/src/postgres/src/backend/executor/execIndexing.c
Line | Count | Source (jump to first uncovered line) |
1 | | /*------------------------------------------------------------------------- |
2 | | * |
3 | | * execIndexing.c |
4 | | * routines for inserting index tuples and enforcing unique and |
5 | | * exclusion constraints. |
6 | | * |
7 | | * ExecInsertIndexTuples() is the main entry point. It's called after |
8 | | * inserting a tuple to the heap, and it inserts corresponding index tuples |
9 | | * into all indexes. At the same time, it enforces any unique and |
10 | | * exclusion constraints: |
11 | | * |
12 | | * Unique Indexes |
13 | | * -------------- |
14 | | * |
15 | | * Enforcing a unique constraint is straightforward. When the index AM |
16 | | * inserts the tuple to the index, it also checks that there are no |
17 | | * conflicting tuples in the index already. It does so atomically, so that |
18 | | * even if two backends try to insert the same key concurrently, only one |
19 | | * of them will succeed. All the logic to ensure atomicity, and to wait |
20 | | * for in-progress transactions to finish, is handled by the index AM. |
21 | | * |
22 | | * If a unique constraint is deferred, we request the index AM to not |
23 | | * throw an error if a conflict is found. Instead, we make note that there |
24 | | * was a conflict and return the list of indexes with conflicts to the |
25 | | * caller. The caller must re-check them later, by calling index_insert() |
26 | | * with the UNIQUE_CHECK_EXISTING option. |
27 | | * |
28 | | * Exclusion Constraints |
29 | | * --------------------- |
30 | | * |
31 | | * Exclusion constraints are different from unique indexes in that when the |
32 | | * tuple is inserted to the index, the index AM does not check for |
33 | | * duplicate keys at the same time. After the insertion, we perform a |
34 | | * separate scan on the index to check for conflicting tuples, and if one |
35 | | * is found, we throw an error and the transaction is aborted. If the |
36 | | * conflicting tuple's inserter or deleter is in-progress, we wait for it |
37 | | * to finish first. |
38 | | * |
39 | | * There is a chance of deadlock, if two backends insert a tuple at the |
40 | | * same time, and then perform the scan to check for conflicts. They will |
41 | | * find each other's tuple, and both try to wait for each other. The |
42 | | * deadlock detector will detect that, and abort one of the transactions. |
43 | | * That's fairly harmless, as one of them was bound to abort with a |
44 | | * "duplicate key error" anyway, although you get a different error |
45 | | * message. |
46 | | * |
47 | | * If an exclusion constraint is deferred, we still perform the conflict |
48 | | * checking scan immediately after inserting the index tuple. But instead |
49 | | * of throwing an error if a conflict is found, we return that information |
50 | | * to the caller. The caller must re-check them later by calling |
51 | | * check_exclusion_constraint(). |
52 | | * |
53 | | * Speculative insertion |
54 | | * --------------------- |
55 | | * |
56 | | * Speculative insertion is a two-phase mechanism used to implement |
57 | | * INSERT ... ON CONFLICT DO UPDATE/NOTHING. The tuple is first inserted |
58 | | * to the heap and update the indexes as usual, but if a constraint is |
59 | | * violated, we can still back out the insertion without aborting the whole |
60 | | * transaction. In an INSERT ... ON CONFLICT statement, if a conflict is |
61 | | * detected, the inserted tuple is backed out and the ON CONFLICT action is |
62 | | * executed instead. |
63 | | * |
64 | | * Insertion to a unique index works as usual: the index AM checks for |
65 | | * duplicate keys atomically with the insertion. But instead of throwing |
66 | | * an error on a conflict, the speculatively inserted heap tuple is backed |
67 | | * out. |
68 | | * |
69 | | * Exclusion constraints are slightly more complicated. As mentioned |
70 | | * earlier, there is a risk of deadlock when two backends insert the same |
71 | | * key concurrently. That was not a problem for regular insertions, when |
72 | | * one of the transactions has to be aborted anyway, but with a speculative |
73 | | * insertion we cannot let a deadlock happen, because we only want to back |
74 | | * out the speculatively inserted tuple on conflict, not abort the whole |
75 | | * transaction. |
76 | | * |
77 | | * When a backend detects that the speculative insertion conflicts with |
78 | | * another in-progress tuple, it has two options: |
79 | | * |
80 | | * 1. back out the speculatively inserted tuple, then wait for the other |
81 | | * transaction, and retry. Or, |
82 | | * 2. wait for the other transaction, with the speculatively inserted tuple |
83 | | * still in place. |
84 | | * |
85 | | * If two backends insert at the same time, and both try to wait for each |
86 | | * other, they will deadlock. So option 2 is not acceptable. Option 1 |
87 | | * avoids the deadlock, but it is prone to a livelock instead. Both |
88 | | * transactions will wake up immediately as the other transaction backs |
89 | | * out. Then they both retry, and conflict with each other again, lather, |
90 | | * rinse, repeat. |
91 | | * |
92 | | * To avoid the livelock, one of the backends must back out first, and then |
93 | | * wait, while the other one waits without backing out. It doesn't matter |
94 | | * which one backs out, so we employ an arbitrary rule that the transaction |
95 | | * with the higher XID backs out. |
96 | | * |
97 | | * |
98 | | * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group |
99 | | * Portions Copyright (c) 1994, Regents of the University of California |
100 | | * |
101 | | * |
102 | | * IDENTIFICATION |
103 | | * src/backend/executor/execIndexing.c |
104 | | * |
105 | | *------------------------------------------------------------------------- |
106 | | */ |
107 | | #include "postgres.h" |
108 | | |
109 | | #include "access/genam.h" |
110 | | #include "access/relscan.h" |
