/proc/self/cwd/pw_protobuf/encoder.cc
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright 2021 The Pigweed Authors |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0 (the "License"); you may not |
4 | | // use this file except in compliance with the License. You may obtain a copy of |
5 | | // the License at |
6 | | // |
7 | | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | | // |
9 | | // Unless required by applicable law or agreed to in writing, software |
10 | | // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
11 | | // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the |
12 | | // License for the specific language governing permissions and limitations under |
13 | | // the License. |
14 | | |
15 | | #include "pw_protobuf/encoder.h" |
16 | | |
17 | | #include <algorithm> |
18 | | #include <cstddef> |
19 | | #include <cstring> |
20 | | #include <optional> |
21 | | |
22 | | #include "pw_assert/check.h" |
23 | | #include "pw_bytes/span.h" |
24 | | #include "pw_function/scope_guard.h" |
25 | | #include "pw_protobuf/internal/codegen.h" |
26 | | #include "pw_protobuf/serialized_size.h" |
27 | | #include "pw_protobuf/stream_decoder.h" |
28 | | #include "pw_protobuf/wire_format.h" |
29 | | #include "pw_span/span.h" |
30 | | #include "pw_status/status.h" |
31 | | #include "pw_status/try.h" |
32 | | #include "pw_stream/limited_stream.h" |
33 | | #include "pw_stream/memory_stream.h" |
34 | | #include "pw_stream/null_stream.h" |
35 | | #include "pw_stream/stream.h" |
36 | | #include "pw_string/string.h" |
37 | | #include "pw_varint/varint.h" |
38 | | |
39 | | namespace pw::protobuf { |
40 | | |
41 | | using internal::VarintType; |
42 | | |
43 | | Status StreamEncoder::DoWriteNestedMessage( |
44 | | uint32_t field_number, |
45 | | AnyMessageWriter const& write_message, |
46 | 0 | bool write_when_empty) { |
47 | 0 | PW_CHECK(!nested_encoder_open()); |
48 | 0 | PW_TRY(status_); |
49 | | |
50 | 0 | if (!ValidFieldNumber(field_number)) { |
51 | 0 | status_ = Status::InvalidArgument(); |
52 | 0 | PW_TRY(status_); |
53 | 0 | } |
54 | | |
55 | | // Lock. |
56 | 0 | nested_field_number_ = field_number; |
57 | 0 | ScopeGuard unlock([this] { nested_field_number_ = 0; }); |
58 | |
|
59 | 0 | ByteSpan scratch = GetNestedScratchBuffer(field_number); |
60 | | |
61 | | // First pass: we simply count the number of bytes encoded by the fields in |
62 | | // the submessage. |
63 | 0 | stream::CountingNullStream count_stream; |
64 | 0 | StreamEncoder count_encoder(count_stream, scratch); |
65 | |
|
66 | 0 | status_ = write_message(count_encoder); |
67 | 0 | PW_TRY(status_); |
68 | | |
69 | | // Now we know the exact size of the submessage. |
70 | 0 | const size_t num_bytes = count_stream.bytes_written(); |
71 | |
|
72 | 0 | if (num_bytes > 0 || write_when_empty) { |
73 | | // With the field size known, we can write the header. |
74 | 0 | status_ = WriteLengthDelimitedKeyAndLengthPrefix( |
75 | 0 | field_number, num_bytes, writer_); |
76 | 0 | PW_TRY(status_); |
77 | | |
78 | | // Ensure the caller cannot write more bytes in the second pass than they |
79 | | // did in the first. |
80 | 0 | stream::LimitedStreamWriter write_stream(writer_, num_bytes); |
81 | 0 | StreamEncoder write_encoder(write_stream, scratch); |
82 | | |
83 | | // Second pass: Actually write the fields to the stream. |
84 | 0 | status_ = write_message(write_encoder); |
85 | 0 | PW_TRY(status_); |
86 | | |
87 | | // Verify that they wrote the same number of bytes as the first pass. |
88 | 0 | if (write_stream.bytes_written() != num_bytes) { |
89 | 0 | status_ = Status::OutOfRange(); |
90 | 0 | PW_TRY(status_); |
91 | 0 | } |
92 | 0 | } |
93 | | |
94 | 0 | return OkStatus(); |
