/src/postgres/src/backend/executor/execParallel.c
Line | Count | Source (jump to first uncovered line) |
1 | | /*------------------------------------------------------------------------- |
2 | | * |
3 | | * execParallel.c |
4 | | * Support routines for parallel execution. |
5 | | * |
6 | | * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group |
7 | | * Portions Copyright (c) 1994, Regents of the University of California |
8 | | * |
9 | | * This file contains routines that are intended to support setting up, |
10 | | * using, and tearing down a ParallelContext from within the PostgreSQL |
11 | | * executor. The ParallelContext machinery will handle starting the |
12 | | * workers and ensuring that their state generally matches that of the |
13 | | * leader; see src/backend/access/transam/README.parallel for details. |
14 | | * However, we must save and restore relevant executor state, such as |
15 | | * any ParamListInfo associated with the query, buffer/WAL usage info, and |
16 | | * the actual plan to be passed down to the worker. |
17 | | * |
18 | | * IDENTIFICATION |
19 | | * src/backend/executor/execParallel.c |
20 | | * |
21 | | *------------------------------------------------------------------------- |
22 | | */ |
23 | | |
24 | | #include "postgres.h" |
25 | | |
26 | | #include "executor/execParallel.h" |
27 | | #include "executor/executor.h" |
28 | | #include "executor/nodeAgg.h" |
29 | | #include "executor/nodeAppend.h" |
30 | | #include "executor/nodeBitmapHeapscan.h" |
31 | | #include "executor/nodeBitmapIndexscan.h" |
32 | | #include "executor/nodeCustom.h" |
33 | | #include "executor/nodeForeignscan.h" |
34 | | #include "executor/nodeHash.h" |
35 | | #include "executor/nodeHashjoin.h" |
36 | | #include "executor/nodeIncrementalSort.h" |
37 | | #include "executor/nodeIndexonlyscan.h" |
38 | | #include "executor/nodeIndexscan.h" |
39 | | #include "executor/nodeMemoize.h" |
40 | | #include "executor/nodeSeqscan.h" |
41 | | #include "executor/nodeSort.h" |
42 | | #include "executor/nodeSubplan.h" |
43 | | #include "executor/tqueue.h" |
44 | | #include "jit/jit.h" |
45 | | #include "nodes/nodeFuncs.h" |
46 | | #include "pgstat.h" |
47 | | #include "tcop/tcopprot.h" |
48 | | #include "utils/datum.h" |
49 | | #include "utils/dsa.h" |
50 | | #include "utils/lsyscache.h" |
51 | | #include "utils/snapmgr.h" |
52 | | |
53 | | /* |
54 | | * Magic numbers for parallel executor communication. We use constants |
55 | | * greater than any 32-bit integer here so that values < 2^32 can be used |
56 | | * by individual parallel nodes to store their own state. |
57 | | */ |
58 | 0 | #define PARALLEL_KEY_EXECUTOR_FIXED UINT64CONST(0xE000000000000001) |
59 | 0 | #define PARALLEL_KEY_PLANNEDSTMT UINT64CONST(0xE000000000000002) |
60 | 0 | #define PARALLEL_KEY_PARAMLISTINFO UINT64CONST(0xE000000000000003) |
61 | 0 | #define PARALLEL_KEY_BUFFER_USAGE UINT64CONST(0xE000000000000004) |
62 | 0 | #define PARALLEL_KEY_TUPLE_QUEUE UINT64CONST(0xE000000000000005) |
63 | 0 | #define PARALLEL_KEY_INSTRUMENTATION UINT64CONST(0xE000000000000006) |
64 | 0 | #define PARALLEL_KEY_DSA UINT64CONST(0xE000000000000007) |
65 | 0 | #define PARALLEL_KEY_QUERY_TEXT UINT64CONST(0xE000000000000008) |
66 | 0 | #define PARALLEL_KEY_JIT_INSTRUMENTATION UINT64CONST(0xE000000000000009) |
67 | 0 | #define PARALLEL_KEY_WAL_USAGE UINT64CONST(0xE00000000000000A) |
68 | | |
69 | 0 | #define PARALLEL_TUPLE_QUEUE_SIZE 65536 |
70 | | |
71 | | /* |
72 | | * Fixed-size random stuff that we need to pass to parallel workers. |
73 | | */ |
74 | | typedef struct FixedParallelExecutorState |
75 | | { |
76 | | int64 tuples_needed; /* tuple bound, see ExecSetTupleBound */ |
77 | | dsa_pointer param_exec; |
78 | | int eflags; |
79 | | int jit_flags; |
80 | | } FixedParallelExecutorState; |
81 | | |
82 | | /* |
83 | | * DSM structure for accumulating per-PlanState instrumentation. |
84 | | * |
85 | | * instrument_options: Same meaning here as in instrument.c. |
86 | | * |
87 | | * instrument_offset: Offset, relative to the start of this structure, |
88 | | * of the first Instrumentation object. This will depend on the length of |
89 | | * the plan_node_id array. |
90 | | * |
91 | | * num_workers: Number of workers. |
92 | | * |
93 | | * num_plan_nodes: Number of plan nodes. |
