/src/glib-2.80.0/glib/grand.c
Line | Count | Source |
1 | | /* GLIB - Library of useful routines for C programming |
2 | | * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald |
3 | | * |
4 | | * SPDX-License-Identifier: LGPL-2.1-or-later |
5 | | * |
6 | | * This library is free software; you can redistribute it and/or |
7 | | * modify it under the terms of the GNU Lesser General Public |
8 | | * License as published by the Free Software Foundation; either |
9 | | * version 2.1 of the License, or (at your option) any later version. |
10 | | * |
11 | | * This library is distributed in the hope that it will be useful, |
12 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 | | * Lesser General Public License for more details. |
15 | | * |
16 | | * You should have received a copy of the GNU Lesser General Public |
17 | | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
18 | | */ |
19 | | |
20 | | /* Originally developed and coded by Makoto Matsumoto and Takuji |
21 | | * Nishimura. Please mail <matumoto@math.keio.ac.jp>, if you're using |
22 | | * code from this file in your own programs or libraries. |
23 | | * Further information on the Mersenne Twister can be found at |
24 | | * http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html |
25 | | * This code was adapted to glib by Sebastian Wilhelmi. |
26 | | */ |
27 | | |
28 | | /* |
29 | | * Modified by the GLib Team and others 1997-2000. See the AUTHORS |
30 | | * file for a list of people on the GLib Team. See the ChangeLog |
31 | | * files for a list of changes. These files are distributed with |
32 | | * GLib at ftp://ftp.gtk.org/pub/gtk/. |
33 | | */ |
34 | | |
35 | | /* |
36 | | * MT safe |
37 | | */ |
38 | | |
39 | | #include "config.h" |
40 | | #define _CRT_RAND_S |
41 | | |
42 | | #include <math.h> |
43 | | #include <errno.h> |
44 | | #include <stdio.h> |
45 | | #include <string.h> |
46 | | #include <sys/types.h> |
47 | | #include "grand.h" |
48 | | |
49 | | #include "genviron.h" |
50 | | #include "gmain.h" |
51 | | #include "gmem.h" |
52 | | #include "gtestutils.h" |
53 | | #include "gthread.h" |
54 | | #include "gtimer.h" |
55 | | |
56 | | #ifdef G_OS_UNIX |
57 | | #include <unistd.h> |
58 | | #endif |
59 | | |
60 | | #ifdef G_OS_WIN32 |
61 | | #include <stdlib.h> |
62 | | #include <process.h> /* For getpid() */ |
63 | | #endif |
64 | | |
65 | | /** |
66 | | * GRand: |
67 | | * |
68 | | * The GRand struct is an opaque data structure. It should only be |
69 | | * accessed through the g_rand_* functions. |
70 | | **/ |
71 | | |
72 | | G_LOCK_DEFINE_STATIC (global_random); |
73 | | |
74 | | /* Period parameters */ |
75 | 0 | #define N 624 |
76 | 0 | #define M 397 |
77 | 0 | #define MATRIX_A 0x9908b0df /* constant vector a */ |
78 | 0 | #define UPPER_MASK 0x80000000 /* most significant w-r bits */ |
79 | 0 | #define LOWER_MASK 0x7fffffff /* least significant r bits */ |
80 | | |
81 | | /* Tempering parameters */ |
82 | 0 | #define TEMPERING_MASK_B 0x9d2c5680 |
83 | 0 | #define TEMPERING_MASK_C 0xefc60000 |
84 | 0 | #define TEMPERING_SHIFT_U(y) (y >> 11) |
85 | 0 | #define TEMPERING_SHIFT_S(y) (y << 7) |
