Coverage Report

Created: 2025-06-25 07:00

/src/poco/Foundation/src/double-to-string.h
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2012 the V8 project authors. All rights reserved.
2
// Redistribution and use in source and binary forms, with or without
3
// modification, are permitted provided that the following conditions are
4
// met:
5
//
6
//     * Redistributions of source code must retain the above copyright
7
//       notice, this list of conditions and the following disclaimer.
8
//     * Redistributions in binary form must reproduce the above
9
//       copyright notice, this list of conditions and the following
10
//       disclaimer in the documentation and/or other materials provided
11
//       with the distribution.
12
//     * Neither the name of Google Inc. nor the names of its
13
//       contributors may be used to endorse or promote products derived
14
//       from this software without specific prior written permission.
15
//
16
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28
#ifndef DOUBLE_CONVERSION_DOUBLE_TO_STRING_H_
29
#define DOUBLE_CONVERSION_DOUBLE_TO_STRING_H_
30
31
#include "utils.h"
32
33
namespace double_conversion {
34
35
class DoubleToStringConverter {
36
 public:
37
  // When calling ToFixed with a double > 10^kMaxFixedDigitsBeforePoint
38
  // or a requested_digits parameter > kMaxFixedDigitsAfterPoint then the
39
  // function returns false.
40
  static const int kMaxFixedDigitsBeforePoint = 60;
41
  static const int kMaxFixedDigitsAfterPoint = 100;
42
43
  // When calling ToExponential with a requested_digits
44
  // parameter > kMaxExponentialDigits then the function returns false.
45
  static const int kMaxExponentialDigits = 120;
46
47
  // When calling ToPrecision with a requested_digits
48
  // parameter < kMinPrecisionDigits or requested_digits > kMaxPrecisionDigits
49
  // then the function returns false.
50
  static const int kMinPrecisionDigits = 1;
51
  static const int kMaxPrecisionDigits = 120;
52
53
  // The maximal number of digits that are needed to emit a double in base 10.
54
  // A higher precision can be achieved by using more digits, but the shortest
55
  // accurate representation of any double will never use more digits than
56
  // kBase10MaximalLength.
57
  // Note that DoubleToAscii null-terminates its input. So the given buffer
58
  // should be at least kBase10MaximalLength + 1 characters long.
59
  static const int kBase10MaximalLength = 17;
60
61
  // The maximal number of digits that are needed to emit a single in base 10.
62
  // A higher precision can be achieved by using more digits, but the shortest
63
  // accurate representation of any single will never use more digits than
64
  // kBase10MaximalLengthSingle.
65
  static const int kBase10MaximalLengthSingle = 9;
66
67
  // The length of the longest string that 'ToShortest' can produce when the
68
  // converter is instantiated with EcmaScript defaults (see
69
  // 'EcmaScriptConverter')
70
  // This value does not include the trailing '\0' character.
71
  // This amount of characters is needed for negative values that hit the
72
  // 'decimal_in_shortest_low' limit. For example: "-0.0000033333333333333333"
73
  static const int kMaxCharsEcmaScriptShortest = 25;
74
75
  enum Flags {
76
    NO_FLAGS = 0,
77
    EMIT_POSITIVE_EXPONENT_SIGN = 1,
78
    EMIT_TRAILING_DECIMAL_POINT = 2,
79
    EMIT_TRAILING_ZERO_AFTER_POINT = 4,
80
    UNIQUE_ZERO = 8,
81
    NO_TRAILING_ZERO = 16,
82
    EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL = 32,
83
    EMIT_TRAILING_ZERO_AFTER_POINT_IN_EXPONENTIAL = 64
84
  };
85
86
  // Flags should be a bit-or combination of the possible Flags-enum.
87
  //  - NO_FLAGS: no special flags.
88
  //  - EMIT_POSITIVE_EXPONENT_SIGN: when the number is converted into exponent
89
  //    form, emits a '+' for positive exponents. Example: 1.2e+2.
90
  //  - EMIT_TRAILING_DECIMAL_POINT: when the input number is an integer and is
91
  //    converted into decimal format then a trailing decimal point is appended.