94 | | * |
95 | | * plan_node_id: Array of plan nodes for which we are gathering instrumentation |
96 | | * from parallel workers. The length of this array is given by num_plan_nodes. |
97 | | */ |
98 | | struct SharedExecutorInstrumentation |
99 | | { |
100 | | int instrument_options; |
101 | | int instrument_offset; |
102 | | int num_workers; |
103 | | int num_plan_nodes; |
104 | | int plan_node_id[FLEXIBLE_ARRAY_MEMBER]; |
105 | | /* array of num_plan_nodes * num_workers Instrumentation objects follows */ |
106 | | }; |
107 | | #define GetInstrumentationArray(sei) \ |
108 | 0 | (AssertVariableIsOfTypeMacro(sei, SharedExecutorInstrumentation *), \ |
109 | 0 | (Instrumentation *) (((char *) sei) + sei->instrument_offset)) |
110 | | |
111 | | /* Context object for ExecParallelEstimate. */ |
112 | | typedef struct ExecParallelEstimateContext |
113 | | { |
114 | | ParallelContext *pcxt; |
115 | | int nnodes; |
116 | | } ExecParallelEstimateContext; |
117 | | |
118 | | /* Context object for ExecParallelInitializeDSM. */ |
119 | | typedef struct ExecParallelInitializeDSMContext |
120 | | { |
121 | | ParallelContext *pcxt; |
122 | | SharedExecutorInstrumentation *instrumentation; |
123 | | int nnodes; |
124 | | } ExecParallelInitializeDSMContext; |
125 | | |
126 | | /* Helper functions that run in the parallel leader. */ |
127 | | static char *ExecSerializePlan(Plan *plan, EState *estate); |
128 | | static bool ExecParallelEstimate(PlanState *planstate, |
129 | | ExecParallelEstimateContext *e); |
130 | | static bool ExecParallelInitializeDSM(PlanState *planstate, |
131 | | ExecParallelInitializeDSMContext *d); |
132 | | static shm_mq_handle **ExecParallelSetupTupleQueues(ParallelContext *pcxt, |
133 | | bool reinitialize); |
134 | | static bool ExecParallelReInitializeDSM(PlanState *planstate, |
135 | | ParallelContext *pcxt); |
136 | | static bool ExecParallelRetrieveInstrumentation(PlanState *planstate, |
137 | | SharedExecutorInstrumentation *instrumentation); |
138 | | |
139 | | /* Helper function that runs in the parallel worker. */ |
140 | | static DestReceiver *ExecParallelGetReceiver(dsm_segment *seg, shm_toc *toc); |
141 | | |
142 | | /* |
143 | | * Create a serialized representation of the plan to be sent to each worker. |
144 | | */ |
145 | | static char * |
146 | | ExecSerializePlan(Plan *plan, EState *estate) |
147 | 0 | { |
148 | 0 | PlannedStmt *pstmt; |
149 | 0 | ListCell *lc; |
150 | | |
151 | | /* We can't scribble on the original plan, so make a copy. */ |
152 | 0 | plan = copyObject(plan); |
153 | | |
154 | | /* |
155 | | * The worker will start its own copy of the executor, and that copy will |
156 | | * insert a junk filter if the toplevel node has any resjunk entries. We |
157 | | * don't want that to happen, because while resjunk columns shouldn't be |
158 | | * sent back to the user, here the tuples are coming back to another |
159 | | * backend which may very well need them. So mutate the target list |
160 | | * accordingly. This is sort of a hack; there might be better ways to do |
161 | | * this... |
162 | | */ |
163 | 0 | foreach(lc, plan->targetlist) |
164 | 0 | { |
165 | 0 | TargetEntry *tle = lfirst_node(TargetEntry, lc); |
166 | |
|
167 | 0 | tle->resjunk = false; |
168 | 0 | } |
169 | | |
170 | | /* |
171 | | * Create a dummy PlannedStmt. Most of the fields don't need to be valid |
172 | | * for our purposes, but the worker will need at least a minimal |
173 | | * PlannedStmt to start the executor. |
174 | | */ |
175 | 0 | pstmt = makeNode(PlannedStmt); |
176 | 0 | pstmt->commandType = CMD_SELECT; |
177 | 0 | pstmt->queryId = pgstat_get_my_query_id(); |
178 | 0 | pstmt->planId = pgstat_get_my_plan_id(); |
179 | 0 | pstmt->hasReturning = false; |
180 | 0 | pstmt->hasModifyingCTE = false; |
181 | 0 | pstmt->canSetTag = true; |
182 | 0 | pstmt->transientPlan = false; |
183 | 0 | pstmt->dependsOnRole = false; |
184 | 0 | pstmt->parallelModeNeeded = false; |
185 | 0 | pstmt->planTree = plan; |
186 | 0 | pstmt->partPruneInfos = estate->es_part_prune_infos; |
187 | 0 | pstmt->rtable = estate->es_range_table; |
188 | 0 | pstmt->unprunableRelids = estate->es_unpruned_relids; |
189 | 0 | pstmt->permInfos = estate->es_rteperminfos; |
190 | 0 | pstmt->resultRelations = NIL; |