86 | 0 | #define TEMPERING_SHIFT_T(y) (y << 15) |
87 | 0 | #define TEMPERING_SHIFT_L(y) (y >> 18) |
88 | | |
89 | | static guint |
90 | | get_random_version (void) |
91 | 0 | { |
92 | 0 | static gsize initialized = FALSE; |
93 | 0 | static guint random_version; |
94 | |
|
95 | 0 | if (g_once_init_enter (&initialized)) |
96 | 0 | { |
97 | 0 | const gchar *version_string = g_getenv ("G_RANDOM_VERSION"); |
98 | 0 | if (!version_string || version_string[0] == '\000' || |
99 | 0 | strcmp (version_string, "2.2") == 0) |
100 | 0 | random_version = 22; |
101 | 0 | else if (strcmp (version_string, "2.0") == 0) |
102 | 0 | random_version = 20; |
103 | 0 | else |
104 | 0 | { |
105 | 0 | g_warning ("Unknown G_RANDOM_VERSION \"%s\". Using version 2.2.", |
106 | 0 | version_string); |
107 | 0 | random_version = 22; |
108 | 0 | } |
109 | 0 | g_once_init_leave (&initialized, TRUE); |
110 | 0 | } |
111 | | |
112 | 0 | return random_version; |
113 | 0 | } |
114 | | |
115 | | struct _GRand |
116 | | { |
117 | | guint32 mt[N]; /* the array for the state vector */ |
118 | | guint mti; |
119 | | }; |
120 | | |
121 | | /** |
122 | | * g_rand_new_with_seed: (constructor) |
123 | | * @seed: a value to initialize the random number generator |
124 | | * |
125 | | * Creates a new random number generator initialized with @seed. |
126 | | * |
127 | | * Returns: (transfer full): the new #GRand |
128 | | **/ |
129 | | GRand* |
130 | | g_rand_new_with_seed (guint32 seed) |
131 | 0 | { |
132 | 0 | GRand *rand = g_new0 (GRand, 1); |
133 | 0 | g_rand_set_seed (rand, seed); |
134 | 0 | return rand; |
135 | 0 | } |
136 | | |
137 | | /** |
138 | | * g_rand_new_with_seed_array: (constructor) |
139 | | * @seed: an array of seeds to initialize the random number generator |
140 | | * @seed_length: an array of seeds to initialize the random number |
141 | | * generator |
142 | | * |
143 | | * Creates a new random number generator initialized with @seed. |
144 | | * |
145 | | * Returns: (transfer full): the new #GRand |
146 | | * |
147 | | * Since: 2.4 |
148 | | */ |
149 | | GRand* |
150 | | g_rand_new_with_seed_array (const guint32 *seed, |
151 | | guint seed_length) |
152 | 0 | { |
153 | 0 | GRand *rand = g_new0 (GRand, 1); |
154 | 0 | g_rand_set_seed_array (rand, seed, seed_length); |
155 | 0 | return rand; |
156 | 0 | } |
157 | | |
158 | | /** |
159 | | * g_rand_new: (constructor) |
160 | | * |
161 | | * Creates a new random number generator initialized with a seed taken |
162 | | * either from `/dev/urandom` (if existing) or from the current time |
163 | | * (as a fallback). |
164 | | * |
165 | | * On Windows, the seed is taken from rand_s(). |
166 | | * |
167 | | * Returns: (transfer full): the new #GRand |
168 | | */ |
169 | | GRand* |
170 | | g_rand_new (void) |
171 | 0 | { |
172 | 0 | guint32 seed[4]; |
173 | 0 | #ifdef G_OS_UNIX |
174 | 0 | static gboolean dev_urandom_exists = TRUE; |
175 | |
|
176 | 0 | if (dev_urandom_exists) |
177 | 0 | { |
178 | 0 | FILE* dev_urandom; |
179 | |
|
180 | 0 | do |
181 | 0 | { |
182 | 0 | dev_urandom = fopen ("/dev/urandom", "rbe"); |
183 | 0 | } |
184 | 0 | while G_UNLIKELY (dev_urandom == NULL && errno == EINTR); |
