Coverage Report

Created: 2025-06-13 06:06

/src/postgres/src/backend/commands/async.c
Line
Count
Source (jump to first uncovered line)
1
/*-------------------------------------------------------------------------
2
 *
3
 * async.c
4
 *    Asynchronous notification: NOTIFY, LISTEN, UNLISTEN
5
 *
6
 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
7
 * Portions Copyright (c) 1994, Regents of the University of California
8
 *
9
 * IDENTIFICATION
10
 *    src/backend/commands/async.c
11
 *
12
 *-------------------------------------------------------------------------
13
 */
14
15
/*-------------------------------------------------------------------------
16
 * Async Notification Model as of 9.0:
17
 *
18
 * 1. Multiple backends on same machine. Multiple backends listening on
19
 *    several channels. (Channels are also called "conditions" in other
20
 *    parts of the code.)
21
 *
22
 * 2. There is one central queue in disk-based storage (directory pg_notify/),
23
 *    with actively-used pages mapped into shared memory by the slru.c module.
24
 *    All notification messages are placed in the queue and later read out
25
 *    by listening backends.
26
 *
27
 *    There is no central knowledge of which backend listens on which channel;
28
 *    every backend has its own list of interesting channels.
29
 *
30
 *    Although there is only one queue, notifications are treated as being
31
 *    database-local; this is done by including the sender's database OID
32
 *    in each notification message.  Listening backends ignore messages
33
 *    that don't match their database OID.  This is important because it
34
 *    ensures senders and receivers have the same database encoding and won't
35
 *    misinterpret non-ASCII text in the channel name or payload string.
36
 *
37
 *    Since notifications are not expected to survive database crashes,
38
 *    we can simply clean out the pg_notify data at any reboot, and there
39
 *    is no need for WAL support or fsync'ing.
40
 *
41
 * 3. Every backend that is listening on at least one channel registers by
42
 *    entering its PID into the array in AsyncQueueControl. It then scans all
43
 *    incoming notifications in the central queue and first compares the
44
 *    database OID of the notification with its own database OID and then
45
 *    compares the notified channel with the list of channels that it listens
46
 *    to. In case there is a match it delivers the notification event to its
47
 *    frontend.  Non-matching events are simply skipped.
48
 *
49
 * 4. The NOTIFY statement (routine Async_Notify) stores the notification in
50
 *    a backend-local list which will not be processed until transaction end.
51
 *
52
 *    Duplicate notifications from the same transaction are sent out as one
53
 *    notification only. This is done to save work when for example a trigger
54
 *    on a 2 million row table fires a notification for each row that has been
55
 *    changed. If the application needs to receive every single notification
56
 *    that has been sent, it can easily add some unique string into the extra
57
 *    payload parameter.
58
 *
59
 *    When the transaction is ready to commit, PreCommit_Notify() adds the
60
 *    pending notifications to the head of the queue. The head pointer of the
61
 *    queue always points to the next free position and a position is just a
62
 *    page number and the offset in that page. This is done before marking the
63
 *    transaction as committed in clog. If we run into problems writing the
64
 *    notifications, we can still call elog(ERROR, ...) and the transaction
65
 *    will roll back.
66
 *
67
 *    Once we have put all of the notifications into the queue, we return to
68
 *    CommitTransaction() which will then do the actual transaction commit.
69
 *
70
 *    After commit we are called another time (AtCommit_Notify()). Here we
71
 *    make any actual updates to the effective listen state (listenChannels).
72
 *    Then we signal any backends that may be interested in our messages
73
 *    (including our own backend, if listening).  This is done by
74
 *    SignalBackends(), which scans the list of listening backends and sends a
75
 *    PROCSIG_NOTIFY_INTERRUPT signal to every listening backend (we don't
76
 *    know which backend is listening on which channel so we must signal them
77
 *    all).  We can exclude backends that are already up to date, though, and
78
 *    we can also exclude backends that are in other databases (unless they
79
 *    are way behind and should be kicked to make them advance their
80
 *    pointers).
81
 *
82
 *    Finally, after we are out of the transaction altogether and about to go
83
 *    idle, we scan the queue for messages that need to be sent to our
84
 *    frontend (which might be notifies from other backends, or self-notifies
85
 *    from our own).  This step is not part of the CommitTransaction sequence
86
 *    for two important reasons.  First, we could get errors while sending
87
 *    data to our frontend, and it's really bad for errors to happen in
88
 *    post-commit cleanup.  Second, in cases where a procedure issues commits
89
 *    within a single frontend command, we don't want to send notifies to our
90
 *    frontend until the command is done; but notifies to other backends
91
 *    should go out immediately after each commit.
92
 *
93
 * 5. Upon receipt of a PROCSIG_NOTIFY_INTERRUPT signal, the signal handler
94
 *    sets the process's latch, which triggers the event to be processed
95
 *    immediately if this backend is idle (i.e., it is waiting for a frontend
96
 *    command and is not within a transaction block. C.f.
97
 *    ProcessClientReadInterrupt()).  Otherwise the handler may only set a
98
 *    flag, which will cause the processing to occur just before we next go
99
 *    idle.
100
 *
101
 *    Inbound-notify processing consists of reading all of the notifications
102
 *    that have arrived since scanning last time. We read every notification
103
 *    until we reach either a notification from an uncommitted transaction or
104
 *    the head pointer's position.
105
 *
106
 * 6. To limit disk space consumption, the tail pointer needs to be advanced
107
 *    so that old pages can be truncated. This is relatively expensive
108
 *    (notably, it requires an exclusive lock), so we don't want to do it
109
 *    often. We make sending backends do this work if they advanced the queue
110
 *    head into a new page, but only once every QUEUE_CLEANUP_DELAY pages.
111
 *
112
 * An application that listens on the same channel it notifies will get
113
 * NOTIFY messages for its own NOTIFYs.  These can be ignored, if not useful,
114
 * by comparing be_pid in the NOTIFY message to the application's own backend's
115
 * PID.  (As of FE/BE protocol 2.0, the backend's PID is provided to the
116
 * frontend during startup.)  The above design guarantees that notifies from
117
 * other backends will never be missed by ignoring self-notifies.
118
 *
119
 * The amount of shared memory used for notify management (notify_buffers)
120
 * can be varied without affecting anything but performance.  The maximum
121
 * amount of notification data that can be queued at one time is determined
122
 * by max_notify_queue_pages GUC.
123
 *-------------------------------------------------------------------------
124
 */
125
126
#include "postgres.h"
127
128
#include <limits.h>
129
#include <unistd.h>
130
#include <signal.h>
131
132
#include "access/parallel.h"
133
#include "access/slru.h"
134
#include "access/transam.h"
135
#include "access/xact.h"
136
#include "catalog/pg_database.h"
137
#include "commands/async.h"
138
#include "common/hashfn.h"
139
#include "funcapi.h"
140
#include "libpq/libpq.h"
141
#include "libpq/pqformat.h"
142
#include "miscadmin.h"
143
#include "storage/ipc.h"
144
#include "storage/lmgr.h"
145
#include "storage/procsignal.h"
146
#include "tcop/tcopprot.h"
147
#include "utils/builtins.h"
148
#include "utils/guc_hooks.h"
149
#include "utils/memutils.h"
150
#include "utils/ps_status.h"
151
#include "utils/snapmgr.h"
152
#include "utils/timestamp.h"
153
154
155
/*
156
 * Maximum size of a NOTIFY payload, including terminating NULL.  This
157
 * must be kept small enough so that a notification message fits on one
158
 * SLRU page.  The magic fudge factor here is noncritical as long as it's
159
 * more than AsyncQueueEntryEmptySize --- we make it significantly bigger
160
 * than that, so changes in that data structure won't affect user-visible
161
 * restrictions.
162
 */
163
0
#define NOTIFY_PAYLOAD_MAX_LENGTH (BLCKSZ - NAMEDATALEN - 128)
164
165
/*
166
 * Struct representing an entry in the global notify queue
167
 *
168
 * This struct declaration has the maximal length, but in a real queue entry
169
 * the data area is only big enough for the actual channel and payload strings
170
 * (each null-terminated).  AsyncQueueEntryEmptySize is the minimum possible
171
 * entry size, if both channel and payload strings are empty (but note it
172
 * doesn't include alignment padding).
173
 *
174
 * The "length" field should always be rounded up to the next QUEUEALIGN
175
 * multiple so that all fields are properly aligned.
176
 */
177
typedef struct AsyncQueueEntry
178
{
179
  int     length;     /* total allocated length of entry */
180
  Oid     dboid;      /* sender's database OID */
181
  TransactionId xid;      /* sender's XID */
182
  int32   srcPid;     /* sender's PID */
183
  char    data[NAMEDATALEN + NOTIFY_PAYLOAD_MAX_LENGTH];
184
} AsyncQueueEntry;
185
186
/* Currently, no field of AsyncQueueEntry requires more than int alignment */
187
0
#define QUEUEALIGN(len)   INTALIGN(len)
188
189
0
#define AsyncQueueEntryEmptySize  (offsetof(AsyncQueueEntry, data) + 2)
190
191
/*
192
 * Struct describing a queue position, and assorted macros for working with it
193
 */
194
typedef struct QueuePosition
195
{
196
  int64   page;     /* SLRU page number */
197
  int     offset;     /* byte offset within page */
198
} QueuePosition;
199
200
0
#define QUEUE_POS_PAGE(x)   ((x).page)
201
0
#define QUEUE_POS_OFFSET(x)   ((x).offset)
202
203
#define SET_QUEUE_POS(x,y,z) \
204
0
  do { \
205
0
    (x).page = (y); \
206
0
    (x).offset = (z); \
207
0
  } while (0)
208
209
#define QUEUE_POS_EQUAL(x,y) \
210
0
  ((x).page == (y).page && (x).offset == (y).offset)
211
212
#define QUEUE_POS_IS_ZERO(x) \
213
0
  ((x).page == 0 && (x).offset == 0)
214
215
/* choose logically smaller QueuePosition */
216
#define QUEUE_POS_MIN(x,y) \
217
0
  (asyncQueuePagePrecedes((x).page, (y).page) ? (x) : \
218
0
   (x).page != (y).page ? (y) : \
219
0
   (x).offset < (y).offset ? (x) : (y))
220
221
/* choose logically larger QueuePosition */
222
#define QUEUE_POS_MAX(x,y) \
223
0
  (asyncQueuePagePrecedes((x).page, (y).page) ? (y) : \
224
0
   (x).page != (y).page ? (x) : \
225
0
   (x).offset > (y).offset ? (x) : (y))
226
227
/*
228
 * Parameter determining how often we try to advance the tail pointer:
229
 * we do that after every QUEUE_CLEANUP_DELAY pages of NOTIFY data.  This is
230
 * also the distance by which a backend in another database needs to be
231
 * behind before we'll decide we need to wake it up to advance its pointer.
232
 *
233
 * Resist the temptation to make this really large.  While that would save
234
 * work in some places, it would add cost in others.  In particular, this
235
 * should likely be less than notify_buffers, to ensure that backends
236
 * catch up before the pages they'll need to read fall out of SLRU cache.
237
 */
238
0
#define QUEUE_CLEANUP_DELAY 4
239
240
/*
241
 * Struct describing a listening backend's status
242
 */
243
typedef struct QueueBackendStatus
244
{
245
  int32   pid;      /* either a PID or InvalidPid */
246
  Oid     dboid;      /* backend's database OID, or InvalidOid */
247
  ProcNumber  nextListener; /* id of next listener, or INVALID_PROC_NUMBER */
248
  QueuePosition pos;      /* backend has read queue up to here */
249
} QueueBackendStatus;
250
251
/*
252
 * Shared memory state for LISTEN/NOTIFY (excluding its SLRU stuff)
253
 *
254
 * The AsyncQueueControl structure is protected by the NotifyQueueLock and
255
 * NotifyQueueTailLock.
256
 *
257
 * When holding NotifyQueueLock in SHARED mode, backends may only inspect
258
 * their own entries as well as the head and tail pointers. Consequently we
259
 * can allow a backend to update its own record while holding only SHARED lock
260
 * (since no other backend will inspect it).
261
 *
262
 * When holding NotifyQueueLock in EXCLUSIVE mode, backends can inspect the
263
 * entries of other backends and also change the head pointer. When holding
264
 * both NotifyQueueLock and NotifyQueueTailLock in EXCLUSIVE mode, backends
265
 * can change the tail pointers.
