Coverage Report

Created: 2025-04-11 06:47

/src/poco/Foundation/src/bignum-dtoa.cc
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2010 the V8 project authors. All rights reserved.
2
// Redistribution and use in source and binary forms, with or without
3
// modification, are permitted provided that the following conditions are
4
// met:
5
//
6
//     * Redistributions of source code must retain the above copyright
7
//       notice, this list of conditions and the following disclaimer.
8
//     * Redistributions in binary form must reproduce the above
9
//       copyright notice, this list of conditions and the following
10
//       disclaimer in the documentation and/or other materials provided
11
//       with the distribution.
12
//     * Neither the name of Google Inc. nor the names of its
13
//       contributors may be used to endorse or promote products derived
14
//       from this software without specific prior written permission.
15
//
16
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28
#include <cmath>
29
30
#include "bignum-dtoa.h"
31
32
#include "bignum.h"
33
#include "ieee.h"
34
35
namespace double_conversion {
36
37
0
static int NormalizedExponent(uint64_t significand, int exponent) {
38
0
  DOUBLE_CONVERSION_ASSERT(significand != 0);
39
0
  while ((significand & Double::kHiddenBit) == 0) {
40
0
    significand = significand << 1;
41
0
    exponent = exponent - 1;
42
0
  }
43
0
  return exponent;
44
0
}
45
46
47
// Forward declarations:
48
// Returns an estimation of k such that 10^(k-1) <= v < 10^k.
49
static int EstimatePower(int exponent);
50
// Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
51
// and denominator.
52
static void InitialScaledStartValues(uint64_t significand,
53
                                     int exponent,
54
                                     bool lower_boundary_is_closer,
55
                                     int estimated_power,
56
                                     bool need_boundary_deltas,
57
                                     Bignum* numerator,
58
                                     Bignum* denominator,
59
                                     Bignum* delta_minus,
60
                                     Bignum* delta_plus);
61
// Multiplies numerator/denominator so that its values lies in the range 1-10.
62
// Returns decimal_point s.t.
63
//  v = numerator'/denominator' * 10^(decimal_point-1)
64
//     where numerator' and denominator' are the values of numerator and
65
//     denominator after the call to this function.
66
static void FixupMultiply10(int estimated_power, bool is_even,
67
                            int* decimal_point,
68
                            Bignum* numerator, Bignum* denominator,
69
                            Bignum* delta_minus, Bignum* delta_plus);
70
// Generates digits from the left to the right and stops when the generated
71
// digits yield the shortest decimal representation of v.
72
static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
73
                                   Bignum* delta_minus, Bignum* delta_plus,
74
                                   bool is_even,
75
                                   Vector<char> buffer, int* length);
76
// Generates 'requested_digits' after the decimal point.
77
static void BignumToFixed(int requested_digits, int* decimal_point,
78
                          Bignum* numerator, Bignum* denominator,
79
                          Vector<char> buffer, int* length);
80
// Generates 'count' digits of numerator/denominator.
81
// Once 'count' digits have been produced rounds the result depending on the
82
// remainder (remainders of exactly .5 round upwards). Might update the
83
// decimal_point when rounding up (for example for 0.9999).
84
static void GenerateCountedDigits(int count, int* decimal_point,
85
                                  Bignum* numerator, Bignum* denominator,
86
                                  Vector<char> buffer, int* length);
87
88
89
void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
90
0
                Vector<char> buffer, int* length, int* decimal_point) {
91
0
  DOUBLE_CONVERSION_ASSERT(v > 0);
92
0
  DOUBLE_CONVERSION_ASSERT(!Double(v).IsSpecial());
93
0
  uint64_t significand;
94
0
  int exponent;
95
0
  bool lower_boundary_is_closer;
96
0
  if (mode == BIGNUM_DTOA_SHORTEST_SINGLE) {
97
0
    float f = static_cast<float>(v);
98
0
    DOUBLE_CONVERSION_ASSERT(f == v);
99
0
    significand = Single(f).Significand();
100
0
    exponent = Single(f).Exponent();
101
0
    lower_boundary_is_closer = Single(f).LowerBoundaryIsCloser();
102
0
  } else {
103
0
    significand = Double(v).Significand();
104
0
    exponent = Double(v).Exponent();
105
0
    lower_boundary_is_closer = Double(v).LowerBoundaryIsCloser();
106
0
  }
107
0
  bool need_boundary_deltas =
108
0
      (mode == BIGNUM_DTOA_SHORTEST || mode == BIGNUM_DTOA_SHORTEST_SINGLE);
109
110
0
  bool is_even = (significand & 1) == 0;
111
0
  int normalized_exponent = NormalizedExponent(significand, exponent);
112
  // estimated_power might be too low by 1.
