Coverage Report

Created: 2026-02-14 07:05

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/glib/glib/gdate.c
Line
Count
Source
1
/* GLIB - Library of useful routines for C programming
2
 * Copyright (C) 1995-1997  Peter Mattis, Spencer Kimball and Josh MacDonald
3
 *
4
 * SPDX-License-Identifier: LGPL-2.1-or-later
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2.1 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18
 */
19
20
/*
21
 * Modified by the GLib Team and others 1997-2000.  See the AUTHORS
22
 * file for a list of people on the GLib Team.  See the ChangeLog
23
 * files for a list of changes.  These files are distributed with
24
 * GLib at ftp://ftp.gtk.org/pub/gtk/. 
25
 */
26
27
/* 
28
 * MT safe
29
 */
30
31
#include "config.h"
32
#include "glibconfig.h"
33
34
#define DEBUG_MSG(x)  /* */
35
#ifdef G_ENABLE_DEBUG
36
/* #define DEBUG_MSG(args)  g_message args ; */
37
#endif
38
39
#include <time.h>
40
#include <string.h>
41
#include <stdlib.h>
42
#include <locale.h>
43
44
#ifdef G_OS_WIN32
45
#include <windows.h>
46
#endif
47
48
#include "gdate.h"
49
50
#include "gconvert.h"
51
#include "gmem.h"
52
#include "gstrfuncs.h"
53
#include "gtestutils.h"
54
#include "gthread.h"
55
#include "gunicode.h"
56
#include "gutilsprivate.h"
57
58
#ifdef G_OS_WIN32
59
#include "garray.h"
60
#endif
61
62
/**
63
 * GDate:
64
 * @julian_days: the Julian representation of the date
65
 * @julian: this bit is set if @julian_days is valid
66
 * @dmy: this is set if @day, @month and @year are valid
67
 * @day: the day of the day-month-year representation of the date,
68
 *   as a number between 1 and 31
69
 * @month: the month of the day-month-year representation of the date,
70
 *   as a number between 1 and 12
71
 * @year: the year of the day-month-year representation of the date
72
 *
73
 * `GDate` is a struct for calendrical calculations.
74
 *
75
 * The `GDate` data structure represents a day between January 1, Year 1,
76
 * and sometime a few thousand years in the future (right now it will go
77
 * to the year 65535 or so, but [method@GLib.Date.set_parse] only parses up to the
78
 * year 8000 or so - just count on "a few thousand"). `GDate` is meant to
79
 * represent everyday dates, not astronomical dates or historical dates
80
 * or ISO timestamps or the like. It extrapolates the current Gregorian
81
 * calendar forward and backward in time; there is no attempt to change
82
 * the calendar to match time periods or locations. `GDate` does not store
83
 * time information; it represents a day.
84
 *
85
 * The `GDate` implementation has several nice features; it is only a
86
 * 64-bit struct, so storing large numbers of dates is very efficient. It
87
 * can keep both a Julian and day-month-year representation of the date,
88
 * since some calculations are much easier with one representation or the
89
 * other. A Julian representation is simply a count of days since some
90
 * fixed day in the past; for #GDate the fixed day is January 1, 1 AD.
91
 * ("Julian" dates in the #GDate API aren't really Julian dates in the
92
 * technical sense; technically, Julian dates count from the start of the
93
 * Julian period, Jan 1, 4713 BC).
94
 *
95
 * `GDate` is simple to use. First you need a "blank" date; you can get a
96
 * dynamically allocated date from [ctor@GLib.Date.new], or you can declare an
97
 * automatic variable or array and initialize it by calling [method@GLib.Date.clear].
98
 * A cleared date is safe; it's safe to call [method@GLib.Date.set_dmy] and the other
99
 * mutator functions to initialize the value of a cleared date. However, a cleared date
100
 * is initially invalid, meaning that it doesn't represent a day that exists.
101
 * It is undefined to call any of the date calculation routines on an invalid date.
102
 * If you obtain a date from a user or other unpredictable source, you should check
103
 * its validity with the [method@GLib.Date.valid] predicate. [method@GLib.Date.valid]
104
 * is also used to check for errors with [method@GLib.Date.set_parse] and other functions
105
 * that can fail. Dates can be invalidated by calling [method@GLib.Date.clear] again.
106
 *
107
 * It is very important to use the API to access the `GDate` struct. Often only the
108
 * day-month-year or only the Julian representation is valid. Sometimes neither is valid.
109
 * Use the API.
110
 *
111
 * GLib also features `GDateTime` which represents a precise time.
112
 */
113
114
/**
115
 * G_USEC_PER_SEC:
116
 *
117
 * Number of microseconds in one second (1 million).
118
 * This macro is provided for code readability.
119
 */
120
121
/**
122
 * G_NSEC_PER_SEC:
123
 *
124
 * Number of nanoseconds in one second (1 billion).
125
 * This macro is provided for code readability.
126
 *
127
 * Since: 2.88
128
 */
129
130
/**
131
 * GTimeVal:
132
 * @tv_sec: seconds
133
 * @tv_usec: microseconds
134
 *
135
 * Represents a precise time, with seconds and microseconds.
136
 *
137
 * Similar to the struct timeval returned by the `gettimeofday()`
138
 * UNIX system call.
139
 *
140
 * GLib is attempting to unify around the use of 64-bit integers to
141
 * represent microsecond-precision time. As such, this type will be
142
 * removed from a future version of GLib. A consequence of using `glong` for
143
 * `tv_sec` is that on 32-bit systems `GTimeVal` is subject to the year 2038
144
 * problem.
145
 *
146
 * Deprecated: 2.62: Use #GDateTime or #guint64 instead.
147
 */
148
149
/**
150
 * GTime:
151
 *
152
 * Simply a replacement for `time_t`. It has been deprecated
153
 * since it is not equivalent to `time_t` on 64-bit platforms
154
 * with a 64-bit `time_t`.
155
 *
156
 * Unrelated to #GTimer.
157
 *
158
 * Note that #GTime is defined to always be a 32-bit integer,
159
 * unlike `time_t` which may be 64-bit on some systems. Therefore,
160
 * #GTime will overflow in the year 2038, and you cannot use the
161
 * address of a #GTime variable as argument to the UNIX time()
162
 * function.
163
 *
164
 * Instead, do the following:
165
 *
166
 * |[<!-- language="C" -->
167
 * time_t ttime;
168
 * GTime gtime;
169
 *
170
 * time (&ttime);
171
 * gtime = (GTime)ttime;
172
 * ]|
173
 *
174
 * Deprecated: 2.62: This is not [Y2038-safe](https://en.wikipedia.org/wiki/Year_2038_problem).
175
 *    Use #GDateTime or #time_t instead.
176
 */
177
178
/**
179
 * GDateDMY:
180
 * @G_DATE_DAY: a day
181
 * @G_DATE_MONTH: a month
182
 * @G_DATE_YEAR: a year
183
 *
184
 * This enumeration isn't used in the API, but may be useful if you need
185
 * to mark a number as a day, month, or year.
186
 */
187
188
/**
189
 * GDateDay:
190
 *
191
 * Integer representing a day of the month; between 1 and 31.
192
 *
193
 * The %G_DATE_BAD_DAY value represents an invalid day of the month.
194
 */
195
196
/**
197
 * GDateMonth:
198
 * @G_DATE_BAD_MONTH: invalid value
199
 * @G_DATE_JANUARY: January
200
 * @G_DATE_FEBRUARY: February
201
 * @G_DATE_MARCH: March
202
 * @G_DATE_APRIL: April
203
 * @G_DATE_MAY: May
204
 * @G_DATE_JUNE: June
205
 * @G_DATE_JULY: July
206
 * @G_DATE_AUGUST: August
207
 * @G_DATE_SEPTEMBER: September
208
 * @G_DATE_OCTOBER: October
209
 * @G_DATE_NOVEMBER: November
210
 * @G_DATE_DECEMBER: December
211
 *
212
 * Enumeration representing a month; values are %G_DATE_JANUARY,
213
 * %G_DATE_FEBRUARY, etc. %G_DATE_BAD_MONTH is the invalid value.
214
 */
215
216
/**
217
 * GDateYear:
218
 *
219
 * Integer type representing a year.
220
 *
221
 * The %G_DATE_BAD_YEAR value is the invalid value. The year
222
 * must be 1 or higher; negative ([BCE](https://en.wikipedia.org/wiki/Common_Era))
223
 * years are not allowed.
224
 *
225
 * The year is represented with four digits.
226
 */
227
228
/**
229
 * GDateWeekday:
230
 * @G_DATE_BAD_WEEKDAY: invalid value
231
 * @G_DATE_MONDAY: Monday
232
 * @G_DATE_TUESDAY: Tuesday
233
 * @G_DATE_WEDNESDAY: Wednesday
234
 * @G_DATE_THURSDAY: Thursday
235
 * @G_DATE_FRIDAY: Friday
236
 * @G_DATE_SATURDAY: Saturday
237
 * @G_DATE_SUNDAY: Sunday
238
 *
239
 * Enumeration representing a day of the week; %G_DATE_MONDAY,
240
 * %G_DATE_TUESDAY, etc. %G_DATE_BAD_WEEKDAY is an invalid weekday.
241
 */
242
243
/**
244
 * G_DATE_BAD_DAY:
245
 *
246
 * Represents an invalid #GDateDay.
247
 */
248
249
/**
250
 * G_DATE_BAD_JULIAN:
251
 *
252
 * Represents an invalid Julian day number.
253
 */
254
255
/**
256
 * G_DATE_BAD_YEAR:
257
 *
258
 * Represents an invalid year.
259
 */
260
261
/**
262
 * g_date_new:
263
 *
264
 * Allocates a #GDate and initializes
265
 * it to a safe state. The new date will
266
 * be cleared (as if you'd called g_date_clear()) but invalid (it won't
267
 * represent an existing day). Free the return value with g_date_free().
268
 *
269
 * Returns: a newly-allocated #GDate
270
 */
271
GDate*
272
g_date_new (void)
273
0
{
274
0
  GDate *d = g_new0 (GDate, 1); /* happily, 0 is the invalid flag for everything. */
275
  
276
0
  return d;
277
0
}
278
279
/**
280
 * g_date_new_dmy:
281
 * @day: day of the month
282
 * @month: month of the year
283
 * @year: year
284
 *
285
 * Create a new #GDate representing the given day-month-year triplet.
286
 *
287
 * The triplet you pass in must represent a valid date. Use g_date_valid_dmy()
288
 * if needed to validate it. The returned #GDate is guaranteed to be non-%NULL
289
 * and valid.
290
 *
291
 * Returns: (transfer full) (not nullable): a newly-allocated #GDate
292
 *   initialized with @day, @month, and @year
293
 */
294
GDate*
295
g_date_new_dmy (GDateDay   day, 
296
                GDateMonth m, 
297
                GDateYear  y)
298
0
{
299
0
  GDate *d;
300
0
  g_return_val_if_fail (g_date_valid_dmy (day, m, y), NULL);
301
  
302
0
  d = g_new (GDate, 1);
303
  
304
0
  d->julian = FALSE;
305
0
  d->dmy    = TRUE;
306
  
307
0
  d->month = m;
308
0
  d->day   = day;
309
0
  d->year  = y;
310
  
311
0
  g_assert (g_date_valid (d));
312
  
313
0
  return d;
314
0
}
315
316
/**
317
 * g_date_new_julian:
318
 * @julian_day: days since January 1, Year 1
319
 *
320
 * Create a new #GDate representing the given Julian date.
321
 *
322
 * The @julian_day you pass in must be valid. Use g_date_valid_julian() if
323
 * needed to validate it. The returned #GDate is guaranteed to be non-%NULL and
324
 * valid.
325
 *
326
 * Returns: (transfer full) (not nullable): a newly-allocated #GDate initialized
327
 *   with @julian_day
328
 */
329
GDate*
330
g_date_new_julian (guint32 julian_day)
331
0
{
332
0
  GDate *d;
333
0
  g_return_val_if_fail (g_date_valid_julian (julian_day), NULL);
334
  
335
0
  d = g_new (GDate, 1);
336
  
337
0
  d->julian = TRUE;
338
0
  d->dmy    = FALSE;
339
  
340
0
  d->julian_days = julian_day;
341
  
342
0
  g_assert (g_date_valid (d));
343
  
344
0
  return d;
345
0
}
346
347
/**
348
 * g_date_free:
349
 * @date: a #GDate to free
350
 *
351
 * Frees a #GDate returned from g_date_new().
352
 */
353
void
354
g_date_free (GDate *date)
355
0
{
356
0
  g_return_if_fail (date != NULL);
357
  
