Coverage Report

Created: 2025-07-12 07:23

/src/qtbase/src/3rdparty/double-conversion/strtod.cc
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2010 the V8 project authors. All rights reserved.
2
// Redistribution and use in source and binary forms, with or without
3
// modification, are permitted provided that the following conditions are
4
// met:
5
//
6
//     * Redistributions of source code must retain the above copyright
7
//       notice, this list of conditions and the following disclaimer.
8
//     * Redistributions in binary form must reproduce the above
9
//       copyright notice, this list of conditions and the following
10
//       disclaimer in the documentation and/or other materials provided
11
//       with the distribution.
12
//     * Neither the name of Google Inc. nor the names of its
13
//       contributors may be used to endorse or promote products derived
14
//       from this software without specific prior written permission.
15
//
16
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28
#include <climits>
29
#include <cstdarg>
30
31
#include <double-conversion/bignum.h>
32
#include <double-conversion/cached-powers.h>
33
#include <double-conversion/ieee.h>
34
#include <double-conversion/strtod.h>
35
36
namespace double_conversion {
37
38
// 2^53 = 9007199254740992.
39
// Any integer with at most 15 decimal digits will hence fit into a double
40
// (which has a 53bit significand) without loss of precision.
41
static const int kMaxExactDoubleIntegerDecimalDigits = 15;
42
// 2^64 = 18446744073709551616 > 10^19
43
static const int kMaxUint64DecimalDigits = 19;
44
45
// Max double: 1.7976931348623157 x 10^308
46
// Min non-zero double: 4.9406564584124654 x 10^-324
47
// Any x >= 10^309 is interpreted as +infinity.
48
// Any x <= 10^-324 is interpreted as 0.
49
// Note that 2.5e-324 (despite being smaller than the min double) will be read
50
// as non-zero (equal to the min non-zero double).
51
static const int kMaxDecimalPower = 309;
52
static const int kMinDecimalPower = -324;
53
54
// 2^64 = 18446744073709551616
55
static const uint64_t kMaxUint64 = UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF);
56
57
58
static const double exact_powers_of_ten[] = {
59
  1.0,  // 10^0
60
  10.0,
61
  100.0,
62
  1000.0,
63
  10000.0,
64
  100000.0,
65
  1000000.0,
66
  10000000.0,
67
  100000000.0,
68
  1000000000.0,
69
  10000000000.0,  // 10^10
70
  100000000000.0,
71
  1000000000000.0,
72
  10000000000000.0,
73
  100000000000000.0,
74
  1000000000000000.0,
75
  10000000000000000.0,
76
  100000000000000000.0,
77
  1000000000000000000.0,
78
  10000000000000000000.0,
79
  100000000000000000000.0,  // 10^20
80
  1000000000000000000000.0,
81
  // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22
82
  10000000000000000000000.0
83
};
84
static const int kExactPowersOfTenSize = ARRAY_SIZE(exact_powers_of_ten);
85
86
// Maximum number of significant digits in the decimal representation.
87
// In fact the value is 772 (see conversions.cc), but to give us some margin
88
// we round up to 780.
89
static const int kMaxSignificantDecimalDigits = 780;
90
91
0
static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) {
92
0
  for (int i = 0; i < buffer.length(); i++) {
93
0
    if (buffer[i] != '0') {
94
0
      return buffer.SubVector(i, buffer.length());
95
0
    }
96
0
  }
97
0
  return Vector<const char>(buffer.start(), 0);
98
0
}
99
100
101
0
static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) {
102
0
  for (int i = buffer.length() - 1; i >= 0; --i) {
103
0
    if (buffer[i] != '0') {
104
0
      return buffer.SubVector(0, i + 1);
105
0
    }
106
0
  }
107
0
  return Vector<const char>(buffer.start(), 0);
108
0
}
109
110
111
static void CutToMaxSignificantDigits(Vector<const char> buffer,
112
                                       int exponent,
113
                                       char* significant_buffer,
114
0
                                       int* significant_exponent) {
115
0
  for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) {
116
0
    significant_buffer[i] = buffer[i];
117
0
  }
118
  // The input buffer has been trimmed. Therefore the last digit must be
119
  // different from '0'.