111 | | #include "access/tableam.h" |
112 | | #include "access/xact.h" |
113 | | #include "catalog/index.h" |
114 | | #include "executor/executor.h" |
115 | | #include "nodes/nodeFuncs.h" |
116 | | #include "storage/lmgr.h" |
117 | | #include "utils/multirangetypes.h" |
118 | | #include "utils/rangetypes.h" |
119 | | #include "utils/snapmgr.h" |
120 | | |
121 | | /* waitMode argument to check_exclusion_or_unique_constraint() */ |
122 | | typedef enum |
123 | | { |
124 | | CEOUC_WAIT, |
125 | | CEOUC_NOWAIT, |
126 | | CEOUC_LIVELOCK_PREVENTING_WAIT, |
127 | | } CEOUC_WAIT_MODE; |
128 | | |
129 | | static bool check_exclusion_or_unique_constraint(Relation heap, Relation index, |
130 | | IndexInfo *indexInfo, |
131 | | ItemPointer tupleid, |
132 | | const Datum *values, const bool *isnull, |
133 | | EState *estate, bool newIndex, |
134 | | CEOUC_WAIT_MODE waitMode, |
135 | | bool violationOK, |
136 | | ItemPointer conflictTid); |
137 | | |
138 | | static bool index_recheck_constraint(Relation index, const Oid *constr_procs, |
139 | | const Datum *existing_values, const bool *existing_isnull, |
140 | | const Datum *new_values); |
141 | | static bool index_unchanged_by_update(ResultRelInfo *resultRelInfo, |
142 | | EState *estate, IndexInfo *indexInfo, |
143 | | Relation indexRelation); |
144 | | static bool index_expression_changed_walker(Node *node, |
145 | | Bitmapset *allUpdatedCols); |
146 | | static void ExecWithoutOverlapsNotEmpty(Relation rel, NameData attname, Datum attval, |
147 | | char typtype, Oid atttypid); |
148 | | |
149 | | /* ---------------------------------------------------------------- |
150 | | * ExecOpenIndices |
151 | | * |
152 | | * Find the indices associated with a result relation, open them, |
153 | | * and save information about them in the result ResultRelInfo. |
154 | | * |
155 | | * At entry, caller has already opened and locked |
156 | | * resultRelInfo->ri_RelationDesc. |
157 | | * ---------------------------------------------------------------- |
158 | | */ |
159 | | void |
160 | | ExecOpenIndices(ResultRelInfo *resultRelInfo, bool speculative) |
161 | 0 | { |
162 | 0 | Relation resultRelation = resultRelInfo->ri_RelationDesc; |
163 | 0 | List *indexoidlist; |
164 | 0 | ListCell *l; |
165 | 0 | int len, |
166 | 0 | i; |
167 | 0 | RelationPtr relationDescs; |
168 | 0 | IndexInfo **indexInfoArray; |
169 | |
|
170 | 0 | resultRelInfo->ri_NumIndices = 0; |
171 | | |
172 | | /* fast path if no indexes */ |
173 | 0 | if (!RelationGetForm(resultRelation)->relhasindex) |
174 | 0 | return; |
175 | | |
176 | | /* |
177 | | * Get cached list of index OIDs |
178 | | */ |
179 | 0 | indexoidlist = RelationGetIndexList(resultRelation); |
180 | 0 | len = list_length(indexoidlist); |
181 | 0 | if (len == 0) |
182 | 0 | return; |
183 | | |
184 | | /* This Assert will fail if ExecOpenIndices is called twice */ |
185 | 0 | Assert(resultRelInfo->ri_IndexRelationDescs == NULL); |
186 | | |
187 | | /* |
188 | | * allocate space for result arrays |
189 | | */ |
190 | 0 | relationDescs = (RelationPtr) palloc(len * sizeof(Relation)); |
191 | 0 | indexInfoArray = (IndexInfo **) palloc(len * sizeof(IndexInfo *)); |
192 | |
|
193 | 0 | resultRelInfo->ri_NumIndices = len; |
194 | 0 | resultRelInfo->ri_IndexRelationDescs = relationDescs; |
195 | 0 | resultRelInfo->ri_IndexRelationInfo = indexInfoArray; |
196 | | |
197 | | /* |
198 | | * For each index, open the index relation and save pg_index info. We |
199 | | * acquire RowExclusiveLock, signifying we will update the index. |
200 | | * |
201 | | * Note: we do this even if the index is not indisready; it's not worth |
202 | | * the trouble to optimize for the case where it isn't. |
203 | | */ |
204 | 0 | i = 0; |
205 | 0 | foreach(l, indexoidlist) |
206 | 0 | { |
207 | 0 | Oid indexOid = lfirst_oid(l); |
208 | 0 | Relation indexDesc; |
209 | 0 | IndexInfo *ii; |
210 | |
|
211 | 0 | indexDesc = index_open(indexOid, RowExclusiveLock); |
212 | | |
213 | | /* extract index key information from the index's pg_index info */ |
214 | 0 | ii = BuildIndexInfo(indexDesc); |
215 | | |
216 | | /* |
217 | | * If the indexes are to be used for speculative insertion, add extra |
218 | | * information required by unique index entries. |
219 | | */ |
220 | 0 | if (speculative && ii->ii_Unique && !indexDesc->rd_index->indisexclusion) |
221 | 0 | BuildSpeculativeIndexInfo(indexDesc, ii); |
222 | |
|
223 | 0 | relationDescs[i] = indexDesc; |
224 | 0 | indexInfoArray[i] = ii; |
225 | 0 | i++; |
226 | 0 | } |
227 | |
|
228 | 0 | list_free(indexoidlist); |
229 | 0 | } |
230 | | |
231 | | /* ---------------------------------------------------------------- |
232 | | * ExecCloseIndices |
233 | | * |
234 | | * Close the index relations stored in resultRelInfo |
235 | | * ---------------------------------------------------------------- |
236 | | */ |
237 | | void |
238 | | ExecCloseIndices(ResultRelInfo *resultRelInfo) |
239 | 0 | { |
240 | 0 | int i; |
241 | 0 | int numIndices; |
242 | 0 | RelationPtr indexDescs; |
243 | 0 | IndexInfo **indexInfos; |
244 | |
|
245 | 0 | numIndices = resultRelInfo->ri_NumIndices; |
246 | 0 | indexDescs = resultRelInfo->ri_IndexRelationDescs; |
247 | 0 | indexInfos = resultRelInfo->ri_IndexRelationInfo; |
248 | |
|
249 | 0 | for (i = 0; i < numIndices; i++) |
250 | 0 | { |
251 | | /* This Assert will fail if ExecCloseIndices is called twice */ |
252 | 0 | Assert(indexDescs[i] != NULL); |
253 | | |
254 | | /* Give the index a chance to do some post-insert cleanup */ |
255 | 0 | index_insert_cleanup(indexDescs[i], indexInfos[i]); |
256 | | |
257 | | /* Drop lock acquired by ExecOpenIndices */ |
258 | 0 | index_close(indexDescs[i], RowExclusiveLock); |
259 | | |
260 | | /* Mark the index as closed */ |
261 | 0 | indexDescs[i] = NULL; |
262 | 0 | } |
263 | | |
264 | | /* |
265 | | * We don't attempt to free the IndexInfo data structures or the arrays, |
266 | | * instead assuming that such stuff will be cleaned up automatically in |
267 | | * FreeExecutorState. |
