Coverage Report

Created: 2025-11-16 07:45

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/qtbase/src/gui/painting/qdrawhelper_avx2.cpp
Line
Count
Source
1
/****************************************************************************
2
**
3
** Copyright (C) 2018 The Qt Company Ltd.
4
** Copyright (C) 2018 Intel Corporation.
5
** Contact: https://www.qt.io/licensing/
6
**
7
** This file is part of the QtGui module of the Qt Toolkit.
8
**
9
** $QT_BEGIN_LICENSE:LGPL$
10
** Commercial License Usage
11
** Licensees holding valid commercial Qt licenses may use this file in
12
** accordance with the commercial license agreement provided with the
13
** Software or, alternatively, in accordance with the terms contained in
14
** a written agreement between you and The Qt Company. For licensing terms
15
** and conditions see https://www.qt.io/terms-conditions. For further
16
** information use the contact form at https://www.qt.io/contact-us.
17
**
18
** GNU Lesser General Public License Usage
19
** Alternatively, this file may be used under the terms of the GNU Lesser
20
** General Public License version 3 as published by the Free Software
21
** Foundation and appearing in the file LICENSE.LGPL3 included in the
22
** packaging of this file. Please review the following information to
23
** ensure the GNU Lesser General Public License version 3 requirements
24
** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
25
**
26
** GNU General Public License Usage
27
** Alternatively, this file may be used under the terms of the GNU
28
** General Public License version 2.0 or (at your option) the GNU General
29
** Public license version 3 or any later version approved by the KDE Free
30
** Qt Foundation. The licenses are as published by the Free Software
31
** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
32
** included in the packaging of this file. Please review the following
33
** information to ensure the GNU General Public License requirements will
34
** be met: https://www.gnu.org/licenses/gpl-2.0.html and
35
** https://www.gnu.org/licenses/gpl-3.0.html.
36
**
37
** $QT_END_LICENSE$
38
**
39
****************************************************************************/
40
41
#include "qdrawhelper_p.h"
42
#include "qdrawhelper_x86_p.h"
43
#include "qdrawingprimitive_sse2_p.h"
44
#include "qrgba64_p.h"
45
46
#if defined(QT_COMPILER_SUPPORTS_AVX2)
47
48
QT_BEGIN_NAMESPACE
49
50
enum {
51
    FixedScale = 1 << 16,
52
    HalfPoint = 1 << 15
53
};
54
55
// Vectorized blend functions:
56
57
// See BYTE_MUL_SSE2 for details.
58
inline static void Q_DECL_VECTORCALL
59
BYTE_MUL_AVX2(__m256i &pixelVector, __m256i alphaChannel, __m256i colorMask, __m256i half)
60
0
{
61
0
    __m256i pixelVectorAG = _mm256_srli_epi16(pixelVector, 8);
62
0
    __m256i pixelVectorRB = _mm256_and_si256(pixelVector, colorMask);
63
64
0
    pixelVectorAG = _mm256_mullo_epi16(pixelVectorAG, alphaChannel);
65
0
    pixelVectorRB = _mm256_mullo_epi16(pixelVectorRB, alphaChannel);
66
67
0
    pixelVectorRB = _mm256_add_epi16(pixelVectorRB, _mm256_srli_epi16(pixelVectorRB, 8));
68
0
    pixelVectorAG = _mm256_add_epi16(pixelVectorAG, _mm256_srli_epi16(pixelVectorAG, 8));
69
0
    pixelVectorRB = _mm256_add_epi16(pixelVectorRB, half);
70
0
    pixelVectorAG = _mm256_add_epi16(pixelVectorAG, half);
71
72
0
    pixelVectorRB = _mm256_srli_epi16(pixelVectorRB, 8);
73
0
    pixelVectorAG = _mm256_andnot_si256(colorMask, pixelVectorAG);
74
75
0
    pixelVector = _mm256_or_si256(pixelVectorAG, pixelVectorRB);
76
0
}
77
78
inline static void Q_DECL_VECTORCALL
79
BYTE_MUL_RGB64_AVX2(__m256i &pixelVector, __m256i alphaChannel, __m256i colorMask, __m256i half)
80
0
{
81
0
    __m256i pixelVectorAG = _mm256_srli_epi32(pixelVector, 16);
82
0
    __m256i pixelVectorRB = _mm256_and_si256(pixelVector, colorMask);
83
84
0
    pixelVectorAG = _mm256_mullo_epi32(pixelVectorAG, alphaChannel);
85
0
    pixelVectorRB = _mm256_mullo_epi32(pixelVectorRB, alphaChannel);
86
87
0
    pixelVectorRB = _mm256_add_epi32(pixelVectorRB, _mm256_srli_epi32(pixelVectorRB, 16));
88
0
    pixelVectorAG = _mm256_add_epi32(pixelVectorAG, _mm256_srli_epi32(pixelVectorAG, 16));
89
0
    pixelVectorRB = _mm256_add_epi32(pixelVectorRB, half);
90
0
    pixelVectorAG = _mm256_add_epi32(pixelVectorAG, half);
91
92
0
    pixelVectorRB = _mm256_srli_epi32(pixelVectorRB, 16);
93
0
    pixelVectorAG = _mm256_andnot_si256(colorMask, pixelVectorAG);
94
95
0
    pixelVector = _mm256_or_si256(pixelVectorAG, pixelVectorRB);
96
0
}
97
98
// See INTERPOLATE_PIXEL_255_SSE2 for details.
99
inline static void Q_DECL_VECTORCALL
100
INTERPOLATE_PIXEL_255_AVX2(__m256i srcVector, __m256i &dstVector, __m256i alphaChannel, __m256i oneMinusAlphaChannel, __m256i colorMask, __m256i half)
101
0
{
102
0
    const __m256i srcVectorAG = _mm256_srli_epi16(srcVector, 8);
103
0
    const __m256i dstVectorAG = _mm256_srli_epi16(dstVector, 8);
104
0
    const __m256i srcVectorRB = _mm256_and_si256(srcVector, colorMask);
105
0
    const __m256i dstVectorRB = _mm256_and_si256(dstVector, colorMask);
106
0
    const __m256i srcVectorAGalpha = _mm256_mullo_epi16(srcVectorAG, alphaChannel);
107
0
    const __m256i srcVectorRBalpha = _mm256_mullo_epi16(srcVectorRB, alphaChannel);
108
0
    const __m256i dstVectorAGoneMinusAlpha = _mm256_mullo_epi16(dstVectorAG, oneMinusAlphaChannel);
109
0
    const __m256i dstVectorRBoneMinusAlpha = _mm256_mullo_epi16(dstVectorRB, oneMinusAlphaChannel);
110
0
    __m256i finalAG = _mm256_add_epi16(srcVectorAGalpha, dstVectorAGoneMinusAlpha);
111
0
    __m256i finalRB = _mm256_add_epi16(srcVectorRBalpha, dstVectorRBoneMinusAlpha);
112
0
    finalAG = _mm256_add_epi16(finalAG, _mm256_srli_epi16(finalAG, 8));
113
0
    finalRB = _mm256_add_epi16(finalRB, _mm256_srli_epi16(finalRB, 8));
114
0
    finalAG = _mm256_add_epi16(finalAG, half);
115
0
    finalRB = _mm256_add_epi16(finalRB, half);
116
0
    finalAG = _mm256_andnot_si256(colorMask, finalAG);
117
0
    finalRB = _mm256_srli_epi16(finalRB, 8);
118
119
0
    dstVector = _mm256_or_si256(finalAG, finalRB);
120
0
}
121
122
inline static void Q_DECL_VECTORCALL
123
INTERPOLATE_PIXEL_RGB64_AVX2(__m256i srcVector, __m256i &dstVector, __m256i alphaChannel, __m256i oneMinusAlphaChannel, __m256i colorMask, __m256i half)
124
0
{
125
0
    const __m256i srcVectorAG = _mm256_srli_epi32(srcVector, 16);
126
0
    const __m256i dstVectorAG = _mm256_srli_epi32(dstVector, 16);
127
0
    const __m256i srcVectorRB = _mm256_and_si256(srcVector, colorMask);
128
0
    const __m256i dstVectorRB = _mm256_and_si256(dstVector, colorMask);
129
0
    const __m256i srcVectorAGalpha = _mm256_mullo_epi32(srcVectorAG, alphaChannel);
130
0
    const __m256i srcVectorRBalpha = _mm256_mullo_epi32(srcVectorRB, alphaChannel);
131
0
    const __m256i dstVectorAGoneMinusAlpha = _mm256_mullo_epi32(dstVectorAG, oneMinusAlphaChannel);
132
0
    const __m256i dstVectorRBoneMinusAlpha = _mm256_mullo_epi32(dstVectorRB, oneMinusAlphaChannel);
133
0
    __m256i finalAG = _mm256_add_epi32(srcVectorAGalpha, dstVectorAGoneMinusAlpha);
134
0
    __m256i finalRB = _mm256_add_epi32(srcVectorRBalpha, dstVectorRBoneMinusAlpha);
135
0
    finalAG = _mm256_add_epi32(finalAG, _mm256_srli_epi32(finalAG, 16));
136
0
    finalRB = _mm256_add_epi32(finalRB, _mm256_srli_epi32(finalRB, 16));
137
0
    finalAG = _mm256_add_epi32(finalAG, half);
138
0
    finalRB = _mm256_add_epi32(finalRB, half);
139
0
    finalAG = _mm256_andnot_si256(colorMask, finalAG);
140
0
    finalRB = _mm256_srli_epi32(finalRB, 16);
141
142
0
    dstVector = _mm256_or_si256(finalAG, finalRB);
143
0
}
144
145
146
// See BLEND_SOURCE_OVER_ARGB32_SSE2 for details.
