/src/poco/Foundation/src/bignum-dtoa.cc
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright 2010 the V8 project authors. All rights reserved. |
2 | | // Redistribution and use in source and binary forms, with or without |
3 | | // modification, are permitted provided that the following conditions are |
4 | | // met: |
5 | | // |
6 | | // * Redistributions of source code must retain the above copyright |
7 | | // notice, this list of conditions and the following disclaimer. |
8 | | // * Redistributions in binary form must reproduce the above |
9 | | // copyright notice, this list of conditions and the following |
10 | | // disclaimer in the documentation and/or other materials provided |
11 | | // with the distribution. |
12 | | // * Neither the name of Google Inc. nor the names of its |
13 | | // contributors may be used to endorse or promote products derived |
14 | | // from this software without specific prior written permission. |
15 | | // |
16 | | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
17 | | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
18 | | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
19 | | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
20 | | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
21 | | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
22 | | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
23 | | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
24 | | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
25 | | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
26 | | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
27 | | |
28 | | #include <cmath> |
29 | | |
30 | | #include "bignum-dtoa.h" |
31 | | |
32 | | #include "bignum.h" |
33 | | #include "ieee.h" |
34 | | |
35 | | namespace double_conversion { |
36 | | |
37 | 0 | static int NormalizedExponent(uint64_t significand, int exponent) { |
38 | 0 | DOUBLE_CONVERSION_ASSERT(significand != 0); |
39 | 0 | while ((significand & Double::kHiddenBit) == 0) { |
40 | 0 | significand = significand << 1; |
41 | 0 | exponent = exponent - 1; |
42 | 0 | } |
43 | 0 | return exponent; |
44 | 0 | } |
45 | | |
46 | | |
47 | | // Forward declarations: |
48 | | // Returns an estimation of k such that 10^(k-1) <= v < 10^k. |
49 | | static int EstimatePower(int exponent); |
50 | | // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator |
51 | | // and denominator. |
52 | | static void InitialScaledStartValues(uint64_t significand, |
53 | | int exponent, |
54 | | bool lower_boundary_is_closer, |
55 | | int estimated_power, |
56 | | bool need_boundary_deltas, |
57 | | Bignum* numerator, |
58 | | Bignum* denominator, |
59 | | Bignum* delta_minus, |
60 | | Bignum* delta_plus); |
61 | | // Multiplies numerator/denominator so that its values lies in the range 1-10. |
62 | | // Returns decimal_point s.t. |
63 | | // v = numerator'/denominator' * 10^(decimal_point-1) |
64 | | // where numerator' and denominator' are the values of numerator and |
65 | | // denominator after the call to this function. |
66 | | static void FixupMultiply10(int estimated_power, bool is_even, |
67 | | int* decimal_point, |
68 | | Bignum* numerator, Bignum* denominator, |
69 | | Bignum* delta_minus, Bignum* delta_plus); |
70 | | // Generates digits from the left to the right and stops when the generated |
71 | | // digits yield the shortest decimal representation of v. |
72 | | static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator, |
73 | | Bignum* delta_minus, Bignum* delta_plus, |
74 | | bool is_even, |
75 | | Vector<char> buffer, int* length); |
76 | | // Generates 'requested_digits' after the decimal point. |
77 | | static void BignumToFixed(int requested_digits, int* decimal_point, |
78 | | Bignum* numerator, Bignum* denominator, |
79 | | Vector<char> buffer, int* length); |