95 | 0 | } |
96 | | |
97 | 15.8k | ByteSpan StreamEncoder::GetNestedScratchBuffer(uint32_t field_number) { |
98 | | // Pass the unused space of the scratch buffer to the nested encoder to use |
99 | | // as their scratch buffer. |
100 | 15.8k | size_t key_size = |
101 | 15.8k | varint::EncodedSize(FieldKey(field_number, WireType::kDelimited)); |
102 | 15.8k | size_t reserved_size = key_size + config::kMaxVarintSize; |
103 | 15.8k | size_t max_size = std::min(memory_writer_.ConservativeWriteLimit(), |
104 | 15.8k | writer_.ConservativeWriteLimit()); |
105 | | // Cap based on max varint size. |
106 | 15.8k | max_size = std::min(varint::MaxValueInBytes(config::kMaxVarintSize), |
107 | 15.8k | static_cast<uint64_t>(max_size)); |
108 | | |
109 | | // Account for reserved bytes. |
110 | 15.8k | max_size = max_size > reserved_size ? max_size - reserved_size : 0; |
111 | | |
112 | 15.8k | ByteSpan nested_buffer; |
113 | 15.8k | if (max_size > 0) { |
114 | 8.94k | nested_buffer = ByteSpan( |
115 | 8.94k | memory_writer_.data() + reserved_size + memory_writer_.bytes_written(), |
116 | 8.94k | max_size); |
117 | 8.94k | } else { |
118 | 6.87k | nested_buffer = ByteSpan(); |
119 | 6.87k | } |
120 | 15.8k | return nested_buffer; |
121 | 15.8k | } |
122 | | |
123 | | StreamEncoder StreamEncoder::GetNestedEncoder(uint32_t field_number, |
124 | 20.4k | bool write_when_empty) { |
125 | 20.4k | PW_CHECK(!nested_encoder_open()); |
126 | | |
127 | 20.4k | nested_field_number_ = field_number; |
128 | 20.4k | if (!ValidFieldNumber(field_number)) { |
129 | 4.67k | status_.Update(Status::InvalidArgument()); |
130 | 4.67k | return StreamEncoder(*this, ByteSpan(), false); |
131 | 4.67k | } |
132 | | |
133 | 15.8k | ByteSpan nested_buffer = GetNestedScratchBuffer(field_number); |
134 | 15.8k | return StreamEncoder(*this, nested_buffer, write_when_empty); |
135 | 20.4k | } |
136 | | |
137 | 24.0k | void StreamEncoder::CloseEncoder() { |
138 | | // If this was an invalidated StreamEncoder which cannot be used, permit the |
139 | | // object to be cleanly destructed by doing nothing. |
140 | 24.0k | if (nested_field_number_ == kFirstReservedNumber) { |
141 | 0 | return; |
142 | 0 | } |
143 | | |
144 | 24.0k | PW_CHECK( |
145 | 24.0k | !nested_encoder_open(), |
146 | 24.0k | "Tried to destruct a proto encoder with an active submessage encoder"); |
147 | | |
148 | 24.0k | if (parent_ != nullptr) { |
149 | 24.0k | parent_->CloseNestedMessage(*this); |
150 | 24.0k | } |
151 | 24.0k | } |
152 | | |
153 | 24.0k | void StreamEncoder::CloseNestedMessage(StreamEncoder& nested) { |
154 | 24.0k | PW_DCHECK_PTR_EQ(nested.parent_, |
155 | 24.0k | this, |
156 | 24.0k | "CloseNestedMessage() called on the wrong Encoder parent"); |
157 | | |
158 | | // Make the nested encoder look like it has an open child to block writes for |
159 | | // the remainder of the object's life. |
160 | 24.0k | nested.nested_field_number_ = kFirstReservedNumber; |
161 | 24.0k | nested.parent_ = nullptr; |
162 | | // Temporarily cache the field number of the child so we can re-enable |
163 | | // writing to this encoder. |
164 | 24.0k | uint32_t temp_field_number = nested_field_number_; |
165 | 24.0k | nested_field_number_ = 0; |
166 | | |
167 | | // TODO(amontanez): If a submessage fails, we could optionally discard |
168 | | // it and continue happily. For now, we'll always invalidate the entire |
169 | | // encoder if a single submessage fails. |
170 | 24.0k | status_.Update(nested.status_); |
171 | 24.0k | if (!status_.ok()) { |
172 | 18.6k | return; |
173 | 18.6k | } |
174 | | |
175 | 5.39k | if (varint::EncodedSize(nested.memory_writer_.bytes_written()) > |
176 | 5.39k | config::kMaxVarintSize) { |