147
inline static void Q_DECL_VECTORCALL BLEND_SOURCE_OVER_ARGB32_AVX2(quint32 *dst, const quint32 *src, const int length)
148
0
{
149
0
    const __m256i half = _mm256_set1_epi16(0x80);
150
0
    const __m256i one = _mm256_set1_epi16(0xff);
151
0
    const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff);
152
0
    const __m256i alphaMask = _mm256_set1_epi32(0xff000000);
153
0
    const __m256i offsetMask = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7);
154
0
    const __m256i alphaShuffleMask = _mm256_set_epi8(char(0xff),15,char(0xff),15,char(0xff),11,char(0xff),11,char(0xff),7,char(0xff),7,char(0xff),3,char(0xff),3,
155
0
                                                     char(0xff),15,char(0xff),15,char(0xff),11,char(0xff),11,char(0xff),7,char(0xff),7,char(0xff),3,char(0xff),3);
156
157
0
    const int minusOffsetToAlignDstOn32Bytes = (reinterpret_cast<quintptr>(dst) >> 2) & 0x7;
158
159
0
    int x = 0;
160
    // Prologue to handle all pixels until dst is 32-byte aligned in one step.
161
0
    if (minusOffsetToAlignDstOn32Bytes != 0 && x < (length - 7)) {
162
0
        const __m256i prologueMask = _mm256_sub_epi32(_mm256_set1_epi32(minusOffsetToAlignDstOn32Bytes - 1), offsetMask);
163
0
        const __m256i srcVector = _mm256_maskload_epi32((const int *)&src[x - minusOffsetToAlignDstOn32Bytes], prologueMask);
164
0
        const __m256i prologueAlphaMask = _mm256_blendv_epi8(_mm256_setzero_si256(), alphaMask, prologueMask);
165
0
        if (!_mm256_testz_si256(srcVector, prologueAlphaMask)) {
166
0
            if (_mm256_testc_si256(srcVector, prologueAlphaMask)) {
167
0
                _mm256_maskstore_epi32((int *)&dst[x - minusOffsetToAlignDstOn32Bytes], prologueMask, srcVector);
168
0
            } else {
169
0
                __m256i alphaChannel = _mm256_shuffle_epi8(srcVector, alphaShuffleMask);
170
0
                alphaChannel = _mm256_sub_epi16(one, alphaChannel);
171
0
                __m256i dstVector = _mm256_maskload_epi32((int *)&dst[x - minusOffsetToAlignDstOn32Bytes], prologueMask);
172
0
                BYTE_MUL_AVX2(dstVector, alphaChannel, colorMask, half);
173
0
                dstVector = _mm256_add_epi8(dstVector, srcVector);
174
0
                _mm256_maskstore_epi32((int *)&dst[x - minusOffsetToAlignDstOn32Bytes], prologueMask, dstVector);
175
0
            }
176
0
        }
177
0
        x += (8 - minusOffsetToAlignDstOn32Bytes);
178
0
    }
179
180
0
    for (; x < (length - 7); x += 8) {
181
0
        const __m256i srcVector = _mm256_lddqu_si256((const __m256i *)&src[x]);
182
0
        if (!_mm256_testz_si256(srcVector, alphaMask)) {
183
0
            if (_mm256_testc_si256(srcVector, alphaMask)) {
184
0
                _mm256_store_si256((__m256i *)&dst[x], srcVector);
185
0
            } else {
186
0
                __m256i alphaChannel = _mm256_shuffle_epi8(srcVector, alphaShuffleMask);
187
0
                alphaChannel = _mm256_sub_epi16(one, alphaChannel);
188
0
                __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]);
189
0
                 BYTE_MUL_AVX2(dstVector, alphaChannel, colorMask, half);
190
0
                dstVector = _mm256_add_epi8(dstVector, srcVector);
191
0
                _mm256_store_si256((__m256i *)&dst[x], dstVector);
192
0
            }
193
0
        }
194
0
    }
195
196
    // Epilogue to handle all remaining pixels in one step.
197
0
    if (x < length) {
198
0
        const __m256i epilogueMask = _mm256_add_epi32(offsetMask, _mm256_set1_epi32(x - length));
199
0
        const __m256i srcVector = _mm256_maskload_epi32((const int *)&src[x], epilogueMask);
200
0
        const __m256i epilogueAlphaMask = _mm256_blendv_epi8(_mm256_setzero_si256(), alphaMask, epilogueMask);
201
0
        if (!_mm256_testz_si256(srcVector, epilogueAlphaMask)) {
202
0
            if (_mm256_testc_si256(srcVector, epilogueAlphaMask)) {
203
0
                _mm256_maskstore_epi32((int *)&dst[x], epilogueMask, srcVector);
204
0
            } else {
205
0
                __m256i alphaChannel = _mm256_shuffle_epi8(srcVector, alphaShuffleMask);
206
0
                alphaChannel = _mm256_sub_epi16(one, alphaChannel);
207
0
                __m256i dstVector = _mm256_maskload_epi32((int *)&dst[x], epilogueMask);
208
0
                BYTE_MUL_AVX2(dstVector, alphaChannel, colorMask, half);
209
0
                dstVector = _mm256_add_epi8(dstVector, srcVector);
210
0
                _mm256_maskstore_epi32((int *)&dst[x], epilogueMask, dstVector);
211
0
            }
212
0
        }
213
0
    }
214
0
}
215
216
217
// See BLEND_SOURCE_OVER_ARGB32_WITH_CONST_ALPHA_SSE2 for details.
218
inline static void Q_DECL_VECTORCALL
219
BLEND_SOURCE_OVER_ARGB32_WITH_CONST_ALPHA_AVX2(quint32 *dst, const quint32 *src, const int length, const int const_alpha)
220
0
{
221
0
    int x = 0;
222
223
0
    ALIGNMENT_PROLOGUE_32BYTES(dst, x, length)
224
0
        blend_pixel(dst[x], src[x], const_alpha);
225
226
0
    const __m256i half = _mm256_set1_epi16(0x80);
227
0
    const __m256i one = _mm256_set1_epi16(0xff);
228
0
    const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff);
229
0
    const __m256i alphaMask = _mm256_set1_epi32(0xff000000);
230
0
    const __m256i alphaShuffleMask = _mm256_set_epi8(char(0xff),15,char(0xff),15,char(0xff),11,char(0xff),11,char(0xff),7,char(0xff),7,char(0xff),3,char(0xff),3,
231
0
                                                     char(0xff),15,char(0xff),15,char(0xff),11,char(0xff),11,char(0xff),7,char(0xff),7,char(0xff),3,char(0xff),3);
232
0
    const __m256i constAlphaVector = _mm256_set1_epi16(const_alpha);
233
0
    for (; x < (length - 7); x += 8) {
234
0
        __m256i srcVector = _mm256_lddqu_si256((const __m256i *)&src[x]);
235
0
        if (!_mm256_testz_si256(srcVector, alphaMask)) {
236
0
            BYTE_MUL_AVX2(srcVector, constAlphaVector, colorMask, half);
237
238
0
            __m256i alphaChannel = _mm256_shuffle_epi8(srcVector, alphaShuffleMask);
239
0
            alphaChannel = _mm256_sub_epi16(one, alphaChannel);
240
0
            __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]);
241
0
            BYTE_MUL_AVX2(dstVector, alphaChannel, colorMask, half);
242
0
            dstVector = _mm256_add_epi8(dstVector, srcVector);
243
0
            _mm256_store_si256((__m256i *)&dst[x], dstVector);
244
0
        }
245
0
    }
246
0
    SIMD_EPILOGUE(x, length, 7)
247
0
        blend_pixel(dst[x], src[x], const_alpha);
248
0
}
249
250
void qt_blend_argb32_on_argb32_avx2(uchar *destPixels, int dbpl,
251
                                    const uchar *srcPixels, int sbpl,
252
                                    int w, int h,
253
                                    int const_alpha)
254
0
{
255
0
    if (const_alpha == 256) {
256
0
        for (int y = 0; y < h; ++y) {
257
0
            const quint32 *src = reinterpret_cast<const quint32 *>(srcPixels);
258
0
            quint32 *dst = reinterpret_cast<quint32 *>(destPixels);
259
0
            BLEND_SOURCE_OVER_ARGB32_AVX2(dst, src, w);
260
0
            destPixels += dbpl;
261
0
            srcPixels += sbpl;
262
0
        }
263
0
    } else if (const_alpha != 0) {
264
0
        const_alpha = (const_alpha * 255) >> 8;
265
0
        for (int y = 0; y < h; ++y) {
266
0
            const quint32 *src = reinterpret_cast<const quint32 *>(srcPixels);
267
0
            quint32 *dst = reinterpret_cast<quint32 *>(destPixels);
268
0
            BLEND_SOURCE_OVER_ARGB32_WITH_CONST_ALPHA_AVX2(dst, src, w, const_alpha);
269
0
            destPixels += dbpl;
270
0
            srcPixels += sbpl;
271
0
        }
272
0
    }
273
0
}
274
275
void qt_blend_rgb32_on_rgb32_avx2(uchar *destPixels, int dbpl,
276
                                   const uchar *srcPixels, int sbpl,
277
                                   int w, int h,
278
                                   int const_alpha)
279
0
{
280
0
    if (const_alpha == 256) {
281
0
        for (int y = 0; y < h; ++y) {
282
0
            const quint32 *src = reinterpret_cast<const quint32 *>(srcPixels);
283
0
            quint32 *dst = reinterpret_cast<quint32 *>(destPixels);
284
0
            ::memcpy(dst, src, w * sizeof(uint));
285
0
            srcPixels += sbpl;
286
0
            destPixels += dbpl;
287
0
        }
288
0
        return;
289
0
    }
290
0
    if (const_alpha == 0)
291
0
        return;
292
293
0
    const __m256i half = _mm256_set1_epi16(0x80);
294
0
    const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff);
295
296
0
    const_alpha = (const_alpha * 255) >> 8;
297
0
    int one_minus_const_alpha = 255 - const_alpha;
298
0
    const __m256i constAlphaVector = _mm256_set1_epi16(const_alpha);
299
0
    const __m256i oneMinusConstAlpha =  _mm256_set1_epi16(one_minus_const_alpha);
300
0
    for (int y = 0; y < h; ++y) {
301
0
        const quint32 *src = reinterpret_cast<const quint32 *>(srcPixels);
302
0
