <= 1) {
3239
        /* exact result */
3240
#ifdef SET_INEXACT
3241
        bc.inexact = 0;
3242
#endif
3243
6.03k
        break;
3244
6.03k
        }
3245
7.92k
      delta = lshift(delta,Log2P);
3246
7.92k
      if (cmp(delta, bs) > 0)
3247
2.84k
        goto drop_down;
3248
5.07k
      break;
3249
7.92k
      }
3250
225k
    if (i == 0) {
3251
      /* exactly half-way between */
3252
12.8k
      if (bc.dsign) {
3253
6.62k
        if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
3254
2.13k
         &&  word1(&rv) == (
3255
2.13k
#ifdef Avoid_Underflow
3256
2.13k
      (bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1)
3257
2.13k
    ? (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
3258
2.13k
#endif
3259
2.13k
               0xffffffff)) {
3260
          /*boundary case -- increment exponent*/
3261
530
          if (word0(&rv) == Big0 && word1(&rv) == Big1)
3262
0
            goto ovfl;
3263
530
          word0(&rv) = (word0(&rv) & Exp_mask)
3264
530
            + Exp_msk1
3265
#ifdef IBM
3266
            | Exp_msk1 >> 4
3267
#endif
3268
530
            ;
3269
530
          word1(&rv) = 0;
3270
530
#ifdef Avoid_Underflow
3271
530
          bc.dsign = 0;
3272
530
#endif
3273
530
          break;
3274
530
          }
3275
6.62k
        }
3276
6.21k
      else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) {
3277
2.84k
 drop_down:
3278
        /* boundary case -- decrement exponent */
3279
#ifdef Sudden_Underflow /*{{*/
3280
        L = word0(&rv) & Exp_mask;
3281
#ifdef IBM
3282
        if (L <  Exp_msk1)
3283
#else
3284
#ifdef Avoid_Underflow
3285
        if (L <= (bc.scale ? (2*P+1)*Exp_msk1 : Exp_msk1))
3286
#else
3287
        if (L <= Exp_msk1)
3288
#endif /*Avoid_Underflow*/
3289
#endif /*IBM*/
3290
          {
3291
          if (bc.nd >nd) {
3292
            bc.uflchk = 1;
3293
            break;
3294
            }
3295
          goto undfl;
3296
          }
3297
        L -= Exp_msk1;
3298
#else /*Sudden_Underflow}{*/
3299
2.84k
#ifdef Avoid_Underflow
3300
2.84k
        if (bc.scale) {
3301
0
          L = word0(&rv) & Exp_mask;
3302
0
          if (L <= (2*P+1)*Exp_msk1) {
3303
0
            if (L > (P+2)*Exp_msk1)
3304
              /* round even ==> */
3305
              /* accept rv */
3306
0
              break;
3307
            /* rv = smallest denormal */
3308
0
            if (bc.nd >nd) {
3309
0
              bc.uflchk = 1;
3310
0
              break;
3311
0
              }
3312
0
            goto undfl;
3313
0
            }
3314
0
          }
3315
2.84k
#endif /*Avoid_Underflow*/
3316
2.84k
        L = (word0(&rv) & Exp_mask) - Exp_msk1;
3317
2.84k
#endif /*Sudden_Underflow}}*/
3318
2.84k
        word0(&rv) = L | Bndry_mask1;
3319
2.84k
        word1(&rv) = 0xffffffff;
3320
#ifdef IBM
3321
        goto cont;
3322
#else
3323
2.84k
#ifndef NO_STRTOD_BIGCOMP
3324
2.84k
        if (bc.nd > nd)
3325
1.24k
          goto cont;
3326
1.60k
#endif
3327
1.60k
        break;
3328
2.84k
#endif
3329
2.84k
        }
3330
12.3k
#ifndef ROUND_BIASED
3331
12.3k
#ifdef Avoid_Underflow
3332
12.3k
      if (Lsb1) {
3333
0
        if (!(word0(&rv) & Lsb1))
3334
0
          break;
3335
0
        }
3336
12.3k
      else if (!(word1(&rv) & Lsb))
3337
7.43k
        break;
3338
#else
3339
      if (!(word1(&rv) & LSB))
3340
        break;
3341
#endif
3342
4.87k
#endif
3343
4.87k
      if (bc.dsign)
3344
2.44k
#ifdef Avoid_Underflow
3345
2.44k
        dval(&rv) += sulp(&rv, &bc);
3346
#else
3347
        dval(&rv) += ulp(&rv);
3348
#endif
3349
2.43k
#ifndef ROUND_BIASED
3350
2.43k
      else {
3351
2.43k
#ifdef Avoid_Underflow
3352
2.43k
        dval(&rv) -= sulp(&rv, &bc);
3353
#else
3354
        dval(&rv) -= ulp(&rv);
3355
#endif
3356
2.43k
#ifndef Sudden_Underflow
3357
2.43k
        if (!dval(&rv)) {
3358
0
          if (bc.nd >nd) {
3359
0
            bc.uflchk = 1;
3360
0
            break;
3361
0
            }
3362
0
          goto undfl;
3363
0
          }
3364
2.43k
#endif
3365
2.43k
        }
3366
4.87k
#ifdef Avoid_Underflow
3367
4.87k
      bc.dsign = 1 - bc.dsign;
3368
4.87k
#endif
3369
4.87k
#endif
3370
4.87k
      break;
3371
4.87k
      }
3372
212k
    if ((aadj = ratio(delta, bs)) <= 2.) {
3373
171k
      if (bc.dsign)
3374
57.6k
        aadj = aadj1 = 1.;
3375
113k
      else if (word1(&rv) || word0(&rv) & Bndry_mask) {
3376
107k
#ifndef Sudden_Underflow
3377
107k
        if (word1(&rv) == Tiny1 && !word0(&rv)) {
3378
0
          if (bc.nd >nd) {
3379
0
            bc.uflchk = 1;
3380
0
            break;
3381
0
            }
3382
0
          goto undfl;
3383
0
          }
3384
107k
#endif
3385
107k
        aadj = 1.;
3386
107k
        aadj1 = -1.;
3387
107k
        }
3388
5.40k
      else {
3389
        /* special case -- power of FLT_RADIX to be */
3390
        /* rounded down... */
3391
3392
5.40k
        if (aadj < 2./FLT_RADIX)
3393
0
          aadj = 1./FLT_RADIX;
3394
5.40k
        else
3395
5.40k
          aadj *= 0.5;
3396
5.40k
        aadj1 = -aadj;
3397
5.40k
        }
3398
171k
      }
3399
41.7k
    else {
3400
41.7k
      aadj *= 0.5;
3401
41.7k
      aadj1 = bc.dsign ? aadj : -aadj;
3402
#ifdef Check_FLT_ROUNDS
3403
      switch(bc.rounding) {
3404
        case 2: /* towards +infinity */
3405
          aadj1 -= 0.5;
3406
          break;
3407
        case 0: /* towards 0 */
3408
        case 3: /* towards -infinity */
3409
          aadj1 += 0.5;
3410
        }
3411
#else
3412
41.7k
      if (Flt_Rounds == 0)
3413
0
        aadj1 += 0.5;
3414
41.7k
#endif /*Check_FLT_ROUNDS*/
3415
41.7k
      }
3416
212k
    y = word0(&rv) & Exp_mask;
3417
3418
    /* Check for overflow */
3419
3420
212k
    if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
3421
3.94k
      dval(&rv0) = dval(&rv);
3422
3.94k
      word0(&rv) -= P*Exp_msk1;
3423
3.94k
      adj.d = aadj1 * ulp(&rv);
3424
3.94k
      dval(&rv) += adj.d;
3425
3.94k
      if ((word0(&rv) & Exp_mask) >=
3426
3.94k
          Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
3427
1.59k
        if (word0(&rv0) == Big0 && word1(&rv0) == Big1)
3428
1.59k
          goto ovfl;
3429
0
        word0(&rv) = Big0;
3430
0
        word1(&rv) = Big1;
3431
0
        goto cont;
3432
1.59k
        }
3433
2.34k
      else
3434
2.34k
        word0(&rv) += P*Exp_msk1;
3435
3.94k
      }
3436
208k
    else {
3437
208k
#ifdef Avoid_Underflow
3438
208k
      if (bc.scale && y <= 2*P*Exp_msk1) {
3439
26.7k
        if (aadj <= 0x7fffffff) {
3440
26.7k
          if ((z = aadj) <= 0)
3441
5.40k
            z = 1;
3442
26.7k
          aadj = z;
3443
26.7k
          aadj1 = bc.dsign ? aadj : -aadj;
3444
26.7k
          }
3445
26.7k
        dval(&aadj2) = aadj1;
3446
26.7k
        word0(&aadj2) += (2*P+1)*Exp_msk1 - y;
3447
26.7k
        aadj1 = dval(&aadj2);
3448
26.7k
        adj.d = aadj1 * ulp(&rv);
3449
26.7k
        dval(&rv) += adj.d;
3450
26.7k
        if (rv.d == 0.)