358
0
  g_free (date);
359
0
}
360
361
/**
362
 * g_date_copy:
363
 * @date: a #GDate to copy
364
 *
365
 * Copies a GDate to a newly-allocated GDate. If the input was invalid
366
 * (as determined by g_date_valid()), the invalid state will be copied
367
 * as is into the new object.
368
 *
369
 * Returns: (transfer full): a newly-allocated #GDate initialized from @date
370
 *
371
 * Since: 2.56
372
 */
373
GDate *
374
g_date_copy (const GDate *date)
375
0
{
376
0
  GDate *res;
377
0
  g_return_val_if_fail (date != NULL, NULL);
378
379
0
  if (g_date_valid (date))
380
0
    res = g_date_new_julian (g_date_get_julian (date));
381
0
  else
382
0
    {
383
0
      res = g_date_new ();
384
0
      *res = *date;
385
0
    }
386
387
0
  return res;
388
0
}
389
390
/**
391
 * g_date_valid:
392
 * @date: a #GDate to check
393
 *
394
 * Returns %TRUE if the #GDate represents an existing day. The date must not
395
 * contain garbage; it should have been initialized with g_date_clear()
396
 * if it wasn't allocated by one of the g_date_new() variants.
397
 *
398
 * Returns: Whether the date is valid
399
 */
400
gboolean     
401
g_date_valid (const GDate *d)
402
0
{
403
0
  g_return_val_if_fail (d != NULL, FALSE);
404
  
405
0
  return (d->julian || d->dmy);
406
0
}
407
408
static const guint8 days_in_months[2][13] = 
409
{  /* error, jan feb mar apr may jun jul aug sep oct nov dec */
410
  {  0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }, 
411
  {  0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 } /* leap year */
412
};
413
414
static const guint16 days_in_year[2][14] = 
415
{  /* 0, jan feb mar apr may  jun  jul  aug  sep  oct  nov  dec */
416
  {  0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 }, 
417
  {  0, 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 }
418
};
419
420
/**
421
 * g_date_valid_month:
422
 * @month: month
423
 *
424
 * Returns %TRUE if the month value is valid. The 12 #GDateMonth
425
 * enumeration values are the only valid months.
426
 *
427
 * Returns: %TRUE if the month is valid
428
 */
429
gboolean     
430
g_date_valid_month (GDateMonth m)
431
0
{ 
432
0
  return (((gint) m > G_DATE_BAD_MONTH) && ((gint) m < 13));
433
0
}
434
435
/**
436
 * g_date_valid_year:
437
 * @year: year
438
 *
439
 * Returns %TRUE if the year is valid. Any year greater than 0 is valid,
440
 * though there is a 16-bit limit to what #GDate will understand.
441
 *
442
 * Returns: %TRUE if the year is valid
443
 */
444
gboolean     
445
g_date_valid_year (GDateYear y)
446
0
{
447
0
  return ( y > G_DATE_BAD_YEAR );
448
0
}
449
450
/**
451
 * g_date_valid_day:
452
 * @day: day to check
453
 *
454
 * Returns %TRUE if the day of the month is valid (a day is valid if it's
455
 * between 1 and 31 inclusive).
456
 *
457
 * Returns: %TRUE if the day is valid
458
 */
459
460
gboolean     
461
g_date_valid_day (GDateDay d)
462
0
{
463
0
  return ( (d > G_DATE_BAD_DAY) && (d < 32) );
464
0
}
465
466
/**
467
 * g_date_valid_weekday:
468
 * @weekday: weekday
469
 *
470
 * Returns %TRUE if the weekday is valid. The seven #GDateWeekday enumeration
471
 * values are the only valid weekdays.
472
 *
473
 * Returns: %TRUE if the weekday is valid
474
 */
475
gboolean     
476
g_date_valid_weekday (GDateWeekday w)
477
0
{
478
0
  return (((gint) w > G_DATE_BAD_WEEKDAY) && ((gint) w < 8));
479
0
}
480
481
/**
482
 * g_date_valid_julian:
483
 * @julian_date: Julian day to check
484
 *
485
 * Returns %TRUE if the Julian day is valid. Anything greater than zero
486
 * is basically a valid Julian, though there is a 32-bit limit.
487
 *
488
 * Returns: %TRUE if the Julian day is valid
489
 */
490
gboolean     
491
g_date_valid_julian (guint32 j)
492
0
{
493
0
  return (j > G_DATE_BAD_JULIAN);
494
0
}
495
496
/**
497
 * g_date_valid_dmy:
498
 * @day: day
499
 * @month: month
500
 * @year: year
501
 *
502
 * Returns %TRUE if the day-month-year triplet forms a valid, existing day
503
 * in the range of days #GDate understands (Year 1 or later, no more than
504
 * a few thousand years in the future).
505
 *
506
 * Returns: %TRUE if the date is a valid one
507
 */
508
gboolean     
509
g_date_valid_dmy (GDateDay   d, 
510
                  GDateMonth m, 
511
      GDateYear  y)
512
0
{
513
  /* No need to check the upper bound of @y, because #GDateYear is 16 bits wide,
514
   * just like #GDate.year. */
515
0
  return ( (m > G_DATE_BAD_MONTH) &&
516
0
           (m < 13)               && 
517
0
           (d > G_DATE_BAD_DAY)   && 
518
0
           (y > G_DATE_BAD_YEAR)  &&   /* must check before using g_date_is_leap_year */
519
0
           (d <=  (g_date_is_leap_year (y) ? 
520
0
       days_in_months[1][m] : days_in_months[0][m])) );
521
0
}
522
523
524
/* "Julian days" just means an absolute number of days, where Day 1 ==
525
 *   Jan 1, Year 1
526
 */
527
static void
528
g_date_update_julian (const GDate *const_d)
529
0
{
530
0
  GDate *d = (GDate *) const_d;
531
0
  GDateYear year;
532
0
  gint idx;
533
  
534
0
  g_return_if_fail (d != NULL);
535
0
  g_return_if_fail (d->dmy != 0);
536
0
  g_return_if_fail (!d->julian);
537
0
  g_return_if_fail (g_date_valid_dmy (d->day, d->month, d->year));
538
  
539
  /* What we actually do is: multiply years * 365 days in the year,
540
   * add the number of years divided by 4, subtract the number of
541
   * years divided by 100 and add the number of years divided by 400,
542
   * which accounts for leap year stuff. Code from Steffen Beyer's
543
   * DateCalc. 
544
   */
545
  
546
0
  year = d->year - 1; /* we know d->year > 0 since it's valid */
547
  
548
0
  d->julian_days = year * 365U;
549
0
  d->julian_days += (year >>= 2); /* divide by 4 and add */
550
0
  d->julian_days -= (year /= 25); /* divides original # years by 100 */
551
0
  d->julian_days += year >> 2;    /* divides by 4, which divides original by 400 */
552
  
553
0
  idx = g_date_is_leap_year (d->year) ? 1 : 0;
554
  
555
0
  d->julian_days += days_in_year[idx][d->month] + d->day;
556
  
557
0
  g_return_if_fail (g_date_valid_julian (d->julian_days));
558
  
559
0
  d->julian = TRUE;
560
0
}
561
562
static void 
563
g_date_update_dmy (const GDate *const_d)
564
0
{
565
0
  GDate *d = (GDate *) const_d;
566
0
  GDateYear y;
567
0
  GDateMonth m;
568
0
  GDateDay day;
569
  
570
0
  guint32 A, B, C, D, E, M;
571
  
572
0
  g_return_if_fail (d != NULL);
573
0
  g_return_if_fail (d->julian);
574
0
  g_return_if_fail (!d->dmy);
575
0
  g_return_if_fail (g_date_valid_julian (d->julian_days));
576
  
577
  /* Formula taken from the Calendar FAQ; the formula was for the
578
   *  Julian Period which starts on 1 January 4713 BC, so we add
579
   *  1,721,425 to the number of days before doing the formula.
580
   *
581
   * I'm sure this can be simplified for our 1 January 1 AD period
582
   * start, but I can't figure out how to unpack the formula.  
583
   */
584
  
585
0
  A = d->julian_days + 1721425 + 32045;
586
0
  B = ( 4 *(A + 36524) )/ 146097 - 1;
587
0
  C = A - (146097 * B)/4;
588
0
  D = ( 4 * (C + 365) ) / 1461 - 1;
589
0
  E = C - ((1461*D) / 4);
590
0
  M = (5 * (E - 1) + 2)/153;
591
  
592
0
  m = M + 3 - (12*(M/10));
593
0
  day = E - (153*M + 2)/5;
594
0
  y = 100 * B + D - 4800 + (M/10);
595
  
596
0
#ifdef G_ENABLE_DEBUG
597
0
  if (!g_date_valid_dmy (day, m, y)) 
598
0
    g_warning ("OOPS julian: %u  computed dmy: %u %u %u",
599
0
         d->julian_days, day, m, y);
600
0
#endif
601
  
602
0
  d->month = m;
603
0
  d->day   = day;
604
0
  d->year  = y;
605
  
606
0
  d->dmy = TRUE;
607
0
}
608
609
/**
610
 * g_date_get_weekday:
611
 * @date: a #GDate
612
 *
613
 * Returns the day of the week for a #GDate. The date must be valid.
614
 *
615
 * Returns: day of the week as a #GDateWeekday.
616
 */
617
GDateWeekday 
618
g_date_get_weekday (const GDate *d)
619
0
{
620
0
  g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_WEEKDAY);
621
  
622
0
  if (!d->julian) 
623
0
    g_date_update_julian (d);
624
625
0
  g_return_val_if_fail (d->julian, G_DATE_BAD_WEEKDAY);
626
  
627
0
  return ((d->julian_days - 1) % 7) + 1;
628
0
}
629
630
/**
631
 * g_date_get_month:
632
 * @date: a #GDate to get the month from
633
 *
634
 * Returns the month of the year. The date must be valid.
635
 *
636
 * Returns: month of the year as a #GDateMonth
637
 */
638
GDateMonth   
639
g_date_get_month (const GDate *d)
640
0
{
641
0
  g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_MONTH);
642
  
643
0
  if (!d->dmy) 
644
0
    g_date_update_dmy (d);
645
646
0
  g_return_val_if_fail (d->dmy, G_DATE_BAD_MONTH);
647
  
648
0
  return d->month;
649
0
}
650
651
/**
652
 * g_date_get_year:
653
 * @date: a #GDate
654
 *
655
 * Returns the year of a #GDate. The date must be valid.
656
 *
657
 * Returns: year in which the date falls
658
 */
659
GDateYear    
660
g_date_get_year (const GDate *d)
661
0
{
662
0
  g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_YEAR);
663
  
664
0
  if (!d->dmy) 
665
0
    g_date_update_dmy (d);
666
667
0
  g_return_val_if_fail (d->dmy, G_DATE_BAD_YEAR);  
668
  
669
0
  return d->year;
670
0
}
671
672
/**
673
 * g_date_get_day:
674
 * @date: a #GDate to extract the day of the month from
675
 *
676
 * Returns the day of the month. The date must be valid.
677
 *
678
 * Returns: day of the month
679
 */
680
GDateDay     
681
g_date_get_day (const GDate *d)
682
0
{
683
0
  g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_DAY);
684
  
685
0
  if (!d->dmy) 
686
0
    g_date_update_dmy (d);
687
688
0
  g_return_val_if_fail (d->dmy, G_DATE_BAD_DAY);  
689
  
690
0
  return d->day;
691
0
}
692
693
/**
694
 * g_date_get_julian:
695
 * @date: a #GDate to extract the Julian day from
696
 *
697
 * Returns the Julian day or "serial number" of the #GDate. The
698
 * Julian day is simply the number of days since January 1, Year 1; i.e.,
699
 * January 1, Year 1 is Julian day 1; January 2, Year 1 is Julian day 2,
700
 * etc. The date must be valid.
701
 *
702
 * Returns: Julian day
703
 */
704
guint32      
705
g_date_get_julian (const GDate *d)
706
0
{
707
0
  g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_JULIAN);
708
  
709
0
  if (!d->julian) 
710
0
    g_date_update_julian (d);
711
712
0
  g_return_val_if_fail (d->julian, G_DATE_BAD_JULIAN);  
713
  
714
0
  return d->julian_days;
715
0
}
716
717
/**
718
 * g_date_get_day_of_year:
719
 * @date: a #GDate to extract day of year from
720
 *
721
 * Returns the day of the year, where Jan 1 is the first day of the
722
 * year. The date must be valid.
723
 *
724
 * Returns: day of the year
725
 */
726
guint        
727
g_date_get_day_of_year (const GDate *d)
728
0
{
729
0
  gint idx;
730
  
731
0
  g_return_val_if_fail (g_date_valid (d), 0);
732
  
733
0
  if (!d->dmy) 
734
0
    g_date_update_dmy (d);
735
736
0
  g_return_val_if_fail (d->dmy, 0);  
737
  