113
0
  int estimated_power = EstimatePower(normalized_exponent);
114
115
  // Shortcut for Fixed.
116
  // The requested digits correspond to the digits after the point. If the
117
  // number is much too small, then there is no need in trying to get any
118
  // digits.
119
0
  if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) {
120
0
    buffer[0] = '\0';
121
0
    *length = 0;
122
    // Set decimal-point to -requested_digits. This is what Gay does.
123
    // Note that it should not have any effect anyways since the string is
124
    // empty.
125
0
    *decimal_point = -requested_digits;
126
0
    return;
127
0
  }
128
129
0
  Bignum numerator;
130
0
  Bignum denominator;
131
0
  Bignum delta_minus;
132
0
  Bignum delta_plus;
133
  // Make sure the bignum can grow large enough. The smallest double equals
134
  // 4e-324. In this case the denominator needs fewer than 324*4 binary digits.
135
  // The maximum double is 1.7976931348623157e308 which needs fewer than
136
  // 308*4 binary digits.
137
0
  DOUBLE_CONVERSION_ASSERT(Bignum::kMaxSignificantBits >= 324*4);
138
0
  InitialScaledStartValues(significand, exponent, lower_boundary_is_closer,
139
0
                           estimated_power, need_boundary_deltas,
140
0
                           &numerator, &denominator,
141
0
                           &delta_minus, &delta_plus);
142
  // We now have v = (numerator / denominator) * 10^estimated_power.
143
0
  FixupMultiply10(estimated_power, is_even, decimal_point,
144
0
                  &numerator, &denominator,
145
0
                  &delta_minus, &delta_plus);
146
  // We now have v = (numerator / denominator) * 10^(decimal_point-1), and
147
  //  1 <= (numerator + delta_plus) / denominator < 10
148
0
  switch (mode) {
149
0
    case BIGNUM_DTOA_SHORTEST:
150
0
    case BIGNUM_DTOA_SHORTEST_SINGLE:
151
0
      GenerateShortestDigits(&numerator, &denominator,
152
0
                             &delta_minus, &delta_plus,
153
0
                             is_even, buffer, length);
154
0
      break;
155
0
    case BIGNUM_DTOA_FIXED:
156
0
      BignumToFixed(requested_digits, decimal_point,
157
0
                    &numerator, &denominator,
158
0
                    buffer, length);
159
0
      break;
160
0
    case BIGNUM_DTOA_PRECISION:
161
0
      GenerateCountedDigits(requested_digits, decimal_point,
162
0
                            &numerator, &denominator,
163
0
                            buffer, length);
164
0
      break;
165
0
    default:
166
0
      DOUBLE_CONVERSION_UNREACHABLE();
167
0
  }
168
0
  buffer[*length] = '\0';
169
0
}
170
171
172
// The procedure starts generating digits from the left to the right and stops
173
// when the generated digits yield the shortest decimal representation of v. A
174
// decimal representation of v is a number lying closer to v than to any other
175
// double, so it converts to v when read.
176
//
177
// This is true if d, the decimal representation, is between m- and m+, the
178
// upper and lower boundaries. d must be strictly between them if !is_even.
179
//           m- := (numerator - delta_minus) / denominator
180
//           m+ := (numerator + delta_plus) / denominator
181
//
182
// Precondition: 0 <= (numerator+delta_plus) / denominator < 10.
183
//   If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit
184
//   will be produced. This should be the standard precondition.
185
static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
186
                                   Bignum* delta_minus, Bignum* delta_plus,
187
                                   bool is_even,
188
0
                                   Vector<char> buffer, int* length) {
189
  // Small optimization: if delta_minus and delta_plus are the same just reuse
190
  // one of the two bignums.