3451
#ifdef NO_STRTOD_BIGCOMP
3452
          goto undfl;
3453
#else
3454
5.40k
          {
3455
5.40k
          req_bigcomp = 1;
3456
5.40k
          break;
3457
5.40k
          }
3458
26.7k
#endif
3459
26.7k
        }
3460
182k
      else {
3461
182k
        adj.d = aadj1 * ulp(&rv);
3462
182k
        dval(&rv) += adj.d;
3463
182k
        }
3464
#else
3465
#ifdef Sudden_Underflow
3466
      if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) {
3467
        dval(&rv0) = dval(&rv);
3468
        word0(&rv) += P*Exp_msk1;
3469
        adj.d = aadj1 * ulp(&rv);
3470
        dval(&rv) += adj.d;
3471
#ifdef IBM
3472
        if ((word0(&rv) & Exp_mask) <  P*Exp_msk1)
3473
#else
3474
        if ((word0(&rv) & Exp_mask) <= P*Exp_msk1)
3475
#endif
3476
          {
3477
          if (word0(&rv0) == Tiny0
3478
           && word1(&rv0) == Tiny1) {
3479
            if (bc.nd >nd) {
3480
              bc.uflchk = 1;
3481
              break;
3482
              }
3483
            goto undfl;
3484
            }
3485
          word0(&rv) = Tiny0;
3486
          word1(&rv) = Tiny1;
3487
          goto cont;
3488
          }
3489
        else
3490
          word0(&rv) -= P*Exp_msk1;
3491
        }
3492
      else {
3493
        adj.d = aadj1 * ulp(&rv);
3494
        dval(&rv) += adj.d;
3495
        }
3496
#else /*Sudden_Underflow*/
3497
      /* Compute adj so that the IEEE rounding rules will
3498
       * correctly round rv + adj in some half-way cases.
3499
       * If rv * ulp(rv) is denormalized (i.e.,
3500
       * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
3501
       * trouble from bits lost to denormalization;
3502
       * example: 1.2e-307 .
3503
       */
3504
      if (y <= (P-1)*Exp_msk1 && aadj > 1.) {
3505
        aadj1 = (double)(int)(aadj + 0.5);
3506
        if (!bc.dsign)
3507
          aadj1 = -aadj1;
3508
        }
3509
      adj.d = aadj1 * ulp(&rv);
3510
      dval(&rv) += adj.d;
3511
#endif /*Sudden_Underflow*/
3512
#endif /*Avoid_Underflow*/
3513
208k
      }
3514
205k
    z = word0(&rv) & Exp_mask;
3515
205k
#ifndef SET_INEXACT
3516
205k
    if (bc.nd == nd) {
3517
131k
#ifdef Avoid_Underflow
3518
131k
    if (!bc.scale)
3519
105k
#endif
3520
105k
    if (y == z) {
3521
      /* Can we stop now? */
3522
104k
      L = (Long)aadj;
3523
104k
      aadj -= L;
3524
      /* The tolerances below are conservative. */
3525
104k
      if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
3526
72.7k
        if (aadj < .4999999 || aadj > .5000001)
3527
70.5k
          break;
3528
72.7k
        }
3529
31.6k
      else if (aadj < .4999999/FLT_RADIX)
3530
31.6k
        break;
3531
104k
      }
3532
131k
    }
3533
103k
#endif
3534
104k
 cont:
3535
104k
    Bfree(bb);
3536
104k
    Bfree(bd);
3537
104k
    Bfree(bs);
3538
104k
    Bfree(delta);
3539
104k
    }
3540
460k
  Bfree(bb);
3541
460k
  Bfree(bd);
3542
460k
  Bfree(bs);
3543
460k
  Bfree(bd0);
3544
460k
  Bfree(delta);
3545
460k
#ifndef NO_STRTOD_BIGCOMP
3546
460k
  if (req_bigcomp) {
3547
97.5k
    bd0 = 0;
3548
97.5k
    bc.e0 += nz1;
3549
97.5k
    bigcomp(&rv, s0, &bc);
3550
97.5k
    y = word0(&rv) & Exp_mask;
3551
97.5k
    if (y == Exp_mask)
3552
194
      goto ovfl;
3553
97.3k
    if (y == 0 && rv.d == 0.)