738
0
  idx = g_date_is_leap_year (d->year) ? 1 : 0;
739
  
740
0
  return (days_in_year[idx][d->month] + d->day);
741
0
}
742
743
/**
744
 * g_date_get_monday_week_of_year:
745
 * @date: a #GDate
746
 *
747
 * Returns the week of the year, where weeks are understood to start on
748
 * Monday. If the date is before the first Monday of the year, return 0.
749
 * The date must be valid.
750
 *
751
 * Returns: week of the year
752
 */
753
guint        
754
g_date_get_monday_week_of_year (const GDate *date)
755
0
{
756
0
  return g_date_get_week_of_year (date, G_DATE_MONDAY);
757
0
}
758
759
/**
760
 * g_date_get_sunday_week_of_year:
761
 * @date: a #GDate
762
 *
763
 * Returns the week of the year during which this date falls, if
764
 * weeks are understood to begin on Sunday. The date must be valid.
765
 * Can return 0 if the day is before the first Sunday of the year.
766
 *
767
 * Returns: week number
768
 */
769
guint        
770
g_date_get_sunday_week_of_year (const GDate *date)
771
0
{
772
0
  return g_date_get_week_of_year (date, G_DATE_SUNDAY);
773
0
}
774
775
/**
776
 * g_date_get_week_of_year:
777
 * @date: a [struct@GLib.Date]
778
 * @first_day_of_week: the day which is considered the first day of the week
779
 *    (for example, this would be [enum@GLib.DateWeekday.SUNDAY] in US locales,
780
 *    [enum@GLib.DateWeekday.MONDAY] in British locales, and
781
 *    [enum@GLib.DateWeekday.SATURDAY] in Egyptian locales
782
 *
783
 * Calculates the week of the year during which this date falls.
784
 *
785
 * The result depends on which day is considered the first day of the week,
786
 * which varies by locale. Both `date` and `first_day_of_week` must be valid.
787
 *
788
 * If @date is before the start of the first week of the year (for example,
789
 * before the first Monday in January if @first_day_of_week is
790
 * [enum@GLib.DateWeekday.MONDAY]) then zero will be returned.
791
 *
792
 * Returns: week number (starting from 1), or `0` if @date is before the start
793
 *    of the first week of the year
794
 * Since: 2.86
795
 */
796
unsigned int
797
g_date_get_week_of_year (const GDate  *date,
798
                         GDateWeekday  first_day_of_week)
799
0
{
800
0
  GDate first_day_of_year;
801
0
  unsigned int n_days_before_first_week;
802
803
0
  g_return_val_if_fail (g_date_valid (date), 0);
804
0
  g_return_val_if_fail (first_day_of_week != G_DATE_BAD_WEEKDAY, 0);
805
806
0
  if (!date->dmy)
807
0
    g_date_update_dmy (date);
808
809
0
  g_return_val_if_fail (date->dmy, 0);
810
811
0
  g_date_clear (&first_day_of_year, 1);
812
0
  g_date_set_dmy (&first_day_of_year, 1, 1, date->year);
813
814
0
  n_days_before_first_week = (first_day_of_week - g_date_get_weekday (&first_day_of_year) + 7) % 7;
815
0
  return (g_date_get_day_of_year (date) + 6 - n_days_before_first_week) / 7;
816
0
}
817
818
/**
819
 * g_date_get_iso8601_week_of_year:
820
 * @date: a valid #GDate
821
 *
822
 * Returns the week of the year, where weeks are interpreted according
823
 * to ISO 8601. 
824
 * 
825
 * Returns: ISO 8601 week number of the year.
826
 *
827
 * Since: 2.6
828
 **/
829
guint
830
g_date_get_iso8601_week_of_year (const GDate *d)
831
0
{
832
0
  guint j, d4, L, d1, w;
833
834
0
  g_return_val_if_fail (g_date_valid (d), 0);
835
  
836
0
  if (!d->julian)
837
0
    g_date_update_julian (d);
838
839
0
  g_return_val_if_fail (d->julian, 0);
840
841
  /* Formula taken from the Calendar FAQ; the formula was for the
842
   * Julian Period which starts on 1 January 4713 BC, so we add
843
   * 1,721,425 to the number of days before doing the formula. 
844
   */
845
0
  j  = d->julian_days + 1721425;
846
0
  d4 = (j + 31741 - (j % 7)) % 146097 % 36524 % 1461;
847
0
  L  = d4 / 1460;
848
0
  d1 = ((d4 - L) % 365) + L;
849
0
  w  = d1 / 7 + 1;
850
851
0
  return w;
852
0
}
853
854
/**
855
 * g_date_days_between:
856
 * @date1: the first date
857
 * @date2: the second date
858
 *
859
 * Computes the number of days between two dates.
860
 * If @date2 is prior to @date1, the returned value is negative.
861
 * Both dates must be valid.
862
 *
863
 * Returns: the number of days between @date1 and @date2
864
 */
865
gint
866
g_date_days_between (const GDate *d1,
867
         const GDate *d2)
868
0
{
869
0
  g_return_val_if_fail (g_date_valid (d1), 0);
870
0
  g_return_val_if_fail (g_date_valid (d2), 0);
871
872
0
  return (gint)g_date_get_julian (d2) - (gint)g_date_get_julian (d1);
873
0
}
874
875
/**
876
 * g_date_clear:
877
 * @date: pointer to one or more dates to clear
878
 * @n_dates: number of dates to clear
879
 *
880
 * Initializes one or more #GDate structs to a safe but invalid
881
 * state. The cleared dates will not represent an existing date, but will
882
 * not contain garbage. Useful to init a date declared on the stack.
883
 * Validity can be tested with g_date_valid().
884
 */
885
void         
886
g_date_clear (GDate *d, guint ndates)
887
0
{
888
0
  g_return_if_fail (d != NULL);
889
0
  g_return_if_fail (ndates != 0);
890
  
891
0
  memset (d, 0x0, ndates*sizeof (GDate)); 
892
0
}
893
894
G_LOCK_DEFINE_STATIC (g_date_global);
895
896
/* These are for the parser, output to the user should use *
897
 * g_date_strftime () - this creates more never-freed memory to annoy
898
 * all those memory debugger users. :-) 
899
 */
900
901
static gchar *long_month_names[13] = 
902
{ 
903
  NULL,
904
};
905
906
static gchar *long_month_names_alternative[13] =
907
{
908
  NULL,
909
};
910
911
static gchar *short_month_names[13] = 
912
{
913
  NULL, 
914
};
915
916
static gchar *short_month_names_alternative[13] =
917
{
918
  NULL,
919
};
920
921
/* This tells us if we need to update the parse info */
922
static gchar *current_locale = NULL;
923
924
/* order of these in the current locale */
925
static GDateDMY dmy_order[3] = 
926
{
927
   G_DATE_DAY, G_DATE_MONTH, G_DATE_YEAR
928
};
929
930
/* Where to chop two-digit years: i.e., for the 1930 default, numbers
931
 * 29 and below are counted as in the year 2000, numbers 30 and above
932
 * are counted as in the year 1900.  
933
 */
934
935
static const GDateYear twodigit_start_year = 1930;
936
937
/* It is impossible to enter a year between 1 AD and 99 AD with this
938
 * in effect.  
939
 */
940
static gboolean using_twodigit_years = FALSE;
941
942
/* Adjustment of locale era to AD, non-zero means using locale era
943
 */
944
static gint locale_era_adjust = 0;
945
946
struct _GDateParseTokens {
947
  gint num_ints;
948
  gint n[3];
949
  guint month;
950
};
951
952
typedef struct _GDateParseTokens GDateParseTokens;
953
954
static inline gboolean
955
update_month_match (gsize *longest,
956
                    const gchar *haystack,
957
                    const gchar *needle)
958
0
{
959
0
  gsize length;
960
961
0
  if (needle == NULL)
962
0
    return FALSE;
963
964
0
  length = strlen (needle);
965
0
  if (*longest >= length)
966
0
    return FALSE;
967
968
0
  if (strstr (haystack, needle) == NULL)
969
0
    return FALSE;
970
971
0
  *longest = length;
972
0
  return TRUE;
973
0
}
974
975
0
#define NUM_LEN 10
976
977
/* HOLDS: g_date_global_lock */
978
static void
979
g_date_fill_parse_tokens (const gchar *str, GDateParseTokens *pt)
980
0
{
981
0
  gchar num[4][NUM_LEN+1];
982
0
  gint i;
983
0
  const guchar *s;
984
  
985
  /* We count 4, but store 3; so we can give an error
986
   * if there are 4.
987
   */
988
0
  num[0][0] = num[1][0] = num[2][0] = num[3][0] = '\0';
989
  
990
0
  s = (const guchar *) str;
991
0
  pt->num_ints = 0;
992
0
  while (*s && pt->num_ints < 4) 
993
0
    {
994
      
995
0
      i = 0;
996
0
      while (*s && g_ascii_isdigit (*s) && i < NUM_LEN)
997
0
        {
998
0
          num[pt->num_ints][i] = *s;
999
0
          ++s; 
1000
0
          ++i;
1001
0
        }
1002
      
1003
0
      if (i > 0) 
1004
0
        {
1005
0
          num[pt->num_ints][i] = '\0';
1006
0
          ++(pt->num_ints);
1007
0
        }
1008
      
1009
0
      if (*s == '\0') break;
1010
      
1011
0
      ++s;
1012
0
    }
1013
  
1014
0
  pt->n[0] = pt->num_ints > 0 ? atoi (num[0]) : 0;
1015
0
  pt->n[1] = pt->num_ints > 1 ? atoi (num[1]) : 0;
1016
0
  pt->n[2] = pt->num_ints > 2 ? atoi (num[2]) : 0;
1017
  
1018
0
  pt->month = G_DATE_BAD_MONTH;
1019
  
1020
0
  if (pt->num_ints < 3)
1021
0
    {
1022
0
      gsize longest = 0;
1023
0
      gchar *casefold;
1024
0
      gchar *normalized;
1025
      
1026
0
      casefold = g_utf8_casefold (str, -1);
1027
0
      normalized = g_utf8_normalize (casefold, -1, G_NORMALIZE_ALL);
1028
0
      g_free (casefold);
1029
1030
0
      for (i = 1; i < 13; ++i)
1031
0
        {
1032
          /* Here month names may be in a genitive case if the language
1033
           * grammatical rules require it.
1034
           * Examples of how January may look in some languages:
1035
           * Catalan: "de gener", Croatian: "siječnja", Polish: "stycznia",
1036
           * Upper Sorbian: "januara".
1037
           * Note that most of the languages can't or don't use the the
1038
           * genitive case here so they use nominative everywhere.
1039
           * For example, English always uses "January".
1040
           */
1041
0
          if (update_month_match (&longest, normalized, long_month_names[i]))
1042
0
            pt->month = i;
1043
1044
          /* Here month names will be in a nominative case.
1045
           * Examples of how January may look in some languages:
1046
           * Catalan: "gener", Croatian: "Siječanj", Polish: "styczeń",
1047
           * Upper Sorbian: "Januar".
1048
           */
1049
0
          if (update_month_match (&longest, normalized, long_month_names_alternative[i]))
1050
0
            pt->month = i;
1051
1052
          /* Differences between abbreviated nominative and abbreviated
1053
           * genitive month names are visible in very few languages but
1054
           * let's handle them.
1055
           */
1056
0
          if (update_month_match (&longest, normalized, short_month_names[i]))
1057
0
            pt->month = i;
1058
1059
0
          if (update_month_match (&longest, normalized, short_month_names_alternative[i]))
1060
0
            pt->month = i;
1061
0
        }
1062
1063
0
      g_free (normalized);
1064
0
    }
1065
0
}
1066
1067
/* HOLDS: g_date_global_lock */
1068
static void
1069
g_date_prepare_to_parse (const gchar      *str, 
1070
                         GDateParseTokens *pt)
1071
0
{
1072
0
  const gchar *locale = setlocale (LC_TIME, NULL);
1073
0
  gboolean recompute_localeinfo = FALSE;
1074
0
  GDate d;
1075
  
1076
0
  g_return_if_fail (locale != NULL); /* should not happen */
1077
  
1078
0
  g_date_clear (&d, 1);              /* clear for scratch use */
1079
  
1080
0
  if ( (current_locale == NULL) || (strcmp (locale, current_locale) != 0) ) 
1081
0
    recompute_localeinfo = TRUE;  /* Uh, there used to be a reason for the temporary */
1082
  
1083
0
  if (recompute_localeinfo)
1084
0
    {
1085
0
      int i = 1;
1086
0
      GDateParseTokens testpt;
1087
0
      gchar buf[128];
1088
      
1089
0
      g_free (current_locale); /* still works if current_locale == NULL */
1090
      
1091
0
      current_locale = g_strdup (locale);
1092
      
1093
0
      short_month_names[0] = "Error";
1094
0
      long_month_names[0] = "Error";
1095
1096
0
      while (i < 13) 
1097
0
        {
1098
0
    gchar *casefold;
1099
    
1100
0
          g_date_set_dmy (&d, 1, i, 1976);
1101
    
1102
0
          g_return_if_fail (g_date_valid (&d));
1103
    
1104
0
          g_date_strftime (buf, 127, "%b", &d);
1105
1106
0
    casefold = g_utf8_casefold (buf, -1);
1107
0
          g_free (short_month_names[i]);
1108
0
          short_month_names[i] = g_utf8_normalize (casefold, -1, G_NORMALIZE_ALL);
1109
0
    g_free (casefold);
1110
    