266
 *
267
 * SLRU buffer pool is divided in banks and bank wise SLRU lock is used as
268
 * the control lock for the pg_notify SLRU buffers.
269
 * In order to avoid deadlocks, whenever we need multiple locks, we first get
270
 * NotifyQueueTailLock, then NotifyQueueLock, and lastly SLRU bank lock.
271
 *
272
 * Each backend uses the backend[] array entry with index equal to its
273
 * ProcNumber.  We rely on this to make SendProcSignal fast.
274
 *
275
 * The backend[] array entries for actively-listening backends are threaded
276
 * together using firstListener and the nextListener links, so that we can
277
 * scan them without having to iterate over inactive entries.  We keep this
278
 * list in order by ProcNumber so that the scan is cache-friendly when there
279
 * are many active entries.
280
 */
281
typedef struct AsyncQueueControl
282
{
283
  QueuePosition head;     /* head points to the next free location */
284
  QueuePosition tail;     /* tail must be <= the queue position of every
285
                 * listening backend */
286
  int64   stopPage;   /* oldest unrecycled page; must be <=
287
                 * tail.page */
288
  ProcNumber  firstListener;  /* id of first listener, or
289
                 * INVALID_PROC_NUMBER */
290
  TimestampTz lastQueueFillWarn;  /* time of last queue-full msg */
291
  QueueBackendStatus backend[FLEXIBLE_ARRAY_MEMBER];
292
} AsyncQueueControl;
293
294
static AsyncQueueControl *asyncQueueControl;
295
296
0
#define QUEUE_HEAD          (asyncQueueControl->head)
297
0
#define QUEUE_TAIL          (asyncQueueControl->tail)
298
0
#define QUEUE_STOP_PAGE       (asyncQueueControl->stopPage)
299
0
#define QUEUE_FIRST_LISTENER    (asyncQueueControl->firstListener)
300
0
#define QUEUE_BACKEND_PID(i)    (asyncQueueControl->backend[i].pid)
301
0
#define QUEUE_BACKEND_DBOID(i)    (asyncQueueControl->backend[i].dboid)
302
0
#define QUEUE_NEXT_LISTENER(i)    (asyncQueueControl->backend[i].nextListener)
303
0
#define QUEUE_BACKEND_POS(i)    (asyncQueueControl->backend[i].pos)
304
305
/*
306
 * The SLRU buffer area through which we access the notification queue
307
 */
308
static SlruCtlData NotifyCtlData;
309
310
0
#define NotifyCtl         (&NotifyCtlData)
311
0
#define QUEUE_PAGESIZE        BLCKSZ
312
313
0
#define QUEUE_FULL_WARN_INTERVAL  5000  /* warn at most once every 5s */
314
315
/*
316
 * listenChannels identifies the channels we are actually listening to
317
 * (ie, have committed a LISTEN on).  It is a simple list of channel names,
318
 * allocated in TopMemoryContext.
319
 */
320
static List *listenChannels = NIL;  /* list of C strings */
321
322
/*
323
 * State for pending LISTEN/UNLISTEN actions consists of an ordered list of
324
 * all actions requested in the current transaction.  As explained above,
325
 * we don't actually change listenChannels until we reach transaction commit.
326
 *
327
 * The list is kept in CurTransactionContext.  In subtransactions, each
328
 * subtransaction has its own list in its own CurTransactionContext, but
329
 * successful subtransactions attach their lists to their parent's list.
330
 * Failed subtransactions simply discard their lists.
331
 */
332
typedef enum
333
{
334
  LISTEN_LISTEN,
335
  LISTEN_UNLISTEN,
336
  LISTEN_UNLISTEN_ALL,
337
} ListenActionKind;
338
339
typedef struct
340
{
341
  ListenActionKind action;
342
  char    channel[FLEXIBLE_ARRAY_MEMBER]; /* nul-terminated string */
343
} ListenAction;
344
345
typedef struct ActionList
346
{
347
  int     nestingLevel; /* current transaction nesting depth */
348
  List     *actions;    /* list of ListenAction structs */
349
  struct ActionList *upper; /* details for upper transaction levels */
350
} ActionList;
351
352
static ActionList *pendingActions = NULL;
353
354
/*
355
 * State for outbound notifies consists of a list of all channels+payloads
356
 * NOTIFYed in the current transaction.  We do not actually perform a NOTIFY
357
 * until and unless the transaction commits.  pendingNotifies is NULL if no
358
 * NOTIFYs have been done in the current (sub) transaction.
359
 *
360
 * We discard duplicate notify events issued in the same transaction.
361
 * Hence, in addition to the list proper (which we need to track the order
362
 * of the events, since we guarantee to deliver them in order), we build a
363
 * hash table which we can probe to detect duplicates.  Since building the
364
 * hash table is somewhat expensive, we do so only once we have at least
365
 * MIN_HASHABLE_NOTIFIES events queued in the current (sub) transaction;
366
 * before that we just scan the events linearly.
367
 *
368
 * The list is kept in CurTransactionContext.  In subtransactions, each
369
 * subtransaction has its own list in its own CurTransactionContext, but
370
 * successful subtransactions add their entries to their parent's list.
371
 * Failed subtransactions simply discard their lists.  Since these lists
372
 * are independent, there may be notify events in a subtransaction's list
373
 * that duplicate events in some ancestor (sub) transaction; we get rid of
374
 * the dups when merging the subtransaction's list into its parent's.
375
 *
376
 * Note: the action and notify lists do not interact within a transaction.
377
 * In particular, if a transaction does NOTIFY and then LISTEN on the same
378
 * condition name, it will get a self-notify at commit.  This is a bit odd
379
 * but is consistent with our historical behavior.
380
 */
381
typedef struct Notification
382
{
383
  uint16    channel_len;  /* length of channel-name string */
384
  uint16    payload_len;  /* length of payload string */
385
  /* null-terminated channel name, then null-terminated payload follow */
386
  char    data[FLEXIBLE_ARRAY_MEMBER];
387
} Notification;
388
389
typedef struct NotificationList
390
{
391
  int     nestingLevel; /* current transaction nesting depth */
392
  List     *events;     /* list of Notification structs */
393
  HTAB     *hashtab;    /* hash of NotificationHash structs, or NULL */
394
  struct NotificationList *upper; /* details for upper transaction levels */
395
} NotificationList;
396
397
0
#define MIN_HASHABLE_NOTIFIES 16  /* threshold to build hashtab */
398
399
struct NotificationHash
400
{
401
  Notification *event;    /* => the actual Notification struct */
402
};
403
404
static NotificationList *pendingNotifies = NULL;
405
406
/*
407
 * Inbound notifications are initially processed by HandleNotifyInterrupt(),
408
 * called from inside a signal handler. That just sets the
409
 * notifyInterruptPending flag and sets the process
410
 * latch. ProcessNotifyInterrupt() will then be called whenever it's safe to
411
 * actually deal with the interrupt.
412
 */
413
volatile sig_atomic_t notifyInterruptPending = false;
414
415
/* True if we've registered an on_shmem_exit cleanup */
416
static bool unlistenExitRegistered = false;
417
418
/* True if we're currently registered as a listener in asyncQueueControl */
419
static bool amRegisteredListener = false;
420
421
/* have we advanced to a page that's a multiple of QUEUE_CLEANUP_DELAY? */
422
static bool tryAdvanceTail = false;
423
424
/* GUC parameters */
425
bool    Trace_notify = false;
426
427
/* For 8 KB pages this gives 8 GB of disk space */
428
int     max_notify_queue_pages = 1048576;
429
430
/* local function prototypes */
431
static inline int64 asyncQueuePageDiff(int64 p, int64 q);
432
static inline bool asyncQueuePagePrecedes(int64 p, int64 q);
433
static void queue_listen(ListenActionKind action, const char *channel);
434
static void Async_UnlistenOnExit(int code, Datum arg);
435
static void Exec_ListenPreCommit(void);
436
static void Exec_ListenCommit(const char *channel);
437
static void Exec_UnlistenCommit(const char *channel);
438
static void Exec_UnlistenAllCommit(void);
439
static bool IsListeningOn(const char *channel);
440
static void asyncQueueUnregister(void);
441
static bool asyncQueueIsFull(void);
442
static bool asyncQueueAdvance(volatile QueuePosition *position, int entryLength);
443
static void asyncQueueNotificationToEntry(Notification *n, AsyncQueueEntry *qe);
444
static ListCell *asyncQueueAddEntries(ListCell *nextNotify);
445
static double asyncQueueUsage(void);
446
static void asyncQueueFillWarning(void);
447
static void SignalBackends(void);
448
static void asyncQueueReadAllNotifications(void);
449
static bool asyncQueueProcessPageEntries(volatile QueuePosition *current,
450
                     QueuePosition stop,
451
                     char *page_buffer,
452
                     Snapshot snapshot);
453
static void asyncQueueAdvanceTail(void);
454
static void ProcessIncomingNotify(bool flush);
455
static bool AsyncExistsPendingNotify(Notification *n);
456
static void AddEventToPendingNotifies(Notification *n);
457
static uint32 notification_hash(const void *key, Size keysize);
458
static int  notification_match(const void *key1, const void *key2, Size keysize);
459
static void ClearPendingActionsAndNotifies(void);
460
461
/*
462
 * Compute the difference between two queue page numbers.
463
 * Previously this function accounted for a wraparound.
464
 */
465
static inline int64
466
asyncQueuePageDiff(int64 p, int64 q)
467
0
{
468
0
  return p - q;
469
0
}
470
471
/*
472
 * Determines whether p precedes q.
473
 * Previously this function accounted for a wraparound.
474
 */
475
static inline bool
476
asyncQueuePagePrecedes(int64 p, int64 q)
477
0
{
478
0
  return p < q;
479
0
}
480
481
/*
482
 * Report space needed for our shared memory area
483
 */
484
Size
485
AsyncShmemSize(void)
486
0
{
487
0
  Size    size;
488
489
  /* This had better match AsyncShmemInit */
490
0
  size = mul_size(MaxBackends, sizeof(QueueBackendStatus));
491
0
  size = add_size(size, offsetof(AsyncQueueControl, backend));
492
493
0
  size = add_size(size, SimpleLruShmemSize(notify_buffers, 0));
494
495
0
  return size;
496
0
}
497
498
/*
499
 * Initialize our shared memory area
500
 */
501
void
502
AsyncShmemInit(void)
503
0
{
504
0
  bool    found;
505
0
  Size    size;
506
507
  /*
508
   * Create or attach to the AsyncQueueControl structure.
509
   */
510
0
  size = mul_size(MaxBackends, sizeof(QueueBackendStatus));
511
0
  size = add_size(size, offsetof(AsyncQueueControl, backend));
512
513
0
  asyncQueueControl = (AsyncQueueControl *)
514
0
    ShmemInitStruct("Async Queue Control", size, &found);
515
516
0
  if (!found)
517
0
  {
518
    /* First time through, so initialize it */
519
0
    SET_QUEUE_POS(QUEUE_HEAD, 0, 0);
520
0
    SET_QUEUE_POS(QUEUE_TAIL, 0, 0);
521
0
    QUEUE_STOP_PAGE = 0;
522
0
    QUEUE_FIRST_LISTENER = INVALID_PROC_NUMBER;
523
0
    asyncQueueControl->lastQueueFillWarn = 0;
524
0
    for (int i = 0; i < MaxBackends; i++)
525
0
    {
526
0
      QUEUE_BACKEND_PID(i) = InvalidPid;
527
0
      QUEUE_BACKEND_DBOID(i) = InvalidOid;
528
0
      QUEUE_NEXT_LISTENER(i) = INVALID_PROC_NUMBER;
529
0
      SET_QUEUE_POS(QUEUE_BACKEND_POS(i), 0, 0);
530
0
    }
531
0
  }
532
533
  /*
534
   * Set up SLRU management of the pg_notify data. Note that long segment
535
   * names are used in order to avoid wraparound.
536
   */
537
0
  NotifyCtl->PagePrecedes = asyncQueuePagePrecedes;
538
0
  SimpleLruInit(NotifyCtl, "notify", notify_buffers, 0,
539
0
          "pg_notify", LWTRANCHE_NOTIFY_BUFFER, LWTRANCHE_NOTIFY_SLRU,
540
0
          SYNC_HANDLER_NONE, true);
541
542
0
  if (!found)
543
0
  {
544
    /*
545
     * During start or reboot, clean out the pg_notify directory.
