Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.11/site-packages/PIL/Image.py: 44%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1716 statements  

1# 

2# The Python Imaging Library. 

3# $Id$ 

4# 

5# the Image class wrapper 

6# 

7# partial release history: 

8# 1995-09-09 fl Created 

9# 1996-03-11 fl PIL release 0.0 (proof of concept) 

10# 1996-04-30 fl PIL release 0.1b1 

11# 1999-07-28 fl PIL release 1.0 final 

12# 2000-06-07 fl PIL release 1.1 

13# 2000-10-20 fl PIL release 1.1.1 

14# 2001-05-07 fl PIL release 1.1.2 

15# 2002-03-15 fl PIL release 1.1.3 

16# 2003-05-10 fl PIL release 1.1.4 

17# 2005-03-28 fl PIL release 1.1.5 

18# 2006-12-02 fl PIL release 1.1.6 

19# 2009-11-15 fl PIL release 1.1.7 

20# 

21# Copyright (c) 1997-2009 by Secret Labs AB. All rights reserved. 

22# Copyright (c) 1995-2009 by Fredrik Lundh. 

23# 

24# See the README file for information on usage and redistribution. 

25# 

26 

27from __future__ import annotations 

28 

29import abc 

30import atexit 

31import builtins 

32import io 

33import logging 

34import math 

35import os 

36import re 

37import struct 

38import sys 

39import tempfile 

40import warnings 

41from collections.abc import Callable, Iterator, MutableMapping, Sequence 

42from enum import IntEnum 

43from types import ModuleType 

44from typing import IO, Any, Literal, Protocol, cast 

45 

46# VERSION was removed in Pillow 6.0.0. 

47# PILLOW_VERSION was removed in Pillow 9.0.0. 

48# Use __version__ instead. 

49from . import ( 

50 ExifTags, 

51 ImageMode, 

52 TiffTags, 

53 UnidentifiedImageError, 

54 __version__, 

55 _plugins, 

56) 

57from ._binary import i32le, o32be, o32le 

58from ._deprecate import deprecate 

59from ._util import DeferredError, is_path 

60 

61ElementTree: ModuleType | None 

62try: 

63 from defusedxml import ElementTree 

64except ImportError: 

65 ElementTree = None 

66 

67logger = logging.getLogger(__name__) 

68 

69 

70class DecompressionBombWarning(RuntimeWarning): 

71 pass 

72 

73 

74class DecompressionBombError(Exception): 

75 pass 

76 

77 

78WARN_POSSIBLE_FORMATS: bool = False 

79 

80# Limit to around a quarter gigabyte for a 24-bit (3 bpp) image 

81MAX_IMAGE_PIXELS: int | None = int(1024 * 1024 * 1024 // 4 // 3) 

82 

83 

84try: 

85 # If the _imaging C module is not present, Pillow will not load. 

86 # Note that other modules should not refer to _imaging directly; 

87 # import Image and use the Image.core variable instead. 

88 # Also note that Image.core is not a publicly documented interface, 

89 # and should be considered private and subject to change. 

90 from . import _imaging as core 

91 

92 if __version__ != getattr(core, "PILLOW_VERSION", None): 

93 msg = ( 

94 "The _imaging extension was built for another version of Pillow or PIL:\n" 

95 f"Core version: {getattr(core, 'PILLOW_VERSION', None)}\n" 

96 f"Pillow version: {__version__}" 

97 ) 

98 raise ImportError(msg) 

99 

100except ImportError as v: 

101 core = DeferredError.new(ImportError("The _imaging C module is not installed.")) 

102 # Explanations for ways that we know we might have an import error 

103 if str(v).startswith("Module use of python"): 

104 # The _imaging C module is present, but not compiled for 

105 # the right version (windows only). Print a warning, if 

106 # possible. 

107 warnings.warn( 

108 "The _imaging extension was built for another version of Python.", 

109 RuntimeWarning, 

110 ) 

111 elif str(v).startswith("The _imaging extension"): 

112 warnings.warn(str(v), RuntimeWarning) 

113 # Fail here anyway. Don't let people run with a mostly broken Pillow. 

114 # see docs/porting.rst 

115 raise 

116 

117 

118def isImageType(t: Any) -> TypeGuard[Image]: 

119 """ 

120 Checks if an object is an image object. 

121 

122 .. warning:: 

123 

124 This function is for internal use only. 

125 

126 :param t: object to check if it's an image 

127 :returns: True if the object is an image 

128 """ 

129 deprecate("Image.isImageType(im)", 12, "isinstance(im, Image.Image)") 

130 return hasattr(t, "im") 

131 

132 

133# 

134# Constants 

135 

136 

137# transpose 

138class Transpose(IntEnum): 

139 FLIP_LEFT_RIGHT = 0 

140 FLIP_TOP_BOTTOM = 1 

141 ROTATE_90 = 2 

142 ROTATE_180 = 3 

143 ROTATE_270 = 4 

144 TRANSPOSE = 5 

145 TRANSVERSE = 6 

146 

147 

148# transforms (also defined in Imaging.h) 

149class Transform(IntEnum): 

150 AFFINE = 0 

151 EXTENT = 1 

152 PERSPECTIVE = 2 

153 QUAD = 3 

154 MESH = 4 

155 

156 

157# resampling filters (also defined in Imaging.h) 

158class Resampling(IntEnum): 

159 NEAREST = 0 

160 BOX = 4 

161 BILINEAR = 2 

162 HAMMING = 5 

163 BICUBIC = 3 

164 LANCZOS = 1 

165 

166 

167_filters_support = { 

168 Resampling.BOX: 0.5, 

169 Resampling.BILINEAR: 1.0, 

170 Resampling.HAMMING: 1.0, 

171 Resampling.BICUBIC: 2.0, 

172 Resampling.LANCZOS: 3.0, 

173} 

174 

175 

176# dithers 

177class Dither(IntEnum): 

178 NONE = 0 

179 ORDERED = 1 # Not yet implemented 

180 RASTERIZE = 2 # Not yet implemented 

181 FLOYDSTEINBERG = 3 # default 

182 

183 

184# palettes/quantizers 

185class Palette(IntEnum): 

186 WEB = 0 

187 ADAPTIVE = 1 

188 

189 

190class Quantize(IntEnum): 

191 MEDIANCUT = 0 

192 MAXCOVERAGE = 1 

193 FASTOCTREE = 2 

194 LIBIMAGEQUANT = 3 

195 

196 

197module = sys.modules[__name__] 

198for enum in (Transpose, Transform, Resampling, Dither, Palette, Quantize): 

199 for item in enum: 

200 setattr(module, item.name, item.value) 

201 

202 

203if hasattr(core, "DEFAULT_STRATEGY"): 

204 DEFAULT_STRATEGY = core.DEFAULT_STRATEGY 

205 FILTERED = core.FILTERED 

206 HUFFMAN_ONLY = core.HUFFMAN_ONLY 

207 RLE = core.RLE 

208 FIXED = core.FIXED 

209 

210 

211# -------------------------------------------------------------------- 

212# Registries 

213 

214TYPE_CHECKING = False 

215if TYPE_CHECKING: 

216 import mmap 

217 from xml.etree.ElementTree import Element 

218 

219 from IPython.lib.pretty import PrettyPrinter 

220 

221 from . import ImageFile, ImageFilter, ImagePalette, ImageQt, TiffImagePlugin 

222 from ._typing import CapsuleType, NumpyArray, StrOrBytesPath, TypeGuard 

223ID: list[str] = [] 

224OPEN: dict[ 

225 str, 

226 tuple[ 

227 Callable[[IO[bytes], str | bytes], ImageFile.ImageFile], 

228 Callable[[bytes], bool | str] | None, 

229 ], 

230] = {} 

231MIME: dict[str, str] = {} 

232SAVE: dict[str, Callable[[Image, IO[bytes], str | bytes], None]] = {} 

233SAVE_ALL: dict[str, Callable[[Image, IO[bytes], str | bytes], None]] = {} 

234EXTENSION: dict[str, str] = {} 

235DECODERS: dict[str, type[ImageFile.PyDecoder]] = {} 

236ENCODERS: dict[str, type[ImageFile.PyEncoder]] = {} 

237 

238# -------------------------------------------------------------------- 

239# Modes 

240 

241_ENDIAN = "<" if sys.byteorder == "little" else ">" 

242 

243 

244def _conv_type_shape(im: Image) -> tuple[tuple[int, ...], str]: 

245 m = ImageMode.getmode(im.mode) 

246 shape: tuple[int, ...] = (im.height, im.width) 

247 extra = len(m.bands) 

248 if extra != 1: 

249 shape += (extra,) 

250 return shape, m.typestr 

251 

252 

253MODES = [ 

254 "1", 

255 "CMYK", 

256 "F", 

257 "HSV", 

258 "I", 

259 "I;16", 

260 "I;16B", 

261 "I;16L", 

262 "I;16N", 

263 "L", 

264 "LA", 

265 "La", 

266 "LAB", 

267 "P", 

268 "PA", 

269 "RGB", 

270 "RGBA", 

271 "RGBa", 

272 "RGBX", 

273 "YCbCr", 

274] 

275 

276# raw modes that may be memory mapped. NOTE: if you change this, you 

277# may have to modify the stride calculation in map.c too! 

278_MAPMODES = ("L", "P", "RGBX", "RGBA", "CMYK", "I;16", "I;16L", "I;16B") 

279 

280 

281def getmodebase(mode: str) -> str: 

282 """ 

283 Gets the "base" mode for given mode. This function returns "L" for 

284 images that contain grayscale data, and "RGB" for images that 

285 contain color data. 

286 

287 :param mode: Input mode. 

288 :returns: "L" or "RGB". 

289 :exception KeyError: If the input mode was not a standard mode. 

290 """ 

291 return ImageMode.getmode(mode).basemode 

292 

293 

294def getmodetype(mode: str) -> str: 

295 """ 

296 Gets the storage type mode. Given a mode, this function returns a 

297 single-layer mode suitable for storing individual bands. 

298 

299 :param mode: Input mode. 

300 :returns: "L", "I", or "F". 

301 :exception KeyError: If the input mode was not a standard mode. 

302 """ 

303 return ImageMode.getmode(mode).basetype 

304 

305 

306def getmodebandnames(mode: str) -> tuple[str, ...]: 

307 """ 

308 Gets a list of individual band names. Given a mode, this function returns 

309 a tuple containing the names of individual bands (use 

310 :py:method:`~PIL.Image.getmodetype` to get the mode used to store each 

311 individual band. 

312 

313 :param mode: Input mode. 

314 :returns: A tuple containing band names. The length of the tuple 

315 gives the number of bands in an image of the given mode. 

316 :exception KeyError: If the input mode was not a standard mode. 

317 """ 

318 return ImageMode.getmode(mode).bands 

319 

320 

321def getmodebands(mode: str) -> int: 

322 """ 

323 Gets the number of individual bands for this mode. 

324 

325 :param mode: Input mode. 

326 :returns: The number of bands in this mode. 

327 :exception KeyError: If the input mode was not a standard mode. 

328 """ 

329 return len(ImageMode.getmode(mode).bands) 

330 

331 

332# -------------------------------------------------------------------- 

333# Helpers 

334 

335_initialized = 0 

336 

337 

338def preinit() -> None: 

339 """ 

340 Explicitly loads BMP, GIF, JPEG, PPM and PPM file format drivers. 

341 

342 It is called when opening or saving images. 

343 """ 

344 

345 global _initialized 

346 if _initialized >= 1: 

347 return 

348 

349 try: 

350 from . import BmpImagePlugin 

351 

352 assert BmpImagePlugin 

353 except ImportError: 

354 pass 

355 try: 

356 from . import GifImagePlugin 

357 

358 assert GifImagePlugin 

359 except ImportError: 

360 pass 

361 try: 

362 from . import JpegImagePlugin 

363 

364 assert JpegImagePlugin 

365 except ImportError: 

366 pass 

367 try: 

368 from . import PpmImagePlugin 

369 

370 assert PpmImagePlugin 

371 except ImportError: 

372 pass 

373 try: 

374 from . import PngImagePlugin 

375 

376 assert PngImagePlugin 

377 except ImportError: 

378 pass 

379 

380 _initialized = 1 

381 

382 

383def init() -> bool: 

384 """ 

385 Explicitly initializes the Python Imaging Library. This function 

386 loads all available file format drivers. 

387 

388 It is called when opening or saving images if :py:meth:`~preinit()` is 

389 insufficient, and by :py:meth:`~PIL.features.pilinfo`. 

390 """ 

391 

392 global _initialized 

393 if _initialized >= 2: 

394 return False 

395 

396 parent_name = __name__.rpartition(".")[0] 

397 for plugin in _plugins: 

398 try: 

399 logger.debug("Importing %s", plugin) 

400 __import__(f"{parent_name}.{plugin}", globals(), locals(), []) 

401 except ImportError as e: 

402 logger.debug("Image: failed to import %s: %s", plugin, e) 

403 

404 if OPEN or SAVE: 

405 _initialized = 2 

406 return True 

407 return False 

408 

409 

410# -------------------------------------------------------------------- 

411# Codec factories (used by tobytes/frombytes and ImageFile.load) 

412 

413 

414def _getdecoder( 

415 mode: str, decoder_name: str, args: Any, extra: tuple[Any, ...] = () 

416) -> core.ImagingDecoder | ImageFile.PyDecoder: 

417 # tweak arguments 

418 if args is None: 

419 args = () 

420 elif not isinstance(args, tuple): 

421 args = (args,) 

422 

423 try: 

424 decoder = DECODERS[decoder_name] 

425 except KeyError: 

426 pass 

427 else: 

428 return decoder(mode, *args + extra) 

429 

430 try: 

431 # get decoder 

432 decoder = getattr(core, f"{decoder_name}_decoder") 

433 except AttributeError as e: 

434 msg = f"decoder {decoder_name} not available" 

435 raise OSError(msg) from e 

436 return decoder(mode, *args + extra) 

437 

438 

439def _getencoder( 

440 mode: str, encoder_name: str, args: Any, extra: tuple[Any, ...] = () 

441) -> core.ImagingEncoder | ImageFile.PyEncoder: 

442 # tweak arguments 

443 if args is None: 

444 args = () 

445 elif not isinstance(args, tuple): 

446 args = (args,) 

447 

448 try: 

449 encoder = ENCODERS[encoder_name] 

450 except KeyError: 

451 pass 

452 else: 

453 return encoder(mode, *args + extra) 

454 

455 try: 

456 # get encoder 

457 encoder = getattr(core, f"{encoder_name}_encoder") 

458 except AttributeError as e: 

459 msg = f"encoder {encoder_name} not available" 

460 raise OSError(msg) from e 

461 return encoder(mode, *args + extra) 

462 

463 

464# -------------------------------------------------------------------- 

465# Simple expression analyzer 

466 

467 

468class ImagePointTransform: 

469 """ 

470 Used with :py:meth:`~PIL.Image.Image.point` for single band images with more than 

471 8 bits, this represents an affine transformation, where the value is multiplied by 

472 ``scale`` and ``offset`` is added. 

473 """ 

474 

475 def __init__(self, scale: float, offset: float) -> None: 

476 self.scale = scale 

477 self.offset = offset 

478 

479 def __neg__(self) -> ImagePointTransform: 

480 return ImagePointTransform(-self.scale, -self.offset) 

481 

482 def __add__(self, other: ImagePointTransform | float) -> ImagePointTransform: 

483 if isinstance(other, ImagePointTransform): 

484 return ImagePointTransform( 

485 self.scale + other.scale, self.offset + other.offset 

486 ) 

487 return ImagePointTransform(self.scale, self.offset + other) 

488 

489 __radd__ = __add__ 

490 

491 def __sub__(self, other: ImagePointTransform | float) -> ImagePointTransform: 

492 return self + -other 

493 

494 def __rsub__(self, other: ImagePointTransform | float) -> ImagePointTransform: 

495 return other + -self 

496 

497 def __mul__(self, other: ImagePointTransform | float) -> ImagePointTransform: 

498 if isinstance(other, ImagePointTransform): 

499 return NotImplemented 

500 return ImagePointTransform(self.scale * other, self.offset * other) 

501 

502 __rmul__ = __mul__ 

503 

504 def __truediv__(self, other: ImagePointTransform | float) -> ImagePointTransform: 

505 if isinstance(other, ImagePointTransform): 

506 return NotImplemented 

507 return ImagePointTransform(self.scale / other, self.offset / other) 

508 

509 

510def _getscaleoffset( 

511 expr: Callable[[ImagePointTransform], ImagePointTransform | float], 

512) -> tuple[float, float]: 

513 a = expr(ImagePointTransform(1, 0)) 

514 return (a.scale, a.offset) if isinstance(a, ImagePointTransform) else (0, a) 

515 

516 

517# -------------------------------------------------------------------- 

518# Implementation wrapper 

519 

520 

521class SupportsGetData(Protocol): 

522 def getdata( 

523 self, 

524 ) -> tuple[Transform, Sequence[int]]: ... 

525 

526 

527class Image: 

528 """ 

529 This class represents an image object. To create 

530 :py:class:`~PIL.Image.Image` objects, use the appropriate factory 

531 functions. There's hardly ever any reason to call the Image constructor 

532 directly. 

533 

534 * :py:func:`~PIL.Image.open` 

535 * :py:func:`~PIL.Image.new` 

536 * :py:func:`~PIL.Image.frombytes` 

537 """ 

538 

539 format: str | None = None 

540 format_description: str | None = None 

541 _close_exclusive_fp_after_loading = True 

542 

543 def __init__(self) -> None: 

544 # FIXME: take "new" parameters / other image? 

545 self._im: core.ImagingCore | DeferredError | None = None 

546 self._mode = "" 

547 self._size = (0, 0) 

548 self.palette: ImagePalette.ImagePalette | None = None 

549 self.info: dict[str | tuple[int, int], Any] = {} 

550 self.readonly = 0 

551 self._exif: Exif | None = None 

552 

553 @property 

554 def im(self) -> core.ImagingCore: 

555 if isinstance(self._im, DeferredError): 

556 raise self._im.ex 

557 assert self._im is not None 

558 return self._im 

559 

560 @im.setter 

561 def im(self, im: core.ImagingCore) -> None: 

562 self._im = im 

563 

564 @property 

565 def width(self) -> int: 

566 return self.size[0] 

567 

568 @property 

569 def height(self) -> int: 

570 return self.size[1] 

571 

572 @property 

573 def size(self) -> tuple[int, int]: 

574 return self._size 

575 

576 @property 

577 def mode(self) -> str: 

578 return self._mode 

579 

580 @property 

581 def readonly(self) -> int: 

582 return (self._im and self._im.readonly) or self._readonly 

583 

584 @readonly.setter 

585 def readonly(self, readonly: int) -> None: 

586 self._readonly = readonly 

587 

588 def _new(self, im: core.ImagingCore) -> Image: 

589 new = Image() 

590 new.im = im 

591 new._mode = im.mode 

592 new._size = im.size 

593 if im.mode in ("P", "PA"): 

594 if self.palette: 

595 new.palette = self.palette.copy() 

596 else: 

597 from . import ImagePalette 

598 

599 new.palette = ImagePalette.ImagePalette() 

600 new.info = self.info.copy() 

601 return new 

602 

603 # Context manager support 

604 def __enter__(self): 

605 return self 

606 

607 def __exit__(self, *args): 

608 from . import ImageFile 

609 

610 if isinstance(self, ImageFile.ImageFile): 

611 if getattr(self, "_exclusive_fp", False): 

612 self._close_fp() 

613 self.fp = None 

614 

615 def close(self) -> None: 

616 """ 

617 This operation will destroy the image core and release its memory. 

618 The image data will be unusable afterward. 

619 

620 This function is required to close images that have multiple frames or 

621 have not had their file read and closed by the 

622 :py:meth:`~PIL.Image.Image.load` method. See :ref:`file-handling` for 

623 more information. 

624 """ 

625 if getattr(self, "map", None): 

626 if sys.platform == "win32" and hasattr(sys, "pypy_version_info"): 

627 self.map.close() 

628 self.map: mmap.mmap | None = None 

629 

630 # Instead of simply setting to None, we're setting up a 

631 # deferred error that will better explain that the core image 

632 # object is gone. 