268 | | */ |
269 | 0 | } |
270 | | |
271 | | /* ---------------------------------------------------------------- |
272 | | * ExecInsertIndexTuples |
273 | | * |
274 | | * This routine takes care of inserting index tuples |
275 | | * into all the relations indexing the result relation |
276 | | * when a heap tuple is inserted into the result relation. |
277 | | * |
278 | | * When 'update' is true and 'onlySummarizing' is false, |
279 | | * executor is performing an UPDATE that could not use an |
280 | | * optimization like heapam's HOT (in more general terms a |
281 | | * call to table_tuple_update() took place and set |
282 | | * 'update_indexes' to TUUI_All). Receiving this hint makes |
283 | | * us consider if we should pass down the 'indexUnchanged' |
284 | | * hint in turn. That's something that we figure out for |
285 | | * each index_insert() call iff 'update' is true. |
286 | | * (When 'update' is false we already know not to pass the |
287 | | * hint to any index.) |
288 | | * |
289 | | * If onlySummarizing is set, an equivalent optimization to |
290 | | * HOT has been applied and any updated columns are indexed |
291 | | * only by summarizing indexes (or in more general terms a |
292 | | * call to table_tuple_update() took place and set |
293 | | * 'update_indexes' to TUUI_Summarizing). We can (and must) |
294 | | * therefore only update the indexes that have |
295 | | * 'amsummarizing' = true. |
296 | | * |
297 | | * Unique and exclusion constraints are enforced at the same |
298 | | * time. This returns a list of index OIDs for any unique or |
299 | | * exclusion constraints that are deferred and that had |
300 | | * potential (unconfirmed) conflicts. (if noDupErr == true, |
301 | | * the same is done for non-deferred constraints, but report |
302 | | * if conflict was speculative or deferred conflict to caller) |
303 | | * |
304 | | * If 'arbiterIndexes' is nonempty, noDupErr applies only to |
305 | | * those indexes. NIL means noDupErr applies to all indexes. |
306 | | * ---------------------------------------------------------------- |
307 | | */ |
308 | | List * |
309 | | ExecInsertIndexTuples(ResultRelInfo *resultRelInfo, |
310 | | TupleTableSlot *slot, |
311 | | EState *estate, |
312 | | bool update, |
313 | | bool noDupErr, |
314 | | bool *specConflict, |
315 | | List *arbiterIndexes, |
316 | | bool onlySummarizing) |
317 | 0 | { |
318 | 0 | ItemPointer tupleid = &slot->tts_tid; |
319 | 0 | List *result = NIL; |
320 | 0 | int i; |
321 | 0 | int numIndices; |
322 | 0 | RelationPtr relationDescs; |
323 | 0 | Relation heapRelation; |
324 | 0 | IndexInfo **indexInfoArray; |
325 | 0 | ExprContext *econtext; |
326 | 0 | Datum values[INDEX_MAX_KEYS]; |
327 | 0 | bool isnull[INDEX_MAX_KEYS]; |
328 | |
|
329 | 0 | Assert(ItemPointerIsValid(tupleid)); |
330 | | |
331 | | /* |
332 | | * Get information from the result relation info structure. |
333 | | */ |
334 | 0 | numIndices = resultRelInfo->ri_NumIndices; |
335 | 0 | relationDescs = resultRelInfo->ri_IndexRelationDescs; |
336 | 0 | indexInfoArray = resultRelInfo->ri_IndexRelationInfo; |
337 | 0 | heapRelation = resultRelInfo->ri_RelationDesc; |
338 | | |
339 | | /* Sanity check: slot must belong to the same rel as the resultRelInfo. */ |
340 | 0 | Assert(slot->tts_tableOid == RelationGetRelid(heapRelation)); |
341 | | |
342 | | /* |
343 | | * We will use the EState's per-tuple context for evaluating predicates |
344 | | * and index expressions (creating it if it's not already there). |
345 | | */ |
346 | 0 | econtext = GetPerTupleExprContext(estate); |
347 | | |
348 | | /* Arrange for econtext's scan tuple to be the tuple under test */ |
349 | 0 | econtext->ecxt_scantuple = slot; |
350 | | |
351 | | /* |
352 | | * for each index, form and insert the index tuple |
353 | | */ |
354 | 0 | for (i = 0; i < numIndices; i++) |
355 | 0 | { |
356 | 0 | Relation indexRelation = relationDescs[i]; |
357 | 0 | IndexInfo *indexInfo; |
358 | 0 | bool applyNoDupErr; |
359 | 0 | IndexUniqueCheck checkUnique; |
360 | 0 | bool indexUnchanged; |
361 | 0 | bool satisfiesConstraint; |
362 | |
|
363 | 0 | if (indexRelation == NULL) |
364 | 0 | continue; |
365 | | |
366 | 0 | indexInfo = indexInfoArray[i]; |
367 | | |
368 | | /* If the index is marked as read-only, ignore it */ |
369 | 0 | if (!indexInfo->ii_ReadyForInserts) |
370 | 0 | continue; |
371 | | |
372 | | /* |
373 | | * Skip processing of non-summarizing indexes if we only update |
374 | | * summarizing indexes |
375 | | */ |
376 | 0 | if (onlySummarizing && !indexInfo->ii_Summarizing) |
377 | 0 | continue; |
378 | | |
379 | | /* Check for partial index */ |
380 | 0 | if (indexInfo->ii_Predicate != NIL) |
381 | 0 | { |
382 | 0 | ExprState *predicate; |
383 | | |
384 | | /* |
385 | | * If predicate state not set up yet, create it (in the estate's |
386 | | * per-query context) |
387 | | */ |
388 | 0 | predicate = indexInfo->ii_PredicateState; |
389 | 0 | if (predicate == NULL) |
390 | 0 | { |
391 | 0 | predicate = ExecPrepareQual(indexInfo->ii_Predicate, estate); |
392 | 0 | indexInfo->ii_PredicateState = predicate; |
393 | 0 | } |
394 | | |
395 | | /* Skip this index-update if the predicate isn't satisfied */ |
396 | 0 | if (!ExecQual(predicate, econtext)) |
397 | 0 | continue; |
398 | 0 | } |
399 | | |
400 | | /* |
401 | | * FormIndexDatum fills in its values and isnull parameters with the |
402 | | * appropriate values for the column(s) of the index. |
403 | | */ |
404 | 0 | FormIndexDatum(indexInfo, |
405 | 0 | slot, |
406 | 0 | estate, |
407 | 0 | values, |
408 | 0 | isnull); |
409 | | |
410 | | /* Check whether to apply noDupErr to this index */ |
411 | 0 | applyNoDupErr = noDupErr && |
412 | 0 | (arbiterIndexes == NIL || |
413 | 0 | list_member_oid(arbiterIndexes, |
414 | 0 | indexRelation->rd_index->indexrelid)); |
415 | | |
416 | | /* |
417 | | * The index AM does the actual insertion, plus uniqueness checking. |
418 | | * |
419 | | * For an immediate-mode unique index, we just tell the index AM to |