80 | | // Generates 'count' digits of numerator/denominator. |
81 | | // Once 'count' digits have been produced rounds the result depending on the |
82 | | // remainder (remainders of exactly .5 round upwards). Might update the |
83 | | // decimal_point when rounding up (for example for 0.9999). |
84 | | static void GenerateCountedDigits(int count, int* decimal_point, |
85 | | Bignum* numerator, Bignum* denominator, |
86 | | Vector<char> buffer, int* length); |
87 | | |
88 | | |
89 | | void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits, |
90 | 0 | Vector<char> buffer, int* length, int* decimal_point) { |
91 | 0 | DOUBLE_CONVERSION_ASSERT(v > 0); |
92 | 0 | DOUBLE_CONVERSION_ASSERT(!Double(v).IsSpecial()); |
93 | 0 | uint64_t significand; |
94 | 0 | int exponent; |
95 | 0 | bool lower_boundary_is_closer; |
96 | 0 | if (mode == BIGNUM_DTOA_SHORTEST_SINGLE) { |
97 | 0 | float f = static_cast<float>(v); |
98 | 0 | DOUBLE_CONVERSION_ASSERT(f == v); |
99 | 0 | significand = Single(f).Significand(); |
100 | 0 | exponent = Single(f).Exponent(); |
101 | 0 | lower_boundary_is_closer = Single(f).LowerBoundaryIsCloser(); |
102 | 0 | } else { |
103 | 0 | significand = Double(v).Significand(); |
104 | 0 | exponent = Double(v).Exponent(); |
105 | 0 | lower_boundary_is_closer = Double(v).LowerBoundaryIsCloser(); |
106 | 0 | } |
107 | 0 | bool need_boundary_deltas = |
108 | 0 | (mode == BIGNUM_DTOA_SHORTEST || mode == BIGNUM_DTOA_SHORTEST_SINGLE); |
109 | |
|
110 | 0 | bool is_even = (significand & 1) == 0; |
111 | 0 | int normalized_exponent = NormalizedExponent(significand, exponent); |
112 | | // estimated_power might be too low by 1. |
113 | 0 | int estimated_power = EstimatePower(normalized_exponent); |
114 | | |
115 | | // Shortcut for Fixed. |
116 | | // The requested digits correspond to the digits after the point. If the |
117 | | // number is much too small, then there is no need in trying to get any |
118 | | // digits. |
119 | 0 | if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) { |
120 | 0 | buffer[0] = '\0'; |
121 | 0 | *length = 0; |
122 | | // Set decimal-point to -requested_digits. This is what Gay does. |
123 | | // Note that it should not have any effect anyways since the string is |
124 | | // empty. |
125 | 0 | *decimal_point = -requested_digits; |
126 | 0 | return; |
127 | 0 | } |
128 | | |
129 | 0 | Bignum numerator; |
130 | 0 | Bignum denominator; |
131 | 0 | Bignum delta_minus; |
132 | 0 | Bignum delta_plus; |
133 | | // Make sure the bignum can grow large enough. The smallest double equals |
134 | | // 4e-324. In this case the denominator needs fewer than 324*4 binary digits. |
135 | | // The maximum double is 1.7976931348623157e308 which needs fewer than |
136 | | // 308*4 binary digits. |
137 | 0 | DOUBLE_CONVERSION_ASSERT(Bignum::kMaxSignificantBits >= 324*4); |
138 | 0 | InitialScaledStartValues(significand, exponent, lower_boundary_is_closer, |
139 | 0 | estimated_power, need_boundary_deltas, |
140 | 0 | &numerator, &denominator, |
141 | 0 | &delta_minus, &delta_plus); |
142 | | // We now have v = (numerator / denominator) * 10^estimated_power. |
143 | 0 | FixupMultiply10(estimated_power, is_even, decimal_point, |
144 | 0 | &numerator, &denominator, |
145 | 0 | &delta_minus, &delta_plus); |
146 | | // We now have v = (numerator / denominator) * 10^(decimal_point-1), and |
147 | | // 1 <= (numerator + delta_plus) / denominator < 10 |
148 | 0 | switch (mode) { |
149 | 0 | case BIGNUM_DTOA_SHORTEST: |
150 | 0 | case BIGNUM_DTOA_SHORTEST_SINGLE: |
151 | 0 | GenerateShortestDigits(&numerator, &denominator, |
152 | 0 | &delta_minus, &delta_plus, |
153 | 0 | is_even, buffer, length); |
154 | 0 | break; |
155 | 0 | case BIGNUM_DTOA_FIXED: |
156 | 0 | BignumToFixed(requested_digits, decimal_point, |
157 | 0 | &numerator, &denominator, |
158 | 0 | buffer, length); |