546
     */
547
0
    (void) SlruScanDirectory(NotifyCtl, SlruScanDirCbDeleteAll, NULL);
548
0
  }
549
0
}
550
551
552
/*
553
 * pg_notify -
554
 *    SQL function to send a notification event
555
 */
556
Datum
557
pg_notify(PG_FUNCTION_ARGS)
558
0
{
559
0
  const char *channel;
560
0
  const char *payload;
561
562
0
  if (PG_ARGISNULL(0))
563
0
    channel = "";
564
0
  else
565
0
    channel = text_to_cstring(PG_GETARG_TEXT_PP(0));
566
567
0
  if (PG_ARGISNULL(1))
568
0
    payload = "";
569
0
  else
570
0
    payload = text_to_cstring(PG_GETARG_TEXT_PP(1));
571
572
  /* For NOTIFY as a statement, this is checked in ProcessUtility */
573
0
  PreventCommandDuringRecovery("NOTIFY");
574
575
0
  Async_Notify(channel, payload);
576
577
0
  PG_RETURN_VOID();
578
0
}
579
580
581
/*
582
 * Async_Notify
583
 *
584
 *    This is executed by the SQL notify command.
585
 *
586
 *    Adds the message to the list of pending notifies.
587
 *    Actual notification happens during transaction commit.
588
 *    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
589
 */
590
void
591
Async_Notify(const char *channel, const char *payload)
592
0
{
593
0
  int     my_level = GetCurrentTransactionNestLevel();
594
0
  size_t    channel_len;
595
0
  size_t    payload_len;
596
0
  Notification *n;
597
0
  MemoryContext oldcontext;
598
599
0
  if (IsParallelWorker())
600
0
    elog(ERROR, "cannot send notifications from a parallel worker");
601
602
0
  if (Trace_notify)
603
0
    elog(DEBUG1, "Async_Notify(%s)", channel);
604
605
0
  channel_len = channel ? strlen(channel) : 0;
606
0
  payload_len = payload ? strlen(payload) : 0;
607
608
  /* a channel name must be specified */
609
0
  if (channel_len == 0)
610
0
    ereport(ERROR,
611
0
        (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
612
0
         errmsg("channel name cannot be empty")));
613
614
  /* enforce length limits */
615
0
  if (channel_len >= NAMEDATALEN)
616
0
    ereport(ERROR,
617
0
        (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
618
0
         errmsg("channel name too long")));
619
620
0
  if (payload_len >= NOTIFY_PAYLOAD_MAX_LENGTH)
621
0
    ereport(ERROR,
622
0
        (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
623
0
         errmsg("payload string too long")));
624
625
  /*
626
   * We must construct the Notification entry, even if we end up not using
627
   * it, in order to compare it cheaply to existing list entries.
628
   *
629
   * The notification list needs to live until end of transaction, so store
630
   * it in the transaction context.
631
   */
632
0
  oldcontext = MemoryContextSwitchTo(CurTransactionContext);
633
634
0
  n = (Notification *) palloc(offsetof(Notification, data) +
635
0
                channel_len + payload_len + 2);
636
0
  n->channel_len = channel_len;
637
0
  n->payload_len = payload_len;
638
0
  strcpy(n->data, channel);
639
0
  if (payload)
640
0
    strcpy(n->data + channel_len + 1, payload);
641
0
  else
642
0
    n->data[channel_len + 1] = '\0';
643
644
0
  if (pendingNotifies == NULL || my_level > pendingNotifies->nestingLevel)
645
0
  {
646
0
    NotificationList *notifies;
647
648
    /*
649
     * First notify event in current (sub)xact. Note that we allocate the
650
     * NotificationList in TopTransactionContext; the nestingLevel might
651
     * get changed later by AtSubCommit_Notify.
652
     */
653
0
    notifies = (NotificationList *)
654
0
      MemoryContextAlloc(TopTransactionContext,
655
0
                 sizeof(NotificationList));
656
0
    notifies->nestingLevel = my_level;
657
0
    notifies->events = list_make1(n);
658
    /* We certainly don't need a hashtable yet */
659
0
    notifies->hashtab = NULL;
660
0
    notifies->upper = pendingNotifies;
661
0
    pendingNotifies = notifies;
662
0
  }
663
0
  else
664
0
  {
665
    /* Now check for duplicates */
666
0
    if (AsyncExistsPendingNotify(n))
667
0
    {
668
      /* It's a dup, so forget it */
669
0
      pfree(n);
670
0
      MemoryContextSwitchTo(oldcontext);
671
0
      return;
672
0
    }
673
674
    /* Append more events to existing list */
675
0
    AddEventToPendingNotifies(n);
676
0
  }
677
678
0
  MemoryContextSwitchTo(oldcontext);
679
0
}
680
681
/*
682
 * queue_listen
683
 *    Common code for listen, unlisten, unlisten all commands.
684
 *
685
 *    Adds the request to the list of pending actions.
686
 *    Actual update of the listenChannels list happens during transaction
687
 *    commit.
688
 */
689
static void
690
queue_listen(ListenActionKind action, const char *channel)
691
0
{
692
0
  MemoryContext oldcontext;
693
0
  ListenAction *actrec;
694
0
  int     my_level = GetCurrentTransactionNestLevel();
695
696
  /*
697
   * Unlike Async_Notify, we don't try to collapse out duplicates. It would
698
   * be too complicated to ensure we get the right interactions of
699
   * conflicting LISTEN/UNLISTEN/UNLISTEN_ALL, and it's unlikely that there
700
   * would be any performance benefit anyway in sane applications.
701
   */
702
0
  oldcontext = MemoryContextSwitchTo(CurTransactionContext);
703
704
  /* space for terminating null is included in sizeof(ListenAction) */
705
0
  actrec = (ListenAction *) palloc(offsetof(ListenAction, channel) +
706
0
                   strlen(channel) + 1);
707
0
  actrec->action = action;
708
0
  strcpy(actrec->channel, channel);
709
710
0
  if (pendingActions == NULL || my_level > pendingActions->nestingLevel)
711
0
  {
712
0
    ActionList *actions;
713
714
    /*
715
     * First action in current sub(xact). Note that we allocate the
716
     * ActionList in TopTransactionContext; the nestingLevel might get
717
     * changed later by AtSubCommit_Notify.
718
     */
719
0
    actions = (ActionList *)
720
0
      MemoryContextAlloc(TopTransactionContext, sizeof(ActionList));
721
0
    actions->nestingLevel = my_level;
722
0
    actions->actions = list_make1(actrec);
723
0
    actions->upper = pendingActions;
724
0
    pendingActions = actions;
725
0
  }
726
0
  else
727
0
    pendingActions->actions = lappend(pendingActions->actions, actrec);
728
729
0
  MemoryContextSwitchTo(oldcontext);
730
0
}
731
732
/*
733
 * Async_Listen
734
 *
735
 *    This is executed by the SQL listen command.
736
 */
737
void
738
Async_Listen(const char *channel)
739
0
{
740
0
  if (Trace_notify)
741
0
    elog(DEBUG1, "Async_Listen(%s,%d)", channel, MyProcPid);
742
743
0
  queue_listen(LISTEN_LISTEN, channel);
744
0
}
745
746
/*
747
 * Async_Unlisten
748
 *
749
 *    This is executed by the SQL unlisten command.
750
 */
751
void
752
Async_Unlisten(const char *channel)
753
0
{
754
0
  if (Trace_notify)
755
0
    elog(DEBUG1, "Async_Unlisten(%s,%d)", channel, MyProcPid);
756
757
  /* If we couldn't possibly be listening, no need to queue anything */
758
0
  if (pendingActions == NULL && !unlistenExitRegistered)
759
0
    return;
760
761
0
  queue_listen(LISTEN_UNLISTEN, channel);
762
0
}
763
764
/*
765
 * Async_UnlistenAll
766
 *
767
 *    This is invoked by UNLISTEN * command, and also at backend exit.
768
 */
769
void
770
Async_UnlistenAll(void)
771
0
{
772
0
  if (Trace_notify)
773
0
    elog(DEBUG1, "Async_UnlistenAll(%d)", MyProcPid);
774
775
  /* If we couldn't possibly be listening, no need to queue anything */
776
0
  if (pendingActions == NULL && !unlistenExitRegistered)
777
0
    return;
778
779
0
  queue_listen(LISTEN_UNLISTEN_ALL, "");
780
0
}
781
782
/*
783
 * SQL function: return a set of the channel names this backend is actively
784
 * listening to.
785
 *
786
 * Note: this coding relies on the fact that the listenChannels list cannot
787
 * change within a transaction.
788
 */
789
Datum
790
pg_listening_channels(PG_FUNCTION_ARGS)
791
0
{
792
0
  FuncCallContext *funcctx;
793
794
  /* stuff done only on the first call of the function */
795
0
  if (SRF_IS_FIRSTCALL())
796
0
  {
797
    /* create a function context for cross-call persistence */
798
0
    funcctx = SRF_FIRSTCALL_INIT();
799
0
  }
800
801
  /* stuff done on every call of the function */
802
0
  funcctx = SRF_PERCALL_SETUP();
803
804
0
  if (funcctx->call_cntr < list_length(listenChannels))
805
0
  {
806
0
    char     *channel = (char *) list_nth(listenChannels,
807
0
                        funcctx->call_cntr);
808
809
0
    SRF_RETURN_NEXT(funcctx, CStringGetTextDatum(channel));
810
0
  }
811
812
0
  SRF_RETURN_DONE(funcctx);
813
0
}
814
815
/*
816
 * Async_UnlistenOnExit
817
 *
818
 * This is executed at backend exit if we have done any LISTENs in this
819
 * backend.  It might not be necessary anymore, if the user UNLISTENed
820
 * everything, but we don't try to detect that case.
821
 */
822
static void
823
Async_UnlistenOnExit(int code, Datum arg)
824
0
{
825
0
  Exec_UnlistenAllCommit();
826
0
  asyncQueueUnregister();
827
0
}
828
829
/*
830
 * AtPrepare_Notify
831
 *
832
 *    This is called at the prepare phase of a two-phase
833
 *    transaction.  Save the state for possible commit later.
834
 */
835
void
836
AtPrepare_Notify(void)
837
0
{
838
  /* It's not allowed to have any pending LISTEN/UNLISTEN/NOTIFY actions */
839
0
  if (pendingActions || pendingNotifies)
840
0
    ereport(ERROR,
841
0
        (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
842
0
         errmsg("cannot PREPARE a transaction that has executed LISTEN, UNLISTEN, or NOTIFY")));
843
0
}
844
845
/*
846
 * PreCommit_Notify
847
 *
848
 *    This is called at transaction commit, before actually committing to
849
 *    clog.
850
 *
851
 *    If there are pending LISTEN actions, make sure we are listed in the
852
 *    shared-memory listener array.  This must happen before commit to
853
 *    ensure we don't miss any notifies from transactions that commit
854
 *    just after ours.
855
 *
856
 *    If there are outbound notify requests in the pendingNotifies list,
857
 *    add them to the global queue.  We do that before commit so that
858
 *    we can still throw error if we run out of queue space.
859
 */
860
void
861
PreCommit_Notify(void)
862
0
{
863
0
  ListCell   *p;
864
865
0
  if (!pendingActions && !pendingNotifies)
866
0
    return;         /* no relevant statements in this xact */
867
868
0
  if (Trace_notify)
869
0
    elog(DEBUG1, "PreCommit_Notify");
870
871
  /* Preflight for any pending listen/unlisten actions */
872
0
  if (pendingActions != NULL)
873
0
  {
874
0
    foreach(p, pendingActions->actions)
875
0
    {
876
0
      ListenAction *actrec = (ListenAction *) lfirst(p);
877
878
0
      switch (actrec->action)
879
0
      {
880
0
        case LISTEN_LISTEN:
881
0
          Exec_ListenPreCommit();
882
0
          break;
883
0
        case LISTEN_UNLISTEN:
884
          /* there is no Exec_UnlistenPreCommit() */
885
0
          break;
886
0
        case LISTEN_UNLISTEN_ALL:
887
          /* there is no Exec_UnlistenAllPreCommit() */
888
0
          break;
889
0
      }
890
0
    }
891
0
  }
892
893
  /* Queue any pending notifies (must happen after the above) */
894
0
  if (pendingNotifies)
895
0
  {
896
0
    ListCell   *nextNotify;
897
898
    /*
899
     * Make sure that we have an XID assigned to the current transaction.