177 | 0 | status_ = Status::OutOfRange(); |
178 | 0 | return; |
179 | 0 | } |
180 | | |
181 | 5.39k | if (!nested.memory_writer_.bytes_written() && !nested.write_when_empty_) { |
182 | 0 | return; |
183 | 0 | } |
184 | | |
185 | 5.39k | status_ = WriteLengthDelimitedField(temp_field_number, |
186 | 5.39k | nested.memory_writer_.WrittenData()); |
187 | 5.39k | } |
188 | | |
189 | 1.73M | Status StreamEncoder::WriteVarintField(uint32_t field_number, uint64_t value) { |
190 | 1.73M | PW_TRY(UpdateStatusForWrite( |
191 | 6.66k | field_number, WireType::kVarint, varint::EncodedSize(value))); |
192 | | |
193 | 6.66k | WriteVarint(FieldKey(field_number, WireType::kVarint)) |
194 | 6.66k | .IgnoreError(); // TODO: b/242598609 - Handle Status properly |
195 | 6.66k | return WriteVarint(value); |
196 | 1.73M | } |
197 | | |
198 | | Status StreamEncoder::WriteLengthDelimitedField(uint32_t field_number, |
199 | 174k | ConstByteSpan data) { |
200 | 174k | PW_TRY(UpdateStatusForWrite(field_number, WireType::kDelimited, data.size())); |
201 | 20.2k | status_.Update(WriteLengthDelimitedKeyAndLengthPrefix( |
202 | 20.2k | field_number, data.size(), writer_)); |
203 | 20.2k | PW_TRY(status_); |
204 | 20.2k | if (Status status = writer_.Write(data); !status.ok()) { |
205 | 12 | status_ = status; |
206 | 12 | } |
207 | 20.2k | return status_; |
208 | 20.2k | } |
209 | | |
210 | | Status StreamEncoder::WriteLengthDelimitedFieldFromCallback( |
211 | | uint32_t field_number, |
212 | | size_t num_bytes, |
213 | 0 | const Function<Status(stream::Writer&)>& write_func) { |
214 | 0 | if (num_bytes == 0) { |
215 | 0 | return OkStatus(); |
216 | 0 | } |
217 | | |
218 | 0 | PW_TRY(UpdateStatusForWrite(field_number, WireType::kDelimited, num_bytes)); |
219 | 0 | status_.Update( |
220 | 0 | WriteLengthDelimitedKeyAndLengthPrefix(field_number, num_bytes, writer_)); |
221 | |
|
222 | 0 | stream::LimitedStreamWriter write_stream(writer_, num_bytes); |
223 | 0 | status_.Update(write_func(write_stream)); |
224 | |
|
225 | 0 | if (write_stream.bytes_written() != num_bytes) { |
226 | 0 | status_.Update(Status::DataLoss()); |
227 | 0 | } |
228 | |
|
229 | 0 | return status_; |
230 | 0 | } |
231 | | |
232 | | Status StreamEncoder::WriteLengthDelimitedFieldFromStream( |
233 | | uint32_t field_number, |
234 | | stream::Reader& bytes_reader, |
235 | | size_t num_bytes, |
236 | 0 | ByteSpan stream_pipe_buffer) { |
237 | 0 | PW_CHECK_UINT_GT( |
238 | 0 | stream_pipe_buffer.size(), 0, "Transfer buffer cannot be 0 size"); |
239 | 0 | PW_TRY(UpdateStatusForWrite(field_number, WireType::kDelimited, num_bytes)); |
240 | 0 | status_.Update( |
241 | 0 | WriteLengthDelimitedKeyAndLengthPrefix(field_number, num_bytes, writer_)); |
242 | 0 | PW_TRY(status_); |
243 | | |
244 | | // Stream data from `bytes_reader` to `writer_`. |
245 | | // TODO(pwbug/468): move the following logic to pw_stream/copy.h at a later |
246 | | // time. |
247 | 0 | for (size_t bytes_written = 0; bytes_written < num_bytes;) { |
248 | 0 | const size_t chunk_size_bytes = |
249 | 0 | std::min(num_bytes - bytes_written, stream_pipe_buffer.size_bytes()); |
250 | 0 | const Result<ByteSpan> read_result = |
251 | 0 | bytes_reader.Read(stream_pipe_buffer.data(), chunk_size_bytes); |
252 | 0 | status_.Update(read_result.status()); |
253 | 0 | PW_TRY(status_); |
254 | | |
255 | 0 | status_.Update(writer_.Write(read_result.value())); |
256 | 0 | PW_TRY(status_); |
257 | | |
258 | 0 | bytes_written += read_result.value().size(); |
259 | 0 | } |
260 | | |
261 | 0 | return OkStatus(); |
262 | 0 | } |
263 | | |
264 | 206k | Status StreamEncoder::WriteFixed(uint32_t field_number, ConstByteSpan data) { |
265 | 206k | WireType type = |