92
  //    Example: 2345.0 is converted to "2345.".
93
  //  - EMIT_TRAILING_ZERO_AFTER_POINT: in addition to a trailing decimal point
94
  //    emits a trailing '0'-character. This flag requires the
95
  //    EMIT_TRAILING_DECIMAL_POINT flag.
96
  //    Example: 2345.0 is converted to "2345.0".
97
  //  - UNIQUE_ZERO: "-0.0" is converted to "0.0".
98
  //  - NO_TRAILING_ZERO: Trailing zeros are removed from the fractional portion
99
  //    of the result in precision mode. Matches printf's %g.
100
  //    When EMIT_TRAILING_ZERO_AFTER_POINT is also given, one trailing zero is
101
  //    preserved.
102
  //  - EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL: when the input number has
103
  //    exactly one significant digit and is converted into exponent form then a
104
  //    trailing decimal point is appended to the significand in shortest mode
105
  //    or in precision mode with one requested digit.
106
  //  - EMIT_TRAILING_ZERO_AFTER_POINT_IN_EXPONENTIAL: in addition to a trailing
107
  //    decimal point emits a trailing '0'-character. This flag requires the
108
  //    EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL flag.
109
  //
110
  // Infinity symbol and nan_symbol provide the string representation for these
111
  // special values. If the string is NULL and the special value is encountered
112
  // then the conversion functions return false.
113
  //
114
  // The exponent_character is used in exponential representations. It is
115
  // usually 'e' or 'E'.
116
  //
117
  // When converting to the shortest representation the converter will
118
  // represent input numbers in decimal format if they are in the interval
119
  // [10^decimal_in_shortest_low; 10^decimal_in_shortest_high[
120
  //    (lower boundary included, greater boundary excluded).
121
  // Example: with decimal_in_shortest_low = -6 and
122
  //               decimal_in_shortest_high = 21:
123
  //   ToShortest(0.000001)  -> "0.000001"
124
  //   ToShortest(0.0000001) -> "1e-7"
125
  //   ToShortest(111111111111111111111.0)  -> "111111111111111110000"
126
  //   ToShortest(100000000000000000000.0)  -> "100000000000000000000"
127
  //   ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21"
128
  //
129
  // When converting to precision mode the converter may add
130
  // max_leading_padding_zeroes before returning the number in exponential
131
  // format.
132
  // Example with max_leading_padding_zeroes_in_precision_mode = 6.
133
  //   ToPrecision(0.0000012345, 2) -> "0.0000012"
134
  //   ToPrecision(0.00000012345, 2) -> "1.2e-7"
135
  // Similarly the converter may add up to
136
  // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid
137
  // returning an exponential representation. A zero added by the
138
  // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit.
139
  // Examples for max_trailing_padding_zeroes_in_precision_mode = 1:
140
  //   ToPrecision(230.0, 2) -> "230"
141
  //   ToPrecision(230.0, 2) -> "230."  with EMIT_TRAILING_DECIMAL_POINT.
142
  //   ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT.
143
  //
144
  // When converting numbers with exactly one significant digit to exponent
145
  // form in shortest mode or in precision mode with one requested digit, the
146
  // EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT flags have
147
  // no effect. Use the EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL flag to
148
  // append a decimal point in this case and the
149
  // EMIT_TRAILING_ZERO_AFTER_POINT_IN_EXPONENTIAL flag to also append a
150
  // '0'-character in this case.
151
  // Example with decimal_in_shortest_low = 0:
152
  //   ToShortest(0.0009) -> "9e-4"
153
  //     with EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL deactivated.
154
  //   ToShortest(0.0009) -> "9.e-4"
155
  //     with EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL activated.
156
  //   ToShortest(0.0009) -> "9.0e-4"
157
  //     with EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL activated and
158
  //     EMIT_TRAILING_ZERO_AFTER_POINT_IN_EXPONENTIAL activated.
159
  //
160
  // The min_exponent_width is used for exponential representations.
161
  // The converter adds leading '0's to the exponent until the exponent
162
  // is at least min_exponent_width digits long.