420 | | * throw error if not unique. |
421 | | * |
422 | | * For a deferrable unique index, we tell the index AM to just detect |
423 | | * possible non-uniqueness, and we add the index OID to the result |
424 | | * list if further checking is needed. |
425 | | * |
426 | | * For a speculative insertion (used by INSERT ... ON CONFLICT), do |
427 | | * the same as for a deferrable unique index. |
428 | | */ |
429 | 0 | if (!indexRelation->rd_index->indisunique) |
430 | 0 | checkUnique = UNIQUE_CHECK_NO; |
431 | 0 | else if (applyNoDupErr) |
432 | 0 | checkUnique = UNIQUE_CHECK_PARTIAL; |
433 | 0 | else if (indexRelation->rd_index->indimmediate) |
434 | 0 | checkUnique = UNIQUE_CHECK_YES; |
435 | 0 | else |
436 | 0 | checkUnique = UNIQUE_CHECK_PARTIAL; |
437 | | |
438 | | /* |
439 | | * There's definitely going to be an index_insert() call for this |
440 | | * index. If we're being called as part of an UPDATE statement, |
441 | | * consider if the 'indexUnchanged' = true hint should be passed. |
442 | | */ |
443 | 0 | indexUnchanged = update && index_unchanged_by_update(resultRelInfo, |
444 | 0 | estate, |
445 | 0 | indexInfo, |
446 | 0 | indexRelation); |
447 | |
|
448 | 0 | satisfiesConstraint = |
449 | 0 | index_insert(indexRelation, /* index relation */ |
450 | 0 | values, /* array of index Datums */ |
451 | 0 | isnull, /* null flags */ |
452 | 0 | tupleid, /* tid of heap tuple */ |
453 | 0 | heapRelation, /* heap relation */ |
454 | 0 | checkUnique, /* type of uniqueness check to do */ |
455 | 0 | indexUnchanged, /* UPDATE without logical change? */ |
456 | 0 | indexInfo); /* index AM may need this */ |
457 | | |
458 | | /* |
459 | | * If the index has an associated exclusion constraint, check that. |
460 | | * This is simpler than the process for uniqueness checks since we |
461 | | * always insert first and then check. If the constraint is deferred, |
462 | | * we check now anyway, but don't throw error on violation or wait for |
463 | | * a conclusive outcome from a concurrent insertion; instead we'll |
464 | | * queue a recheck event. Similarly, noDupErr callers (speculative |
465 | | * inserters) will recheck later, and wait for a conclusive outcome |
466 | | * then. |
467 | | * |
468 | | * An index for an exclusion constraint can't also be UNIQUE (not an |
469 | | * essential property, we just don't allow it in the grammar), so no |
470 | | * need to preserve the prior state of satisfiesConstraint. |
471 | | */ |
472 | 0 | if (indexInfo->ii_ExclusionOps != NULL) |
473 | 0 | { |
474 | 0 | bool violationOK; |
475 | 0 | CEOUC_WAIT_MODE waitMode; |
476 | |
|
477 | 0 | if (applyNoDupErr) |
478 | 0 | { |
479 | 0 | violationOK = true; |
480 | 0 | waitMode = CEOUC_LIVELOCK_PREVENTING_WAIT; |
481 | 0 | } |
482 | 0 | else if (!indexRelation->rd_index->indimmediate) |
483 | 0 | { |
484 | 0 | violationOK = true; |
485 | 0 | waitMode = CEOUC_NOWAIT; |
486 | 0 | } |
487 | 0 | else |
488 | 0 | { |
489 | 0 | violationOK = false; |
490 | 0 | waitMode = CEOUC_WAIT; |
491 | 0 | } |
492 | |
|
493 | 0 | satisfiesConstraint = |
494 | 0 | check_exclusion_or_unique_constraint(heapRelation, |
495 | 0 | indexRelation, indexInfo, |
496 | 0 | tupleid, values, isnull, |
497 | 0 | estate, false, |
498 | 0 | waitMode, violationOK, NULL); |
499 | 0 | } |
500 | |
|
501 | 0 | if ((checkUnique == UNIQUE_CHECK_PARTIAL || |
502 | 0 | indexInfo->ii_ExclusionOps != NULL) && |
503 | 0 | !satisfiesConstraint) |
504 | 0 | { |
505 | | /* |
506 | | * The tuple potentially violates the uniqueness or exclusion |
507 | | * constraint, so make a note of the index so that we can re-check |
508 | | * it later. Speculative inserters are told if there was a |
509 | | * speculative conflict, since that always requires a restart. |
510 | | */ |
511 | 0 | result = lappend_oid(result, RelationGetRelid(indexRelation)); |
512 | 0 | if (indexRelation->rd_index->indimmediate && specConflict) |
513 | 0 | *specConflict = true; |
514 | 0 | } |
515 | 0 | } |
516 | |
|
517 | 0 | return result; |
518 | 0 | } |
519 | | |
520 | | /* ---------------------------------------------------------------- |
521 | | * ExecCheckIndexConstraints |
522 | | * |
523 | | * This routine checks if a tuple violates any unique or |
524 | | * exclusion constraints. Returns true if there is no conflict. |
525 | | * Otherwise returns false, and the TID of the conflicting |
526 | | * tuple is returned in *conflictTid. |
527 | | * |
528 | | * If 'arbiterIndexes' is given, only those indexes are checked. |
529 | | * NIL means all indexes. |
530 | | * |
531 | | * Note that this doesn't lock the values in any way, so it's |
532 | | * possible that a conflicting tuple is inserted immediately |
533 | | * after this returns. This can be used for either a pre-check |
534 | | * before insertion or a re-check after finding a conflict. |
535 | | * |
536 | | * 'tupleid' should be the TID of the tuple that has been recently |
537 | | * inserted (or can be invalid if we haven't inserted a new tuple yet). |
538 | | * This tuple will be excluded from conflict checking. |
539 | | * ---------------------------------------------------------------- |
540 | | */ |
541 | | bool |
542 | | ExecCheckIndexConstraints(ResultRelInfo *resultRelInfo, TupleTableSlot *slot, |
543 | | EState *estate, ItemPointer conflictTid, |
544 | | ItemPointer tupleid, List *arbiterIndexes) |
545 | 0 | { |
546 | 0 | int i; |
547 | 0 | int numIndices; |
548 | 0 | RelationPtr relationDescs; |
549 | 0 | Relation heapRelation; |
550 | 0 | IndexInfo **indexInfoArray; |
551 | 0 | ExprContext *econtext; |
552 | 0 | Datum values[INDEX_MAX_KEYS]; |
553 | 0 | bool isnull[INDEX_MAX_KEYS]; |
554 | 0 | ItemPointerData invalidItemPtr; |
555 | 0 | bool checkedIndex = false; |
556 | |
|
557 | 0 | ItemPointerSetInvalid(conflictTid); |
558 | 0 | ItemPointerSetInvalid(&invalidItemPtr); |
559 | | |
560 | | /* |
561 | | * Get information from the result relation info structure. |
562 | | */ |
563 | 0 | numIndices = resultRelInfo->ri_NumIndices; |