3554
5.20k
      goto undfl;
3555
97.3k
    }
3556
455k
#endif
3557
#ifdef SET_INEXACT
3558
  if (bc.inexact) {
3559
    if (!oldinexact) {
3560
      word0(&rv0) = Exp_1 + (70 << Exp_shift);
3561
      word1(&rv0) = 0;
3562
      dval(&rv0) += 1.;
3563
      }
3564
    }
3565
  else if (!oldinexact)
3566
    clear_inexact();
3567
#endif
3568
455k
#ifdef Avoid_Underflow
3569
455k
  if (bc.scale) {
3570
60.4k
    word0(&rv0) = Exp_1 - 2*P*Exp_msk1;
3571
60.4k
    word1(&rv0) = 0;
3572
60.4k
    dval(&rv) *= dval(&rv0);
3573
#ifndef NO_ERRNO
3574
    /* try to avoid the bug of testing an 8087 register value */
3575
#ifdef IEEE_Arith
3576
    if (!(word0(&rv) & Exp_mask))
3577
#else
3578
    if (word0(&rv) == 0 && word1(&rv) == 0)
3579
#endif
3580
      errno = ERANGE;
3581
#endif
3582
60.4k
    }
3583
455k
#endif /* Avoid_Underflow */
3584
#ifdef SET_INEXACT
3585
  if (bc.inexact && !(word0(&rv) & Exp_mask)) {
3586
    /* set underflow bit */
3587
    dval(&rv0) = 1e-300;
3588
    dval(&rv0) *= dval(&rv0);
3589
    }
3590
#endif
3591
865k
 ret:
3592
865k
  if (se)
3593
123k
    *se = (char *)s;
3594
865k
  return sign ? -dval(&rv) : dval(&rv);
3595
455k
  }
3596
3597
#if !defined(MULTIPLE_THREADS) && !defined(dtoa_result)
3598
 ZEND_TLS char *dtoa_result;
3599
#endif
3600
3601
 static char *
3602
#ifdef KR_headers
3603
rv_alloc(i) int i;
3604
#else
3605
rv_alloc(int i)
3606
#endif
3607
395k
{
3608
3609
395k
  int j, k, *r;
3610
395k
  size_t rem;
3611
3612
395k
  rem = sizeof(Bigint) - sizeof(ULong) - sizeof(int);
3613
3614
3615
395k
  j = sizeof(ULong);
3616
395k
  if (i > ((INT_MAX >> 2) + rem))
3617
1
    i = (INT_MAX >> 2) + rem;
3618
395k
  for(k = 0;
3619
395k
    rem + j <= (size_t)i; j <<= 1)
3620
40
      k++;
3621
3622
395k
  r = (int*)Balloc(k);
3623
395k
  *r = k;
3624
395k
  return
3625
395k
#ifndef MULTIPLE_THREADS
3626
395k
  dtoa_result =
3627
395k
#endif
3628
395k
    (char *)(r+1);
3629
395k
  }
3630
3631
 static char *
3632
#ifdef KR_headers
3633
nrv_alloc(s, rve, n) char *s, **rve; int n;
3634
#else
3635
nrv_alloc(const char *s, char **rve, int n)
3636
#endif
3637
90.7k
{
3638
90.7k
  char *rv, *t;
3639
3640
90.7k
  t = rv = rv_alloc(n);
3641
354k
  while((*t = *s++)) t++;
3642
90.7k
  if (rve)
3643
0
    *rve = t;
3644
90.7k
  return rv;
3645
90.7k
  }
3646
3647
/* freedtoa(s) must be used to free values s returned by dtoa
3648
 * when MULTIPLE_THREADS is #defined.  It should be used in all cases,
3649
 * but for consistency with earlier versions of dtoa, it is optional
3650
 * when MULTIPLE_THREADS is not defined.
3651
 */
3652
3653
ZEND_API void
3654
#ifdef KR_headers
3655
zend_freedtoa(s) char *s;
3656
#else
3657
zend_freedtoa(char *s)
3658
#endif
3659
395k
{
3660
395k
  Bigint *b = (Bigint *)((int *)s - 1);
3661
395k
  b->maxwds = 1 << (b->k = *(int*)b);
3662
395k
  Bfree(b);
3663
395k
#ifndef MULTIPLE_THREADS
3664
395k
  if (s == dtoa_result)
3665
395k
    dtoa_result = 0;
3666
395k
#endif
3667
395k
  }
3668
3669
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
3670
 *
3671
 * Inspired by "How to Print Floating-Point Numbers Accurately" by
3672
 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
3673
 *
3674
 * Modifications:
3675
 *  1. Rather than iterating, we use a simple numeric overestimate
3676
 *     to determine k = floor(log10(d)).  We scale relevant
3677
 *     quantities using O(log2(k)) rather than O(k) multiplications.
3678
 *  2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
3679
 *     try to generate digits strictly left to right.  Instead, we
3680
 *     compute with fewer bits and propagate the carry if necessary
3681
 *     when rounding the final digit up.  This is often faster.
3682
 *  3. Under the assumption that input will be rounded nearest,
3683
 *     mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
3684
 *     That is, we allow equality in stopping tests when the
3685
 *     round-nearest rule will give the same floating-point value
3686
 *     as would satisfaction of the stopping test with strict
3687
 *     inequality.
3688
 *  4. We remove common factors of powers of 2 from relevant
3689
 *     quantities.
3690
 *  5. When converting floating-point integers less than 1e16,
3691
 *     we use floating-point arithmetic rather than resorting
3692
 *     to multiple-precision integers.
3693
 *  6. When asked to produce fewer than 15 digits, we first try
3694
 *     to get by with floating-point arithmetic; we resort to
3695
 *     multiple-precision integer arithmetic only if we cannot
3696
 *     guarantee that the floating-point calculation has given
3697
 *     the correctly rounded result.  For k requested digits and
3698
 *     "uniformly" distributed input, the probability is
3699
 *     something like 10^(k-15) that we must resort to the Long
3700
 *     calculation.
3701
 */
3702
3703
ZEND_API char *zend_dtoa(double dd, int mode, int ndigits, int *decpt, bool *sign, char **rve)
3704
395k
{
3705
 /* Arguments ndigits, decpt, sign are similar to those
3706
  of ecvt and fcvt; trailing zeros are suppressed from
3707
  the returned string.  If not null, *rve is set to point
3708
  to the end of the return value.  If d is +-Infinity or NaN,
3709
  then *decpt is set to 9999.
3710
3711
  mode:
3712
    0 ==> shortest string that yields d when read in
3713
      and rounded to nearest.
3714
    1 ==> like 0, but with Steele & White stopping rule;
3715
      e.g. with IEEE P754 arithmetic , mode 0 gives
3716
      1e23 whereas mode 1 gives 9.999999999999999e22.
3717
    2 ==> max(1,ndigits) significant digits.  This gives a
3718
      return value similar to that of ecvt, except
3719
      that trailing zeros are suppressed.
3720
    3 ==> through ndigits past the decimal point.  This
3721
      gives a return value similar to that from fcvt,
3722
      except that trailing zeros are suppressed, and
3723
      ndigits can be negative.
3724
    4,5 ==> similar to 2 and 3, respectively, but (in
3725
      round-nearest mode) with the tests of mode 0 to
3726
      possibly return a shorter string that rounds to d.
3727
      With IEEE arithmetic and compilation with
3728
      -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
3729
      as modes 2 and 3 when FLT_ROUNDS != 1.
3730
    6-9 ==> Debugging modes similar to mode - 4:  don't try
3731
      fast floating-point estimate (if applicable).
3732
3733
    Values of mode other than 0-9 are treated as mode 0.
3734
3735
    Sufficient space is allocated to the return value
3736
    to hold the suppressed trailing zeros.