633 self._im = DeferredError(ValueError("Operation on closed image")) 

634 

635 def _copy(self) -> None: 

636 self.load() 

637 self.im = self.im.copy() 

638 self.readonly = 0 

639 

640 def _ensure_mutable(self) -> None: 

641 if self.readonly: 

642 self._copy() 

643 else: 

644 self.load() 

645 

646 def _dump( 

647 self, file: str | None = None, format: str | None = None, **options: Any 

648 ) -> str: 

649 suffix = "" 

650 if format: 

651 suffix = f".{format}" 

652 

653 if not file: 

654 f, filename = tempfile.mkstemp(suffix) 

655 os.close(f) 

656 else: 

657 filename = file 

658 if not filename.endswith(suffix): 

659 filename = filename + suffix 

660 

661 self.load() 

662 

663 if not format or format == "PPM": 

664 self.im.save_ppm(filename) 

665 else: 

666 self.save(filename, format, **options) 

667 

668 return filename 

669 

670 def __eq__(self, other: object) -> bool: 

671 if self.__class__ is not other.__class__: 

672 return False 

673 assert isinstance(other, Image) 

674 return ( 

675 self.mode == other.mode 

676 and self.size == other.size 

677 and self.info == other.info 

678 and self.getpalette() == other.getpalette() 

679 and self.tobytes() == other.tobytes() 

680 ) 

681 

682 def __repr__(self) -> str: 

683 return ( 

684 f"<{self.__class__.__module__}.{self.__class__.__name__} " 

685 f"image mode={self.mode} size={self.size[0]}x{self.size[1]} " 

686 f"at 0x{id(self):X}>" 

687 ) 

688 

689 def _repr_pretty_(self, p: PrettyPrinter, cycle: bool) -> None: 

690 """IPython plain text display support""" 

691 

692 # Same as __repr__ but without unpredictable id(self), 

693 # to keep Jupyter notebook `text/plain` output stable. 

694 p.text( 

695 f"<{self.__class__.__module__}.{self.__class__.__name__} " 

696 f"image mode={self.mode} size={self.size[0]}x{self.size[1]}>" 

697 ) 

698 

699 def _repr_image(self, image_format: str, **kwargs: Any) -> bytes | None: 

700 """Helper function for iPython display hook. 

701 

702 :param image_format: Image format. 

703 :returns: image as bytes, saved into the given format. 

704 """ 

705 b = io.BytesIO() 

706 try: 

707 self.save(b, image_format, **kwargs) 

708 except Exception: 

709 return None 

710 return b.getvalue() 

711 

712 def _repr_png_(self) -> bytes | None: 

713 """iPython display hook support for PNG format. 

714 

715 :returns: PNG version of the image as bytes 

716 """ 

717 return self._repr_image("PNG", compress_level=1) 

718 

719 def _repr_jpeg_(self) -> bytes | None: 

720 """iPython display hook support for JPEG format. 

721 

722 :returns: JPEG version of the image as bytes 

723 """ 

724 return self._repr_image("JPEG") 

725 

726 @property 

727 def __array_interface__(self) -> dict[str, str | bytes | int | tuple[int, ...]]: 

728 # numpy array interface support 

729 new: dict[str, str | bytes | int | tuple[int, ...]] = {"version": 3} 

730 if self.mode == "1": 

731 # Binary images need to be extended from bits to bytes 

732 # See: https://github.com/python-pillow/Pillow/issues/350 

733 new["data"] = self.tobytes("raw", "L") 

734 else: 

735 new["data"] = self.tobytes() 

736 new["shape"], new["typestr"] = _conv_type_shape(self) 

737 return new 

738 

739 def __arrow_c_schema__(self) -> object: 

740 self.load() 

741 return self.im.__arrow_c_schema__() 

742 

743 def __arrow_c_array__( 

744 self, requested_schema: object | None = None 

745 ) -> tuple[object, object]: 

746 self.load() 

747 return (self.im.__arrow_c_schema__(), self.im.__arrow_c_array__()) 

748 

749 def __getstate__(self) -> list[Any]: 

750 im_data = self.tobytes() # load image first 

751 return [self.info, self.mode, self.size, self.getpalette(), im_data] 

752 

753 def __setstate__(self, state: list[Any]) -> None: 

754 Image.__init__(self) 

755 info, mode, size, palette, data = state[:5] 

756 self.info = info 

757 self._mode = mode 

758 self._size = size 

759 self.im = core.new(mode, size) 

760 if mode in ("L", "LA", "P", "PA") and palette: 

761 self.putpalette(palette) 

762 self.frombytes(data) 

763 

764 def tobytes(self, encoder_name: str = "raw", *args: Any) -> bytes: 

765 """ 

766 Return image as a bytes object. 

767 

768 .. warning:: 

769 

770 This method returns raw image data derived from Pillow's internal 

771 storage. For compressed image data (e.g. PNG, JPEG) use 

772 :meth:`~.save`, with a BytesIO parameter for in-memory data. 

773 

774 :param encoder_name: What encoder to use. 

775 

776 The default is to use the standard "raw" encoder. 

777 To see how this packs pixel data into the returned 

778 bytes, see :file:`libImaging/Pack.c`. 

779 

780 A list of C encoders can be seen under codecs 

781 section of the function array in 

782 :file:`_imaging.c`. Python encoders are registered 

783 within the relevant plugins. 

784 :param args: Extra arguments to the encoder. 

785 :returns: A :py:class:`bytes` object. 

786 """ 

787 

788 encoder_args: Any = args 

789 if len(encoder_args) == 1 and isinstance(encoder_args[0], tuple): 

790 # may pass tuple instead of argument list 

791 encoder_args = encoder_args[0] 

792 

793 if encoder_name == "raw" and encoder_args == (): 

794 encoder_args = self.mode 

795 

796 self.load() 

797 

798 if self.width == 0 or self.height == 0: 

799 return b"" 

800 

801 # unpack data 

802 e = _getencoder(self.mode, encoder_name, encoder_args) 

803 e.setimage(self.im) 

804 

805 from . import ImageFile 

806 

807 bufsize = max(ImageFile.MAXBLOCK, self.size[0] * 4) # see RawEncode.c 

808 

809 output = [] 

810 while True: 

811 bytes_consumed, errcode, data = e.encode(bufsize) 

812 output.append(data) 

813 if errcode: 

814 break 

815 if errcode < 0: 

816 msg = f"encoder error {errcode} in tobytes" 

817 raise RuntimeError(msg) 

818 

819 return b"".join(output) 

820 

821 def tobitmap(self, name: str = "image") -> bytes: 

822 """ 

823 Returns the image converted to an X11 bitmap. 

824 

825 .. note:: This method only works for mode "1" images. 

826 

827 :param name: The name prefix to use for the bitmap variables. 

828 :returns: A string containing an X11 bitmap. 

829 :raises ValueError: If the mode is not "1" 

830 """ 

831 

832 self.load() 

833 if self.mode != "1": 

834 msg = "not a bitmap" 

835 raise ValueError(msg) 

836 data = self.tobytes("xbm") 

837 return b"".join( 

838 [ 

839 f"#define {name}_width {self.size[0]}\n".encode("ascii"), 

840 f"#define {name}_height {self.size[1]}\n".encode("ascii"), 

841 f"static char {name}_bits[] = {{\n".encode("ascii"), 

842 data, 

843 b"};", 

844 ] 

845 ) 

846 

847 def frombytes( 

848 self, 

849 data: bytes | bytearray | SupportsArrayInterface, 

850 decoder_name: str = "raw", 

851 *args: Any, 

852 ) -> None: 

853 """ 

854 Loads this image with pixel data from a bytes object. 

855 

856 This method is similar to the :py:func:`~PIL.Image.frombytes` function, 

857 but loads data into this image instead of creating a new image object. 

858 """ 

859 

860 if self.width == 0 or self.height == 0: 

861 return 

862 

863 decoder_args: Any = args 

864 if len(decoder_args) == 1 and isinstance(decoder_args[0], tuple): 

865 # may pass tuple instead of argument list 

866 decoder_args = decoder_args[0] 

867 

868 # default format 

869 if decoder_name == "raw" and decoder_args == (): 

870 decoder_args = self.mode 

871 

872 # unpack data 

873 d = _getdecoder(self.mode, decoder_name, decoder_args) 

874 d.setimage(self.im) 

875 s = d.decode(data) 

876 

877 if s[0] >= 0: 

878 msg = "not enough image data" 

879 raise ValueError(msg) 

880 if s[1] != 0: 

881 msg = "cannot decode image data" 

882 raise ValueError(msg) 

883 

884 def load(self) -> core.PixelAccess | None: 

885 """ 

886 Allocates storage for the image and loads the pixel data. In 

887 normal cases, you don't need to call this method, since the 

888 Image class automatically loads an opened image when it is 

889 accessed for the first time. 

890 

891 If the file associated with the image was opened by Pillow, then this 

892 method will close it. The exception to this is if the image has 

893 multiple frames, in which case the file will be left open for seek 

894 operations. See :ref:`file-handling` for more information. 

895 

896 :returns: An image access object. 

897 :rtype: :py:class:`.PixelAccess` 

898 """ 

899 if self._im is not None and self.palette and self.palette.dirty: 

900 # realize palette 

901 mode, arr = self.palette.getdata() 

902 self.im.putpalette(self.palette.mode, mode, arr) 

903 self.palette.dirty = 0 

904 self.palette.rawmode = None 

905 if "transparency" in self.info and mode in ("LA", "PA"): 

906 if isinstance(self.info["transparency"], int): 

907 self.im.putpalettealpha(self.info["transparency"], 0) 

908 else: 

909 self.im.putpalettealphas(self.info["transparency"]) 

910 self.palette.mode = "RGBA" 

911 else: 

912 self.palette.palette = self.im.getpalette( 

913 self.palette.mode, self.palette.mode 

914 ) 

915 

916 if self._im is not None: 

917 return self.im.pixel_access(self.readonly) 

918 return None 

919 

920 def verify(self) -> None: 

921 """ 

922 Verifies the contents of a file. For data read from a file, this 

923 method attempts to determine if the file is broken, without 

924 actually decoding the image data. If this method finds any 

925 problems, it raises suitable exceptions. If you need to load 

926 the image after using this method, you must reopen the image 

927 file. 

928 """ 

929 pass 

930 

931 def convert( 

932 self, 

933 mode: str | None = None, 

934 matrix: tuple[float, ...] | None = None, 

935 dither: Dither | None = None, 

936 palette: Palette = Palette.WEB, 

937 colors: int = 256, 

938 ) -> Image: 

939 """ 

940 Returns a converted copy of this image. For the "P" mode, this 

941 method translates pixels through the palette. If mode is 

942 omitted, a mode is chosen so that all information in the image 

943 and the palette can be represented without a palette. 

944 

945 This supports all possible conversions between "L", "RGB" and "CMYK". The 

946 ``matrix`` argument only supports "L" and "RGB". 

947 

948 When translating a color image to grayscale (mode "L"), 

949 the library uses the ITU-R 601-2 luma transform:: 

950 

951 L = R * 299/1000 + G * 587/1000 + B * 114/1000 

952 

953 The default method of converting a grayscale ("L") or "RGB" 

954 image into a bilevel (mode "1") image uses Floyd-Steinberg 

955 dither to approximate the original image luminosity levels. If 

956 dither is ``None``, all values larger than 127 are set to 255 (white), 

957 all other values to 0 (black). To use other thresholds, use the 

958 :py:meth:`~PIL.Image.Image.point` method. 

959 

960 When converting from "RGBA" to "P" without a ``matrix`` argument, 

961 this passes the operation to :py:meth:`~PIL.Image.Image.quantize`, 

962 and ``dither`` and ``palette`` are ignored. 

963 

964 When converting from "PA", if an "RGBA" palette is present, the alpha 

965 channel from the image will be used instead of the values from the palette. 

966 

967 :param mode: The requested mode. See: :ref:`concept-modes`. 

968 :param matrix: An optional conversion matrix. If given, this 

969 should be 4- or 12-tuple containing floating point values. 

970 :param dither: Dithering method, used when converting from 

971 mode "RGB" to "P" or from "RGB" or "L" to "1". 

972 Available methods are :data:`Dither.NONE` or :data:`Dither.FLOYDSTEINBERG` 

973 (default). Note that this is not used when ``matrix`` is supplied. 

974 :param palette: Palette to use when converting from mode "RGB" 

975 to "P". Available palettes are :data:`Palette.WEB` or 

976 :data:`Palette.ADAPTIVE`. 

977 :param colors: Number of colors to use for the :data:`Palette.ADAPTIVE` 

978 palette. Defaults to 256. 

979 :rtype: :py:class:`~PIL.Image.Image` 

980 :returns: An :py:class:`~PIL.Image.Image` object. 

981 """ 

982 

983 if mode in ("BGR;15", "BGR;16", "BGR;24"): 

984 deprecate(mode, 12) 

985 

986 self.load() 

987 

988 has_transparency = "transparency" in self.info 

989 if not mode and self.mode == "P": 

990 # determine default mode 

991 if self.palette: 

992 mode = self.palette.mode 

993 else: 

994 mode = "RGB" 

995 if mode == "RGB" and has_transparency: 

996 mode = "RGBA" 

997 if not mode or (mode == self.mode and not matrix): 

998 return self.copy() 

999 

1000 if matrix: 

1001 # matrix conversion 

1002 if mode not in ("L", "RGB"): 

1003 msg = "illegal conversion" 

1004 raise ValueError(msg) 

1005 im = self.im.convert_matrix(mode, matrix) 

1006 new_im = self._new(im) 

1007 if has_transparency and self.im.bands == 3: 

1008 transparency = new_im.info["transparency"] 

1009 

1010 def convert_transparency( 

1011 m: tuple[float, ...], v: tuple[int, int, int] 

1012 ) -> int: 

1013 value = m[0] * v[0] + m[1] * v[1] + m[2] * v[2] + m[3] * 0.5 

1014 return max(0, min(255, int(value))) 

1015 

1016 if mode == "L": 

1017 transparency = convert_transparency(matrix, transparency) 

1018 elif len(mode) == 3: 

1019 transparency = tuple( 

1020 convert_transparency(matrix[i * 4 : i * 4 + 4], transparency) 

1021 for i in range(len(transparency)) 

1022 ) 

1023 new_im.info["transparency"] = transparency 

1024 return new_im 

1025 

1026 if mode == "P" and self.mode == "RGBA": 

1027 return self.quantize(colors) 

1028 

1029 trns = None 

1030 delete_trns = False 

1031 # transparency handling 

1032 if has_transparency: 

1033 if (self.mode in ("1", "L", "I", "I;16") and mode in ("LA", "RGBA")) or ( 

1034 self.mode == "RGB" and mode in ("La", "LA", "RGBa", "RGBA") 

1035 ): 

1036 # Use transparent conversion to promote from transparent 

1037 # color to an alpha channel. 

1038 new_im = self._new( 

1039 self.im.convert_transparent(mode, self.info["transparency"]) 

1040 ) 

1041 del new_im.info["transparency"] 

1042 return new_im 

1043 elif self.mode in ("L", "RGB", "P") and mode in ("L", "RGB", "P"): 

1044 t = self.info["transparency"] 

1045 if isinstance(t, bytes): 

1046 # Dragons. This can't be represented by a single color 

1047 warnings.warn( 

1048 "Palette images with Transparency expressed in bytes should be " 

1049 "converted to RGBA images" 

1050 ) 

1051 delete_trns = True 

1052 else: 

1053 # get the new transparency color. 

1054 # use existing conversions 

1055 trns_im = new(self.mode, (1, 1)) 

1056 if self.mode == "P": 

1057 assert self.palette is not None 

1058 trns_im.putpalette(self.palette, self.palette.mode) 

1059 if isinstance(t, tuple): 

1060 err = "Couldn't allocate a palette color for transparency" 

1061 assert trns_im.palette is not None 

1062 try: 

1063 t = trns_im.palette.getcolor(t, self) 

1064 except ValueError as e: 

1065 if str(e) == "cannot allocate more than 256 colors": 

1066 # If all 256 colors are in use, 

1067 # then there is no need for transparency 

1068 t = None 

1069 else: 

1070 raise ValueError(err) from e 

1071 if t is None: 

1072 trns = None 

1073 else: 

1074 trns_im.putpixel((0, 0), t) 

1075 

1076 if mode in ("L", "RGB"): 

1077 trns_im = trns_im.convert(mode) 

1078 else: 

1079 # can't just retrieve the palette number, got to do it 

1080 # after quantization. 

1081 trns_im = trns_im.convert("RGB") 

1082 trns = trns_im.getpixel((0, 0)) 

1083 

1084 elif self.mode == "P" and mode in ("LA", "PA", "RGBA"): 

1085 t = self.info["transparency"] 

1086 delete_trns = True 

1087 

1088 if isinstance(t, bytes): 

1089 self.im.putpalettealphas(t) 

1090 elif isinstance(t, int): 

1091 self.im.putpalettealpha(t, 0) 

1092 else: 

1093 msg = "Transparency for P mode should be bytes or int" 

1094 raise ValueError(msg) 

1095 

1096 if mode == "P" and palette == Palette.ADAPTIVE: 

1097 im = self.im.quantize(colors) 

1098 new_im = self._new(im) 

1099 from . import ImagePalette 

1100 

1101 new_im.palette = ImagePalette.ImagePalette( 

1102 "RGB", new_im.im.getpalette("RGB") 

1103 ) 

1104 if delete_trns: 

1105 # This could possibly happen if we requantize to fewer colors. 

1106 # The transparency would be totally off in that case. 

1107 del new_im.info["transparency"] 

1108 if trns is not None: 

1109 try: 

1110 new_im.info["transparency"] = new_im.palette.getcolor( 

1111 cast(tuple[int, ...], trns), # trns was converted to RGB 

1112 new_im, 

1113 ) 

1114 except Exception: 

1115 # if we can't make a transparent color, don't leave the old 

1116 # transparency hanging around to mess us up. 

1117 del new_im.info["transparency"] 

1118 warnings.warn("Couldn't allocate palette entry for transparency") 

1119 return new_im 

1120 

1121 if "LAB" in (self.mode, mode): 

1122 im = self 

1123 if mode == "LAB": 

1124 if im.mode not in ("RGB", "RGBA", "RGBX"): 

1125 im = im.convert("RGBA") 

1126 other_mode = im.mode 

1127 else: 

1128 other_mode = mode 

1129 if other_mode in ("RGB", "RGBA", "RGBX"): 

1130 from . import ImageCms 

1131 

1132 srgb = ImageCms.createProfile("sRGB") 

1133 lab = ImageCms.createProfile("LAB") 

1134 profiles = [lab, srgb] if im.mode == "LAB" else [srgb, lab] 

1135 transform = ImageCms.buildTransform( 

1136 profiles[0], profiles[1], im.mode, mode 

1137 ) 

1138 return transform.apply(im) 

1139 

1140 # colorspace conversion 

1141 if dither is None: 

1142 dither = Dither.FLOYDSTEINBERG 

1143 

1144 try: 

1145 im = self.im.convert(mode, dither) 

1146 except ValueError: 

1147 try: 

1148 # normalize source image and try again 

1149 modebase = getmodebase(self.mode) 

1150 if modebase == self.mode: 

1151 raise 

1152 im = self.im.convert(modebase) 

1153 im = im.convert(mode, dither) 

1154 except KeyError as e: 

1155 msg = "illegal conversion" 

1156 raise ValueError(msg) from e 

1157 

1158 new_im = self._new(im) 

1159 if mode == "P" and palette != Palette.ADAPTIVE: 

1160 from . import ImagePalette 

1161 

1162 new_im.palette = ImagePalette.ImagePalette("RGB", im.getpalette("RGB")) 

1163 if delete_trns: 

1164 # crash fail if we leave a bytes transparency in an rgb/l mode. 