900
     * GetCurrentTransactionId is cheap if we already have an XID, but not
901
     * so cheap if we don't, and we'd prefer not to do that work while
902
     * holding NotifyQueueLock.
903
     */
904
0
    (void) GetCurrentTransactionId();
905
906
    /*
907
     * Serialize writers by acquiring a special lock that we hold till
908
     * after commit.  This ensures that queue entries appear in commit
909
     * order, and in particular that there are never uncommitted queue
910
     * entries ahead of committed ones, so an uncommitted transaction
911
     * can't block delivery of deliverable notifications.
912
     *
913
     * We use a heavyweight lock so that it'll automatically be released
914
     * after either commit or abort.  This also allows deadlocks to be
915
     * detected, though really a deadlock shouldn't be possible here.
916
     *
917
     * The lock is on "database 0", which is pretty ugly but it doesn't
918
     * seem worth inventing a special locktag category just for this.
919
     * (Historical note: before PG 9.0, a similar lock on "database 0" was
920
     * used by the flatfiles mechanism.)
921
     */
922
0
    LockSharedObject(DatabaseRelationId, InvalidOid, 0,
923
0
             AccessExclusiveLock);
924
925
    /* Now push the notifications into the queue */
926
0
    nextNotify = list_head(pendingNotifies->events);
927
0
    while (nextNotify != NULL)
928
0
    {
929
      /*
930
       * Add the pending notifications to the queue.  We acquire and
931
       * release NotifyQueueLock once per page, which might be overkill
932
       * but it does allow readers to get in while we're doing this.
933
       *
934
       * A full queue is very uncommon and should really not happen,
935
       * given that we have so much space available in the SLRU pages.
936
       * Nevertheless we need to deal with this possibility. Note that
937
       * when we get here we are in the process of committing our
938
       * transaction, but we have not yet committed to clog, so at this
939
       * point in time we can still roll the transaction back.
940
       */
941
0
      LWLockAcquire(NotifyQueueLock, LW_EXCLUSIVE);
942
0
      asyncQueueFillWarning();
943
0
      if (asyncQueueIsFull())
944
0
        ereport(ERROR,
945
0
            (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
946
0
             errmsg("too many notifications in the NOTIFY queue")));
947
0
      nextNotify = asyncQueueAddEntries(nextNotify);
948
0
      LWLockRelease(NotifyQueueLock);
949
0
    }
950
951
    /* Note that we don't clear pendingNotifies; AtCommit_Notify will. */
952
0
  }
953
0
}
954
955
/*
956
 * AtCommit_Notify
957
 *
958
 *    This is called at transaction commit, after committing to clog.
959
 *
960
 *    Update listenChannels and clear transaction-local state.
961
 *
962
 *    If we issued any notifications in the transaction, send signals to
963
 *    listening backends (possibly including ourselves) to process them.
964
 *    Also, if we filled enough queue pages with new notifies, try to
965
 *    advance the queue tail pointer.
966
 */
967
void
968
AtCommit_Notify(void)
969
0
{
970
0
  ListCell   *p;
971
972
  /*
973
   * Allow transactions that have not executed LISTEN/UNLISTEN/NOTIFY to
974
   * return as soon as possible
975
   */
976
0
  if (!pendingActions && !pendingNotifies)
977
0
    return;
978
979
0
  if (Trace_notify)
980
0
    elog(DEBUG1, "AtCommit_Notify");
981
982
  /* Perform any pending listen/unlisten actions */
983
0
  if (pendingActions != NULL)
984
0
  {
985
0
    foreach(p, pendingActions->actions)
986
0
    {
987
0
      ListenAction *actrec = (ListenAction *) lfirst(p);
988
989
0
      switch (actrec->action)
990
0
      {
991
0
        case LISTEN_LISTEN:
992
0
          Exec_ListenCommit(actrec->channel);
993
0
          break;
994
0
        case LISTEN_UNLISTEN:
995
0
          Exec_UnlistenCommit(actrec->channel);
996
0
          break;
997
0
        case LISTEN_UNLISTEN_ALL:
998
0
          Exec_UnlistenAllCommit();
999
0
          break;
1000
0
      }
1001
0
    }
1002
0
  }
1003
1004
  /* If no longer listening to anything, get out of listener array */
1005
0
  if (amRegisteredListener && listenChannels == NIL)
1006
0
    asyncQueueUnregister();
1007
1008
  /*
1009
   * Send signals to listening backends.  We need do this only if there are
1010
   * pending notifies, which were previously added to the shared queue by
1011
   * PreCommit_Notify().
1012
   */
1013
0
  if (pendingNotifies != NULL)
1014
0
    SignalBackends();
1015
1016
  /*
1017
   * If it's time to try to advance the global tail pointer, do that.
1018
   *
1019
   * (It might seem odd to do this in the sender, when more than likely the
1020
   * listeners won't yet have read the messages we just sent.  However,
1021
   * there's less contention if only the sender does it, and there is little
1022
   * need for urgency in advancing the global tail.  So this typically will
1023
   * be clearing out messages that were sent some time ago.)
1024
   */
1025
0
  if (tryAdvanceTail)
1026
0
  {
1027
0
    tryAdvanceTail = false;
1028
0
    asyncQueueAdvanceTail();
1029
0
  }
1030
1031
  /* And clean up */
1032
0
  ClearPendingActionsAndNotifies();
1033
0
}
1034
1035
/*
1036
 * Exec_ListenPreCommit --- subroutine for PreCommit_Notify
1037
 *
1038
 * This function must make sure we are ready to catch any incoming messages.
1039
 */
1040
static void
1041
Exec_ListenPreCommit(void)
1042
0
{
1043
0
  QueuePosition head;
1044
0
  QueuePosition max;
1045
0
  ProcNumber  prevListener;
1046
1047
  /*
1048
   * Nothing to do if we are already listening to something, nor if we
1049
   * already ran this routine in this transaction.
1050
   */
1051
0
  if (amRegisteredListener)
1052
0
    return;
1053
1054
0
  if (Trace_notify)
1055
0
    elog(DEBUG1, "Exec_ListenPreCommit(%d)", MyProcPid);
1056
1057
  /*
1058
   * Before registering, make sure we will unlisten before dying. (Note:
1059
   * this action does not get undone if we abort later.)
1060
   */
1061
0
  if (!unlistenExitRegistered)
1062
0
  {
1063
0
    before_shmem_exit(Async_UnlistenOnExit, 0);
1064
0
    unlistenExitRegistered = true;
1065
0
  }
1066
1067
  /*
1068
   * This is our first LISTEN, so establish our pointer.
1069
   *
1070
   * We set our pointer to the global tail pointer and then move it forward
1071
   * over already-committed notifications.  This ensures we cannot miss any
1072
   * not-yet-committed notifications.  We might get a few more but that
1073
   * doesn't hurt.
1074
   *
1075
   * In some scenarios there might be a lot of committed notifications that
1076
   * have not yet been pruned away (because some backend is being lazy about
1077
   * reading them).  To reduce our startup time, we can look at other
1078
   * backends and adopt the maximum "pos" pointer of any backend that's in
1079
   * our database; any notifications it's already advanced over are surely
1080
   * committed and need not be re-examined by us.  (We must consider only
1081
   * backends connected to our DB, because others will not have bothered to
1082
   * check committed-ness of notifications in our DB.)
1083
   *
1084
   * We need exclusive lock here so we can look at other backends' entries
1085
   * and manipulate the list links.
1086
   */
1087
0
  LWLockAcquire(NotifyQueueLock, LW_EXCLUSIVE);
1088
0
  head = QUEUE_HEAD;
1089
0
  max = QUEUE_TAIL;
1090
0
  prevListener = INVALID_PROC_NUMBER;
1091
0
  for (ProcNumber i = QUEUE_FIRST_LISTENER; i != INVALID_PROC_NUMBER; i = QUEUE_NEXT_LISTENER(i))
1092
0
  {
1093
0
    if (QUEUE_BACKEND_DBOID(i) == MyDatabaseId)
1094
0
      max = QUEUE_POS_MAX(max, QUEUE_BACKEND_POS(i));
1095
    /* Also find last listening backend before this one */
1096
0
    if (i < MyProcNumber)
1097
0
      prevListener = i;
1098
0
  }
1099
0
  QUEUE_BACKEND_POS(MyProcNumber) = max;
1100
0
  QUEUE_BACKEND_PID(MyProcNumber) = MyProcPid;
1101
0
  QUEUE_BACKEND_DBOID(MyProcNumber) = MyDatabaseId;
1102
  /* Insert backend into list of listeners at correct position */
1103
0
  if (prevListener != INVALID_PROC_NUMBER)
1104
0
  {
1105
0
    QUEUE_NEXT_LISTENER(MyProcNumber) = QUEUE_NEXT_LISTENER(prevListener);
1106
0
    QUEUE_NEXT_LISTENER(prevListener) = MyProcNumber;
1107
0
  }
1108
0
  else
1109
0
  {
1110
0
    QUEUE_NEXT_LISTENER(MyProcNumber) = QUEUE_FIRST_LISTENER;
1111
0
    QUEUE_FIRST_LISTENER = MyProcNumber;
1112
0
  }
1113
0
  LWLockRelease(NotifyQueueLock);
1114
1115
  /* Now we are listed in the global array, so remember we're listening */
1116
0
  amRegisteredListener = true;
1117
1118
  /*
1119
   * Try to move our pointer forward as far as possible.  This will skip
1120
   * over already-committed notifications, which we want to do because they
1121
   * might be quite stale.  Note that we are not yet listening on anything,
1122
   * so we won't deliver such notifications to our frontend.  Also, although
1123
   * our transaction might have executed NOTIFY, those message(s) aren't
1124
   * queued yet so we won't skip them here.
1125
   */
1126
0
  if (!QUEUE_POS_EQUAL(max, head))
1127
0
    asyncQueueReadAllNotifications();
1128
0
}
1129
1130
/*
1131
 * Exec_ListenCommit --- subroutine for AtCommit_Notify
1132
 *
1133
 * Add the channel to the list of channels we are listening on.
1134
 */
1135
static void
1136
Exec_ListenCommit(const char *channel)
1137
0
{
1138
0
  MemoryContext oldcontext;
1139
1140
  /* Do nothing if we are already listening on this channel */
1141
0
  if (IsListeningOn(channel))
1142
0
    return;
1143
1144
  /*
1145
   * Add the new channel name to listenChannels.
1146
   *
1147
   * XXX It is theoretically possible to get an out-of-memory failure here,
1148
   * which would be bad because we already committed.  For the moment it
1149
   * doesn't seem worth trying to guard against that, but maybe improve this
1150
   * later.
1151
   */
1152
0
  oldcontext = MemoryContextSwitchTo(TopMemoryContext);
1153
0
  listenChannels = lappend(listenChannels, pstrdup(channel));
1154
0
  MemoryContextSwitchTo(oldcontext);
1155
0
}
1156
1157
/*
1158
 * Exec_UnlistenCommit --- subroutine for AtCommit_Notify
1159
 *
1160
 * Remove the specified channel name from listenChannels.
1161
 */
1162
static void
1163
Exec_UnlistenCommit(const char *channel)
1164
0
{
1165
0
  ListCell   *q;
1166
1167
0
  if (Trace_notify)
1168
0
    elog(DEBUG1, "Exec_UnlistenCommit(%s,%d)", channel, MyProcPid);
1169
1170
0
  foreach(q, listenChannels)
1171
0
  {
1172
0
    char     *lchan = (char *) lfirst(q);
1173
1174
0
    if (strcmp(lchan, channel) == 0)
1175
0
    {
1176
0
      listenChannels = foreach_delete_current(listenChannels, q);
1177
0
      pfree(lchan);
1178
0
      break;
1179
0
    }
1180
0
  }
1181
1182
  /*
1183
   * We do not complain about unlistening something not being listened;
1184
   * should we?
1185
   */
1186
0
}
1187
1188
/*
1189
 * Exec_UnlistenAllCommit --- subroutine for AtCommit_Notify
1190
 *
1191
 *    Unlisten on all channels for this backend.
1192
 */
1193
static void
1194
Exec_UnlistenAllCommit(void)
1195
0
{
1196
0
  if (Trace_notify)
1197
0
    elog(DEBUG1, "Exec_UnlistenAllCommit(%d)", MyProcPid);
1198
1199
0
  list_free_deep(listenChannels);
1200
0
  listenChannels = NIL;
1201
0
}
1202
1203
/*
1204
 * Test whether we are actively listening on the given channel name.