159 | 0 | break; |
160 | 0 | case BIGNUM_DTOA_PRECISION: |
161 | 0 | GenerateCountedDigits(requested_digits, decimal_point, |
162 | 0 | &numerator, &denominator, |
163 | 0 | buffer, length); |
164 | 0 | break; |
165 | 0 | default: |
166 | 0 | DOUBLE_CONVERSION_UNREACHABLE(); |
167 | 0 | } |
168 | 0 | buffer[*length] = '\0'; |
169 | 0 | } |
170 | | |
171 | | |
172 | | // The procedure starts generating digits from the left to the right and stops |
173 | | // when the generated digits yield the shortest decimal representation of v. A |
174 | | // decimal representation of v is a number lying closer to v than to any other |
175 | | // double, so it converts to v when read. |
176 | | // |
177 | | // This is true if d, the decimal representation, is between m- and m+, the |
178 | | // upper and lower boundaries. d must be strictly between them if !is_even. |
179 | | // m- := (numerator - delta_minus) / denominator |
180 | | // m+ := (numerator + delta_plus) / denominator |
181 | | // |
182 | | // Precondition: 0 <= (numerator+delta_plus) / denominator < 10. |
183 | | // If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit |
184 | | // will be produced. This should be the standard precondition. |
185 | | static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator, |
186 | | Bignum* delta_minus, Bignum* delta_plus, |
187 | | bool is_even, |
188 | 0 | Vector<char> buffer, int* length) { |
189 | | // Small optimization: if delta_minus and delta_plus are the same just reuse |
190 | | // one of the two bignums. |
191 | 0 | if (Bignum::Equal(*delta_minus, *delta_plus)) { |
192 | 0 | delta_plus = delta_minus; |
193 | 0 | } |
194 | 0 | *length = 0; |
195 | 0 | for (;;) { |
196 | 0 | uint16_t digit; |
197 | 0 | digit = numerator->DivideModuloIntBignum(*denominator); |
198 | 0 | DOUBLE_CONVERSION_ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive. |
199 | | // digit = numerator / denominator (integer division). |
200 | | // numerator = numerator % denominator. |
201 | 0 | buffer[(*length)++] = static_cast<char>(digit + '0'); |
202 | | |
203 | | // Can we stop already? |
204 | | // If the remainder of the division is less than the distance to the lower |
205 | | // boundary we can stop. In this case we simply round down (discarding the |
206 | | // remainder). |
207 | | // Similarly we test if we can round up (using the upper boundary). |
208 | 0 | bool in_delta_room_minus; |
209 | 0 | bool in_delta_room_plus; |
210 | 0 | if (is_even) { |
211 | 0 | in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus); |
212 | 0 | } else { |
213 | 0 | in_delta_room_minus = Bignum::Less(*numerator, *delta_minus); |
214 | 0 | } |
215 | 0 | if (is_even) { |
216 | 0 | in_delta_room_plus = |
217 | 0 | Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0; |
218 | 0 | } else { |
219 | 0 | in_delta_room_plus = |
220 | 0 | Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0; |
221 | 0 | } |
222 | 0 | if (!in_delta_room_minus && !in_delta_room_plus) { |
223 | | // Prepare for next iteration. |
224 | 0 | numerator->Times10(); |
225 | 0 | delta_minus->Times10(); |
226 | | // We optimized delta_plus to be equal to delta_minus (if they share the |
227 | | // same value). So don't multiply delta_plus if they point to the same |
228 | | // object. |
229 | 0 | if (delta_minus != delta_plus) { |
230 | 0 | delta_plus->Times10(); |
231 | 0 | } |
232 | 0 | } else if (in_delta_room_minus && in_delta_room_plus) { |
233 | | // Let's see if 2*numerator < denominator. |
234 | | // If yes, then the next digit would be < 5 and we can round down. |
235 | 0 | int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator); |
236 | 0 | if (compare < 0) { |
237 | | // Remaining digits are less than .5. -> Round down (== do nothing). |
238 | 0 | } else if (compare > 0) { |
239 | | // Remaining digits are more than .5 of denominator. -> Round up. |