        quint32 *dst = reinterpret_cast<quint32 *>(destPixels);
303
0
        int x = 0;
304
305
        // First, align dest to 32 bytes:
306
0
        ALIGNMENT_PROLOGUE_32BYTES(dst, x, w)
307
0
            dst[x] = INTERPOLATE_PIXEL_255(src[x], const_alpha, dst[x], one_minus_const_alpha);
308
309
        // 2) interpolate pixels with AVX2
310
0
        for (; x < (w - 7); x += 8) {
311
0
            const __m256i srcVector = _mm256_lddqu_si256((const __m256i *)&src[x]);
312
0
            __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]);
313
0
            INTERPOLATE_PIXEL_255_AVX2(srcVector, dstVector, constAlphaVector, oneMinusConstAlpha, colorMask, half);
314
0
            _mm256_store_si256((__m256i *)&dst[x], dstVector);
315
0
        }
316
317
        // 3) Epilogue
318
0
        SIMD_EPILOGUE(x, w, 7)
319
0
            dst[x] = INTERPOLATE_PIXEL_255(src[x], const_alpha, dst[x], one_minus_const_alpha);
320
321
0
        srcPixels += sbpl;
322
0
        destPixels += dbpl;
323
0
    }
324
0
}
325
326
static Q_NEVER_INLINE
327
void Q_DECL_VECTORCALL qt_memfillXX_avx2(uchar *dest, __m256i value256, qsizetype bytes)
328
69.6k
{
329
69.6k
    __m128i value128 = _mm256_castsi256_si128(value256);
330
331
    // main body
332
69.6k
    __m256i *dst256 = reinterpret_cast<__m256i *>(dest);
333
69.6k
    uchar *end = dest + bytes;
334
69.6k
    while (reinterpret_cast<uchar *>(dst256 + 4) <= end) {
335
0
        _mm256_storeu_si256(dst256 + 0, value256);
336
0
        _mm256_storeu_si256(dst256 + 1, value256);
337
0
        _mm256_storeu_si256(dst256 + 2, value256);
338
0
        _mm256_storeu_si256(dst256 + 3, value256);
339
0
        dst256 += 4;
340
0
    }
341
342
    // first epilogue: fewer than 128 bytes / 32 entries
343
69.6k
    bytes = end - reinterpret_cast<uchar *>(dst256);
344
69.6k
    switch (bytes / sizeof(value256)) {
345
0
    case 3: _mm256_storeu_si256(dst256++, value256); Q_FALLTHROUGH();
346
0
    case 2: _mm256_storeu_si256(dst256++, value256); Q_FALLTHROUGH();
347
0
    case 1: _mm256_storeu_si256(dst256++, value256);
348
69.6k
    }
349
350
    // second epilogue: fewer than 32 bytes
351
69.6k
    __m128i *dst128 = reinterpret_cast<__m128i *>(dst256);
352
69.6k
    if (bytes & sizeof(value128))
353
0
        _mm_storeu_si128(dst128++, value128);
354
355
    // third epilogue: fewer than 16 bytes
356
69.6k
    if (bytes & 8)
357
0
        _mm_storel_epi64(reinterpret_cast<__m128i *>(end - 8), value128);
358
69.6k
}
359
360
void qt_memfill64_avx2(quint64 *dest, quint64 value, qsizetype count)
361
0
{
362
#if defined(Q_CC_GNU) && !defined(Q_CC_CLANG) && !defined(Q_CC_INTEL)
363
    // work around https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80820
364
    __m128i value64 = _mm_set_epi64x(0, value); // _mm_cvtsi64_si128(value);
365
#  ifdef Q_PROCESSOR_X86_64
366
    asm ("" : "+x" (value64));
367
#  endif
368
    __m256i value256 =  _mm256_broadcastq_epi64(value64);
369
#else
370
0
    __m256i value256 = _mm256_set1_epi64x(value);
371
0
#endif
372
373
0
    qt_memfillXX_avx2(reinterpret_cast<uchar *>(dest), value256, count * sizeof(quint64));
374
0
}
375
376
void qt_memfill32_avx2(quint32 *dest, quint32 value, qsizetype count)
377
69.6k
{
378
69.6k
    if (count % 2) {
379
        // odd number of pixels, round to even
380
69.6k
        *dest++ = value;
381
69.6k
        --count;
382
69.6k
    }
383
69.6k
    qt_memfillXX_avx2(reinterpret_cast<uchar *>(dest), _mm256_set1_epi32(value), count * sizeof(quint32));
384
69.6k
}
385
386
void QT_FASTCALL comp_func_SourceOver_avx2(uint *destPixels, const uint *srcPixels, int length, uint const_alpha)
387
0
{
388
0
    Q_ASSERT(const_alpha < 256);
389
390
0
    const quint32 *src = (const quint32 *) srcPixels;
391
0
    quint32 *dst = (quint32 *) destPixels;
392
393
0
    if (const_alpha == 255)
394
0
        BLEND_SOURCE_OVER_ARGB32_AVX2(dst, src, length);
395
0
    else
396
0
        BLEND_SOURCE_OVER_ARGB32_WITH_CONST_ALPHA_AVX2(dst, src, length, const_alpha);
397
0
}
398
399
#if QT_CONFIG(raster_64bit)
400
void QT_FASTCALL comp_func_SourceOver_rgb64_avx2(QRgba64 *dst, const QRgba64 *src, int length, uint const_alpha)
401
0
{
402
0
    Q_ASSERT(const_alpha < 256); // const_alpha is in [0-255]
403
0
    const __m256i half = _mm256_set1_epi32(0x8000);
404
0
    const __m256i one  = _mm256_set1_epi32(0xffff);
405
0
    const __m256i colorMask = _mm256_set1_epi32(0x0000ffff);
406
0
    __m256i alphaMask = _mm256_set1_epi32(0xff000000);
407
0
    alphaMask = _mm256_unpacklo_epi8(alphaMask, alphaMask);
408
0
    const __m256i alphaShuffleMask = _mm256_set_epi8(char(0xff),char(0xff),15,14,char(0xff),char(0xff),15,14,char(0xff),char(0xff),7,6,char(0xff),char(0xff),7,6,
409
0
                                                     char(0xff),char(0xff),15,14,char(0xff),char(0xff),15,14,char(0xff),char(0xff),7,6,char(0xff),char(0xff),7,6);
410
411
0
    if (const_alpha == 255) {
412
0
        int x = 0;
413
0
        for (; x < length && (quintptr(dst + x) & 31); ++x)
414
0
            blend_pixel(dst[x], src[x]);
415
0
        for (; x < length - 3; x += 4) {
416
0
            const __m256i srcVector = _mm256_lddqu_si256((const __m256i *)&src[x]);
417
0
            if (!_mm256_testz_si256(srcVector, alphaMask)) {
418
                // Not all transparent
419
0
                if (_mm256_testc_si256(srcVector, alphaMask)) {
420
                    // All opaque
421
0
                    _mm256_store_si256((__m256i *)&dst[x], srcVector);
422
0
                } else {
423
0
                    __m256i alphaChannel = _mm256_shuffle_epi8(srcVector, alphaShuffleMask);
424
0
                    alphaChannel = _mm256_sub_epi32(one, alphaChannel);
425
0
                    __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]);
426
0
                    BYTE_MUL_RGB64_AVX2(dstVector, alphaChannel, colorMask, half);
427
0
                    dstVector = _mm256_add_epi16(dstVector, srcVector);
428
0
                    _mm256_store_si256((__m256i *)&dst[x], dstVector);
429
0
                }
430
0
            }
431
0
        }
432
0
        SIMD_EPILOGUE(x, length, 3)
433
0
            blend_pixel(dst[x], src[x]);
434
0
    } else {
435
0
        const __m256i constAlphaVector = _mm256_set1_epi32(const_alpha | (const_alpha << 8));
436
0
        int x = 0;
437
0
        for (; x < length && (quintptr(dst + x) & 31); ++x)
438
0
            blend_pixel(dst[x], src[x], const_alpha);
439
0
        for (; x < length - 3; x += 4) {
440
0
            __m256i srcVector = _mm256_lddqu_si256((const __m256i *)&src[x]);
441
0
            if (!_mm256_testz_si256(srcVector, alphaMask)) {
442
                // Not all transparent
443
0
                BYTE_MUL_RGB64_AVX2(srcVector, constAlphaVector, colorMask, half);
444
445
0
                __m256i alphaChannel = _mm256_shuffle_epi8(srcVector, alphaShuffleMask);
446
0
                alphaChannel = _mm256_sub_epi32(one, alphaChannel);
447
0
                __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]);
448
0
                BYTE_MUL_RGB64_AVX2(dstVector, alphaChannel, colorMask, half);
449
0
                dstVector = _mm256_add_epi16(dstVector, srcVector);
450
0
                _mm256_store_si256((__m256i *)&dst[x], dstVector);
451
0
            }
452
0
        }
453
0
        SIMD_EPILOGUE(x, length, 3)
454
0
            blend_pixel(dst[x], src[x], const_alpha);
455
0
    }
456
0
}
457
#endif
458
459
void QT_FASTCALL comp_func_Source_avx2(uint *dst, const uint *src, int length, uint const_alpha)
460
0
{
461
0
    if (const_alpha == 255) {
462
0
        ::memcpy(dst, src, length * sizeof(uint));
463
0
    } else {
464
0
        const int ialpha = 255 - const_alpha;
465
466
0
        int x = 0;
467
468
        // 1) prologue, align on 32 bytes
469
0
        ALIGNMENT_PROLOGUE_32BYTES(dst, x, length)
470
0
            dst[x] = INTERPOLATE_PIXEL_255(src[x], const_alpha, dst[x], ialpha);
471
472
        // 2) interpolate pixels with AVX2
473
0
        const __m256i half = _mm256_set1_epi16(0x80);
474
0
        const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff);
475
0
        const __m256i constAlphaVector = _mm256_set1_epi16(const_alpha);
476
0
        const __m256i oneMinusConstAlpha =  _mm256_set1_epi16(ialpha);
477
0
        for (; x < length - 7; x += 8) {
478
0
            const __m256i srcVector = _mm256_lddqu_si256((const __m256i *)&src[x]);
479
0
            __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]);
480
0
            INTERPOLATE_PIXEL_255_AVX2(srcVector, dstVector, constAlphaVector, oneMinusConstAlpha, colorMask, half);
481
0
            _mm256_store_si256((__m256i *)&dst[x], dstVector);
482
0
        }
483
484
        // 3) Epilogue
485
0
        SIMD_EPILOGUE(x, length, 7)
486
0
            dst[x] = INTERPOLATE_PIXEL_255(src[x], const_alpha, dst[x], ialpha);
487
0
    }
488
0
}
489
490
#if QT_CONFIG(raster_64bit)
491