1111
0
          g_date_strftime (buf, 127, "%B", &d);
1112
0
    casefold = g_utf8_casefold (buf, -1);
1113
0
          g_free (long_month_names[i]);
1114
0
          long_month_names[i] = g_utf8_normalize (casefold, -1, G_NORMALIZE_ALL);
1115
0
    g_free (casefold);
1116
          
1117
0
          g_date_strftime (buf, 127, "%Ob", &d);
1118
0
          casefold = g_utf8_casefold (buf, -1);
1119
0
          g_free (short_month_names_alternative[i]);
1120
0
          short_month_names_alternative[i] = g_utf8_normalize (casefold, -1, G_NORMALIZE_ALL);
1121
0
          g_free (casefold);
1122
1123
0
          g_date_strftime (buf, 127, "%OB", &d);
1124
0
          casefold = g_utf8_casefold (buf, -1);
1125
0
          g_free (long_month_names_alternative[i]);
1126
0
          long_month_names_alternative[i] = g_utf8_normalize (casefold, -1, G_NORMALIZE_ALL);
1127
0
          g_free (casefold);
1128
1129
0
          ++i;
1130
0
        }
1131
      
1132
      /* Determine DMY order */
1133
      
1134
      /* had to pick a random day - don't change this, some strftimes
1135
       * are broken on some days, and this one is good so far. */
1136
0
      g_date_set_dmy (&d, 4, 7, 1976);
1137
      
1138
0
      g_date_strftime (buf, 127, "%x", &d);
1139
      
1140
0
      g_date_fill_parse_tokens (buf, &testpt);
1141
1142
0
      using_twodigit_years = FALSE;
1143
0
      locale_era_adjust = 0;
1144
0
      dmy_order[0] = G_DATE_DAY;
1145
0
      dmy_order[1] = G_DATE_MONTH;
1146
0
      dmy_order[2] = G_DATE_YEAR;
1147
      
1148
0
      i = 0;
1149
0
      while (i < testpt.num_ints)
1150
0
        {
1151
0
          switch (testpt.n[i])
1152
0
            {
1153
0
            case 7:
1154
0
              dmy_order[i] = G_DATE_MONTH;
1155
0
              break;
1156
0
            case 4:
1157
0
              dmy_order[i] = G_DATE_DAY;
1158
0
              break;
1159
0
            case 76:
1160
0
              using_twodigit_years = TRUE;
1161
0
              G_GNUC_FALLTHROUGH;
1162
0
            case 1976:
1163
0
              dmy_order[i] = G_DATE_YEAR;
1164
0
              break;
1165
0
            default:
1166
              /* assume locale era */
1167
0
              locale_era_adjust = 1976 - testpt.n[i];
1168
0
              dmy_order[i] = G_DATE_YEAR;
1169
0
              break;
1170
0
            }
1171
0
          ++i;
1172
0
        }
1173
      
1174
#if defined(G_ENABLE_DEBUG) && 0
1175
      DEBUG_MSG (("**GDate prepared a new set of locale-specific parse rules."));
1176
      i = 1;
1177
      while (i < 13) 
1178
        {
1179
          DEBUG_MSG (("  %s   %s", long_month_names[i], short_month_names[i]));
1180
          ++i;
1181
        }
1182
      DEBUG_MSG (("Alternative month names:"));
1183
      i = 1;
1184
      while (i < 13)
1185
        {
1186
          DEBUG_MSG (("  %s   %s", long_month_names_alternative[i], short_month_names_alternative[i]));
1187
          ++i;
1188
        }
1189
      if (using_twodigit_years)
1190
        {
1191
    DEBUG_MSG (("**Using twodigit years with cutoff year: %u", twodigit_start_year));
1192
        }
1193
      { 
1194
        gchar *strings[3];
1195
        i = 0;
1196
        while (i < 3)
1197
          {
1198
            switch (dmy_order[i])
1199
              {
1200
              case G_DATE_MONTH:
1201
                strings[i] = "Month";
1202
                break;
1203
              case G_DATE_YEAR:
1204
                strings[i] = "Year";
1205
                break;
1206
              case G_DATE_DAY:
1207
                strings[i] = "Day";
1208
                break;
1209
              default:
1210
                strings[i] = NULL;
1211
                break;
1212
              }
1213
            ++i;
1214
          }
1215
        DEBUG_MSG (("**Order: %s, %s, %s", strings[0], strings[1], strings[2]));
1216
        DEBUG_MSG (("**Sample date in this locale: '%s'", buf));
1217
      }
1218
#endif
1219
0
    }
1220
  
1221
0
  g_date_fill_parse_tokens (str, pt);
1222
0
}
1223
1224
static guint
1225
convert_twodigit_year (guint y)
1226
0
{
1227
0
  if (using_twodigit_years && y < 100)
1228
0
    {
1229
0
      guint two     =  twodigit_start_year % 100;
1230
0
      guint century = (twodigit_start_year / 100) * 100;
1231
1232
0
      if (y < two)
1233
0
        century += 100;
1234
1235
0
      y += century;
1236
0
    }
1237
0
  return y;
1238
0
}
1239
1240
/**
1241
 * g_date_set_parse:
1242
 * @date: a #GDate to fill in
1243
 * @str: string to parse
1244
 *
1245
 * Parses a user-inputted string @str, and try to figure out what date it
1246
 * represents, taking the [current locale](running.html#locale)
1247
 * into account. If the string is successfully parsed, the date will be
1248
 * valid after the call. Otherwise, it will be invalid. You should check
1249
 * using g_date_valid() to see whether the parsing succeeded.
1250
 *
1251
 * This function is not appropriate for file formats and the like; it
1252
 * isn't very precise, and its exact behavior varies with the locale.
1253
 * It's intended to be a heuristic routine that guesses what the user
1254
 * means by a given string (and it does work pretty well in that
1255
 * capacity).
1256
 */
1257
void         
1258
g_date_set_parse (GDate       *d, 
1259
                  const gchar *str)
1260
0
{
1261
0
  GDateParseTokens pt;
1262
0
  guint m = G_DATE_BAD_MONTH, day = G_DATE_BAD_DAY, y = G_DATE_BAD_YEAR;
1263
0
  gsize str_len;
1264
  
1265
0
  g_return_if_fail (d != NULL);
1266
  
1267
  /* set invalid */
1268
0
  g_date_clear (d, 1);
1269
1270
  /* Anything longer than this is ridiculous and could take a while to normalize.
1271
   * This limit is chosen arbitrarily. */
1272
0
  str_len = strlen (str);
1273
0
  if (str_len > 200)
1274
0
    return;
1275
1276
  /* The input has to be valid UTF-8. */
1277
0
  if (!g_utf8_validate_len (str, str_len, NULL))
1278
0
    return;
1279
1280
0
  G_LOCK (g_date_global);
1281
1282
0
  g_date_prepare_to_parse (str, &pt);
1283
  
1284
0
  DEBUG_MSG (("Found %d ints, '%d' '%d' '%d' and written out month %d",
1285
0
        pt.num_ints, pt.n[0], pt.n[1], pt.n[2], pt.month));
1286
  
1287
  
1288
0
  if (pt.num_ints == 4) 
1289
0
    {
1290
0
      G_UNLOCK (g_date_global);
1291
0
      return; /* presumably a typo; bail out. */
1292
0
    }
1293
  
1294
0
  if (pt.num_ints > 1)
1295
0
    {
1296
0
      int i = 0;
1297
0
      int j = 0;
1298
      
1299
0
      g_assert (pt.num_ints < 4); /* i.e., it is 2 or 3 */
1300
      
1301
0
      while (i < pt.num_ints && j < 3) 
1302
0
        {
1303
0
          switch (dmy_order[j])
1304
0
            {
1305
0
            case G_DATE_MONTH:
1306
0
      {
1307
0
        if (pt.num_ints == 2 && pt.month != G_DATE_BAD_MONTH)
1308
0
    {
1309
0
      m = pt.month;
1310
0
      ++j;      /* skip months, but don't skip this number */
1311
0
      continue;
1312
0
    }
1313
0
        else 
1314
0
    m = pt.n[i];
1315
0
      }
1316
0
      break;
1317
0
            case G_DATE_DAY:
1318
0
      {
1319
0
        if (pt.num_ints == 2 && pt.month == G_DATE_BAD_MONTH)
1320
0
    {
1321
0
      day = 1;
1322
0
      ++j;      /* skip days, since we may have month/year */
1323
0
      continue;
1324
0
    }
1325
0
        day = pt.n[i];
1326
0
      }
1327
0
      break;
1328
0
            case G_DATE_YEAR:
1329
0
      {
1330
0
        y  = pt.n[i];
1331
        
1332
0
        if (locale_era_adjust != 0)
1333
0
          {
1334
0
      y += locale_era_adjust;
1335
0
          }
1336
1337
0
        y = convert_twodigit_year (y);
1338
0
      }
1339
0
      break;
1340
0
            default:
1341
0
              break;
1342
0
            }
1343
    
1344
0
          ++i;
1345
0
          ++j;
1346
0
        }
1347
      
1348
      
1349
0
      if (pt.num_ints == 3 && !g_date_valid_dmy (day, m, y))
1350
0
        {
1351
          /* Try YYYY MM DD */
1352
0
          y   = pt.n[0];
1353
0
          m   = pt.n[1];
1354
0
          day = pt.n[2];
1355
          
1356
0
          if (using_twodigit_years && y < 100) 
1357
0
            y = G_DATE_BAD_YEAR; /* avoids ambiguity */
1358
0
        }
1359
0
      else if (pt.num_ints == 2)
1360
0
  {
1361
0
    if (m == G_DATE_BAD_MONTH && pt.month != G_DATE_BAD_MONTH)
1362
0
      m = pt.month;
1363
0
  }
1364
0
    }
1365
0
  else if (pt.num_ints == 1) 
1366
0
    {
1367
0
      if (pt.month != G_DATE_BAD_MONTH)
1368
0
        {
1369
          /* Month name and year? */
1370
0
          m    = pt.month;
1371
0
          day  = 1;
1372
0
          y = pt.n[0];
1373
0
        }
1374
0
      else
1375
0
        {
1376
          /* Try yyyymmdd and yymmdd */
1377
    
1378
0
          m   = (pt.n[0]/100) % 100;
1379
0
          day = pt.n[0] % 100;
1380
0
          y   = pt.n[0]/10000;
1381
1382
0
          y   = convert_twodigit_year (y);
1383
0
        }
1384
0
    }
1385
  
1386
  /* See if we got anything valid out of all this. */
1387
  /* y < 8000 is to catch 19998 style typos; the library is OK up to 65535 or so */
1388
0
  if (y < 8000 && g_date_valid_dmy (day, m, y)) 
1389
0
    {
1390
0
      d->month = m;
1391
0
      d->day   = day;
1392
0
      d->year  = y;
1393
0
      d->dmy   = TRUE;
1394
0
    }
1395
0
#ifdef G_ENABLE_DEBUG
1396
0
  else 
1397
0
    {
1398
0
      DEBUG_MSG (("Rejected DMY %u %u %u", day, m, y));
1399
0
    }
1400
0
#endif
1401
0
  G_UNLOCK (g_date_global);
1402
0
}
1403
1404
gboolean
1405
_g_localtime (time_t timet, struct tm *out_tm)
1406
1.15k
{
1407
1.15k
  gboolean success = TRUE;
1408
1409
1.15k
#ifdef HAVE_LOCALTIME_R
1410
1.15k
  tzset ();
1411
1.15k
  if (!localtime_r (&timet, out_tm))
1412
0
    success = FALSE;
1413
#else
1414
  {
1415
    struct tm *ptm = localtime (&timet);
1416
1417
    if (ptm == NULL)
1418
      {
1419
        /* Happens at least in Microsoft's C library if you pass a
1420
         * negative time_t.
1421
         */
1422
        success = FALSE;
1423
      }
1424
    else
1425
      memcpy (out_tm, ptm, sizeof (struct tm));
1426
  }
1427
#endif
1428
1429
1.15k
  return success;
1430
1.15k
}
1431
1432
/**
1433
 * g_date_set_time_t:
1434
 * @date: a #GDate 
1435
 * @timet: time_t value to set
1436
 *
1437
 * Sets the value of a date to the date corresponding to a time 
1438
 * specified as a time_t. The time to date conversion is done using 
1439
 * the user's current timezone.
1440
 *
1441
 * To set the value of a date to the current day, you could write:
1442
 * |[<!-- language="C" -->
1443
 *  time_t now = time (NULL);
1444
 *  if (now == (time_t) -1)
1445
 *    // handle the error
1446
 *  g_date_set_time_t (date, now);
1447
 * ]|
1448
 *
1449
 * Since: 2.10
1450
 */
1451
void         
1452
g_date_set_time_t (GDate *date,
1453
       time_t timet)
1454
0
{
1455
0
  struct tm tm;
1456
0
  gboolean success;
1457
1458
0
  g_return_if_fail (date != NULL);
1459
1460
0
  success = _g_localtime (timet, &tm);
1461
0
  if (!success)
1462
0
    {
1463
      /* Still set a default date, 2000-01-01.
1464
       *
1465
       * We may assert out below. */
1466
0
      tm.tm_mon = 0;
1467
0
      tm.tm_mday = 1;
1468
0
      tm.tm_year = 100;
1469
0
    }
1470
1471
0
  date->julian = FALSE;
1472
  