185 | |
|
186 | 0 | if (dev_urandom) |
187 | 0 | { |
188 | 0 | int r; |
189 | |
|
190 | 0 | setvbuf (dev_urandom, NULL, _IONBF, 0); |
191 | 0 | do |
192 | 0 | { |
193 | 0 | errno = 0; |
194 | 0 | r = fread (seed, sizeof (seed), 1, dev_urandom); |
195 | 0 | } |
196 | 0 | while G_UNLIKELY (errno == EINTR); |
197 | |
|
198 | 0 | if (r != 1) |
199 | 0 | dev_urandom_exists = FALSE; |
200 | |
|
201 | 0 | fclose (dev_urandom); |
202 | 0 | } |
203 | 0 | else |
204 | 0 | dev_urandom_exists = FALSE; |
205 | 0 | } |
206 | |
|
207 | 0 | if (!dev_urandom_exists) |
208 | 0 | { |
209 | 0 | gint64 now_us = g_get_real_time (); |
210 | 0 | seed[0] = now_us / G_USEC_PER_SEC; |
211 | 0 | seed[1] = now_us % G_USEC_PER_SEC; |
212 | 0 | seed[2] = getpid (); |
213 | 0 | seed[3] = getppid (); |
214 | 0 | } |
215 | | #else /* G_OS_WIN32 */ |
216 | | /* rand_s() is only available since Visual Studio 2005 and |
217 | | * MinGW-w64 has a wrapper that will emulate rand_s() if it's not in msvcrt |
218 | | */ |
219 | | #if (defined(_MSC_VER) && _MSC_VER >= 1400) || defined(__MINGW64_VERSION_MAJOR) |
220 | | gsize i; |
221 | | |
222 | | for (i = 0; i < G_N_ELEMENTS (seed); i++) |
223 | | rand_s (&seed[i]); |
224 | | #else |
225 | | #warning Using insecure seed for random number generation because of missing rand_s() in Windows XP |
226 | | GTimeVal now; |
227 | | |
228 | | g_get_current_time (&now); |
229 | | seed[0] = now.tv_sec; |
230 | | seed[1] = now.tv_usec; |
231 | | seed[2] = getpid (); |
232 | | seed[3] = 0; |
233 | | #endif |
234 | | |
235 | | #endif |
236 | |
|
237 | 0 | return g_rand_new_with_seed_array (seed, 4); |
238 | 0 | } |
239 | | |
240 | | /** |
241 | | * g_rand_free: |
242 | | * @rand_: a #GRand |
243 | | * |
244 | | * Frees the memory allocated for the #GRand. |
245 | | */ |
246 | | void |
247 | | g_rand_free (GRand *rand) |
248 | 0 | { |
249 | 0 | g_return_if_fail (rand != NULL); |
250 | | |
251 | 0 | g_free (rand); |
252 | 0 | } |
253 | | |
254 | | /** |
255 | | * g_rand_copy: |
256 | | * @rand_: a #GRand |
257 | | * |
258 | | * Copies a #GRand into a new one with the same exact state as before. |
259 | | * This way you can take a snapshot of the random number generator for |
260 | | * replaying later. |
261 | | * |
262 | | * Returns: (transfer full): the new #GRand |
263 | | * |
264 | | * Since: 2.4 |
265 | | */ |
266 | | GRand* |
267 | | g_rand_copy (GRand *rand) |
268 | 0 | { |
269 | 0 | GRand* new_rand; |
270 | |
|
271 | 0 | g_return_val_if_fail (rand != NULL, NULL); |
272 | | |
273 | 0 | new_rand = g_new0 (GRand, 1); |
274 | 0 | memcpy (new_rand, rand, sizeof (GRand)); |
275 | |
|
276 | 0 | return new_rand; |
277 | 0 | } |
278 | | |
279 | | /** |
280 | | * g_rand_set_seed: |
281 | | * @rand_: a #GRand |
282 | | * @seed: a value to reinitialize the random number generator |
283 | | * |
284 | | * Sets the seed for the random number generator #GRand to @seed. |
285 | | */ |
286 | | void |
287 | | g_rand_set_seed (GRand *rand, |
288 | | guint32 seed) |
289 | 0 | { |
290 | 0 | g_return_if_fail (rand != NULL); |
291 | | |
292 | 0 | switch (get_random_version ()) |
293 | 0 | { |
294 | 0 | case 20: |