1205
 *
1206
 * Note: this function is executed for every notification found in the queue.
1207
 * Perhaps it is worth further optimization, eg convert the list to a sorted
1208
 * array so we can binary-search it.  In practice the list is likely to be
1209
 * fairly short, though.
1210
 */
1211
static bool
1212
IsListeningOn(const char *channel)
1213
0
{
1214
0
  ListCell   *p;
1215
1216
0
  foreach(p, listenChannels)
1217
0
  {
1218
0
    char     *lchan = (char *) lfirst(p);
1219
1220
0
    if (strcmp(lchan, channel) == 0)
1221
0
      return true;
1222
0
  }
1223
0
  return false;
1224
0
}
1225
1226
/*
1227
 * Remove our entry from the listeners array when we are no longer listening
1228
 * on any channel.  NB: must not fail if we're already not listening.
1229
 */
1230
static void
1231
asyncQueueUnregister(void)
1232
0
{
1233
0
  Assert(listenChannels == NIL);  /* else caller error */
1234
1235
0
  if (!amRegisteredListener) /* nothing to do */
1236
0
    return;
1237
1238
  /*
1239
   * Need exclusive lock here to manipulate list links.
1240
   */
1241
0
  LWLockAcquire(NotifyQueueLock, LW_EXCLUSIVE);
1242
  /* Mark our entry as invalid */
1243
0
  QUEUE_BACKEND_PID(MyProcNumber) = InvalidPid;
1244
0
  QUEUE_BACKEND_DBOID(MyProcNumber) = InvalidOid;
1245
  /* and remove it from the list */
1246
0
  if (QUEUE_FIRST_LISTENER == MyProcNumber)
1247
0
    QUEUE_FIRST_LISTENER = QUEUE_NEXT_LISTENER(MyProcNumber);
1248
0
  else
1249
0
  {
1250
0
    for (ProcNumber i = QUEUE_FIRST_LISTENER; i != INVALID_PROC_NUMBER; i = QUEUE_NEXT_LISTENER(i))
1251
0
    {
1252
0
      if (QUEUE_NEXT_LISTENER(i) == MyProcNumber)
1253
0
      {
1254
0
        QUEUE_NEXT_LISTENER(i) = QUEUE_NEXT_LISTENER(MyProcNumber);
1255
0
        break;
1256
0
      }
1257
0
    }
1258
0
  }
1259
0
  QUEUE_NEXT_LISTENER(MyProcNumber) = INVALID_PROC_NUMBER;
1260
0
  LWLockRelease(NotifyQueueLock);
1261
1262
  /* mark ourselves as no longer listed in the global array */
1263
0
  amRegisteredListener = false;
1264
0
}
1265
1266
/*
1267
 * Test whether there is room to insert more notification messages.
1268
 *
1269
 * Caller must hold at least shared NotifyQueueLock.
1270
 */
1271
static bool
1272
asyncQueueIsFull(void)
1273
0
{
1274
0
  int64   headPage = QUEUE_POS_PAGE(QUEUE_HEAD);
1275
0
  int64   tailPage = QUEUE_POS_PAGE(QUEUE_TAIL);
1276
0
  int64   occupied = headPage - tailPage;
1277
1278
0
  return occupied >= max_notify_queue_pages;
1279
0
}
1280
1281
/*
1282
 * Advance the QueuePosition to the next entry, assuming that the current
1283
 * entry is of length entryLength.  If we jump to a new page the function
1284
 * returns true, else false.
1285
 */
1286
static bool
1287
asyncQueueAdvance(volatile QueuePosition *position, int entryLength)
1288
0
{
1289
0
  int64   pageno = QUEUE_POS_PAGE(*position);
1290
0
  int     offset = QUEUE_POS_OFFSET(*position);
1291
0
  bool    pageJump = false;
1292
1293
  /*
1294
   * Move to the next writing position: First jump over what we have just
1295
   * written or read.
1296
   */
1297
0
  offset += entryLength;
1298
0
  Assert(offset <= QUEUE_PAGESIZE);
1299
1300
  /*
1301
   * In a second step check if another entry can possibly be written to the
1302
   * page. If so, stay here, we have reached the next position. If not, then
1303
   * we need to move on to the next page.
1304
   */
1305
0
  if (offset + QUEUEALIGN(AsyncQueueEntryEmptySize) > QUEUE_PAGESIZE)
1306
0
  {
1307
0
    pageno++;
1308
0
    offset = 0;
1309
0
    pageJump = true;
1310
0
  }
1311
1312
0
  SET_QUEUE_POS(*position, pageno, offset);
1313
0
  return pageJump;
1314
0
}
1315
1316
/*
1317
 * Fill the AsyncQueueEntry at *qe with an outbound notification message.
1318
 */
1319
static void
1320
asyncQueueNotificationToEntry(Notification *n, AsyncQueueEntry *qe)
1321
0
{
1322
0
  size_t    channellen = n->channel_len;
1323
0
  size_t    payloadlen = n->payload_len;
1324
0
  int     entryLength;
1325
1326
0
  Assert(channellen < NAMEDATALEN);
1327
0
  Assert(payloadlen < NOTIFY_PAYLOAD_MAX_LENGTH);
1328
1329
  /* The terminators are already included in AsyncQueueEntryEmptySize */
1330
0
  entryLength = AsyncQueueEntryEmptySize + payloadlen + channellen;
1331
0
  entryLength = QUEUEALIGN(entryLength);
1332
0
  qe->length = entryLength;
1333
0
  qe->dboid = MyDatabaseId;
1334
0
  qe->xid = GetCurrentTransactionId();
1335
0
  qe->srcPid = MyProcPid;
1336
0
  memcpy(qe->data, n->data, channellen + payloadlen + 2);
1337
0
}
1338
1339
/*
1340
 * Add pending notifications to the queue.
1341
 *
1342
 * We go page by page here, i.e. we stop once we have to go to a new page but
1343
 * we will be called again and then fill that next page. If an entry does not
1344
 * fit into the current page, we write a dummy entry with an InvalidOid as the
1345
 * database OID in order to fill the page. So every page is always used up to
1346
 * the last byte which simplifies reading the page later.
1347
 *
1348
 * We are passed the list cell (in pendingNotifies->events) containing the next
1349
 * notification to write and return the first still-unwritten cell back.
1350
 * Eventually we will return NULL indicating all is done.
1351
 *
1352
 * We are holding NotifyQueueLock already from the caller and grab
1353
 * page specific SLRU bank lock locally in this function.
1354
 */
1355
static ListCell *
1356
asyncQueueAddEntries(ListCell *nextNotify)
1357
0
{
1358
0
  AsyncQueueEntry qe;
1359
0
  QueuePosition queue_head;
1360
0
  int64   pageno;
1361
0
  int     offset;
1362
0
  int     slotno;
1363
0
  LWLock     *prevlock;
1364
1365
  /*
1366
   * We work with a local copy of QUEUE_HEAD, which we write back to shared
1367
   * memory upon exiting.  The reason for this is that if we have to advance
1368
   * to a new page, SimpleLruZeroPage might fail (out of disk space, for
1369
   * instance), and we must not advance QUEUE_HEAD if it does.  (Otherwise,
1370
   * subsequent insertions would try to put entries into a page that slru.c
1371
   * thinks doesn't exist yet.)  So, use a local position variable.  Note
1372
   * that if we do fail, any already-inserted queue entries are forgotten;
1373
   * this is okay, since they'd be useless anyway after our transaction
1374
   * rolls back.
1375
   */
1376
0
  queue_head = QUEUE_HEAD;
1377
1378
  /*
1379
   * If this is the first write since the postmaster started, we need to
1380
   * initialize the first page of the async SLRU.  Otherwise, the current
1381
   * page should be initialized already, so just fetch it.
1382
   */
1383
0
  pageno = QUEUE_POS_PAGE(queue_head);
1384
0
  prevlock = SimpleLruGetBankLock(NotifyCtl, pageno);
1385
1386
  /* We hold both NotifyQueueLock and SLRU bank lock during this operation */
1387
0
  LWLockAcquire(prevlock, LW_EXCLUSIVE);
1388
1389
0
  if (QUEUE_POS_IS_ZERO(queue_head))
1390
0
    slotno = SimpleLruZeroPage(NotifyCtl, pageno);
1391
0
  else
1392
0
    slotno = SimpleLruReadPage(NotifyCtl, pageno, true,
1393
0
                   InvalidTransactionId);
1394
1395
  /* Note we mark the page dirty before writing in it */
1396
0
  NotifyCtl->shared->page_dirty[slotno] = true;
1397
1398
0
  while (nextNotify != NULL)
1399
0
  {
1400
0
    Notification *n = (Notification *) lfirst(nextNotify);
1401
1402
    /* Construct a valid queue entry in local variable qe */
1403
0
    asyncQueueNotificationToEntry(n, &qe);
1404
1405
0
    offset = QUEUE_POS_OFFSET(queue_head);
1406
1407
    /* Check whether the entry really fits on the current page */
1408
0
    if (offset + qe.length <= QUEUE_PAGESIZE)
1409
0
    {
1410
      /* OK, so advance nextNotify past this item */
1411
0
      nextNotify = lnext(pendingNotifies->events, nextNotify);
1412
0
    }
1413
0
    else
1414
0
    {
1415
      /*
1416
       * Write a dummy entry to fill up the page. Actually readers will
1417
       * only check dboid and since it won't match any reader's database
1418
       * OID, they will ignore this entry and move on.
1419
       */
1420
0
      qe.length = QUEUE_PAGESIZE - offset;
1421
0
      qe.dboid = InvalidOid;
1422
0
      qe.data[0] = '\0';  /* empty channel */
1423
0
      qe.data[1] = '\0';  /* empty payload */
1424
0
    }
1425
1426
    /* Now copy qe into the shared buffer page */
1427
0
    memcpy(NotifyCtl->shared->page_buffer[slotno] + offset,
1428
0
         &qe,
1429
0
         qe.length);
1430
1431
    /* Advance queue_head appropriately, and detect if page is full */
1432
0
    if (asyncQueueAdvance(&(queue_head), qe.length))
1433
0
    {
1434
0
      LWLock     *lock;
1435
1436
0
      pageno = QUEUE_POS_PAGE(queue_head);
1437
0
      lock = SimpleLruGetBankLock(NotifyCtl, pageno);
1438
0
      if (lock != prevlock)
1439
0
      {
1440
0
        LWLockRelease(prevlock);
1441
0
        LWLockAcquire(lock, LW_EXCLUSIVE);
1442
0
        prevlock = lock;
1443
0
      }
1444
1445
      /*
1446
       * Page is full, so we're done here, but first fill the next page
1447
       * with zeroes.  The reason to do this is to ensure that slru.c's
1448
       * idea of the head page is always the same as ours, which avoids
1449
       * boundary problems in SimpleLruTruncate.  The test in
1450
       * asyncQueueIsFull() ensured that there is room to create this
1451
       * page without overrunning the queue.
1452
       */
1453
0
      slotno = SimpleLruZeroPage(NotifyCtl, QUEUE_POS_PAGE(queue_head));
1454
1455
      /*
1456
       * If the new page address is a multiple of QUEUE_CLEANUP_DELAY,
1457
       * set flag to remember that we should try to advance the tail
1458
       * pointer (we don't want to actually do that right here).
1459
       */
1460
0
      if (QUEUE_POS_PAGE(queue_head) % QUEUE_CLEANUP_DELAY == 0)
1461
0
        tryAdvanceTail = true;
1462
1463
      /* And exit the loop */
1464
0
      break;
1465
0
    }
1466
0
  }
1467
1468
  /* Success, so update the global QUEUE_HEAD */
1469
0
  QUEUE_HEAD = queue_head;
1470
1471
0
  LWLockRelease(prevlock);
1472
1473
0
  return nextNotify;
1474
0
}
1475
1476
/*
1477
 * SQL function to return the fraction of the notification queue currently
1478
 * occupied.