191
0
  if (Bignum::Equal(*delta_minus, *delta_plus)) {
192
0
    delta_plus = delta_minus;
193
0
  }
194
0
  *length = 0;
195
0
  for (;;) {
196
0
    uint16_t digit;
197
0
    digit = numerator->DivideModuloIntBignum(*denominator);
198
0
    DOUBLE_CONVERSION_ASSERT(digit <= 9);  // digit is a uint16_t and therefore always positive.
199
    // digit = numerator / denominator (integer division).
200
    // numerator = numerator % denominator.
201
0
    buffer[(*length)++] = static_cast<char>(digit + '0');
202
203
    // Can we stop already?
204
    // If the remainder of the division is less than the distance to the lower
205
    // boundary we can stop. In this case we simply round down (discarding the
206
    // remainder).
207
    // Similarly we test if we can round up (using the upper boundary).
208
0
    bool in_delta_room_minus;
209
0
    bool in_delta_room_plus;
210
0
    if (is_even) {
211
0
      in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus);
212
0
    } else {
213
0
      in_delta_room_minus = Bignum::Less(*numerator, *delta_minus);
214
0
    }
215
0
    if (is_even) {
216
0
      in_delta_room_plus =
217
0
          Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
218
0
    } else {
219
0
      in_delta_room_plus =
220
0
          Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
221
0
    }
222
0
    if (!in_delta_room_minus && !in_delta_room_plus) {
223
      // Prepare for next iteration.
224
0
      numerator->Times10();
225
0
      delta_minus->Times10();
226
      // We optimized delta_plus to be equal to delta_minus (if they share the
227
      // same value). So don't multiply delta_plus if they point to the same
228
      // object.
229
0
      if (delta_minus != delta_plus) {
230
0
        delta_plus->Times10();
231
0
      }
232
0
    } else if (in_delta_room_minus && in_delta_room_plus) {
233
      // Let's see if 2*numerator < denominator.
234
      // If yes, then the next digit would be < 5 and we can round down.
235
0
      int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator);
236
0
      if (compare < 0) {
237
        // Remaining digits are less than .5. -> Round down (== do nothing).
238
0
      } else if (compare > 0) {
239
        // Remaining digits are more than .5 of denominator. -> Round up.
240
        // Note that the last digit could not be a '9' as otherwise the whole
241
        // loop would have stopped earlier.
242
        // We still have an assert here in case the preconditions were not
243
        // satisfied.
244
0
        DOUBLE_CONVERSION_ASSERT(buffer[(*length) - 1] != '9');
245
0
        buffer[(*length) - 1]++;
246
0
      } else {
247
        // Halfway case.
248
        // TODO(floitsch): need a way to solve half-way cases.
249
        //   For now let's round towards even (since this is what Gay seems to
250
        //   do).
251
252
0
        if ((buffer[(*length) - 1] - '0') % 2 == 0) {
253
          // Round down => Do nothing.
254
0
        } else {
255
0
          DOUBLE_CONVERSION_ASSERT(buffer[(*length) - 1] != '9');
256
0
          buffer[(*length) - 1]++;
257
0
        }
258
0
      }
259
0
      return;
260
0
    } else if (in_delta_room_minus) {
261
      // Round down (== do nothing).
262
0
      return;
263
0
    } else {  // in_delta_room_plus
264
      // Round up.
265
      // Note again that the last digit could not be '9' since this would have
266
      // stopped the loop earlier.
267
      // We still have an DOUBLE_CONVERSION_ASSERT here, in case the preconditions were not
268
      // satisfied.
269
0
      DOUBLE_CONVERSION_ASSERT(buffer[(*length) -1] != '9');
270
0
      buffer[(*length) - 1]++;
271
0
      return;
272
0
    }
273
0
  }
274
0
}
275
276
277
// Let v = numerator / denominator < 10.
278
// Then we generate 'count' digits of d = x.xxxxx... (without the decimal point)
279
// from left to right. Once 'count' digits have been produced we decide whether
280
// to round up or down. Remainders of exactly .5 round upwards. Numbers such
281
// as 9.999999 propagate a carry all the way, and change the
282
// exponent (decimal_point), when rounding upwards.