295 | | /* setting initial seeds to mt[N] using */ |
296 | | /* the generator Line 25 of Table 1 in */ |
297 | | /* [KNUTH 1981, The Art of Computer Programming */ |
298 | | /* Vol. 2 (2nd Ed.), pp102] */ |
299 | | |
300 | 0 | if (seed == 0) /* This would make the PRNG produce only zeros */ |
301 | 0 | seed = 0x6b842128; /* Just set it to another number */ |
302 | | |
303 | 0 | rand->mt[0]= seed; |
304 | 0 | for (rand->mti=1; rand->mti<N; rand->mti++) |
305 | 0 | rand->mt[rand->mti] = (69069 * rand->mt[rand->mti-1]); |
306 | | |
307 | 0 | break; |
308 | 0 | case 22: |
309 | | /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */ |
310 | | /* In the previous version (see above), MSBs of the */ |
311 | | /* seed affect only MSBs of the array mt[]. */ |
312 | | |
313 | 0 | rand->mt[0]= seed; |
314 | 0 | for (rand->mti=1; rand->mti<N; rand->mti++) |
315 | 0 | rand->mt[rand->mti] = 1812433253UL * |
316 | 0 | (rand->mt[rand->mti-1] ^ (rand->mt[rand->mti-1] >> 30)) + rand->mti; |
317 | 0 | break; |
318 | 0 | default: |
319 | 0 | g_assert_not_reached (); |
320 | 0 | } |
321 | 0 | } |
322 | | |
323 | | /** |
324 | | * g_rand_set_seed_array: |
325 | | * @rand_: a #GRand |
326 | | * @seed: array to initialize with |
327 | | * @seed_length: length of array |
328 | | * |
329 | | * Initializes the random number generator by an array of longs. |
330 | | * Array can be of arbitrary size, though only the first 624 values |
331 | | * are taken. This function is useful if you have many low entropy |
332 | | * seeds, or if you require more then 32 bits of actual entropy for |
333 | | * your application. |
334 | | * |
335 | | * Since: 2.4 |
336 | | */ |
337 | | void |
338 | | g_rand_set_seed_array (GRand *rand, |
339 | | const guint32 *seed, |
340 | | guint seed_length) |
341 | 0 | { |
342 | 0 | guint i, j, k; |
343 | |
|
344 | 0 | g_return_if_fail (rand != NULL); |
345 | 0 | g_return_if_fail (seed_length >= 1); |
346 | | |
347 | 0 | g_rand_set_seed (rand, 19650218UL); |
348 | |
|
349 | 0 | i=1; j=0; |
350 | 0 | k = (N>seed_length ? N : seed_length); |
351 | 0 | for (; k; k--) |
352 | 0 | { |
353 | 0 | rand->mt[i] = (rand->mt[i] ^ |
354 | 0 | ((rand->mt[i-1] ^ (rand->mt[i-1] >> 30)) * 1664525UL)) |
355 | 0 | + seed[j] + j; /* non linear */ |
356 | 0 | rand->mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */ |
357 | 0 | i++; j++; |
358 | 0 | if (i>=N) |
359 | 0 | { |
360 | 0 | rand->mt[0] = rand->mt[N-1]; |
361 | 0 | i=1; |
362 | 0 | } |
363 | 0 | if (j>=seed_length) |
364 | 0 | j=0; |
365 | 0 | } |
366 | 0 | for (k=N-1; k; k--) |
367 | 0 | { |
368 | 0 | rand->mt[i] = (rand->mt[i] ^ |
369 | 0 | ((rand->mt[i-1] ^ (rand->mt[i-1] >> 30)) * 1566083941UL)) |
370 | 0 | - i; /* non linear */ |
371 | 0 | rand->mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */ |
372 | 0 | i++; |
373 | 0 | if (i>=N) |
374 | 0 | { |
375 | 0 | rand->mt[0] = rand->mt[N-1]; |
376 | 0 | i=1; |
377 | 0 | } |
378 | 0 | } |
379 | |
|
380 | 0 | rand->mt[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */ |
381 | 0 | } |
382 | | |
383 | | /** |
384 | | * g_rand_boolean: |
385 | | * @rand_: a #GRand |
386 | | * |