1165 del new_im.info["transparency"] 

1166 if trns is not None: 

1167 if new_im.mode == "P" and new_im.palette: 

1168 try: 

1169 new_im.info["transparency"] = new_im.palette.getcolor( 

1170 cast(tuple[int, ...], trns), new_im # trns was converted to RGB 

1171 ) 

1172 except ValueError as e: 

1173 del new_im.info["transparency"] 

1174 if str(e) != "cannot allocate more than 256 colors": 

1175 # If all 256 colors are in use, 

1176 # then there is no need for transparency 

1177 warnings.warn( 

1178 "Couldn't allocate palette entry for transparency" 

1179 ) 

1180 else: 

1181 new_im.info["transparency"] = trns 

1182 return new_im 

1183 

1184 def quantize( 

1185 self, 

1186 colors: int = 256, 

1187 method: int | None = None, 

1188 kmeans: int = 0, 

1189 palette: Image | None = None, 

1190 dither: Dither = Dither.FLOYDSTEINBERG, 

1191 ) -> Image: 

1192 """ 

1193 Convert the image to 'P' mode with the specified number 

1194 of colors. 

1195 

1196 :param colors: The desired number of colors, <= 256 

1197 :param method: :data:`Quantize.MEDIANCUT` (median cut), 

1198 :data:`Quantize.MAXCOVERAGE` (maximum coverage), 

1199 :data:`Quantize.FASTOCTREE` (fast octree), 

1200 :data:`Quantize.LIBIMAGEQUANT` (libimagequant; check support 

1201 using :py:func:`PIL.features.check_feature` with 

1202 ``feature="libimagequant"``). 

1203 

1204 By default, :data:`Quantize.MEDIANCUT` will be used. 

1205 

1206 The exception to this is RGBA images. :data:`Quantize.MEDIANCUT` 

1207 and :data:`Quantize.MAXCOVERAGE` do not support RGBA images, so 

1208 :data:`Quantize.FASTOCTREE` is used by default instead. 

1209 :param kmeans: Integer greater than or equal to zero. 

1210 :param palette: Quantize to the palette of given 

1211 :py:class:`PIL.Image.Image`. 

1212 :param dither: Dithering method, used when converting from 

1213 mode "RGB" to "P" or from "RGB" or "L" to "1". 

1214 Available methods are :data:`Dither.NONE` or :data:`Dither.FLOYDSTEINBERG` 

1215 (default). 

1216 :returns: A new image 

1217 """ 

1218 

1219 self.load() 

1220 

1221 if method is None: 

1222 # defaults: 

1223 method = Quantize.MEDIANCUT 

1224 if self.mode == "RGBA": 

1225 method = Quantize.FASTOCTREE 

1226 

1227 if self.mode == "RGBA" and method not in ( 

1228 Quantize.FASTOCTREE, 

1229 Quantize.LIBIMAGEQUANT, 

1230 ): 

1231 # Caller specified an invalid mode. 

1232 msg = ( 

1233 "Fast Octree (method == 2) and libimagequant (method == 3) " 

1234 "are the only valid methods for quantizing RGBA images" 

1235 ) 

1236 raise ValueError(msg) 

1237 

1238 if palette: 

1239 # use palette from reference image 

1240 palette.load() 

1241 if palette.mode != "P": 

1242 msg = "bad mode for palette image" 

1243 raise ValueError(msg) 

1244 if self.mode not in {"RGB", "L"}: 

1245 msg = "only RGB or L mode images can be quantized to a palette" 

1246 raise ValueError(msg) 

1247 im = self.im.convert("P", dither, palette.im) 

1248 new_im = self._new(im) 

1249 assert palette.palette is not None 

1250 new_im.palette = palette.palette.copy() 

1251 return new_im 

1252 

1253 if kmeans < 0: 

1254 msg = "kmeans must not be negative" 

1255 raise ValueError(msg) 

1256 

1257 im = self._new(self.im.quantize(colors, method, kmeans)) 

1258 

1259 from . import ImagePalette 

1260 

1261 mode = im.im.getpalettemode() 

1262 palette_data = im.im.getpalette(mode, mode)[: colors * len(mode)] 

1263 im.palette = ImagePalette.ImagePalette(mode, palette_data) 

1264 

1265 return im 

1266 

1267 def copy(self) -> Image: 

1268 """ 

1269 Copies this image. Use this method if you wish to paste things 

1270 into an image, but still retain the original. 

1271 

1272 :rtype: :py:class:`~PIL.Image.Image` 

1273 :returns: An :py:class:`~PIL.Image.Image` object. 

1274 """ 

1275 self.load() 

1276 return self._new(self.im.copy()) 

1277 

1278 __copy__ = copy 

1279 

1280 def crop(self, box: tuple[float, float, float, float] | None = None) -> Image: 

1281 """ 

1282 Returns a rectangular region from this image. The box is a 

1283 4-tuple defining the left, upper, right, and lower pixel 

1284 coordinate. See :ref:`coordinate-system`. 

1285 

1286 Note: Prior to Pillow 3.4.0, this was a lazy operation. 

1287 

1288 :param box: The crop rectangle, as a (left, upper, right, lower)-tuple. 

1289 :rtype: :py:class:`~PIL.Image.Image` 

1290 :returns: An :py:class:`~PIL.Image.Image` object. 

1291 """ 

1292 

1293 if box is None: 

1294 return self.copy() 

1295 

1296 if box[2] < box[0]: 

1297 msg = "Coordinate 'right' is less than 'left'" 

1298 raise ValueError(msg) 

1299 elif box[3] < box[1]: 

1300 msg = "Coordinate 'lower' is less than 'upper'" 

1301 raise ValueError(msg) 

1302 

1303 self.load() 

1304 return self._new(self._crop(self.im, box)) 

1305 

1306 def _crop( 

1307 self, im: core.ImagingCore, box: tuple[float, float, float, float] 

1308 ) -> core.ImagingCore: 

1309 """ 

1310 Returns a rectangular region from the core image object im. 

1311 

1312 This is equivalent to calling im.crop((x0, y0, x1, y1)), but 

1313 includes additional sanity checks. 

1314 

1315 :param im: a core image object 

1316 :param box: The crop rectangle, as a (left, upper, right, lower)-tuple. 

1317 :returns: A core image object. 

1318 """ 

1319 

1320 x0, y0, x1, y1 = map(int, map(round, box)) 

1321 

1322 absolute_values = (abs(x1 - x0), abs(y1 - y0)) 

1323 

1324 _decompression_bomb_check(absolute_values) 

1325 

1326 return im.crop((x0, y0, x1, y1)) 

1327 

1328 def draft( 

1329 self, mode: str | None, size: tuple[int, int] | None 

1330 ) -> tuple[str, tuple[int, int, float, float]] | None: 

1331 """ 

1332 Configures the image file loader so it returns a version of the 

1333 image that as closely as possible matches the given mode and 

1334 size. For example, you can use this method to convert a color 

1335 JPEG to grayscale while loading it. 

1336 

1337 If any changes are made, returns a tuple with the chosen ``mode`` and 

1338 ``box`` with coordinates of the original image within the altered one. 

1339 

1340 Note that this method modifies the :py:class:`~PIL.Image.Image` object 

1341 in place. If the image has already been loaded, this method has no 

1342 effect. 

1343 

1344 Note: This method is not implemented for most images. It is 

1345 currently implemented only for JPEG and MPO images. 

1346 

1347 :param mode: The requested mode. 

1348 :param size: The requested size in pixels, as a 2-tuple: 

1349 (width, height). 

1350 """ 

1351 pass 

1352 

1353 def _expand(self, xmargin: int, ymargin: int | None = None) -> Image: 

1354 if ymargin is None: 

1355 ymargin = xmargin 

1356 self.load() 

1357 return self._new(self.im.expand(xmargin, ymargin)) 

1358 

1359 def filter(self, filter: ImageFilter.Filter | type[ImageFilter.Filter]) -> Image: 

1360 """ 

1361 Filters this image using the given filter. For a list of 

1362 available filters, see the :py:mod:`~PIL.ImageFilter` module. 

1363 

1364 :param filter: Filter kernel. 

1365 :returns: An :py:class:`~PIL.Image.Image` object.""" 

1366 

1367 from . import ImageFilter 

1368 

1369 self.load() 

1370 

1371 if callable(filter): 

1372 filter = filter() 

1373 if not hasattr(filter, "filter"): 

1374 msg = "filter argument should be ImageFilter.Filter instance or class" 

1375 raise TypeError(msg) 

1376 

1377 multiband = isinstance(filter, ImageFilter.MultibandFilter) 

1378 if self.im.bands == 1 or multiband: 

1379 return self._new(filter.filter(self.im)) 

1380 

1381 ims = [ 

1382 self._new(filter.filter(self.im.getband(c))) for c in range(self.im.bands) 

1383 ] 

1384 return merge(self.mode, ims) 

1385 

1386 def getbands(self) -> tuple[str, ...]: 

1387 """ 

1388 Returns a tuple containing the name of each band in this image. 

1389 For example, ``getbands`` on an RGB image returns ("R", "G", "B"). 

1390 

1391 :returns: A tuple containing band names. 

1392 :rtype: tuple 

1393 """ 

1394 return ImageMode.getmode(self.mode).bands 

1395 

1396 def getbbox(self, *, alpha_only: bool = True) -> tuple[int, int, int, int] | None: 

1397 """ 

1398 Calculates the bounding box of the non-zero regions in the 

1399 image. 

1400 

1401 :param alpha_only: Optional flag, defaulting to ``True``. 

1402 If ``True`` and the image has an alpha channel, trim transparent pixels. 

1403 Otherwise, trim pixels when all channels are zero. 

1404 Keyword-only argument. 

1405 :returns: The bounding box is returned as a 4-tuple defining the 

1406 left, upper, right, and lower pixel coordinate. See 

1407 :ref:`coordinate-system`. If the image is completely empty, this 

1408 method returns None. 

1409 

1410 """ 

1411 

1412 self.load() 

1413 return self.im.getbbox(alpha_only) 

1414 

1415 def getcolors( 

1416 self, maxcolors: int = 256 

1417 ) -> list[tuple[int, tuple[int, ...]]] | list[tuple[int, float]] | None: 

1418 """ 

1419 Returns a list of colors used in this image. 

1420 

1421 The colors will be in the image's mode. For example, an RGB image will 

1422 return a tuple of (red, green, blue) color values, and a P image will 

1423 return the index of the color in the palette. 

1424 

1425 :param maxcolors: Maximum number of colors. If this number is 

1426 exceeded, this method returns None. The default limit is 

1427 256 colors. 

1428 :returns: An unsorted list of (count, pixel) values. 

1429 """ 

1430 

1431 self.load() 

1432 if self.mode in ("1", "L", "P"): 

1433 h = self.im.histogram() 

1434 out: list[tuple[int, float]] = [(h[i], i) for i in range(256) if h[i]] 

1435 if len(out) > maxcolors: 

1436 return None 

1437 return out 

1438 return self.im.getcolors(maxcolors) 

1439 

1440 def getdata(self, band: int | None = None) -> core.ImagingCore: 

1441 """ 

1442 Returns the contents of this image as a sequence object 

1443 containing pixel values. The sequence object is flattened, so 

1444 that values for line one follow directly after the values of 

1445 line zero, and so on. 

1446 

1447 Note that the sequence object returned by this method is an 

1448 internal PIL data type, which only supports certain sequence 

1449 operations. To convert it to an ordinary sequence (e.g. for 

1450 printing), use ``list(im.getdata())``. 

1451 

1452 :param band: What band to return. The default is to return 

1453 all bands. To return a single band, pass in the index 

1454 value (e.g. 0 to get the "R" band from an "RGB" image). 

1455 :returns: A sequence-like object. 

1456 """ 

1457 

1458 self.load() 

1459 if band is not None: 

1460 return self.im.getband(band) 

1461 return self.im # could be abused 

1462 

1463 def getextrema(self) -> tuple[float, float] | tuple[tuple[int, int], ...]: 

1464 """ 

1465 Gets the minimum and maximum pixel values for each band in 

1466 the image. 

1467 

1468 :returns: For a single-band image, a 2-tuple containing the 

1469 minimum and maximum pixel value. For a multi-band image, 

1470 a tuple containing one 2-tuple for each band. 

1471 """ 

1472 

1473 self.load() 

1474 if self.im.bands > 1: 

1475 return tuple(self.im.getband(i).getextrema() for i in range(self.im.bands)) 

1476 return self.im.getextrema() 

1477 

1478 def getxmp(self) -> dict[str, Any]: 

1479 """ 

1480 Returns a dictionary containing the XMP tags. 

1481 Requires defusedxml to be installed. 

1482 

1483 :returns: XMP tags in a dictionary. 

1484 """ 

1485 

1486 def get_name(tag: str) -> str: 

1487 return re.sub("^{[^}]+}", "", tag) 

1488 

1489 def get_value(element: Element) -> str | dict[str, Any] | None: 

1490 value: dict[str, Any] = {get_name(k): v for k, v in element.attrib.items()} 

1491 children = list(element) 

1492 if children: 

1493 for child in children: 

1494 name = get_name(child.tag) 

1495 child_value = get_value(child) 

1496 if name in value: 

1497 if not isinstance(value[name], list): 

1498 value[name] = [value[name]] 

1499 value[name].append(child_value) 

1500 else: 

1501 value[name] = child_value 

1502 elif value: 

1503 if element.text: 

1504 value["text"] = element.text 

1505 else: 

1506 return element.text 

1507 return value 

1508 

1509 if ElementTree is None: 

1510 warnings.warn("XMP data cannot be read without defusedxml dependency") 

1511 return {} 

1512 if "xmp" not in self.info: 

1513 return {} 

1514 root = ElementTree.fromstring(self.info["xmp"].rstrip(b"\x00 ")) 

1515 return {get_name(root.tag): get_value(root)} 

1516 

1517 def getexif(self) -> Exif: 

1518 """ 

1519 Gets EXIF data from the image. 

1520 

1521 :returns: an :py:class:`~PIL.Image.Exif` object. 

1522 """ 

1523 if self._exif is None: 

1524 self._exif = Exif() 

1525 elif self._exif._loaded: 

1526 return self._exif 

1527 self._exif._loaded = True 

1528 

1529 exif_info = self.info.get("exif") 

1530 if exif_info is None: 

1531 if "Raw profile type exif" in self.info: 

1532 exif_info = bytes.fromhex( 

1533 "".join(self.info["Raw profile type exif"].split("\n")[3:]) 

1534 ) 

1535 elif hasattr(self, "tag_v2"): 

1536 self._exif.bigtiff = self.tag_v2._bigtiff 

1537 self._exif.endian = self.tag_v2._endian 

1538 self._exif.load_from_fp(self.fp, self.tag_v2._offset) 

1539 if exif_info is not None: 

1540 self._exif.load(exif_info) 

1541 

1542 # XMP tags 

1543 if ExifTags.Base.Orientation not in self._exif: 

1544 xmp_tags = self.info.get("XML:com.adobe.xmp") 

1545 pattern: str | bytes = r'tiff:Orientation(="|>)([0-9])' 

1546 if not xmp_tags and (xmp_tags := self.info.get("xmp")): 

1547 pattern = rb'tiff:Orientation(="|>)([0-9])' 

1548 if xmp_tags: 

1549 match = re.search(pattern, xmp_tags) 

1550 if match: 

1551 self._exif[ExifTags.Base.Orientation] = int(match[2]) 

1552 

1553 return self._exif 

1554 

1555 def _reload_exif(self) -> None: 

1556 if self._exif is None or not self._exif._loaded: 

1557 return 

1558 self._exif._loaded = False 

1559 self.getexif() 

1560 

1561 def get_child_images(self) -> list[ImageFile.ImageFile]: 

1562 from . import ImageFile 

1563 

1564 deprecate("Image.Image.get_child_images", 13) 

1565 return ImageFile.ImageFile.get_child_images(self) # type: ignore[arg-type] 

1566 

1567 def getim(self) -> CapsuleType: 

1568 """ 

1569 Returns a capsule that points to the internal image memory. 

1570 

1571 :returns: A capsule object. 

1572 """ 

1573 

1574 self.load() 

1575 return self.im.ptr 

1576 

1577 def getpalette(self, rawmode: str | None = "RGB") -> list[int] | None: 

1578 """ 

1579 Returns the image palette as a list. 

1580 

1581 :param rawmode: The mode in which to return the palette. ``None`` will 

1582 return the palette in its current mode. 

1583 

1584 .. versionadded:: 9.1.0 

1585 

1586 :returns: A list of color values [r, g, b, ...], or None if the 

1587 image has no palette. 

1588 """ 

1589 

1590 self.load() 

1591 try: 

1592 mode = self.im.getpalettemode() 

1593 except ValueError: 

1594 return None # no palette 

1595 if rawmode is None: 

1596 rawmode = mode 

1597 return list(self.im.getpalette(mode, rawmode)) 

1598 

1599 @property 

1600 def has_transparency_data(self) -> bool: 

1601 """ 

1602 Determine if an image has transparency data, whether in the form of an 

1603 alpha channel, a palette with an alpha channel, or a "transparency" key 

1604 in the info dictionary. 

1605 

1606 Note the image might still appear solid, if all of the values shown 

1607 within are opaque. 

1608 

1609 :returns: A boolean. 

1610 """ 

1611 if ( 

1612 self.mode in ("LA", "La", "PA", "RGBA", "RGBa") 

1613 or "transparency" in self.info 

1614 ): 

1615 return True 

1616 if self.mode == "P": 

1617 assert self.palette is not None 

1618 return self.palette.mode.endswith("A") 

1619 return False 

1620 

1621 def apply_transparency(self) -> None: 

1622 """ 

1623 If a P mode image has a "transparency" key in the info dictionary, 

1624 remove the key and instead apply the transparency to the palette. 

1625 Otherwise, the image is unchanged. 

1626 """ 

1627 if self.mode != "P" or "transparency" not in self.info: 

1628 return 

1629 

1630 from . import ImagePalette 

1631 

1632 palette = self.getpalette("RGBA") 

1633 assert palette is not None 

1634 transparency = self.info["transparency"] 

1635 if isinstance(transparency, bytes): 

1636 for i, alpha in enumerate(transparency): 

1637 palette[i * 4 + 3] = alpha 

1638 else: 

1639 palette[transparency * 4 + 3] = 0 

1640 self.palette = ImagePalette.ImagePalette("RGBA", bytes(palette)) 

1641 self.palette.dirty = 1 

1642 

1643 del self.info["transparency"] 

1644 

1645 def getpixel( 

1646 self, xy: tuple[int, int] | list[int] 

1647 ) -> float | tuple[int, ...] | None: 

1648 """ 

1649 Returns the pixel value at a given position. 

1650 

1651 :param xy: The coordinate, given as (x, y). See 

1652 :ref:`coordinate-system`. 

1653 :returns: The pixel value. If the image is a multi-layer image, 

1654 this method returns a tuple. 

1655 """ 

1656 

1657 self.load() 

1658 return self.im.getpixel(tuple(xy)) 

1659 

1660 def getprojection(self) -> tuple[list[int], list[int]]: 

1661 """ 

1662 Get projection to x and y axes 

1663 

1664 :returns: Two sequences, indicating where there are non-zero 

1665 pixels along the X-axis and the Y-axis, respectively. 

1666 """ 

1667 

1668 self.load() 

1669 x, y = self.im.getprojection() 

1670 return list(x), list(y) 

1671 

1672 def histogram( 

1673 self, mask: Image | None = None, extrema: tuple[float, float] | None = None 

1674 ) -> list[int]: 

1675 """ 

1676 Returns a histogram for the image. The histogram is returned as a 

1677 list of pixel counts, one for each pixel value in the source 

1678 image. Counts are grouped into 256 bins for each band, even if 

1679 the image has more than 8 bits per band. If the image has more 

1680 than one band, the histograms for all bands are concatenated (for 

1681 example, the histogram for an "RGB" image contains 768 values). 

1682 

1683 A bilevel image (mode "1") is treated as a grayscale ("L") image 

1684 by this method. 

1685 

1686 If a mask is provided, the method returns a histogram for those 

1687 parts of the image where the mask image is non-zero. The mask 

1688 image must have the same size as the image, and be either a 

1689 bi-level image (mode "1") or a grayscale image ("L"). 

1690 

1691 :param mask: An optional mask. 

1692 :param extrema: An optional tuple of manually-specified extrema. 

1693 :returns: A list containing pixel counts. 