120
0
  ASSERT(buffer[buffer.length() - 1] != '0');
121
  // Set the last digit to be non-zero. This is sufficient to guarantee
122
  // correct rounding.
123
0
  significant_buffer[kMaxSignificantDecimalDigits - 1] = '1';
124
0
  *significant_exponent =
125
0
      exponent + (buffer.length() - kMaxSignificantDecimalDigits);
126
0
}
127
128
129
// Trims the buffer and cuts it to at most kMaxSignificantDecimalDigits.
130
// If possible the input-buffer is reused, but if the buffer needs to be
131
// modified (due to cutting), then the input needs to be copied into the
132
// buffer_copy_space.
133
static void TrimAndCut(Vector<const char> buffer, int exponent,
134
                       char* buffer_copy_space, int space_size,
135
0
                       Vector<const char>* trimmed, int* updated_exponent) {
136
0
  Vector<const char> left_trimmed = TrimLeadingZeros(buffer);
137
0
  Vector<const char> right_trimmed = TrimTrailingZeros(left_trimmed);
138
0
  exponent += left_trimmed.length() - right_trimmed.length();
139
0
  if (right_trimmed.length() > kMaxSignificantDecimalDigits) {
140
0
    (void) space_size;  // Mark variable as used.
141
0
    ASSERT(space_size >= kMaxSignificantDecimalDigits);
142
0
    CutToMaxSignificantDigits(right_trimmed, exponent,
143
0
                              buffer_copy_space, updated_exponent);
144
0
    *trimmed = Vector<const char>(buffer_copy_space,
145
0
                                 kMaxSignificantDecimalDigits);
146
0
  } else {
147
0
    *trimmed = right_trimmed;
148
0
    *updated_exponent = exponent;
149
0
  }
150
0
}
151
152
153
// Reads digits from the buffer and converts them to a uint64.
154
// Reads in as many digits as fit into a uint64.
155
// When the string starts with "1844674407370955161" no further digit is read.
156
// Since 2^64 = 18446744073709551616 it would still be possible read another
157
// digit if it was less or equal than 6, but this would complicate the code.
158
static uint64_t ReadUint64(Vector<const char> buffer,
159
0
                           int* number_of_read_digits) {
160
0
  uint64_t result = 0;
161
0
  int i = 0;
162
0
  while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) {
163
0
    int digit = buffer[i++] - '0';
164
0
    ASSERT(0 <= digit && digit <= 9);
165
0
    result = 10 * result + digit;
166
0
  }
167
0
  *number_of_read_digits = i;
168
0
  return result;
169
0
}
170
171
172
// Reads a DiyFp from the buffer.
173
// The returned DiyFp is not necessarily normalized.
174
// If remaining_decimals is zero then the returned DiyFp is accurate.
175
// Otherwise it has been rounded and has error of at most 1/2 ulp.
176
static void ReadDiyFp(Vector<const char> buffer,
177
                      DiyFp* result,
178
0
                      int* remaining_decimals) {
179
0
  int read_digits;
180
0
  uint64_t significand = ReadUint64(buffer, &read_digits);
181
0
  if (buffer.length() == read_digits) {
182
0
    *result = DiyFp(significand, 0);
183
0
    *remaining_decimals = 0;
184
0
  } else {
185
    // Round the significand.
186
0
    if (buffer[read_digits] >= '5') {
187
0
      significand++;
188
0
    }
189
    // Compute the binary exponent.
190
0
    int exponent = 0;
191
0
    *result = DiyFp(significand, exponent);
192
0
    *remaining_decimals = buffer.length() - read_digits;
193
0
  }
194
0
}
195
196
197
static bool DoubleStrtod(Vector<const char> trimmed,
198
                         int exponent,
199
0
                         double* result) {
200
#if !defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
201
  // NB: Qt uses -Werror=unused-parameter which results in compiler error here
202
  //     in this branch. Using "(void)x" idiom to prevent the error.
203
  (void)trimmed;
204
  (void)exponent;
205
  (void)result;
206
207
  // On x86 the floating-point stack can be 64 or 80 bits wide. If it is
208
  // 80 bits wide (as is the case on Linux) then double-rounding occurs and the
209
  // result is not accurate.