191 | 0 | pstmt->appendRelations = NIL; |
192 | | |
193 | | /* |
194 | | * Transfer only parallel-safe subplans, leaving a NULL "hole" in the list |
195 | | * for unsafe ones (so that the list indexes of the safe ones are |
196 | | * preserved). This positively ensures that the worker won't try to run, |
197 | | * or even do ExecInitNode on, an unsafe subplan. That's important to |
198 | | * protect, eg, non-parallel-aware FDWs from getting into trouble. |
199 | | */ |
200 | 0 | pstmt->subplans = NIL; |
201 | 0 | foreach(lc, estate->es_plannedstmt->subplans) |
202 | 0 | { |
203 | 0 | Plan *subplan = (Plan *) lfirst(lc); |
204 | |
|
205 | 0 | if (subplan && !subplan->parallel_safe) |
206 | 0 | subplan = NULL; |
207 | 0 | pstmt->subplans = lappend(pstmt->subplans, subplan); |
208 | 0 | } |
209 | |
|
210 | 0 | pstmt->rewindPlanIDs = NULL; |
211 | 0 | pstmt->rowMarks = NIL; |
212 | 0 | pstmt->relationOids = NIL; |
213 | 0 | pstmt->invalItems = NIL; /* workers can't replan anyway... */ |
214 | 0 | pstmt->paramExecTypes = estate->es_plannedstmt->paramExecTypes; |
215 | 0 | pstmt->utilityStmt = NULL; |
216 | 0 | pstmt->stmt_location = -1; |
217 | 0 | pstmt->stmt_len = -1; |
218 | | |
219 | | /* Return serialized copy of our dummy PlannedStmt. */ |
220 | 0 | return nodeToString(pstmt); |
221 | 0 | } |
222 | | |
223 | | /* |
224 | | * Parallel-aware plan nodes (and occasionally others) may need some state |
225 | | * which is shared across all parallel workers. Before we size the DSM, give |
226 | | * them a chance to call shm_toc_estimate_chunk or shm_toc_estimate_keys on |
227 | | * &pcxt->estimator. |
228 | | * |
229 | | * While we're at it, count the number of PlanState nodes in the tree, so |
230 | | * we know how many Instrumentation structures we need. |
231 | | */ |
232 | | static bool |
233 | | ExecParallelEstimate(PlanState *planstate, ExecParallelEstimateContext *e) |
234 | 0 | { |
235 | 0 | if (planstate == NULL) |
236 | 0 | return false; |
237 | | |
238 | | /* Count this node. */ |
239 | 0 | e->nnodes++; |
240 | |
|
241 | 0 | switch (nodeTag(planstate)) |
242 | 0 | { |
243 | 0 | case T_SeqScanState: |
244 | 0 | if (planstate->plan->parallel_aware) |
245 | 0 | ExecSeqScanEstimate((SeqScanState *) planstate, |
246 | 0 | e->pcxt); |
247 | 0 | break; |
248 | 0 | case T_IndexScanState: |
249 | | /* even when not parallel-aware, for EXPLAIN ANALYZE */ |
250 | 0 | ExecIndexScanEstimate((IndexScanState *) planstate, |
251 | 0 | e->pcxt); |
252 | 0 | break; |
253 | 0 | case T_IndexOnlyScanState: |
254 | | /* even when not parallel-aware, for EXPLAIN ANALYZE */ |
255 | 0 | ExecIndexOnlyScanEstimate((IndexOnlyScanState *) planstate, |
256 | 0 | e->pcxt); |
257 | 0 | break; |
258 | 0 | case T_BitmapIndexScanState: |
259 | | /* even when not parallel-aware, for EXPLAIN ANALYZE */ |
260 | 0 | ExecBitmapIndexScanEstimate((BitmapIndexScanState *) planstate, |
261 | 0 | e->pcxt); |
262 | 0 | break; |
263 | 0 | case T_ForeignScanState: |
264 | 0 | if (planstate->plan->parallel_aware) |
265 | 0 | ExecForeignScanEstimate((ForeignScanState *) planstate, |
266 | 0 | e->pcxt); |
267 | 0 | break; |
268 | 0 | case T_AppendState: |
269 | 0 | if (planstate->plan->parallel_aware) |
270 | 0 | ExecAppendEstimate((AppendState *) planstate, |
271 | 0 | e->pcxt); |
272 | 0 | break; |
273 | 0 | case T_CustomScanState: |
274 | 0 | if (planstate->plan->parallel_aware) |
275 | 0 | ExecCustomScanEstimate((CustomScanState *) planstate, |
276 | 0 | e->pcxt); |
277 | 0 | break; |
278 | 0 | case T_BitmapHeapScanState: |
279 | 0 | if (planstate->plan->parallel_aware) |
280 | 0 | ExecBitmapHeapEstimate((BitmapHeapScanState *) planstate, |
281 | 0 | e->pcxt); |
282 | 0 | break; |
283 | 0 | case T_HashJoinState: |
284 | 0 | if (planstate->plan->parallel_aware) |
285 | 0 | ExecHashJoinEstimate((HashJoinState *) planstate, |
286 | 0 | e->pcxt); |
287 | 0 | break; |
288 | 0 | case T_HashState: |
289 | | /* even when not parallel-aware, for EXPLAIN ANALYZE */ |
290 | 0 | ExecHashEstimate((HashState *) planstate, e->pcxt); |
291 | 0 | break; |
292 | 0 | case T_SortState: |
293 | | /* even when not parallel-aware, for EXPLAIN ANALYZE */ |
294 | 0 | ExecSortEstimate((SortState *) planstate, e->pcxt); |
295 | 0 | break; |
296 | 0 | case T_IncrementalSortState: |