564 | 0 | relationDescs = resultRelInfo->ri_IndexRelationDescs; |
565 | 0 | indexInfoArray = resultRelInfo->ri_IndexRelationInfo; |
566 | 0 | heapRelation = resultRelInfo->ri_RelationDesc; |
567 | | |
568 | | /* |
569 | | * We will use the EState's per-tuple context for evaluating predicates |
570 | | * and index expressions (creating it if it's not already there). |
571 | | */ |
572 | 0 | econtext = GetPerTupleExprContext(estate); |
573 | | |
574 | | /* Arrange for econtext's scan tuple to be the tuple under test */ |
575 | 0 | econtext->ecxt_scantuple = slot; |
576 | | |
577 | | /* |
578 | | * For each index, form index tuple and check if it satisfies the |
579 | | * constraint. |
580 | | */ |
581 | 0 | for (i = 0; i < numIndices; i++) |
582 | 0 | { |
583 | 0 | Relation indexRelation = relationDescs[i]; |
584 | 0 | IndexInfo *indexInfo; |
585 | 0 | bool satisfiesConstraint; |
586 | |
|
587 | 0 | if (indexRelation == NULL) |
588 | 0 | continue; |
589 | | |
590 | 0 | indexInfo = indexInfoArray[i]; |
591 | |
|
592 | 0 | if (!indexInfo->ii_Unique && !indexInfo->ii_ExclusionOps) |
593 | 0 | continue; |
594 | | |
595 | | /* If the index is marked as read-only, ignore it */ |
596 | 0 | if (!indexInfo->ii_ReadyForInserts) |
597 | 0 | continue; |
598 | | |
599 | | /* When specific arbiter indexes requested, only examine them */ |
600 | 0 | if (arbiterIndexes != NIL && |
601 | 0 | !list_member_oid(arbiterIndexes, |
602 | 0 | indexRelation->rd_index->indexrelid)) |
603 | 0 | continue; |
604 | | |
605 | 0 | if (!indexRelation->rd_index->indimmediate) |
606 | 0 | ereport(ERROR, |
607 | 0 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
608 | 0 | errmsg("ON CONFLICT does not support deferrable unique constraints/exclusion constraints as arbiters"), |
609 | 0 | errtableconstraint(heapRelation, |
610 | 0 | RelationGetRelationName(indexRelation)))); |
611 | | |
612 | 0 | checkedIndex = true; |
613 | | |
614 | | /* Check for partial index */ |
615 | 0 | if (indexInfo->ii_Predicate != NIL) |
616 | 0 | { |
617 | 0 | ExprState *predicate; |
618 | | |
619 | | /* |
620 | | * If predicate state not set up yet, create it (in the estate's |
621 | | * per-query context) |
622 | | */ |
623 | 0 | predicate = indexInfo->ii_PredicateState; |
624 | 0 | if (predicate == NULL) |
625 | 0 | { |
626 | 0 | predicate = ExecPrepareQual(indexInfo->ii_Predicate, estate); |
627 | 0 | indexInfo->ii_PredicateState = predicate; |
628 | 0 | } |
629 | | |
630 | | /* Skip this index-update if the predicate isn't satisfied */ |
631 | 0 | if (!ExecQual(predicate, econtext)) |
632 | 0 | continue; |
633 | 0 | } |
634 | | |
635 | | /* |
636 | | * FormIndexDatum fills in its values and isnull parameters with the |
637 | | * appropriate values for the column(s) of the index. |
638 | | */ |
639 | 0 | FormIndexDatum(indexInfo, |
640 | 0 | slot, |
641 | 0 | estate, |
642 | 0 | values, |
643 | 0 | isnull); |
644 | |
|
645 | 0 | satisfiesConstraint = |
646 | 0 | check_exclusion_or_unique_constraint(heapRelation, indexRelation, |
647 | 0 | indexInfo, tupleid, |
648 | 0 | values, isnull, estate, false, |
649 | 0 | CEOUC_WAIT, true, |
650 | 0 | conflictTid); |
651 | 0 | if (!satisfiesConstraint) |
652 | 0 | return false; |
653 | 0 | } |
654 | | |
655 | 0 | if (arbiterIndexes != NIL && !checkedIndex) |
656 | 0 | elog(ERROR, "unexpected failure to find arbiter index"); |
657 | | |
658 | 0 | return true; |
659 | 0 | } |
660 | | |
661 | | /* |
662 | | * Check for violation of an exclusion or unique constraint |
663 | | * |
664 | | * heap: the table containing the new tuple |
665 | | * index: the index supporting the constraint |
666 | | * indexInfo: info about the index, including the exclusion properties |
667 | | * tupleid: heap TID of the new tuple we have just inserted (invalid if we |
668 | | * haven't inserted a new tuple yet) |
669 | | * values, isnull: the *index* column values computed for the new tuple |
670 | | * estate: an EState we can do evaluation in |
671 | | * newIndex: if true, we are trying to build a new index (this affects |
672 | | * only the wording of error messages) |
673 | | * waitMode: whether to wait for concurrent inserters/deleters |
674 | | * violationOK: if true, don't throw error for violation |
675 | | * conflictTid: if not-NULL, the TID of the conflicting tuple is returned here |
676 | | * |
677 | | * Returns true if OK, false if actual or potential violation |
678 | | * |
679 | | * 'waitMode' determines what happens if a conflict is detected with a tuple |
680 | | * that was inserted or deleted by a transaction that's still running. |
681 | | * CEOUC_WAIT means that we wait for the transaction to commit, before |
682 | | * throwing an error or returning. CEOUC_NOWAIT means that we report the |
683 | | * violation immediately; so the violation is only potential, and the caller |
684 | | * must recheck sometime later. This behavior is convenient for deferred |
685 | | * exclusion checks; we need not bother queuing a deferred event if there is |
686 | | * definitely no conflict at insertion time. |
687 | | * |
688 | | * CEOUC_LIVELOCK_PREVENTING_WAIT is like CEOUC_NOWAIT, but we will sometimes |
689 | | * wait anyway, to prevent livelocking if two transactions try inserting at |
690 | | * the same time. This is used with speculative insertions, for INSERT ON |
691 | | * CONFLICT statements. (See notes in file header) |
692 | | * |
693 | | * If violationOK is true, we just report the potential or actual violation to |
694 | | * the caller by returning 'false'. Otherwise we throw a descriptive error |
695 | | * message here. When violationOK is false, a false result is impossible. |
696 | | * |
697 | | * Note: The indexam is normally responsible for checking unique constraints, |
698 | | * so this normally only needs to be used for exclusion constraints. But this |
699 | | * function is also called when doing a "pre-check" for conflicts on a unique |
700 | | * constraint, when doing speculative insertion. Caller may use the returned |