210
  // We know that Windows32 uses 64 bits and is therefore accurate.
211
  // Note that the ARM simulator is compiled for 32bits. It therefore exhibits
212
  // the same problem.
213
  return false;
214
#else
215
0
  if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) {
216
0
    int read_digits;
217
    // The trimmed input fits into a double.
218
    // If the 10^exponent (resp. 10^-exponent) fits into a double too then we
219
    // can compute the result-double simply by multiplying (resp. dividing) the
220
    // two numbers.
221
    // This is possible because IEEE guarantees that floating-point operations
222
    // return the best possible approximation.
223
0
    if (exponent < 0 && -exponent < kExactPowersOfTenSize) {
224
      // 10^-exponent fits into a double.
225
0
      *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
226
0
      ASSERT(read_digits == trimmed.length());
227
0
      *result /= exact_powers_of_ten[-exponent];
228
0
      return true;
229
0
    }
230
0
    if (0 <= exponent && exponent < kExactPowersOfTenSize) {
231
      // 10^exponent fits into a double.
232
0
      *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
233
0
      ASSERT(read_digits == trimmed.length());
234
0
      *result *= exact_powers_of_ten[exponent];
235
0
      return true;
236
0
    }
237
0
    int remaining_digits =
238
0
        kMaxExactDoubleIntegerDecimalDigits - trimmed.length();
239
0
    if ((0 <= exponent) &&
240
0
        (exponent - remaining_digits < kExactPowersOfTenSize)) {
241
      // The trimmed string was short and we can multiply it with
242
      // 10^remaining_digits. As a result the remaining exponent now fits
243
      // into a double too.
244
0
      *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
245
0
      ASSERT(read_digits == trimmed.length());
246
0
      *result *= exact_powers_of_ten[remaining_digits];
247
0
      *result *= exact_powers_of_ten[exponent - remaining_digits];
248
0
      return true;
249
0
    }
250
0
  }
251
0
  return false;
252
0
#endif
253
0
}
254
255
256
// Returns 10^exponent as an exact DiyFp.
257
// The given exponent must be in the range [1; kDecimalExponentDistance[.
258
0
static DiyFp AdjustmentPowerOfTen(int exponent) {
259
0
  ASSERT(0 < exponent);
260
0
  ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance);
261
  // Simply hardcode the remaining powers for the given decimal exponent
262
  // distance.
263
0
  ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8);
264
0
  switch (exponent) {
265
0
    case 1: return DiyFp(UINT64_2PART_C(0xa0000000, 00000000), -60);
266
0
    case 2: return DiyFp(UINT64_2PART_C(0xc8000000, 00000000), -57);
267
0
    case 3: return DiyFp(UINT64_2PART_C(0xfa000000, 00000000), -54);
268
0
    case 4: return DiyFp(UINT64_2PART_C(0x9c400000, 00000000), -50);
269
0
    case 5: return DiyFp(UINT64_2PART_C(0xc3500000, 00000000), -47);
270
0
    case 6: return DiyFp(UINT64_2PART_C(0xf4240000, 00000000), -44);
271
0
    case 7: return DiyFp(UINT64_2PART_C(0x98968000, 00000000), -40);
272
0
    default:
273
0
      UNREACHABLE();
274
0
  }
275
0
}
276
277
278
// If the function returns true then the result is the correct double.
279
// Otherwise it is either the correct double or the double that is just below
280
// the correct double.
281
static bool DiyFpStrtod(Vector<const char> buffer,
282
                        int exponent,
283
0
                        double* result) {
284
0
  DiyFp input;
285
0
  int remaining_decimals;
286
0
  ReadDiyFp(buffer, &input, &remaining_decimals);
287
  // Since we may have dropped some digits the input is not accurate.
288
  // If remaining_decimals is different than 0 than the error is at most
289
  // .5 ulp (unit in the last place).
290
  // We don't want to deal with fractions and therefore keep a common
291
  // denominator.
292
0
  const int kDenominatorLog = 3;
293
0
  const int kDenominator = 1 << kDenominatorLog;
294
  // Move the remaining decimals into the exponent.