297 | | /* even when not parallel-aware, for EXPLAIN ANALYZE */ |
298 | 0 | ExecIncrementalSortEstimate((IncrementalSortState *) planstate, e->pcxt); |
299 | 0 | break; |
300 | 0 | case T_AggState: |
301 | | /* even when not parallel-aware, for EXPLAIN ANALYZE */ |
302 | 0 | ExecAggEstimate((AggState *) planstate, e->pcxt); |
303 | 0 | break; |
304 | 0 | case T_MemoizeState: |
305 | | /* even when not parallel-aware, for EXPLAIN ANALYZE */ |
306 | 0 | ExecMemoizeEstimate((MemoizeState *) planstate, e->pcxt); |
307 | 0 | break; |
308 | 0 | default: |
309 | 0 | break; |
310 | 0 | } |
311 | | |
312 | 0 | return planstate_tree_walker(planstate, ExecParallelEstimate, e); |
313 | 0 | } |
314 | | |
315 | | /* |
316 | | * Estimate the amount of space required to serialize the indicated parameters. |
317 | | */ |
318 | | static Size |
319 | | EstimateParamExecSpace(EState *estate, Bitmapset *params) |
320 | 0 | { |
321 | 0 | int paramid; |
322 | 0 | Size sz = sizeof(int); |
323 | |
|
324 | 0 | paramid = -1; |
325 | 0 | while ((paramid = bms_next_member(params, paramid)) >= 0) |
326 | 0 | { |
327 | 0 | Oid typeOid; |
328 | 0 | int16 typLen; |
329 | 0 | bool typByVal; |
330 | 0 | ParamExecData *prm; |
331 | |
|
332 | 0 | prm = &(estate->es_param_exec_vals[paramid]); |
333 | 0 | typeOid = list_nth_oid(estate->es_plannedstmt->paramExecTypes, |
334 | 0 | paramid); |
335 | |
|
336 | 0 | sz = add_size(sz, sizeof(int)); /* space for paramid */ |
337 | | |
338 | | /* space for datum/isnull */ |
339 | 0 | if (OidIsValid(typeOid)) |
340 | 0 | get_typlenbyval(typeOid, &typLen, &typByVal); |
341 | 0 | else |
342 | 0 | { |
343 | | /* If no type OID, assume by-value, like copyParamList does. */ |
344 | 0 | typLen = sizeof(Datum); |
345 | 0 | typByVal = true; |
346 | 0 | } |
347 | 0 | sz = add_size(sz, |
348 | 0 | datumEstimateSpace(prm->value, prm->isnull, |
349 | 0 | typByVal, typLen)); |
350 | 0 | } |
351 | 0 | return sz; |
352 | 0 | } |
353 | | |
354 | | /* |
355 | | * Serialize specified PARAM_EXEC parameters. |
356 | | * |
357 | | * We write the number of parameters first, as a 4-byte integer, and then |
358 | | * write details for each parameter in turn. The details for each parameter |
359 | | * consist of a 4-byte paramid (location of param in execution time internal |
360 | | * parameter array) and then the datum as serialized by datumSerialize(). |
361 | | */ |
362 | | static dsa_pointer |
363 | | SerializeParamExecParams(EState *estate, Bitmapset *params, dsa_area *area) |
364 | 0 | { |
365 | 0 | Size size; |
366 | 0 | int nparams; |
367 | 0 | int paramid; |
368 | 0 | ParamExecData *prm; |
369 | 0 | dsa_pointer handle; |
370 | 0 | char *start_address; |
371 | | |
372 | | /* Allocate enough space for the current parameter values. */ |
373 | 0 | size = EstimateParamExecSpace(estate, params); |
374 | 0 | handle = dsa_allocate(area, size); |
375 | 0 | start_address = dsa_get_address(area, handle); |
376 | | |
377 | | /* First write the number of parameters as a 4-byte integer. */ |
378 | 0 | nparams = bms_num_members(params); |
379 | 0 | memcpy(start_address, &nparams, sizeof(int)); |
380 | 0 | start_address += sizeof(int); |
381 | | |
382 | | /* Write details for each parameter in turn. */ |
383 | 0 | paramid = -1; |
384 | 0 | while ((paramid = bms_next_member(params, paramid)) >= 0) |
385 | 0 | { |
386 | 0 | Oid typeOid; |
387 | 0 | int16 typLen; |
388 | 0 | bool typByVal; |
389 | |
|
390 | 0 | prm = &(estate->es_param_exec_vals[paramid]); |
391 | 0 | typeOid = list_nth_oid(estate->es_plannedstmt->paramExecTypes, |
392 | 0 | paramid); |
393 | | |
394 | | /* Write paramid. */ |
395 | 0 | memcpy(start_address, ¶mid, sizeof(int)); |
396 | 0 | start_address += sizeof(int); |
397 | | |
398 | | /* Write datum/isnull */ |
399 | 0 | if (OidIsValid(typeOid)) |
400 | 0 | get_typlenbyval(typeOid, &typLen, &typByVal); |
401 | 0 | else |
402 | 0 | { |
403 | | /* If no type OID, assume by-value, like copyParamList does. */ |
404 | 0 | typLen = sizeof(Datum); |
405 | 0 | typByVal = true; |
406 | 0 | } |
407 | 0 | datumSerialize(prm->value, prm->isnull, typByVal, typLen, |
408 | 0 | &start_address); |
409 | 0 | } |
410 | |
|
411 | 0 | return handle; |
412 | 0 | } |
413 | | |
414 | | /* |
415 | | * Restore specified PARAM_EXEC parameters. |