387 | | * Returns a random #gboolean from @rand_. |
388 | | * This corresponds to an unbiased coin toss. |
389 | | * |
390 | | * Returns: a random #gboolean |
391 | | */ |
392 | | /** |
393 | | * g_rand_int: |
394 | | * @rand_: a #GRand |
395 | | * |
396 | | * Returns the next random #guint32 from @rand_ equally distributed over |
397 | | * the range [0..2^32-1]. |
398 | | * |
399 | | * Returns: a random number |
400 | | */ |
401 | | guint32 |
402 | | g_rand_int (GRand *rand) |
403 | 0 | { |
404 | 0 | guint32 y; |
405 | 0 | static const guint32 mag01[2]={0x0, MATRIX_A}; |
406 | | /* mag01[x] = x * MATRIX_A for x=0,1 */ |
407 | |
|
408 | 0 | g_return_val_if_fail (rand != NULL, 0); |
409 | | |
410 | 0 | if (rand->mti >= N) { /* generate N words at one time */ |
411 | 0 | int kk; |
412 | | |
413 | 0 | for (kk = 0; kk < N - M; kk++) { |
414 | 0 | y = (rand->mt[kk]&UPPER_MASK)|(rand->mt[kk+1]&LOWER_MASK); |
415 | 0 | rand->mt[kk] = rand->mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1]; |
416 | 0 | } |
417 | 0 | for (; kk < N - 1; kk++) { |
418 | 0 | y = (rand->mt[kk]&UPPER_MASK)|(rand->mt[kk+1]&LOWER_MASK); |
419 | 0 | rand->mt[kk] = rand->mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1]; |
420 | 0 | } |
421 | 0 | y = (rand->mt[N-1]&UPPER_MASK)|(rand->mt[0]&LOWER_MASK); |
422 | 0 | rand->mt[N-1] = rand->mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1]; |
423 | | |
424 | 0 | rand->mti = 0; |
425 | 0 | } |
426 | | |
427 | 0 | y = rand->mt[rand->mti++]; |
428 | 0 | y ^= TEMPERING_SHIFT_U(y); |
429 | 0 | y ^= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B; |
430 | 0 | y ^= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C; |
431 | 0 | y ^= TEMPERING_SHIFT_L(y); |
432 | | |
433 | 0 | return y; |
434 | 0 | } |
435 | | |
436 | | /* transform [0..2^32] -> [0..1] */ |
437 | 0 | #define G_RAND_DOUBLE_TRANSFORM 2.3283064365386962890625e-10 |
438 | | |
439 | | /** |
440 | | * g_rand_int_range: |
441 | | * @rand_: a #GRand |
442 | | * @begin: lower closed bound of the interval |
443 | | * @end: upper open bound of the interval |
444 | | * |
445 | | * Returns the next random #gint32 from @rand_ equally distributed over |
446 | | * the range [@begin..@end-1]. |
447 | | * |
448 | | * Returns: a random number |
449 | | */ |
450 | | gint32 |
451 | | g_rand_int_range (GRand *rand, |
452 | | gint32 begin, |
453 | | gint32 end) |
454 | 0 | { |
455 | 0 | guint32 dist = end - begin; |
456 | 0 | guint32 random = 0; |
457 | |
|
458 | 0 | g_return_val_if_fail (rand != NULL, begin); |
459 | 0 | g_return_val_if_fail (end > begin, begin); |
460 | | |
461 | 0 | switch (get_random_version ()) |
462 | 0 | { |
463 | 0 | case 20: |
464 | 0 | if (dist <= 0x10000L) /* 2^16 */ |
465 | 0 | { |
466 | | /* This method, which only calls g_rand_int once is only good |
467 | | * for (end - begin) <= 2^16, because we only have 32 bits set |
468 | | * from the one call to g_rand_int (). |
469 | | * |
470 | | * We are using (trans + trans * trans), because g_rand_int only |
471 | | * covers [0..2^32-1] and thus g_rand_int * trans only covers |
472 | | * [0..1-2^-32], but the biggest double < 1 is 1-2^-52. |
473 | | */ |
474 | | |
