Coverage Report

Created: 2025-09-27 07:50

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/cairo/subprojects/pixman-0.44.2/pixman/pixman-linear-gradient.c
Line
Count
Source
1
/* -*- Mode: c; c-basic-offset: 4; tab-width: 8; indent-tabs-mode: t; -*- */
2
/*
3
 * Copyright © 2000 SuSE, Inc.
4
 * Copyright © 2007 Red Hat, Inc.
5
 * Copyright © 2000 Keith Packard, member of The XFree86 Project, Inc.
6
 *             2005 Lars Knoll & Zack Rusin, Trolltech
7
 *
8
 * Permission to use, copy, modify, distribute, and sell this software and its
9
 * documentation for any purpose is hereby granted without fee, provided that
10
 * the above copyright notice appear in all copies and that both that
11
 * copyright notice and this permission notice appear in supporting
12
 * documentation, and that the name of Keith Packard not be used in
13
 * advertising or publicity pertaining to distribution of the software without
14
 * specific, written prior permission.  Keith Packard makes no
15
 * representations about the suitability of this software for any purpose.  It
16
 * is provided "as is" without express or implied warranty.
17
 *
18
 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS
19
 * SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
20
 * FITNESS, IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY
21
 * SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
22
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
23
 * AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
24
 * OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
25
 * SOFTWARE.
26
 */
27
28
#ifdef HAVE_CONFIG_H
29
#include <pixman-config.h>
30
#endif
31
#include <stdlib.h>
32
#include "pixman-private.h"
33
34
static pixman_bool_t
35
linear_gradient_is_horizontal (pixman_image_t *image,
36
             int             x,
37
             int             y,
38
             int             width,
39
             int             height)
40
207
{
41
207
    linear_gradient_t *linear = (linear_gradient_t *)image;
42
207
    pixman_vector_t v;
43
207
    pixman_fixed_32_32_t l;
44
207
    pixman_fixed_48_16_t dx, dy;
45
207
    double inc;
46
47
207
    if (image->common.transform)
48
207
    {
49
  /* projective transformation */
50
207
  if (image->common.transform->matrix[2][0] != 0 ||
51
207
      image->common.transform->matrix[2][1] != 0 ||
52
207
      image->common.transform->matrix[2][2] == 0)
53
0
  {
54
0
      return FALSE;
55
0
  }
56
57
207
  v.vector[0] = image->common.transform->matrix[0][1];
58
207
  v.vector[1] = image->common.transform->matrix[1][1];
59
207
  v.vector[2] = image->common.transform->matrix[2][2];
60
207
    }
61
0
    else
62
0
    {
63
0
  v.vector[0] = 0;
64
0
  v.vector[1] = pixman_fixed_1;
65
0
  v.vector[2] = pixman_fixed_1;
66
0
    }
67
68
207
    dx = linear->p2.x - linear->p1.x;
69
207
    dy = linear->p2.y - linear->p1.y;
70
71
207
    l = dx * dx + dy * dy;
72
73
207
    if (l == 0)
74
0
  return FALSE;
75
76
    /*
77
     * compute how much the input of the gradient walked changes
78
     * when moving vertically through the whole image
79
     */
80
207
    inc = height * (double) pixman_fixed_1 * pixman_fixed_1 *
81
207
  (dx * v.vector[0] + dy * v.vector[1]) /
82
207
  (v.vector[2] * (double) l);
83
84
    /* check that casting to integer would result in 0 */
85
207
    if (-1 < inc && inc < 1)
86
0
  return TRUE;
87
88
207
    return FALSE;
89
207
}
90
91
static uint32_t *
92
linear_get_scanline (pixman_iter_t                 *iter,
93
         const uint32_t                *mask,
94
         int                            Bpp,
95
         pixman_gradient_walker_write_t write_pixel,
96
         pixman_gradient_walker_fill_t  fill_pixel)
97
207
{
98
207
    pixman_image_t *image  = iter->image;
99
207
    int             x      = iter->x;
100
207
    int             y      = iter->y;
101
207
    int             width  = iter->width;
102
207
    uint32_t *      buffer = iter->buffer;
103
104
207
    pixman_vector_t v, unit;
105
207
    pixman_fixed_32_32_t l;
106
207
    pixman_fixed_48_16_t dx, dy;
107
207
    gradient_t *gradient = (gradient_t *)image;
108
207
    linear_gradient_t *linear = (linear_gradient_t *)image;
109
207
    uint32_t *end = buffer + width * (Bpp / 4);
110
207
    pixman_gradient_walker_t walker;
111
112
207
    _pixman_gradient_walker_init (&walker, gradient, image->common.repeat);
113
114
    /* reference point is the center of the pixel */
115
207
    v.vector[0] = pixman_int_to_fixed (x) + pixman_fixed_1 / 2;
116
207
    v.vector[1] = pixman_int_to_fixed (y) + pixman_fixed_1 / 2;
117
207
    v.vector[2] = pixman_fixed_1;
118
119
207
    if (image->common.transform)
120
207
    {
121
207
  if (!pixman_transform_point_3d (image->common.transform, &v))
122
0