416 | | */ |
417 | | static void |
418 | | RestoreParamExecParams(char *start_address, EState *estate) |
419 | 0 | { |
420 | 0 | int nparams; |
421 | 0 | int i; |
422 | 0 | int paramid; |
423 | |
|
424 | 0 | memcpy(&nparams, start_address, sizeof(int)); |
425 | 0 | start_address += sizeof(int); |
426 | |
|
427 | 0 | for (i = 0; i < nparams; i++) |
428 | 0 | { |
429 | 0 | ParamExecData *prm; |
430 | | |
431 | | /* Read paramid */ |
432 | 0 | memcpy(¶mid, start_address, sizeof(int)); |
433 | 0 | start_address += sizeof(int); |
434 | 0 | prm = &(estate->es_param_exec_vals[paramid]); |
435 | | |
436 | | /* Read datum/isnull. */ |
437 | 0 | prm->value = datumRestore(&start_address, &prm->isnull); |
438 | 0 | prm->execPlan = NULL; |
439 | 0 | } |
440 | 0 | } |
441 | | |
442 | | /* |
443 | | * Initialize the dynamic shared memory segment that will be used to control |
444 | | * parallel execution. |
445 | | */ |
446 | | static bool |
447 | | ExecParallelInitializeDSM(PlanState *planstate, |
448 | | ExecParallelInitializeDSMContext *d) |
449 | 0 | { |
450 | 0 | if (planstate == NULL) |
451 | 0 | return false; |
452 | | |
453 | | /* If instrumentation is enabled, initialize slot for this node. */ |
454 | 0 | if (d->instrumentation != NULL) |
455 | 0 | d->instrumentation->plan_node_id[d->nnodes] = |
456 | 0 | planstate->plan->plan_node_id; |
457 | | |
458 | | /* Count this node. */ |
459 | 0 | d->nnodes++; |
460 | | |
461 | | /* |
462 | | * Call initializers for DSM-using plan nodes. |
463 | | * |
464 | | * Most plan nodes won't do anything here, but plan nodes that allocated |
465 | | * DSM may need to initialize shared state in the DSM before parallel |
466 | | * workers are launched. They can allocate the space they previously |
467 | | * estimated using shm_toc_allocate, and add the keys they previously |
468 | | * estimated using shm_toc_insert, in each case targeting pcxt->toc. |
469 | | */ |
470 | 0 | switch (nodeTag(planstate)) |
471 | 0 | { |
472 | 0 | case T_SeqScanState: |
473 | 0 | if (planstate->plan->parallel_aware) |
474 | 0 | ExecSeqScanInitializeDSM((SeqScanState *) planstate, |
475 | 0 | d->pcxt); |
476 | 0 | break; |
477 | 0 | case T_IndexScanState: |
478 | | /* even when not parallel-aware, for EXPLAIN ANALYZE */ |
479 | 0 | ExecIndexScanInitializeDSM((IndexScanState *) planstate, d->pcxt); |
480 | 0 | break; |
481 | 0 | case T_IndexOnlyScanState: |
482 | | /* even when not parallel-aware, for EXPLAIN ANALYZE */ |
483 | 0 | ExecIndexOnlyScanInitializeDSM((IndexOnlyScanState *) planstate, |
484 | 0 | d->pcxt); |
485 | 0 | break; |
486 | 0 | case T_BitmapIndexScanState: |
487 | | /* even when not parallel-aware, for EXPLAIN ANALYZE */ |
488 | 0 | ExecBitmapIndexScanInitializeDSM((BitmapIndexScanState *) planstate, d->pcxt); |
489 | 0 | break; |
490 | 0 | case T_ForeignScanState: |
491 | 0 | if (planstate->plan->parallel_aware) |
492 | 0 | ExecForeignScanInitializeDSM((ForeignScanState *) planstate, |
493 | 0 | d->pcxt); |
494 | 0 | break; |
495 | 0 | case T_AppendState: |
496 | 0 | if (planstate->plan->parallel_aware) |
497 | 0 | ExecAppendInitializeDSM((AppendState *) planstate, |
498 | 0 | d->pcxt); |
499 | 0 | break; |
500 | 0 | case T_CustomScanState: |
501 | 0 | if (planstate->plan->parallel_aware) |
502 | 0 | ExecCustomScanInitializeDSM((CustomScanState *) planstate, |
503 | 0 | d->pcxt); |
504 | 0 | break; |
505 | 0 | case T_BitmapHeapScanState: |
506 | 0 | if (planstate->plan->parallel_aware) |
507 | 0 | ExecBitmapHeapInitializeDSM((BitmapHeapScanState *) planstate, |
508 | 0 | d->pcxt); |
509 | 0 | break; |
510 | 0 | case T_HashJoinState: |
511 | 0 | if (planstate->plan->parallel_aware) |
512 | 0 | ExecHashJoinInitializeDSM((HashJoinState *) planstate, |
513 | 0 | d->pcxt); |
514 | 0 | break; |
515 | 0 | case T_HashState: |
516 | | /* even when not parallel-aware, for EXPLAIN ANALYZE */ |
517 | 0 | ExecHashInitializeDSM((HashState *) planstate, d->pcxt); |
518 | 0 | break; |
519 | 0 | case T_SortState: |
520 | | /* even when not parallel-aware, for EXPLAIN ANALYZE */ |
521 | 0 | ExecSortInitializeDSM((SortState *) planstate, d->pcxt); |
522 | 0 | break; |
523 | 0 | case T_IncrementalSortState: |
524 | | /* even when not parallel-aware, for EXPLAIN ANALYZE */ |