266 | 206k | data.size() == sizeof(uint32_t) ? WireType::kFixed32 : WireType::kFixed64; |
267 | | |
268 | 206k | PW_TRY(UpdateStatusForWrite(field_number, type, data.size())); |
269 | | |
270 | 1.92k | WriteVarint(FieldKey(field_number, type)) |
271 | 1.92k | .IgnoreError(); // TODO: b/242598609 - Handle Status properly |
272 | 1.92k | if (Status status = writer_.Write(data); !status.ok()) { |
273 | 0 | status_ = status; |
274 | 0 | } |
275 | 1.92k | return status_; |
276 | 206k | } |
277 | | |
278 | | Status StreamEncoder::WritePackedFixed(uint32_t field_number, |
279 | | span<const std::byte> values, |
280 | 9.74k | size_t elem_size) { |
281 | 9.74k | if (values.empty()) { |
282 | 5.37k | return status_; |
283 | 5.37k | } |
284 | | |
285 | 4.37k | PW_CHECK_NOTNULL(values.data()); |
286 | 4.37k | PW_DCHECK(elem_size == sizeof(uint32_t) || elem_size == sizeof(uint64_t)); |
287 | | |
288 | 4.37k | PW_TRY(UpdateStatusForWrite( |
289 | 1.11k | field_number, WireType::kDelimited, values.size_bytes())); |
290 | 1.11k | WriteVarint(FieldKey(field_number, WireType::kDelimited)) |
291 | 1.11k | .IgnoreError(); // TODO: b/242598609 - Handle Status properly |
292 | 1.11k | WriteVarint(values.size_bytes()) |
293 | 1.11k | .IgnoreError(); // TODO: b/242598609 - Handle Status properly |
294 | | |
295 | 100k | for (auto val_start = values.begin(); val_start != values.end(); |
296 | 99.4k | val_start += elem_size) { |
297 | | // Allocates 8 bytes so both 4-byte and 8-byte types can be encoded as |
298 | | // little-endian for serialization. |
299 | 99.4k | std::array<std::byte, sizeof(uint64_t)> data; |
300 | 99.4k | if (endian::native == endian::little) { |
301 | 99.4k | std::copy(val_start, val_start + elem_size, std::begin(data)); |
302 | 99.4k | } else { |
303 | 0 | std::reverse_copy(val_start, val_start + elem_size, std::begin(data)); |
304 | 0 | } |
305 | 99.4k | status_.Update(writer_.Write(span(data).first(elem_size))); |
306 | 99.4k | PW_TRY(status_); |
307 | 99.4k | } |
308 | 1.11k | return status_; |
309 | 1.11k | } |
310 | | |
311 | | Status StreamEncoder::UpdateStatusForWrite(uint32_t field_number, |
312 | | WireType type, |
313 | 2.13M | size_t data_size) { |
314 | 2.13M | PW_CHECK(!nested_encoder_open()); |
315 | 2.13M | PW_TRY(status_); |
316 | | |
317 | 37.0k | if (!ValidFieldNumber(field_number)) { |
318 | 3.05k | return status_ = Status::InvalidArgument(); |
319 | 3.05k | } |
320 | | |
321 | 34.0k | const Result<size_t> field_size = SizeOfField(field_number, type, data_size); |
322 | 34.0k | status_.Update(field_size.status()); |
323 | 34.0k | PW_TRY(status_); |
324 | | |
325 | 34.0k | if (field_size.value() > writer_.ConservativeWriteLimit()) { |
326 | 158 | status_ = Status::ResourceExhausted(); |
327 | 158 | } |
328 | | |
329 | 34.0k | return status_; |
330 | 34.0k | } |
331 | | |
332 | | Status StreamEncoder::Write(span<const std::byte> message, |
333 | 0 | span<const internal::MessageField> table) { |
334 | 0 | PW_CHECK(!nested_encoder_open()); |
335 | 0 | PW_TRY(status_); |
336 | | |
337 | 0 | for (const auto& field : table) { |
338 | | // Calculate the span of bytes corresponding to the structure field to |
339 | | // read from. |
340 | 0 | ConstByteSpan values = |
341 | 0 | message.subspan(field.field_offset(), field.field_size()); |
342 | 0 | PW_CHECK(values.begin() >= message.begin() && |
343 | 0 | values.end() <= message.end()); |
344 | | |
345 | | // If the field is using callbacks, interpret the input field accordingly |
346 | | // and allow the caller to provide custom handling. |
347 | 0 | if (field.callback_type() == internal::CallbackType::kSingleField) { |
348 | 0 | const Callback<StreamEncoder, StreamDecoder>* callback = |