283
static void GenerateCountedDigits(int count, int* decimal_point,
284
                                  Bignum* numerator, Bignum* denominator,
285
0
                                  Vector<char> buffer, int* length) {
286
0
  DOUBLE_CONVERSION_ASSERT(count >= 0);
287
0
  for (int i = 0; i < count - 1; ++i) {
288
0
    uint16_t digit;
289
0
    digit = numerator->DivideModuloIntBignum(*denominator);
290
0
    DOUBLE_CONVERSION_ASSERT(digit <= 9);  // digit is a uint16_t and therefore always positive.
291
    // digit = numerator / denominator (integer division).
292
    // numerator = numerator % denominator.
293
0
    buffer[i] = static_cast<char>(digit + '0');
294
    // Prepare for next iteration.
295
0
    numerator->Times10();
296
0
  }
297
  // Generate the last digit.
298
0
  uint16_t digit;
299
0
  digit = numerator->DivideModuloIntBignum(*denominator);
300
0
  if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
301
0
    digit++;
302
0
  }
303
0
  DOUBLE_CONVERSION_ASSERT(digit <= 10);
304
0
  buffer[count - 1] = static_cast<char>(digit + '0');
305
  // Correct bad digits (in case we had a sequence of '9's). Propagate the
306
  // carry until we hat a non-'9' or til we reach the first digit.
307
0
  for (int i = count - 1; i > 0; --i) {
308
0
    if (buffer[i] != '0' + 10) break;
309
0
    buffer[i] = '0';
310
0
    buffer[i - 1]++;
311
0
  }
312
0
  if (buffer[0] == '0' + 10) {
313
    // Propagate a carry past the top place.
314
0
    buffer[0] = '1';
315
0
    (*decimal_point)++;
316
0
  }
317
0
  *length = count;
318
0
}
319
320
321
// Generates 'requested_digits' after the decimal point. It might omit
322
// trailing '0's. If the input number is too small then no digits at all are
323
// generated (ex.: 2 fixed digits for 0.00001).
324
//
325
// Input verifies:  1 <= (numerator + delta) / denominator < 10.
326
static void BignumToFixed(int requested_digits, int* decimal_point,
327
                          Bignum* numerator, Bignum* denominator,
328
0
                          Vector<char> buffer, int* length) {
329
  // Note that we have to look at more than just the requested_digits, since
330
  // a number could be rounded up. Example: v=0.5 with requested_digits=0.
331
  // Even though the power of v equals 0 we can't just stop here.
332
0
  if (-(*decimal_point) > requested_digits) {
333
    // The number is definitively too small.
334
    // Ex: 0.001 with requested_digits == 1.
335
    // Set decimal-point to -requested_digits. This is what Gay does.
336
    // Note that it should not have any effect anyways since the string is
337
    // empty.
338
0
    *decimal_point = -requested_digits;
339
0
    *length = 0;
340
0
    return;
341
0
  } else if (-(*decimal_point) == requested_digits) {
342
    // We only need to verify if the number rounds down or up.
343
    // Ex: 0.04 and 0.06 with requested_digits == 1.
344
0
    DOUBLE_CONVERSION_ASSERT(*decimal_point == -requested_digits);
345
    // Initially the fraction lies in range (1, 10]. Multiply the denominator
346
    // by 10 so that we can compare more easily.
347
0
    denominator->Times10();
348
0
    if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
349
      // If the fraction is >= 0.5 then we have to include the rounded
350
      // digit.
351
0
      buffer[0] = '1';
352
0
      *length = 1;
353
0
      (*decimal_point)++;
354
0
    } else {
355
      // Note that we caught most of similar cases earlier.
356
0
      *length = 0;
357
0
    }
358
0
    return;
359
0
  } else {
360
    // The requested digits correspond to the digits after the point.
361
    // The variable 'needed_digits' includes the digits before the point.
362
0
    int needed_digits = (*decimal_point) + requested_digits;
363
0
    GenerateCountedDigits(needed_digits, decimal_point,
364
0
                          numerator, denominator,
365
0
                          buffer, length);
366
0
  }
367
0
}
368
369
370
// Returns an estimation of k such that 10^(k-1) <= v < 10^k where
371
// v = f * 2^exponent and 2^52 <= f < 2^53.