1473
0
  date->month = tm.tm_mon + 1;
1474
0
  date->day   = tm.tm_mday;
1475
0
  date->year  = tm.tm_year + 1900;
1476
  
1477
0
  g_return_if_fail (g_date_valid_dmy (date->day, date->month, date->year));
1478
  
1479
0
  date->dmy    = TRUE;
1480
1481
0
#ifndef G_DISABLE_CHECKS
1482
0
  if (!success)
1483
0
    g_return_if_fail_warning (G_LOG_DOMAIN, "g_date_set_time", "localtime() == NULL");
1484
0
#endif
1485
0
}
1486
1487
1488
/**
1489
 * g_date_set_time:
1490
 * @date: a #GDate.
1491
 * @time_: #GTime value to set.
1492
 *
1493
 * Sets the value of a date from a #GTime value.
1494
 * The time to date conversion is done using the user's current timezone.
1495
 *
1496
 * Deprecated: 2.10: Use g_date_set_time_t() instead.
1497
 */
1498
G_GNUC_BEGIN_IGNORE_DEPRECATIONS
1499
void
1500
g_date_set_time (GDate *date,
1501
     GTime  time_)
1502
0
{
1503
0
  g_date_set_time_t (date, (time_t) time_);
1504
0
}
1505
G_GNUC_END_IGNORE_DEPRECATIONS
1506
1507
/**
1508
 * g_date_set_time_val:
1509
 * @date: a #GDate 
1510
 * @timeval: #GTimeVal value to set
1511
 *
1512
 * Sets the value of a date from a #GTimeVal value.  Note that the
1513
 * @tv_usec member is ignored, because #GDate can't make use of the
1514
 * additional precision.
1515
 *
1516
 * The time to date conversion is done using the user's current timezone.
1517
 *
1518
 * Since: 2.10
1519
 * Deprecated: 2.62: #GTimeVal is not year-2038-safe. Use g_date_set_time_t()
1520
 *    instead.
1521
 */
1522
G_GNUC_BEGIN_IGNORE_DEPRECATIONS
1523
void
1524
g_date_set_time_val (GDate    *date,
1525
         GTimeVal *timeval)
1526
0
{
1527
0
  g_date_set_time_t (date, (time_t) timeval->tv_sec);
1528
0
}
1529
G_GNUC_END_IGNORE_DEPRECATIONS
1530
1531
/**
1532
 * g_date_set_month:
1533
 * @date: a #GDate
1534
 * @month: month to set
1535
 *
1536
 * Sets the month of the year for a #GDate.  If the resulting
1537
 * day-month-year triplet is invalid, the date will be invalid.
1538
 */
1539
void         
1540
g_date_set_month (GDate     *d, 
1541
                  GDateMonth m)
1542
0
{
1543
0
  g_return_if_fail (d != NULL);
1544
0
  g_return_if_fail (g_date_valid_month (m));
1545
1546
0
  if (d->julian && !d->dmy) g_date_update_dmy(d);
1547
0
  d->julian = FALSE;
1548
  
1549
0
  d->month = m;
1550
  
1551
0
  if (g_date_valid_dmy (d->day, d->month, d->year))
1552
0
    d->dmy = TRUE;
1553
0
  else 
1554
0
    d->dmy = FALSE;
1555
0
}
1556
1557
/**
1558
 * g_date_set_day:
1559
 * @date: a #GDate
1560
 * @day: day to set
1561
 *
1562
 * Sets the day of the month for a #GDate. If the resulting
1563
 * day-month-year triplet is invalid, the date will be invalid.
1564
 */
1565
void         
1566
g_date_set_day (GDate    *d, 
1567
                GDateDay  day)
1568
0
{
1569
0
  g_return_if_fail (d != NULL);
1570
0
  g_return_if_fail (g_date_valid_day (day));
1571
  
1572
0
  if (d->julian && !d->dmy) g_date_update_dmy(d);
1573
0
  d->julian = FALSE;
1574
  
1575
0
  d->day = day;
1576
  
1577
0
  if (g_date_valid_dmy (d->day, d->month, d->year))
1578
0
    d->dmy = TRUE;
1579
0
  else 
1580
0
    d->dmy = FALSE;
1581
0
}
1582
1583
/**
1584
 * g_date_set_year:
1585
 * @date: a #GDate
1586
 * @year: year to set
1587
 *
1588
 * Sets the year for a #GDate. If the resulting day-month-year
1589
 * triplet is invalid, the date will be invalid.
1590
 */
1591
void         
1592
g_date_set_year (GDate     *d, 
1593
                 GDateYear  y)
1594
0
{
1595
0
  g_return_if_fail (d != NULL);
1596
0
  g_return_if_fail (g_date_valid_year (y));
1597
  
1598
0
  if (d->julian && !d->dmy) g_date_update_dmy(d);
1599
0
  d->julian = FALSE;
1600
  
1601
0
  d->year = y;
1602
  
1603
0
  if (g_date_valid_dmy (d->day, d->month, d->year))
1604
0
    d->dmy = TRUE;
1605
0
  else 
1606
0
    d->dmy = FALSE;
1607
0
}
1608
1609
/**
1610
 * g_date_set_dmy:
1611
 * @date: a #GDate
1612
 * @day: day
1613
 * @month: month
1614
 * @y: year
1615
 *
1616
 * Sets the value of a #GDate from a day, month, and year.
1617
 * The day-month-year triplet must be valid; if you aren't
1618
 * sure it is, call g_date_valid_dmy() to check before you
1619
 * set it.
1620
 */
1621
void         
1622
g_date_set_dmy (GDate      *d, 
1623
                GDateDay    day, 
1624
                GDateMonth  m, 
1625
                GDateYear   y)
1626
0
{
1627
0
  g_return_if_fail (d != NULL);
1628
0
  g_return_if_fail (g_date_valid_dmy (day, m, y));
1629
  
1630
0
  d->julian = FALSE;
1631
  
1632
0
  d->month = m;
1633
0
  d->day   = day;
1634
0
  d->year  = y;
1635
  
1636
0
  d->dmy = TRUE;
1637
0
}
1638
1639
/**
1640
 * g_date_set_julian:
1641
 * @date: a #GDate
1642
 * @julian_date: Julian day number (days since January 1, Year 1)
1643
 *
1644
 * Sets the value of a #GDate from a Julian day number.
1645
 */
1646
void         
1647
g_date_set_julian (GDate   *d, 
1648
                   guint32  j)
1649
0
{
1650
0
  g_return_if_fail (d != NULL);
1651
0
  g_return_if_fail (g_date_valid_julian (j));
1652
  
1653
0
  d->julian_days = j;
1654
0
  d->julian = TRUE;
1655
0
  d->dmy = FALSE;
1656
0
}
1657
1658
/**
1659
 * g_date_is_first_of_month:
1660
 * @date: a #GDate to check
1661
 *
1662
 * Returns %TRUE if the date is on the first of a month.
1663
 * The date must be valid.
1664
 *
1665
 * Returns: %TRUE if the date is the first of the month
1666
 */
1667
gboolean     
1668
g_date_is_first_of_month (const GDate *d)
1669
0
{
1670
0
  g_return_val_if_fail (g_date_valid (d), FALSE);
1671
  
1672
0
  if (!d->dmy) 
1673
0
    g_date_update_dmy (d);
1674
1675
0
  g_return_val_if_fail (d->dmy, FALSE);  
1676
  
1677
0
  if (d->day == 1) return TRUE;
1678
0
  else return FALSE;
1679
0
}
1680
1681
/**
1682
 * g_date_is_last_of_month:
1683
 * @date: a #GDate to check
1684
 *
1685
 * Returns %TRUE if the date is the last day of the month.
1686
 * The date must be valid.
1687
 *
1688
 * Returns: %TRUE if the date is the last day of the month
1689
 */
1690
gboolean     
1691
g_date_is_last_of_month (const GDate *d)
1692
0
{
1693
0
  gint idx;
1694
  
1695
0
  g_return_val_if_fail (g_date_valid (d), FALSE);
1696
  
1697
0
  if (!d->dmy) 
1698
0
    g_date_update_dmy (d);
1699
1700
0
  g_return_val_if_fail (d->dmy, FALSE);  
1701
  
1702
0
  idx = g_date_is_leap_year (d->year) ? 1 : 0;
1703
  
1704
0
  if (d->day == days_in_months[idx][d->month]) return TRUE;
1705
0
  else return FALSE;
1706
0
}
1707
1708
/**
1709
 * g_date_add_days:
1710
 * @date: a #GDate to increment
1711
 * @n_days: number of days to move the date forward
1712
 *
1713
 * Increments a date some number of days.
1714
 * To move forward by weeks, add weeks*7 days.
1715
 * The date must be valid.
1716
 */
1717
void         
1718
g_date_add_days (GDate *d, 
1719
                 guint  ndays)
1720
0
{
1721
0
  g_return_if_fail (g_date_valid (d));
1722
  
1723
0
  if (!d->julian)
1724
0
    g_date_update_julian (d);
1725
1726
0
  g_return_if_fail (d->julian);
1727
0
  g_return_if_fail (ndays <= G_MAXUINT32 - d->julian_days);
1728
  
1729
0
  d->julian_days += ndays;
1730
0
  d->dmy = FALSE;
1731
0
}
1732
1733
/**
1734
 * g_date_subtract_days:
1735
 * @date: a #GDate to decrement
1736
 * @n_days: number of days to move
1737
 *
1738
 * Moves a date some number of days into the past.
1739
 * To move by weeks, just move by weeks*7 days.
1740
 * The date must be valid.
1741
 */
1742
void         
1743
g_date_subtract_days (GDate *d, 
1744
                      guint  ndays)
1745
0
{
1746
0
  g_return_if_fail (g_date_valid (d));
1747
  
1748
0
  if (!d->julian)
1749
0
    g_date_update_julian (d);
1750
1751
0
  g_return_if_fail (d->julian);
1752
0
  g_return_if_fail (d->julian_days > ndays);
1753
  
1754
0
  d->julian_days -= ndays;
1755
0
  d->dmy = FALSE;
1756
0
}
1757
1758
/**
1759
 * g_date_add_months:
1760
 * @date: a #GDate to increment
1761
 * @n_months: number of months to move forward
1762
 *
1763
 * Increments a date by some number of months.
1764
 * If the day of the month is greater than 28,
1765
 * this routine may change the day of the month
1766
 * (because the destination month may not have
1767
 * the current day in it). The date must be valid.
1768
 */
1769
void         
1770
g_date_add_months (GDate *d, 
1771
                   guint  nmonths)
1772
0
{
1773
0
  guint years, months;
1774
0
  gint idx;
1775
  
1776
0
  g_return_if_fail (g_date_valid (d));
1777
  
1778
0
  if (!d->dmy) 
1779
0
    g_date_update_dmy (d);
1780
1781
0
  g_return_if_fail (d->dmy != 0);
1782
0
  g_return_if_fail (nmonths <= G_MAXUINT - (d->month - 1));
1783
1784
0
  nmonths += d->month - 1;
1785
  
1786
0
  years  = nmonths/12;
1787
0
  months = nmonths%12;
1788
1789
0
  g_return_if_fail (years <= (guint) (G_MAXUINT16 - d->year));
1790
1791
0
  d->month = months + 1;
1792
0
  d->year  += years;
1793
  
1794
0
  idx = g_date_is_leap_year (d->year) ? 1 : 0;
1795
  
1796
0
  if (d->day > days_in_months[idx][d->month])
1797
0
    d->day = days_in_months[idx][d->month];
1798
  
1799
0
  d->julian = FALSE;
1800
  
1801
0
  g_return_if_fail (g_date_valid (d));
1802
0
}
1803
1804
/**
1805
 * g_date_subtract_months:
1806
 * @date: a #GDate to decrement
1807
 * @n_months: number of months to move
1808
 *
1809
 * Moves a date some number of months into the past.
1810
 * If the current day of the month doesn't exist in
1811
 * the destination month, the day of the month
1812
 * may change. The date must be valid.
1813
 */
1814
void         
1815
g_date_subtract_months (GDate *d, 
1816
                        guint  nmonths)
1817
0
{
1818
0
  guint years, months;
1819
0
  gint idx;
1820
  
1821
0
  g_return_if_fail (g_date_valid (d));
1822
  
1823
0
  if (!d->dmy) 
1824
0
    g_date_update_dmy (d);
1825
1826
0
  g_return_if_fail (d->dmy != 0);
1827
  
1828
0
  years  = nmonths/12;
1829
0
  months = nmonths%12;
1830
  
1831
0
  g_return_if_fail (d->year > years);
1832
  
1833
0
  d->year  -= years;
1834
  
1835
0
  if (d->month > months) d->month -= months;
1836
0
  else 
1837
0
    {
1838
0
      months -= d->month;
1839
0
      d->month = 12 - months;
1840
0
      d->year -= 1;
1841
0
    }
1842
  