240 | | // Note that the last digit could not be a '9' as otherwise the whole |
241 | | // loop would have stopped earlier. |
242 | | // We still have an assert here in case the preconditions were not |
243 | | // satisfied. |
244 | 0 | DOUBLE_CONVERSION_ASSERT(buffer[(*length) - 1] != '9'); |
245 | 0 | buffer[(*length) - 1]++; |
246 | 0 | } else { |
247 | | // Halfway case. |
248 | | // TODO(floitsch): need a way to solve half-way cases. |
249 | | // For now let's round towards even (since this is what Gay seems to |
250 | | // do). |
251 | |
|
252 | 0 | if ((buffer[(*length) - 1] - '0') % 2 == 0) { |
253 | | // Round down => Do nothing. |
254 | 0 | } else { |
255 | 0 | DOUBLE_CONVERSION_ASSERT(buffer[(*length) - 1] != '9'); |
256 | 0 | buffer[(*length) - 1]++; |
257 | 0 | } |
258 | 0 | } |
259 | 0 | return; |
260 | 0 | } else if (in_delta_room_minus) { |
261 | | // Round down (== do nothing). |
262 | 0 | return; |
263 | 0 | } else { // in_delta_room_plus |
264 | | // Round up. |
265 | | // Note again that the last digit could not be '9' since this would have |
266 | | // stopped the loop earlier. |
267 | | // We still have an DOUBLE_CONVERSION_ASSERT here, in case the preconditions were not |
268 | | // satisfied. |
269 | 0 | DOUBLE_CONVERSION_ASSERT(buffer[(*length) -1] != '9'); |
270 | 0 | buffer[(*length) - 1]++; |
271 | 0 | return; |
272 | 0 | } |
273 | 0 | } |
274 | 0 | } |
275 | | |
276 | | |
277 | | // Let v = numerator / denominator < 10. |
278 | | // Then we generate 'count' digits of d = x.xxxxx... (without the decimal point) |
279 | | // from left to right. Once 'count' digits have been produced we decide whether |
280 | | // to round up or down. Remainders of exactly .5 round upwards. Numbers such |
281 | | // as 9.999999 propagate a carry all the way, and change the |
282 | | // exponent (decimal_point), when rounding upwards. |
283 | | static void GenerateCountedDigits(int count, int* decimal_point, |
284 | | Bignum* numerator, Bignum* denominator, |
285 | 0 | Vector<char> buffer, int* length) { |
286 | 0 | DOUBLE_CONVERSION_ASSERT(count >= 0); |
287 | 0 | for (int i = 0; i < count - 1; ++i) { |
288 | 0 | uint16_t digit; |
289 | 0 | digit = numerator->DivideModuloIntBignum(*denominator); |
290 | 0 | DOUBLE_CONVERSION_ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive. |
291 | | // digit = numerator / denominator (integer division). |
292 | | // numerator = numerator % denominator. |
293 | 0 | buffer[i] = static_cast<char>(digit + '0'); |
294 | | // Prepare for next iteration. |
295 | 0 | numerator->Times10(); |
296 | 0 | } |
297 | | // Generate the last digit. |
298 | 0 | uint16_t digit; |
299 | 0 | digit = numerator->DivideModuloIntBignum(*denominator); |
300 | 0 | if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) { |
301 | 0 | digit++; |
302 | 0 | } |
303 | 0 | DOUBLE_CONVERSION_ASSERT(digit <= 10); |
304 | 0 | buffer[count - 1] = static_cast<char>(digit + '0'); |
305 | | // Correct bad digits (in case we had a sequence of '9's). Propagate the |
306 | | // carry until we hat a non-'9' or til we reach the first digit. |
307 | 0 | for (int i = count - 1; i > 0; --i) { |
308 | 0 | if (buffer[i] != '0' + 10) break; |
309 | 0 | buffer[i] = '0'; |
310 | 0 | buffer[i - 1]++; |
311 | 0 | } |
312 | 0 | if (buffer[0] == '0' + 10) { |
313 | | // Propagate a carry past the top place. |
314 | 0 | buffer[0] = '1'; |
315 | 0 | (*decimal_point)++; |
316 | 0 | } |
317 | 0 | *length = count; |
318 | 0 | } |
319 | | |
320 | | |
321 | | // Generates 'requested_digits' after the decimal point. It might omit |
322 | | // trailing '0's. If the input number is too small then no digits at all are |
323 | | // generated (ex.: 2 fixed digits for 0.00001). |
324 | | // |
325 | | // Input verifies: 1 <= (numerator + delta) / denominator < 10. |