void QT_FASTCALL comp_func_Source_rgb64_avx2(QRgba64 *dst, const QRgba64 *src, int length, uint const_alpha)
492
0
{
493
0
    Q_ASSERT(const_alpha < 256); // const_alpha is in [0-255]
494
0
    if (const_alpha == 255) {
495
0
        ::memcpy(dst, src, length * sizeof(QRgba64));
496
0
    } else {
497
0
        const uint ca = const_alpha | (const_alpha << 8); // adjust to [0-65535]
498
0
        const uint cia = 65535 - ca;
499
500
0
        int x = 0;
501
502
        // 1) prologue, align on 32 bytes
503
0
        for (; x < length && (quintptr(dst + x) & 31); ++x)
504
0
            dst[x] = interpolate65535(src[x], ca, dst[x], cia);
505
506
        // 2) interpolate pixels with AVX2
507
0
        const __m256i half = _mm256_set1_epi32(0x8000);
508
0
        const __m256i colorMask = _mm256_set1_epi32(0x0000ffff);
509
0
        const __m256i constAlphaVector = _mm256_set1_epi32(ca);
510
0
        const __m256i oneMinusConstAlpha =  _mm256_set1_epi32(cia);
511
0
        for (; x < length - 3; x += 4) {
512
0
            const __m256i srcVector = _mm256_lddqu_si256((const __m256i *)&src[x]);
513
0
            __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]);
514
0
            INTERPOLATE_PIXEL_RGB64_AVX2(srcVector, dstVector, constAlphaVector, oneMinusConstAlpha, colorMask, half);
515
0
            _mm256_store_si256((__m256i *)&dst[x], dstVector);
516
0
        }
517
518
        // 3) Epilogue
519
0
        SIMD_EPILOGUE(x, length, 3)
520
0
            dst[x] = interpolate65535(src[x], ca, dst[x], cia);
521
0
    }
522
0
}
523
#endif
524
525
void QT_FASTCALL comp_func_solid_SourceOver_avx2(uint *destPixels, int length, uint color, uint const_alpha)
526
0
{
527
0
    if ((const_alpha & qAlpha(color)) == 255) {
528
0
        qt_memfill32(destPixels, color, length);
529
0
    } else {
530
0
        if (const_alpha != 255)
531
0
            color = BYTE_MUL(color, const_alpha);
532
533
0
        const quint32 minusAlphaOfColor = qAlpha(~color);
534
0
        int x = 0;
535
536
0
        quint32 *dst = (quint32 *) destPixels;
537
0
        const __m256i colorVector = _mm256_set1_epi32(color);
538
0
        const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff);
539
0
        const __m256i half = _mm256_set1_epi16(0x80);
540
0
        const __m256i minusAlphaOfColorVector = _mm256_set1_epi16(minusAlphaOfColor);
541
542
0
        ALIGNMENT_PROLOGUE_32BYTES(dst, x, length)
543
0
            destPixels[x] = color + BYTE_MUL(destPixels[x], minusAlphaOfColor);
544
545
0
        for (; x < length - 7; x += 8) {
546
0
            __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]);
547
0
            BYTE_MUL_AVX2(dstVector, minusAlphaOfColorVector, colorMask, half);
548
0
            dstVector = _mm256_add_epi8(colorVector, dstVector);
549
0
            _mm256_store_si256((__m256i *)&dst[x], dstVector);
550
0
        }
551
0
        SIMD_EPILOGUE(x, length, 7)
552
0
            destPixels[x] = color + BYTE_MUL(destPixels[x], minusAlphaOfColor);
553
0
    }
554
0
}
555
556
#if QT_CONFIG(raster_64bit)
557
void QT_FASTCALL comp_func_solid_SourceOver_rgb64_avx2(QRgba64 *destPixels, int length, QRgba64 color, uint const_alpha)
558
0
{
559
0
    Q_ASSERT(const_alpha < 256); // const_alpha is in [0-255]
560
0
    if (const_alpha == 255 && color.isOpaque()) {
561
0
        qt_memfill64((quint64*)destPixels, color, length);
562
0
    } else {
563
0
        if (const_alpha != 255)
564
0
            color = multiplyAlpha255(color, const_alpha);
565
566
0
        const uint minusAlphaOfColor = 65535 - color.alpha();
567
0
        int x = 0;
568
0
        quint64 *dst = (quint64 *) destPixels;
569
0
        const __m256i colorVector = _mm256_set1_epi64x(color);
570
0
        const __m256i colorMask = _mm256_set1_epi32(0x0000ffff);
571
0
        const __m256i half = _mm256_set1_epi32(0x8000);
572
0
        const __m256i minusAlphaOfColorVector = _mm256_set1_epi32(minusAlphaOfColor);
573
574
0
        for (; x < length && (quintptr(dst + x) & 31); ++x)
575
0
            destPixels[x] = color + multiplyAlpha65535(destPixels[x], minusAlphaOfColor);
576
577
0
        for (; x < length - 3; x += 4) {
578
0
            __m256i dstVector = _mm256_load_si256((__m256i *)&dst[x]);
579
0
            BYTE_MUL_RGB64_AVX2(dstVector, minusAlphaOfColorVector, colorMask, half);
580
0
            dstVector = _mm256_add_epi16(colorVector, dstVector);
581
0
            _mm256_store_si256((__m256i *)&dst[x], dstVector);
582
0
        }
583
0
        SIMD_EPILOGUE(x, length, 3)
584
0
            destPixels[x] = color + multiplyAlpha65535(destPixels[x], minusAlphaOfColor);
585
0
    }
586
0
}
587
#endif
588
589
0
#define interpolate_4_pixels_16_avx2(tlr1, tlr2, blr1, blr2, distx, disty, colorMask, v_256, b)  \
590
0
{ \
591
0
    /* Correct for later unpack */ \
592
0
    const __m256i vdistx = _mm256_permute4x64_epi64(distx, _MM_SHUFFLE(3, 1, 2, 0)); \
593
0
    const __m256i vdisty = _mm256_permute4x64_epi64(disty, _MM_SHUFFLE(3, 1, 2, 0)); \
594
0
    \
595
0
    __m256i dxdy = _mm256_mullo_epi16 (vdistx, vdisty); \
596
0
    const __m256i distx_ = _mm256_slli_epi16(vdistx, 4); \
597
0
    const __m256i disty_ = _mm256_slli_epi16(vdisty, 4); \
598
0
    __m256i idxidy =  _mm256_add_epi16(dxdy, _mm256_sub_epi16(v_256, _mm256_add_epi16(distx_, disty_))); \
599
0
    __m256i dxidy =  _mm256_sub_epi16(distx_, dxdy); \
600
0
    __m256i idxdy =  _mm256_sub_epi16(disty_, dxdy); \
601
0
 \
602
0
    __m256i tlr1AG = _mm256_srli_epi16(tlr1, 8); \
603
0
    __m256i tlr1RB = _mm256_and_si256(tlr1, colorMask); \
604
0
    __m256i tlr2AG = _mm256_srli_epi16(tlr2, 8); \
605
0
    __m256i tlr2RB = _mm256_and_si256(tlr2, colorMask); \
606
0
    __m256i blr1AG = _mm256_srli_epi16(blr1, 8); \
607
0
    __m256i blr1RB = _mm256_and_si256(blr1, colorMask); \
608
0
    __m256i blr2AG = _mm256_srli_epi16(blr2, 8); \
609
0
    __m256i blr2RB = _mm256_and_si256(blr2, colorMask); \
610
0
 \
611
0
    __m256i odxidy1 = _mm256_unpacklo_epi32(idxidy, dxidy); \
612
0
    __m256i odxidy2 = _mm256_unpackhi_epi32(idxidy, dxidy); \
613
0
    tlr1AG = _mm256_mullo_epi16(tlr1AG, odxidy1); \
614
0
    tlr1RB = _mm256_mullo_epi16(tlr1RB, odxidy1); \
615
0
    tlr2AG = _mm256_mullo_epi16(tlr2AG, odxidy2); \
616
0
    tlr2RB = _mm256_mullo_epi16(tlr2RB, odxidy2); \
617
0
    __m256i odxdy1 = _mm256_unpacklo_epi32(idxdy, dxdy); \
618
0
    __m256i odxdy2 = _mm256_unpackhi_epi32(idxdy, dxdy); \
619
0
    blr1AG = _mm256_mullo_epi16(blr1AG, odxdy1); \
620
0
    blr1RB = _mm256_mullo_epi16(blr1RB, odxdy1); \
621
0
    blr2AG = _mm256_mullo_epi16(blr2AG, odxdy2); \
622
0
    blr2RB = _mm256_mullo_epi16(blr2RB, odxdy2); \
623
0
 \
624
0
    /* Add the values, and shift to only keep 8 significant bits per colors */ \
625
0
    __m256i topAG = _mm256_hadd_epi32(tlr1AG, tlr2AG); \
626
0
    __m256i topRB = _mm256_hadd_epi32(tlr1RB, tlr2RB); \
627
0
    __m256i botAG = _mm256_hadd_epi32(blr1AG, blr2AG); \
628
0
    __m256i botRB = _mm256_hadd_epi32(blr1RB, blr2RB); \
629
0
    __m256i rAG = _mm256_add_epi16(topAG, botAG); \
630
0
    __m256i rRB = _mm256_add_epi16(topRB, botRB); \
631
0
    rRB = _mm256_srli_epi16(rRB, 8); \
632
0
    /* Correct for hadd */ \
633
0
    rAG = _mm256_permute4x64_epi64(rAG, _MM_SHUFFLE(3, 1, 2, 0)); \
634
0
    rRB = _mm256_permute4x64_epi64(rRB, _MM_SHUFFLE(3, 1, 2, 0)); \
635
0
    _mm256_storeu_si256((__m256i*)(b), _mm256_blendv_epi8(rAG, rRB, colorMask)); \
636
0
}
637
638
inline void fetchTransformedBilinear_pixelBounds(int, int l1, int l2, int &v1, int &v2)
639
0
{
640
0
    if (v1 < l1)
641
0
        v2 = v1 = l1;
642
0
    else if (v1 >= l2)
643
0
        v2 = v1 = l2;
644
0
    else
645
0
        v2 = v1 + 1;
646
0
    Q_ASSERT(v1 >= l1 && v1 <= l2);
647
0
    Q_ASSERT(v2 >= l1 && v2 <= l2);
648
0
}
649
650
void QT_FASTCALL intermediate_adder_avx2(uint *b, uint *end, const IntermediateBuffer &intermediate, int offset, int &fx, int fdx);
651
652
void QT_FASTCALL fetchTransformedBilinearARGB32PM_simple_scale_helper_avx2(uint *b, uint *end, const QTextureData &image,
653
                                                                           int &fx, int &fy, int fdx, int /*fdy*/)
654
0
{
655
0
    int y1 = (fy >> 16);
656
0
    int y2;
657
0
    fetchTransformedBilinear_pixelBounds(image.height, image.y1, image.y2 - 1, y1, y2);
658
0
    const uint *s1 = (const uint *)image.scanLine(y1);
659
0
    const uint *s2 = (const uint *)image.scanLine(y2);
660
661
0
    const int disty = (fy & 0x0000ffff) >> 8;
662
0
    const int idisty = 256 - disty;
663
0
    const int length = end - b;
664
665
    // The intermediate buffer is generated in the positive direction
666
0
    const int adjust = (fdx < 0) ? fdx * length : 0;
667
0
    const int offset = (fx + adjust) >> 16;
668
0
    int x = offset;
669
670
0
    IntermediateBuffer intermediate;
671
    // count is the size used in the intermediate_buffer.