163
  // The min_exponent_width is clamped to 5.
164
  // As such, the exponent may never have more than 5 digits in total.
165
  DoubleToStringConverter(int flags,
166
                          const char* infinity_symbol,
167
                          const char* nan_symbol,
168
                          char exponent_character,
169
                          int decimal_in_shortest_low,
170
                          int decimal_in_shortest_high,
171
                          int max_leading_padding_zeroes_in_precision_mode,
172
                          int max_trailing_padding_zeroes_in_precision_mode,
173
                          int min_exponent_width = 0)
174
0
      : flags_(flags),
175
0
        infinity_symbol_(infinity_symbol),
176
0
        nan_symbol_(nan_symbol),
177
0
        exponent_character_(exponent_character),
178
0
        decimal_in_shortest_low_(decimal_in_shortest_low),
179
0
        decimal_in_shortest_high_(decimal_in_shortest_high),
180
        max_leading_padding_zeroes_in_precision_mode_(
181
0
            max_leading_padding_zeroes_in_precision_mode),
182
        max_trailing_padding_zeroes_in_precision_mode_(
183
0
            max_trailing_padding_zeroes_in_precision_mode),
184
0
        min_exponent_width_(min_exponent_width) {
185
    // When 'trailing zero after the point' is set, then 'trailing point'
186
    // must be set too.
187
0
    DOUBLE_CONVERSION_ASSERT(((flags & EMIT_TRAILING_DECIMAL_POINT) != 0) ||
188
0
        !((flags & EMIT_TRAILING_ZERO_AFTER_POINT) != 0));
189
0
  }
190
191
  // Returns a converter following the EcmaScript specification.
192
  //
193
  // Flags: UNIQUE_ZERO and EMIT_POSITIVE_EXPONENT_SIGN.
194
  // Special values: "Infinity" and "NaN".
195
  // Lower case 'e' for exponential values.
196
  // decimal_in_shortest_low: -6
197
  // decimal_in_shortest_high: 21
198
  // max_leading_padding_zeroes_in_precision_mode: 6
199
  // max_trailing_padding_zeroes_in_precision_mode: 0
200
  static const DoubleToStringConverter& EcmaScriptConverter();
201
202
  // Computes the shortest string of digits that correctly represent the input
203
  // number. Depending on decimal_in_shortest_low and decimal_in_shortest_high
204
  // (see constructor) it then either returns a decimal representation, or an
205
  // exponential representation.
206
  // Example with decimal_in_shortest_low = -6,
207
  //              decimal_in_shortest_high = 21,
208
  //              EMIT_POSITIVE_EXPONENT_SIGN activated, and
209
  //              EMIT_TRAILING_DECIMAL_POINT deactivated:
210
  //   ToShortest(0.000001)  -> "0.000001"
211
  //   ToShortest(0.0000001) -> "1e-7"
212
  //   ToShortest(111111111111111111111.0)  -> "111111111111111110000"
213
  //   ToShortest(100000000000000000000.0)  -> "100000000000000000000"
214
  //   ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21"
215
  //
216
  // Note: the conversion may round the output if the returned string
217
  // is accurate enough to uniquely identify the input-number.
218
  // For example the most precise representation of the double 9e59 equals
219
  // "899999999999999918767229449717619953810131273674690656206848", but
220
  // the converter will return the shorter (but still correct) "9e59".
221
  //
222
  // Returns true if the conversion succeeds. The conversion always succeeds
223
  // except when the input value is special and no infinity_symbol or
224
  // nan_symbol has been given to the constructor.
225
  //
226
  // The length of the longest result is the maximum of the length of the
227
  // following string representations (each with possible examples):
228
  // - NaN and negative infinity: "NaN", "-Infinity", "-inf".
229
  // - -10^(decimal_in_shortest_high - 1):
230
  //      "-100000000000000000000", "-1000000000000000.0"
231
  // - the longest string in range [0; -10^decimal_in_shortest_low]. Generally,
232
  //   this string is 3 + kBase10MaximalLength - decimal_in_shortest_low.
233
  //   (Sign, '0', decimal point, padding zeroes for decimal_in_shortest_low,
234
  //   and the significant digits).