372
// v is hence a normalized double with the given exponent. The output is an
373
// approximation for the exponent of the decimal approximation .digits * 10^k.
374
//
375
// The result might undershoot by 1 in which case 10^k <= v < 10^k+1.
376
// Note: this property holds for v's upper boundary m+ too.
377
//    10^k <= m+ < 10^k+1.
378
//   (see explanation below).
379
//
380
// Examples:
381
//  EstimatePower(0)   => 16
382
//  EstimatePower(-52) => 0
383
//
384
// Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0.
385
0
static int EstimatePower(int exponent) {
386
  // This function estimates log10 of v where v = f*2^e (with e == exponent).
387
  // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)).
388
  // Note that f is bounded by its container size. Let p = 53 (the double's
389
  // significand size). Then 2^(p-1) <= f < 2^p.
390
  //
391
  // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close
392
  // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)).
393
  // The computed number undershoots by less than 0.631 (when we compute log3
394
  // and not log10).
395
  //
396
  // Optimization: since we only need an approximated result this computation
397
  // can be performed on 64 bit integers. On x86/x64 architecture the speedup is
398
  // not really measurable, though.
399
  //
400
  // Since we want to avoid overshooting we decrement by 1e10 so that
401
  // floating-point imprecisions don't affect us.
402
  //
403
  // Explanation for v's boundary m+: the computation takes advantage of
404
  // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement
405
  // (even for denormals where the delta can be much more important).
406
407
0
  const double k1Log10 = 0.30102999566398114;  // 1/lg(10)
408
409
  // For doubles len(f) == 53 (don't forget the hidden bit).
410
0
  const int kSignificandSize = Double::kSignificandSize;
411
0
  double estimate = ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10);
412
0
  return static_cast<int>(estimate);
413
0
}
414
415
416
// See comments for InitialScaledStartValues.
417
static void InitialScaledStartValuesPositiveExponent(
418
    uint64_t significand, int exponent,
419
    int estimated_power, bool need_boundary_deltas,
420
    Bignum* numerator, Bignum* denominator,
421
0
    Bignum* delta_minus, Bignum* delta_plus) {
422
  // A positive exponent implies a positive power.
423
0
  DOUBLE_CONVERSION_ASSERT(estimated_power >= 0);
424
  // Since the estimated_power is positive we simply multiply the denominator
425
  // by 10^estimated_power.
426
427
  // numerator = v.
428
0
  numerator->AssignUInt64(significand);
429
0
  numerator->ShiftLeft(exponent);
430
  // denominator = 10^estimated_power.
431
0
  denominator->AssignPowerUInt16(10, estimated_power);
432
433
0
  if (need_boundary_deltas) {
434
    // Introduce a common denominator so that the deltas to the boundaries are
435
    // integers.
436
0
    denominator->ShiftLeft(1);
437
0
    numerator->ShiftLeft(1);
438
    // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
439
    // denominator (of 2) delta_plus equals 2^e.
440
0
    delta_plus->AssignUInt16(1);
441
0
    delta_plus->ShiftLeft(exponent);
442
    // Same for delta_minus. The adjustments if f == 2^p-1 are done later.
443
0
    delta_minus->AssignUInt16(1);
444
0
    delta_minus->ShiftLeft(exponent);
445
0
  }
446
0
}
447
448
449
// See comments for InitialScaledStartValues
450
static void InitialScaledStartValuesNegativeExponentPositivePower(
451
    uint64_t significand, int exponent,
452
    int estimated_power, bool need_boundary_deltas,
453
    Bignum* numerator, Bignum* denominator,
454
0
    Bignum* delta_minus, Bignum* delta_plus) {
455
  // v = f * 2^e with e < 0, and with estimated_power >= 0.
456
  // This means that e is close to 0 (have a look at how estimated_power is
457
  // computed).
458
459
  // numerator = significand
460
  //  since v = significand * 2^exponent this is equivalent to
461
  //  numerator = v * / 2^-exponent
462
0
  numerator->AssignUInt64(significand);
463
  // denominator = 10^estimated_power * 2^-exponent (with exponent < 0)
464
0
  denominator->AssignPowerUInt16(10, estimated_power);
465
0
  denominator->ShiftLeft(-exponent);
466
467
0
  if (need_boundary_deltas) {
468
    // Introduce a common denominator so that the deltas to the boundaries are
469
    // integers.