672
0
    int count = (qint64(length) * qAbs(fdx) + FixedScale - 1) / FixedScale + 2;
673
    // length is supposed to be <= BufferSize either because data->m11 < 1 or
674
    // data->m11 < 2, and any larger buffers split
675
0
    Q_ASSERT(count <= BufferSize + 2);
676
0
    int f = 0;
677
0
    int lim = qMin(count, image.x2 - x);
678
0
    if (x < image.x1) {
679
0
        Q_ASSERT(x < image.x2);
680
0
        uint t = s1[image.x1];
681
0
        uint b = s2[image.x1];
682
0
        quint32 rb = (((t & 0xff00ff) * idisty + (b & 0xff00ff) * disty) >> 8) & 0xff00ff;
683
0
        quint32 ag = ((((t>>8) & 0xff00ff) * idisty + ((b>>8) & 0xff00ff) * disty) >> 8) & 0xff00ff;
684
0
        do {
685
0
            intermediate.buffer_rb[f] = rb;
686
0
            intermediate.buffer_ag[f] = ag;
687
0
            f++;
688
0
            x++;
689
0
        } while (x < image.x1 && f < lim);
690
0
    }
691
692
0
    const __m256i disty_ = _mm256_set1_epi16(disty);
693
0
    const __m256i idisty_ = _mm256_set1_epi16(idisty);
694
0
    const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff);
695
696
0
    lim -= 7;
697
0
    for (; f < lim; x += 8, f += 8) {
698
        // Load 8 pixels from s1, and split the alpha-green and red-blue component
699
0
        __m256i top = _mm256_loadu_si256((const __m256i*)((const uint *)(s1)+x));
700
0
        __m256i topAG = _mm256_srli_epi16(top, 8);
701
0
        __m256i topRB = _mm256_and_si256(top, colorMask);
702
        // Multiplies each color component by idisty
703
0
        topAG = _mm256_mullo_epi16 (topAG, idisty_);
704
0
        topRB = _mm256_mullo_epi16 (topRB, idisty_);
705
706
        // Same for the s2 vector
707
0
        __m256i bottom = _mm256_loadu_si256((const __m256i*)((const uint *)(s2)+x));
708
0
        __m256i bottomAG = _mm256_srli_epi16(bottom, 8);
709
0
        __m256i bottomRB = _mm256_and_si256(bottom, colorMask);
710
0
        bottomAG = _mm256_mullo_epi16 (bottomAG, disty_);
711
0
        bottomRB = _mm256_mullo_epi16 (bottomRB, disty_);
712
713
        // Add the values, and shift to only keep 8 significant bits per colors
714
0
        __m256i rAG =_mm256_add_epi16(topAG, bottomAG);
715
0
        rAG = _mm256_srli_epi16(rAG, 8);
716
0
        _mm256_storeu_si256((__m256i*)(&intermediate.buffer_ag[f]), rAG);
717
0
        __m256i rRB =_mm256_add_epi16(topRB, bottomRB);
718
0
        rRB = _mm256_srli_epi16(rRB, 8);
719
0
        _mm256_storeu_si256((__m256i*)(&intermediate.buffer_rb[f]), rRB);
720
0
    }
721
722
0
    for (; f < count; f++) { // Same as above but without simd
723
0
        x = qMin(x, image.x2 - 1);
724
725
0
        uint t = s1[x];
726
0
        uint b = s2[x];
727
728
0
        intermediate.buffer_rb[f] = (((t & 0xff00ff) * idisty + (b & 0xff00ff) * disty) >> 8) & 0xff00ff;
729
0
        intermediate.buffer_ag[f] = ((((t>>8) & 0xff00ff) * idisty + ((b>>8) & 0xff00ff) * disty) >> 8) & 0xff00ff;
730
0
        x++;
731
0
    }
732
733
    // Now interpolate the values from the intermediate_buffer to get the final result.
734
0
    intermediate_adder_avx2(b, end, intermediate, offset, fx, fdx);
735
0
}
736
737
void QT_FASTCALL intermediate_adder_avx2(uint *b, uint *end, const IntermediateBuffer &intermediate, int offset, int &fx, int fdx)
738
0
{
739
0
    fx -= offset * FixedScale;
740
741
0
    const __m128i v_fdx = _mm_set1_epi32(fdx * 4);
742
0
    const __m128i v_blend = _mm_set1_epi32(0x00800080);
743
0
    const __m128i vdx_shuffle = _mm_set_epi8(char(0x80), 13, char(0x80), 13, char(0x80), 9, char(0x80), 9,
744
0
                                             char(0x80),  5, char(0x80),  5, char(0x80), 1, char(0x80), 1);
745
0
    __m128i v_fx = _mm_setr_epi32(fx, fx + fdx, fx + fdx + fdx, fx + fdx + fdx + fdx);
746
747
0
    while (b < end - 3) {
748
0
        const __m128i offset = _mm_srli_epi32(v_fx, 16);
749
0
        __m256i vrb = _mm256_i32gather_epi64((const long long *)intermediate.buffer_rb, offset, 4);
750
0
        __m256i vag = _mm256_i32gather_epi64((const long long *)intermediate.buffer_ag, offset, 4);
751
752
0
        __m128i vdx = _mm_shuffle_epi8(v_fx, vdx_shuffle);
753
0
        __m128i vidx = _mm_sub_epi16(_mm_set1_epi16(256), vdx);
754
0
        __m256i vmulx = _mm256_castsi128_si256(_mm_unpacklo_epi32(vidx, vdx));
755
0
        vmulx = _mm256_inserti128_si256(vmulx, _mm_unpackhi_epi32(vidx, vdx), 1);
756
757
0
        vrb = _mm256_mullo_epi16(vrb, vmulx);
758
0
        vag = _mm256_mullo_epi16(vag, vmulx);
759
760
0
        __m256i vrbag = _mm256_hadd_epi32(vrb, vag);
761
0
        vrbag = _mm256_permute4x64_epi64(vrbag, _MM_SHUFFLE(3, 1, 2, 0));
762
763
0
        __m128i rb = _mm256_castsi256_si128(vrbag);
764
0
        __m128i ag = _mm256_extracti128_si256(vrbag, 1);
765
0
        rb = _mm_srli_epi16(rb, 8);
766
767
0
        _mm_storeu_si128((__m128i*)b, _mm_blendv_epi8(ag, rb, v_blend));
768
769
0
        b += 4;
770
0
        v_fx = _mm_add_epi32(v_fx, v_fdx);
771
0
    }
772
0
    fx = _mm_cvtsi128_si32(v_fx);
773
0
    while (b < end) {
774
0
        const int x = (fx >> 16);
775
776
0
        const uint distx = (fx & 0x0000ffff) >> 8;
777
0
        const uint idistx = 256 - distx;
778
0
        const uint rb = (intermediate.buffer_rb[x] * idistx + intermediate.buffer_rb[x + 1] * distx) & 0xff00ff00;
779
0
        const uint ag = (intermediate.buffer_ag[x] * idistx + intermediate.buffer_ag[x + 1] * distx) & 0xff00ff00;
780
0
        *b = (rb >> 8) | ag;
781
0
        b++;
782
0
        fx += fdx;
783
0
    }
784
0
    fx += offset * FixedScale;
785
0
}
786
787
void QT_FASTCALL fetchTransformedBilinearARGB32PM_downscale_helper_avx2(uint *b, uint *end, const QTextureData &image,
788
                                                                        int &fx, int &fy, int fdx, int /*fdy*/)
789
0
{
790
0
    int y1 = (fy >> 16);
791
0
    int y2;
792
0
    fetchTransformedBilinear_pixelBounds(image.height, image.y1, image.y2 - 1, y1, y2);
793
0
    const uint *s1 = (const uint *)image.scanLine(y1);
794
0
    const uint *s2 = (const uint *)image.scanLine(y2);
795
0
    const int disty8 = (fy & 0x0000ffff) >> 8;
796
0
    const int disty4 = (disty8 + 0x08) >> 4;
797
798
0
    const qint64 min_fx = qint64(image.x1) * FixedScale;
799
0
    const qint64 max_fx = qint64(image.x2 - 1) * FixedScale;
800
0
    while (b < end) {
801
0
        int x1 = (fx >> 16);
802
0
        int x2;
803
0
        fetchTransformedBilinear_pixelBounds(image.width, image.x1, image.x2 - 1, x1, x2);
804
0
        if (x1 != x2)
805
0
            break;
806
0
        uint top = s1[x1];
807
0
        uint bot = s2[x1];
808
0
        *b = INTERPOLATE_PIXEL_256(top, 256 - disty8, bot, disty8);
809
0
        fx += fdx;
810
0
        ++b;
811
0
    }
812
0
    uint *boundedEnd = end;
813
0
    if (fdx > 0)
814
0
        boundedEnd = qMin(boundedEnd, b + (max_fx - fx) / fdx);
815
0
    else if (fdx < 0)
816
0
        boundedEnd = qMin(boundedEnd, b + (min_fx - fx) / fdx);
817
818
    // A fast middle part without boundary checks
819
0
    const __m256i vdistShuffle =
820
0
        _mm256_setr_epi8(0, char(0x80), 0, char(0x80), 4, char(0x80), 4, char(0x80), 8, char(0x80), 8, char(0x80), 12, char(0x80), 12, char(0x80),
821
0
                         0, char(0x80), 0, char(0x80), 4, char(0x80), 4, char(0x80), 8, char(0x80), 8, char(0x80), 12, char(0x80), 12, char(0x80));