295
0
  exponent += remaining_decimals;
296
0
  uint64_t error = (remaining_decimals == 0 ? 0 : kDenominator / 2);
297
298
0
  int old_e = input.e();
299
0
  input.Normalize();
300
0
  error <<= old_e - input.e();
301
302
0
  ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent);
303
0
  if (exponent < PowersOfTenCache::kMinDecimalExponent) {
304
0
    *result = 0.0;
305
0
    return true;
306
0
  }
307
0
  DiyFp cached_power;
308
0
  int cached_decimal_exponent;
309
0
  PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent,
310
0
                                                     &cached_power,
311
0
                                                     &cached_decimal_exponent);
312
313
0
  if (cached_decimal_exponent != exponent) {
314
0
    int adjustment_exponent = exponent - cached_decimal_exponent;
315
0
    DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent);
316
0
    input.Multiply(adjustment_power);
317
0
    if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) {
318
      // The product of input with the adjustment power fits into a 64 bit
319
      // integer.
320
0
      ASSERT(DiyFp::kSignificandSize == 64);
321
0
    } else {
322
      // The adjustment power is exact. There is hence only an error of 0.5.
323
0
      error += kDenominator / 2;
324
0
    }
325
0
  }
326
327
0
  input.Multiply(cached_power);
328
  // The error introduced by a multiplication of a*b equals
329
  //   error_a + error_b + error_a*error_b/2^64 + 0.5
330
  // Substituting a with 'input' and b with 'cached_power' we have
331
  //   error_b = 0.5  (all cached powers have an error of less than 0.5 ulp),
332
  //   error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64
333
0
  int error_b = kDenominator / 2;
334
0
  int error_ab = (error == 0 ? 0 : 1);  // We round up to 1.
335
0
  int fixed_error = kDenominator / 2;
336
0
  error += error_b + error_ab + fixed_error;
337
338
0
  old_e = input.e();
339
0
  input.Normalize();
340
0
  error <<= old_e - input.e();
341
342
  // See if the double's significand changes if we add/subtract the error.
343
0
  int order_of_magnitude = DiyFp::kSignificandSize + input.e();
344
0
  int effective_significand_size =
345
0
      Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude);
346
0
  int precision_digits_count =
347
0
      DiyFp::kSignificandSize - effective_significand_size;
348
0
  if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) {
349
    // This can only happen for very small denormals. In this case the
350
    // half-way multiplied by the denominator exceeds the range of an uint64.
351
    // Simply shift everything to the right.
352
0
    int shift_amount = (precision_digits_count + kDenominatorLog) -
353
0
        DiyFp::kSignificandSize + 1;
354
0
    input.set_f(input.f() >> shift_amount);
355
0
    input.set_e(input.e() + shift_amount);
356
    // We add 1 for the lost precision of error, and kDenominator for
357
    // the lost precision of input.f().
358
0
    error = (error >> shift_amount) + 1 + kDenominator;
359
0
    precision_digits_count -= shift_amount;
360
0
  }
361
  // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.
362
0
  ASSERT(DiyFp::kSignificandSize == 64);
363
0
  ASSERT(precision_digits_count < 64);
364
0
  uint64_t one64 = 1;
365
0
  uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;
366
0
  uint64_t precision_bits = input.f() & precision_bits_mask;
367
0
  uint64_t half_way = one64 << (precision_digits_count - 1);
368
0
  precision_bits *= kDenominator;
369
0
  half_way *= kDenominator;
370
0
  DiyFp rounded_input(input.f() >> precision_digits_count,
371
0
                      input.e() + precision_digits_count);
372
0
  if (precision_bits >= half_way + error) {
373
0
    rounded_input.set_f(rounded_input.f() + 1);
374
0
  }
375
  // If the last_bits are too close to the half-way case than we are too
376
  // inaccurate and round down. In this case we return false so that we can
377
  // fall back to a more precise algorithm.
378
379
0
  *result = Double(rounded_input).value();
380
0
  if (half_way - error < precision_bits && precision_bits < half_way + error) {
381
    // Too imprecise. The caller will have to fall back to a slower version.
382
    // However the returned number is guaranteed to be either the correct
383
    // double, or the next-lower double.