349 | 0 | reinterpret_cast<const Callback<StreamEncoder, StreamDecoder>*>( |
350 | 0 | values.data()); |
351 | 0 | PW_TRY(callback->Encode(*this)); |
352 | 0 | continue; |
353 | 0 | } else if (field.callback_type() == internal::CallbackType::kOneOfGroup) { |
354 | 0 | const OneOf<StreamEncoder, StreamDecoder>* callback = |
355 | 0 | reinterpret_cast<const OneOf<StreamEncoder, StreamDecoder>*>( |
356 | 0 | values.data()); |
357 | 0 | PW_TRY(callback->Encode(*this)); |
358 | 0 | continue; |
359 | 0 | } |
360 | | |
361 | 0 | switch (field.wire_type()) { |
362 | 0 | case WireType::kFixed64: |
363 | 0 | case WireType::kFixed32: { |
364 | | // Fixed fields call WriteFixed() for singular case and |
365 | | // WritePackedFixed() for repeated fields. |
366 | 0 | PW_CHECK(field.elem_size() == (field.wire_type() == WireType::kFixed32 |
367 | 0 | ? sizeof(uint32_t) |
368 | 0 | : sizeof(uint64_t)), |
369 | 0 | "Mismatched message field type and size"); |
370 | 0 | if (field.is_fixed_size()) { |
371 | 0 | PW_CHECK(field.is_repeated(), "Non-repeated fixed size field"); |
372 | 0 | if (static_cast<size_t>( |
373 | 0 | std::count(values.begin(), values.end(), std::byte{0})) < |
374 | 0 | values.size()) { |
375 | 0 | PW_TRY(WritePackedFixed( |
376 | 0 | field.field_number(), values, field.elem_size())); |
377 | 0 | } |
378 | 0 | } else if (field.is_repeated()) { |
379 | | // The struct member for this field is a vector of a type |
380 | | // corresponding to the field element size. Cast to the correct |
381 | | // vector type so we're not performing type aliasing (except for |
382 | | // unsigned vs signed which is explicitly allowed). |
383 | 0 | if (field.elem_size() == sizeof(uint64_t)) { |
384 | 0 | const auto* vector = |
385 | 0 | reinterpret_cast<const pw::Vector<const uint64_t>*>( |
386 | 0 | values.data()); |
387 | 0 | if (!vector->empty()) { |
388 | 0 | PW_TRY(WritePackedFixed( |
389 | 0 | field.field_number(), |
390 | 0 | as_bytes(span(vector->data(), vector->size())), |
391 | 0 | field.elem_size())); |
392 | 0 | } |
393 | 0 | } else if (field.elem_size() == sizeof(uint32_t)) { |
394 | 0 | const auto* vector = |
395 | 0 | reinterpret_cast<const pw::Vector<const uint32_t>*>( |
396 | 0 | values.data()); |
397 | 0 | if (!vector->empty()) { |
398 | 0 | PW_TRY(WritePackedFixed( |
399 | 0 | field.field_number(), |
400 | 0 | as_bytes(span(vector->data(), vector->size())), |
401 | 0 | field.elem_size())); |
402 | 0 | } |
403 | 0 | } |
404 | 0 | } else if (field.is_optional()) { |
405 | | // The struct member for this field is a std::optional of a type |
406 | | // corresponding to the field element size. Cast to the correct |
407 | | // optional type so we're not performing type aliasing (except for |
408 | | // unsigned vs signed which is explicitly allowed), and write from |
409 | | // a temporary. |
410 | 0 | if (field.elem_size() == sizeof(uint64_t)) { |
411 | 0 | const auto* optional = |
412 | 0 | reinterpret_cast<const std::optional<uint64_t>*>(values.data()); |
413 | 0 | if (optional->has_value()) { |
414 | 0 | uint64_t value = optional->value(); |
415 | 0 | PW_TRY( |
416 | 0 | WriteFixed(field.field_number(), as_bytes(span(&value, 1)))); |
417 | 0 | } |
418 | 0 | } else if (field.elem_size() == sizeof(uint32_t)) { |
419 | 0 | const auto* optional = |
420 | 0 | reinterpret_cast<const std::optional<uint32_t>*>(values.data()); |
421 | 0 | if (optional->has_value()) { |
422 | 0 | uint32_t value = optional->value(); |
423 | 0 | PW_TRY( |
424 | 0 | WriteFixed(field.field_number(), as_bytes(span(&value, 1)))); |
425 | 0 | } |
426 | 0 | } |
427 | 0 | } else { |
428 | 0 | PW_CHECK(values.size() == field.elem_size(), |
429 | 0 | "Mismatched message field type and size"); |