1479
 */
1480
Datum
1481
pg_notification_queue_usage(PG_FUNCTION_ARGS)
1482
0
{
1483
0
  double    usage;
1484
1485
  /* Advance the queue tail so we don't report a too-large result */
1486
0
  asyncQueueAdvanceTail();
1487
1488
0
  LWLockAcquire(NotifyQueueLock, LW_SHARED);
1489
0
  usage = asyncQueueUsage();
1490
0
  LWLockRelease(NotifyQueueLock);
1491
1492
0
  PG_RETURN_FLOAT8(usage);
1493
0
}
1494
1495
/*
1496
 * Return the fraction of the queue that is currently occupied.
1497
 *
1498
 * The caller must hold NotifyQueueLock in (at least) shared mode.
1499
 *
1500
 * Note: we measure the distance to the logical tail page, not the physical
1501
 * tail page.  In some sense that's wrong, but the relative position of the
1502
 * physical tail is affected by details such as SLRU segment boundaries,
1503
 * so that a result based on that is unpleasantly unstable.
1504
 */
1505
static double
1506
asyncQueueUsage(void)
1507
0
{
1508
0
  int64   headPage = QUEUE_POS_PAGE(QUEUE_HEAD);
1509
0
  int64   tailPage = QUEUE_POS_PAGE(QUEUE_TAIL);
1510
0
  int64   occupied = headPage - tailPage;
1511
1512
0
  if (occupied == 0)
1513
0
    return (double) 0;   /* fast exit for common case */
1514
1515
0
  return (double) occupied / (double) max_notify_queue_pages;
1516
0
}
1517
1518
/*
1519
 * Check whether the queue is at least half full, and emit a warning if so.
1520
 *
1521
 * This is unlikely given the size of the queue, but possible.
1522
 * The warnings show up at most once every QUEUE_FULL_WARN_INTERVAL.
1523
 *
1524
 * Caller must hold exclusive NotifyQueueLock.
1525
 */
1526
static void
1527
asyncQueueFillWarning(void)
1528
0
{
1529
0
  double    fillDegree;
1530
0
  TimestampTz t;
1531
1532
0
  fillDegree = asyncQueueUsage();
1533
0
  if (fillDegree < 0.5)
1534
0
    return;
1535
1536
0
  t = GetCurrentTimestamp();
1537
1538
0
  if (TimestampDifferenceExceeds(asyncQueueControl->lastQueueFillWarn,
1539
0
                   t, QUEUE_FULL_WARN_INTERVAL))
1540
0
  {
1541
0
    QueuePosition min = QUEUE_HEAD;
1542
0
    int32   minPid = InvalidPid;
1543
1544
0
    for (ProcNumber i = QUEUE_FIRST_LISTENER; i != INVALID_PROC_NUMBER; i = QUEUE_NEXT_LISTENER(i))
1545
0
    {
1546
0
      Assert(QUEUE_BACKEND_PID(i) != InvalidPid);
1547
0
      min = QUEUE_POS_MIN(min, QUEUE_BACKEND_POS(i));
1548
0
      if (QUEUE_POS_EQUAL(min, QUEUE_BACKEND_POS(i)))
1549
0
        minPid = QUEUE_BACKEND_PID(i);
1550
0
    }
1551
1552
0
    ereport(WARNING,
1553
0
        (errmsg("NOTIFY queue is %.0f%% full", fillDegree * 100),
1554
0
         (minPid != InvalidPid ?
1555
0
          errdetail("The server process with PID %d is among those with the oldest transactions.", minPid)
1556
0
          : 0),
1557
0
         (minPid != InvalidPid ?
1558
0
          errhint("The NOTIFY queue cannot be emptied until that process ends its current transaction.")
1559
0
          : 0)));
1560
1561
0
    asyncQueueControl->lastQueueFillWarn = t;
1562
0
  }
1563
0
}
1564
1565
/*
1566
 * Send signals to listening backends.
1567
 *
1568
 * Normally we signal only backends in our own database, since only those
1569
 * backends could be interested in notifies we send.  However, if there's
1570
 * notify traffic in our database but no traffic in another database that
1571
 * does have listener(s), those listeners will fall further and further
1572
 * behind.  Waken them anyway if they're far enough behind, so that they'll
1573
 * advance their queue position pointers, allowing the global tail to advance.
1574
 *
1575
 * Since we know the ProcNumber and the Pid the signaling is quite cheap.
1576
 *
1577
 * This is called during CommitTransaction(), so it's important for it
1578
 * to have very low probability of failure.
1579
 */
1580
static void
1581
SignalBackends(void)
1582
0
{
1583
0
  int32    *pids;
1584
0
  ProcNumber *procnos;
1585
0
  int     count;
1586
1587
  /*
1588
   * Identify backends that we need to signal.  We don't want to send
1589
   * signals while holding the NotifyQueueLock, so this loop just builds a
1590
   * list of target PIDs.
1591
   *
1592
   * XXX in principle these pallocs could fail, which would be bad. Maybe
1593
   * preallocate the arrays?  They're not that large, though.
1594
   */
1595
0
  pids = (int32 *) palloc(MaxBackends * sizeof(int32));
1596
0
  procnos = (ProcNumber *) palloc(MaxBackends * sizeof(ProcNumber));
1597
0
  count = 0;
1598
1599
0
  LWLockAcquire(NotifyQueueLock, LW_EXCLUSIVE);
1600
0
  for (ProcNumber i = QUEUE_FIRST_LISTENER; i != INVALID_PROC_NUMBER; i = QUEUE_NEXT_LISTENER(i))
1601
0
  {
1602
0
    int32   pid = QUEUE_BACKEND_PID(i);
1603
0
    QueuePosition pos;
1604
1605
0
    Assert(pid != InvalidPid);
1606
0
    pos = QUEUE_BACKEND_POS(i);
1607
0
    if (QUEUE_BACKEND_DBOID(i) == MyDatabaseId)
1608
0
    {
1609
      /*
1610
       * Always signal listeners in our own database, unless they're
1611
       * already caught up (unlikely, but possible).
1612
       */
1613
0
      if (QUEUE_POS_EQUAL(pos, QUEUE_HEAD))
1614
0
        continue;
1615
0
    }
1616
0
    else
1617
0
    {
1618
      /*
1619
       * Listeners in other databases should be signaled only if they
1620
       * are far behind.
1621
       */
1622
0
      if (asyncQueuePageDiff(QUEUE_POS_PAGE(QUEUE_HEAD),
1623
0
                   QUEUE_POS_PAGE(pos)) < QUEUE_CLEANUP_DELAY)
1624
0
        continue;
1625
0
    }
1626
    /* OK, need to signal this one */
1627
0
    pids[count] = pid;
1628
0
    procnos[count] = i;
1629
0
    count++;
1630
0
  }
1631
0
  LWLockRelease(NotifyQueueLock);
1632
1633
  /* Now send signals */
1634
0
  for (int i = 0; i < count; i++)
1635
0
  {
1636
0
    int32   pid = pids[i];
1637
1638
    /*
1639
     * If we are signaling our own process, no need to involve the kernel;
1640
     * just set the flag directly.
1641
     */
1642
0
    if (pid == MyProcPid)
1643
0
    {
1644
0
      notifyInterruptPending = true;
1645
0
      continue;
1646
0
    }
1647
1648
    /*
1649
     * Note: assuming things aren't broken, a signal failure here could
1650
     * only occur if the target backend exited since we released
1651
     * NotifyQueueLock; which is unlikely but certainly possible. So we
1652
     * just log a low-level debug message if it happens.
1653
     */
1654
0
    if (SendProcSignal(pid, PROCSIG_NOTIFY_INTERRUPT, procnos[i]) < 0)
1655
0
      elog(DEBUG3, "could not signal backend with PID %d: %m", pid);
1656
0
  }
1657
1658
0
  pfree(pids);
1659
0
  pfree(procnos);
1660
0
}
1661
1662
/*
1663
 * AtAbort_Notify
1664
 *
1665
 *  This is called at transaction abort.
1666
 *
1667
 *  Gets rid of pending actions and outbound notifies that we would have
1668
 *  executed if the transaction got committed.
1669
 */
1670
void
1671
AtAbort_Notify(void)
1672
0
{
1673
  /*
1674
   * If we LISTEN but then roll back the transaction after PreCommit_Notify,
1675
   * we have registered as a listener but have not made any entry in
1676
   * listenChannels.  In that case, deregister again.
1677
   */
1678
0
  if (amRegisteredListener && listenChannels == NIL)
1679
0
    asyncQueueUnregister();
1680
1681
  /* And clean up */
1682
0
  ClearPendingActionsAndNotifies();
1683
0
}
1684
1685
/*
1686
 * AtSubCommit_Notify() --- Take care of subtransaction commit.
1687
 *
1688
 * Reassign all items in the pending lists to the parent transaction.
1689
 */
1690
void
1691
AtSubCommit_Notify(void)
1692
0
{
1693
0
  int     my_level = GetCurrentTransactionNestLevel();
1694
1695
  /* If there are actions at our nesting level, we must reparent them. */
1696
0
  if (pendingActions != NULL &&
1697
0
    pendingActions->nestingLevel >= my_level)
1698
0
  {
1699
0
    if (pendingActions->upper == NULL ||
1700
0
      pendingActions->upper->nestingLevel < my_level - 1)
1701
0
    {
1702
      /* nothing to merge; give the whole thing to the parent */
1703
0
      --pendingActions->nestingLevel;
1704
0
    }
1705
0
    else
1706
0
    {
1707
0
      ActionList *childPendingActions = pendingActions;
1708
1709
0
      pendingActions = pendingActions->upper;
1710
1711
      /*
1712
       * Mustn't try to eliminate duplicates here --- see queue_listen()
1713
       */
1714
0
      pendingActions->actions =
1715
0
        list_concat(pendingActions->actions,
1716
0
              childPendingActions->actions);
1717
0
      pfree(childPendingActions);
1718
0
    }
1719
0
  }
1720
1721
  /* If there are notifies at our nesting level, we must reparent them. */
1722
0
  if (pendingNotifies != NULL &&
1723
0
    pendingNotifies->nestingLevel >= my_level)
1724
0
  {
1725
0
    Assert(pendingNotifies->nestingLevel == my_level);
1726
1727
0
    if (pendingNotifies->upper == NULL ||
1728
0
      pendingNotifies->upper->nestingLevel < my_level - 1)
1729
0
    {
1730
      /* nothing to merge; give the whole thing to the parent */
1731
0
      --pendingNotifies->nestingLevel;
1732
0
    }
1733
0
    else
1734
0
    {
1735
      /*
1736
       * Formerly, we didn't bother to eliminate duplicates here, but
1737
       * now we must, else we fall foul of "Assert(!found)", either here
1738
       * or during a later attempt to build the parent-level hashtable.
1739
       */
1740
0
      NotificationList *childPendingNotifies = pendingNotifies;
1741
0
      ListCell   *l;
1742
1743
0
      pendingNotifies = pendingNotifies->upper;
1744
      /* Insert all the subxact's events into parent, except for dups */
1745
0
      foreach(l, childPendingNotifies->events)
1746
0
      {
1747
0
        Notification *childn = (Notification *) lfirst(l);
1748
1749
0
        if (!AsyncExistsPendingNotify(childn))
1750
0
          AddEventToPendingNotifies(childn);
1751
0
      }
1752
0
      pfree(childPendingNotifies);
1753
0
    }
1754
0
  }
1755
0
}
1756
1757
/*
1758
 * AtSubAbort_Notify() --- Take care of subtransaction abort.
1759
 */
1760
void
1761
AtSubAbort_Notify(void)
1762
0
{
1763
0
  int     my_level = GetCurrentTransactionNestLevel();
1764
1765
  /*
1766
   * All we have to do is pop the stack --- the actions/notifies made in
1767
   * this subxact are no longer interesting, and the space will be freed
1768
   * when CurTransactionContext is recycled. We still have to free the
1769
   * ActionList and NotificationList objects themselves, though, because
1770
   * those are allocated in TopTransactionContext.
1771
   *
1772
   * Note that there might be no entries at all, or no entries for the
1773
   * current subtransaction level, either because none were ever created, or
1774
   * because we reentered this routine due to trouble during subxact abort.