235
  //      "-0.0000033333333333333333", "-0.0012345678901234567"
236
  // - the longest exponential representation. (A negative number with
237
  //   kBase10MaximalLength significant digits).
238
  //      "-1.7976931348623157e+308", "-1.7976931348623157E308"
239
  // In addition, the buffer must be able to hold the trailing '\0' character.
240
0
  bool ToShortest(double value, StringBuilder* result_builder) const {
241
0
    return ToShortestIeeeNumber(value, result_builder, SHORTEST);
242
0
  }
243
244
  // Same as ToShortest, but for single-precision floats.
245
0
  bool ToShortestSingle(float value, StringBuilder* result_builder) const {
246
0
    return ToShortestIeeeNumber(value, result_builder, SHORTEST_SINGLE);
247
0
  }
248
249
250
  // Computes a decimal representation with a fixed number of digits after the
251
  // decimal point. The last emitted digit is rounded.
252
  //
253
  // Examples:
254
  //   ToFixed(3.12, 1) -> "3.1"
255
  //   ToFixed(3.1415, 3) -> "3.142"
256
  //   ToFixed(1234.56789, 4) -> "1234.5679"
257
  //   ToFixed(1.23, 5) -> "1.23000"
258
  //   ToFixed(0.1, 4) -> "0.1000"
259
  //   ToFixed(1e30, 2) -> "1000000000000000019884624838656.00"
260
  //   ToFixed(0.1, 30) -> "0.100000000000000005551115123126"
261
  //   ToFixed(0.1, 17) -> "0.10000000000000001"
262
  //
263
  // If requested_digits equals 0, then the tail of the result depends on
264
  // the EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT.
265
  // Examples, for requested_digits == 0,
266
  //   let EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT be
267
  //    - false and false: then 123.45 -> 123
268
  //                             0.678 -> 1
269
  //    - true and false: then 123.45 -> 123.
270
  //                            0.678 -> 1.
271
  //    - true and true: then 123.45 -> 123.0
272
  //                           0.678 -> 1.0
273
  //
274
  // Returns true if the conversion succeeds. The conversion always succeeds
275
  // except for the following cases:
276
  //   - the input value is special and no infinity_symbol or nan_symbol has
277
  //     been provided to the constructor,
278
  //   - 'value' > 10^kMaxFixedDigitsBeforePoint, or
279
  //   - 'requested_digits' > kMaxFixedDigitsAfterPoint.
280
  // The last two conditions imply that the result for non-special values never
281
  // contains more than
282
  //  1 + kMaxFixedDigitsBeforePoint + 1 + kMaxFixedDigitsAfterPoint characters
283
  // (one additional character for the sign, and one for the decimal point).
284
  // In addition, the buffer must be able to hold the trailing '\0' character.
285
  bool ToFixed(double value,
286
               int requested_digits,
287
               StringBuilder* result_builder) const;
288
289
  // Computes a representation in exponential format with requested_digits
290
  // after the decimal point. The last emitted digit is rounded.
291
  // If requested_digits equals -1, then the shortest exponential representation
292
  // is computed.
293
  //
294
  // Examples with EMIT_POSITIVE_EXPONENT_SIGN deactivated, and
295
  //               exponent_character set to 'e'.
296
  //   ToExponential(3.12, 1) -> "3.1e0"
297
  //   ToExponential(5.0, 3) -> "5.000e0"
298
  //   ToExponential(0.001, 2) -> "1.00e-3"
299
  //   ToExponential(3.1415, -1) -> "3.1415e0"
300
  //   ToExponential(3.1415, 4) -> "3.1415e0"
301
  //   ToExponential(3.1415, 3) -> "3.142e0"
302
  //   ToExponential(123456789000000, 3) -> "1.235e14"
303
  //   ToExponential(1000000000000000019884624838656.0, -1) -> "1e30"
304
  //   ToExponential(1000000000000000019884624838656.0, 32) ->
305
  //                     "1.00000000000000001988462483865600e30"
306
  //   ToExponential(1234, 0) -> "1e3"
307
  //
308
  // Returns true if the conversion succeeds. The conversion always succeeds
309
  // except for the following cases:
310
  //   - the input value is special and no infinity_symbol or nan_symbol has
311
  //     been provided to the constructor,
312
  //   - 'requested_digits' > kMaxExponentialDigits.