326 | | static void BignumToFixed(int requested_digits, int* decimal_point, |
327 | | Bignum* numerator, Bignum* denominator, |
328 | 0 | Vector<char> buffer, int* length) { |
329 | | // Note that we have to look at more than just the requested_digits, since |
330 | | // a number could be rounded up. Example: v=0.5 with requested_digits=0. |
331 | | // Even though the power of v equals 0 we can't just stop here. |
332 | 0 | if (-(*decimal_point) > requested_digits) { |
333 | | // The number is definitively too small. |
334 | | // Ex: 0.001 with requested_digits == 1. |
335 | | // Set decimal-point to -requested_digits. This is what Gay does. |
336 | | // Note that it should not have any effect anyways since the string is |
337 | | // empty. |
338 | 0 | *decimal_point = -requested_digits; |
339 | 0 | *length = 0; |
340 | 0 | return; |
341 | 0 | } else if (-(*decimal_point) == requested_digits) { |
342 | | // We only need to verify if the number rounds down or up. |
343 | | // Ex: 0.04 and 0.06 with requested_digits == 1. |
344 | 0 | DOUBLE_CONVERSION_ASSERT(*decimal_point == -requested_digits); |
345 | | // Initially the fraction lies in range (1, 10]. Multiply the denominator |
346 | | // by 10 so that we can compare more easily. |
347 | 0 | denominator->Times10(); |
348 | 0 | if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) { |
349 | | // If the fraction is >= 0.5 then we have to include the rounded |
350 | | // digit. |
351 | 0 | buffer[0] = '1'; |
352 | 0 | *length = 1; |
353 | 0 | (*decimal_point)++; |
354 | 0 | } else { |
355 | | // Note that we caught most of similar cases earlier. |
356 | 0 | *length = 0; |
357 | 0 | } |
358 | 0 | return; |
359 | 0 | } else { |
360 | | // The requested digits correspond to the digits after the point. |
361 | | // The variable 'needed_digits' includes the digits before the point. |
362 | 0 | int needed_digits = (*decimal_point) + requested_digits; |
363 | 0 | GenerateCountedDigits(needed_digits, decimal_point, |
364 | 0 | numerator, denominator, |
365 | 0 | buffer, length); |
366 | 0 | } |
367 | 0 | } |
368 | | |
369 | | |
370 | | // Returns an estimation of k such that 10^(k-1) <= v < 10^k where |
371 | | // v = f * 2^exponent and 2^52 <= f < 2^53. |
372 | | // v is hence a normalized double with the given exponent. The output is an |
373 | | // approximation for the exponent of the decimal approximation .digits * 10^k. |
374 | | // |
375 | | // The result might undershoot by 1 in which case 10^k <= v < 10^k+1. |
376 | | // Note: this property holds for v's upper boundary m+ too. |
377 | | // 10^k <= m+ < 10^k+1. |
378 | | // (see explanation below). |
379 | | // |
380 | | // Examples: |
381 | | // EstimatePower(0) => 16 |
382 | | // EstimatePower(-52) => 0 |
383 | | // |
384 | | // Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0. |
385 | 0 | static int EstimatePower(int exponent) { |
386 | | // This function estimates log10 of v where v = f*2^e (with e == exponent). |
387 | | // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)). |
388 | | // Note that f is bounded by its container size. Let p = 53 (the double's |
389 | | // significand size). Then 2^(p-1) <= f < 2^p. |
390 | | // |
391 | | // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close |
392 | | // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)). |
393 | | // The computed number undershoots by less than 0.631 (when we compute log3 |
394 | | // and not log10). |
395 | | // |
396 | | // Optimization: since we only need an approximated result this computation |
397 | | // can be performed on 64 bit integers. On x86/x64 architecture the speedup is |
398 | | // not really measurable, though. |
399 | | // |
400 | | // Since we want to avoid overshooting we decrement by 1e10 so that |
401 | | // floating-point imprecisions don't affect us. |
402 | | // |