1843
0
  idx = g_date_is_leap_year (d->year) ? 1 : 0;
1844
  
1845
0
  if (d->day > days_in_months[idx][d->month])
1846
0
    d->day = days_in_months[idx][d->month];
1847
  
1848
0
  d->julian = FALSE;
1849
  
1850
0
  g_return_if_fail (g_date_valid (d));
1851
0
}
1852
1853
/**
1854
 * g_date_add_years:
1855
 * @date: a #GDate to increment
1856
 * @n_years: number of years to move forward
1857
 *
1858
 * Increments a date by some number of years.
1859
 * If the date is February 29, and the destination
1860
 * year is not a leap year, the date will be changed
1861
 * to February 28. The date must be valid.
1862
 */
1863
void         
1864
g_date_add_years (GDate *d, 
1865
                  guint  nyears)
1866
0
{
1867
0
  g_return_if_fail (g_date_valid (d));
1868
  
1869
0
  if (!d->dmy) 
1870
0
    g_date_update_dmy (d);
1871
1872
0
  g_return_if_fail (d->dmy != 0);
1873
0
  g_return_if_fail (nyears <= (guint) (G_MAXUINT16 - d->year));
1874
1875
0
  d->year += nyears;
1876
  
1877
0
  if (d->month == 2 && d->day == 29)
1878
0
    {
1879
0
      if (!g_date_is_leap_year (d->year))
1880
0
        d->day = 28;
1881
0
    }
1882
  
1883
0
  d->julian = FALSE;
1884
0
}
1885
1886
/**
1887
 * g_date_subtract_years:
1888
 * @date: a #GDate to decrement
1889
 * @n_years: number of years to move
1890
 *
1891
 * Moves a date some number of years into the past.
1892
 * If the current day doesn't exist in the destination
1893
 * year (i.e. it's February 29 and you move to a non-leap-year)
1894
 * then the day is changed to February 29. The date
1895
 * must be valid.
1896
 */
1897
void         
1898
g_date_subtract_years (GDate *d, 
1899
                       guint  nyears)
1900
0
{
1901
0
  g_return_if_fail (g_date_valid (d));
1902
  
1903
0
  if (!d->dmy) 
1904
0
    g_date_update_dmy (d);
1905
1906
0
  g_return_if_fail (d->dmy != 0);
1907
0
  g_return_if_fail (d->year > nyears);
1908
  
1909
0
  d->year -= nyears;
1910
  
1911
0
  if (d->month == 2 && d->day == 29)
1912
0
    {
1913
0
      if (!g_date_is_leap_year (d->year))
1914
0
        d->day = 28;
1915
0
    }
1916
  
1917
0
  d->julian = FALSE;
1918
0
}
1919
1920
/**
1921
 * g_date_is_leap_year:
1922
 * @year: year to check
1923
 *
1924
 * Returns %TRUE if the year is a leap year.
1925
 *
1926
 * For the purposes of this function, leap year is every year
1927
 * divisible by 4 unless that year is divisible by 100. If it
1928
 * is divisible by 100 it would be a leap year only if that year
1929
 * is also divisible by 400.
1930
 *
1931
 * Returns: %TRUE if the year is a leap year
1932
 */
1933
gboolean     
1934
g_date_is_leap_year (GDateYear year)
1935
0
{
1936
0
  g_return_val_if_fail (g_date_valid_year (year), FALSE);
1937
  
1938
0
  return ( (((year % 4) == 0) && ((year % 100) != 0)) ||
1939
0
           (year % 400) == 0 );
1940
0
}
1941
1942
/**
1943
 * g_date_get_days_in_month:
1944
 * @month: month
1945
 * @year: year
1946
 *
1947
 * Returns the number of days in a month, taking leap
1948
 * years into account.
1949
 *
1950
 * Returns: number of days in @month during the @year
1951
 */
1952
guint8         
1953
g_date_get_days_in_month (GDateMonth month, 
1954
                          GDateYear  year)
1955
0
{
1956
0
  gint idx;
1957
  
1958
0
  g_return_val_if_fail (g_date_valid_year (year), 0);
1959
0
  g_return_val_if_fail (g_date_valid_month (month), 0);
1960
  
1961
0
  idx = g_date_is_leap_year (year) ? 1 : 0;
1962
  
1963
0
  return days_in_months[idx][month];
1964
0
}
1965
1966
/**
1967
 * g_date_get_monday_weeks_in_year:
1968
 * @year: a year
1969
 *
1970
 * Returns the number of weeks in the year, where weeks
1971
 * are taken to start on Monday. Will be 52 or 53. The
1972
 * date must be valid. (Years always have 52 7-day periods,
1973
 * plus 1 or 2 extra days depending on whether it's a leap
1974
 * year. This function is basically telling you how many
1975
 * Mondays are in the year, i.e. there are 53 Mondays if
1976
 * one of the extra days happens to be a Monday.)
1977
 *
1978
 * Returns: number of Mondays in the year
1979
 */
1980
guint8       
1981
g_date_get_monday_weeks_in_year (GDateYear year)
1982
0
{
1983
0
  return g_date_get_weeks_in_year (year, G_DATE_MONDAY);
1984
0
}
1985
1986
/**
1987
 * g_date_get_sunday_weeks_in_year:
1988
 * @year: year to count weeks in
1989
 *
1990
 * Returns the number of weeks in the year, where weeks
1991
 * are taken to start on Sunday. Will be 52 or 53. The
1992
 * date must be valid. (Years always have 52 7-day periods,
1993
 * plus 1 or 2 extra days depending on whether it's a leap
1994
 * year. This function is basically telling you how many
1995
 * Sundays are in the year, i.e. there are 53 Sundays if
1996
 * one of the extra days happens to be a Sunday.)
1997
 *
1998
 * Returns: the number of weeks in @year
1999
 */
2000
guint8       
2001
g_date_get_sunday_weeks_in_year (GDateYear year)
2002
0
{
2003
0
  return g_date_get_weeks_in_year (year, G_DATE_SUNDAY);
2004
0
}
2005
2006
/**
2007
 * g_date_get_weeks_in_year:
2008
 * @year: year to count weeks in
2009
 * @first_day_of_week: the day which is considered the first day of the week
2010
 *    (for example, this would be [enum@GLib.DateWeekday.SUNDAY] in US locales,
2011
 *    [enum@GLib.DateWeekday.MONDAY] in British locales, and
2012
 *    [enum@GLib.DateWeekday.SATURDAY] in Egyptian locales
2013
 *
2014
 * Calculates the number of weeks in the year.
2015
 *
2016
 * The result depends on which day is considered the first day of the week,
2017
 * which varies by locale. `first_day_of_week` must be valid.
2018
 *
2019
 * The result will be either 52 or 53. Years always have 52 seven-day periods,
2020
 * plus one or two extra days depending on whether it’s a leap year. This
2021
 * function effectively calculates how many @first_day_of_week days there are in
2022
 * the year.
2023
 *
2024
 * Returns: the number of weeks in @year
2025
 * Since: 2.86
2026
 */
2027
guint8
2028
g_date_get_weeks_in_year (GDateYear    year,
2029
                          GDateWeekday first_day_of_week)
2030
0
{
2031
0
  GDate d;
2032
2033
0
  g_return_val_if_fail (g_date_valid_year (year), 0);
2034
0
  g_return_val_if_fail (first_day_of_week != G_DATE_BAD_WEEKDAY, 0);
2035
2036
0
  g_date_clear (&d, 1);
2037
0
  g_date_set_dmy (&d, 1, 1, year);
2038
0
  if (g_date_get_weekday (&d) == first_day_of_week) return 53;
2039
0
  g_date_set_dmy (&d, 31, 12, year);
2040
0
  if (g_date_get_weekday (&d) == first_day_of_week) return 53;
2041
0
  if (g_date_is_leap_year (year))
2042
0
    {
2043
0
      g_date_set_dmy (&d, 2, 1, year);
2044
0
      if (g_date_get_weekday (&d) == first_day_of_week) return 53;
2045
0
      g_date_set_dmy (&d, 30, 12, year);
2046
0
      if (g_date_get_weekday (&d) == first_day_of_week) return 53;
2047
0
    }
2048
0
  return 52;
2049
0
}
2050
2051
/**
2052
 * g_date_compare:
2053
 * @lhs: first date to compare
2054
 * @rhs: second date to compare
2055
 *
2056
 * qsort()-style comparison function for dates.
2057
 * Both dates must be valid.
2058
 *
2059
 * Returns: 0 for equal, less than zero if @lhs is less than @rhs,
2060
 *     greater than zero if @lhs is greater than @rhs
2061
 */
2062
gint         
2063
g_date_compare (const GDate *lhs, 
2064
                const GDate *rhs)
2065
0
{
2066
0
  g_return_val_if_fail (lhs != NULL, 0);
2067
0
  g_return_val_if_fail (rhs != NULL, 0);
2068
0
  g_return_val_if_fail (g_date_valid (lhs), 0);
2069
0
  g_return_val_if_fail (g_date_valid (rhs), 0);
2070
  
2071
  /* Remember the self-comparison case! I think it works right now. */
2072
  
2073
0
  while (TRUE)
2074
0
    {
2075
0
      if (lhs->julian && rhs->julian) 
2076
0
        {
2077
0
          if (lhs->julian_days < rhs->julian_days) return -1;
2078
0
          else if (lhs->julian_days > rhs->julian_days) return 1;
2079
0
          else                                          return 0;
2080
0
        }
2081
0
      else if (lhs->dmy && rhs->dmy) 
2082
0
        {
2083
0
          if (lhs->year < rhs->year)               return -1;
2084
0
          else if (lhs->year > rhs->year)               return 1;
2085
0
          else 
2086
0
            {
2087
0
              if (lhs->month < rhs->month)         return -1;
2088
0
              else if (lhs->month > rhs->month)         return 1;
2089
0
              else 
2090
0
                {
2091
0
                  if (lhs->day < rhs->day)              return -1;
2092
0
                  else if (lhs->day > rhs->day)              return 1;
2093
0
                  else                                       return 0;
2094
0
                }
2095
              
2096
0
            }
2097
          
2098
0
        }
2099
0
      else
2100
0
        {
2101
0
          if (!lhs->julian) g_date_update_julian (lhs);
2102
0
          if (!rhs->julian) g_date_update_julian (rhs);
2103
0
          g_return_val_if_fail (lhs->julian, 0);
2104
0
          g_return_val_if_fail (rhs->julian, 0);
2105
0
        }
2106
      
2107
0
    }
2108
0
  return 0; /* warnings */
2109
0
}
2110
2111
/**
2112
 * g_date_to_struct_tm:
2113
 * @date: a #GDate to set the struct tm from
2114
 * @tm: (not nullable): struct tm to fill
2115
 *
2116
 * Fills in the date-related bits of a struct tm using the @date value.
2117
 * Initializes the non-date parts with something safe but meaningless.
2118
 */
2119
void        
2120
g_date_to_struct_tm (const GDate *d, 
2121
                     struct tm   *tm)
2122
0
{
2123
0
  GDateWeekday day;
2124
     
2125
0
  g_return_if_fail (g_date_valid (d));
2126
0
  g_return_if_fail (tm != NULL);
2127
  
2128
0
  if (!d->dmy) 
2129
0
    g_date_update_dmy (d);
2130
2131
0
  g_return_if_fail (d->dmy != 0);
2132
  
2133
  /* zero all the irrelevant fields to be sure they're valid */
2134
  
2135
  /* On Linux and maybe other systems, there are weird non-POSIX
2136
   * fields on the end of struct tm that choke strftime if they
2137
   * contain garbage.  So we need to 0 the entire struct, not just the
2138
   * fields we know to exist. 
2139
   */
2140
  
2141
0
  memset (tm, 0x0, sizeof (struct tm));
2142
  
2143
0
  tm->tm_mday = d->day;
2144
0
  tm->tm_mon  = d->month - 1; /* 0-11 goes in tm */
2145
0
  tm->tm_year = ((int)d->year) - 1900; /* X/Open says tm_year can be negative */
2146
  
2147
0
  day = g_date_get_weekday (d);
2148
0
  if (day == 7) day = 0; /* struct tm wants days since Sunday, so Sunday is 0 */
2149
  