3737
  */
3738
3739
395k
  int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1,
3740
395k
    j, j1 = 0, k, k0, k_check, leftright, m2, m5, s2, s5,
3741
395k
    spec_case = 0, try_quick;
3742
395k
  Long L;
3743
395k
#ifndef Sudden_Underflow
3744
395k
  int denorm;
3745
395k
  ULong x;
3746
395k
#endif
3747
395k
  Bigint *b, *b1, *delta, *mlo, *mhi, *S;
3748
395k
  U d2, eps, u;
3749
395k
  double ds;
3750
395k
  char *s, *s0;
3751
395k
#ifndef No_leftright
3752
395k
#ifdef IEEE_Arith
3753
395k
  U eps1;
3754
395k
#endif
3755
395k
#endif
3756
#ifdef SET_INEXACT
3757
  int inexact, oldinexact;
3758
#endif
3759
#ifdef Honor_FLT_ROUNDS /*{*/
3760
  int Rounding;
3761
#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
3762
  Rounding = Flt_Rounds;
3763
#else /*}{*/
3764
  Rounding = 1;
3765
  switch(fegetround()) {
3766
    case FE_TOWARDZERO: Rounding = 0; break;
3767
    case FE_UPWARD: Rounding = 2; break;
3768
    case FE_DOWNWARD: Rounding = 3;
3769
    }
3770
#endif /*}}*/
3771
#endif /*}*/
3772
3773
395k
#ifndef MULTIPLE_THREADS
3774
395k
  if (dtoa_result) {
3775
0
    zend_freedtoa(dtoa_result);
3776
0
    dtoa_result = 0;
3777
0
    }
3778
395k
#endif
3779
3780
395k
  u.d = dd;
3781
395k
  if (word0(&u) & Sign_bit) {
3782
    /* set sign for everything, including 0's and NaNs */
3783
35.8k
    *sign = 1;
3784
35.8k
    word0(&u) &= ~Sign_bit; /* clear sign bit */
3785
35.8k
    }
3786
359k
  else
3787
359k
    *sign = 0;
3788
3789
395k
#if defined(IEEE_Arith) + defined(VAX)
3790
395k
#ifdef IEEE_Arith
3791
395k
  if ((word0(&u) & Exp_mask) == Exp_mask)
3792
#else
3793
  if (word0(&u)  == 0x8000)
3794
#endif
3795
25.0k
    {
3796
    /* Infinity or NaN */
3797
25.0k
    *decpt = 9999;
3798
25.0k
#ifdef IEEE_Arith
3799
25.0k
    if (!word1(&u) && !(word0(&u) & 0xfffff))
3800
24.6k
      return nrv_alloc("Infinity", rve, 8);
3801
349
#endif
3802
349
    return nrv_alloc("NaN", rve, 3);
3803
25.0k
    }
3804
370k
#endif
3805
#ifdef IBM
3806
  dval(&u) += 0; /* normalize */
3807
#endif
3808
370k
  if (!dval(&u)) {
3809
65.6k
    *decpt = 1;
3810
65.6k
    return nrv_alloc("0", rve, 1);
3811
65.6k
    }
3812
3813
#ifdef SET_INEXACT
3814
  try_quick = oldinexact = get_inexact();
3815
  inexact = 1;
3816
#endif
3817
#ifdef Honor_FLT_ROUNDS
3818
  if (Rounding >= 2) {
3819
    if (*sign)
3820
      Rounding = Rounding == 2 ? 0 : 2;
3821
    else
3822
      if (Rounding != 2)
3823
        Rounding = 0;
3824
    }
3825
#endif
3826
3827
305k
  b = d2b(&u, &be, &bbits);
3828
#ifdef Sudden_Underflow
3829
  i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
3830
#else
3831
305k
  if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
3832
248k
#endif
3833
248k
    dval(&d2) = dval(&u);
3834
248k
    word0(&d2) &= Frac_mask1;
3835
248k
    word0(&d2) |= Exp_11;
3836
#ifdef IBM
3837
    if (j = 11 - hi0bits(word0(&d2) & Frac_mask))
3838
      dval(&d2) /= 1 << j;
3839
#endif
3840
3841
    /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
3842
     * log10(x)  =  log(x) / log(10)
3843
     *    ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
3844
     * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
3845
     *
3846
     * This suggests computing an approximation k to log10(d) by
3847
     *
3848
     * k = (i - Bias)*0.301029995663981
3849
     *  + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
3850
     *
3851
     * We want k to be too large rather than too small.
3852
     * The error in the first-order Taylor series approximation
3853
     * is in our favor, so we just round up the constant enough
3854
     * to compensate for any error in the multiplication of
3855
     * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
3856
     * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
3857
     * adding 1e-13 to the constant term more than suffices.
3858
     * Hence we adjust the constant term to 0.1760912590558.
3859
     * (We could get a more accurate k by invoking log10,
3860
     *  but this is probably not worthwhile.)
3861
     */
3862
3863
248k
    i -= Bias;
3864
#ifdef IBM
3865
    i <<= 2;
3866
    i += j;
3867
#endif
3868
248k
#ifndef Sudden_Underflow
3869
248k
    denorm = 0;
3870
248k
    }
3871
56.7k
  else {
3872
    /* d is denormalized */
3873
3874
56.7k
    i = bbits + be + (Bias + (P-1) - 1);
3875
56.7k
    x = i > 32  ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)
3876
56.7k
          : word1(&u) << (32 - i);
3877
56.7k
    dval(&d2) = x;
3878
56.7k
    word0(&d2) -= 31*Exp_msk1; /* adjust exponent */
3879
56.7k
    i -= (Bias + (P-1) - 1) + 1;
3880
56.7k
    denorm = 1;
3881
56.7k
    }
3882
305k
#endif
3883
305k
  ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
3884
305k
  k = (int)ds;
3885
305k
  if (ds < 0. && ds != k)
3886
118k
    k--; /* want k = floor(ds) */
3887
305k
  k_check = 1;
3888
305k
  if (k >= 0 && k <= Ten_pmax) {
3889
109k
    if (dval(&u) < tens[k])
3890
2.90k
      k--;
3891
109k
    k_check = 0;
3892
109k
    }
3893
305k
  j = bbits - i - 1;
3894
305k
  if (j >= 0) {
3895
189k
    b2 = 0;
3896
189k
    s2 = j;
3897
189k
    }
3898
115k
  else {
3899
115k
    b2 = -j;
3900
115k
    s2 = 0;
3901
115k
    }
3902
305k