525 | 0 | ExecIncrementalSortInitializeDSM((IncrementalSortState *) planstate, d->pcxt); |
526 | 0 | break; |
527 | 0 | case T_AggState: |
528 | | /* even when not parallel-aware, for EXPLAIN ANALYZE */ |
529 | 0 | ExecAggInitializeDSM((AggState *) planstate, d->pcxt); |
530 | 0 | break; |
531 | 0 | case T_MemoizeState: |
532 | | /* even when not parallel-aware, for EXPLAIN ANALYZE */ |
533 | 0 | ExecMemoizeInitializeDSM((MemoizeState *) planstate, d->pcxt); |
534 | 0 | break; |
535 | 0 | default: |
536 | 0 | break; |
537 | 0 | } |
538 | | |
539 | 0 | return planstate_tree_walker(planstate, ExecParallelInitializeDSM, d); |
540 | 0 | } |
541 | | |
542 | | /* |
543 | | * It sets up the response queues for backend workers to return tuples |
544 | | * to the main backend and start the workers. |
545 | | */ |
546 | | static shm_mq_handle ** |
547 | | ExecParallelSetupTupleQueues(ParallelContext *pcxt, bool reinitialize) |
548 | 0 | { |
549 | 0 | shm_mq_handle **responseq; |
550 | 0 | char *tqueuespace; |
551 | 0 | int i; |
552 | | |
553 | | /* Skip this if no workers. */ |
554 | 0 | if (pcxt->nworkers == 0) |
555 | 0 | return NULL; |
556 | | |
557 | | /* Allocate memory for shared memory queue handles. */ |
558 | 0 | responseq = (shm_mq_handle **) |
559 | 0 | palloc(pcxt->nworkers * sizeof(shm_mq_handle *)); |
560 | | |
561 | | /* |
562 | | * If not reinitializing, allocate space from the DSM for the queues; |
563 | | * otherwise, find the already allocated space. |
564 | | */ |
565 | 0 | if (!reinitialize) |
566 | 0 | tqueuespace = |
567 | 0 | shm_toc_allocate(pcxt->toc, |
568 | 0 | mul_size(PARALLEL_TUPLE_QUEUE_SIZE, |
569 | 0 | pcxt->nworkers)); |
570 | 0 | else |
571 | 0 | tqueuespace = shm_toc_lookup(pcxt->toc, PARALLEL_KEY_TUPLE_QUEUE, false); |
572 | | |
573 | | /* Create the queues, and become the receiver for each. */ |
574 | 0 | for (i = 0; i < pcxt->nworkers; ++i) |
575 | 0 | { |
576 | 0 | shm_mq *mq; |
577 | |
|
578 | 0 | mq = shm_mq_create(tqueuespace + |
579 | 0 | ((Size) i) * PARALLEL_TUPLE_QUEUE_SIZE, |
580 | 0 | (Size) PARALLEL_TUPLE_QUEUE_SIZE); |
581 | |
|
582 | 0 | shm_mq_set_receiver(mq, MyProc); |
583 | 0 | responseq[i] = shm_mq_attach(mq, pcxt->seg, NULL); |
584 | 0 | } |
585 | | |
586 | | /* Add array of queues to shm_toc, so others can find it. */ |
587 | 0 | if (!reinitialize) |
588 | 0 | shm_toc_insert(pcxt->toc, PARALLEL_KEY_TUPLE_QUEUE, tqueuespace); |
589 | | |
590 | | /* Return array of handles. */ |
591 | 0 | return responseq; |
592 | 0 | } |
593 | | |
594 | | /* |
595 | | * Sets up the required infrastructure for backend workers to perform |
596 | | * execution and return results to the main backend. |
597 | | */ |
598 | | ParallelExecutorInfo * |
599 | | ExecInitParallelPlan(PlanState *planstate, EState *estate, |
600 | | Bitmapset *sendParams, int nworkers, |
601 | | int64 tuples_needed) |
602 | 0 | { |
603 | 0 | ParallelExecutorInfo *pei; |
604 | 0 | ParallelContext *pcxt; |
605 | 0 | ExecParallelEstimateContext e; |
606 | 0 | ExecParallelInitializeDSMContext d; |
607 | 0 | FixedParallelExecutorState *fpes; |
608 | 0 | char *pstmt_data; |
609 | 0 | char *pstmt_space; |
610 | 0 | char *paramlistinfo_space; |
611 | 0 | BufferUsage *bufusage_space; |
612 | 0 | WalUsage *walusage_space; |
613 | 0 | SharedExecutorInstrumentation *instrumentation = NULL; |
614 | 0 | SharedJitInstrumentation *jit_instrumentation = NULL; |
615 | 0 | int pstmt_len; |
616 | 0 | int paramlistinfo_len; |
617 | 0 | int instrumentation_len = 0; |
618 | 0 | int jit_instrumentation_len = 0; |
619 | 0 | int instrument_offset = 0; |
620 | 0 | Size dsa_minsize = dsa_minimum_size(); |
621 | 0 | char *query_string; |
622 | 0 | int query_len; |
623 | | |
624 | | /* |
625 | | * Force any initplan outputs that we're going to pass to workers to be |
626 | | * evaluated, if they weren't already. |
627 | | * |
628 | | * For simplicity, we use the EState's per-output-tuple ExprContext here. |
629 | | * That risks intra-query memory leakage, since we might pass through here |
630 | | * many times before that ExprContext gets reset; but ExecSetParamPlan |
631 | | * doesn't normally leak any memory in the context (see its comments), so |
632 | | * it doesn't seem worth complicating this function's API to pass it a |
633 | | * shorter-lived ExprContext. This might need to change someday. |