1694 """ 

1695 self.load() 

1696 if mask: 

1697 mask.load() 

1698 return self.im.histogram((0, 0), mask.im) 

1699 if self.mode in ("I", "F"): 

1700 return self.im.histogram( 

1701 extrema if extrema is not None else self.getextrema() 

1702 ) 

1703 return self.im.histogram() 

1704 

1705 def entropy( 

1706 self, mask: Image | None = None, extrema: tuple[float, float] | None = None 

1707 ) -> float: 

1708 """ 

1709 Calculates and returns the entropy for the image. 

1710 

1711 A bilevel image (mode "1") is treated as a grayscale ("L") 

1712 image by this method. 

1713 

1714 If a mask is provided, the method employs the histogram for 

1715 those parts of the image where the mask image is non-zero. 

1716 The mask image must have the same size as the image, and be 

1717 either a bi-level image (mode "1") or a grayscale image ("L"). 

1718 

1719 :param mask: An optional mask. 

1720 :param extrema: An optional tuple of manually-specified extrema. 

1721 :returns: A float value representing the image entropy 

1722 """ 

1723 self.load() 

1724 if mask: 

1725 mask.load() 

1726 return self.im.entropy((0, 0), mask.im) 

1727 if self.mode in ("I", "F"): 

1728 return self.im.entropy( 

1729 extrema if extrema is not None else self.getextrema() 

1730 ) 

1731 return self.im.entropy() 

1732 

1733 def paste( 

1734 self, 

1735 im: Image | str | float | tuple[float, ...], 

1736 box: Image | tuple[int, int, int, int] | tuple[int, int] | None = None, 

1737 mask: Image | None = None, 

1738 ) -> None: 

1739 """ 

1740 Pastes another image into this image. The box argument is either 

1741 a 2-tuple giving the upper left corner, a 4-tuple defining the 

1742 left, upper, right, and lower pixel coordinate, or None (same as 

1743 (0, 0)). See :ref:`coordinate-system`. If a 4-tuple is given, the size 

1744 of the pasted image must match the size of the region. 

1745 

1746 If the modes don't match, the pasted image is converted to the mode of 

1747 this image (see the :py:meth:`~PIL.Image.Image.convert` method for 

1748 details). 

1749 

1750 Instead of an image, the source can be a integer or tuple 

1751 containing pixel values. The method then fills the region 

1752 with the given color. When creating RGB images, you can 

1753 also use color strings as supported by the ImageColor module. 

1754 

1755 If a mask is given, this method updates only the regions 

1756 indicated by the mask. You can use either "1", "L", "LA", "RGBA" 

1757 or "RGBa" images (if present, the alpha band is used as mask). 

1758 Where the mask is 255, the given image is copied as is. Where 

1759 the mask is 0, the current value is preserved. Intermediate 

1760 values will mix the two images together, including their alpha 

1761 channels if they have them. 

1762 

1763 See :py:meth:`~PIL.Image.Image.alpha_composite` if you want to 

1764 combine images with respect to their alpha channels. 

1765 

1766 :param im: Source image or pixel value (integer, float or tuple). 

1767 :param box: An optional 4-tuple giving the region to paste into. 

1768 If a 2-tuple is used instead, it's treated as the upper left 

1769 corner. If omitted or None, the source is pasted into the 

1770 upper left corner. 

1771 

1772 If an image is given as the second argument and there is no 

1773 third, the box defaults to (0, 0), and the second argument 

1774 is interpreted as a mask image. 

1775 :param mask: An optional mask image. 

1776 """ 

1777 

1778 if isinstance(box, Image): 

1779 if mask is not None: 

1780 msg = "If using second argument as mask, third argument must be None" 

1781 raise ValueError(msg) 

1782 # abbreviated paste(im, mask) syntax 

1783 mask = box 

1784 box = None 

1785 

1786 if box is None: 

1787 box = (0, 0) 

1788 

1789 if len(box) == 2: 

1790 # upper left corner given; get size from image or mask 

1791 if isinstance(im, Image): 

1792 size = im.size 

1793 elif isinstance(mask, Image): 

1794 size = mask.size 

1795 else: 

1796 # FIXME: use self.size here? 

1797 msg = "cannot determine region size; use 4-item box" 

1798 raise ValueError(msg) 

1799 box += (box[0] + size[0], box[1] + size[1]) 

1800 

1801 source: core.ImagingCore | str | float | tuple[float, ...] 

1802 if isinstance(im, str): 

1803 from . import ImageColor 

1804 

1805 source = ImageColor.getcolor(im, self.mode) 

1806 elif isinstance(im, Image): 

1807 im.load() 

1808 if self.mode != im.mode: 

1809 if self.mode != "RGB" or im.mode not in ("LA", "RGBA", "RGBa"): 

1810 # should use an adapter for this! 

1811 im = im.convert(self.mode) 

1812 source = im.im 

1813 else: 

1814 source = im 

1815 

1816 self._ensure_mutable() 

1817 

1818 if mask: 

1819 mask.load() 

1820 self.im.paste(source, box, mask.im) 

1821 else: 

1822 self.im.paste(source, box) 

1823 

1824 def alpha_composite( 

1825 self, im: Image, dest: Sequence[int] = (0, 0), source: Sequence[int] = (0, 0) 

1826 ) -> None: 

1827 """'In-place' analog of Image.alpha_composite. Composites an image 

1828 onto this image. 

1829 

1830 :param im: image to composite over this one 

1831 :param dest: Optional 2 tuple (left, top) specifying the upper 

1832 left corner in this (destination) image. 

1833 :param source: Optional 2 (left, top) tuple for the upper left 

1834 corner in the overlay source image, or 4 tuple (left, top, right, 

1835 bottom) for the bounds of the source rectangle 

1836 

1837 Performance Note: Not currently implemented in-place in the core layer. 

1838 """ 

1839 

1840 if not isinstance(source, (list, tuple)): 

1841 msg = "Source must be a list or tuple" 

1842 raise ValueError(msg) 

1843 if not isinstance(dest, (list, tuple)): 

1844 msg = "Destination must be a list or tuple" 

1845 raise ValueError(msg) 

1846 

1847 if len(source) == 4: 

1848 overlay_crop_box = tuple(source) 

1849 elif len(source) == 2: 

1850 overlay_crop_box = tuple(source) + im.size 

1851 else: 

1852 msg = "Source must be a sequence of length 2 or 4" 

1853 raise ValueError(msg) 

1854 

1855 if not len(dest) == 2: 

1856 msg = "Destination must be a sequence of length 2" 

1857 raise ValueError(msg) 

1858 if min(source) < 0: 

1859 msg = "Source must be non-negative" 

1860 raise ValueError(msg) 

1861 

1862 # over image, crop if it's not the whole image. 

1863 if overlay_crop_box == (0, 0) + im.size: 

1864 overlay = im 

1865 else: 

1866 overlay = im.crop(overlay_crop_box) 

1867 

1868 # target for the paste 

1869 box = tuple(dest) + (dest[0] + overlay.width, dest[1] + overlay.height) 

1870 

1871 # destination image. don't copy if we're using the whole image. 

1872 if box == (0, 0) + self.size: 

1873 background = self 

1874 else: 

1875 background = self.crop(box) 

1876 

1877 result = alpha_composite(background, overlay) 

1878 self.paste(result, box) 

1879 

1880 def point( 

1881 self, 

1882 lut: ( 

1883 Sequence[float] 

1884 | NumpyArray 

1885 | Callable[[int], float] 

1886 | Callable[[ImagePointTransform], ImagePointTransform | float] 

1887 | ImagePointHandler 

1888 ), 

1889 mode: str | None = None, 

1890 ) -> Image: 

1891 """ 

1892 Maps this image through a lookup table or function. 

1893 

1894 :param lut: A lookup table, containing 256 (or 65536 if 

1895 self.mode=="I" and mode == "L") values per band in the 

1896 image. A function can be used instead, it should take a 

1897 single argument. The function is called once for each 

1898 possible pixel value, and the resulting table is applied to 

1899 all bands of the image. 

1900 

1901 It may also be an :py:class:`~PIL.Image.ImagePointHandler` 

1902 object:: 

1903 

1904 class Example(Image.ImagePointHandler): 

1905 def point(self, im: Image) -> Image: 

1906 # Return result 

1907 :param mode: Output mode (default is same as input). This can only be used if 

1908 the source image has mode "L" or "P", and the output has mode "1" or the 

1909 source image mode is "I" and the output mode is "L". 

1910 :returns: An :py:class:`~PIL.Image.Image` object. 

1911 """ 

1912 

1913 self.load() 

1914 

1915 if isinstance(lut, ImagePointHandler): 

1916 return lut.point(self) 

1917 

1918 if callable(lut): 

1919 # if it isn't a list, it should be a function 

1920 if self.mode in ("I", "I;16", "F"): 

1921 # check if the function can be used with point_transform 

1922 # UNDONE wiredfool -- I think this prevents us from ever doing 

1923 # a gamma function point transform on > 8bit images. 

1924 scale, offset = _getscaleoffset(lut) # type: ignore[arg-type] 

1925 return self._new(self.im.point_transform(scale, offset)) 

1926 # for other modes, convert the function to a table 

1927 flatLut = [lut(i) for i in range(256)] * self.im.bands # type: ignore[arg-type] 

1928 else: 

1929 flatLut = lut 

1930 

1931 if self.mode == "F": 

1932 # FIXME: _imaging returns a confusing error message for this case 

1933 msg = "point operation not supported for this mode" 

1934 raise ValueError(msg) 

1935 

1936 if mode != "F": 

1937 flatLut = [round(i) for i in flatLut] 

1938 return self._new(self.im.point(flatLut, mode)) 

1939 

1940 def putalpha(self, alpha: Image | int) -> None: 

1941 """ 

1942 Adds or replaces the alpha layer in this image. If the image 

1943 does not have an alpha layer, it's converted to "LA" or "RGBA". 

1944 The new layer must be either "L" or "1". 

1945 

1946 :param alpha: The new alpha layer. This can either be an "L" or "1" 

1947 image having the same size as this image, or an integer. 

1948 """ 

1949 

1950 self._ensure_mutable() 

1951 

1952 if self.mode not in ("LA", "PA", "RGBA"): 

1953 # attempt to promote self to a matching alpha mode 

1954 try: 

1955 mode = getmodebase(self.mode) + "A" 

1956 try: 

1957 self.im.setmode(mode) 

1958 except (AttributeError, ValueError) as e: 

1959 # do things the hard way 

1960 im = self.im.convert(mode) 

1961 if im.mode not in ("LA", "PA", "RGBA"): 

1962 msg = "alpha channel could not be added" 

1963 raise ValueError(msg) from e # sanity check 

1964 self.im = im 

1965 self._mode = self.im.mode 

1966 except KeyError as e: 

1967 msg = "illegal image mode" 

1968 raise ValueError(msg) from e 

1969 

1970 if self.mode in ("LA", "PA"): 

1971 band = 1 

1972 else: 

1973 band = 3 

1974 

1975 if isinstance(alpha, Image): 

1976 # alpha layer 

1977 if alpha.mode not in ("1", "L"): 

1978 msg = "illegal image mode" 

1979 raise ValueError(msg) 

1980 alpha.load() 

1981 if alpha.mode == "1": 

1982 alpha = alpha.convert("L") 

1983 else: 

1984 # constant alpha 

1985 try: 

1986 self.im.fillband(band, alpha) 

1987 except (AttributeError, ValueError): 

1988 # do things the hard way 

1989 alpha = new("L", self.size, alpha) 

1990 else: 

1991 return 

1992 

1993 self.im.putband(alpha.im, band) 

1994 

1995 def putdata( 

1996 self, 

1997 data: Sequence[float] | Sequence[Sequence[int]] | core.ImagingCore | NumpyArray, 

1998 scale: float = 1.0, 

1999 offset: float = 0.0, 

2000 ) -> None: 

2001 """ 

2002 Copies pixel data from a flattened sequence object into the image. The 

2003 values should start at the upper left corner (0, 0), continue to the 

2004 end of the line, followed directly by the first value of the second 

2005 line, and so on. Data will be read until either the image or the 

2006 sequence ends. The scale and offset values are used to adjust the 

2007 sequence values: **pixel = value*scale + offset**. 

2008 

2009 :param data: A flattened sequence object. 

2010 :param scale: An optional scale value. The default is 1.0. 

2011 :param offset: An optional offset value. The default is 0.0. 

2012 """ 

2013 

2014 self._ensure_mutable() 

2015 

2016 self.im.putdata(data, scale, offset) 

2017 

2018 def putpalette( 

2019 self, 

2020 data: ImagePalette.ImagePalette | bytes | Sequence[int], 

2021 rawmode: str = "RGB", 

2022 ) -> None: 

2023 """ 

2024 Attaches a palette to this image. The image must be a "P", "PA", "L" 

2025 or "LA" image. 

2026 

2027 The palette sequence must contain at most 256 colors, made up of one 

2028 integer value for each channel in the raw mode. 

2029 For example, if the raw mode is "RGB", then it can contain at most 768 

2030 values, made up of red, green and blue values for the corresponding pixel 

2031 index in the 256 colors. 

2032 If the raw mode is "RGBA", then it can contain at most 1024 values, 

2033 containing red, green, blue and alpha values. 

2034 

2035 Alternatively, an 8-bit string may be used instead of an integer sequence. 

2036 

2037 :param data: A palette sequence (either a list or a string). 

2038 :param rawmode: The raw mode of the palette. Either "RGB", "RGBA", or a mode 

2039 that can be transformed to "RGB" or "RGBA" (e.g. "R", "BGR;15", "RGBA;L"). 

2040 """ 

2041 from . import ImagePalette 

2042 

2043 if self.mode not in ("L", "LA", "P", "PA"): 

2044 msg = "illegal image mode" 

2045 raise ValueError(msg) 

2046 if isinstance(data, ImagePalette.ImagePalette): 

2047 if data.rawmode is not None: 

2048 palette = ImagePalette.raw(data.rawmode, data.palette) 

2049 else: 

2050 palette = ImagePalette.ImagePalette(palette=data.palette) 

2051 palette.dirty = 1 

2052 else: 

2053 if not isinstance(data, bytes): 

2054 data = bytes(data) 

2055 palette = ImagePalette.raw(rawmode, data) 

2056 self._mode = "PA" if "A" in self.mode else "P" 

2057 self.palette = palette 

2058 self.palette.mode = "RGBA" if "A" in rawmode else "RGB" 

2059 self.load() # install new palette 

2060 

2061 def putpixel( 

2062 self, xy: tuple[int, int], value: float | tuple[int, ...] | list[int] 

2063 ) -> None: 

2064 """ 

2065 Modifies the pixel at the given position. The color is given as 

2066 a single numerical value for single-band images, and a tuple for 

2067 multi-band images. In addition to this, RGB and RGBA tuples are 

2068 accepted for P and PA images. 

2069 

2070 Note that this method is relatively slow. For more extensive changes, 

2071 use :py:meth:`~PIL.Image.Image.paste` or the :py:mod:`~PIL.ImageDraw` 

2072 module instead. 

2073 

2074 See: 

2075 

2076 * :py:meth:`~PIL.Image.Image.paste` 

2077 * :py:meth:`~PIL.Image.Image.putdata` 

2078 * :py:mod:`~PIL.ImageDraw` 

2079 

2080 :param xy: The pixel coordinate, given as (x, y). See 

2081 :ref:`coordinate-system`. 

2082 :param value: The pixel value. 

2083 """ 

2084 

2085 if self.readonly: 

2086 self._copy() 

2087 self.load() 

2088 

2089 if ( 

2090 self.mode in ("P", "PA") 

2091 and isinstance(value, (list, tuple)) 

2092 and len(value) in [3, 4] 

2093 ): 

2094 # RGB or RGBA value for a P or PA image 

2095 if self.mode == "PA": 

2096 alpha = value[3] if len(value) == 4 else 255 

2097 value = value[:3] 

2098 assert self.palette is not None 

2099 palette_index = self.palette.getcolor(tuple(value), self) 

2100 value = (palette_index, alpha) if self.mode == "PA" else palette_index 

2101 return self.im.putpixel(xy, value) 

2102 

2103 def remap_palette( 

2104 self, dest_map: list[int], source_palette: bytes | bytearray | None = None 

2105 ) -> Image: 

2106 """ 

2107 Rewrites the image to reorder the palette. 

2108 

2109 :param dest_map: A list of indexes into the original palette. 

2110 e.g. ``[1,0]`` would swap a two item palette, and ``list(range(256))`` 

2111 is the identity transform. 

2112 :param source_palette: Bytes or None. 

2113 :returns: An :py:class:`~PIL.Image.Image` object. 

2114 

2115 """ 

2116 from . import ImagePalette 

2117 

2118 if self.mode not in ("L", "P"): 

2119 msg = "illegal image mode" 

2120 raise ValueError(msg) 

2121 

2122 bands = 3 

2123 palette_mode = "RGB" 

2124 if source_palette is None: 

2125 if self.mode == "P": 

2126 self.load() 

2127 palette_mode = self.im.getpalettemode() 

2128 if palette_mode == "RGBA": 

2129 bands = 4 

2130 source_palette = self.im.getpalette(palette_mode, palette_mode) 

2131 else: # L-mode 

2132 source_palette = bytearray(i // 3 for i in range(768)) 

2133 elif len(source_palette) > 768: 

2134 bands = 4 

2135 palette_mode = "RGBA" 

2136 

2137 palette_bytes = b"" 

2138 new_positions = [0] * 256 

2139 

2140 # pick only the used colors from the palette 

2141 for i, oldPosition in enumerate(dest_map): 

2142 palette_bytes += source_palette[ 

2143 oldPosition * bands : oldPosition * bands + bands 

2144 ] 

2145 new_positions[oldPosition] = i 

2146 

2147 # replace the palette color id of all pixel with the new id 

2148 

2149 # Palette images are [0..255], mapped through a 1 or 3 

2150 # byte/color map. We need to remap the whole image 

2151 # from palette 1 to palette 2. New_positions is 

2152 # an array of indexes into palette 1. Palette 2 is 

2153 # palette 1 with any holes removed. 

2154 

2155 # We're going to leverage the convert mechanism to use the 

2156 # C code to remap the image from palette 1 to palette 2, 

2157 # by forcing the source image into 'L' mode and adding a 

2158 # mapping 'L' mode palette, then converting back to 'L' 

2159 # sans palette thus converting the image bytes, then 

2160 # assigning the optimized RGB palette. 

2161 

2162 # perf reference, 9500x4000 gif, w/~135 colors 

2163 # 14 sec prepatch, 1 sec postpatch with optimization forced. 

2164 

2165 mapping_palette = bytearray(new_positions) 

2166 

2167 m_im = self.copy() 

2168 m_im._mode = "P" 

2169 

2170 m_im.palette = ImagePalette.ImagePalette( 

2171 palette_mode, palette=mapping_palette * bands 

2172 ) 

2173 # possibly set palette dirty, then 

2174 # m_im.putpalette(mapping_palette, 'L') # converts to 'P' 

2175 # or just force it. 

2176 # UNDONE -- this is part of the general issue with palettes 

2177 m_im.im.putpalette(palette_mode, palette_mode + ";L", m_im.palette.tobytes()) 

2178 

2179 m_im = m_im.convert("L") 

2180 

2181 m_im.putpalette(palette_bytes, palette_mode) 

2182 m_im.palette = ImagePalette.ImagePalette(palette_mode, palette=palette_bytes) 

2183 

2184 if "transparency" in self.info: 

2185 try: 

2186 m_im.info["transparency"] = dest_map.index(self.info["transparency"]) 

2187 except ValueError: 

2188 if "transparency" in m_im.info: 

2189 del m_im.info["transparency"] 

2190 

2191 return m_im 

2192 

2193 def _get_safe_box( 

2194 self, 

2195 size: tuple[int, int], 

2196 resample: Resampling, 

2197 box: tuple[float, float, float, float], 

2198 ) -> tuple[int, int, int, int]: 

2199 """Expands the box so it includes adjacent pixels 

2200 that may be used by resampling with the given resampling filter. 