  if (k >= 0) {
3903
186k
    b5 = 0;
3904
186k
    s5 = k;
3905
186k
    s2 += k;
3906
186k
    }
3907
118k
  else {
3908
118k
    b2 -= k;
3909
118k
    b5 = -k;
3910
118k
    s5 = 0;
3911
118k
    }
3912
305k
  if (mode < 0 || mode > 9)
3913
0
    mode = 0;
3914
3915
305k
#ifndef SET_INEXACT
3916
#ifdef Check_FLT_ROUNDS
3917
  try_quick = Rounding == 1;
3918
#else
3919
305k
  try_quick = 1;
3920
305k
#endif
3921
305k
#endif /*SET_INEXACT*/
3922
3923
305k
  if (mode > 5) {
3924
0
    mode -= 4;
3925
0
    try_quick = 0;
3926
0
    }
3927
305k
  leftright = 1;
3928
305k
  ilim = ilim1 = -1;  /* Values for cases 0 and 1; done here to */
3929
        /* silence erroneous "gcc -Wall" warning. */
3930
305k
  switch(mode) {
3931
98.5k
    case 0:
3932
98.5k
    case 1:
3933
98.5k
      i = 18;
3934
98.5k
      ndigits = 0;
3935
98.5k
      break;
3936
206k
    case 2:
3937
206k
      leftright = 0;
3938
206k
      ZEND_FALLTHROUGH;
3939
206k
    case 4:
3940
206k
      if (ndigits <= 0)
3941
0
        ndigits = 1;
3942
206k
      ilim = ilim1 = i = ndigits;
3943
206k
      break;
3944
168
    case 3:
3945
168
      leftright = 0;
3946
168
      ZEND_FALLTHROUGH;
3947
168
    case 5:
3948
168
      i = ndigits + k + 1;
3949
168
      ilim = i;
3950
168
      ilim1 = i - 1;
3951
168
      if (i <= 0)
3952
15
        i = 1;
3953
305k
    }
3954
305k
  s = s0 = rv_alloc(i);
3955
3956
#ifdef Honor_FLT_ROUNDS
3957
  if (mode > 1 && Rounding != 1)
3958
    leftright = 0;
3959
#endif
3960
3961
305k
  if (ilim >= 0 && ilim <= Quick_max && try_quick) {
3962
3963
    /* Try to get by with floating-point arithmetic. */
3964
3965
206k
    i = 0;
3966
206k
    dval(&d2) = dval(&u);
3967
206k
    k0 = k;
3968
206k
    ilim0 = ilim;
3969
206k
    ieps = 2; /* conservative */
3970
206k
    if (k > 0) {
3971
127k
      ds = tens[k&0xf];
3972
127k
      j = k >> 4;
3973
127k
      if (j & Bletch) {
3974
        /* prevent overflows */
3975
2.42k
        j &= Bletch - 1;
3976
2.42k
        dval(&u) /= bigtens[n_bigtens-1];
3977
2.42k
        ieps++;
3978
2.42k
        }
3979
263k
      for(; j; j >>= 1, i++)
3980
135k
        if (j & 1) {
3981
88.5k
          ieps++;
3982
88.5k
          ds *= bigtens[i];
3983
88.5k
          }
3984
127k
      dval(&u) /= ds;
3985
127k
      }
3986
78.6k
    else if ((j1 = -k)) {
3987
70.8k
      dval(&u) *= tens[j1 & 0xf];
3988
311k
      for(j = j1 >> 4; j; j >>= 1, i++)
3989
240k
        if (j & 1) {
3990
134k
          ieps++;
3991
134k
          dval(&u) *= bigtens[i];
3992
134k
          }
3993
70.8k
      }
3994
206k
    if (k_check && dval(&u) < 1. && ilim > 0) {
3995
10.2k
      if (ilim1 <= 0)
3996
4
        goto fast_failed;
3997
10.2k
      ilim = ilim1;
3998
10.2k
      k--;
3999
10.2k
      dval(&u) *= 10.;
4000
10.2k
      ieps++;
4001
10.2k
      }
4002
206k
    dval(&eps) = ieps*dval(&u) + 7.;
4003
206k
    word0(&eps) -= (P-1)*Exp_msk1;
4004
206k
    if (ilim == 0) {
4005
7
      S = mhi = 0;
4006
7
      dval(&u) -= 5.;
4007
7
      if (dval(&u) > dval(&eps))
4008
4
        goto one_digit;
4009
3
      if (dval(&u) < -dval(&eps))
4010
3
        goto no_digits;
4011
0
      goto fast_failed;
4012
3
      }
4013
206k
#ifndef No_leftright
4014
206k
    if (leftright) {
4015
      /* Use Steele & White method of only
4016
       * generating digits needed.
4017
       */
4018
0
      dval(&eps) = 0.5/tens[ilim-1] - dval(&eps);
4019
0
#ifdef IEEE_Arith
4020
0
      if (k0 < 0 && j1 >= 307) {
4021
0
        eps1.d = 1.01e256; /* 1.01 allows roundoff in the next few lines */
4022
0
        word0(&eps1) -= Exp_msk1 * (Bias+P-1);
4023
0
        dval(&eps1) *= tens[j1 & 0xf];
4024
0
        for(i = 0, j = (j1-256) >> 4; j; j >>= 1, i++)
4025
0
          if (j & 1)
4026
0
            dval(&eps1) *= bigtens[i];
4027
0
        if (eps.d < eps1.d)
4028
0
          eps.d = eps1.d;
4029
0
        }
4030
0
#endif
4031
0
      for(i = 0;;) {
4032
0
        L = dval(&u);
4033
0
        dval(&u) -= L;
4034
0
        *s++ = '0' + (int)L;
4035
0
        if (1. - dval(&u) < dval(&eps))
4036
0
          goto bump_up;
4037
0
        if (dval(&u) < dval(&eps))
4038
0
          goto ret1;
4039
0
        if (++i >= ilim)
4040
0
          break;
4041
0
        dval(&eps) *= 10.;
4042
0
        dval(&u) *= 10.;
4043
0
        }
4044
0
      }
4045
206k
    else {
4046
206k
#endif
4047
      /* Generate ilim digits, then fix them up. */
4048
206k
      dval(&eps) *= tens[ilim-1];
4049
2.55M
      for(i = 1;; i++, dval(&u) *= 10.) {
4050
2.55M
        L = (Long)(dval(&u));
4051
2.55M
        if (!(dval(&u) -= L))
4052
26.1k
          ilim = i;
4053
2.55M
        *s++ = '0' + (int)L;
4054
2.55M
        if (i == ilim) {
4055
206k
          if (dval(&u) > 0.5 + dval(&eps))
4056
43.3k
            goto bump_up;
4057
163k
          else if (dval(&u) < 0.5 - dval(&eps)) {
4058
605k
            while(*--s == '0');
4059
100k
            s++;
4060
100k
            goto ret1;
4061
100k
            }
4062
62.2k
          break;
4063
206k
          }
4064
2.55M
        }
4065
206k
#ifndef No_leftright
4066
206k
      }
4067
62.2k
#endif
4068
62.2k
 fast_failed:
4069
62.2k
    s = s0;
4070
62.2k
    dval(&u) = dval(&d2);
4071