475 | 0 | gdouble double_rand = g_rand_int (rand) * |
476 | 0 | (G_RAND_DOUBLE_TRANSFORM + |
477 | 0 | G_RAND_DOUBLE_TRANSFORM * G_RAND_DOUBLE_TRANSFORM); |
478 | | |
479 | 0 | random = (gint32) (double_rand * dist); |
480 | 0 | } |
481 | 0 | else |
482 | 0 | { |
483 | | /* Now we use g_rand_double_range (), which will set 52 bits |
484 | | * for us, so that it is safe to round and still get a decent |
485 | | * distribution |
486 | | */ |
487 | 0 | random = (gint32) g_rand_double_range (rand, 0, dist); |
488 | 0 | } |
489 | 0 | break; |
490 | 0 | case 22: |
491 | 0 | if (dist == 0) |
492 | 0 | random = 0; |
493 | 0 | else |
494 | 0 | { |
495 | | /* maxvalue is set to the predecessor of the greatest |
496 | | * multiple of dist less or equal 2^32. |
497 | | */ |
498 | 0 | guint32 maxvalue; |
499 | 0 | if (dist <= 0x80000000u) /* 2^31 */ |
500 | 0 | { |
501 | | /* maxvalue = 2^32 - 1 - (2^32 % dist) */ |
502 | 0 | guint32 leftover = (0x80000000u % dist) * 2; |
503 | 0 | if (leftover >= dist) leftover -= dist; |
504 | 0 | maxvalue = 0xffffffffu - leftover; |
505 | 0 | } |
506 | 0 | else |
507 | 0 | maxvalue = dist - 1; |
508 | | |
509 | 0 | do |
510 | 0 | random = g_rand_int (rand); |
511 | 0 | while (random > maxvalue); |
512 | | |
513 | 0 | random %= dist; |
514 | 0 | } |
515 | 0 | break; |
516 | 0 | default: |
517 | 0 | g_assert_not_reached (); |
518 | 0 | } |
519 | | |
520 | 0 | return begin + random; |
521 | 0 | } |
522 | | |
523 | | /** |
524 | | * g_rand_double: |
525 | | * @rand_: a #GRand |
526 | | * |
527 | | * Returns the next random #gdouble from @rand_ equally distributed over |
528 | | * the range [0..1). |
529 | | * |
530 | | * Returns: a random number |
531 | | */ |
532 | | gdouble |
533 | | g_rand_double (GRand *rand) |
534 | 0 | { |
535 | | /* We set all 52 bits after the point for this, not only the first |
536 | | 32. That's why we need two calls to g_rand_int */ |
537 | 0 | gdouble retval = g_rand_int (rand) * G_RAND_DOUBLE_TRANSFORM; |
538 | 0 | retval = (retval + g_rand_int (rand)) * G_RAND_DOUBLE_TRANSFORM; |
539 | | |
540 | | /* The following might happen due to very bad rounding luck, but |
541 | | * actually this should be more than rare, we just try again then */ |
542 | 0 | if (retval >= 1.0) |
543 | 0 | return g_rand_double (rand); |
544 | | |
545 | 0 | return retval; |
546 | 0 | } |
547 | | |
548 | | /** |
549 | | * g_rand_double_range: |
550 | | * @rand_: a #GRand |
551 | | * @begin: lower closed bound of the interval |
552 | | * @end: upper open bound of the interval |
553 | | * |
554 | | * Returns the next random #gdouble from @rand_ equally distributed over |
555 | | * the range [@begin..@end). |
556 | | * |
557 | | * Returns: a random number |
558 | | */ |
559 | | gdouble |
560 | | g_rand_double_range (GRand *rand, |
561 | | gdouble begin, |
562 | | gdouble end) |
563 | 0 | { |
564 | 0 | gdouble r; |
565 | |
|
566 | 0 | r = g_rand_double (rand); |
567 | |
|
568 | 0 | return r * end - (r - 1) * begin; |
569 | 0 | } |
570 | | |
571 | | static GRand * |
572 | | get_global_random (void) |
573 | 0 | { |
574 | 0 | static GRand *global_random; |
575 | | |