634 | | */ |
635 | 0 | ExecSetParamPlanMulti(sendParams, GetPerTupleExprContext(estate)); |
636 | | |
637 | | /* Allocate object for return value. */ |
638 | 0 | pei = palloc0(sizeof(ParallelExecutorInfo)); |
639 | 0 | pei->finished = false; |
640 | 0 | pei->planstate = planstate; |
641 | | |
642 | | /* Fix up and serialize plan to be sent to workers. */ |
643 | 0 | pstmt_data = ExecSerializePlan(planstate->plan, estate); |
644 | | |
645 | | /* Create a parallel context. */ |
646 | 0 | pcxt = CreateParallelContext("postgres", "ParallelQueryMain", nworkers); |
647 | 0 | pei->pcxt = pcxt; |
648 | | |
649 | | /* |
650 | | * Before telling the parallel context to create a dynamic shared memory |
651 | | * segment, we need to figure out how big it should be. Estimate space |
652 | | * for the various things we need to store. |
653 | | */ |
654 | | |
655 | | /* Estimate space for fixed-size state. */ |
656 | 0 | shm_toc_estimate_chunk(&pcxt->estimator, |
657 | 0 | sizeof(FixedParallelExecutorState)); |
658 | 0 | shm_toc_estimate_keys(&pcxt->estimator, 1); |
659 | | |
660 | | /* Estimate space for query text. */ |
661 | 0 | query_len = strlen(estate->es_sourceText); |
662 | 0 | shm_toc_estimate_chunk(&pcxt->estimator, query_len + 1); |
663 | 0 | shm_toc_estimate_keys(&pcxt->estimator, 1); |
664 | | |
665 | | /* Estimate space for serialized PlannedStmt. */ |
666 | 0 | pstmt_len = strlen(pstmt_data) + 1; |
667 | 0 | shm_toc_estimate_chunk(&pcxt->estimator, pstmt_len); |
668 | 0 | shm_toc_estimate_keys(&pcxt->estimator, 1); |
669 | | |
670 | | /* Estimate space for serialized ParamListInfo. */ |
671 | 0 | paramlistinfo_len = EstimateParamListSpace(estate->es_param_list_info); |
672 | 0 | shm_toc_estimate_chunk(&pcxt->estimator, paramlistinfo_len); |
673 | 0 | shm_toc_estimate_keys(&pcxt->estimator, 1); |
674 | | |
675 | | /* |
676 | | * Estimate space for BufferUsage. |
677 | | * |
678 | | * If EXPLAIN is not in use and there are no extensions loaded that care, |
679 | | * we could skip this. But we have no way of knowing whether anyone's |
680 | | * looking at pgBufferUsage, so do it unconditionally. |
681 | | */ |
682 | 0 | shm_toc_estimate_chunk(&pcxt->estimator, |
683 | 0 | mul_size(sizeof(BufferUsage), pcxt->nworkers)); |
684 | 0 | shm_toc_estimate_keys(&pcxt->estimator, 1); |
685 | | |
686 | | /* |
687 | | * Same thing for WalUsage. |
688 | | */ |
689 | 0 | shm_toc_estimate_chunk(&pcxt->estimator, |
690 | 0 | mul_size(sizeof(WalUsage), pcxt->nworkers)); |
691 | 0 | shm_toc_estimate_keys(&pcxt->estimator, 1); |
692 | | |
693 | | /* Estimate space for tuple queues. */ |
694 | 0 | shm_toc_estimate_chunk(&pcxt->estimator, |
695 | 0 | mul_size(PARALLEL_TUPLE_QUEUE_SIZE, pcxt->nworkers)); |
696 | 0 | shm_toc_estimate_keys(&pcxt->estimator, 1); |
697 | | |
698 | | /* |
699 | | * Give parallel-aware nodes a chance to add to the estimates, and get a |
700 | | * count of how many PlanState nodes there are. |
701 | | */ |
702 | 0 | e.pcxt = pcxt; |
703 | 0 | e.nnodes = 0; |
704 | 0 | ExecParallelEstimate(planstate, &e); |
705 | | |
706 | | /* Estimate space for instrumentation, if required. */ |
707 | 0 | if (estate->es_instrument) |
708 | 0 | { |
709 | 0 | instrumentation_len = |
710 | 0 | offsetof(SharedExecutorInstrumentation, plan_node_id) + |
711 | 0 | sizeof(int) * e.nnodes; |
712 | 0 | instrumentation_len = MAXALIGN(instrumentation_len); |
713 | 0 | instrument_offset = instrumentation_len; |
714 | 0 | instrumentation_len += |
715 | 0 | mul_size(sizeof(Instrumentation), |
716 | 0 | mul_size(e.nnodes, nworkers)); |
717 | 0 | shm_toc_estimate_chunk(&pcxt->estimator, instrumentation_len); |
718 | 0 | shm_toc_estimate_keys(&pcxt->estimator, 1); |
719 | | |
720 | | /* Estimate space for JIT instrumentation, if required. */ |
721 | 0 | if (estate->es_jit_flags != PGJIT_NONE) |
722 | 0 | { |
723 | 0 | jit_instrumentation_len = |
724 | 0 | offsetof(SharedJitInstrumentation, jit_instr) + |
725 | 0 | sizeof(JitInstrumentation) * nworkers; |
726 | 0 | shm_toc_estimate_chunk(&pcxt->estimator, jit_instrumentation_len); |
727 | 0 | shm_toc_estimate_keys(&pcxt->estimator, 1); |
728 | 0 | } |
729 | 0 | } |
730 | | |
731 | | /* Estimate space for DSA area. */ |
732 | 0 | shm_toc_estimate_chunk(&pcxt->estimator, dsa_minsize); |