2150
0
  tm->tm_wday = (int)day;
2151
  
2152
0
  tm->tm_yday = g_date_get_day_of_year (d) - 1; /* 0 to 365 */
2153
0
  tm->tm_isdst = -1; /* -1 means "information not available" */
2154
0
}
2155
2156
/**
2157
 * g_date_clamp:
2158
 * @date: a #GDate to clamp
2159
 * @min_date: minimum accepted value for @date
2160
 * @max_date: maximum accepted value for @date
2161
 *
2162
 * If @date is prior to @min_date, sets @date equal to @min_date.
2163
 * If @date falls after @max_date, sets @date equal to @max_date.
2164
 * Otherwise, @date is unchanged.
2165
 * Either of @min_date and @max_date may be %NULL.
2166
 * All non-%NULL dates must be valid.
2167
 */
2168
void
2169
g_date_clamp (GDate       *date,
2170
        const GDate *min_date,
2171
        const GDate *max_date)
2172
0
{
2173
0
  g_return_if_fail (g_date_valid (date));
2174
2175
0
  if (min_date != NULL)
2176
0
    g_return_if_fail (g_date_valid (min_date));
2177
2178
0
  if (max_date != NULL)
2179
0
    g_return_if_fail (g_date_valid (max_date));
2180
2181
0
  if (min_date != NULL && max_date != NULL)
2182
0
    g_return_if_fail (g_date_compare (min_date, max_date) <= 0);
2183
2184
0
  if (min_date && g_date_compare (date, min_date) < 0)
2185
0
    *date = *min_date;
2186
2187
0
  if (max_date && g_date_compare (max_date, date) < 0)
2188
0
    *date = *max_date;
2189
0
}
2190
2191
/**
2192
 * g_date_order:
2193
 * @date1: the first date
2194
 * @date2: the second date
2195
 *
2196
 * Checks if @date1 is less than or equal to @date2,
2197
 * and swap the values if this is not the case.
2198
 */
2199
void
2200
g_date_order (GDate *date1,
2201
              GDate *date2)
2202
0
{
2203
0
  g_return_if_fail (g_date_valid (date1));
2204
0
  g_return_if_fail (g_date_valid (date2));
2205
2206
0
  if (g_date_compare (date1, date2) > 0)
2207
0
    {
2208
0
      GDate tmp = *date1;
2209
0
      *date1 = *date2;
2210
0
      *date2 = tmp;
2211
0
    }
2212
0
}
2213
2214
#ifdef G_OS_WIN32
2215
static gboolean
2216
append_month_name (GArray     *result,
2217
       LCID        lcid,
2218
       SYSTEMTIME *systemtime,
2219
       gboolean    abbreviated,
2220
       gboolean    alternative)
2221
{
2222
  int n;
2223
  WORD base;
2224
  LPCWSTR lpFormat;
2225
2226
  if (alternative)
2227
    {
2228
      base = abbreviated ? LOCALE_SABBREVMONTHNAME1 : LOCALE_SMONTHNAME1;
2229
      n = GetLocaleInfoW (lcid, base + systemtime->wMonth - 1, NULL, 0);
2230
      if (n == 0)
2231
        return FALSE;
2232
2233
      g_array_set_size (result, result->len + n);
2234
      if (GetLocaleInfoW (lcid, base + systemtime->wMonth - 1,
2235
                          ((wchar_t *) result->data) + result->len - n, n) != n)
2236
        return FALSE;
2237
2238
      g_array_set_size (result, result->len - 1);
2239
    }
2240
  else
2241
    {
2242
      /* According to MSDN, this is the correct method to obtain
2243
       * the form of the month name used when formatting a full
2244
       * date; it must be a genitive case in some languages.
2245
       *
2246
       * (n == 0) indicates an error, whereas (n < 2) is something we’d never
2247
       * expect from the given format string, and would break the subsequent code.
2248
       */
2249
      lpFormat = abbreviated ? L"ddMMM" : L"ddMMMM";
2250
      n = GetDateFormatW (lcid, 0, systemtime, lpFormat, NULL, 0);
2251
      if (n < 2)
2252
        return FALSE;
2253
2254
      g_array_set_size (result, result->len + n);
2255
      if (GetDateFormatW (lcid, 0, systemtime, lpFormat,
2256
                          ((wchar_t *) result->data) + result->len - n, n) != n)
2257
        return FALSE;
2258
2259
      /* We have obtained a day number as two digits and the month name.
2260
       * Now let's get rid of those two digits: overwrite them with the
2261
       * month name.
2262
       */
2263
      memmove (((wchar_t *) result->data) + result->len - n,
2264
         ((wchar_t *) result->data) + result->len - n + 2,
2265
         (n - 2) * sizeof (wchar_t));
2266
      g_array_set_size (result, result->len - 3);
2267
    }
2268
2269
  return TRUE;
2270
}
2271
2272
static gsize
2273
win32_strftime_helper (const GDate     *d,
2274
           const gchar     *format,
2275
           const struct tm *tm,
2276
           gchar           *s,
2277
           gsize          slen)
2278
{
2279
  SYSTEMTIME systemtime;
2280
  TIME_ZONE_INFORMATION tzinfo;
2281
  LCID lcid;
2282
  int n, k;
2283
  GArray *result;
2284
  const gchar *p;
2285
  gunichar c, modifier;
2286
  const wchar_t digits[] = L"0123456789";
2287
  gchar *convbuf;
2288
  glong convlen = 0;
2289
  gsize retval;
2290
  size_t format_len = strlen (format);
2291
2292
  systemtime.wYear = tm->tm_year + 1900;
2293
  systemtime.wMonth = tm->tm_mon + 1;
2294
  systemtime.wDayOfWeek = tm->tm_wday;
2295
  systemtime.wDay = tm->tm_mday;
2296
  systemtime.wHour = tm->tm_hour;
2297
  systemtime.wMinute = tm->tm_min;
2298
  systemtime.wSecond = tm->tm_sec;
2299
  systemtime.wMilliseconds = 0;
2300
  
2301
  lcid = GetThreadLocale ();
2302
  result = g_array_sized_new (FALSE, FALSE, sizeof (wchar_t),
2303
                              (format_len <= 64) ? (guint) format_len * 2 : 128);
2304
2305
  p = format;
2306
  while (*p)
2307
    {
2308
      c = g_utf8_get_char (p);
2309
      if (c == '%')
2310
  {
2311
    p = g_utf8_next_char (p);
2312
    if (!*p)
2313
      {
2314
        s[0] = '\0';
2315
        g_array_free (result, TRUE);
2316
2317
        return 0;
2318
      }
2319
2320
    modifier = '\0';
2321
    c = g_utf8_get_char (p);
2322
    if (c == 'E' || c == 'O')
2323
      {
2324
        /* "%OB", "%Ob", and "%Oh" are supported, ignore other modified
2325
         * conversion specifiers for now.
2326
         */
2327
        modifier = c;
2328
        p = g_utf8_next_char (p);
2329
        if (!*p)
2330
    {
2331
      s[0] = '\0';
2332
      g_array_free (result, TRUE);
2333
2334
      return 0;
2335
    }
2336
2337
        c = g_utf8_get_char (p);
2338
      }
2339
2340
    switch (c)
2341
      {
2342
      case 'a':
2343
        if (systemtime.wDayOfWeek == 0)
2344
    k = 6;
2345
        else
2346
    k = systemtime.wDayOfWeek - 1;
2347
        n = GetLocaleInfoW (lcid, LOCALE_SABBREVDAYNAME1+k, NULL, 0);
2348
        g_array_set_size (result, result->len + n);
2349
        GetLocaleInfoW (lcid, LOCALE_SABBREVDAYNAME1+k, ((wchar_t *) result->data) + result->len - n, n);
2350
        g_array_set_size (result, result->len - 1);
2351
        break;
2352
      case 'A':
2353
        if (systemtime.wDayOfWeek == 0)
2354
    k = 6;
2355
        else
2356
    k = systemtime.wDayOfWeek - 1;
2357
        n = GetLocaleInfoW (lcid, LOCALE_SDAYNAME1+k, NULL, 0);
2358
        g_array_set_size (result, result->len + n);
2359
        GetLocaleInfoW (lcid, LOCALE_SDAYNAME1+k, ((wchar_t *) result->data) + result->len - n, n);
2360
        g_array_set_size (result, result->len - 1);
2361
        break;
2362
      case 'b':
2363
      case 'h':
2364
              if (!append_month_name (result, lcid, &systemtime, TRUE, modifier == 'O'))
2365
                {
2366
                  /* Ignore the error; this placeholder will be replaced with nothing */
2367
                }
2368
        break;
2369
      case 'B':
2370
              if (!append_month_name (result, lcid, &systemtime, FALSE, modifier == 'O'))
2371
                {
2372
                  /* Ignore the error; this placeholder will be replaced with nothing */
2373
                }
2374
        break;
2375
      case 'c':
2376
        n = GetDateFormatW (lcid, 0, &systemtime, NULL, NULL, 0);
2377
        if (n > 0)
2378
    {
2379
      g_array_set_size (result, result->len + n);
2380
      GetDateFormatW (lcid, 0, &systemtime, NULL, ((wchar_t *) result->data) + result->len - n, n);
2381
      g_array_set_size (result, result->len - 1);
2382
    }
2383
        g_array_append_vals (result, L" ", 1);
2384
        n = GetTimeFormatW (lcid, 0, &systemtime, NULL, NULL, 0);
2385
        if (n > 0)
2386
    {
2387
      g_array_set_size (result, result->len + n);
2388
      GetTimeFormatW (lcid, 0, &systemtime, NULL, ((wchar_t *) result->data) + result->len - n, n);
2389
      g_array_set_size (result, result->len - 1);
2390
    }
2391
        break;
2392
      case 'C':
2393
        g_array_append_vals (result, digits + systemtime.wYear/1000, 1);
2394
        g_array_append_vals (result, digits + (systemtime.wYear/1000)%10, 1);
2395
        break;
2396
      case 'd':
2397
        g_array_append_vals (result, digits + systemtime.wDay/10, 1);
2398
        g_array_append_vals (result, digits + systemtime.wDay%10, 1);
2399
        break;
2400
      case 'D':
2401
        g_array_append_vals (result, digits + systemtime.wMonth/10, 1);
2402
        g_array_append_vals (result, digits + systemtime.wMonth%10, 1);
2403
        g_array_append_vals (result, L"/", 1);
2404
        g_array_append_vals (result, digits + systemtime.wDay/10, 1);
2405
        g_array_append_vals (result, digits + systemtime.wDay%10, 1);
2406
        g_array_append_vals (result, L"/", 1);
2407
        g_array_append_vals (result, digits + (systemtime.wYear/10)%10, 1);
2408
        g_array_append_vals (result, digits + systemtime.wYear%10, 1);
2409
        break;
2410
      case 'e':
2411
        if (systemtime.wDay >= 10)
2412
    g_array_append_vals (result, digits + systemtime.wDay/10, 1);
2413
        else
2414
    g_array_append_vals (result, L" ", 1);
2415
        g_array_append_vals (result, digits + systemtime.wDay%10, 1);
2416
        break;
2417
2418
        /* A GDate has no time fields, so for now we can
2419
         * hardcode all time conversions into zeros (or 12 for
2420
         * %I). The alternative code snippets in the #else
2421
         * branches are here ready to be taken into use when
2422
         * needed by a g_strftime() or g_date_and_time_format()
2423
         * or whatever.
2424
         */
2425
      case 'H':
2426
#if 1
2427
        g_array_append_vals (result, L"00", 2);
2428
#else
2429
        g_array_append_vals (result, digits + systemtime.wHour/10, 1);
2430
        g_array_append_vals (result, digits + systemtime.wHour%10, 1);
2431
#endif
2432
        break;
2433
      case 'I':
2434
#if 1
2435
        g_array_append_vals (result, L"12", 2);
2436
#else
2437
        if (systemtime.wHour == 0)
2438
    g_array_append_vals (result, L"12", 2);
2439
        else
2440
    {
2441
      g_array_append_vals (result, digits + (systemtime.wHour%12)/10, 1);
2442
      g_array_append_vals (result, digits + (systemtime.wHour%12)%10, 1);
2443
    }
2444
#endif
2445
        break;
2446
      case  'j':
2447
        g_array_append_vals (result, digits + (tm->tm_yday+1)/100, 1);
2448
        g_array_append_vals (result, digits + ((tm->tm_yday+1)/10)%10, 1);
2449
        g_array_append_vals (result, digits + (tm->tm_yday+1)%10, 1);
2450
        break;
2451
      case 'm':
2452
        g_array_append_vals (result, digits + systemtime.wMonth/10, 1);
2453
        g_array_append_vals (result, digits + systemtime.wMonth%10, 1);
2454
        break;
2455
      case 'M':
2456
#if 1
2457
        g_array_append_vals (result, L"00", 2);
2458
#else
2459
        g_array_append_vals (result, digits + systemtime.wMinute/10, 1);
2460
        g_array_append_vals (result, digits + systemtime.wMinute%10, 1);
2461
#endif
2462
        break;
2463
      case 'n':
2464
        g_array_append_vals (result, L"\n", 1);
2465
        break;
2466
      case 'p':
2467
        n = GetTimeFormatW (lcid, 0, &systemtime, L"tt", NULL, 0);
2468
        if (n > 0)
2469
    {
2470
      g_array_set_size (result, result->len + n);
2471
      GetTimeFormatW (lcid, 0, &systemtime, L"tt", ((wchar_t *) result->data) + result->len - n, n);
2472
      g_array_set_size (result, result->len - 1);
2473
    }
2474
        break;
2475
      case 'r':
2476
        /* This is a rather odd format. Hard to say what to do.
2477
         * Let's always use the POSIX %I:%M:%S %p
2478
         */
2479
#if 1
2480
        g_array_append_vals (result, L"12:00:00", 8);
2481
#else
2482
        if (systemtime.wHour == 0)
2483
    g_array_append_vals (result, L"12", 2);
2484
        else
2485
    {
2486
      g_array_append_vals (result, digits + (systemtime.wHour%12)/10, 1);
2487
      g_array_append_vals (result, digits + (systemtime.wHour%12)%10, 1);
2488
    }
2489
        g_array_append_vals (result, L":", 1);
2490
        g_array_append_vals (result, digits + systemtime.wMinute/10, 1);
2491
        g_array_append_vals (result, digits + systemtime.wMinute%10, 1);
2492
        g_array_append_vals (result, L":", 1);
2493
        g_array_append_vals (result, digits + systemtime.wSecond/10, 1);
2494
        g_array_append_vals (result, digits + systemtime.wSecond%10, 1);
2495
        g_array_append_vals (result, L" ", 1);
2496
#endif
2497
        n = GetTimeFormatW (lcid, 0, &systemtime, L"tt", NULL, 0);
2498
        if (n > 0)
2499
    {
2500
      g_array_set_size (result, result->len + n);
2501
      GetTimeFormatW (lcid, 0, &systemtime, L"tt", ((wchar_t *) result->data) + result->len - n, n);
2502
      g_array_set_size (result, result->len - 1);
2503
    }
2504
        break;
2505
      case 'R':
2506
#if 1
2507
        g_array_append_vals (result, L"00:00", 5);
2508
#else
2509
        g_array_append_vals (result, digits + systemtime.wHour/10, 1);
2510
        g_array_append_vals (result, digits + systemtime.wHour%10, 1);
2511
        g_array_append_vals (result, L":", 1);
2512
        g_array_append_vals (result, digits + systemtime.wMinute/10, 1);
2513
        g_array_append_vals (result, digits + systemtime.wMinute%10, 1);
2514
#endif
2515
        break;
2516
      case 'S':
2517
#if 1
2518
        g_array_append_vals (result, L"00", 2);
2519
#else
2520
        g_array_append_vals (result, digits + systemtime.wSecond/10, 1);
2521
        g_array_append_vals (result, digits + systemtime.wSecond%10, 1);
2522
#endif
2523
        break;
2524
      case 't':
2525
        g_array_append_vals (result, L"\t", 1);
2526
        break;
2527
      case 'T':
2528
#if 1
2529
        g_array_append_vals (result, L"00:00:00", 8);
2530
#else
2531
        g_array_append_vals (result, digits + systemtime.wHour/10, 1);
2532
        g_array_append_vals (result, digits + systemtime.wHour%10, 1);
2533
        g_array_append_vals (result, L":", 1);
2534
        g_array_append_vals (result, digits + systemtime.wMinute/10, 1);
2535
        g_array_append_vals (result, digits + systemtime.wMinute%10, 1);
2536
        g_array_append_vals (result, L":", 1);
2537
        g_array_append_vals (result, digits + systemtime.wSecond/10, 1);
2538
        g_array_append_vals (result, digits + systemtime.wSecond%10, 1);
2539
#endif
2540
        break;
2541
      case 'u':
2542
        if (systemtime.wDayOfWeek == 0)
2543
    g_array_append_vals (result, L"7", 1);
2544
        else
2545
    g_array_append_vals (result, digits + systemtime.wDayOfWeek, 1);
2546
        break;
2547
      case 'U':
2548
        n = g_date_get_sunday_week_of_year (d);
2549
        g_array_append_vals (result, digits + n/10, 1);
2550
        g_array_append_vals (result, digits + n%10, 1);
2551
        break;
2552
      case 'V':
2553
        n = g_date_get_iso8601_week_of_year (d);
2554
        g_array_append_vals (result, digits + n/10, 1);
2555
        g_array_append_vals (result, digits + n%10, 1);
2556
        break;
2557
      case 'w':
2558
        g_array_append_vals (result, digits + systemtime.wDayOfWeek, 1);
2559
        break;
2560
      case 'W':
2561
        n = g_date_get_monday_week_of_year (d);
2562
        g_array_append_vals (result, digits + n/10, 1);
2563
        g_array_append_vals (result, digits + n%10, 1);
2564
        break;
2565
      case 'x':
2566
        n = GetDateFormatW (lcid, 0, &systemtime, NULL, NULL, 0);
2567
        if (n > 0)
2568
    {
2569
      g_array_set_size (result, result->len + n);
2570
      GetDateFormatW (lcid, 0, &systemtime, NULL, ((wchar_t *) result->data) + result->len - n, n);
2571
      g_array_set_size (result, result->len - 1);
2572
    }
2573
        break;
2574
      case 'X':
2575
        n = GetTimeFormatW (lcid, 0, &systemtime, NULL, NULL, 0);
2576
        if (n > 0)
2577
    {
2578
      g_array_set_size (result, result->len + n);
2579
      GetTimeFormatW (lcid, 0, &systemtime, NULL, ((wchar_t *) result->data) + result->len - n, n);
2580
      g_array_set_size (result, result->len - 1);
2581
    }
2582
        break;
2583
      case 'y':
2584
        g_array_append_vals (result, digits + (systemtime.wYear/10)%10, 1);
2585
        g_array_append_vals (result, digits + systemtime.wYear%10, 1);
2586
        break;
2587
      case 'Y':
2588
        g_array_append_vals (result, digits + systemtime.wYear/1000, 1);
2589
        g_array_append_vals (result, digits + (systemtime.wYear/100)%10, 1);
2590
        g_array_append_vals (result, digits + (systemtime.wYear/10)%10, 1);
2591
        g_array_append_vals (result, digits + systemtime.wYear%10, 1);
2592
        break;
2593
      case 'Z':
2594
        n = GetTimeZoneInformation (&tzinfo);
2595
        if (n == TIME_ZONE_ID_UNKNOWN || n == TIME_ZONE_ID_STANDARD)
2596
    g_array_append_vals (result, tzinfo.StandardName, wcslen (tzinfo.StandardName));
2597
        else if (n == TIME_ZONE_ID_DAYLIGHT)
2598
    g_array_append_vals (result, tzinfo.DaylightName, wcslen (tzinfo.DaylightName));
2599
        break;
2600
      case '%':
2601
        g_array_append_vals (result, L"%", 1);
2602
        break;
2603
      }      
2604
  } 
2605
      else if (c <= 0xFFFF)
2606
  {
2607
    wchar_t wc = c;
2608
    g_array_append_vals (result, &wc, 1);
2609
  }
2610
      else
2611
  {
2612
    glong nwc;
2613
    wchar_t *ws;
2614
2615
    ws = g_ucs4_to_utf16 (&c, 1, NULL, &nwc, NULL);
2616
    g_array_append_vals (result, ws, nwc);
2617
    g_free (ws);
2618
  }
2619
      p = g_utf8_next_char (p);
2620
    }
2621
  