62.2k
    k = k0;
4072
62.2k
    ilim = ilim0;
4073
62.2k
    }
4074
4075
  /* Do we have a "small" integer? */
4076
4077
160k
  if (be >= 0 && k <= Int_max) {
4078
    /* Yes. */
4079
4.07k
    ds = tens[k];
4080
4.07k
    if (ndigits < 0 && ilim <= 0) {
4081
0
      S = mhi = 0;
4082
0
      if (ilim < 0 || dval(&u) <= 5*ds)
4083
0
        goto no_digits;
4084
0
      goto one_digit;
4085
0
      }
4086
53.5k
    for(i = 1;; i++, dval(&u) *= 10.) {
4087
53.5k
      L = (Long)(dval(&u) / ds);
4088
53.5k
      dval(&u) -= L*ds;
4089
#ifdef Check_FLT_ROUNDS
4090
      /* If FLT_ROUNDS == 2, L will usually be high by 1 */
4091
      if (dval(&u) < 0) {
4092
        L--;
4093
        dval(&u) += ds;
4094
        }
4095
#endif
4096
53.5k
      *s++ = '0' + (int)L;
4097
53.5k
      if (!dval(&u)) {
4098
#ifdef SET_INEXACT
4099
        inexact = 0;
4100
#endif
4101
433
        break;
4102
433
        }
4103
53.1k
      if (i == ilim) {
4104
#ifdef Honor_FLT_ROUNDS
4105
        if (mode > 1)
4106
        switch(Rounding) {
4107
          case 0: goto ret1;
4108
          case 2: goto bump_up;
4109
          }
4110
#endif
4111
3.63k
        dval(&u) += dval(&u);
4112
#ifdef ROUND_BIASED
4113
        if (dval(&u) >= ds)
4114
#else
4115
3.63k
        if (dval(&u) > ds || (dval(&u) == ds && L & 1))
4116
305
#endif
4117
305
          {
4118
43.6k
 bump_up:
4119
251k
          while(*--s == '9')
4120
209k
            if (s == s0) {
4121
2.01k
              k++;
4122
2.01k
              *s = '0';
4123
2.01k
              break;
4124
2.01k
              }
4125
43.6k
          ++*s++;
4126
43.6k
          }
4127
46.9k
        break;
4128
3.63k
        }
4129
53.1k
      }
4130
47.4k
    goto ret1;
4131
4.07k
    }
4132
4133
156k
  m2 = b2;
4134
156k
  m5 = b5;
4135
156k
  mhi = mlo = 0;
4136
156k
  if (leftright) {
4137
98.0k
    i =
4138
98.0k
#ifndef Sudden_Underflow
4139
98.0k
      denorm ? be + (Bias + (P-1) - 1 + 1) :
4140
98.0k
#endif
4141
#ifdef IBM
4142
      1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
4143
#else
4144
98.0k
      1 + P - bbits;
4145
98.0k
#endif
4146
98.0k
    b2 += i;
4147
98.0k
    s2 += i;
4148
98.0k
    mhi = i2b(1);
4149
98.0k
    }
4150
156k
  if (m2 > 0 && s2 > 0) {
4151
131k
    i = m2 < s2 ? m2 : s2;
4152
131k
    b2 -= i;
4153
131k
    m2 -= i;
4154
131k
    s2 -= i;
4155
131k
    }
4156
156k
  if (b5 > 0) {
4157
59.3k
    if (leftright) {
4158
47.8k
      if (m5 > 0) {
4159
47.8k
        mhi = pow5mult(mhi, m5);
4160
47.8k
        b1 = mult(mhi, b);
4161
47.8k
        Bfree(b);
4162
47.8k
        b = b1;
4163
47.8k
        }
4164
47.8k
      if ((j = b5 - m5))
4165
0
        b = pow5mult(b, j);
4166
47.8k
      }
4167
11.5k
    else
4168
11.5k
      b = pow5mult(b, b5);
4169
59.3k
    }
4170
156k
  S = i2b(1);
4171
156k
  if (s5 > 0)
4172
95.9k
    S = pow5mult(S, s5);
4173
4174
  /* Check for special case that d is a normalized power of 2. */
4175
4176
156k
  spec_case = 0;
4177
156k
  if ((mode < 2 || leftright)
4178
#ifdef Honor_FLT_ROUNDS
4179
      && Rounding == 1
4180
#endif
4181
156k
        ) {
4182
98.0k
    if (!word1(&u) && !(word0(&u) & Bndry_mask)
4183
906
#ifndef Sudden_Underflow
4184
906
     && word0(&u) & (Exp_mask & ~Exp_msk1)
4185
98.0k
#endif
4186
98.0k
        ) {
4187
      /* The special case */
4188
674
      b2 += Log2P;
4189
674
      s2 += Log2P;
4190
674
      spec_case = 1;
4191
674
      }
4192
98.0k
    }
4193
4194
  /* Arrange for convenient computation of quotients:
4195
   * shift left if necessary so divisor has 4 leading 0 bits.
4196
   *
4197
   * Perhaps we should just compute leading 28 bits of S once
4198
   * and for all and pass them and a shift to quorem, so it
4199
   * can do shifts and ORs to compute the numerator for q.
4200
   */
4201
156k
  i = dshift(S, s2);
4202
156k
  b2 += i;
4203
156k
  m2 += i;
4204
156k
  s2 += i;
4205
156k
  if (b2 > 0)
4206
155k
    b = lshift(b, b2);
4207
156k
  if (s2 > 0)
4208
147k
    S = lshift(S, s2);
4209
156k
  if (k_check) {
4210
124k
    if (cmp(b,S) < 0) {
4211
10.0k
      k--;
4212
10.0k
      b = multadd(b, 10, 0);  /* we botched the k estimate */
4213
10.0k
      if (leftright)
4214
2.00k
        mhi = multadd(mhi, 10, 0);
4215
10.0k
      ilim = ilim1;
4216
10.0k
      }
4217
124k
    }
4218
156k
  if (ilim <= 0 && (mode == 3 || mode == 5)) {
4219
12
    if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
4220
      /* no digits, fcvt style */
4221
11
 no_digits:
4222
11
      k = -1 - ndigits;
4223
11
      goto ret;
4224
8
      }
4225
8
 one_digit:
4226
8
    *s++ = '1';
4227
8
    k++;
4228
8
    goto ret;
4229
12
    }
4230
156k
  if (leftright) {
4231
98.0k
    if (m2 > 0)
4232
96.7k
      mhi = lshift(mhi, m2);
4233
4234
    /* Compute mlo -- check for special case
4235
     * that d is a normalized power of 2.
4236
     */
4237
4238
98.0k
    mlo = mhi;
4239
98.0k
    if (spec_case) {
4240
674
      mhi = Balloc(mhi->k);
4241
674
      Bcopy(mhi, mlo);
4242
674
      mhi = lshift(mhi, Log2P);
4243
674
      }
4244
4245
1.30M
    for(i = 1;;i++) {
4246
1.30M
      dig = quorem(b,S) + '0';
4247
      /* Do we yet have the shortest decimal string
4248
       * that will round to d?