822
0
    const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff);
823
0
    const __m256i v_256 = _mm256_set1_epi16(256);
824
0
    const __m256i v_disty = _mm256_set1_epi16(disty4);
825
0
    const __m256i v_fdx = _mm256_set1_epi32(fdx * 8);
826
0
    const __m256i v_fx_r = _mm256_set1_epi32(0x08);
827
0
    const __m256i v_index = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7);
828
0
    __m256i v_fx = _mm256_set1_epi32(fx);
829
0
    v_fx = _mm256_add_epi32(v_fx, _mm256_mullo_epi32(_mm256_set1_epi32(fdx), v_index));
830
831
0
    while (b < boundedEnd - 7) {
832
0
        const __m256i offset = _mm256_srli_epi32(v_fx, 16);
833
0
        const __m128i offsetLo = _mm256_castsi256_si128(offset);
834
0
        const __m128i offsetHi = _mm256_extracti128_si256(offset, 1);
835
0
        const __m256i toplo = _mm256_i32gather_epi64((const long long *)s1, offsetLo, 4);
836
0
        const __m256i tophi = _mm256_i32gather_epi64((const long long *)s1, offsetHi, 4);
837
0
        const __m256i botlo = _mm256_i32gather_epi64((const long long *)s2, offsetLo, 4);
838
0
        const __m256i bothi = _mm256_i32gather_epi64((const long long *)s2, offsetHi, 4);
839
840
0
        __m256i v_distx = _mm256_srli_epi16(v_fx, 8);
841
0
        v_distx = _mm256_srli_epi16(_mm256_add_epi32(v_distx, v_fx_r), 4);
842
0
        v_distx = _mm256_shuffle_epi8(v_distx, vdistShuffle);
843
844
0
        interpolate_4_pixels_16_avx2(toplo, tophi, botlo, bothi, v_distx, v_disty, colorMask, v_256, b);
845
0
        b += 8;
846
0
        v_fx = _mm256_add_epi32(v_fx, v_fdx);
847
0
    }
848
0
    fx = _mm_extract_epi32(_mm256_castsi256_si128(v_fx) , 0);
849
850
0
    while (b < boundedEnd) {
851
0
        int x = (fx >> 16);
852
0
        int distx8 = (fx & 0x0000ffff) >> 8;
853
0
        *b = interpolate_4_pixels(s1 + x, s2 + x, distx8, disty8);
854
0
        fx += fdx;
855
0
        ++b;
856
0
    }
857
858
0
    while (b < end) {
859
0
        int x1 = (fx >> 16);
860
0
        int x2;
861
0
        fetchTransformedBilinear_pixelBounds(image.width, image.x1, image.x2 - 1, x1, x2);
862
0
        uint tl = s1[x1];
863
0
        uint tr = s1[x2];
864
0
        uint bl = s2[x1];
865
0
        uint br = s2[x2];
866
0
        int distx8 = (fx & 0x0000ffff) >> 8;
867
0
        *b = interpolate_4_pixels(tl, tr, bl, br, distx8, disty8);
868
0
        fx += fdx;
869
0
        ++b;
870
0
    }
871
0
}
872
873
void QT_FASTCALL fetchTransformedBilinearARGB32PM_fast_rotate_helper_avx2(uint *b, uint *end, const QTextureData &image,
874
                                                                          int &fx, int &fy, int fdx, int fdy)
875
0
{
876
0
    const qint64 min_fx = qint64(image.x1) * FixedScale;
877
0
    const qint64 max_fx = qint64(image.x2 - 1) * FixedScale;
878
0
    const qint64 min_fy = qint64(image.y1) * FixedScale;
879
0
    const qint64 max_fy = qint64(image.y2 - 1) * FixedScale;
880
    // first handle the possibly bounded part in the beginning
881
0
    while (b < end) {
882
0
        int x1 = (fx >> 16);
883
0
        int x2;
884
0
        int y1 = (fy >> 16);
885
0
        int y2;
886
0
        fetchTransformedBilinear_pixelBounds(image.width, image.x1, image.x2 - 1, x1, x2);
887
0
        fetchTransformedBilinear_pixelBounds(image.height, image.y1, image.y2 - 1, y1, y2);
888
0
        if (x1 != x2 && y1 != y2)
889
0
            break;
890
0
        const uint *s1 = (const uint *)image.scanLine(y1);
891
0
        const uint *s2 = (const uint *)image.scanLine(y2);
892
0
        uint tl = s1[x1];
893
0
        uint tr = s1[x2];
894
0
        uint bl = s2[x1];
895
0
        uint br = s2[x2];
896
0
        int distx = (fx & 0x0000ffff) >> 8;
897
0
        int disty = (fy & 0x0000ffff) >> 8;
898
0
        *b = interpolate_4_pixels(tl, tr, bl, br, distx, disty);
899
0
        fx += fdx;
900
0
        fy += fdy;
901
0
        ++b;
902
0
    }
903
0
    uint *boundedEnd = end;
904
0
    if (fdx > 0)
905
0
        boundedEnd = qMin(boundedEnd, b + (max_fx - fx) / fdx);
906
0
    else if (fdx < 0)
907
0
        boundedEnd = qMin(boundedEnd, b + (min_fx - fx) / fdx);
908
0
    if (fdy > 0)
909
0
        boundedEnd = qMin(boundedEnd, b + (max_fy - fy) / fdy);
910
0
    else if (fdy < 0)
911
0
        boundedEnd = qMin(boundedEnd, b + (min_fy - fy) / fdy);
912
913
    // until boundedEnd we can now have a fast middle part without boundary checks
914
0
    const __m256i vdistShuffle =
915
0
        _mm256_setr_epi8(0, char(0x80), 0, char(0x80), 4, char(0x80), 4, char(0x80), 8, char(0x80), 8, char(0x80), 12, char(0x80), 12, char(0x80),
916
0
                         0, char(0x80), 0, char(0x80), 4, char(0x80), 4, char(0x80), 8, char(0x80), 8, char(0x80), 12, char(0x80), 12, char(0x80));
917
0
    const __m256i colorMask = _mm256_set1_epi32(0x00ff00ff);
918
0
    const __m256i v_256 = _mm256_set1_epi16(256);
919
0
    const __m256i v_fdx = _mm256_set1_epi32(fdx * 8);
920
0
    const __m256i v_fdy = _mm256_set1_epi32(fdy * 8);
921
0
    const __m256i v_fxy_r = _mm256_set1_epi32(0x08);
922
0
    const __m256i v_index = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7);
923
0
    __m256i v_fx = _mm256_set1_epi32(fx);
924
0
    __m256i v_fy = _mm256_set1_epi32(fy);
925
0
    v_fx = _mm256_add_epi32(v_fx, _mm256_mullo_epi32(_mm256_set1_epi32(fdx), v_index));
926
0
    v_fy = _mm256_add_epi32(v_fy, _mm256_mullo_epi32(_mm256_set1_epi32(fdy), v_index));
927
928
0
    const uchar *textureData = image.imageData;
929
0
    const qsizetype bytesPerLine = image.bytesPerLine;
930
0
    const __m256i vbpl = _mm256_set1_epi16(bytesPerLine/4);
931
932
0
    while (b < boundedEnd - 7) {
933
0
        const __m256i vy = _mm256_packs_epi32(_mm256_srli_epi32(v_fy, 16), _mm256_setzero_si256());
934
        // 8x16bit * 8x16bit -> 8x32bit
935
0
        __m256i offset = _mm256_unpacklo_epi16(_mm256_mullo_epi16(vy, vbpl), _mm256_mulhi_epi16(vy, vbpl));
936
0
        offset = _mm256_add_epi32(offset, _mm256_srli_epi32(v_fx, 16));
937
0
        const __m128i offsetLo = _mm256_castsi256_si128(offset);
938
0
        const __m128i offsetHi = _mm256_extracti128_si256(offset, 1);
939
0
        const uint *topData = (const uint *)(textureData);
940
0
        const uint *botData = (const uint *)(textureData + bytesPerLine);
941
0
        const __m256i toplo = _mm256_i32gather_epi64((const long long *)topData, offsetLo, 4);
942
0
        const __m256i tophi = _mm256_i32gather_epi64((const long long *)topData, offsetHi, 4);
943
0
        const __m256i botlo = _mm256_i32gather_epi64((const long long *)botData, offsetLo, 4);
944
0
        const __m256i bothi = _mm256_i32gather_epi64((const long long *)botData, offsetHi, 4);
945
946
0
        __m256i v_distx = _mm256_srli_epi16(v_fx, 8);
947
0
        __m256i v_disty = _mm256_srli_epi16(v_fy, 8);
948
0
        v_distx = _mm256_srli_epi16(_mm256_add_epi32(v_distx, v_fxy_r), 4);
949
0
        v_disty = _mm256_srli_epi16(_mm256_add_epi32(v_disty, v_fxy_r), 4);
950
0
        v_distx = _mm256_shuffle_epi8(v_distx, vdistShuffle);
951
0
        v_disty = _mm256_shuffle_epi8(v_disty, vdistShuffle);
952
953
0
        interpolate_4_pixels_16_avx2(toplo, tophi, botlo, bothi, v_distx, v_disty, colorMask, v_256, b);
954
0
        b += 8;
955
0