2622
  convbuf = g_utf16_to_utf8 ((wchar_t *) result->data, result->len, NULL, &convlen, NULL);
2623
  g_array_free (result, TRUE);
2624
2625
  if (!convbuf)
2626
    {
2627
      s[0] = '\0';
2628
      return 0;
2629
    }
2630
  
2631
  g_assert (convlen >= 0);
2632
  if ((gsize) convlen >= slen)
2633
    {
2634
      /* Ensure only whole characters are copied into the buffer. */
2635
      gchar *end = g_utf8_find_prev_char (convbuf, convbuf + slen);
2636
      g_assert (end != NULL);
2637
      convlen = end - convbuf;
2638
2639
      /* Return 0 because the buffer isn't large enough. */
2640
      retval = 0;
2641
    }
2642
  else
2643
    retval = convlen;
2644
2645
  memcpy (s, convbuf, convlen);
2646
  s[convlen] = '\0';
2647
  g_free (convbuf);
2648
2649
  return retval;
2650
}
2651
2652
#endif
2653
2654
/**
2655
 * g_date_strftime:
2656
 * @s: destination buffer
2657
 * @slen: buffer size
2658
 * @format: format string
2659
 * @date: valid #GDate
2660
 *
2661
 * Generates a printed representation of the date, in a
2662
 * [locale](running.html#locale)-specific way.
2663
 * Works just like the platform's C library strftime() function,
2664
 * but only accepts date-related formats; time-related formats
2665
 * give undefined results. Date must be valid. Unlike strftime()
2666
 * (which uses the locale encoding), works on a UTF-8 format
2667
 * string and stores a UTF-8 result.
2668
 *
2669
 * This function does not provide any conversion specifiers in
2670
 * addition to those implemented by the platform's C library.
2671
 * For example, don't expect that using g_date_strftime() would
2672
 * make the \%F provided by the C99 strftime() work on Windows
2673
 * where the C library only complies to C89.
2674
 *
2675
 * Returns: number of characters written to the buffer, or `0` if the buffer was too small
2676
 */
2677
#pragma GCC diagnostic push
2678
#pragma GCC diagnostic ignored "-Wformat-nonliteral"
2679
2680
gsize     
2681
g_date_strftime (gchar       *s, 
2682
                 gsize        slen, 
2683
                 const gchar *format, 
2684
                 const GDate *d)
2685
0
{
2686
0
  struct tm tm;
2687
0
#ifndef G_OS_WIN32
2688
0
  gsize locale_format_len = 0;
2689
0
  gchar *locale_format;
2690
0
  gsize tmplen;
2691
0
  gchar *tmpbuf;
2692
0
  gsize tmpbufsize;
2693
0
  gsize convlen = 0;
2694
0
  gchar *convbuf;
2695
0
  GError *error = NULL;
2696
0
  gsize retval;
2697
0
#endif
2698
2699
0
  g_return_val_if_fail (g_date_valid (d), 0);
2700
0
  g_return_val_if_fail (slen > 0, 0); 
2701
0
  g_return_val_if_fail (format != NULL, 0);
2702
0
  g_return_val_if_fail (s != NULL, 0);
2703
2704
0
  g_date_to_struct_tm (d, &tm);
2705
2706
#ifdef G_OS_WIN32
2707
  if (!g_utf8_validate (format, -1, NULL))
2708
    {
2709
      s[0] = '\0';
2710
      return 0;
2711
    }
2712
  return win32_strftime_helper (d, format, &tm, s, slen);
2713
#else
2714
2715
0
  locale_format = g_locale_from_utf8 (format, -1, NULL, &locale_format_len, &error);
2716
2717
0
  if (error)
2718
0
    {
2719
0
      g_warning (G_STRLOC "Error converting format to locale encoding: %s", error->message);
2720
0
      g_error_free (error);
2721
2722
0
      s[0] = '\0';
2723
0
      return 0;
2724
0
    }
2725
2726
0
  tmpbufsize = MAX (128, locale_format_len * 2);
2727
0
  while (TRUE)
2728
0
    {
2729
0
      tmpbuf = g_malloc (tmpbufsize);
2730
2731
      /* Set the first byte to something other than '\0', to be able to
2732
       * recognize whether strftime actually failed or just returned "".
2733
       */
2734
0
      tmpbuf[0] = '\1';
2735
0
      tmplen = strftime (tmpbuf, tmpbufsize, locale_format, &tm);
2736
2737
0
      if (tmplen == 0 && tmpbuf[0] != '\0')
2738
0
        {
2739
0
          g_free (tmpbuf);
2740
0
          tmpbufsize *= 2;
2741
2742
0
          if (tmpbufsize > 65536)
2743
0
            {
2744
0
              g_warning (G_STRLOC "Maximum buffer size for g_date_strftime exceeded: giving up");
2745
0
              g_free (locale_format);
2746
2747
0
              s[0] = '\0';
2748
0
              return 0;
2749
0
            }
2750
0
        }
2751
0
      else
2752
0
        break;
2753
0
    }
2754
0
  g_free (locale_format);
2755
2756
0
  convbuf = g_locale_to_utf8 (tmpbuf, tmplen, NULL, &convlen, &error);
2757
0
  g_free (tmpbuf);
2758
2759
0
  if (error)
2760
0
    {
2761
0
      g_warning (G_STRLOC "Error converting results of strftime to UTF-8: %s", error->message);
2762
0
      g_error_free (error);
2763
2764
0
      g_assert (convbuf == NULL);
2765
2766
0
      s[0] = '\0';
2767
0
      return 0;
2768
0
    }
2769
2770
0
  if (slen <= convlen)
2771
0
    {
2772
      /* Ensure only whole characters are copied into the buffer.
2773
       */
2774
0
      gchar *end = g_utf8_find_prev_char (convbuf, convbuf + slen);
2775
0
      g_assert (end != NULL);
2776
0
      convlen = end - convbuf;
2777
2778
      /* Return 0 because the buffer isn't large enough.
2779
       */
2780
0
      retval = 0;
2781
0
    }
2782
0
  else
2783
0
    retval = convlen;
2784
2785
0
  memcpy (s, convbuf, convlen);
2786
0
  s[convlen] = '\0';
2787
0
  g_free (convbuf);
2788
2789
0
  return retval;
2790
0
#endif
2791
0
}
2792
2793
#pragma GCC diagnostic pop