4249
       */
4250
1.30M
      j = cmp(b, mlo);
4251
1.30M
      delta = diff(S, mhi);
4252
1.30M
      j1 = delta->sign ? 1 : cmp(b, delta);
4253
1.30M
      Bfree(delta);
4254
1.30M
#ifndef ROUND_BIASED
4255
1.30M
      if (j1 == 0 && mode != 1 && !(word1(&u) & 1)
4256
#ifdef Honor_FLT_ROUNDS
4257
        && Rounding >= 1
4258
#endif
4259
1.30M
                   ) {
4260
539
        if (dig == '9')
4261
22
          goto round_9_up;
4262
517
        if (j > 0)
4263
197
          dig++;
4264
#ifdef SET_INEXACT
4265
        else if (!b->x[0] && b->wds <= 1)
4266
          inexact = 0;
4267
#endif
4268
517
        *s++ = dig;
4269
517
        goto ret;
4270
539
        }
4271
1.30M
#endif
4272
1.30M
      if (j < 0 || (j == 0 && mode != 1
4273
736
#ifndef ROUND_BIASED
4274
736
              && !(word1(&u) & 1)
4275
1.24M
#endif
4276
1.24M
          )) {
4277
61.5k
        if (!b->x[0] && b->wds <= 1) {
4278
#ifdef SET_INEXACT
4279
          inexact = 0;
4280
#endif
4281
1.50k
          goto accept_dig;
4282
1.50k
          }
4283
#ifdef Honor_FLT_ROUNDS
4284
        if (mode > 1)
4285
         switch(Rounding) {
4286
          case 0: goto accept_dig;
4287
          case 2: goto keep_dig;
4288
          }
4289
#endif /*Honor_FLT_ROUNDS*/
4290
60.0k
        if (j1 > 0) {
4291
42.7k
          b = lshift(b, 1);
4292
42.7k
          j1 = cmp(b, S);
4293
#ifdef ROUND_BIASED
4294
          if (j1 >= 0 /*)*/
4295
#else
4296
42.7k
          if ((j1 > 0 || (j1 == 0 && dig & 1))
4297
27.8k
#endif
4298
27.8k
          && dig++ == '9')
4299
324
            goto round_9_up;
4300
42.7k
          }
4301
61.2k
 accept_dig:
4302
61.2k
        *s++ = dig;
4303
61.2k
        goto ret;
4304
60.0k
        }
4305
1.24M
      if (j1 > 0) {
4306
#ifdef Honor_FLT_ROUNDS
4307
        if (!Rounding)
4308
          goto accept_dig;
4309
#endif
4310
35.9k
        if (dig == '9') { /* possible if i == 1 */
4311
1.02k
 round_9_up:
4312
1.02k
          *s++ = '9';
4313
1.02k
          goto roundoff;
4314
682
          }
4315
35.2k
        *s++ = dig + 1;
4316
35.2k
        goto ret;
4317
35.9k
        }
4318
#ifdef Honor_FLT_ROUNDS
4319
 keep_dig:
4320
#endif
4321
1.20M
      *s++ = dig;
4322
1.20M
      if (i == ilim)
4323
0
        break;
4324
1.20M
      b = multadd(b, 10, 0);
4325
1.20M
      if (mlo == mhi)
4326
1.19M
        mlo = mhi = multadd(mhi, 10, 0);
4327
9.31k
      else {
4328
9.31k
        mlo = multadd(mlo, 10, 0);
4329
9.31k
        mhi = multadd(mhi, 10, 0);
4330
9.31k
        }
4331
1.20M
      }
4332
98.0k
    }
4333
58.6k
  else
4334
820k
    for(i = 1;; i++) {
4335
820k
      *s++ = dig = quorem(b,S) + '0';
4336
820k
      if (!b->x[0] && b->wds <= 1) {
4337
#ifdef SET_INEXACT
4338
        inexact = 0;
4339
#endif
4340
14
        goto ret;
4341
14
        }
4342
820k
      if (i >= ilim)
4343
58.6k
        break;
4344
762k
      b = multadd(b, 10, 0);
4345
762k
      }
4346
4347
  /* Round off last digit */
4348
4349
#ifdef Honor_FLT_ROUNDS
4350
  switch(Rounding) {
4351
    case 0: goto trimzeros;
4352
    case 2: goto roundoff;
4353
    }
4354
#endif
4355
58.6k
  b = lshift(b, 1);
4356
58.6k
  j = cmp(b, S);
4357
#ifdef ROUND_BIASED
4358
  if (j >= 0)
4359
#else
4360
58.6k
  if (j > 0 || (j == 0 && dig & 1))
4361
31.2k
#endif
4362
31.2k
    {
4363
32.2k
 roundoff:
4364
40.7k
    while(*--s == '9')
4365
9.96k
      if (s == s0) {
4366
1.41k
        k++;
4367
1.41k
        *s++ = '1';
4368
1.41k
        goto ret;
4369
1.41k
        }
4370
30.8k
    ++*s++;
4371
30.8k
    }
4372
27.3k
  else {
4373
#ifdef Honor_FLT_ROUNDS
4374
 trimzeros:
4375
#endif
4376
59.3k
    while(*--s == '0');
4377
27.3k
    s++;
4378
27.3k
    }
4379
156k
 ret:
4380
156k
  Bfree(S);
4381
156k
  if (mhi) {
4382
98.0k
    if (mlo && mlo != mhi)
4383
674
      Bfree(mlo);
4384
98.0k
    Bfree(mhi);
4385
98.0k
    }
4386
305k
 ret1:
4387
#ifdef SET_INEXACT
4388
  if (inexact) {
4389
    if (!oldinexact) {
4390
      word0(&u) = Exp_1 + (70 << Exp_shift);
4391
      word1(&u) = 0;
4392
      dval(&u) += 1.;
4393
      }
4394
    }
4395
  else if (!oldinexact)
4396
    clear_inexact();
4397
#endif
4398
305k
  Bfree(b);
4399
305k
  *s = 0;
4400
305k
  *decpt = k + 1;
4401
305k
  if (rve)
4402
168
    *rve = s;
4403
305k
  return s0;
4404
156k
  }
4405
4406
ZEND_API double zend_hex_strtod(const char *str, const char **endptr)
4407
1.60k
{
4408
1.60k
  const char *s = str;
4409
1.60k
  char c;
4410
1.60k
  int any = 0;
4411
1.60k
  double value = 0;
4412
4413
1.60k
  if (*s == '0' && (s[1] == 'x' || s[1] == 'X')) {
4414
0
    s += 2;
4415
0
  }
4416
4417
33.0k
  while ((c = *s++)) {
4418
32.0k
    if (c >= '0' && c <= '9') {
4419
25.7k
      c -= '0';
4420
25.7k
    } else if (c >= 'A' && c <= 'F') {
4421
2.88k
      c -= 'A' - 10;
4422
3.43k
    } else if (c >= 'a' && c <= 'f') {
4423
2.83k
      c -= 'a' - 10;
4424
2.83k
    } else {
4425
597
      break;
4426
597
    }
4427
4428
31.4k
    any = 1;
4429
31.4k
    value = value * 16 + c;
4430
31.4k
  }
4431
4432
1.60k
  if (endptr != NULL) {
4433
1.60k
    *endptr = any ? s - 1 : str;
4434
1.60k
  }
4435
4436
1.60k
  return value;
4437
1.60k
}
4438
4439
ZEND_API double zend_oct_strtod(const char *str, const char **endptr)
4440
764
{
4441
764
  const char *s = str;
4442
764
  char c;
4443
764
  double value = 0;
4444
764
  int any = 0;
4445
4446
764
  if (str[0] == '\0') {
4447
0
    if (endptr != NULL) {
4448
0
      *endptr = str;
4449
0
    }
4450
0
    return 0.0;
4451
0
  }
4452
4453
28.0k
  while ((c = *s++)) {
4454
27.5k
    if (c < '0' || c > '7') {
4455
      /* break and return the current value if the number is not well-formed
4456
       * that's what Linux strtol() does
4457
       */
4458
318
      break;
4459
318
    }
4460
27.2k
    value = value * 8 + c - '0';
4461
27.2k
    any = 1;
4462
27.2k
  }
4463
4464
764
  if (endptr != NULL) {
4465
764
    *endptr = any ? s - 1 : str;
4466
764
  }
4467
4468
764
  return value;
4469
764
}
4470
4471
ZEND_API double zend_bin_strtod(const char *str, const char **endptr)
4472
445
{
4473
445
  const char *s = str;
4474
445
  char    c;
4475
445
  double    value = 0;
4476
445
  int     any = 0;
4477
4478
445
  if ('0' == *s && ('b' == s[1] || 'B' == s[1])) {
4479
0
    s += 2;
4480
0
  }
4481
4482
30.1k
  while ((c = *s++)) {
4483
    /*
4484
     * Verify the validity of the current character as a base-2 digit.  In
4485
     * the event that an invalid digit is found, halt the conversion and
4486
     * return the portion which has been converted thus far.