701 | | * conflict TID to take further steps. |
702 | | */ |
703 | | static bool |
704 | | check_exclusion_or_unique_constraint(Relation heap, Relation index, |
705 | | IndexInfo *indexInfo, |
706 | | ItemPointer tupleid, |
707 | | const Datum *values, const bool *isnull, |
708 | | EState *estate, bool newIndex, |
709 | | CEOUC_WAIT_MODE waitMode, |
710 | | bool violationOK, |
711 | | ItemPointer conflictTid) |
712 | 0 | { |
713 | 0 | Oid *constr_procs; |
714 | 0 | uint16 *constr_strats; |
715 | 0 | Oid *index_collations = index->rd_indcollation; |
716 | 0 | int indnkeyatts = IndexRelationGetNumberOfKeyAttributes(index); |
717 | 0 | IndexScanDesc index_scan; |
718 | 0 | ScanKeyData scankeys[INDEX_MAX_KEYS]; |
719 | 0 | SnapshotData DirtySnapshot; |
720 | 0 | int i; |
721 | 0 | bool conflict; |
722 | 0 | bool found_self; |
723 | 0 | ExprContext *econtext; |
724 | 0 | TupleTableSlot *existing_slot; |
725 | 0 | TupleTableSlot *save_scantuple; |
726 | |
|
727 | 0 | if (indexInfo->ii_ExclusionOps) |
728 | 0 | { |
729 | 0 | constr_procs = indexInfo->ii_ExclusionProcs; |
730 | 0 | constr_strats = indexInfo->ii_ExclusionStrats; |
731 | 0 | } |
732 | 0 | else |
733 | 0 | { |
734 | 0 | constr_procs = indexInfo->ii_UniqueProcs; |
735 | 0 | constr_strats = indexInfo->ii_UniqueStrats; |
736 | 0 | } |
737 | | |
738 | | /* |
739 | | * If this is a WITHOUT OVERLAPS constraint, we must also forbid empty |
740 | | * ranges/multiranges. This must happen before we look for NULLs below, or |
741 | | * a UNIQUE constraint could insert an empty range along with a NULL |
742 | | * scalar part. |
743 | | */ |
744 | 0 | if (indexInfo->ii_WithoutOverlaps) |
745 | 0 | { |
746 | | /* |
747 | | * Look up the type from the heap tuple, but check the Datum from the |
748 | | * index tuple. |
749 | | */ |
750 | 0 | AttrNumber attno = indexInfo->ii_IndexAttrNumbers[indnkeyatts - 1]; |
751 | |
|
752 | 0 | if (!isnull[indnkeyatts - 1]) |
753 | 0 | { |
754 | 0 | TupleDesc tupdesc = RelationGetDescr(heap); |
755 | 0 | Form_pg_attribute att = TupleDescAttr(tupdesc, attno - 1); |
756 | 0 | TypeCacheEntry *typcache = lookup_type_cache(att->atttypid, 0); |
757 | |
|
758 | 0 | ExecWithoutOverlapsNotEmpty(heap, att->attname, |
759 | 0 | values[indnkeyatts - 1], |
760 | 0 | typcache->typtype, att->atttypid); |
761 | 0 | } |
762 | 0 | } |
763 | | |
764 | | /* |
765 | | * If any of the input values are NULL, and the index uses the default |
766 | | * nulls-are-distinct mode, the constraint check is assumed to pass (i.e., |
767 | | * we assume the operators are strict). Otherwise, we interpret the |
768 | | * constraint as specifying IS NULL for each column whose input value is |
769 | | * NULL. |
770 | | */ |
771 | 0 | if (!indexInfo->ii_NullsNotDistinct) |
772 | 0 | { |
773 | 0 | for (i = 0; i < indnkeyatts; i++) |
774 | 0 | { |
775 | 0 | if (isnull[i]) |
776 | 0 | return true; |
777 | 0 | } |
778 | 0 | } |
779 | | |
780 | | /* |
781 | | * Search the tuples that are in the index for any violations, including |
782 | | * tuples that aren't visible yet. |
783 | | */ |
784 | 0 | InitDirtySnapshot(DirtySnapshot); |
785 | |
|
786 | 0 | for (i = 0; i < indnkeyatts; i++) |
787 | 0 | { |
788 | 0 | ScanKeyEntryInitialize(&scankeys[i], |
789 | 0 | isnull[i] ? SK_ISNULL | SK_SEARCHNULL : 0, |
790 | 0 | i + 1, |
791 | 0 | constr_strats[i], |
792 | 0 | InvalidOid, |
793 | 0 | index_collations[i], |
794 | 0 | constr_procs[i], |
795 | 0 | values[i]); |
796 | 0 | } |
797 | | |
798 | | /* |
799 | | * Need a TupleTableSlot to put existing tuples in. |
800 | | * |
801 | | * To use FormIndexDatum, we have to make the econtext's scantuple point |
802 | | * to this slot. Be sure to save and restore caller's value for |
803 | | * scantuple. |
804 | | */ |
805 | 0 | existing_slot = table_slot_create(heap, NULL); |
806 | |
|
807 | 0 | econtext = GetPerTupleExprContext(estate); |
808 | 0 | save_scantuple = econtext->ecxt_scantuple; |
809 | 0 | econtext->ecxt_scantuple = existing_slot; |
810 | | |
811 | | /* |
812 | | * May have to restart scan from this point if a potential conflict is |
813 | | * found. |
814 | | */ |
815 | 0 | retry: |
816 | 0 | conflict = false; |
817 | 0 | found_self = false; |
818 | 0 | index_scan = index_beginscan(heap, index, &DirtySnapshot, NULL, indnkeyatts, 0); |
819 | 0 | index_rescan(index_scan, scankeys, indnkeyatts, NULL, 0); |
820 | |
|
821 | 0 | while (index_getnext_slot(index_scan, ForwardScanDirection, existing_slot)) |
822 | 0 | { |
823 | 0 | TransactionId xwait; |
824 | 0 | XLTW_Oper reason_wait; |
825 | 0 | Datum existing_values[INDEX_MAX_KEYS]; |
826 | 0 | bool existing_isnull[INDEX_MAX_KEYS]; |
827 | 0 | char *error_new; |
828 | 0 | char *error_existing; |
829 | | |
830 | | /* |
831 | | * Ignore the entry for the tuple we're trying to check. |
832 | | */ |
833 | 0 | if (ItemPointerIsValid(tupleid) && |
834 | 0 | ItemPointerEquals(tupleid, &existing_slot->tts_tid)) |
835 | 0 | { |
836 | 0 | if (found_self) /* should not happen */ |
837 | 0 | elog(ERROR, "found self tuple multiple times in index \"%s\"", |
838 | 0 | RelationGetRelationName(index)); |
839 | 0 | found_self = true; |
840 | 0 | continue; |
841 | 0 | } |
842 | | |
843 | | /* |
844 | | * Extract the index column values and isnull flags from the existing |
845 | | * tuple. |
846 | | */ |
847 | 0 | FormIndexDatum(indexInfo, existing_slot, estate, |
848 | 0 | existing_values, existing_isnull); |
849 | | |
850 | | /* If lossy indexscan, must recheck the condition */ |
851 | 0 | if (index_scan->xs_recheck) |
852 | 0 | { |
853 | 0 | if (!index_recheck_constraint(index, |
854 | 0 | constr_procs, |
855 | 0 | existing_values, |
856 | 0 | existing_isnull, |
857 | 0 | values)) |
858 | 0 | continue; /* tuple doesn't actually match, so no |
859 | | * conflict */ |
860 | 0 | } |
861 | | |
862 | | /* |
863 | | * At this point we have either a conflict or a potential conflict. |
864 | | * |
865 | | * If an in-progress transaction is affecting the visibility of this |
866 | | * tuple, we need to wait for it to complete and then recheck (unless |