        v_fx = _mm256_add_epi32(v_fx, v_fdx);
956
0
        v_fy = _mm256_add_epi32(v_fy, v_fdy);
957
0
    }
958
0
    fx = _mm_extract_epi32(_mm256_castsi256_si128(v_fx) , 0);
959
0
    fy = _mm_extract_epi32(_mm256_castsi256_si128(v_fy) , 0);
960
961
0
    while (b < boundedEnd) {
962
0
        int x = (fx >> 16);
963
0
        int y = (fy >> 16);
964
965
0
        const uint *s1 = (const uint *)image.scanLine(y);
966
0
        const uint *s2 = (const uint *)image.scanLine(y + 1);
967
968
0
        int distx = (fx & 0x0000ffff) >> 8;
969
0
        int disty = (fy & 0x0000ffff) >> 8;
970
0
        *b = interpolate_4_pixels(s1 + x, s2 + x, distx, disty);
971
972
0
        fx += fdx;
973
0
        fy += fdy;
974
0
        ++b;
975
0
    }
976
977
0
    while (b < end) {
978
0
        int x1 = (fx >> 16);
979
0
        int x2;
980
0
        int y1 = (fy >> 16);
981
0
        int y2;
982
983
0
        fetchTransformedBilinear_pixelBounds(image.width, image.x1, image.x2 - 1, x1, x2);
984
0
        fetchTransformedBilinear_pixelBounds(image.height, image.y1, image.y2 - 1, y1, y2);
985
986
0
        const uint *s1 = (const uint *)image.scanLine(y1);
987
0
        const uint *s2 = (const uint *)image.scanLine(y2);
988
989
0
        uint tl = s1[x1];
990
0
        uint tr = s1[x2];
991
0
        uint bl = s2[x1];
992
0
        uint br = s2[x2];
993
994
0
        int distx = (fx & 0x0000ffff) >> 8;
995
0
        int disty = (fy & 0x0000ffff) >> 8;
996
0
        *b = interpolate_4_pixels(tl, tr, bl, br, distx, disty);
997
998
0
        fx += fdx;
999
0
        fy += fdy;
1000
0
        ++b;
1001
0
    }
1002
0
}
1003
1004
static inline __m256i epilogueMaskFromCount(qsizetype count)
1005
0
{
1006
0
    Q_ASSERT(count > 0);
1007
0
    static const __m256i offsetMask = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7);
1008
0
    return _mm256_add_epi32(offsetMask, _mm256_set1_epi32(-count));
1009
0
}
1010
1011
template<bool RGBA>
1012
static void convertARGBToARGB32PM_avx2(uint *buffer, const uint *src, qsizetype count)
1013
0
{
1014
0
    qsizetype i = 0;
1015
0
    const __m256i alphaMask = _mm256_set1_epi32(0xff000000);
1016
0
    const __m256i rgbaMask = _mm256_broadcastsi128_si256(_mm_setr_epi8(2, 1, 0, 3, 6, 5, 4, 7, 10, 9, 8, 11, 14, 13, 12, 15));
1017
0
    const __m256i shuffleMask = _mm256_broadcastsi128_si256(_mm_setr_epi8(6, 7, 6, 7, 6, 7, 6, 7, 14, 15, 14, 15, 14, 15, 14, 15));
1018
0
    const __m256i half = _mm256_set1_epi16(0x0080);
1019
0
    const __m256i zero = _mm256_setzero_si256();
1020
1021
0
    for (; i < count - 7; i += 8) {
1022
0
        __m256i srcVector = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(src + i));
1023
0
        if (!_mm256_testz_si256(srcVector, alphaMask)) {
1024
            // keep the two _mm_test[zc]_siXXX next to each other
1025
0
            bool cf = _mm256_testc_si256(srcVector, alphaMask);
1026
0
            if (RGBA)
1027
0
                srcVector = _mm256_shuffle_epi8(srcVector, rgbaMask);
1028
0
            if (!cf) {
1029
0
                __m256i src1 = _mm256_unpacklo_epi8(srcVector, zero);
1030
0
                __m256i src2 = _mm256_unpackhi_epi8(srcVector, zero);
1031
0
                __m256i alpha1 = _mm256_shuffle_epi8(src1, shuffleMask);
1032
0
                __m256i alpha2 = _mm256_shuffle_epi8(src2, shuffleMask);
1033
0
                src1 = _mm256_mullo_epi16(src1, alpha1);
1034
0
                src2 = _mm256_mullo_epi16(src2, alpha2);
1035
0
                src1 = _mm256_add_epi16(src1, _mm256_srli_epi16(src1, 8));
1036
0
                src2 = _mm256_add_epi16(src2, _mm256_srli_epi16(src2, 8));
1037
0
                src1 = _mm256_add_epi16(src1, half);
1038
0
                src2 = _mm256_add_epi16(src2, half);
1039
0
                src1 = _mm256_srli_epi16(src1, 8);
1040
0
                src2 = _mm256_srli_epi16(src2, 8);
1041
0
                src1 = _mm256_blend_epi16(src1, alpha1, 0x88);
1042
0
                src2 = _mm256_blend_epi16(src2, alpha2, 0x88);
1043
0
                srcVector = _mm256_packus_epi16(src1, src2);
1044
0
                _mm256_storeu_si256(reinterpret_cast<__m256i *>(buffer + i), srcVector);
1045
0
            } else {
1046
0
                if (buffer != src || RGBA)
1047
0
                    _mm256_storeu_si256(reinterpret_cast<__m256i *>(buffer + i), srcVector);
1048
0
            }
1049
0
        } else {
1050
0
            _mm256_storeu_si256(reinterpret_cast<__m256i *>(buffer + i), zero);
1051
0
        }
1052
0
    }
1053
1054
0
    if (i < count) {
1055
0
        const __m256i epilogueMask = epilogueMaskFromCount(count - i);
1056
0
        __m256i srcVector = _mm256_maskload_epi32(reinterpret_cast<const int *>(src + i), epilogueMask);
1057
0
        const __m256i epilogueAlphaMask = _mm256_blendv_epi8(_mm256_setzero_si256(), alphaMask, epilogueMask);
1058
1059
0
        if (!_mm256_testz_si256(srcVector, epilogueAlphaMask)) {
1060
            // keep the two _mm_test[zc]_siXXX next to each other
1061
0
            bool cf = _mm256_testc_si256(srcVector, epilogueAlphaMask);
1062
0
            if (RGBA)
1063
0
                srcVector = _mm256_shuffle_epi8(srcVector, rgbaMask);
1064
0
            if (!cf) {
1065
0
                __m256i src1 = _mm256_unpacklo_epi8(srcVector, zero);
1066
0
                __m256i src2 = _mm256_unpackhi_epi8(srcVector, zero);
1067
0
                __m256i alpha1 = _mm256_shuffle_epi8(src1, shuffleMask);
1068
0
                __m256i alpha2 = _mm256_shuffle_epi8(src2, shuffleMask);
1069
0
                src1 = _mm256_mullo_epi16(src1, alpha1);
1070
0
                src2 = _mm256_mullo_epi16(src2, alpha2);
1071
0
                src1 = _mm256_add_epi16(src1, _mm256_srli_epi16(src1, 8));
1072
0
                src2 = _mm256_add_epi16(src2, _mm256_srli_epi16(src2, 8));
1073
0
                src1 = _mm256_add_epi16(src1, half);
1074
0
                src2 = _mm256_add_epi16(src2, half);
1075
0
                src1 = _mm256_srli_epi16(src1, 8);
1076
0
                src2 = _mm256_srli_epi16(src2, 8);
1077
0
                src1 = _mm256_blend_epi16(src1, alpha1, 0x88);
1078
0
                src2 = _mm256_blend_epi16(src2, alpha2, 0x88);
1079
0
                srcVector = _mm256_packus_epi16(src1, src2);
1080
0
                _mm256_maskstore_epi32(reinterpret_cast<int *>(buffer + i), epilogueMask, srcVector);
1081
0
            } else {
1082
0
                if (buffer != src || RGBA)
1083
0
                    _mm256_maskstore_epi32(reinterpret_cast<int *>(buffer + i), epilogueMask, srcVector);
1084
0
            }
1085
0
        } else {
1086
0
            _mm256_maskstore_epi32(reinterpret_cast<int *>(buffer + i), epilogueMask, zero);
1087
0
        }
1088
0
    }
1089
0
}
1090
1091
void QT_FASTCALL convertARGB32ToARGB32PM_avx2(uint *buffer, int count, const QVector<QRgb> *)
1092
0
{
1093
0
    convertARGBToARGB32PM_avx2<false>(buffer, buffer, count);
1094
0
}
1095
1096
void QT_FASTCALL convertRGBA8888ToARGB32PM_avx2(uint *buffer, int count, const QVector<QRgb> *)
1097
0
{
1098
0
    convertARGBToARGB32PM_avx2<true>(buffer, buffer, count);
1099
0
}
1100
1101
const uint *QT_FASTCALL fetchARGB32ToARGB32PM_avx2(uint *buffer, const uchar *src, int index, int count,
1102
                                                  const QVector<QRgb> *, QDitherInfo *)