2201 """ 

2202 filter_support = _filters_support[resample] - 0.5 

2203 scale_x = (box[2] - box[0]) / size[0] 

2204 scale_y = (box[3] - box[1]) / size[1] 

2205 support_x = filter_support * scale_x 

2206 support_y = filter_support * scale_y 

2207 

2208 return ( 

2209 max(0, int(box[0] - support_x)), 

2210 max(0, int(box[1] - support_y)), 

2211 min(self.size[0], math.ceil(box[2] + support_x)), 

2212 min(self.size[1], math.ceil(box[3] + support_y)), 

2213 ) 

2214 

2215 def resize( 

2216 self, 

2217 size: tuple[int, int] | list[int] | NumpyArray, 

2218 resample: int | None = None, 

2219 box: tuple[float, float, float, float] | None = None, 

2220 reducing_gap: float | None = None, 

2221 ) -> Image: 

2222 """ 

2223 Returns a resized copy of this image. 

2224 

2225 :param size: The requested size in pixels, as a tuple or array: 

2226 (width, height). 

2227 :param resample: An optional resampling filter. This can be 

2228 one of :py:data:`Resampling.NEAREST`, :py:data:`Resampling.BOX`, 

2229 :py:data:`Resampling.BILINEAR`, :py:data:`Resampling.HAMMING`, 

2230 :py:data:`Resampling.BICUBIC` or :py:data:`Resampling.LANCZOS`. 

2231 If the image has mode "1" or "P", it is always set to 

2232 :py:data:`Resampling.NEAREST`. If the image mode is "BGR;15", 

2233 "BGR;16" or "BGR;24", then the default filter is 

2234 :py:data:`Resampling.NEAREST`. Otherwise, the default filter is 

2235 :py:data:`Resampling.BICUBIC`. See: :ref:`concept-filters`. 

2236 :param box: An optional 4-tuple of floats providing 

2237 the source image region to be scaled. 

2238 The values must be within (0, 0, width, height) rectangle. 

2239 If omitted or None, the entire source is used. 

2240 :param reducing_gap: Apply optimization by resizing the image 

2241 in two steps. First, reducing the image by integer times 

2242 using :py:meth:`~PIL.Image.Image.reduce`. 

2243 Second, resizing using regular resampling. The last step 

2244 changes size no less than by ``reducing_gap`` times. 

2245 ``reducing_gap`` may be None (no first step is performed) 

2246 or should be greater than 1.0. The bigger ``reducing_gap``, 

2247 the closer the result to the fair resampling. 

2248 The smaller ``reducing_gap``, the faster resizing. 

2249 With ``reducing_gap`` greater or equal to 3.0, the result is 

2250 indistinguishable from fair resampling in most cases. 

2251 The default value is None (no optimization). 

2252 :returns: An :py:class:`~PIL.Image.Image` object. 

2253 """ 

2254 

2255 if resample is None: 

2256 bgr = self.mode.startswith("BGR;") 

2257 resample = Resampling.NEAREST if bgr else Resampling.BICUBIC 

2258 elif resample not in ( 

2259 Resampling.NEAREST, 

2260 Resampling.BILINEAR, 

2261 Resampling.BICUBIC, 

2262 Resampling.LANCZOS, 

2263 Resampling.BOX, 

2264 Resampling.HAMMING, 

2265 ): 

2266 msg = f"Unknown resampling filter ({resample})." 

2267 

2268 filters = [ 

2269 f"{filter[1]} ({filter[0]})" 

2270 for filter in ( 

2271 (Resampling.NEAREST, "Image.Resampling.NEAREST"), 

2272 (Resampling.LANCZOS, "Image.Resampling.LANCZOS"), 

2273 (Resampling.BILINEAR, "Image.Resampling.BILINEAR"), 

2274 (Resampling.BICUBIC, "Image.Resampling.BICUBIC"), 

2275 (Resampling.BOX, "Image.Resampling.BOX"), 

2276 (Resampling.HAMMING, "Image.Resampling.HAMMING"), 

2277 ) 

2278 ] 

2279 msg += f" Use {', '.join(filters[:-1])} or {filters[-1]}" 

2280 raise ValueError(msg) 

2281 

2282 if reducing_gap is not None and reducing_gap < 1.0: 

2283 msg = "reducing_gap must be 1.0 or greater" 

2284 raise ValueError(msg) 

2285 

2286 if box is None: 

2287 box = (0, 0) + self.size 

2288 

2289 size = tuple(size) 

2290 if self.size == size and box == (0, 0) + self.size: 

2291 return self.copy() 

2292 

2293 if self.mode in ("1", "P"): 

2294 resample = Resampling.NEAREST 

2295 

2296 if self.mode in ["LA", "RGBA"] and resample != Resampling.NEAREST: 

2297 im = self.convert({"LA": "La", "RGBA": "RGBa"}[self.mode]) 

2298 im = im.resize(size, resample, box) 

2299 return im.convert(self.mode) 

2300 

2301 self.load() 

2302 

2303 if reducing_gap is not None and resample != Resampling.NEAREST: 

2304 factor_x = int((box[2] - box[0]) / size[0] / reducing_gap) or 1 

2305 factor_y = int((box[3] - box[1]) / size[1] / reducing_gap) or 1 

2306 if factor_x > 1 or factor_y > 1: 

2307 reduce_box = self._get_safe_box(size, cast(Resampling, resample), box) 

2308 factor = (factor_x, factor_y) 

2309 self = ( 

2310 self.reduce(factor, box=reduce_box) 

2311 if callable(self.reduce) 

2312 else Image.reduce(self, factor, box=reduce_box) 

2313 ) 

2314 box = ( 

2315 (box[0] - reduce_box[0]) / factor_x, 

2316 (box[1] - reduce_box[1]) / factor_y, 

2317 (box[2] - reduce_box[0]) / factor_x, 

2318 (box[3] - reduce_box[1]) / factor_y, 

2319 ) 

2320 

2321 return self._new(self.im.resize(size, resample, box)) 

2322 

2323 def reduce( 

2324 self, 

2325 factor: int | tuple[int, int], 

2326 box: tuple[int, int, int, int] | None = None, 

2327 ) -> Image: 

2328 """ 

2329 Returns a copy of the image reduced ``factor`` times. 

2330 If the size of the image is not dividable by ``factor``, 

2331 the resulting size will be rounded up. 

2332 

2333 :param factor: A greater than 0 integer or tuple of two integers 

2334 for width and height separately. 

2335 :param box: An optional 4-tuple of ints providing 

2336 the source image region to be reduced. 

2337 The values must be within ``(0, 0, width, height)`` rectangle. 

2338 If omitted or ``None``, the entire source is used. 

2339 """ 

2340 if not isinstance(factor, (list, tuple)): 

2341 factor = (factor, factor) 

2342 

2343 if box is None: 

2344 box = (0, 0) + self.size 

2345 

2346 if factor == (1, 1) and box == (0, 0) + self.size: 

2347 return self.copy() 

2348 

2349 if self.mode in ["LA", "RGBA"]: 

2350 im = self.convert({"LA": "La", "RGBA": "RGBa"}[self.mode]) 

2351 im = im.reduce(factor, box) 

2352 return im.convert(self.mode) 

2353 

2354 self.load() 

2355 

2356 return self._new(self.im.reduce(factor, box)) 

2357 

2358 def rotate( 

2359 self, 

2360 angle: float, 

2361 resample: Resampling = Resampling.NEAREST, 

2362 expand: int | bool = False, 

2363 center: tuple[float, float] | None = None, 

2364 translate: tuple[int, int] | None = None, 

2365 fillcolor: float | tuple[float, ...] | str | None = None, 

2366 ) -> Image: 

2367 """ 

2368 Returns a rotated copy of this image. This method returns a 

2369 copy of this image, rotated the given number of degrees counter 

2370 clockwise around its centre. 

2371 

2372 :param angle: In degrees counter clockwise. 

2373 :param resample: An optional resampling filter. This can be 

2374 one of :py:data:`Resampling.NEAREST` (use nearest neighbour), 

2375 :py:data:`Resampling.BILINEAR` (linear interpolation in a 2x2 

2376 environment), or :py:data:`Resampling.BICUBIC` (cubic spline 

2377 interpolation in a 4x4 environment). If omitted, or if the image has 

2378 mode "1" or "P", it is set to :py:data:`Resampling.NEAREST`. 

2379 See :ref:`concept-filters`. 

2380 :param expand: Optional expansion flag. If true, expands the output 

2381 image to make it large enough to hold the entire rotated image. 

2382 If false or omitted, make the output image the same size as the 

2383 input image. Note that the expand flag assumes rotation around 

2384 the center and no translation. 

2385 :param center: Optional center of rotation (a 2-tuple). Origin is 

2386 the upper left corner. Default is the center of the image. 

2387 :param translate: An optional post-rotate translation (a 2-tuple). 

2388 :param fillcolor: An optional color for area outside the rotated image. 

2389 :returns: An :py:class:`~PIL.Image.Image` object. 

2390 """ 

2391 

2392 angle = angle % 360.0 

2393 

2394 # Fast paths regardless of filter, as long as we're not 

2395 # translating or changing the center. 

2396 if not (center or translate): 

2397 if angle == 0: 

2398 return self.copy() 

2399 if angle == 180: 

2400 return self.transpose(Transpose.ROTATE_180) 

2401 if angle in (90, 270) and (expand or self.width == self.height): 

2402 return self.transpose( 

2403 Transpose.ROTATE_90 if angle == 90 else Transpose.ROTATE_270 

2404 ) 

2405 

2406 # Calculate the affine matrix. Note that this is the reverse 

2407 # transformation (from destination image to source) because we 

2408 # want to interpolate the (discrete) destination pixel from 

2409 # the local area around the (floating) source pixel. 

2410 

2411 # The matrix we actually want (note that it operates from the right): 

2412 # (1, 0, tx) (1, 0, cx) ( cos a, sin a, 0) (1, 0, -cx) 

2413 # (0, 1, ty) * (0, 1, cy) * (-sin a, cos a, 0) * (0, 1, -cy) 

2414 # (0, 0, 1) (0, 0, 1) ( 0, 0, 1) (0, 0, 1) 

2415 

2416 # The reverse matrix is thus: 

2417 # (1, 0, cx) ( cos -a, sin -a, 0) (1, 0, -cx) (1, 0, -tx) 

2418 # (0, 1, cy) * (-sin -a, cos -a, 0) * (0, 1, -cy) * (0, 1, -ty) 

2419 # (0, 0, 1) ( 0, 0, 1) (0, 0, 1) (0, 0, 1) 

2420 

2421 # In any case, the final translation may be updated at the end to 

2422 # compensate for the expand flag. 

2423 

2424 w, h = self.size 

2425 

2426 if translate is None: 

2427 post_trans = (0, 0) 

2428 else: 

2429 post_trans = translate 

2430 if center is None: 

2431 center = (w / 2, h / 2) 

2432 

2433 angle = -math.radians(angle) 

2434 matrix = [ 

2435 round(math.cos(angle), 15), 

2436 round(math.sin(angle), 15), 

2437 0.0, 

2438 round(-math.sin(angle), 15), 

2439 round(math.cos(angle), 15), 

2440 0.0, 

2441 ] 

2442 

2443 def transform(x: float, y: float, matrix: list[float]) -> tuple[float, float]: 

2444 (a, b, c, d, e, f) = matrix 

2445 return a * x + b * y + c, d * x + e * y + f 

2446 

2447 matrix[2], matrix[5] = transform( 

2448 -center[0] - post_trans[0], -center[1] - post_trans[1], matrix 

2449 ) 

2450 matrix[2] += center[0] 

2451 matrix[5] += center[1] 

2452 

2453 if expand: 

2454 # calculate output size 

2455 xx = [] 

2456 yy = [] 

2457 for x, y in ((0, 0), (w, 0), (w, h), (0, h)): 

2458 transformed_x, transformed_y = transform(x, y, matrix) 

2459 xx.append(transformed_x) 

2460 yy.append(transformed_y) 

2461 nw = math.ceil(max(xx)) - math.floor(min(xx)) 

2462 nh = math.ceil(max(yy)) - math.floor(min(yy)) 

2463 

2464 # We multiply a translation matrix from the right. Because of its 

2465 # special form, this is the same as taking the image of the 

2466 # translation vector as new translation vector. 

2467 matrix[2], matrix[5] = transform(-(nw - w) / 2.0, -(nh - h) / 2.0, matrix) 

2468 w, h = nw, nh 

2469 

2470 return self.transform( 

2471 (w, h), Transform.AFFINE, matrix, resample, fillcolor=fillcolor 

2472 ) 

2473 

2474 def save( 

2475 self, fp: StrOrBytesPath | IO[bytes], format: str | None = None, **params: Any 

2476 ) -> None: 

2477 """ 

2478 Saves this image under the given filename. If no format is 

2479 specified, the format to use is determined from the filename 

2480 extension, if possible. 

2481 

2482 Keyword options can be used to provide additional instructions 

2483 to the writer. If a writer doesn't recognise an option, it is 

2484 silently ignored. The available options are described in the 

2485 :doc:`image format documentation 

2486 <../handbook/image-file-formats>` for each writer. 

2487 

2488 You can use a file object instead of a filename. In this case, 

2489 you must always specify the format. The file object must 

2490 implement the ``seek``, ``tell``, and ``write`` 

2491 methods, and be opened in binary mode. 

2492 

2493 :param fp: A filename (string), os.PathLike object or file object. 

2494 :param format: Optional format override. If omitted, the 

2495 format to use is determined from the filename extension. 

2496 If a file object was used instead of a filename, this 

2497 parameter should always be used. 

2498 :param params: Extra parameters to the image writer. These can also be 

2499 set on the image itself through ``encoderinfo``. This is useful when 

2500 saving multiple images:: 

2501 

2502 # Saving XMP data to a single image 

2503 from PIL import Image 

2504 red = Image.new("RGB", (1, 1), "#f00") 

2505 red.save("out.mpo", xmp=b"test") 

2506 

2507 # Saving XMP data to the second frame of an image 

2508 from PIL import Image 

2509 black = Image.new("RGB", (1, 1)) 

2510 red = Image.new("RGB", (1, 1), "#f00") 

2511 red.encoderinfo = {"xmp": b"test"} 

2512 black.save("out.mpo", save_all=True, append_images=[red]) 

2513 :returns: None 

2514 :exception ValueError: If the output format could not be determined 

2515 from the file name. Use the format option to solve this. 

2516 :exception OSError: If the file could not be written. The file 

2517 may have been created, and may contain partial data. 

2518 """ 

2519 

2520 filename: str | bytes = "" 

2521 open_fp = False 

2522 if is_path(fp): 

2523 filename = os.fspath(fp) 

2524 open_fp = True 

2525 elif fp == sys.stdout: 

2526 try: 

2527 fp = sys.stdout.buffer 

2528 except AttributeError: 

2529 pass 

2530 if not filename and hasattr(fp, "name") and is_path(fp.name): 

2531 # only set the name for metadata purposes 

2532 filename = os.fspath(fp.name) 

2533 

2534 preinit() 

2535 

2536 filename_ext = os.path.splitext(filename)[1].lower() 

2537 ext = filename_ext.decode() if isinstance(filename_ext, bytes) else filename_ext 

2538 

2539 if not format: 

2540 if ext not in EXTENSION: 

2541 init() 

2542 try: 

2543 format = EXTENSION[ext] 

2544 except KeyError as e: 

2545 msg = f"unknown file extension: {ext}" 

2546 raise ValueError(msg) from e 

2547 

2548 from . import ImageFile 

2549 

2550 # may mutate self! 

2551 if isinstance(self, ImageFile.ImageFile) and os.path.abspath( 

2552 filename 

2553 ) == os.path.abspath(self.filename): 

2554 self._ensure_mutable() 

2555 else: 

2556 self.load() 

2557 

2558 save_all = params.pop("save_all", None) 

2559 self.encoderinfo = {**getattr(self, "encoderinfo", {}), **params} 

2560 self.encoderconfig: tuple[Any, ...] = () 

2561 

2562 if format.upper() not in SAVE: 

2563 init() 

2564 if save_all or ( 

2565 save_all is None 

2566 and params.get("append_images") 

2567 and format.upper() in SAVE_ALL 

2568 ): 

2569 save_handler = SAVE_ALL[format.upper()] 

2570 else: 

2571 save_handler = SAVE[format.upper()] 

2572 

2573 created = False 

2574 if open_fp: 

2575 created = not os.path.exists(filename) 

2576 if params.get("append", False): 

2577 # Open also for reading ("+"), because TIFF save_all 

2578 # writer needs to go back and edit the written data. 

2579 fp = builtins.open(filename, "r+b") 

2580 else: 

2581 fp = builtins.open(filename, "w+b") 

2582 else: 

2583 fp = cast(IO[bytes], fp) 

2584 

2585 try: 

2586 save_handler(self, fp, filename) 

2587 except Exception: 

2588 if open_fp: 

2589 fp.close() 

2590 if created: 

2591 try: 

2592 os.remove(filename) 

2593 except PermissionError: 

2594 pass 

2595 raise 

2596 finally: 

2597 try: 

2598 del self.encoderinfo 

2599 except AttributeError: 

2600 pass 

2601 if open_fp: 

2602 fp.close() 

2603 

2604 def seek(self, frame: int) -> None: 

2605 """ 

2606 Seeks to the given frame in this sequence file. If you seek 

2607 beyond the end of the sequence, the method raises an 

2608 ``EOFError`` exception. When a sequence file is opened, the 

2609 library automatically seeks to frame 0. 

2610 

2611 See :py:meth:`~PIL.Image.Image.tell`. 

2612 

2613 If defined, :attr:`~PIL.Image.Image.n_frames` refers to the 

2614 number of available frames. 

2615 

2616 :param frame: Frame number, starting at 0. 

2617 :exception EOFError: If the call attempts to seek beyond the end 

2618 of the sequence. 

2619 """ 

2620 

2621 # overridden by file handlers 

2622 if frame != 0: 

2623 msg = "no more images in file" 

2624 raise EOFError(msg) 

2625 

2626 def show(self, title: str | None = None) -> None: 

2627 """ 

2628 Displays this image. This method is mainly intended for debugging purposes. 

2629 

2630 This method calls :py:func:`PIL.ImageShow.show` internally. You can use 

2631 :py:func:`PIL.ImageShow.register` to override its default behaviour. 

2632 

2633 The image is first saved to a temporary file. By default, it will be in 

2634 PNG format. 

2635 

2636 On Unix, the image is then opened using the **xdg-open**, **display**, 

2637 **gm**, **eog** or **xv** utility, depending on which one can be found. 

2638 

2639 On macOS, the image is opened with the native Preview application. 

2640 

2641 On Windows, the image is opened with the standard PNG display utility. 

2642 

2643 :param title: Optional title to use for the image window, where possible. 

2644 """ 

2645 

2646 _show(self, title=title) 

2647 

2648 def split(self) -> tuple[Image, ...]: 

2649 """ 

2650 Split this image into individual bands. This method returns a 

2651 tuple of individual image bands from an image. For example, 

2652 splitting an "RGB" image creates three new images each 

2653 containing a copy of one of the original bands (red, green, 

2654 blue). 

2655 

2656 If you need only one band, :py:meth:`~PIL.Image.Image.getchannel` 

2657 method can be more convenient and faster. 

2658 

2659 :returns: A tuple containing bands. 

2660 """ 

2661 

2662 self.load() 

2663 if self.im.bands == 1: 

2664 return (self.copy(),) 

2665 return tuple(map(self._new, self.im.split())) 

2666 

2667 def getchannel(self, channel: int | str) -> Image: 

2668 """ 

2669 Returns an image containing a single channel of the source image. 

2670 

2671 :param channel: What channel to return. Could be index 

2672 (0 for "R" channel of "RGB") or channel name 

2673 ("A" for alpha channel of "RGBA"). 

2674 :returns: An image in "L" mode. 

2675 

2676 .. versionadded:: 4.3.0 

2677 """ 

2678 self.load() 

2679 

2680 if isinstance(channel, str): 

2681 try: 

2682 channel = self.getbands().index(channel) 

2683 except ValueError as e: 

2684 msg = f'The image has no channel "{channel}"' 

2685 raise ValueError(msg) from e 

2686 

2687 return self._new(self.im.getband(channel)) 

2688 

2689 def tell(self) -> int: 

2690 """ 

2691 Returns the current frame number. See :py:meth:`~PIL.Image.Image.seek`. 

2692 

2693 If defined, :attr:`~PIL.Image.Image.n_frames` refers to the 

2694 number of available frames. 