403 | | // Explanation for v's boundary m+: the computation takes advantage of |
404 | | // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement |
405 | | // (even for denormals where the delta can be much more important). |
406 | |
|
407 | 0 | const double k1Log10 = 0.30102999566398114; // 1/lg(10) |
408 | | |
409 | | // For doubles len(f) == 53 (don't forget the hidden bit). |
410 | 0 | const int kSignificandSize = Double::kSignificandSize; |
411 | 0 | double estimate = ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10); |
412 | 0 | return static_cast<int>(estimate); |
413 | 0 | } |
414 | | |
415 | | |
416 | | // See comments for InitialScaledStartValues. |
417 | | static void InitialScaledStartValuesPositiveExponent( |
418 | | uint64_t significand, int exponent, |
419 | | int estimated_power, bool need_boundary_deltas, |
420 | | Bignum* numerator, Bignum* denominator, |
421 | 0 | Bignum* delta_minus, Bignum* delta_plus) { |
422 | | // A positive exponent implies a positive power. |
423 | 0 | DOUBLE_CONVERSION_ASSERT(estimated_power >= 0); |
424 | | // Since the estimated_power is positive we simply multiply the denominator |
425 | | // by 10^estimated_power. |
426 | | |
427 | | // numerator = v. |
428 | 0 | numerator->AssignUInt64(significand); |
429 | 0 | numerator->ShiftLeft(exponent); |
430 | | // denominator = 10^estimated_power. |
431 | 0 | denominator->AssignPowerUInt16(10, estimated_power); |
432 | |
|
433 | 0 | if (need_boundary_deltas) { |
434 | | // Introduce a common denominator so that the deltas to the boundaries are |
435 | | // integers. |
436 | 0 | denominator->ShiftLeft(1); |
437 | 0 | numerator->ShiftLeft(1); |
438 | | // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common |
439 | | // denominator (of 2) delta_plus equals 2^e. |
440 | 0 | delta_plus->AssignUInt16(1); |
441 | 0 | delta_plus->ShiftLeft(exponent); |
442 | | // Same for delta_minus. The adjustments if f == 2^p-1 are done later. |
443 | 0 | delta_minus->AssignUInt16(1); |
444 | 0 | delta_minus->ShiftLeft(exponent); |
445 | 0 | } |
446 | 0 | } |
447 | | |
448 | | |
449 | | // See comments for InitialScaledStartValues |
450 | | static void InitialScaledStartValuesNegativeExponentPositivePower( |
451 | | uint64_t significand, int exponent, |
452 | | int estimated_power, bool need_boundary_deltas, |
453 | | Bignum* numerator, Bignum* denominator, |
454 | 0 | Bignum* delta_minus, Bignum* delta_plus) { |
455 | | // v = f * 2^e with e < 0, and with estimated_power >= 0. |
456 | | // This means that e is close to 0 (have a look at how estimated_power is |
457 | | // computed). |
458 | | |
459 | | // numerator = significand |
460 | | // since v = significand * 2^exponent this is equivalent to |
461 | | // numerator = v * / 2^-exponent |
462 | 0 | numerator->AssignUInt64(significand); |
463 | | // denominator = 10^estimated_power * 2^-exponent (with exponent < 0) |
464 | 0 | denominator->AssignPowerUInt16(10, estimated_power); |
465 | 0 | denominator->ShiftLeft(-exponent); |
466 | |
|
467 | 0 | if (need_boundary_deltas) { |
468 | | // Introduce a common denominator so that the deltas to the boundaries are |
469 | | // integers. |
470 | 0 | denominator->ShiftLeft(1); |
471 | 0 | numerator->ShiftLeft(1); |
472 | | // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common |
473 | | // denominator (of 2) delta_plus equals 2^e. |
474 | | // Given that the denominator already includes v's exponent the distance |
475 | | // to the boundaries is simply 1. |
476 | 0 | delta_plus->AssignUInt16(1); |
477 | | // Same for delta_minus. The adjustments if f == 2^p-1 are done later. |
478 | 0 | delta_minus->AssignUInt16(1); |
479 | 0 | } |
480 | 0 | } |
481 | | |
482 | | |
483 | | // See comments for InitialScaledStartValues |
484 | | static void InitialScaledStartValuesNegativeExponentNegativePower( |