867 | | * the caller requested not to). For simplicity we do rechecking by |
868 | | * just restarting the whole scan --- this case probably doesn't |
869 | | * happen often enough to be worth trying harder, and anyway we don't |
870 | | * want to hold any index internal locks while waiting. |
871 | | */ |
872 | 0 | xwait = TransactionIdIsValid(DirtySnapshot.xmin) ? |
873 | 0 | DirtySnapshot.xmin : DirtySnapshot.xmax; |
874 | |
|
875 | 0 | if (TransactionIdIsValid(xwait) && |
876 | 0 | (waitMode == CEOUC_WAIT || |
877 | 0 | (waitMode == CEOUC_LIVELOCK_PREVENTING_WAIT && |
878 | 0 | DirtySnapshot.speculativeToken && |
879 | 0 | TransactionIdPrecedes(GetCurrentTransactionId(), xwait)))) |
880 | 0 | { |
881 | 0 | reason_wait = indexInfo->ii_ExclusionOps ? |
882 | 0 | XLTW_RecheckExclusionConstr : XLTW_InsertIndex; |
883 | 0 | index_endscan(index_scan); |
884 | 0 | if (DirtySnapshot.speculativeToken) |
885 | 0 | SpeculativeInsertionWait(DirtySnapshot.xmin, |
886 | 0 | DirtySnapshot.speculativeToken); |
887 | 0 | else |
888 | 0 | XactLockTableWait(xwait, heap, |
889 | 0 | &existing_slot->tts_tid, reason_wait); |
890 | 0 | goto retry; |
891 | 0 | } |
892 | | |
893 | | /* |
894 | | * We have a definite conflict (or a potential one, but the caller |
895 | | * didn't want to wait). Return it to caller, or report it. |
896 | | */ |
897 | 0 | if (violationOK) |
898 | 0 | { |
899 | 0 | conflict = true; |
900 | 0 | if (conflictTid) |
901 | 0 | *conflictTid = existing_slot->tts_tid; |
902 | 0 | break; |
903 | 0 | } |
904 | | |
905 | 0 | error_new = BuildIndexValueDescription(index, values, isnull); |
906 | 0 | error_existing = BuildIndexValueDescription(index, existing_values, |
907 | 0 | existing_isnull); |
908 | 0 | if (newIndex) |
909 | 0 | ereport(ERROR, |
910 | 0 | (errcode(ERRCODE_EXCLUSION_VIOLATION), |
911 | 0 | errmsg("could not create exclusion constraint \"%s\"", |
912 | 0 | RelationGetRelationName(index)), |
913 | 0 | error_new && error_existing ? |
914 | 0 | errdetail("Key %s conflicts with key %s.", |
915 | 0 | error_new, error_existing) : |
916 | 0 | errdetail("Key conflicts exist."), |
917 | 0 | errtableconstraint(heap, |
918 | 0 | RelationGetRelationName(index)))); |
919 | 0 | else |
920 | 0 | ereport(ERROR, |
921 | 0 | (errcode(ERRCODE_EXCLUSION_VIOLATION), |
922 | 0 | errmsg("conflicting key value violates exclusion constraint \"%s\"", |
923 | 0 | RelationGetRelationName(index)), |
924 | 0 | error_new && error_existing ? |
925 | 0 | errdetail("Key %s conflicts with existing key %s.", |
926 | 0 | error_new, error_existing) : |
927 | 0 | errdetail("Key conflicts with existing key."), |
928 | 0 | errtableconstraint(heap, |
929 | 0 | RelationGetRelationName(index)))); |
930 | 0 | } |
931 | | |
932 | 0 | index_endscan(index_scan); |
933 | | |
934 | | /* |
935 | | * Ordinarily, at this point the search should have found the originally |
936 | | * inserted tuple (if any), unless we exited the loop early because of |
937 | | * conflict. However, it is possible to define exclusion constraints for |
938 | | * which that wouldn't be true --- for instance, if the operator is <>. So |
939 | | * we no longer complain if found_self is still false. |
940 | | */ |
941 | |
|
942 | 0 | econtext->ecxt_scantuple = save_scantuple; |
943 | |
|
944 | 0 | ExecDropSingleTupleTableSlot(existing_slot); |
945 | |
|
946 | 0 | return !conflict; |
947 | 0 | } |
948 | | |
949 | | /* |
950 | | * Check for violation of an exclusion constraint |
951 | | * |
952 | | * This is a dumbed down version of check_exclusion_or_unique_constraint |
953 | | * for external callers. They don't need all the special modes. |
954 | | */ |
955 | | void |
956 | | check_exclusion_constraint(Relation heap, Relation index, |
957 | | IndexInfo *indexInfo, |
958 | | ItemPointer tupleid, |
959 | | const Datum *values, const bool *isnull, |
960 | | EState *estate, bool newIndex) |
961 | 0 | { |
962 | 0 | (void) check_exclusion_or_unique_constraint(heap, index, indexInfo, tupleid, |
963 | 0 | values, isnull, |
964 | 0 | estate, newIndex, |
965 | 0 | CEOUC_WAIT, false, NULL); |
966 | 0 | } |
967 | | |
968 | | /* |
969 | | * Check existing tuple's index values to see if it really matches the |
970 | | * exclusion condition against the new_values. Returns true if conflict. |
971 | | */ |
972 | | static bool |
973 | | index_recheck_constraint(Relation index, const Oid *constr_procs, |
974 | | const Datum *existing_values, const bool *existing_isnull, |
975 | | const Datum *new_values) |
976 | 0 | { |
977 | 0 | int indnkeyatts = IndexRelationGetNumberOfKeyAttributes(index); |
978 | 0 | int i; |
979 | |
|
980 | 0 | for (i = 0; i < indnkeyatts; i++) |
981 | 0 | { |
982 | | /* Assume the exclusion operators are strict */ |
983 | 0 | if (existing_isnull[i]) |
984 | 0 | return false; |
985 | | |
986 | 0 | if (!DatumGetBool(OidFunctionCall2Coll(constr_procs[i], |
987 | 0 | index->rd_indcollation[i], |
988 | 0 | existing_values[i], |
989 | 0 | new_values[i]))) |
990 | 0 | return false; |
991 | 0 | } |
992 | | |
993 | 0 | return true; |
994 | 0 | } |
995 | | |
996 | | /* |
997 | | * Check if ExecInsertIndexTuples() should pass indexUnchanged hint. |
998 | | * |
999 | | * When the executor performs an UPDATE that requires a new round of index |
1000 | | * tuples, determine if we should pass 'indexUnchanged' = true hint for one |
1001 | | * single index. |
1002 | | */ |
1003 | | static bool |
1004 | | index_unchanged_by_update(ResultRelInfo *resultRelInfo, EState *estate, |
1005 | | IndexInfo *indexInfo, Relation indexRelation) |
1006 | 0 | { |
1007 | 0 | Bitmapset *updatedCols; |
1008 | 0 | Bitmapset *extraUpdatedCols; |
1009 | 0 | Bitmapset *allUpdatedCols; |
1010 | 0 | bool hasexpression = false; |
1011 | 0 | List *idxExprs; |
1012 | | |
1013 | | /* |
1014 | | * Check cache first |
1015 | | */ |
1016 | 0 | if (indexInfo->ii_CheckedUnchanged) |
1017 | 0 | return indexInfo->ii_IndexUnchanged; |
1018 | 0 | indexInfo->ii_CheckedUnchanged = true; |
1019 | | |