430 | 0 | if (static_cast<size_t>( |
431 | 0 | std::count(values.begin(), values.end(), std::byte{0})) < |
432 | 0 | values.size()) { |
433 | 0 | PW_TRY(WriteFixed(field.field_number(), values)); |
434 | 0 | } |
435 | 0 | } |
436 | 0 | break; |
437 | 0 | } |
438 | 0 | case WireType::kVarint: { |
439 | | // Varint fields call WriteVarintField() for singular case and |
440 | | // WritePackedVarints() for repeated fields. |
441 | 0 | PW_CHECK(field.elem_size() == sizeof(uint64_t) || |
442 | 0 | field.elem_size() == sizeof(uint32_t) || |
443 | 0 | field.elem_size() == sizeof(bool), |
444 | 0 | "Mismatched message field type and size"); |
445 | 0 | if (field.is_fixed_size()) { |
446 | | // The struct member for this field is an array of type corresponding |
447 | | // to the field element size. Cast to a span of the correct type over |
448 | | // the array so we're not performing type aliasing (except for |
449 | | // unsigned vs signed which is explicitly allowed). |
450 | 0 | PW_CHECK(field.is_repeated(), "Non-repeated fixed size field"); |
451 | 0 | if (static_cast<size_t>( |
452 | 0 | std::count(values.begin(), values.end(), std::byte{0})) == |
453 | 0 | values.size()) { |
454 | 0 | continue; |
455 | 0 | } |
456 | 0 | if (field.elem_size() == sizeof(uint64_t)) { |
457 | 0 | PW_TRY(WritePackedVarints( |
458 | 0 | field.field_number(), |
459 | 0 | span(reinterpret_cast<const uint64_t*>(values.data()), |
460 | 0 | values.size() / field.elem_size()), |
461 | 0 | field.varint_type())); |
462 | 0 | } else if (field.elem_size() == sizeof(uint32_t)) { |
463 | 0 | PW_TRY(WritePackedVarints( |
464 | 0 | field.field_number(), |
465 | 0 | span(reinterpret_cast<const uint32_t*>(values.data()), |
466 | 0 | values.size() / field.elem_size()), |
467 | 0 | field.varint_type())); |
468 | 0 | } else if (field.elem_size() == sizeof(bool)) { |
469 | 0 | static_assert(sizeof(bool) == sizeof(uint8_t), |
470 | 0 | "bool must be same size as uint8_t"); |
471 | 0 | PW_TRY(WritePackedVarints( |
472 | 0 | field.field_number(), |
473 | 0 | span(reinterpret_cast<const uint8_t*>(values.data()), |
474 | 0 | values.size() / field.elem_size()), |
475 | 0 | field.varint_type())); |
476 | 0 | } |
477 | 0 | } else if (field.is_repeated()) { |
478 | | // The struct member for this field is a vector of a type |
479 | | // corresponding to the field element size. Cast to the correct |
480 | | // vector type so we're not performing type aliasing (except for |
481 | | // unsigned vs signed which is explicitly allowed). |
482 | 0 | if (field.elem_size() == sizeof(uint64_t)) { |
483 | 0 | const auto* vector = |
484 | 0 | reinterpret_cast<const pw::Vector<const uint64_t>*>( |
485 | 0 | values.data()); |
486 | 0 | if (!vector->empty()) { |
487 | 0 | PW_TRY(WritePackedVarints(field.field_number(), |
488 | 0 | span(vector->data(), vector->size()), |
489 | 0 | field.varint_type())); |
490 | 0 | } |
491 | 0 | } else if (field.elem_size() == sizeof(uint32_t)) { |
492 | 0 | const auto* vector = |
493 | 0 | reinterpret_cast<const pw::Vector<const uint32_t>*>( |
494 | 0 | values.data()); |
495 | 0 | if (!vector->empty()) { |
496 | 0 | PW_TRY(WritePackedVarints(field.field_number(), |
497 | 0 | span(vector->data(), vector->size()), |
498 | 0 | field.varint_type())); |
499 | 0 | } |
500 | 0 | } else if (field.elem_size() == sizeof(bool)) { |
501 | 0 | static_assert(sizeof(bool) == sizeof(uint8_t), |
502 | 0 | "bool must be same size as uint8_t"); |
503 | 0 | const auto* vector = |
504 | 0 | reinterpret_cast<const pw::Vector<const uint8_t>*>( |
505 | 0 | values.data()); |
506 | 0 | if (!vector->empty()) { |
507 | 0 | PW_TRY(WritePackedVarints(field.field_number(), |