2695 

2696 :returns: Frame number, starting with 0. 

2697 """ 

2698 return 0 

2699 

2700 def thumbnail( 

2701 self, 

2702 size: tuple[float, float], 

2703 resample: Resampling = Resampling.BICUBIC, 

2704 reducing_gap: float | None = 2.0, 

2705 ) -> None: 

2706 """ 

2707 Make this image into a thumbnail. This method modifies the 

2708 image to contain a thumbnail version of itself, no larger than 

2709 the given size. This method calculates an appropriate thumbnail 

2710 size to preserve the aspect of the image, calls the 

2711 :py:meth:`~PIL.Image.Image.draft` method to configure the file reader 

2712 (where applicable), and finally resizes the image. 

2713 

2714 Note that this function modifies the :py:class:`~PIL.Image.Image` 

2715 object in place. If you need to use the full resolution image as well, 

2716 apply this method to a :py:meth:`~PIL.Image.Image.copy` of the original 

2717 image. 

2718 

2719 :param size: The requested size in pixels, as a 2-tuple: 

2720 (width, height). 

2721 :param resample: Optional resampling filter. This can be one 

2722 of :py:data:`Resampling.NEAREST`, :py:data:`Resampling.BOX`, 

2723 :py:data:`Resampling.BILINEAR`, :py:data:`Resampling.HAMMING`, 

2724 :py:data:`Resampling.BICUBIC` or :py:data:`Resampling.LANCZOS`. 

2725 If omitted, it defaults to :py:data:`Resampling.BICUBIC`. 

2726 (was :py:data:`Resampling.NEAREST` prior to version 2.5.0). 

2727 See: :ref:`concept-filters`. 

2728 :param reducing_gap: Apply optimization by resizing the image 

2729 in two steps. First, reducing the image by integer times 

2730 using :py:meth:`~PIL.Image.Image.reduce` or 

2731 :py:meth:`~PIL.Image.Image.draft` for JPEG images. 

2732 Second, resizing using regular resampling. The last step 

2733 changes size no less than by ``reducing_gap`` times. 

2734 ``reducing_gap`` may be None (no first step is performed) 

2735 or should be greater than 1.0. The bigger ``reducing_gap``, 

2736 the closer the result to the fair resampling. 

2737 The smaller ``reducing_gap``, the faster resizing. 

2738 With ``reducing_gap`` greater or equal to 3.0, the result is 

2739 indistinguishable from fair resampling in most cases. 

2740 The default value is 2.0 (very close to fair resampling 

2741 while still being faster in many cases). 

2742 :returns: None 

2743 """ 

2744 

2745 provided_size = tuple(map(math.floor, size)) 

2746 

2747 def preserve_aspect_ratio() -> tuple[int, int] | None: 

2748 def round_aspect(number: float, key: Callable[[int], float]) -> int: 

2749 return max(min(math.floor(number), math.ceil(number), key=key), 1) 

2750 

2751 x, y = provided_size 

2752 if x >= self.width and y >= self.height: 

2753 return None 

2754 

2755 aspect = self.width / self.height 

2756 if x / y >= aspect: 

2757 x = round_aspect(y * aspect, key=lambda n: abs(aspect - n / y)) 

2758 else: 

2759 y = round_aspect( 

2760 x / aspect, key=lambda n: 0 if n == 0 else abs(aspect - x / n) 

2761 ) 

2762 return x, y 

2763 

2764 preserved_size = preserve_aspect_ratio() 

2765 if preserved_size is None: 

2766 return 

2767 final_size = preserved_size 

2768 

2769 box = None 

2770 if reducing_gap is not None: 

2771 res = self.draft( 

2772 None, (int(size[0] * reducing_gap), int(size[1] * reducing_gap)) 

2773 ) 

2774 if res is not None: 

2775 box = res[1] 

2776 

2777 if self.size != final_size: 

2778 im = self.resize(final_size, resample, box=box, reducing_gap=reducing_gap) 

2779 

2780 self.im = im.im 

2781 self._size = final_size 

2782 self._mode = self.im.mode 

2783 

2784 self.readonly = 0 

2785 

2786 # FIXME: the different transform methods need further explanation 

2787 # instead of bloating the method docs, add a separate chapter. 

2788 def transform( 

2789 self, 

2790 size: tuple[int, int], 

2791 method: Transform | ImageTransformHandler | SupportsGetData, 

2792 data: Sequence[Any] | None = None, 

2793 resample: int = Resampling.NEAREST, 

2794 fill: int = 1, 

2795 fillcolor: float | tuple[float, ...] | str | None = None, 

2796 ) -> Image: 

2797 """ 

2798 Transforms this image. This method creates a new image with the 

2799 given size, and the same mode as the original, and copies data 

2800 to the new image using the given transform. 

2801 

2802 :param size: The output size in pixels, as a 2-tuple: 

2803 (width, height). 

2804 :param method: The transformation method. This is one of 

2805 :py:data:`Transform.EXTENT` (cut out a rectangular subregion), 

2806 :py:data:`Transform.AFFINE` (affine transform), 

2807 :py:data:`Transform.PERSPECTIVE` (perspective transform), 

2808 :py:data:`Transform.QUAD` (map a quadrilateral to a rectangle), or 

2809 :py:data:`Transform.MESH` (map a number of source quadrilaterals 

2810 in one operation). 

2811 

2812 It may also be an :py:class:`~PIL.Image.ImageTransformHandler` 

2813 object:: 

2814 

2815 class Example(Image.ImageTransformHandler): 

2816 def transform(self, size, data, resample, fill=1): 

2817 # Return result 

2818 

2819 Implementations of :py:class:`~PIL.Image.ImageTransformHandler` 

2820 for some of the :py:class:`Transform` methods are provided 

2821 in :py:mod:`~PIL.ImageTransform`. 

2822 

2823 It may also be an object with a ``method.getdata`` method 

2824 that returns a tuple supplying new ``method`` and ``data`` values:: 

2825 

2826 class Example: 

2827 def getdata(self): 

2828 method = Image.Transform.EXTENT 

2829 data = (0, 0, 100, 100) 

2830 return method, data 

2831 :param data: Extra data to the transformation method. 

2832 :param resample: Optional resampling filter. It can be one of 

2833 :py:data:`Resampling.NEAREST` (use nearest neighbour), 

2834 :py:data:`Resampling.BILINEAR` (linear interpolation in a 2x2 

2835 environment), or :py:data:`Resampling.BICUBIC` (cubic spline 

2836 interpolation in a 4x4 environment). If omitted, or if the image 

2837 has mode "1" or "P", it is set to :py:data:`Resampling.NEAREST`. 

2838 See: :ref:`concept-filters`. 

2839 :param fill: If ``method`` is an 

2840 :py:class:`~PIL.Image.ImageTransformHandler` object, this is one of 

2841 the arguments passed to it. Otherwise, it is unused. 

2842 :param fillcolor: Optional fill color for the area outside the 

2843 transform in the output image. 

2844 :returns: An :py:class:`~PIL.Image.Image` object. 

2845 """ 

2846 

2847 if self.mode in ("LA", "RGBA") and resample != Resampling.NEAREST: 

2848 return ( 

2849 self.convert({"LA": "La", "RGBA": "RGBa"}[self.mode]) 

2850 .transform(size, method, data, resample, fill, fillcolor) 

2851 .convert(self.mode) 

2852 ) 

2853 

2854 if isinstance(method, ImageTransformHandler): 

2855 return method.transform(size, self, resample=resample, fill=fill) 

2856 

2857 if hasattr(method, "getdata"): 

2858 # compatibility w. old-style transform objects 

2859 method, data = method.getdata() 

2860 

2861 if data is None: 

2862 msg = "missing method data" 

2863 raise ValueError(msg) 

2864 

2865 im = new(self.mode, size, fillcolor) 

2866 if self.mode == "P" and self.palette: 

2867 im.palette = self.palette.copy() 

2868 im.info = self.info.copy() 

2869 if method == Transform.MESH: 

2870 # list of quads 

2871 for box, quad in data: 

2872 im.__transformer( 

2873 box, self, Transform.QUAD, quad, resample, fillcolor is None 

2874 ) 

2875 else: 

2876 im.__transformer( 

2877 (0, 0) + size, self, method, data, resample, fillcolor is None 

2878 ) 

2879 

2880 return im 

2881 

2882 def __transformer( 

2883 self, 

2884 box: tuple[int, int, int, int], 

2885 image: Image, 

2886 method: Transform, 

2887 data: Sequence[float], 

2888 resample: int = Resampling.NEAREST, 

2889 fill: bool = True, 

2890 ) -> None: 

2891 w = box[2] - box[0] 

2892 h = box[3] - box[1] 

2893 

2894 if method == Transform.AFFINE: 

2895 data = data[:6] 

2896 

2897 elif method == Transform.EXTENT: 

2898 # convert extent to an affine transform 

2899 x0, y0, x1, y1 = data 

2900 xs = (x1 - x0) / w 

2901 ys = (y1 - y0) / h 

2902 method = Transform.AFFINE 

2903 data = (xs, 0, x0, 0, ys, y0) 

2904 

2905 elif method == Transform.PERSPECTIVE: 

2906 data = data[:8] 

2907 

2908 elif method == Transform.QUAD: 

2909 # quadrilateral warp. data specifies the four corners 

2910 # given as NW, SW, SE, and NE. 

2911 nw = data[:2] 

2912 sw = data[2:4] 

2913 se = data[4:6] 

2914 ne = data[6:8] 

2915 x0, y0 = nw 

2916 As = 1.0 / w 

2917 At = 1.0 / h 

2918 data = ( 

2919 x0, 

2920 (ne[0] - x0) * As, 

2921 (sw[0] - x0) * At, 

2922 (se[0] - sw[0] - ne[0] + x0) * As * At, 

2923 y0, 

2924 (ne[1] - y0) * As, 

2925 (sw[1] - y0) * At, 

2926 (se[1] - sw[1] - ne[1] + y0) * As * At, 

2927 ) 

2928 

2929 else: 

2930 msg = "unknown transformation method" 

2931 raise ValueError(msg) 

2932 

2933 if resample not in ( 

2934 Resampling.NEAREST, 

2935 Resampling.BILINEAR, 

2936 Resampling.BICUBIC, 

2937 ): 

2938 if resample in (Resampling.BOX, Resampling.HAMMING, Resampling.LANCZOS): 

2939 unusable: dict[int, str] = { 

2940 Resampling.BOX: "Image.Resampling.BOX", 

2941 Resampling.HAMMING: "Image.Resampling.HAMMING", 

2942 Resampling.LANCZOS: "Image.Resampling.LANCZOS", 

2943 } 

2944 msg = unusable[resample] + f" ({resample}) cannot be used." 

2945 else: 

2946 msg = f"Unknown resampling filter ({resample})." 

2947 

2948 filters = [ 

2949 f"{filter[1]} ({filter[0]})" 

2950 for filter in ( 

2951 (Resampling.NEAREST, "Image.Resampling.NEAREST"), 

2952 (Resampling.BILINEAR, "Image.Resampling.BILINEAR"), 

2953 (Resampling.BICUBIC, "Image.Resampling.BICUBIC"), 

2954 ) 

2955 ] 

2956 msg += f" Use {', '.join(filters[:-1])} or {filters[-1]}" 

2957 raise ValueError(msg) 

2958 

2959 image.load() 

2960 

2961 self.load() 

2962 

2963 if image.mode in ("1", "P"): 

2964 resample = Resampling.NEAREST 

2965 

2966 self.im.transform(box, image.im, method, data, resample, fill) 

2967 

2968 def transpose(self, method: Transpose) -> Image: 

2969 """ 

2970 Transpose image (flip or rotate in 90 degree steps) 

2971 

2972 :param method: One of :py:data:`Transpose.FLIP_LEFT_RIGHT`, 

2973 :py:data:`Transpose.FLIP_TOP_BOTTOM`, :py:data:`Transpose.ROTATE_90`, 

2974 :py:data:`Transpose.ROTATE_180`, :py:data:`Transpose.ROTATE_270`, 

2975 :py:data:`Transpose.TRANSPOSE` or :py:data:`Transpose.TRANSVERSE`. 

2976 :returns: Returns a flipped or rotated copy of this image. 

2977 """ 

2978 

2979 self.load() 

2980 return self._new(self.im.transpose(method)) 

2981 

2982 def effect_spread(self, distance: int) -> Image: 

2983 """ 

2984 Randomly spread pixels in an image. 

2985 

2986 :param distance: Distance to spread pixels. 

2987 """ 

2988 self.load() 

2989 return self._new(self.im.effect_spread(distance)) 

2990 

2991 def toqimage(self) -> ImageQt.ImageQt: 

2992 """Returns a QImage copy of this image""" 

2993 from . import ImageQt 

2994 

2995 if not ImageQt.qt_is_installed: 

2996 msg = "Qt bindings are not installed" 

2997 raise ImportError(msg) 

2998 return ImageQt.toqimage(self) 

2999 

3000 def toqpixmap(self) -> ImageQt.QPixmap: 

3001 """Returns a QPixmap copy of this image""" 

3002 from . import ImageQt 

3003 

3004 if not ImageQt.qt_is_installed: 

3005 msg = "Qt bindings are not installed" 

3006 raise ImportError(msg) 

3007 return ImageQt.toqpixmap(self) 

3008 

3009 

3010# -------------------------------------------------------------------- 

3011# Abstract handlers. 

3012 

3013 

3014class ImagePointHandler(abc.ABC): 

3015 """ 

3016 Used as a mixin by point transforms 

3017 (for use with :py:meth:`~PIL.Image.Image.point`) 

3018 """ 

3019 

3020 @abc.abstractmethod 

3021 def point(self, im: Image) -> Image: 

3022 pass 

3023 

3024 

3025class ImageTransformHandler(abc.ABC): 

3026 """ 

3027 Used as a mixin by geometry transforms 

3028 (for use with :py:meth:`~PIL.Image.Image.transform`) 

3029 """ 

3030 

3031 @abc.abstractmethod 

3032 def transform( 

3033 self, 

3034 size: tuple[int, int], 

3035 image: Image, 

3036 **options: Any, 

3037 ) -> Image: 

3038 pass 

3039 

3040 

3041# -------------------------------------------------------------------- 

3042# Factories 

3043 

3044 

3045def _check_size(size: Any) -> None: 

3046 """ 

3047 Common check to enforce type and sanity check on size tuples 

3048 

3049 :param size: Should be a 2 tuple of (width, height) 

3050 :returns: None, or raises a ValueError 

3051 """ 

3052 

3053 if not isinstance(size, (list, tuple)): 

3054 msg = "Size must be a list or tuple" 

3055 raise ValueError(msg) 

3056 if len(size) != 2: 

3057 msg = "Size must be a sequence of length 2" 

3058 raise ValueError(msg) 

3059 if size[0] < 0 or size[1] < 0: 

3060 msg = "Width and height must be >= 0" 

3061 raise ValueError(msg) 

3062 

3063 

3064def new( 

3065 mode: str, 

3066 size: tuple[int, int] | list[int], 

3067 color: float | tuple[float, ...] | str | None = 0, 

3068) -> Image: 

3069 """ 

3070 Creates a new image with the given mode and size. 

3071 

3072 :param mode: The mode to use for the new image. See: 

3073 :ref:`concept-modes`. 

3074 :param size: A 2-tuple, containing (width, height) in pixels. 

3075 :param color: What color to use for the image. Default is black. 

3076 If given, this should be a single integer or floating point value 

3077 for single-band modes, and a tuple for multi-band modes (one value 

3078 per band). When creating RGB or HSV images, you can also use color 

3079 strings as supported by the ImageColor module. If the color is 

3080 None, the image is not initialised. 

3081 :returns: An :py:class:`~PIL.Image.Image` object. 

3082 """ 

3083 

3084 if mode in ("BGR;15", "BGR;16", "BGR;24"): 

3085 deprecate(mode, 12) 

3086 

3087 _check_size(size) 

3088 

3089 if color is None: 

3090 # don't initialize 

3091 return Image()._new(core.new(mode, size)) 

3092 

3093 if isinstance(color, str): 

3094 # css3-style specifier 

3095 

3096 from . import ImageColor 

3097 

3098 color = ImageColor.getcolor(color, mode) 

3099 

3100 im = Image() 

3101 if ( 

3102 mode == "P" 

3103 and isinstance(color, (list, tuple)) 

3104 and all(isinstance(i, int) for i in color) 

3105 ): 

3106 color_ints: tuple[int, ...] = cast(tuple[int, ...], tuple(color)) 

3107 if len(color_ints) == 3 or len(color_ints) == 4: 

3108 # RGB or RGBA value for a P image 

3109 from . import ImagePalette 

3110 

3111 im.palette = ImagePalette.ImagePalette() 

3112 color = im.palette.getcolor(color_ints) 

3113 return im._new(core.fill(mode, size, color)) 

3114 

3115 

3116def frombytes( 

3117 mode: str, 

3118 size: tuple[int, int], 

3119 data: bytes | bytearray | SupportsArrayInterface, 

3120 decoder_name: str = "raw", 

3121 *args: Any, 

3122) -> Image: 

3123 """ 

3124 Creates a copy of an image memory from pixel data in a buffer. 

3125 

3126 In its simplest form, this function takes three arguments 

3127 (mode, size, and unpacked pixel data). 

3128 

3129 You can also use any pixel decoder supported by PIL. For more 

3130 information on available decoders, see the section 

3131 :ref:`Writing Your Own File Codec <file-codecs>`. 

3132 

3133 Note that this function decodes pixel data only, not entire images. 

3134 If you have an entire image in a string, wrap it in a 

3135 :py:class:`~io.BytesIO` object, and use :py:func:`~PIL.Image.open` to load 

3136 it. 

3137 

3138 :param mode: The image mode. See: :ref:`concept-modes`. 

3139 :param size: The image size. 

3140 :param data: A byte buffer containing raw data for the given mode. 

3141 :param decoder_name: What decoder to use. 

3142 :param args: Additional parameters for the given decoder. 

3143 :returns: An :py:class:`~PIL.Image.Image` object. 

3144 """ 

3145 

3146 _check_size(size) 

3147 

3148 im = new(mode, size) 

3149 if im.width != 0 and im.height != 0: 

3150 decoder_args: Any = args 

3151 if len(decoder_args) == 1 and isinstance(decoder_args[0], tuple): 

3152 # may pass tuple instead of argument list 

3153 decoder_args = decoder_args[0] 

3154 

3155 if decoder_name == "raw" and decoder_args == (): 

3156 decoder_args = mode 

3157 

3158 im.frombytes(data, decoder_name, decoder_args) 

3159 return im 

3160 

3161 

3162def frombuffer( 

3163 mode: str, 

3164 size: tuple[int, int], 

3165 data: bytes | SupportsArrayInterface, 

3166 decoder_name: str = "raw", 

3167 *args: Any, 

3168) -> Image: 

3169 """ 

3170 Creates an image memory referencing pixel data in a byte buffer. 

3171 

3172 This function is similar to :py:func:`~PIL.Image.frombytes`, but uses data 

3173 in the byte buffer, where possible. This means that changes to the 

3174 original buffer object are reflected in this image). Not all modes can 

3175 share memory; supported modes include "L", "RGBX", "RGBA", and "CMYK". 

3176 

3177 Note that this function decodes pixel data only, not entire images. 

3178 If you have an entire image file in a string, wrap it in a 

3179 :py:class:`~io.BytesIO` object, and use :py:func:`~PIL.Image.open` to load it. 

3180 

3181 The default parameters used for the "raw" decoder differs from that used for 

3182 :py:func:`~PIL.Image.frombytes`. This is a bug, and will probably be fixed in a 

3183 future release. The current release issues a warning if you do this; to disable 

3184 the warning, you should provide the full set of parameters. See below for details. 

3185 

3186 :param mode: The image mode. See: :ref:`concept-modes`. 

3187 :param size: The image size. 

3188 :param data: A bytes or other buffer object containing raw 

3189 data for the given mode. 

3190 :param decoder_name: What decoder to use. 