1103
0
{
1104
0
    convertARGBToARGB32PM_avx2<false>(buffer, reinterpret_cast<const uint *>(src) + index, count);
1105
0
    return buffer;
1106
0
}
1107
1108
const uint *QT_FASTCALL fetchRGBA8888ToARGB32PM_avx2(uint *buffer, const uchar *src, int index, int count,
1109
                                                     const QVector<QRgb> *, QDitherInfo *)
1110
0
{
1111
0
    convertARGBToARGB32PM_avx2<true>(buffer, reinterpret_cast<const uint *>(src) + index, count);
1112
0
    return buffer;
1113
0
}
1114
1115
template<bool RGBA>
1116
static void convertARGBToRGBA64PM_avx2(QRgba64 *buffer, const uint *src, qsizetype count)
1117
0
{
1118
0
    qsizetype i = 0;
1119
0
    const __m256i alphaMask = _mm256_set1_epi32(0xff000000);
1120
0
    const __m256i rgbaMask = _mm256_broadcastsi128_si256(_mm_setr_epi8(2, 1, 0, 3, 6, 5, 4, 7, 10, 9, 8, 11, 14, 13, 12, 15));
1121
0
    const __m256i shuffleMask = _mm256_broadcastsi128_si256(_mm_setr_epi8(6, 7, 6, 7, 6, 7, 6, 7, 14, 15, 14, 15, 14, 15, 14, 15));
1122
0
    const __m256i zero = _mm256_setzero_si256();
1123
1124
0
    for (; i < count - 7; i += 8) {
1125
0
        __m256i dst1, dst2;
1126
0
        __m256i srcVector = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(src + i));
1127
0
        if (!_mm256_testz_si256(srcVector, alphaMask)) {
1128
            // keep the two _mm_test[zc]_siXXX next to each other
1129
0
            bool cf = _mm256_testc_si256(srcVector, alphaMask);
1130
0
            if (!RGBA)
1131
0
                srcVector = _mm256_shuffle_epi8(srcVector, rgbaMask);
1132
1133
            // The two unpack instructions unpack the low and upper halves of
1134
            // each 128-bit half of the 256-bit register. Here's the tracking
1135
            // of what's where: (p is 32-bit, P is 64-bit)
1136
            //  as loaded:        [ p1, p2, p3, p4; p5, p6, p7, p8 ]
1137
            //  after permute4x64 [ p1, p2, p5, p6; p3, p4, p7, p8 ]
1138
            //  after unpacklo/hi [ P1, P2; P3, P4 ] [ P5, P6; P7, P8 ]
1139
0
            srcVector = _mm256_permute4x64_epi64(srcVector, _MM_SHUFFLE(3, 1, 2, 0));
1140
1141
0
            const __m256i src1 = _mm256_unpacklo_epi8(srcVector, srcVector);
1142
0
            const __m256i src2 = _mm256_unpackhi_epi8(srcVector, srcVector);
1143
0
            if (!cf) {
1144
0
                const __m256i alpha1 = _mm256_shuffle_epi8(src1, shuffleMask);
1145
0
                const __m256i alpha2 = _mm256_shuffle_epi8(src2, shuffleMask);
1146
0
                dst1 = _mm256_mulhi_epu16(src1, alpha1);
1147
0
                dst2 = _mm256_mulhi_epu16(src2, alpha2);
1148
0
                dst1 = _mm256_add_epi16(dst1, _mm256_srli_epi16(dst1, 15));
1149
0
                dst2 = _mm256_add_epi16(dst2, _mm256_srli_epi16(dst2, 15));
1150
0
                dst1 = _mm256_blend_epi16(dst1, src1, 0x88);
1151
0
                dst2 = _mm256_blend_epi16(dst2, src2, 0x88);
1152
0
            } else {
1153
0
                dst1 = src1;
1154
0
                dst2 = src2;
1155
0
            }
1156
0
        } else {
1157
0
            dst1 = dst2 = zero;
1158
0
        }
1159
0
        _mm256_storeu_si256(reinterpret_cast<__m256i *>(buffer + i), dst1);
1160
0
        _mm256_storeu_si256(reinterpret_cast<__m256i *>(buffer + i) + 1, dst2);
1161
0
    }
1162
1163
0
    if (i < count) {
1164
0
        __m256i epilogueMask = epilogueMaskFromCount(count - i);
1165
0
        const __m256i epilogueAlphaMask = _mm256_blendv_epi8(_mm256_setzero_si256(), alphaMask, epilogueMask);
1166
0
        __m256i dst1, dst2;
1167
0
        __m256i srcVector = _mm256_maskload_epi32(reinterpret_cast<const int *>(src + i), epilogueMask);
1168
1169
0
        if (!_mm256_testz_si256(srcVector, epilogueAlphaMask)) {
1170
            // keep the two _mm_test[zc]_siXXX next to each other
1171
0
            bool cf = _mm256_testc_si256(srcVector, epilogueAlphaMask);
1172
0
            if (!RGBA)
1173
0
                srcVector = _mm256_shuffle_epi8(srcVector, rgbaMask);
1174
0
            srcVector = _mm256_permute4x64_epi64(srcVector, _MM_SHUFFLE(3, 1, 2, 0));
1175
0
            const __m256i src1 = _mm256_unpacklo_epi8(srcVector, srcVector);
1176
0
            const __m256i src2 = _mm256_unpackhi_epi8(srcVector, srcVector);
1177
0
            if (!cf) {
1178
0
                const __m256i alpha1 = _mm256_shuffle_epi8(src1, shuffleMask);
1179
0
                const __m256i alpha2 = _mm256_shuffle_epi8(src2, shuffleMask);
1180
0
                dst1 = _mm256_mulhi_epu16(src1, alpha1);
1181
0
                dst2 = _mm256_mulhi_epu16(src2, alpha2);
1182
0
                dst1 = _mm256_add_epi16(dst1, _mm256_srli_epi16(dst1, 15));
1183
0
                dst2 = _mm256_add_epi16(dst2, _mm256_srli_epi16(dst2, 15));
1184
0
                dst1 = _mm256_blend_epi16(dst1, src1, 0x88);
1185
0
                dst2 = _mm256_blend_epi16(dst2, src2, 0x88);
1186
0
            } else {
1187
0
                dst1 = src1;
1188
0
                dst2 = src2;
1189
0
            }
1190
0
        } else {
1191
0
            dst1 = dst2 = zero;
1192
0
        }
1193
0
        epilogueMask = _mm256_permute4x64_epi64(epilogueMask, _MM_SHUFFLE(3, 1, 2, 0));
1194
0
        _mm256_maskstore_epi64(reinterpret_cast<qint64 *>(buffer + i),
1195
0
                               _mm256_unpacklo_epi32(epilogueMask, epilogueMask),
1196
0
                               dst1);
1197
0
        _mm256_maskstore_epi64(reinterpret_cast<qint64 *>(buffer + i + 4),
1198
0
                               _mm256_unpackhi_epi32(epilogueMask, epilogueMask),
1199
0
                               dst2);
1200
0
    }
1201
0
}
Unexecuted instantiation: qdrawhelper_avx2.cpp:void convertARGBToRGBA64PM_avx2<false>(QRgba64*, unsigned int const*, long long)
Unexecuted instantiation: qdrawhelper_avx2.cpp:void convertARGBToRGBA64PM_avx2<true>(QRgba64*, unsigned int const*, long long)
1202
1203
const QRgba64 * QT_FASTCALL convertARGB32ToRGBA64PM_avx2(QRgba64 *buffer, const uint *src, int count,
1204
                                                         const QVector<QRgb> *, QDitherInfo *)
1205
0
{
1206
0
    convertARGBToRGBA64PM_avx2<false>(buffer, src, count);
1207
0
    return buffer;
1208
0
}
1209
1210
const QRgba64 * QT_FASTCALL convertRGBA8888ToRGBA64PM_avx2(QRgba64 *buffer, const uint *src, int count,
1211
                                                           const QVector<QRgb> *, QDitherInfo *)
1212
0
{
1213
0
    convertARGBToRGBA64PM_avx2<true>(buffer, src, count);
1214
0
    return buffer;
1215
0
}
1216
1217
const QRgba64 *QT_FASTCALL fetchARGB32ToRGBA64PM_avx2(QRgba64 *buffer, const uchar *src, int index, int count,
1218
                                                      const QVector<QRgb> *, QDitherInfo *)
1219
0
{
1220
0
    convertARGBToRGBA64PM_avx2<false>(buffer, reinterpret_cast<const uint *>(src) + index, count);
1221
0
    return buffer;
1222
0
}
1223
1224
const QRgba64 *QT_FASTCALL fetchRGBA8888ToRGBA64PM_avx2(QRgba64 *buffer, const uchar *src, int index, int count,
1225
                                                        const QVector<QRgb> *, QDitherInfo *)
1226
0
{
1227
0
    convertARGBToRGBA64PM_avx2<true>(buffer, reinterpret_cast<const uint *>(src) + index, count);
1228
0
    return buffer;
1229
0
}
1230
1231
QT_END_NAMESPACE
1232
1233
#endif