1020 | | /* |
1021 | | * Check for indexed attribute overlap with updated columns. |
1022 | | * |
1023 | | * Only do this for key columns. A change to a non-key column within an |
1024 | | * INCLUDE index should not be counted here. Non-key column values are |
1025 | | * opaque payload state to the index AM, a little like an extra table TID. |
1026 | | * |
1027 | | * Note that row-level BEFORE triggers won't affect our behavior, since |
1028 | | * they don't affect the updatedCols bitmaps generally. It doesn't seem |
1029 | | * worth the trouble of checking which attributes were changed directly. |
1030 | | */ |
1031 | 0 | updatedCols = ExecGetUpdatedCols(resultRelInfo, estate); |
1032 | 0 | extraUpdatedCols = ExecGetExtraUpdatedCols(resultRelInfo, estate); |
1033 | 0 | for (int attr = 0; attr < indexInfo->ii_NumIndexKeyAttrs; attr++) |
1034 | 0 | { |
1035 | 0 | int keycol = indexInfo->ii_IndexAttrNumbers[attr]; |
1036 | |
|
1037 | 0 | if (keycol <= 0) |
1038 | 0 | { |
1039 | | /* |
1040 | | * Skip expressions for now, but remember to deal with them later |
1041 | | * on |
1042 | | */ |
1043 | 0 | hasexpression = true; |
1044 | 0 | continue; |
1045 | 0 | } |
1046 | | |
1047 | 0 | if (bms_is_member(keycol - FirstLowInvalidHeapAttributeNumber, |
1048 | 0 | updatedCols) || |
1049 | 0 | bms_is_member(keycol - FirstLowInvalidHeapAttributeNumber, |
1050 | 0 | extraUpdatedCols)) |
1051 | 0 | { |
1052 | | /* Changed key column -- don't hint for this index */ |
1053 | 0 | indexInfo->ii_IndexUnchanged = false; |
1054 | 0 | return false; |
1055 | 0 | } |
1056 | 0 | } |
1057 | | |
1058 | | /* |
1059 | | * When we get this far and index has no expressions, return true so that |
1060 | | * index_insert() call will go on to pass 'indexUnchanged' = true hint. |
1061 | | * |
1062 | | * The _absence_ of an indexed key attribute that overlaps with updated |
1063 | | * attributes (in addition to the total absence of indexed expressions) |
1064 | | * shows that the index as a whole is logically unchanged by UPDATE. |
1065 | | */ |
1066 | 0 | if (!hasexpression) |
1067 | 0 | { |
1068 | 0 | indexInfo->ii_IndexUnchanged = true; |
1069 | 0 | return true; |
1070 | 0 | } |
1071 | | |
1072 | | /* |
1073 | | * Need to pass only one bms to expression_tree_walker helper function. |
1074 | | * Avoid allocating memory in common case where there are no extra cols. |
1075 | | */ |
1076 | 0 | if (!extraUpdatedCols) |
1077 | 0 | allUpdatedCols = updatedCols; |
1078 | 0 | else |
1079 | 0 | allUpdatedCols = bms_union(updatedCols, extraUpdatedCols); |
1080 | | |
1081 | | /* |
1082 | | * We have to work slightly harder in the event of indexed expressions, |
1083 | | * but the principle is the same as before: try to find columns (Vars, |
1084 | | * actually) that overlap with known-updated columns. |
1085 | | * |
1086 | | * If we find any matching Vars, don't pass hint for index. Otherwise |
1087 | | * pass hint. |
1088 | | */ |
1089 | 0 | idxExprs = RelationGetIndexExpressions(indexRelation); |
1090 | 0 | hasexpression = index_expression_changed_walker((Node *) idxExprs, |
1091 | 0 | allUpdatedCols); |
1092 | 0 | list_free(idxExprs); |
1093 | 0 | if (extraUpdatedCols) |
1094 | 0 | bms_free(allUpdatedCols); |
1095 | |
|
1096 | 0 | if (hasexpression) |
1097 | 0 | { |
1098 | 0 | indexInfo->ii_IndexUnchanged = false; |
1099 | 0 | return false; |
1100 | 0 | } |
1101 | | |
1102 | | /* |
1103 | | * Deliberately don't consider index predicates. We should even give the |
1104 | | * hint when result rel's "updated tuple" has no corresponding index |
1105 | | * tuple, which is possible with a partial index (provided the usual |
1106 | | * conditions are met). |
1107 | | */ |
1108 | 0 | indexInfo->ii_IndexUnchanged = true; |
1109 | 0 | return true; |
1110 | 0 | } |
1111 | | |
1112 | | /* |
1113 | | * Indexed expression helper for index_unchanged_by_update(). |
1114 | | * |
1115 | | * Returns true when Var that appears within allUpdatedCols located. |
1116 | | */ |
1117 | | static bool |
1118 | | index_expression_changed_walker(Node *node, Bitmapset *allUpdatedCols) |
1119 | 0 | { |
1120 | 0 | if (node == NULL) |
1121 | 0 | return false; |
1122 | | |
1123 | 0 | if (IsA(node, Var)) |
1124 | 0 | { |
1125 | 0 | Var *var = (Var *) node; |
1126 | |
|
1127 | 0 | if (bms_is_member(var->varattno - FirstLowInvalidHeapAttributeNumber, |
1128 | 0 | allUpdatedCols)) |
1129 | 0 | { |
1130 | | /* Var was updated -- indicates that we should not hint */ |
1131 | 0 | return true; |
1132 | 0 | } |
1133 | | |
1134 | | /* Still haven't found a reason to not pass the hint */ |
1135 | 0 | return false; |
1136 | 0 | } |
1137 | | |
1138 | 0 | return expression_tree_walker(node, index_expression_changed_walker, |
1139 | 0 | allUpdatedCols); |
1140 | 0 | } |
1141 | | |
1142 | | /* |
1143 | | * ExecWithoutOverlapsNotEmpty - raise an error if the tuple has an empty |
1144 | | * range or multirange in the given attribute. |
1145 | | */ |
1146 | | static void |
1147 | | ExecWithoutOverlapsNotEmpty(Relation rel, NameData attname, Datum attval, char typtype, Oid atttypid) |
1148 | 0 | { |
1149 | 0 | bool isempty; |
1150 | 0 | RangeType *r; |
1151 | 0 | MultirangeType *mr; |
1152 | |
|
1153 | 0 | switch (typtype) |
1154 | 0 | { |
1155 | 0 | case TYPTYPE_RANGE: |
1156 | 0 | r = DatumGetRangeTypeP(attval); |
1157 | 0 | isempty = RangeIsEmpty(r); |
1158 | 0 | break; |
1159 | 0 | case TYPTYPE_MULTIRANGE: |
1160 | 0 | mr = DatumGetMultirangeTypeP(attval); |
1161 | 0 | isempty = MultirangeIsEmpty(mr); |
1162 | 0 | break; |
1163 | 0 | default: |
1164 | 0 | elog(ERROR, "WITHOUT OVERLAPS column \"%s\" is not a range or multirange", |
1165 | 0 | NameStr(attname)); |
1166 | 0 | } |
1167 | | |
1168 | | /* Report a CHECK_VIOLATION */ |
1169 | 0 | if (isempty) |
1170 | 0 | ereport(ERROR, |
1171 | 0 | (errcode(ERRCODE_CHECK_VIOLATION), |
1172 | 0 | errmsg("empty WITHOUT OVERLAPS value found in column \"%s\" in relation \"%s\"", |
1173 | 0 | NameStr(attname), RelationGetRelationName(rel)))); |
1174 | 0 | } |