3191 :param args: Additional parameters for the given decoder. For the 

3192 default encoder ("raw"), it's recommended that you provide the 

3193 full set of parameters:: 

3194 

3195 frombuffer(mode, size, data, "raw", mode, 0, 1) 

3196 

3197 :returns: An :py:class:`~PIL.Image.Image` object. 

3198 

3199 .. versionadded:: 1.1.4 

3200 """ 

3201 

3202 _check_size(size) 

3203 

3204 # may pass tuple instead of argument list 

3205 if len(args) == 1 and isinstance(args[0], tuple): 

3206 args = args[0] 

3207 

3208 if decoder_name == "raw": 

3209 if args == (): 

3210 args = mode, 0, 1 

3211 if args[0] in _MAPMODES: 

3212 im = new(mode, (0, 0)) 

3213 im = im._new(core.map_buffer(data, size, decoder_name, 0, args)) 

3214 if mode == "P": 

3215 from . import ImagePalette 

3216 

3217 im.palette = ImagePalette.ImagePalette("RGB", im.im.getpalette("RGB")) 

3218 im.readonly = 1 

3219 return im 

3220 

3221 return frombytes(mode, size, data, decoder_name, args) 

3222 

3223 

3224class SupportsArrayInterface(Protocol): 

3225 """ 

3226 An object that has an ``__array_interface__`` dictionary. 

3227 """ 

3228 

3229 @property 

3230 def __array_interface__(self) -> dict[str, Any]: 

3231 raise NotImplementedError() 

3232 

3233 

3234class SupportsArrowArrayInterface(Protocol): 

3235 """ 

3236 An object that has an ``__arrow_c_array__`` method corresponding to the arrow c 

3237 data interface. 

3238 """ 

3239 

3240 def __arrow_c_array__( 

3241 self, requested_schema: "PyCapsule" = None # type: ignore[name-defined] # noqa: F821, UP037 

3242 ) -> tuple["PyCapsule", "PyCapsule"]: # type: ignore[name-defined] # noqa: F821, UP037 

3243 raise NotImplementedError() 

3244 

3245 

3246def fromarray(obj: SupportsArrayInterface, mode: str | None = None) -> Image: 

3247 """ 

3248 Creates an image memory from an object exporting the array interface 

3249 (using the buffer protocol):: 

3250 

3251 from PIL import Image 

3252 import numpy as np 

3253 a = np.zeros((5, 5)) 

3254 im = Image.fromarray(a) 

3255 

3256 If ``obj`` is not contiguous, then the ``tobytes`` method is called 

3257 and :py:func:`~PIL.Image.frombuffer` is used. 

3258 

3259 In the case of NumPy, be aware that Pillow modes do not always correspond 

3260 to NumPy dtypes. Pillow modes only offer 1-bit pixels, 8-bit pixels, 

3261 32-bit signed integer pixels, and 32-bit floating point pixels. 

3262 

3263 Pillow images can also be converted to arrays:: 

3264 

3265 from PIL import Image 

3266 import numpy as np 

3267 im = Image.open("hopper.jpg") 

3268 a = np.asarray(im) 

3269 

3270 When converting Pillow images to arrays however, only pixel values are 

3271 transferred. This means that P and PA mode images will lose their palette. 

3272 

3273 :param obj: Object with array interface 

3274 :param mode: Optional mode to use when reading ``obj``. Will be determined from 

3275 type if ``None``. 

3276 

3277 This will not be used to convert the data after reading, but will be used to 

3278 change how the data is read:: 

3279 

3280 from PIL import Image 

3281 import numpy as np 

3282 a = np.full((1, 1), 300) 

3283 im = Image.fromarray(a, mode="L") 

3284 im.getpixel((0, 0)) # 44 

3285 im = Image.fromarray(a, mode="RGB") 

3286 im.getpixel((0, 0)) # (44, 1, 0) 

3287 

3288 See: :ref:`concept-modes` for general information about modes. 

3289 :returns: An image object. 

3290 

3291 .. versionadded:: 1.1.6 

3292 """ 

3293 arr = obj.__array_interface__ 

3294 shape = arr["shape"] 

3295 ndim = len(shape) 

3296 strides = arr.get("strides", None) 

3297 if mode is None: 

3298 try: 

3299 typekey = (1, 1) + shape[2:], arr["typestr"] 

3300 except KeyError as e: 

3301 msg = "Cannot handle this data type" 

3302 raise TypeError(msg) from e 

3303 try: 

3304 mode, rawmode = _fromarray_typemap[typekey] 

3305 except KeyError as e: 

3306 typekey_shape, typestr = typekey 

3307 msg = f"Cannot handle this data type: {typekey_shape}, {typestr}" 

3308 raise TypeError(msg) from e 

3309 else: 

3310 rawmode = mode 

3311 if mode in ["1", "L", "I", "P", "F"]: 

3312 ndmax = 2 

3313 elif mode == "RGB": 

3314 ndmax = 3 

3315 else: 

3316 ndmax = 4 

3317 if ndim > ndmax: 

3318 msg = f"Too many dimensions: {ndim} > {ndmax}." 

3319 raise ValueError(msg) 

3320 

3321 size = 1 if ndim == 1 else shape[1], shape[0] 

3322 if strides is not None: 

3323 if hasattr(obj, "tobytes"): 

3324 obj = obj.tobytes() 

3325 elif hasattr(obj, "tostring"): 

3326 obj = obj.tostring() 

3327 else: 

3328 msg = "'strides' requires either tobytes() or tostring()" 

3329 raise ValueError(msg) 

3330 

3331 return frombuffer(mode, size, obj, "raw", rawmode, 0, 1) 

3332 

3333 

3334def fromarrow( 

3335 obj: SupportsArrowArrayInterface, mode: str, size: tuple[int, int] 

3336) -> Image: 

3337 """Creates an image with zero-copy shared memory from an object exporting 

3338 the arrow_c_array interface protocol:: 

3339 

3340 from PIL import Image 

3341 import pyarrow as pa 

3342 arr = pa.array([0]*(5*5*4), type=pa.uint8()) 

3343 im = Image.fromarrow(arr, 'RGBA', (5, 5)) 

3344 

3345 If the data representation of the ``obj`` is not compatible with 

3346 Pillow internal storage, a ValueError is raised. 

3347 

3348 Pillow images can also be converted to Arrow objects:: 

3349 

3350 from PIL import Image 

3351 import pyarrow as pa 

3352 im = Image.open('hopper.jpg') 

3353 arr = pa.array(im) 

3354 

3355 As with array support, when converting Pillow images to arrays, 

3356 only pixel values are transferred. This means that P and PA mode 

3357 images will lose their palette. 

3358 

3359 :param obj: Object with an arrow_c_array interface 

3360 :param mode: Image mode. 

3361 :param size: Image size. This must match the storage of the arrow object. 

3362 :returns: An Image object 

3363 

3364 Note that according to the Arrow spec, both the producer and the 

3365 consumer should consider the exported array to be immutable, as 

3366 unsynchronized updates will potentially cause inconsistent data. 

3367 

3368 See: :ref:`arrow-support` for more detailed information 

3369 

3370 .. versionadded:: 11.2.1 

3371 

3372 """ 

3373 if not hasattr(obj, "__arrow_c_array__"): 

3374 msg = "arrow_c_array interface not found" 

3375 raise ValueError(msg) 

3376 

3377 (schema_capsule, array_capsule) = obj.__arrow_c_array__() 

3378 _im = core.new_arrow(mode, size, schema_capsule, array_capsule) 

3379 if _im: 

3380 return Image()._new(_im) 

3381 

3382 msg = "new_arrow returned None without an exception" 

3383 raise ValueError(msg) 

3384 

3385 

3386def fromqimage(im: ImageQt.QImage) -> ImageFile.ImageFile: 

3387 """Creates an image instance from a QImage image""" 

3388 from . import ImageQt 

3389 

3390 if not ImageQt.qt_is_installed: 

3391 msg = "Qt bindings are not installed" 

3392 raise ImportError(msg) 

3393 return ImageQt.fromqimage(im) 

3394 

3395 

3396def fromqpixmap(im: ImageQt.QPixmap) -> ImageFile.ImageFile: 

3397 """Creates an image instance from a QPixmap image""" 

3398 from . import ImageQt 

3399 

3400 if not ImageQt.qt_is_installed: 

3401 msg = "Qt bindings are not installed" 

3402 raise ImportError(msg) 

3403 return ImageQt.fromqpixmap(im) 

3404 

3405 

3406_fromarray_typemap = { 

3407 # (shape, typestr) => mode, rawmode 

3408 # first two members of shape are set to one 

3409 ((1, 1), "|b1"): ("1", "1;8"), 

3410 ((1, 1), "|u1"): ("L", "L"), 

3411 ((1, 1), "|i1"): ("I", "I;8"), 

3412 ((1, 1), "<u2"): ("I", "I;16"), 

3413 ((1, 1), ">u2"): ("I", "I;16B"), 

3414 ((1, 1), "<i2"): ("I", "I;16S"), 

3415 ((1, 1), ">i2"): ("I", "I;16BS"), 

3416 ((1, 1), "<u4"): ("I", "I;32"), 

3417 ((1, 1), ">u4"): ("I", "I;32B"), 

3418 ((1, 1), "<i4"): ("I", "I;32S"), 

3419 ((1, 1), ">i4"): ("I", "I;32BS"), 

3420 ((1, 1), "<f4"): ("F", "F;32F"), 

3421 ((1, 1), ">f4"): ("F", "F;32BF"), 

3422 ((1, 1), "<f8"): ("F", "F;64F"), 

3423 ((1, 1), ">f8"): ("F", "F;64BF"), 

3424 ((1, 1, 2), "|u1"): ("LA", "LA"), 

3425 ((1, 1, 3), "|u1"): ("RGB", "RGB"), 

3426 ((1, 1, 4), "|u1"): ("RGBA", "RGBA"), 

3427 # shortcuts: 

3428 ((1, 1), f"{_ENDIAN}i4"): ("I", "I"), 

3429 ((1, 1), f"{_ENDIAN}f4"): ("F", "F"), 

3430} 

3431 

3432 

3433def _decompression_bomb_check(size: tuple[int, int]) -> None: 

3434 if MAX_IMAGE_PIXELS is None: 

3435 return 

3436 

3437 pixels = max(1, size[0]) * max(1, size[1]) 

3438 

3439 if pixels > 2 * MAX_IMAGE_PIXELS: 

3440 msg = ( 

3441 f"Image size ({pixels} pixels) exceeds limit of {2 * MAX_IMAGE_PIXELS} " 

3442 "pixels, could be decompression bomb DOS attack." 

3443 ) 

3444 raise DecompressionBombError(msg) 

3445 

3446 if pixels > MAX_IMAGE_PIXELS: 

3447 warnings.warn( 

3448 f"Image size ({pixels} pixels) exceeds limit of {MAX_IMAGE_PIXELS} pixels, " 

3449 "could be decompression bomb DOS attack.", 

3450 DecompressionBombWarning, 

3451 ) 

3452 

3453 

3454def open( 

3455 fp: StrOrBytesPath | IO[bytes], 

3456 mode: Literal["r"] = "r", 

3457 formats: list[str] | tuple[str, ...] | None = None, 

3458) -> ImageFile.ImageFile: 

3459 """ 

3460 Opens and identifies the given image file. 

3461 

3462 This is a lazy operation; this function identifies the file, but 

3463 the file remains open and the actual image data is not read from 

3464 the file until you try to process the data (or call the 

3465 :py:meth:`~PIL.Image.Image.load` method). See 

3466 :py:func:`~PIL.Image.new`. See :ref:`file-handling`. 

3467 

3468 :param fp: A filename (string), os.PathLike object or a file object. 

3469 The file object must implement ``file.read``, 

3470 ``file.seek``, and ``file.tell`` methods, 

3471 and be opened in binary mode. The file object will also seek to zero 

3472 before reading. 

3473 :param mode: The mode. If given, this argument must be "r". 

3474 :param formats: A list or tuple of formats to attempt to load the file in. 

3475 This can be used to restrict the set of formats checked. 

3476 Pass ``None`` to try all supported formats. You can print the set of 

3477 available formats by running ``python3 -m PIL`` or using 

3478 the :py:func:`PIL.features.pilinfo` function. 

3479 :returns: An :py:class:`~PIL.Image.Image` object. 

3480 :exception FileNotFoundError: If the file cannot be found. 

3481 :exception PIL.UnidentifiedImageError: If the image cannot be opened and 

3482 identified. 

3483 :exception ValueError: If the ``mode`` is not "r", or if a ``StringIO`` 

3484 instance is used for ``fp``. 

3485 :exception TypeError: If ``formats`` is not ``None``, a list or a tuple. 

3486 """ 

3487 

3488 if mode != "r": 

3489 msg = f"bad mode {repr(mode)}" # type: ignore[unreachable] 

3490 raise ValueError(msg) 

3491 elif isinstance(fp, io.StringIO): 

3492 msg = ( # type: ignore[unreachable] 

3493 "StringIO cannot be used to open an image. " 

3494 "Binary data must be used instead." 

3495 ) 

3496 raise ValueError(msg) 

3497 

3498 if formats is None: 

3499 formats = ID 

3500 elif not isinstance(formats, (list, tuple)): 

3501 msg = "formats must be a list or tuple" # type: ignore[unreachable] 

3502 raise TypeError(msg) 

3503 

3504 exclusive_fp = False 

3505 filename: str | bytes = "" 

3506 if is_path(fp): 

3507 filename = os.fspath(fp) 

3508 

3509 if filename: 

3510 fp = builtins.open(filename, "rb") 

3511 exclusive_fp = True 

3512 else: 

3513 fp = cast(IO[bytes], fp) 

3514 

3515 try: 

3516 fp.seek(0) 

3517 except (AttributeError, io.UnsupportedOperation): 

3518 fp = io.BytesIO(fp.read()) 

3519 exclusive_fp = True 

3520 

3521 prefix = fp.read(16) 

3522 

3523 preinit() 

3524 

3525 warning_messages: list[str] = [] 

3526 

3527 def _open_core( 

3528 fp: IO[bytes], 

3529 filename: str | bytes, 

3530 prefix: bytes, 

3531 formats: list[str] | tuple[str, ...], 

3532 ) -> ImageFile.ImageFile | None: 

3533 for i in formats: 

3534 i = i.upper() 

3535 if i not in OPEN: 

3536 init() 

3537 try: 

3538 factory, accept = OPEN[i] 

3539 result = not accept or accept(prefix) 

3540 if isinstance(result, str): 

3541 warning_messages.append(result) 

3542 elif result: 

3543 fp.seek(0) 

3544 im = factory(fp, filename) 

3545 _decompression_bomb_check(im.size) 

3546 return im 

3547 except (SyntaxError, IndexError, TypeError, struct.error) as e: 

3548 if WARN_POSSIBLE_FORMATS: 

3549 warning_messages.append(i + " opening failed. " + str(e)) 

3550 except BaseException: 

3551 if exclusive_fp: 

3552 fp.close() 

3553 raise 

3554 return None 

3555 

3556 im = _open_core(fp, filename, prefix, formats) 

3557 

3558 if im is None and formats is ID: 

3559 checked_formats = ID.copy() 

3560 if init(): 

3561 im = _open_core( 

3562 fp, 

3563 filename, 

3564 prefix, 

3565 tuple(format for format in formats if format not in checked_formats), 

3566 ) 

3567 

3568 if im: 

3569 im._exclusive_fp = exclusive_fp 

3570 return im 

3571 

3572 if exclusive_fp: 

3573 fp.close() 

3574 for message in warning_messages: 

3575 warnings.warn(message) 

3576 msg = "cannot identify image file %r" % (filename if filename else fp) 

3577 raise UnidentifiedImageError(msg) 

3578 

3579 

3580# 

3581# Image processing. 

3582 

3583 

3584def alpha_composite(im1: Image, im2: Image) -> Image: 

3585 """ 

3586 Alpha composite im2 over im1. 

3587 

3588 :param im1: The first image. Must have mode RGBA. 

3589 :param im2: The second image. Must have mode RGBA, and the same size as 

3590 the first image. 

3591 :returns: An :py:class:`~PIL.Image.Image` object. 

3592 """ 

3593 

3594 im1.load() 

3595 im2.load() 

3596 return im1._new(core.alpha_composite(im1.im, im2.im)) 

3597 

3598 

3599def blend(im1: Image, im2: Image, alpha: float) -> Image: 

3600 """ 

3601 Creates a new image by interpolating between two input images, using 

3602 a constant alpha:: 

3603 

3604 out = image1 * (1.0 - alpha) + image2 * alpha 

3605 

3606 :param im1: The first image. 

3607 :param im2: The second image. Must have the same mode and size as 

3608 the first image. 

3609 :param alpha: The interpolation alpha factor. If alpha is 0.0, a 

3610 copy of the first image is returned. If alpha is 1.0, a copy of 

3611 the second image is returned. There are no restrictions on the 

3612 alpha value. If necessary, the result is clipped to fit into 

3613 the allowed output range. 

3614 :returns: An :py:class:`~PIL.Image.Image` object. 

3615 """ 

3616 

3617 im1.load() 

3618 im2.load() 

3619 return im1._new(core.blend(im1.im, im2.im, alpha)) 

3620 

3621 

3622def composite(image1: Image, image2: Image, mask: Image) -> Image: 

3623 """ 

3624 Create composite image by blending images using a transparency mask. 

3625 

3626 :param image1: The first image. 

3627 :param image2: The second image. Must have the same mode and 

3628 size as the first image. 

3629 :param mask: A mask image. This image can have mode 

3630 "1", "L", or "RGBA", and must have the same size as the 

3631 other two images. 

3632 """ 

3633 

3634 image = image2.copy() 

3635 image.paste(image1, None, mask) 

3636 return image 

3637 

3638 

3639def eval(image: Image, *args: Callable[[int], float]) -> Image: 

3640 """ 

3641 Applies the function (which should take one argument) to each pixel 

3642 in the given image. If the image has more than one band, the same 

3643 function is applied to each band. Note that the function is 

3644 evaluated once for each possible pixel value, so you cannot use 

3645 random components or other generators. 

3646 

3647 :param image: The input image. 

3648 :param function: A function object, taking one integer argument. 

3649 :returns: An :py:class:`~PIL.Image.Image` object. 

3650 """ 

3651 

3652 return image.point(args[0]) 

3653 

3654 

3655def merge(mode: str, bands: Sequence[Image]) -> Image: 

3656 """ 

3657 Merge a set of single band images into a new multiband image. 

3658 

3659 :param mode: The mode to use for the output image. See: 

3660 :ref:`concept-modes`. 

3661 :param bands: A sequence containing one single-band image for 

3662 each band in the output image. All bands must have the 

3663 same size. 

3664 :returns: An :py:class:`~PIL.Image.Image` object. 

3665 """ 

3666 

3667 if getmodebands(mode) != len(bands) or "*" in mode: 

3668 msg = "wrong number of bands" 

3669 raise ValueError(msg) 

3670 for band in bands[1:]: 

3671 if band.mode != getmodetype(mode): 

3672 msg = "mode mismatch" 

3673 raise ValueError(msg) 

3674 if band.size != bands[0].size: 

3675 msg = "size mismatch" 

3676 raise ValueError(msg) 

3677 for band in bands: 

3678 band.load() 

3679 return bands[0]._new(core.merge(mode, *[b.im for b in bands])) 

3680 

3681 

3682# -------------------------------------------------------------------- 

3683# Plugin registry 

3684 

3685 

3686def register_open( 

3687 id: str, 

3688 factory: ( 

3689 Callable[[IO[bytes], str | bytes], ImageFile.ImageFile] 

3690 | type[ImageFile.ImageFile] 

3691 ), 

3692 accept: Callable[[bytes], bool | str] | None = None, 

3693) -> None: 

3694 """ 

3695 Register an image file plugin. This function should not be used 

3696 in application code. 

3697 

3698 :param id: An image format identifier. 

3699 :param factory: An image file factory method. 

3700 :param accept: An optional function that can be used to quickly 

3701 reject images having another format. 