313
  //
314
  // The last condition implies that the result never contains more than
315
  // kMaxExponentialDigits + 8 characters (the sign, the digit before the
316
  // decimal point, the decimal point, the exponent character, the
317
  // exponent's sign, and at most 3 exponent digits).
318
  // In addition, the buffer must be able to hold the trailing '\0' character.
319
  bool ToExponential(double value,
320
                     int requested_digits,
321
                     StringBuilder* result_builder) const;
322
323
324
  // Computes 'precision' leading digits of the given 'value' and returns them
325
  // either in exponential or decimal format, depending on
326
  // max_{leading|trailing}_padding_zeroes_in_precision_mode (given to the
327
  // constructor).
328
  // The last computed digit is rounded.
329
  //
330
  // Example with max_leading_padding_zeroes_in_precision_mode = 6.
331
  //   ToPrecision(0.0000012345, 2) -> "0.0000012"
332
  //   ToPrecision(0.00000012345, 2) -> "1.2e-7"
333
  // Similarly the converter may add up to
334
  // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid
335
  // returning an exponential representation. A zero added by the
336
  // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit.
337
  // Examples for max_trailing_padding_zeroes_in_precision_mode = 1:
338
  //   ToPrecision(230.0, 2) -> "230"
339
  //   ToPrecision(230.0, 2) -> "230."  with EMIT_TRAILING_DECIMAL_POINT.
340
  //   ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT.
341
  // Examples for max_trailing_padding_zeroes_in_precision_mode = 3, and no
342
  //    EMIT_TRAILING_ZERO_AFTER_POINT:
343
  //   ToPrecision(123450.0, 6) -> "123450"
344
  //   ToPrecision(123450.0, 5) -> "123450"
345
  //   ToPrecision(123450.0, 4) -> "123500"
346
  //   ToPrecision(123450.0, 3) -> "123000"
347
  //   ToPrecision(123450.0, 2) -> "1.2e5"
348
  //
349
  // Returns true if the conversion succeeds. The conversion always succeeds
350
  // except for the following cases:
351
  //   - the input value is special and no infinity_symbol or nan_symbol has
352
  //     been provided to the constructor,
353
  //   - precision < kMinPericisionDigits
354
  //   - precision > kMaxPrecisionDigits
355
  //
356
  // The last condition implies that the result never contains more than
357
  // kMaxPrecisionDigits + 7 characters (the sign, the decimal point, the
358
  // exponent character, the exponent's sign, and at most 3 exponent digits).
359
  // In addition, the buffer must be able to hold the trailing '\0' character.
360
  bool ToPrecision(double value,
361
                   int precision,
362
                   StringBuilder* result_builder) const;
363
364
  enum DtoaMode {
365
    // Produce the shortest correct representation.
366
    // For example the output of 0.299999999999999988897 is (the less accurate
367
    // but correct) 0.3.
368
    SHORTEST,
369
    // Same as SHORTEST, but for single-precision floats.
370
    SHORTEST_SINGLE,
371
    // Produce a fixed number of digits after the decimal point.
372
    // For instance fixed(0.1, 4) becomes 0.1000
373
    // If the input number is big, the output will be big.
374
    FIXED,
375
    // Fixed number of digits (independent of the decimal point).
376
    PRECISION
377
  };
378
379
  // Converts the given double 'v' to digit characters. 'v' must not be NaN,
380
  // +Infinity, or -Infinity. In SHORTEST_SINGLE-mode this restriction also
381
  // applies to 'v' after it has been casted to a single-precision float. That
382
  // is, in this mode static_cast<float>(v) must not be NaN, +Infinity or
383
  // -Infinity.
384
  //
385
  // The result should be interpreted as buffer * 10^(point-length).