384
0
    return false;
385
0
  } else {
386
0
    return true;
387
0
  }
388
0
}
389
390
391
// Returns
392
//   - -1 if buffer*10^exponent < diy_fp.
393
//   -  0 if buffer*10^exponent == diy_fp.
394
//   - +1 if buffer*10^exponent > diy_fp.
395
// Preconditions:
396
//   buffer.length() + exponent <= kMaxDecimalPower + 1
397
//   buffer.length() + exponent > kMinDecimalPower
398
//   buffer.length() <= kMaxDecimalSignificantDigits
399
static int CompareBufferWithDiyFp(Vector<const char> buffer,
400
                                  int exponent,
401
0
                                  DiyFp diy_fp) {
402
0
  ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1);
403
0
  ASSERT(buffer.length() + exponent > kMinDecimalPower);
404
0
  ASSERT(buffer.length() <= kMaxSignificantDecimalDigits);
405
  // Make sure that the Bignum will be able to hold all our numbers.
406
  // Our Bignum implementation has a separate field for exponents. Shifts will
407
  // consume at most one bigit (< 64 bits).
408
  // ln(10) == 3.3219...
409
0
  ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits);
410
0
  Bignum buffer_bignum;
411
0
  Bignum diy_fp_bignum;
412
0
  buffer_bignum.AssignDecimalString(buffer);
413
0
  diy_fp_bignum.AssignUInt64(diy_fp.f());
414
0
  if (exponent >= 0) {
415
0
    buffer_bignum.MultiplyByPowerOfTen(exponent);
416
0
  } else {
417
0
    diy_fp_bignum.MultiplyByPowerOfTen(-exponent);
418
0
  }
419
0
  if (diy_fp.e() > 0) {
420
0
    diy_fp_bignum.ShiftLeft(diy_fp.e());
421
0
  } else {
422
0
    buffer_bignum.ShiftLeft(-diy_fp.e());
423
0
  }
424
0
  return Bignum::Compare(buffer_bignum, diy_fp_bignum);
425
0
}
426
427
428
// Returns true if the guess is the correct double.
429
// Returns false, when guess is either correct or the next-lower double.
430
static bool ComputeGuess(Vector<const char> trimmed, int exponent,
431
0
                         double* guess) {
432
0
  if (trimmed.length() == 0) {
433
0
    *guess = 0.0;
434
0
    return true;
435
0
  }
436
0
  if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) {
437
0
    *guess = Double::Infinity();
438
0
    return true;
439
0
  }
440
0
  if (exponent + trimmed.length() <= kMinDecimalPower) {
441
0
    *guess = 0.0;
442
0
    return true;
443
0
  }
444
445
0
  if (DoubleStrtod(trimmed, exponent, guess) ||
446
0
      DiyFpStrtod(trimmed, exponent, guess)) {
447
0
    return true;
448
0
  }
449
0
  if (*guess == Double::Infinity()) {
450
0
    return true;
451
0
  }
452
0
  return false;
453
0
}
454
455
0
double Strtod(Vector<const char> buffer, int exponent) {
456
0
  char copy_buffer[kMaxSignificantDecimalDigits];
457
0
  Vector<const char> trimmed;
458
0
  int updated_exponent;
459
0
  TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits,
460
0
             &trimmed, &updated_exponent);
461
0
  exponent = updated_exponent;
462
463
0
  double guess;
464
0
  bool is_correct = ComputeGuess(trimmed, exponent, &guess);
465
0
  if (is_correct) return guess;
466
467
0
  DiyFp upper_boundary = Double(guess).UpperBoundary();
468
0
  int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary);
469
0
  if (comparison < 0) {
470
0
    return guess;
471
0
  } else if (comparison > 0) {
472
0
    return Double(guess).NextDouble();
473
0
  } else if ((Double(guess).Significand() & 1) == 0) {
474
    // Round towards even.
475
0
    return guess;
476
0
  } else {
477
0
    return Double(guess).NextDouble();
478
0
  }
479
0
}
480
481
0
static float SanitizedDoubletof(double d) {
482
0
  ASSERT(d >= 0.0);
483
  // ASAN has a sanitize check that disallows casting doubles to floats if
484
  // they are too big.