1775
   */
1776
0
  while (pendingActions != NULL &&
1777
0
       pendingActions->nestingLevel >= my_level)
1778
0
  {
1779
0
    ActionList *childPendingActions = pendingActions;
1780
1781
0
    pendingActions = pendingActions->upper;
1782
0
    pfree(childPendingActions);
1783
0
  }
1784
1785
0
  while (pendingNotifies != NULL &&
1786
0
       pendingNotifies->nestingLevel >= my_level)
1787
0
  {
1788
0
    NotificationList *childPendingNotifies = pendingNotifies;
1789
1790
0
    pendingNotifies = pendingNotifies->upper;
1791
0
    pfree(childPendingNotifies);
1792
0
  }
1793
0
}
1794
1795
/*
1796
 * HandleNotifyInterrupt
1797
 *
1798
 *    Signal handler portion of interrupt handling. Let the backend know
1799
 *    that there's a pending notify interrupt. If we're currently reading
1800
 *    from the client, this will interrupt the read and
1801
 *    ProcessClientReadInterrupt() will call ProcessNotifyInterrupt().
1802
 */
1803
void
1804
HandleNotifyInterrupt(void)
1805
0
{
1806
  /*
1807
   * Note: this is called by a SIGNAL HANDLER. You must be very wary what
1808
   * you do here.
1809
   */
1810
1811
  /* signal that work needs to be done */
1812
0
  notifyInterruptPending = true;
1813
1814
  /* make sure the event is processed in due course */
1815
0
  SetLatch(MyLatch);
1816
0
}
1817
1818
/*
1819
 * ProcessNotifyInterrupt
1820
 *
1821
 *    This is called if we see notifyInterruptPending set, just before
1822
 *    transmitting ReadyForQuery at the end of a frontend command, and
1823
 *    also if a notify signal occurs while reading from the frontend.
1824
 *    HandleNotifyInterrupt() will cause the read to be interrupted
1825
 *    via the process's latch, and this routine will get called.
1826
 *    If we are truly idle (ie, *not* inside a transaction block),
1827
 *    process the incoming notifies.
1828
 *
1829
 *    If "flush" is true, force any frontend messages out immediately.
1830
 *    This can be false when being called at the end of a frontend command,
1831
 *    since we'll flush after sending ReadyForQuery.
1832
 */
1833
void
1834
ProcessNotifyInterrupt(bool flush)
1835
0
{
1836
0
  if (IsTransactionOrTransactionBlock())
1837
0
    return;         /* not really idle */
1838
1839
  /* Loop in case another signal arrives while sending messages */
1840
0
  while (notifyInterruptPending)
1841
0
    ProcessIncomingNotify(flush);
1842
0
}
1843
1844
1845
/*
1846
 * Read all pending notifications from the queue, and deliver appropriate
1847
 * ones to my frontend.  Stop when we reach queue head or an uncommitted
1848
 * notification.
1849
 */
1850
static void
1851
asyncQueueReadAllNotifications(void)
1852
0
{
1853
0
  volatile QueuePosition pos;
1854
0
  QueuePosition head;
1855
0
  Snapshot  snapshot;
1856
1857
  /* page_buffer must be adequately aligned, so use a union */
1858
0
  union
1859
0
  {
1860
0
    char    buf[QUEUE_PAGESIZE];
1861
0
    AsyncQueueEntry align;
1862
0
  }     page_buffer;
1863
1864
  /* Fetch current state */
1865
0
  LWLockAcquire(NotifyQueueLock, LW_SHARED);
1866
  /* Assert checks that we have a valid state entry */
1867
0
  Assert(MyProcPid == QUEUE_BACKEND_PID(MyProcNumber));
1868
0
  pos = QUEUE_BACKEND_POS(MyProcNumber);
1869
0
  head = QUEUE_HEAD;
1870
0
  LWLockRelease(NotifyQueueLock);
1871
1872
0
  if (QUEUE_POS_EQUAL(pos, head))
1873
0
  {
1874
    /* Nothing to do, we have read all notifications already. */
1875
0
    return;
1876
0
  }
1877
1878
  /*----------
1879
   * Get snapshot we'll use to decide which xacts are still in progress.
1880
   * This is trickier than it might seem, because of race conditions.
1881
   * Consider the following example:
1882
   *
1883
   * Backend 1:          Backend 2:
1884
   *
1885
   * transaction starts
1886
   * UPDATE foo SET ...;
1887
   * NOTIFY foo;
1888
   * commit starts
1889
   * queue the notify message
1890
   *                 transaction starts
1891
   *                 LISTEN foo;  -- first LISTEN in session
1892
   *                 SELECT * FROM foo WHERE ...;
1893
   * commit to clog
1894
   *                 commit starts
1895
   *                 add backend 2 to array of listeners
1896
   *                 advance to queue head (this code)
1897
   *                 commit to clog
1898
   *
1899
   * Transaction 2's SELECT has not seen the UPDATE's effects, since that
1900
   * wasn't committed yet.  Ideally we'd ensure that client 2 would
1901
   * eventually get transaction 1's notify message, but there's no way
1902
   * to do that; until we're in the listener array, there's no guarantee
1903
   * that the notify message doesn't get removed from the queue.
1904
   *
1905
   * Therefore the coding technique transaction 2 is using is unsafe:
1906
   * applications must commit a LISTEN before inspecting database state,
1907
   * if they want to ensure they will see notifications about subsequent
1908
   * changes to that state.
1909
   *
1910
   * What we do guarantee is that we'll see all notifications from
1911
   * transactions committing after the snapshot we take here.
1912
   * Exec_ListenPreCommit has already added us to the listener array,
1913
   * so no not-yet-committed messages can be removed from the queue
1914
   * before we see them.
1915
   *----------
1916
   */
1917
0
  snapshot = RegisterSnapshot(GetLatestSnapshot());
1918
1919
  /*
1920
   * It is possible that we fail while trying to send a message to our
1921
   * frontend (for example, because of encoding conversion failure).  If
1922
   * that happens it is critical that we not try to send the same message
1923
   * over and over again.  Therefore, we place a PG_TRY block here that will
1924
   * forcibly advance our queue position before we lose control to an error.
1925
   * (We could alternatively retake NotifyQueueLock and move the position
1926
   * before handling each individual message, but that seems like too much
1927
   * lock traffic.)
1928
   */
1929
0
  PG_TRY();
1930
0
  {
1931
0
    bool    reachedStop;
1932
1933
0
    do
1934
0
    {
1935
0
      int64   curpage = QUEUE_POS_PAGE(pos);
1936
0
      int     curoffset = QUEUE_POS_OFFSET(pos);
1937
0
      int     slotno;
1938
0
      int     copysize;
1939
1940
      /*
1941
       * We copy the data from SLRU into a local buffer, so as to avoid
1942
       * holding the SLRU lock while we are examining the entries and
1943
       * possibly transmitting them to our frontend.  Copy only the part
1944
       * of the page we will actually inspect.
1945
       */
1946
0
      slotno = SimpleLruReadPage_ReadOnly(NotifyCtl, curpage,
1947
0
                        InvalidTransactionId);
1948
0
      if (curpage == QUEUE_POS_PAGE(head))
1949
0
      {
1950
        /* we only want to read as far as head */
1951
0
        copysize = QUEUE_POS_OFFSET(head) - curoffset;
1952
0
        if (copysize < 0)
1953
0
          copysize = 0; /* just for safety */
1954
0
      }
1955
0
      else
1956
0
      {
1957
        /* fetch all the rest of the page */
1958
0
        copysize = QUEUE_PAGESIZE - curoffset;
1959
0
      }
1960
0
      memcpy(page_buffer.buf + curoffset,
1961
0
           NotifyCtl->shared->page_buffer[slotno] + curoffset,
1962
0
           copysize);
1963
      /* Release lock that we got from SimpleLruReadPage_ReadOnly() */
1964
0
      LWLockRelease(SimpleLruGetBankLock(NotifyCtl, curpage));
1965
1966
      /*
1967
       * Process messages up to the stop position, end of page, or an
1968
       * uncommitted message.
1969
       *
1970
       * Our stop position is what we found to be the head's position
1971
       * when we entered this function. It might have changed already.
1972
       * But if it has, we will receive (or have already received and
1973
       * queued) another signal and come here again.
1974
       *
1975
       * We are not holding NotifyQueueLock here! The queue can only
1976
       * extend beyond the head pointer (see above) and we leave our
1977
       * backend's pointer where it is so nobody will truncate or
1978
       * rewrite pages under us. Especially we don't want to hold a lock
1979
       * while sending the notifications to the frontend.
1980
       */
1981
0
      reachedStop = asyncQueueProcessPageEntries(&pos, head,
1982
0
                             page_buffer.buf,
1983
0
                             snapshot);
1984
0
    } while (!reachedStop);
1985
0
  }
1986
0
  PG_FINALLY();
1987
0
  {
1988
    /* Update shared state */
1989
0
    LWLockAcquire(NotifyQueueLock, LW_SHARED);
1990
0
    QUEUE_BACKEND_POS(MyProcNumber) = pos;
1991
0
    LWLockRelease(NotifyQueueLock);
1992
0
  }
1993
0
  PG_END_TRY();
1994
1995
  /* Done with snapshot */
1996
0
  UnregisterSnapshot(snapshot);
1997
0
}
1998
1999
/*
2000
 * Fetch notifications from the shared queue, beginning at position current,
2001
 * and deliver relevant ones to my frontend.
2002
 *
2003
 * The current page must have been fetched into page_buffer from shared
2004
 * memory.  (We could access the page right in shared memory, but that
2005
 * would imply holding the SLRU bank lock throughout this routine.)
2006
 *
2007
 * We stop if we reach the "stop" position, or reach a notification from an
2008
 * uncommitted transaction, or reach the end of the page.
2009
 *
2010
 * The function returns true once we have reached the stop position or an
2011
 * uncommitted notification, and false if we have finished with the page.
2012
 * In other words: once it returns true there is no need to look further.
2013
 * The QueuePosition *current is advanced past all processed messages.
2014
 */
2015
static bool
2016
asyncQueueProcessPageEntries(volatile QueuePosition *current,
2017
               QueuePosition stop,
2018
               char *page_buffer,
2019
               Snapshot snapshot)
2020
0
{
2021
0
  bool    reachedStop = false;
2022
0
  bool    reachedEndOfPage;
2023
0
  AsyncQueueEntry *qe;
2024
2025
0
  do
2026
0
  {
2027
0
    QueuePosition thisentry = *current;
2028
2029
0
    if (QUEUE_POS_EQUAL(thisentry, stop))
2030
0
      break;
2031
2032
0
    qe = (AsyncQueueEntry *) (page_buffer + QUEUE_POS_OFFSET(thisentry));
2033
2034
    /*
2035
     * Advance *current over this message, possibly to the next page. As
2036
     * noted in the comments for asyncQueueReadAllNotifications, we must
2037
     * do this before possibly failing while processing the message.
2038
     */
2039
0
    reachedEndOfPage = asyncQueueAdvance(current, qe->length);
2040
2041
    /* Ignore messages destined for other databases */
2042
0
    if (qe->dboid == MyDatabaseId)
2043
0
    {
2044
0
      if (XidInMVCCSnapshot(qe->xid, snapshot))
2045
0
      {
2046
        /*
2047
         * The source transaction is still in progress, so we can't
2048
         * process this message yet.  Break out of the loop, but first
2049
         * back up *current so we will reprocess the message next
2050
         * time.  (Note: it is unlikely but not impossible for
2051
         * TransactionIdDidCommit to fail, so we can't really avoid
2052
         * this advance-then-back-up behavior when dealing with an
2053
         * uncommitted message.)
2054
         *
2055
         * Note that we must test XidInMVCCSnapshot before we test
2056
         * TransactionIdDidCommit, else we might return a message from
2057
         * a transaction that is not yet visible to snapshots; compare
2058
         * the comments at the head of heapam_visibility.c.
2059
         *
2060
         * Also, while our own xact won't be listed in the snapshot,
2061
         * we need not check for TransactionIdIsCurrentTransactionId
2062
         * because our transaction cannot (yet) have queued any
2063
         * messages.
2064
         */
2065
0
        *current = thisentry;
2066
0
        reachedStop = true;
2067
0
        break;
2068
0
      }
2069
0
      else if (TransactionIdDidCommit(qe->xid))
2070
0
      {
2071
        /* qe->data is the null-terminated channel name */
2072
0
        char     *channel = qe->data;
2073
2074
0
        if (IsListeningOn(channel))
2075
0
        {
2076
          /* payload follows channel name */
2077
0
          char     *payload = qe->data + strlen(channel) + 1;
2078
2079
0
          NotifyMyFrontEnd(channel, payload, qe->srcPid);
2080
0
        }
2081
0
      }
2082
0
      else
2083
0
      {
2084
        /*
2085
         * The source transaction aborted or crashed, so we just
2086
         * ignore its notifications.