508 | 0 | span(vector->data(), vector->size()), |
509 | 0 | field.varint_type())); |
510 | 0 | } |
511 | 0 | } |
512 | 0 | } else if (field.is_optional()) { |
513 | | // The struct member for this field is a std::optional of a type |
514 | | // corresponding to the field element size. Cast to the correct |
515 | | // optional type so we're not performing type aliasing (except for |
516 | | // unsigned vs signed which is explicitly allowed), and write from |
517 | | // a temporary. |
518 | 0 | uint64_t value = 0; |
519 | 0 | if (field.elem_size() == sizeof(uint64_t)) { |
520 | 0 | if (field.varint_type() == VarintType::kUnsigned) { |
521 | 0 | const auto* optional = |
522 | 0 | reinterpret_cast<const std::optional<uint64_t>*>( |
523 | 0 | values.data()); |
524 | 0 | if (!optional->has_value()) { |
525 | 0 | continue; |
526 | 0 | } |
527 | 0 | value = optional->value(); |
528 | 0 | } else { |
529 | 0 | const auto* optional = |
530 | 0 | reinterpret_cast<const std::optional<int64_t>*>( |
531 | 0 | values.data()); |
532 | 0 | if (!optional->has_value()) { |
533 | 0 | continue; |
534 | 0 | } |
535 | 0 | value = field.varint_type() == VarintType::kZigZag |
536 | 0 | ? varint::ZigZagEncode(optional->value()) |
537 | 0 | : optional->value(); |
538 | 0 | } |
539 | 0 | } else if (field.elem_size() == sizeof(uint32_t)) { |
540 | 0 | if (field.varint_type() == VarintType::kUnsigned) { |
541 | 0 | const auto* optional = |
542 | 0 | reinterpret_cast<const std::optional<uint32_t>*>( |
543 | 0 | values.data()); |
544 | 0 | if (!optional->has_value()) { |
545 | 0 | continue; |
546 | 0 | } |
547 | 0 | value = optional->value(); |
548 | 0 | } else { |
549 | 0 | const auto* optional = |
550 | 0 | reinterpret_cast<const std::optional<int32_t>*>( |
551 | 0 | values.data()); |
552 | 0 | if (!optional->has_value()) { |
553 | 0 | continue; |
554 | 0 | } |
555 | 0 | value = field.varint_type() == VarintType::kZigZag |
556 | 0 | ? varint::ZigZagEncode(optional->value()) |
557 | 0 | : optional->value(); |
558 | 0 | } |
559 | 0 | } else if (field.elem_size() == sizeof(bool)) { |
560 | 0 | const auto* optional = |
561 | 0 | reinterpret_cast<const std::optional<bool>*>(values.data()); |
562 | 0 | if (!optional->has_value()) { |
563 | 0 | continue; |
564 | 0 | } |
565 | 0 | value = optional->value(); |
566 | 0 | } |
567 | 0 | PW_TRY(WriteVarintField(field.field_number(), value)); |
568 | 0 | } else { |
569 | | // The struct member for this field is a scalar of a type |
570 | | // corresponding to the field element size. Cast to the correct |
571 | | // type to retrieve the value before passing to WriteVarintField() |
572 | | // so we're not performing type aliasing (except for unsigned vs |
573 | | // signed which is explicitly allowed). |
574 | 0 | PW_CHECK(values.size() == field.elem_size(), |
575 | 0 | "Mismatched message field type and size"); |
576 | 0 | uint64_t value = 0; |
577 | 0 | if (field.elem_size() == sizeof(uint64_t)) { |
578 | 0 | if (field.varint_type() == VarintType::kZigZag) { |
579 | 0 | value = varint::ZigZagEncode( |
580 | 0 | *reinterpret_cast<const int64_t*>(values.data())); |
581 | 0 | } else if (field.varint_type() == VarintType::kNormal) { |
582 | 0 | value = *reinterpret_cast<const int64_t*>(values.data()); |
583 | 0 | } else { |
584 | 0 | value = *reinterpret_cast<const uint64_t*>(values.data()); |
585 | 0 | } |
586 | 0 | if (!value) { |
587 | 0 | continue; |
588 | 0 | } |
589 | 0 | } else if (field.elem_size() == sizeof(uint32_t)) { |
590 | 0 | if (field.varint_type() == VarintType::kZigZag) { |
591 | 0 | value = varint::ZigZagEncode( |
592 | 0 | *reinterpret_cast<const int32_t*>(values.data())); |
593 | 0 | } else if (field.varint_type() == VarintType::kNormal) { |