485 | | uint64_t significand, int exponent, |
486 | | int estimated_power, bool need_boundary_deltas, |
487 | | Bignum* numerator, Bignum* denominator, |
488 | 0 | Bignum* delta_minus, Bignum* delta_plus) { |
489 | | // Instead of multiplying the denominator with 10^estimated_power we |
490 | | // multiply all values (numerator and deltas) by 10^-estimated_power. |
491 | | |
492 | | // Use numerator as temporary container for power_ten. |
493 | 0 | Bignum* power_ten = numerator; |
494 | 0 | power_ten->AssignPowerUInt16(10, -estimated_power); |
495 | |
|
496 | 0 | if (need_boundary_deltas) { |
497 | | // Since power_ten == numerator we must make a copy of 10^estimated_power |
498 | | // before we complete the computation of the numerator. |
499 | | // delta_plus = delta_minus = 10^estimated_power |
500 | 0 | delta_plus->AssignBignum(*power_ten); |
501 | 0 | delta_minus->AssignBignum(*power_ten); |
502 | 0 | } |
503 | | |
504 | | // numerator = significand * 2 * 10^-estimated_power |
505 | | // since v = significand * 2^exponent this is equivalent to |
506 | | // numerator = v * 10^-estimated_power * 2 * 2^-exponent. |
507 | | // Remember: numerator has been abused as power_ten. So no need to assign it |
508 | | // to itself. |
509 | 0 | DOUBLE_CONVERSION_ASSERT(numerator == power_ten); |
510 | 0 | numerator->MultiplyByUInt64(significand); |
511 | | |
512 | | // denominator = 2 * 2^-exponent with exponent < 0. |
513 | 0 | denominator->AssignUInt16(1); |
514 | 0 | denominator->ShiftLeft(-exponent); |
515 | |
|
516 | 0 | if (need_boundary_deltas) { |
517 | | // Introduce a common denominator so that the deltas to the boundaries are |
518 | | // integers. |
519 | 0 | numerator->ShiftLeft(1); |
520 | 0 | denominator->ShiftLeft(1); |
521 | | // With this shift the boundaries have their correct value, since |
522 | | // delta_plus = 10^-estimated_power, and |
523 | | // delta_minus = 10^-estimated_power. |
524 | | // These assignments have been done earlier. |
525 | | // The adjustments if f == 2^p-1 (lower boundary is closer) are done later. |
526 | 0 | } |
527 | 0 | } |
528 | | |
529 | | |
530 | | // Let v = significand * 2^exponent. |
531 | | // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator |
532 | | // and denominator. The functions GenerateShortestDigits and |
533 | | // GenerateCountedDigits will then convert this ratio to its decimal |
534 | | // representation d, with the required accuracy. |
535 | | // Then d * 10^estimated_power is the representation of v. |
536 | | // (Note: the fraction and the estimated_power might get adjusted before |
537 | | // generating the decimal representation.) |
538 | | // |
539 | | // The initial start values consist of: |
540 | | // - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power. |
541 | | // - a scaled (common) denominator. |
542 | | // optionally (used by GenerateShortestDigits to decide if it has the shortest |
543 | | // decimal converting back to v): |
544 | | // - v - m-: the distance to the lower boundary. |
545 | | // - m+ - v: the distance to the upper boundary. |
546 | | // |
547 | | // v, m+, m-, and therefore v - m- and m+ - v all share the same denominator. |
548 | | // |
549 | | // Let ep == estimated_power, then the returned values will satisfy: |
550 | | // v / 10^ep = numerator / denominator. |
551 | | // v's boundaries m- and m+: |
552 | | // m- / 10^ep == v / 10^ep - delta_minus / denominator |
553 | | // m+ / 10^ep == v / 10^ep + delta_plus / denominator |
554 | | // Or in other words: |
555 | | // m- == v - delta_minus * 10^ep / denominator; |
556 | | // m+ == v + delta_plus * 10^ep / denominator; |
557 | | // |
558 | | // Since 10^(k-1) <= v < 10^k (with k == estimated_power) |
559 | | // or 10^k <= v < 10^(k+1) |
560 | | // we then have 0.1 <= numerator/denominator < 1 |
561 | | // or 1 <= numerator/denominator < 10 |