2087
         */
2088
0
      }
2089
0
    }
2090
2091
    /* Loop back if we're not at end of page */
2092
0
  } while (!reachedEndOfPage);
2093
2094
0
  if (QUEUE_POS_EQUAL(*current, stop))
2095
0
    reachedStop = true;
2096
2097
0
  return reachedStop;
2098
0
}
2099
2100
/*
2101
 * Advance the shared queue tail variable to the minimum of all the
2102
 * per-backend tail pointers.  Truncate pg_notify space if possible.
2103
 *
2104
 * This is (usually) called during CommitTransaction(), so it's important for
2105
 * it to have very low probability of failure.
2106
 */
2107
static void
2108
asyncQueueAdvanceTail(void)
2109
0
{
2110
0
  QueuePosition min;
2111
0
  int64   oldtailpage;
2112
0
  int64   newtailpage;
2113
0
  int64   boundary;
2114
2115
  /* Restrict task to one backend per cluster; see SimpleLruTruncate(). */
2116
0
  LWLockAcquire(NotifyQueueTailLock, LW_EXCLUSIVE);
2117
2118
  /*
2119
   * Compute the new tail.  Pre-v13, it's essential that QUEUE_TAIL be exact
2120
   * (ie, exactly match at least one backend's queue position), so it must
2121
   * be updated atomically with the actual computation.  Since v13, we could
2122
   * get away with not doing it like that, but it seems prudent to keep it
2123
   * so.
2124
   *
2125
   * Also, because incoming backends will scan forward from QUEUE_TAIL, that
2126
   * must be advanced before we can truncate any data.  Thus, QUEUE_TAIL is
2127
   * the logical tail, while QUEUE_STOP_PAGE is the physical tail, or oldest
2128
   * un-truncated page.  When QUEUE_STOP_PAGE != QUEUE_POS_PAGE(QUEUE_TAIL),
2129
   * there are pages we can truncate but haven't yet finished doing so.
2130
   *
2131
   * For concurrency's sake, we don't want to hold NotifyQueueLock while
2132
   * performing SimpleLruTruncate.  This is OK because no backend will try
2133
   * to access the pages we are in the midst of truncating.
2134
   */
2135
0
  LWLockAcquire(NotifyQueueLock, LW_EXCLUSIVE);
2136
0
  min = QUEUE_HEAD;
2137
0
  for (ProcNumber i = QUEUE_FIRST_LISTENER; i != INVALID_PROC_NUMBER; i = QUEUE_NEXT_LISTENER(i))
2138
0
  {
2139
0
    Assert(QUEUE_BACKEND_PID(i) != InvalidPid);
2140
0
    min = QUEUE_POS_MIN(min, QUEUE_BACKEND_POS(i));
2141
0
  }
2142
0
  QUEUE_TAIL = min;
2143
0
  oldtailpage = QUEUE_STOP_PAGE;
2144
0
  LWLockRelease(NotifyQueueLock);
2145
2146
  /*
2147
   * We can truncate something if the global tail advanced across an SLRU
2148
   * segment boundary.
2149
   *
2150
   * XXX it might be better to truncate only once every several segments, to
2151
   * reduce the number of directory scans.
2152
   */
2153
0
  newtailpage = QUEUE_POS_PAGE(min);
2154
0
  boundary = newtailpage - (newtailpage % SLRU_PAGES_PER_SEGMENT);
2155
0
  if (asyncQueuePagePrecedes(oldtailpage, boundary))
2156
0
  {
2157
    /*
2158
     * SimpleLruTruncate() will ask for SLRU bank locks but will also
2159
     * release the lock again.
2160
     */
2161
0
    SimpleLruTruncate(NotifyCtl, newtailpage);
2162
2163
0
    LWLockAcquire(NotifyQueueLock, LW_EXCLUSIVE);
2164
0
    QUEUE_STOP_PAGE = newtailpage;
2165
0
    LWLockRelease(NotifyQueueLock);
2166
0
  }
2167
2168
0
  LWLockRelease(NotifyQueueTailLock);
2169
0
}
2170
2171
/*
2172
 * ProcessIncomingNotify
2173
 *
2174
 *    Scan the queue for arriving notifications and report them to the front
2175
 *    end.  The notifications might be from other sessions, or our own;
2176
 *    there's no need to distinguish here.
2177
 *
2178
 *    If "flush" is true, force any frontend messages out immediately.
2179
 *
2180
 *    NOTE: since we are outside any transaction, we must create our own.
2181
 */
2182
static void
2183
ProcessIncomingNotify(bool flush)
2184
0
{
2185
  /* We *must* reset the flag */
2186
0
  notifyInterruptPending = false;
2187
2188
  /* Do nothing else if we aren't actively listening */
2189
0
  if (listenChannels == NIL)
2190
0
    return;
2191
2192
0
  if (Trace_notify)
2193
0
    elog(DEBUG1, "ProcessIncomingNotify");
2194
2195
0
  set_ps_display("notify interrupt");
2196
2197
  /*
2198
   * We must run asyncQueueReadAllNotifications inside a transaction, else
2199
   * bad things happen if it gets an error.
2200
   */
2201
0
  StartTransactionCommand();
2202
2203
0
  asyncQueueReadAllNotifications();
2204
2205
0
  CommitTransactionCommand();
2206
2207
  /*
2208
   * If this isn't an end-of-command case, we must flush the notify messages
2209
   * to ensure frontend gets them promptly.
2210
   */
2211
0
  if (flush)
2212
0
    pq_flush();
2213
2214
0
  set_ps_display("idle");
2215
2216
0
  if (Trace_notify)
2217
0
    elog(DEBUG1, "ProcessIncomingNotify: done");
2218
0
}
2219
2220
/*
2221
 * Send NOTIFY message to my front end.
2222
 */
2223
void
2224
NotifyMyFrontEnd(const char *channel, const char *payload, int32 srcPid)
2225
0
{
2226
0
  if (whereToSendOutput == DestRemote)
2227
0
  {
2228
0
    StringInfoData buf;
2229
2230
0
    pq_beginmessage(&buf, PqMsg_NotificationResponse);
2231
0
    pq_sendint32(&buf, srcPid);
2232
0
    pq_sendstring(&buf, channel);
2233
0
    pq_sendstring(&buf, payload);
2234
0
    pq_endmessage(&buf);
2235
2236
    /*
2237
     * NOTE: we do not do pq_flush() here.  Some level of caller will
2238
     * handle it later, allowing this message to be combined into a packet
2239
     * with other ones.
2240
     */
2241
0
  }
2242
0
  else
2243
0
    elog(INFO, "NOTIFY for \"%s\" payload \"%s\"", channel, payload);
2244
0
}
2245
2246
/* Does pendingNotifies include a match for the given event? */
2247
static bool
2248
AsyncExistsPendingNotify(Notification *n)
2249
0
{
2250
0
  if (pendingNotifies == NULL)
2251
0
    return false;
2252
2253
0
  if (pendingNotifies->hashtab != NULL)
2254
0
  {
2255
    /* Use the hash table to probe for a match */
2256
0
    if (hash_search(pendingNotifies->hashtab,
2257
0
            &n,
2258
0
            HASH_FIND,
2259
0
            NULL))
2260
0
      return true;
2261
0
  }
2262
0
  else
2263
0
  {
2264
    /* Must scan the event list */
2265
0
    ListCell   *l;
2266
2267
0
    foreach(l, pendingNotifies->events)
2268
0
    {
2269
0
      Notification *oldn = (Notification *) lfirst(l);
2270
2271
0
      if (n->channel_len == oldn->channel_len &&
2272
0
        n->payload_len == oldn->payload_len &&
2273
0
        memcmp(n->data, oldn->data,
2274
0
             n->channel_len + n->payload_len + 2) == 0)
2275
0
        return true;
2276
0
    }
2277
0
  }
2278
2279
0
  return false;
2280
0
}
2281
2282
/*
2283
 * Add a notification event to a pre-existing pendingNotifies list.
2284
 *
2285
 * Because pendingNotifies->events is already nonempty, this works
2286
 * correctly no matter what CurrentMemoryContext is.
2287
 */
2288
static void
2289
AddEventToPendingNotifies(Notification *n)
2290
0
{
2291
0
  Assert(pendingNotifies->events != NIL);
2292
2293
  /* Create the hash table if it's time to */
2294
0
  if (list_length(pendingNotifies->events) >= MIN_HASHABLE_NOTIFIES &&
2295
0
    pendingNotifies->hashtab == NULL)
2296
0
  {
2297
0
    HASHCTL   hash_ctl;
2298
0
    ListCell   *l;
2299
2300
    /* Create the hash table */
2301
0
    hash_ctl.keysize = sizeof(Notification *);
2302
0
    hash_ctl.entrysize = sizeof(struct NotificationHash);
2303
0
    hash_ctl.hash = notification_hash;
2304
0
    hash_ctl.match = notification_match;
2305
0
    hash_ctl.hcxt = CurTransactionContext;
2306
0
    pendingNotifies->hashtab =
2307
0
      hash_create("Pending Notifies",
2308
0
            256L,
2309
0
            &hash_ctl,
2310
0
            HASH_ELEM | HASH_FUNCTION | HASH_COMPARE | HASH_CONTEXT);
2311
2312
    /* Insert all the already-existing events */
2313
0
    foreach(l, pendingNotifies->events)
2314
0
    {
2315
0
      Notification *oldn = (Notification *) lfirst(l);
2316
0
      bool    found;
2317
2318
0
      (void) hash_search(pendingNotifies->hashtab,
2319
0
                 &oldn,
2320
0
                 HASH_ENTER,
2321
0
                 &found);
2322
0
      Assert(!found);
2323
0
    }
2324
0
  }
2325
2326
  /* Add new event to the list, in order */
2327
0
  pendingNotifies->events = lappend(pendingNotifies->events, n);
2328
2329
  /* Add event to the hash table if needed */
2330
0
  if (pendingNotifies->hashtab != NULL)
2331
0
  {
2332
0
    bool    found;
2333
2334
0
    (void) hash_search(pendingNotifies->hashtab,
2335
0
               &n,
2336
0
               HASH_ENTER,
2337
0
               &found);
2338
0
    Assert(!found);
2339
0
  }
2340
0
}
2341
2342
/*
2343
 * notification_hash: hash function for notification hash table
2344
 *
2345
 * The hash "keys" are pointers to Notification structs.
2346
 */
2347
static uint32
2348
notification_hash(const void *key, Size keysize)
2349
0
{
2350
0
  const Notification *k = *(const Notification *const *) key;
2351
2352
0
  Assert(keysize == sizeof(Notification *));
2353
  /* We don't bother to include the payload's trailing null in the hash */
2354
0
  return DatumGetUInt32(hash_any((const unsigned char *) k->data,
2355
0
                   k->channel_len + k->payload_len + 1));
2356
0
}
2357
2358
/*
2359
 * notification_match: match function to use with notification_hash
2360
 */
2361
static int
2362
notification_match(const void *key1, const void *key2, Size keysize)
2363
0
{
2364
0
  const Notification *k1 = *(const Notification *const *) key1;
2365
0
  const Notification *k2 = *(const Notification *const *) key2;
2366
2367
0
  Assert(keysize == sizeof(Notification *));
2368
0
  if (k1->channel_len == k2->channel_len &&
2369
0
    k1->payload_len == k2->payload_len &&
2370
0
    memcmp(k1->data, k2->data,
2371
0
         k1->channel_len + k1->payload_len + 2) == 0)
2372
0
    return 0;       /* equal */
2373
0
  return 1;         /* not equal */
2374
0
}
2375
2376
/* Clear the pendingActions and pendingNotifies lists. */
2377
static void
2378
ClearPendingActionsAndNotifies(void)
2379
0
{
2380
  /*
2381
   * Everything's allocated in either TopTransactionContext or the context
2382
   * for the subtransaction to which it corresponds.  So, there's nothing to
2383
   * do here except reset the pointers; the space will be reclaimed when the
2384
   * contexts are deleted.
2385
   */
2386
0
  pendingActions = NULL;
2387
0
  pendingNotifies = NULL;
2388
0
}
2389
2390
/*
2391
 * GUC check_hook for notify_buffers
2392
 */
2393
bool
2394
check_notify_buffers(int *newval, void **extra, GucSource source)
2395
0
{
2396
0
  return check_slru_buffers("notify_buffers", newval);
2397
0
}