470
0
    denominator->ShiftLeft(1);
471
0
    numerator->ShiftLeft(1);
472
    // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
473
    // denominator (of 2) delta_plus equals 2^e.
474
    // Given that the denominator already includes v's exponent the distance
475
    // to the boundaries is simply 1.
476
0
    delta_plus->AssignUInt16(1);
477
    // Same for delta_minus. The adjustments if f == 2^p-1 are done later.
478
0
    delta_minus->AssignUInt16(1);
479
0
  }
480
0
}
481
482
483
// See comments for InitialScaledStartValues
484
static void InitialScaledStartValuesNegativeExponentNegativePower(
485
    uint64_t significand, int exponent,
486
    int estimated_power, bool need_boundary_deltas,
487
    Bignum* numerator, Bignum* denominator,
488
0
    Bignum* delta_minus, Bignum* delta_plus) {
489
  // Instead of multiplying the denominator with 10^estimated_power we
490
  // multiply all values (numerator and deltas) by 10^-estimated_power.
491
492
  // Use numerator as temporary container for power_ten.
493
0
  Bignum* power_ten = numerator;
494
0
  power_ten->AssignPowerUInt16(10, -estimated_power);
495
496
0
  if (need_boundary_deltas) {
497
    // Since power_ten == numerator we must make a copy of 10^estimated_power
498
    // before we complete the computation of the numerator.
499
    // delta_plus = delta_minus = 10^estimated_power
500
0
    delta_plus->AssignBignum(*power_ten);
501
0
    delta_minus->AssignBignum(*power_ten);
502
0
  }
503
504
  // numerator = significand * 2 * 10^-estimated_power
505
  //  since v = significand * 2^exponent this is equivalent to
506
  // numerator = v * 10^-estimated_power * 2 * 2^-exponent.
507
  // Remember: numerator has been abused as power_ten. So no need to assign it
508
  //  to itself.
509
0
  DOUBLE_CONVERSION_ASSERT(numerator == power_ten);
510
0
  numerator->MultiplyByUInt64(significand);
511
512
  // denominator = 2 * 2^-exponent with exponent < 0.
513
0
  denominator->AssignUInt16(1);
514
0
  denominator->ShiftLeft(-exponent);
515
516
0
  if (need_boundary_deltas) {
517
    // Introduce a common denominator so that the deltas to the boundaries are
518
    // integers.
519
0
    numerator->ShiftLeft(1);
520
0
    denominator->ShiftLeft(1);
521
    // With this shift the boundaries have their correct value, since
522
    // delta_plus = 10^-estimated_power, and
523
    // delta_minus = 10^-estimated_power.
524
    // These assignments have been done earlier.
525
    // The adjustments if f == 2^p-1 (lower boundary is closer) are done later.
526
0
  }
527
0
}
528
529
530
// Let v = significand * 2^exponent.
531
// Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
532
// and denominator. The functions GenerateShortestDigits and
533
// GenerateCountedDigits will then convert this ratio to its decimal
534
// representation d, with the required accuracy.
535
// Then d * 10^estimated_power is the representation of v.
536
// (Note: the fraction and the estimated_power might get adjusted before
537
// generating the decimal representation.)
538
//
539
// The initial start values consist of:
540
//  - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power.
541
//  - a scaled (common) denominator.
542
//  optionally (used by GenerateShortestDigits to decide if it has the shortest
543
//  decimal converting back to v):
544
//  - v - m-: the distance to the lower boundary.
545
//  - m+ - v: the distance to the upper boundary.
546
//
547
// v, m+, m-, and therefore v - m- and m+ - v all share the same denominator.
548
//
549
// Let ep == estimated_power, then the returned values will satisfy:
550
//  v / 10^ep = numerator / denominator.