562 | | // |
563 | | // It is then easy to kickstart the digit-generation routine. |
564 | | // |
565 | | // The boundary-deltas are only filled if the mode equals BIGNUM_DTOA_SHORTEST |
566 | | // or BIGNUM_DTOA_SHORTEST_SINGLE. |
567 | | |
568 | | static void InitialScaledStartValues(uint64_t significand, |
569 | | int exponent, |
570 | | bool lower_boundary_is_closer, |
571 | | int estimated_power, |
572 | | bool need_boundary_deltas, |
573 | | Bignum* numerator, |
574 | | Bignum* denominator, |
575 | | Bignum* delta_minus, |
576 | 0 | Bignum* delta_plus) { |
577 | 0 | if (exponent >= 0) { |
578 | 0 | InitialScaledStartValuesPositiveExponent( |
579 | 0 | significand, exponent, estimated_power, need_boundary_deltas, |
580 | 0 | numerator, denominator, delta_minus, delta_plus); |
581 | 0 | } else if (estimated_power >= 0) { |
582 | 0 | InitialScaledStartValuesNegativeExponentPositivePower( |
583 | 0 | significand, exponent, estimated_power, need_boundary_deltas, |
584 | 0 | numerator, denominator, delta_minus, delta_plus); |
585 | 0 | } else { |
586 | 0 | InitialScaledStartValuesNegativeExponentNegativePower( |
587 | 0 | significand, exponent, estimated_power, need_boundary_deltas, |
588 | 0 | numerator, denominator, delta_minus, delta_plus); |
589 | 0 | } |
590 | |
|
591 | 0 | if (need_boundary_deltas && lower_boundary_is_closer) { |
592 | | // The lower boundary is closer at half the distance of "normal" numbers. |
593 | | // Increase the common denominator and adapt all but the delta_minus. |
594 | 0 | denominator->ShiftLeft(1); // *2 |
595 | 0 | numerator->ShiftLeft(1); // *2 |
596 | 0 | delta_plus->ShiftLeft(1); // *2 |
597 | 0 | } |
598 | 0 | } |
599 | | |
600 | | |
601 | | // This routine multiplies numerator/denominator so that its values lies in the |
602 | | // range 1-10. That is after a call to this function we have: |
603 | | // 1 <= (numerator + delta_plus) /denominator < 10. |
604 | | // Let numerator the input before modification and numerator' the argument |
605 | | // after modification, then the output-parameter decimal_point is such that |
606 | | // numerator / denominator * 10^estimated_power == |
607 | | // numerator' / denominator' * 10^(decimal_point - 1) |
608 | | // In some cases estimated_power was too low, and this is already the case. We |
609 | | // then simply adjust the power so that 10^(k-1) <= v < 10^k (with k == |
610 | | // estimated_power) but do not touch the numerator or denominator. |
611 | | // Otherwise the routine multiplies the numerator and the deltas by 10. |
612 | | static void FixupMultiply10(int estimated_power, bool is_even, |
613 | | int* decimal_point, |
614 | | Bignum* numerator, Bignum* denominator, |
615 | 0 | Bignum* delta_minus, Bignum* delta_plus) { |
616 | 0 | bool in_range; |
617 | 0 | if (is_even) { |
618 | | // For IEEE doubles half-way cases (in decimal system numbers ending with 5) |
619 | | // are rounded to the closest floating-point number with even significand. |
620 | 0 | in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0; |
621 | 0 | } else { |
622 | 0 | in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0; |
623 | 0 | } |
624 | 0 | if (in_range) { |
625 | | // Since numerator + delta_plus >= denominator we already have |
626 | | // 1 <= numerator/denominator < 10. Simply update the estimated_power. |
627 | 0 | *decimal_point = estimated_power + 1; |
628 | 0 | } else { |
629 | 0 | *decimal_point = estimated_power; |
630 | 0 | numerator->Times10(); |
631 | 0 | if (Bignum::Equal(*delta_minus, *delta_plus)) { |
632 | 0 | delta_minus->Times10(); |
633 | 0 | delta_plus->AssignBignum(*delta_minus); |
634 | 0 | } else { |
635 | 0 | delta_minus->Times10(); |
636 | 0 | delta_plus->Times10(); |
637 | 0 | } |
638 | 0 | } |
639 | 0 | } |
640 | | |
641 | | } // namespace double_conversion |