4487
     */
4488
29.8k
    if ('0' == c || '1' == c)
4489
29.6k
      value = value * 2 + c - '0';
4490
222
    else
4491
222
      break;
4492
4493
29.6k
    any = 1;
4494
29.6k
  }
4495
4496
  /*
4497
   * As with many strtoX implementations, should the subject sequence be
4498
   * empty or not well-formed, no conversion is performed and the original
4499
   * value of str is stored in *endptr, provided that endptr is not a null
4500
   * pointer.
4501
   */
4502
445
  if (NULL != endptr) {
4503
445
    *endptr = (char *)(any ? s - 1 : str);
4504
445
  }
4505
4506
445
  return value;
4507
445
}
4508
4509
ZEND_API char *zend_gcvt(double value, int ndigit, char dec_point, char exponent, char *buf)
4510
395k
{
4511
395k
  char *digits, *dst, *src;
4512
395k
  int i, decpt;
4513
395k
  bool sign;
4514
395k
  int mode = ndigit >= 0 ? 2 : 0;
4515
4516
395k
  if (mode == 0) {
4517
98.7k
    ndigit = 17;
4518
98.7k
  }
4519
395k
  digits = zend_dtoa(value, mode, ndigit, &decpt, &sign, NULL);
4520
395k
  if (decpt == 9999) {
4521
    /*
4522
     * Infinity or NaN, convert to inf or nan with sign.
4523
     * We assume the buffer is at least ndigit long.
4524
     */
4525
25.0k
    snprintf(buf, ndigit + 1, "%s%s", (sign && *digits == 'I') ? "-" : "", *digits == 'I' ? "INF" : "NAN");
4526
25.0k
    zend_freedtoa(digits);
4527
25.0k
    return (buf);
4528
25.0k
  }
4529
4530
370k
  dst = buf;
4531
370k
  if (sign) {
4532
35.2k
    *dst++ = '-';
4533
35.2k
  }
4534
4535
370k
  if ((decpt >= 0 && decpt > ndigit) || decpt < -3) { /* use E-style */
4536
    /* exponential format (e.g. 1.2345e+13) */
4537
200k
    if (--decpt < 0) {
4538
95.8k
      sign = true;
4539
95.8k
      decpt = -decpt;
4540
105k
    } else {
4541
105k
      sign = false;
4542
105k
    }
4543
200k
    src = digits;
4544
200k
    *dst++ = *src++;
4545
200k
    *dst++ = dec_point;
4546
200k
    if (*src == '\0') {
4547
20.4k
      *dst++ = '0';
4548
180k
    } else {
4549
2.16M
      do {
4550
2.16M
        *dst++ = *src++;
4551
2.16M
      } while (*src != '\0');
4552
180k
    }
4553
200k
    *dst++ = exponent;
4554
200k
    if (sign) {
4555
95.8k
      *dst++ = '-';
4556
105k
    } else {
4557
105k
      *dst++ = '+';
4558
105k
    }
4559
200k
    if (decpt < 10) {
4560
2.77k
      *dst++ = '0' + decpt;
4561
2.77k
      *dst = '\0';
4562
198k
    } else {
4563
      /* XXX - optimize */
4564
198k
      int n;
4565
511k
      for (n = decpt, i = 0; (n /= 10) != 0; i++);
4566
198k
      dst[i + 1] = '\0';
4567
709k
      while (decpt != 0) {
4568
511k
        dst[i--] = '0' + decpt % 10;
4569
511k
        decpt /= 10;
4570
511k
      }
4571
198k
    }
4572
200k
  } else if (decpt < 0) {
4573
    /* standard format 0. */
4574
6.19k
    *dst++ = '0';   /* zero before decimal point */
4575
6.19k
    *dst++ = dec_point;
4576
8.23k
    do {
4577
8.23k
      *dst++ = '0';
4578
8.23k
    } while (++decpt < 0);
4579
6.19k
    src = digits;
4580
29.2k
    while (*src != '\0') {
4581
23.0k
      *dst++ = *src++;
4582
23.0k
    }
4583
6.19k
    *dst = '\0';
4584
163k
  } else {
4585
    /* standard format */
4586
808k
    for (i = 0, src = digits; i < decpt; i++) {
4587
644k
      if (*src != '\0') {
4588
586k
        *dst++ = *src++;
4589
586k
      } else {
4590
57.9k
        *dst++ = '0';
4591
57.9k
      }
4592
644k
    }
4593
163k
    if (*src != '\0') {
4594
37.1k
      if (src == digits) {
4595
16.6k
        *dst++ = '0';   /* zero before decimal point */
4596
16.6k
      }
4597
37.1k
      *dst++ = dec_point;
4598
240k
      for (i = decpt; digits[i] != '\0'; i++) {
4599
203k
        *dst++ = digits[i];
4600
203k
      }
4601
37.1k
    }
4602
163k
    *dst = '\0';
4603
163k
  }
4604
370k
  zend_freedtoa(digits);
4605
370k
  return (buf);
4606
395k
}
4607
4608
static void destroy_freelist(void)
4609
0
{
4610
0
  int i;
4611
0
  Bigint *tmp;
4612
4613
0
  ACQUIRE_DTOA_LOCK(0)
4614
0
  for (i = 0; i <= Kmax; i++) {
4615
0
    Bigint **listp = &freelist[i];
4616
0
    while ((tmp = *listp) != NULL) {
4617
0
      *listp = tmp->next;
4618
0
      FREE(tmp);
4619
0
    }
4620
0
    freelist[i] = NULL;
4621
0
  }
4622
0
  FREE_DTOA_LOCK(0)
4623
0
}
4624
4625
static void free_p5s(void)
4626
0
{
4627
0
  Bigint **listp, *tmp;
4628
4629
0
  ACQUIRE_DTOA_LOCK(1)
4630
0
  listp = &p5s;
4631
0
  while ((tmp = *listp) != NULL) {
4632
0
    *listp = tmp->next;
4633
0
    FREE(tmp);
4634
0
  }
4635
0
  p5s = NULL;
4636
0
  FREE_DTOA_LOCK(1)
4637
0
}