      return iter->buffer;
123
124
207
  unit.vector[0] = image->common.transform->matrix[0][0];
125
207
  unit.vector[1] = image->common.transform->matrix[1][0];
126
207
  unit.vector[2] = image->common.transform->matrix[2][0];
127
207
    }
128
0
    else
129
0
    {
130
0
  unit.vector[0] = pixman_fixed_1;
131
0
  unit.vector[1] = 0;
132
0
  unit.vector[2] = 0;
133
0
    }
134
135
207
    dx = linear->p2.x - linear->p1.x;
136
207
    dy = linear->p2.y - linear->p1.y;
137
138
207
    l = dx * dx + dy * dy;
139
140
207
    if (l == 0 || unit.vector[2] == 0)
141
207
    {
142
  /* affine transformation only */
143
207
  pixman_fixed_32_32_t t, next_inc;
144
207
  double inc;
145
146
207
  if (l == 0 || v.vector[2] == 0)
147
0
  {
148
0
      t = 0;
149
0
      inc = 0;
150
0
  }
151
207
  else
152
207
  {
153
207
      double invden, v2;
154
155
207
      invden = pixman_fixed_1 * (double) pixman_fixed_1 /
156
207
    (l * (double) v.vector[2]);
157
207
      v2 = v.vector[2] * (1. / pixman_fixed_1);
158
207
      t = ((dx * v.vector[0] + dy * v.vector[1]) -
159
207
     (dx * linear->p1.x + dy * linear->p1.y) * v2) * invden;
160
207
      inc = (dx * unit.vector[0] + dy * unit.vector[1]) * invden;
161
207
  }
162
207
  next_inc = 0;
163
164
207
  if (((pixman_fixed_32_32_t )(inc * width)) == 0)
165
35
  {
166
35
      fill_pixel (&walker, t, buffer, end);
167
35
  }
168
172
  else
169
172
  {
170
172
      int i;
171
172
172
      i = 0;
173
4.34k
      while (buffer < end)
174
4.17k
      {
175
4.17k
    if (!mask || *mask++)
176
4.16k
    {
177
4.16k
        write_pixel (&walker, t + next_inc, buffer);
178
4.16k
    }
179
4.17k
    i++;
180
4.17k
    next_inc = inc * i;
181
4.17k
    buffer += (Bpp / 4);
182
4.17k
      }
183
172
  }
184
207
    }
185
0
    else
186
0
    {
187
  /* projective transformation */
188
0
        double t;
189
190
0
  t = 0;
191
192
0
  while (buffer < end)
193
0
  {
194
0
      if (!mask || *mask++)
195
0
      {
196
0
          if (v.vector[2] != 0)
197
0
    {
198
0
        double invden, v2;
199
200
0
        invden = pixman_fixed_1 * (double) pixman_fixed_1 /
201
0
      (l * (double) v.vector[2]);
202
0
        v2 = v.vector[2] * (1. / pixman_fixed_1);
203
0
        t = ((dx * v.vector[0] + dy * v.vector[1]) -
204
0
       (dx * linear->p1.x + dy * linear->p1.y) * v2) * invden;
205
0
    }
206
207
0
    write_pixel (&walker, t, buffer);
208
0
      }
209
210
0
      buffer += (Bpp / 4);
211
212
0
      v.vector[0] += unit.vector[0];
213
0
      v.vector[1] += unit.vector[1];
214
0
      v.vector[2] += unit.vector[2];
215
0
  }
216
0
    }
217
218
207
    iter->y++;
219
220
207
    return iter->buffer;
221
207
}
222
223
static uint32_t *
224
linear_get_scanline_narrow (pixman_iter_t  *iter,
225
          const uint32_t *mask)
226
207
{
227
207
    return linear_get_scanline (iter, mask, 4,
228
207
        _pixman_gradient_walker_write_narrow,
229
207
        _pixman_gradient_walker_fill_narrow);
230
207
}
231
232
233
static uint32_t *
234
linear_get_scanline_wide (pixman_iter_t *iter, const uint32_t *mask)
235
0
{
236
0
    return linear_get_scanline (iter, NULL, 16,
237
0
        _pixman_gradient_walker_write_wide,
238
0
        _pixman_gradient_walker_fill_wide);
239
0
}
240
241
void
242
_pixman_linear_gradient_iter_init (pixman_image_t *image, pixman_iter_t  *iter)
243
207
{
244
207
    if (linear_gradient_is_horizontal (
245
207
      iter->image, iter->x, iter->y, iter->width, iter->height))
246
0
    {
247
0
  if (iter->iter_flags & ITER_NARROW)
248
0
      linear_get_scanline_narrow (iter, NULL);
249
0
  else
250
0
      linear_get_scanline_wide (iter, NULL);
251
252
0
  iter->get_scanline = _pixman_iter_get_scanline_noop;
253
0
    }
254
207
    else
255
207
    {
256
207
  if (iter->iter_flags & ITER_NARROW)
257
207
      iter->get_scanline = linear_get_scanline_narrow;
258
0
  else
259
0
      iter->get_scanline = linear_get_scanline_wide;
260
207
    }
261
207
}
262
263
PIXMAN_EXPORT pixman_image_t *
264
pixman_image_create_linear_gradient (const pixman_point_fixed_t *  p1,
265
                                     const pixman_point_fixed_t *  p2,
266
                                     const pixman_gradient_stop_t *stops,
267
                                     int                           n_stops)
268
6
{
269
6
    pixman_image_t *image;
270
6
    linear_gradient_t *linear;
271
272
6
    image = _pixman_image_allocate ();
273
274
6
    if (!image)
275
0
  return NULL;
276
277
6
    linear = &image->linear;
278
279
6
    if (!_pixman_init_gradient (&linear->common, stops, n_stops))
280
0
    {
281
0
  free (image);
282
0
  return NULL;
283
0
    }
284
285
6
    linear->p1 = *p1;
286
6
    linear->p2 = *p2;
287
288
6
    image->type = LINEAR;
289
290
6
    return image;
291
6
}
292