3702 """ 

3703 id = id.upper() 

3704 if id not in ID: 

3705 ID.append(id) 

3706 OPEN[id] = factory, accept 

3707 

3708 

3709def register_mime(id: str, mimetype: str) -> None: 

3710 """ 

3711 Registers an image MIME type by populating ``Image.MIME``. This function 

3712 should not be used in application code. 

3713 

3714 ``Image.MIME`` provides a mapping from image format identifiers to mime 

3715 formats, but :py:meth:`~PIL.ImageFile.ImageFile.get_format_mimetype` can 

3716 provide a different result for specific images. 

3717 

3718 :param id: An image format identifier. 

3719 :param mimetype: The image MIME type for this format. 

3720 """ 

3721 MIME[id.upper()] = mimetype 

3722 

3723 

3724def register_save( 

3725 id: str, driver: Callable[[Image, IO[bytes], str | bytes], None] 

3726) -> None: 

3727 """ 

3728 Registers an image save function. This function should not be 

3729 used in application code. 

3730 

3731 :param id: An image format identifier. 

3732 :param driver: A function to save images in this format. 

3733 """ 

3734 SAVE[id.upper()] = driver 

3735 

3736 

3737def register_save_all( 

3738 id: str, driver: Callable[[Image, IO[bytes], str | bytes], None] 

3739) -> None: 

3740 """ 

3741 Registers an image function to save all the frames 

3742 of a multiframe format. This function should not be 

3743 used in application code. 

3744 

3745 :param id: An image format identifier. 

3746 :param driver: A function to save images in this format. 

3747 """ 

3748 SAVE_ALL[id.upper()] = driver 

3749 

3750 

3751def register_extension(id: str, extension: str) -> None: 

3752 """ 

3753 Registers an image extension. This function should not be 

3754 used in application code. 

3755 

3756 :param id: An image format identifier. 

3757 :param extension: An extension used for this format. 

3758 """ 

3759 EXTENSION[extension.lower()] = id.upper() 

3760 

3761 

3762def register_extensions(id: str, extensions: list[str]) -> None: 

3763 """ 

3764 Registers image extensions. This function should not be 

3765 used in application code. 

3766 

3767 :param id: An image format identifier. 

3768 :param extensions: A list of extensions used for this format. 

3769 """ 

3770 for extension in extensions: 

3771 register_extension(id, extension) 

3772 

3773 

3774def registered_extensions() -> dict[str, str]: 

3775 """ 

3776 Returns a dictionary containing all file extensions belonging 

3777 to registered plugins 

3778 """ 

3779 init() 

3780 return EXTENSION 

3781 

3782 

3783def register_decoder(name: str, decoder: type[ImageFile.PyDecoder]) -> None: 

3784 """ 

3785 Registers an image decoder. This function should not be 

3786 used in application code. 

3787 

3788 :param name: The name of the decoder 

3789 :param decoder: An ImageFile.PyDecoder object 

3790 

3791 .. versionadded:: 4.1.0 

3792 """ 

3793 DECODERS[name] = decoder 

3794 

3795 

3796def register_encoder(name: str, encoder: type[ImageFile.PyEncoder]) -> None: 

3797 """ 

3798 Registers an image encoder. This function should not be 

3799 used in application code. 

3800 

3801 :param name: The name of the encoder 

3802 :param encoder: An ImageFile.PyEncoder object 

3803 

3804 .. versionadded:: 4.1.0 

3805 """ 

3806 ENCODERS[name] = encoder 

3807 

3808 

3809# -------------------------------------------------------------------- 

3810# Simple display support. 

3811 

3812 

3813def _show(image: Image, **options: Any) -> None: 

3814 from . import ImageShow 

3815 

3816 ImageShow.show(image, **options) 

3817 

3818 

3819# -------------------------------------------------------------------- 

3820# Effects 

3821 

3822 

3823def effect_mandelbrot( 

3824 size: tuple[int, int], extent: tuple[float, float, float, float], quality: int 

3825) -> Image: 

3826 """ 

3827 Generate a Mandelbrot set covering the given extent. 

3828 

3829 :param size: The requested size in pixels, as a 2-tuple: 

3830 (width, height). 

3831 :param extent: The extent to cover, as a 4-tuple: 

3832 (x0, y0, x1, y1). 

3833 :param quality: Quality. 

3834 """ 

3835 return Image()._new(core.effect_mandelbrot(size, extent, quality)) 

3836 

3837 

3838def effect_noise(size: tuple[int, int], sigma: float) -> Image: 

3839 """ 

3840 Generate Gaussian noise centered around 128. 

3841 

3842 :param size: The requested size in pixels, as a 2-tuple: 

3843 (width, height). 

3844 :param sigma: Standard deviation of noise. 

3845 """ 

3846 return Image()._new(core.effect_noise(size, sigma)) 

3847 

3848 

3849def linear_gradient(mode: str) -> Image: 

3850 """ 

3851 Generate 256x256 linear gradient from black to white, top to bottom. 

3852 

3853 :param mode: Input mode. 

3854 """ 

3855 return Image()._new(core.linear_gradient(mode)) 

3856 

3857 

3858def radial_gradient(mode: str) -> Image: 

3859 """ 

3860 Generate 256x256 radial gradient from black to white, centre to edge. 

3861 

3862 :param mode: Input mode. 

3863 """ 

3864 return Image()._new(core.radial_gradient(mode)) 

3865 

3866 

3867# -------------------------------------------------------------------- 

3868# Resources 

3869 

3870 

3871def _apply_env_variables(env: dict[str, str] | None = None) -> None: 

3872 env_dict = env if env is not None else os.environ 

3873 

3874 for var_name, setter in [ 

3875 ("PILLOW_ALIGNMENT", core.set_alignment), 

3876 ("PILLOW_BLOCK_SIZE", core.set_block_size), 

3877 ("PILLOW_BLOCKS_MAX", core.set_blocks_max), 

3878 ]: 

3879 if var_name not in env_dict: 

3880 continue 

3881 

3882 var = env_dict[var_name].lower() 

3883 

3884 units = 1 

3885 for postfix, mul in [("k", 1024), ("m", 1024 * 1024)]: 

3886 if var.endswith(postfix): 

3887 units = mul 

3888 var = var[: -len(postfix)] 

3889 

3890 try: 

3891 var_int = int(var) * units 

3892 except ValueError: 

3893 warnings.warn(f"{var_name} is not int") 

3894 continue 

3895 

3896 try: 

3897 setter(var_int) 

3898 except ValueError as e: 

3899 warnings.warn(f"{var_name}: {e}") 

3900 

3901 

3902_apply_env_variables() 

3903atexit.register(core.clear_cache) 

3904 

3905 

3906if TYPE_CHECKING: 

3907 _ExifBase = MutableMapping[int, Any] 

3908else: 

3909 _ExifBase = MutableMapping 

3910 

3911 

3912class Exif(_ExifBase): 

3913 """ 

3914 This class provides read and write access to EXIF image data:: 

3915 

3916 from PIL import Image 

3917 im = Image.open("exif.png") 

3918 exif = im.getexif() # Returns an instance of this class 

3919 

3920 Information can be read and written, iterated over or deleted:: 

3921 

3922 print(exif[274]) # 1 

3923 exif[274] = 2 

3924 for k, v in exif.items(): 

3925 print("Tag", k, "Value", v) # Tag 274 Value 2 

3926 del exif[274] 

3927 

3928 To access information beyond IFD0, :py:meth:`~PIL.Image.Exif.get_ifd` 

3929 returns a dictionary:: 

3930 

3931 from PIL import ExifTags 

3932 im = Image.open("exif_gps.jpg") 

3933 exif = im.getexif() 

3934 gps_ifd = exif.get_ifd(ExifTags.IFD.GPSInfo) 

3935 print(gps_ifd) 

3936 

3937 Other IFDs include ``ExifTags.IFD.Exif``, ``ExifTags.IFD.MakerNote``, 

3938 ``ExifTags.IFD.Interop`` and ``ExifTags.IFD.IFD1``. 

3939 

3940 :py:mod:`~PIL.ExifTags` also has enum classes to provide names for data:: 

3941 

3942 print(exif[ExifTags.Base.Software]) # PIL 

3943 print(gps_ifd[ExifTags.GPS.GPSDateStamp]) # 1999:99:99 99:99:99 

3944 """ 

3945 

3946 endian: str | None = None 

3947 bigtiff = False 

3948 _loaded = False 

3949 

3950 def __init__(self) -> None: 

3951 self._data: dict[int, Any] = {} 

3952 self._hidden_data: dict[int, Any] = {} 

3953 self._ifds: dict[int, dict[int, Any]] = {} 

3954 self._info: TiffImagePlugin.ImageFileDirectory_v2 | None = None 

3955 self._loaded_exif: bytes | None = None 

3956 

3957 def _fixup(self, value: Any) -> Any: 

3958 try: 

3959 if len(value) == 1 and isinstance(value, tuple): 

3960 return value[0] 

3961 except Exception: 

3962 pass 

3963 return value 

3964 

3965 def _fixup_dict(self, src_dict: dict[int, Any]) -> dict[int, Any]: 

3966 # Helper function 

3967 # returns a dict with any single item tuples/lists as individual values 

3968 return {k: self._fixup(v) for k, v in src_dict.items()} 

3969 

3970 def _get_ifd_dict( 

3971 self, offset: int, group: int | None = None 

3972 ) -> dict[int, Any] | None: 

3973 try: 

3974 # an offset pointer to the location of the nested embedded IFD. 

3975 # It should be a long, but may be corrupted. 

3976 self.fp.seek(offset) 

3977 except (KeyError, TypeError): 

3978 return None 

3979 else: 

3980 from . import TiffImagePlugin 

3981 

3982 info = TiffImagePlugin.ImageFileDirectory_v2(self.head, group=group) 

3983 info.load(self.fp) 

3984 return self._fixup_dict(dict(info)) 

3985 

3986 def _get_head(self) -> bytes: 

3987 version = b"\x2b" if self.bigtiff else b"\x2a" 

3988 if self.endian == "<": 

3989 head = b"II" + version + b"\x00" + o32le(8) 

3990 else: 

3991 head = b"MM\x00" + version + o32be(8) 

3992 if self.bigtiff: 

3993 head += o32le(8) if self.endian == "<" else o32be(8) 

3994 head += b"\x00\x00\x00\x00" 

3995 return head 

3996 

3997 def load(self, data: bytes) -> None: 

3998 # Extract EXIF information. This is highly experimental, 

3999 # and is likely to be replaced with something better in a future 

4000 # version. 

4001 

4002 # The EXIF record consists of a TIFF file embedded in a JPEG 

4003 # application marker (!). 

4004 if data == self._loaded_exif: 

4005 return 

4006 self._loaded_exif = data 

4007 self._data.clear() 

4008 self._hidden_data.clear() 

4009 self._ifds.clear() 

4010 while data and data.startswith(b"Exif\x00\x00"): 

4011 data = data[6:] 

4012 if not data: 

4013 self._info = None 

4014 return 

4015 

4016 self.fp: IO[bytes] = io.BytesIO(data) 

4017 self.head = self.fp.read(8) 

4018 # process dictionary 

4019 from . import TiffImagePlugin 

4020 

4021 self._info = TiffImagePlugin.ImageFileDirectory_v2(self.head) 

4022 self.endian = self._info._endian 

4023 self.fp.seek(self._info.next) 

4024 self._info.load(self.fp) 

4025 

4026 def load_from_fp(self, fp: IO[bytes], offset: int | None = None) -> None: 

4027 self._loaded_exif = None 

4028 self._data.clear() 

4029 self._hidden_data.clear() 

4030 self._ifds.clear() 

4031 

4032 # process dictionary 

4033 from . import TiffImagePlugin 

4034 

4035 self.fp = fp 

4036 if offset is not None: 

4037 self.head = self._get_head() 

4038 else: 

4039 self.head = self.fp.read(8) 

4040 self._info = TiffImagePlugin.ImageFileDirectory_v2(self.head) 

4041 if self.endian is None: 

4042 self.endian = self._info._endian 

4043 if offset is None: 

4044 offset = self._info.next 

4045 self.fp.tell() 

4046 self.fp.seek(offset) 

4047 self._info.load(self.fp) 

4048 

4049 def _get_merged_dict(self) -> dict[int, Any]: 

4050 merged_dict = dict(self) 

4051 

4052 # get EXIF extension 

4053 if ExifTags.IFD.Exif in self: 

4054 ifd = self._get_ifd_dict(self[ExifTags.IFD.Exif], ExifTags.IFD.Exif) 

4055 if ifd: 

4056 merged_dict.update(ifd) 

4057 

4058 # GPS 

4059 if ExifTags.IFD.GPSInfo in self: 

4060 merged_dict[ExifTags.IFD.GPSInfo] = self._get_ifd_dict( 

4061 self[ExifTags.IFD.GPSInfo], ExifTags.IFD.GPSInfo 

4062 ) 

4063 

4064 return merged_dict 

4065 

4066 def tobytes(self, offset: int = 8) -> bytes: 

4067 from . import TiffImagePlugin 

4068 

4069 head = self._get_head() 

4070 ifd = TiffImagePlugin.ImageFileDirectory_v2(ifh=head) 

4071 for tag, ifd_dict in self._ifds.items(): 

4072 if tag not in self: 

4073 ifd[tag] = ifd_dict 

4074 for tag, value in self.items(): 

4075 if tag in [ 

4076 ExifTags.IFD.Exif, 

4077 ExifTags.IFD.GPSInfo, 

4078 ] and not isinstance(value, dict): 

4079 value = self.get_ifd(tag) 

4080 if ( 

4081 tag == ExifTags.IFD.Exif 

4082 and ExifTags.IFD.Interop in value 

4083 and not isinstance(value[ExifTags.IFD.Interop], dict) 

4084 ): 

4085 value = value.copy() 

4086 value[ExifTags.IFD.Interop] = self.get_ifd(ExifTags.IFD.Interop) 

4087 ifd[tag] = value 

4088 return b"Exif\x00\x00" + head + ifd.tobytes(offset) 

4089 

4090 def get_ifd(self, tag: int) -> dict[int, Any]: 

4091 if tag not in self._ifds: 

4092 if tag == ExifTags.IFD.IFD1: 

4093 if self._info is not None and self._info.next != 0: 

4094 ifd = self._get_ifd_dict(self._info.next) 

4095 if ifd is not None: 

4096 self._ifds[tag] = ifd 

4097 elif tag in [ExifTags.IFD.Exif, ExifTags.IFD.GPSInfo]: 

4098 offset = self._hidden_data.get(tag, self.get(tag)) 

4099 if offset is not None: 

4100 ifd = self._get_ifd_dict(offset, tag) 

4101 if ifd is not None: 

4102 self._ifds[tag] = ifd 

4103 elif tag in [ExifTags.IFD.Interop, ExifTags.IFD.MakerNote]: 

4104 if ExifTags.IFD.Exif not in self._ifds: 

4105 self.get_ifd(ExifTags.IFD.Exif) 

4106 tag_data = self._ifds[ExifTags.IFD.Exif][tag] 

4107 if tag == ExifTags.IFD.MakerNote: 

4108 from .TiffImagePlugin import ImageFileDirectory_v2 

4109 

4110 if tag_data.startswith(b"FUJIFILM"): 

4111 ifd_offset = i32le(tag_data, 8) 

4112 ifd_data = tag_data[ifd_offset:] 

4113 

4114 makernote = {} 

4115 for i in range(struct.unpack("<H", ifd_data[:2])[0]): 

4116 ifd_tag, typ, count, data = struct.unpack( 

4117 "<HHL4s", ifd_data[i * 12 + 2 : (i + 1) * 12 + 2] 

4118 ) 

4119 try: 

4120 ( 

4121 unit_size, 

4122 handler, 

4123 ) = ImageFileDirectory_v2._load_dispatch[typ] 

4124 except KeyError: 

4125 continue 

4126 size = count * unit_size 

4127 if size > 4: 

4128 (offset,) = struct.unpack("<L", data) 

4129 data = ifd_data[offset - 12 : offset + size - 12] 

4130 else: 

4131 data = data[:size] 

4132 

4133 if len(data) != size: 

4134 warnings.warn( 

4135 "Possibly corrupt EXIF MakerNote data. " 

4136 f"Expecting to read {size} bytes but only got " 

4137 f"{len(data)}. Skipping tag {ifd_tag}" 

4138 ) 

4139 continue 

4140 

4141 if not data: 

4142 continue 

4143 

4144 makernote[ifd_tag] = handler( 

4145 ImageFileDirectory_v2(), data, False 

4146 ) 

4147 self._ifds[tag] = dict(self._fixup_dict(makernote)) 

4148 elif self.get(0x010F) == "Nintendo": 

4149 makernote = {} 

4150 for i in range(struct.unpack(">H", tag_data[:2])[0]): 

4151 ifd_tag, typ, count, data = struct.unpack( 

4152 ">HHL4s", tag_data[i * 12 + 2 : (i + 1) * 12 + 2] 

4153 ) 

4154 if ifd_tag == 0x1101: 

4155 # CameraInfo 

4156 (offset,) = struct.unpack(">L", data) 

4157 self.fp.seek(offset) 

4158 

4159 camerainfo: dict[str, int | bytes] = { 

4160 "ModelID": self.fp.read(4) 

4161 } 

4162 

4163 self.fp.read(4) 

4164 # Seconds since 2000 

4165 camerainfo["TimeStamp"] = i32le(self.fp.read(12)) 

4166 

4167 self.fp.read(4) 

4168 camerainfo["InternalSerialNumber"] = self.fp.read(4) 

4169 

4170 self.fp.read(12) 

4171 parallax = self.fp.read(4) 

4172 handler = ImageFileDirectory_v2._load_dispatch[ 

4173 TiffTags.FLOAT 

4174 ][1] 

4175 camerainfo["Parallax"] = handler( 

4176 ImageFileDirectory_v2(), parallax, False 

4177 )[0] 

4178 

4179 self.fp.read(4) 

4180 camerainfo["Category"] = self.fp.read(2) 

4181 

4182 makernote = {0x1101: camerainfo} 

4183 self._ifds[tag] = makernote 

4184 else: 

4185 # Interop 

4186 ifd = self._get_ifd_dict(tag_data, tag) 

4187 if ifd is not None: 

4188 self._ifds[tag] = ifd 

4189 ifd = self._ifds.setdefault(tag, {}) 

4190 if tag == ExifTags.IFD.Exif and self._hidden_data: 

4191 ifd = { 

4192 k: v 

4193 for (k, v) in ifd.items() 

4194 if k not in (ExifTags.IFD.Interop, ExifTags.IFD.MakerNote) 

4195 } 

4196 return ifd 

4197 

4198 def hide_offsets(self) -> None: 

4199 for tag in (ExifTags.IFD.Exif, ExifTags.IFD.GPSInfo): 

4200 if tag in self: 

4201 self._hidden_data[tag] = self[tag] 

4202 del self[tag] 

4203 

4204 def __str__(self) -> str: 

4205 if self._info is not None: 

4206 # Load all keys into self._data 

4207 for tag in self._info: 

4208 self[tag] 

4209 

4210 return str(self._data) 

4211 

4212 def __len__(self) -> int: 

4213 keys = set(self._data) 

4214 if self._info is not None: 

4215 keys.update(self._info) 

4216 return len(keys) 

4217 

4218 def __getitem__(self, tag: int) -> Any: 

4219 if self._info is not None and tag not in self._data and tag in self._info: 

4220 self._data[tag] = self._fixup(self._info[tag]) 

4221 del self._info[tag] 

4222 return self._data[tag] 

4223 

4224 def __contains__(self, tag: object) -> bool: 

4225 return tag in self._data or (self._info is not None and tag in self._info) 

4226 

4227 def __setitem__(self, tag: int, value: Any) -> None: 

4228 if self._info is not None and tag in self._info: 

4229 del self._info[tag] 

4230 self._data[tag] = value 

4231 

4232 def __delitem__(self, tag: int) -> None: 

4233 if self._info is not None and tag in self._info: 

4234 del self._info[tag] 

4235 else: 

4236 del self._data[tag] 

4237 

4238 def __iter__(self) -> Iterator[int]: 

4239 keys = set(self._data) 

4240 if self._info is not None: 

4241 keys.update(self._info) 

4242 return iter(keys)