576 | | /* called while locked */ |
577 | 0 | if (!global_random) |
578 | 0 | global_random = g_rand_new (); |
579 | |
|
580 | 0 | return global_random; |
581 | 0 | } |
582 | | |
583 | | /** |
584 | | * g_random_boolean: |
585 | | * |
586 | | * Returns a random #gboolean. |
587 | | * This corresponds to an unbiased coin toss. |
588 | | * |
589 | | * Returns: a random #gboolean |
590 | | */ |
591 | | /** |
592 | | * g_random_int: |
593 | | * |
594 | | * Return a random #guint32 equally distributed over the range |
595 | | * [0..2^32-1]. |
596 | | * |
597 | | * Returns: a random number |
598 | | */ |
599 | | guint32 |
600 | | g_random_int (void) |
601 | 0 | { |
602 | 0 | guint32 result; |
603 | 0 | G_LOCK (global_random); |
604 | 0 | result = g_rand_int (get_global_random ()); |
605 | 0 | G_UNLOCK (global_random); |
606 | 0 | return result; |
607 | 0 | } |
608 | | |
609 | | /** |
610 | | * g_random_int_range: |
611 | | * @begin: lower closed bound of the interval |
612 | | * @end: upper open bound of the interval |
613 | | * |
614 | | * Returns a random #gint32 equally distributed over the range |
615 | | * [@begin..@end-1]. |
616 | | * |
617 | | * Returns: a random number |
618 | | */ |
619 | | gint32 |
620 | | g_random_int_range (gint32 begin, |
621 | | gint32 end) |
622 | 0 | { |
623 | 0 | gint32 result; |
624 | 0 | G_LOCK (global_random); |
625 | 0 | result = g_rand_int_range (get_global_random (), begin, end); |
626 | 0 | G_UNLOCK (global_random); |
627 | 0 | return result; |
628 | 0 | } |
629 | | |
630 | | /** |
631 | | * g_random_double: |
632 | | * |
633 | | * Returns a random #gdouble equally distributed over the range [0..1). |
634 | | * |
635 | | * Returns: a random number |
636 | | */ |
637 | | gdouble |
638 | | g_random_double (void) |
639 | 0 | { |
640 | 0 | double result; |
641 | 0 | G_LOCK (global_random); |
642 | 0 | result = g_rand_double (get_global_random ()); |
643 | 0 | G_UNLOCK (global_random); |
644 | 0 | return result; |
645 | 0 | } |
646 | | |
647 | | /** |
648 | | * g_random_double_range: |
649 | | * @begin: lower closed bound of the interval |
650 | | * @end: upper open bound of the interval |
651 | | * |
652 | | * Returns a random #gdouble equally distributed over the range |
653 | | * [@begin..@end). |
654 | | * |
655 | | * Returns: a random number |
656 | | */ |
657 | | gdouble |
658 | | g_random_double_range (gdouble begin, |
659 | | gdouble end) |
660 | 0 | { |
661 | 0 | double result; |
662 | 0 | G_LOCK (global_random); |
663 | 0 | result = g_rand_double_range (get_global_random (), begin, end); |
664 | 0 | G_UNLOCK (global_random); |
665 | 0 | return result; |
666 | 0 | } |
667 | | |
668 | | /** |
669 | | * g_random_set_seed: |
670 | | * @seed: a value to reinitialize the global random number generator |
671 | | * |
672 | | * Sets the seed for the global random number generator, which is used |
673 | | * by the g_random_* functions, to @seed. |
674 | | */ |
675 | | void |
676 | | g_random_set_seed (guint32 seed) |
677 | 0 | { |
678 | 0 | G_LOCK (global_random); |
679 | 0 | g_rand_set_seed (get_global_random (), seed); |
680 | 0 | G_UNLOCK (global_random); |
681 | 0 | } |