551
//  v's boundaries m- and m+:
552
//    m- / 10^ep == v / 10^ep - delta_minus / denominator
553
//    m+ / 10^ep == v / 10^ep + delta_plus / denominator
554
//  Or in other words:
555
//    m- == v - delta_minus * 10^ep / denominator;
556
//    m+ == v + delta_plus * 10^ep / denominator;
557
//
558
// Since 10^(k-1) <= v < 10^k    (with k == estimated_power)
559
//  or       10^k <= v < 10^(k+1)
560
//  we then have 0.1 <= numerator/denominator < 1
561
//           or    1 <= numerator/denominator < 10
562
//
563
// It is then easy to kickstart the digit-generation routine.
564
//
565
// The boundary-deltas are only filled if the mode equals BIGNUM_DTOA_SHORTEST
566
// or BIGNUM_DTOA_SHORTEST_SINGLE.
567
568
static void InitialScaledStartValues(uint64_t significand,
569
                                     int exponent,
570
                                     bool lower_boundary_is_closer,
571
                                     int estimated_power,
572
                                     bool need_boundary_deltas,
573
                                     Bignum* numerator,
574
                                     Bignum* denominator,
575
                                     Bignum* delta_minus,
576
0
                                     Bignum* delta_plus) {
577
0
  if (exponent >= 0) {
578
0
    InitialScaledStartValuesPositiveExponent(
579
0
        significand, exponent, estimated_power, need_boundary_deltas,
580
0
        numerator, denominator, delta_minus, delta_plus);
581
0
  } else if (estimated_power >= 0) {
582
0
    InitialScaledStartValuesNegativeExponentPositivePower(
583
0
        significand, exponent, estimated_power, need_boundary_deltas,
584
0
        numerator, denominator, delta_minus, delta_plus);
585
0
  } else {
586
0
    InitialScaledStartValuesNegativeExponentNegativePower(
587
0
        significand, exponent, estimated_power, need_boundary_deltas,
588
0
        numerator, denominator, delta_minus, delta_plus);
589
0
  }
590
591
0
  if (need_boundary_deltas && lower_boundary_is_closer) {
592
    // The lower boundary is closer at half the distance of "normal" numbers.
593
    // Increase the common denominator and adapt all but the delta_minus.
594
0
    denominator->ShiftLeft(1);  // *2
595
0
    numerator->ShiftLeft(1);    // *2
596
0
    delta_plus->ShiftLeft(1);   // *2
597
0
  }
598
0
}
599
600
601
// This routine multiplies numerator/denominator so that its values lies in the
602
// range 1-10. That is after a call to this function we have:
603
//    1 <= (numerator + delta_plus) /denominator < 10.
604
// Let numerator the input before modification and numerator' the argument
605
// after modification, then the output-parameter decimal_point is such that
606
//  numerator / denominator * 10^estimated_power ==
607
//    numerator' / denominator' * 10^(decimal_point - 1)
608
// In some cases estimated_power was too low, and this is already the case. We
609
// then simply adjust the power so that 10^(k-1) <= v < 10^k (with k ==
610
// estimated_power) but do not touch the numerator or denominator.
611
// Otherwise the routine multiplies the numerator and the deltas by 10.
612
static void FixupMultiply10(int estimated_power, bool is_even,
613
                            int* decimal_point,
614
                            Bignum* numerator, Bignum* denominator,
615
0
                            Bignum* delta_minus, Bignum* delta_plus) {
616
0
  bool in_range;
617
0
  if (is_even) {
618
    // For IEEE doubles half-way cases (in decimal system numbers ending with 5)
619
    // are rounded to the closest floating-point number with even significand.
620
0
    in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
621
0
  } else {
622
0
    in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
623
0
  }
624
0
  if (in_range) {
625
    // Since numerator + delta_plus >= denominator we already have
626
    // 1 <= numerator/denominator < 10. Simply update the estimated_power.
627
0
    *decimal_point = estimated_power + 1;
628
0
  } else {
629
0
    *decimal_point = estimated_power;
630
0
    numerator->Times10();
631
0
    if (Bignum::Equal(*delta_minus, *delta_plus)) {
632
0
      delta_minus->Times10();
633
0
      delta_plus->AssignBignum(*delta_minus);
634
0
    } else {
635
0
      delta_minus->Times10();
636
0
      delta_plus->Times10();
637
0
    }
638
0
  }
639
0
}
640
641
}  // namespace double_conversion