386
  //
387
  // The digits are written to the buffer in the platform's charset, which is
388
  // often UTF-8 (with ASCII-range digits) but may be another charset, such
389
  // as EBCDIC.
390
  //
391
  // The output depends on the given mode:
392
  //  - SHORTEST: produce the least amount of digits for which the internal
393
  //   identity requirement is still satisfied. If the digits are printed
394
  //   (together with the correct exponent) then reading this number will give
395
  //   'v' again. The buffer will choose the representation that is closest to
396
  //   'v'. If there are two at the same distance, than the one farther away
397
  //   from 0 is chosen (halfway cases - ending with 5 - are rounded up).
398
  //   In this mode the 'requested_digits' parameter is ignored.
399
  //  - SHORTEST_SINGLE: same as SHORTEST but with single-precision.
400
  //  - FIXED: produces digits necessary to print a given number with
401
  //   'requested_digits' digits after the decimal point. The produced digits
402
  //   might be too short in which case the caller has to fill the remainder
403
  //   with '0's.
404
  //   Example: toFixed(0.001, 5) is allowed to return buffer="1", point=-2.
405
  //   Halfway cases are rounded towards +/-Infinity (away from 0). The call
406
  //   toFixed(0.15, 2) thus returns buffer="2", point=0.
407
  //   The returned buffer may contain digits that would be truncated from the
408
  //   shortest representation of the input.
409
  //  - PRECISION: produces 'requested_digits' where the first digit is not '0'.
410
  //   Even though the length of produced digits usually equals
411
  //   'requested_digits', the function is allowed to return fewer digits, in
412
  //   which case the caller has to fill the missing digits with '0's.
413
  //   Halfway cases are again rounded away from 0.
414
  // DoubleToAscii expects the given buffer to be big enough to hold all
415
  // digits and a terminating null-character. In SHORTEST-mode it expects a
416
  // buffer of at least kBase10MaximalLength + 1. In all other modes the
417
  // requested_digits parameter and the padding-zeroes limit the size of the
418
  // output. Don't forget the decimal point, the exponent character and the
419
  // terminating null-character when computing the maximal output size.
420
  // The given length is only used in debug mode to ensure the buffer is big
421
  // enough.
422
  static void DoubleToAscii(double v,
423
                            DtoaMode mode,
424
                            int requested_digits,
425
                            char* buffer,
426
                            int buffer_length,
427
                            bool* sign,
428
                            int* length,
429
                            int* point);
430
431
 private:
432
  // Implementation for ToShortest and ToShortestSingle.
433
  bool ToShortestIeeeNumber(double value,
434
                            StringBuilder* result_builder,
435
                            DtoaMode mode) const;
436
437
  // If the value is a special value (NaN or Infinity) constructs the
438
  // corresponding string using the configured infinity/nan-symbol.
439
  // If either of them is NULL or the value is not special then the
440
  // function returns false.
441
  bool HandleSpecialValues(double value, StringBuilder* result_builder) const;
442
  // Constructs an exponential representation (i.e. 1.234e56).
443
  // The given exponent assumes a decimal point after the first decimal digit.
444
  void CreateExponentialRepresentation(const char* decimal_digits,
445
                                       int length,
446
                                       int exponent,
447
                                       StringBuilder* result_builder) const;
448
  // Creates a decimal representation (i.e 1234.5678).
449
  void CreateDecimalRepresentation(const char* decimal_digits,
450
                                   int length,
451
                                   int decimal_point,
452
                                   int digits_after_point,
453
                                   StringBuilder* result_builder) const;
454
455
  const int flags_;
456
  const char* const infinity_symbol_;
457
  const char* const nan_symbol_;
458
  const char exponent_character_;
459
  const int decimal_in_shortest_low_;
460
  const int decimal_in_shortest_high_;
461
  const int max_leading_padding_zeroes_in_precision_mode_;
462
  const int max_trailing_padding_zeroes_in_precision_mode_;
463
  const int min_exponent_width_;
464
465
  DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS(DoubleToStringConverter);
466
};
467
468
}  // namespace double_conversion
469
470
#endif  // DOUBLE_CONVERSION_DOUBLE_TO_STRING_H_