485
  // https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html#available-checks
486
  // The behavior should be covered by IEEE 754, but some projects use this
487
  // flag, so work around it.
488
0
  float max_finite = 3.4028234663852885981170418348451692544e+38;
489
  // The half-way point between the max-finite and infinity value.
490
  // Since infinity has an even significand everything equal or greater than
491
  // this value should become infinity.
492
0
  double half_max_finite_infinity =
493
0
      3.40282356779733661637539395458142568448e+38;
494
0
  if (d >= max_finite) {
495
0
    if (d >= half_max_finite_infinity) {
496
0
      return Single::Infinity();
497
0
    } else {
498
0
      return max_finite;
499
0
    }
500
0
  } else {
501
0
    return static_cast<float>(d);
502
0
  }
503
0
}
504
505
0
float Strtof(Vector<const char> buffer, int exponent) {
506
0
  char copy_buffer[kMaxSignificantDecimalDigits];
507
0
  Vector<const char> trimmed;
508
0
  int updated_exponent;
509
0
  TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits,
510
0
             &trimmed, &updated_exponent);
511
0
  exponent = updated_exponent;
512
513
0
  double double_guess;
514
0
  bool is_correct = ComputeGuess(trimmed, exponent, &double_guess);
515
516
0
  float float_guess = SanitizedDoubletof(double_guess);
517
0
  if (float_guess == double_guess) {
518
    // This shortcut triggers for integer values.
519
0
    return float_guess;
520
0
  }
521
522
  // We must catch double-rounding. Say the double has been rounded up, and is
523
  // now a boundary of a float, and rounds up again. This is why we have to
524
  // look at previous too.
525
  // Example (in decimal numbers):
526
  //    input: 12349
527
  //    high-precision (4 digits): 1235
528
  //    low-precision (3 digits):
529
  //       when read from input: 123
530
  //       when rounded from high precision: 124.
531
  // To do this we simply look at the neigbors of the correct result and see
532
  // if they would round to the same float. If the guess is not correct we have
533
  // to look at four values (since two different doubles could be the correct
534
  // double).
535
536
0
  double double_next = Double(double_guess).NextDouble();
537
0
  double double_previous = Double(double_guess).PreviousDouble();
538
539
0
  float f1 = SanitizedDoubletof(double_previous);
540
0
  float f2 = float_guess;
541
0
  float f3 = SanitizedDoubletof(double_next);
542
0
  float f4;
543
0
  if (is_correct) {
544
0
    f4 = f3;
545
0
  } else {
546
0
    double double_next2 = Double(double_next).NextDouble();
547
0
    f4 = SanitizedDoubletof(double_next2);
548
0
  }
549
0
  (void) f2;  // Mark variable as used.
550
0
  ASSERT(f1 <= f2 && f2 <= f3 && f3 <= f4);
551
552
  // If the guess doesn't lie near a single-precision boundary we can simply
553
  // return its float-value.
554
0
  if (f1 == f4) {
555
0
    return float_guess;
556
0
  }
557
558
0
  ASSERT((f1 != f2 && f2 == f3 && f3 == f4) ||
559
0
         (f1 == f2 && f2 != f3 && f3 == f4) ||
560
0
         (f1 == f2 && f2 == f3 && f3 != f4));
561
562
  // guess and next are the two possible candidates (in the same way that
563
  // double_guess was the lower candidate for a double-precision guess).
564
0
  float guess = f1;
565
0
  float next = f4;
566
0
  DiyFp upper_boundary;
567
0
  if (guess == 0.0f) {
568
0
    float min_float = 1e-45f;
569
0
    upper_boundary = Double(static_cast<double>(min_float) / 2).AsDiyFp();
570
0
  } else {
571
0
    upper_boundary = Single(guess).UpperBoundary();
572
0
  }
573
0
  int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary);
574
0
  if (comparison < 0) {
575
0
    return guess;
576
0
  } else if (comparison > 0) {
577
0
    return next;
578
0
  } else if ((Single(guess).Significand() & 1) == 0) {
579
    // Round towards even.
580
0
    return guess;
581
0
  } else {
582
0
    return next;
583
0
  }
584
0
}
585
586
}  // namespace double_conversion