594 | 0 | value = *reinterpret_cast<const int32_t*>(values.data()); |
595 | 0 | } else { |
596 | 0 | value = *reinterpret_cast<const uint32_t*>(values.data()); |
597 | 0 | } |
598 | 0 | if (!value) { |
599 | 0 | continue; |
600 | 0 | } |
601 | 0 | } else if (field.elem_size() == sizeof(bool)) { |
602 | 0 | value = *reinterpret_cast<const bool*>(values.data()); |
603 | 0 | if (!value) { |
604 | 0 | continue; |
605 | 0 | } |
606 | 0 | } |
607 | 0 | PW_TRY(WriteVarintField(field.field_number(), value)); |
608 | 0 | } |
609 | 0 | break; |
610 | 0 | } |
611 | 0 | case WireType::kDelimited: { |
612 | | // Delimited fields are always a singular case because of the |
613 | | // inability to cast to a generic vector with an element of a certain |
614 | | // size (we always need a type). |
615 | 0 | PW_CHECK(!field.is_repeated(), |
616 | 0 | "Repeated delimited messages always require a callback"); |
617 | 0 | if (field.nested_message_fields()) { |
618 | | // Nested Message. Struct member is an embedded struct for the |
619 | | // nested field. Obtain a nested encoder and recursively call Write() |
620 | | // using the fields table pointer from this field. |
621 | 0 | auto nested_encoder = GetNestedEncoder(field.field_number(), |
622 | 0 | /*write_when_empty=*/false); |
623 | 0 | PW_TRY(nested_encoder.Write(values, *field.nested_message_fields())); |
624 | 0 | } else if (field.is_fixed_size()) { |
625 | | // Fixed-length bytes field. Struct member is a std::array<std::byte>. |
626 | | // Call WriteLengthDelimitedField() to output it to the stream. |
627 | 0 | PW_CHECK(field.elem_size() == sizeof(std::byte), |
628 | 0 | "Mismatched message field type and size"); |
629 | 0 | if (static_cast<size_t>( |
630 | 0 | std::count(values.begin(), values.end(), std::byte{0})) < |
631 | 0 | values.size()) { |
632 | 0 | PW_TRY(WriteLengthDelimitedField(field.field_number(), values)); |
633 | 0 | } |
634 | 0 | } else { |
635 | | // bytes or string field with a maximum size. Struct member is |
636 | | // pw::Vector<std::byte> for bytes or pw::InlineString<> for string. |
637 | | // Use the contents as a span and call WriteLengthDelimitedField() to |
638 | | // output it to the stream. |
639 | 0 | PW_CHECK(field.elem_size() == sizeof(std::byte), |
640 | 0 | "Mismatched message field type and size"); |
641 | 0 | if (field.is_string()) { |
642 | 0 | PW_TRY(WriteStringOrBytes<const InlineString<>>( |
643 | 0 | field.field_number(), values.data())); |
644 | 0 | } else { |
645 | 0 | PW_TRY(WriteStringOrBytes<const Vector<const std::byte>>( |
646 | 0 | field.field_number(), values.data())); |
647 | 0 | } |
648 | 0 | } |
649 | 0 | break; |
650 | 0 | } |
651 | 0 | } |
652 | 0 | } |
653 | | |
654 | 0 | ResetOneOfCallbacks(message, table); |
655 | |
|
656 | 0 | return status_; |
657 | 0 | } |
658 | | |
659 | | void StreamEncoder::ResetOneOfCallbacks( |
660 | 0 | ConstByteSpan message, span<const internal::MessageField> table) { |
661 | 0 | for (const auto& field : table) { |
662 | | // Calculate the span of bytes corresponding to the structure field to |
663 | | // read from. |
664 | 0 | ConstByteSpan values = |
665 | 0 | message.subspan(field.field_offset(), field.field_size()); |
666 | 0 | PW_CHECK(values.begin() >= message.begin() && |
667 | 0 | values.end() <= message.end()); |
668 | | |
669 | 0 | if (field.callback_type() == internal::CallbackType::kOneOfGroup) { |
670 | 0 | const OneOf<StreamEncoder, StreamDecoder>* callback = |
671 | 0 | reinterpret_cast<const OneOf<StreamEncoder, StreamDecoder>*>( |
672 | 0 | values.data()); |
673 | 0 | callback->invoked_ = false; |
674 | 0 | } |
675 | 0 | } |
676 | 0 | } |
677 | | |
678 | | } // namespace pw::protobuf |