733 | 0 | shm_toc_estimate_keys(&pcxt->estimator, 1); |
734 | | |
735 | | /* |
736 | | * InitializeParallelDSM() passes the active snapshot to the parallel |
737 | | * worker, which uses it to set es_snapshot. Make sure we don't set |
738 | | * es_snapshot differently in the child. |
739 | | */ |
740 | 0 | Assert(GetActiveSnapshot() == estate->es_snapshot); |
741 | | |
742 | | /* Everyone's had a chance to ask for space, so now create the DSM. */ |
743 | 0 | InitializeParallelDSM(pcxt); |
744 | | |
745 | | /* |
746 | | * OK, now we have a dynamic shared memory segment, and it should be big |
747 | | * enough to store all of the data we estimated we would want to put into |
748 | | * it, plus whatever general stuff (not specifically executor-related) the |
749 | | * ParallelContext itself needs to store there. None of the space we |
750 | | * asked for has been allocated or initialized yet, though, so do that. |
751 | | */ |
752 | | |
753 | | /* Store fixed-size state. */ |
754 | 0 | fpes = shm_toc_allocate(pcxt->toc, sizeof(FixedParallelExecutorState)); |
755 | 0 | fpes->tuples_needed = tuples_needed; |
756 | 0 | fpes->param_exec = InvalidDsaPointer; |
757 | 0 | fpes->eflags = estate->es_top_eflags; |
758 | 0 | fpes->jit_flags = estate->es_jit_flags; |
759 | 0 | shm_toc_insert(pcxt->toc, PARALLEL_KEY_EXECUTOR_FIXED, fpes); |
760 | | |
761 | | /* Store query string */ |
762 | 0 | query_string = shm_toc_allocate(pcxt->toc, query_len + 1); |
763 | 0 | memcpy(query_string, estate->es_sourceText, query_len + 1); |
764 | 0 | shm_toc_insert(pcxt->toc, PARALLEL_KEY_QUERY_TEXT, query_string); |
765 | | |
766 | | /* Store serialized PlannedStmt. */ |
767 | 0 | pstmt_space = shm_toc_allocate(pcxt->toc, pstmt_len); |
768 | 0 | memcpy(pstmt_space, pstmt_data, pstmt_len); |
769 | 0 | shm_toc_insert(pcxt->toc, PARALLEL_KEY_PLANNEDSTMT, pstmt_space); |
770 | | |
771 | | /* Store serialized ParamListInfo. */ |
772 | 0 | paramlistinfo_space = shm_toc_allocate(pcxt->toc, paramlistinfo_len); |
773 | 0 | shm_toc_insert(pcxt->toc, PARALLEL_KEY_PARAMLISTINFO, paramlistinfo_space); |
774 | 0 | SerializeParamList(estate->es_param_list_info, ¶mlistinfo_space); |
775 | | |
776 | | /* Allocate space for each worker's BufferUsage; no need to initialize. */ |
777 | 0 | bufusage_space = shm_toc_allocate(pcxt->toc, |
778 | 0 | mul_size(sizeof(BufferUsage), pcxt->nworkers)); |
779 | 0 | shm_toc_insert(pcxt->toc, PARALLEL_KEY_BUFFER_USAGE, bufusage_space); |
780 | 0 | pei->buffer_usage = bufusage_space; |
781 | | |
782 | | /* Same for WalUsage. */ |
783 | 0 | walusage_space = shm_toc_allocate(pcxt->toc, |
784 | 0 | mul_size(sizeof(WalUsage), pcxt->nworkers)); |
785 | 0 | shm_toc_insert(pcxt->toc, PARALLEL_KEY_WAL_USAGE, walusage_space); |
786 | 0 | pei->wal_usage = walusage_space; |
787 | | |
788 | | /* Set up the tuple queues that the workers will write into. */ |
789 | 0 | pei->tqueue = ExecParallelSetupTupleQueues(pcxt, false); |
790 | | |
791 | | /* We don't need the TupleQueueReaders yet, though. */ |
792 | 0 | pei->reader = NULL; |
793 | | |
794 | | /* |
795 | | * If instrumentation options were supplied, allocate space for the data. |
796 | | * It only gets partially initialized here; the rest happens during |
797 | | * ExecParallelInitializeDSM. |
798 | | */ |
799 | 0 | if (estate->es_instrument) |
800 | 0 | { |
801 | 0 | Instrumentation *instrument; |
802 | 0 | int i; |
803 | |
|
804 | 0 | instrumentation = shm_toc_allocate(pcxt->toc, instrumentation_len); |
805 | 0 | instrumentation->instrument_options = estate->es_instrument; |
806 | 0 | instrumentation->instrument_offset = instrument_offset; |
807 | 0 | instrumentation->num_workers = nworkers; |
808 | 0 | instrumentation->num_plan_nodes = e.nnodes; |
809 | 0 | instrument = GetInstrumentationArray(instrumentation); |
810 | 0 | for (i = 0; i < nworkers * e.nnodes; ++i) |
811 | 0 | InstrInit(&instrument[i], estate->es_instrument); |
812 | 0 | shm_toc_insert(pcxt->toc, PARALLEL_KEY_INSTRUMENTATION, |
813 | 0 | instrumentation); |
814 | 0 | pei->instrumentation = instrumentation; |
815 | |
|
816 | 0 | if (estate->es_jit_flags != PGJIT_NONE) |
817 | 0 | { |
818 | 0 | jit_instrumentation = shm_toc_allocate(pcxt->toc, |
819 | 0 | jit_instrumentation_len); |
820 | 0 | jit_instrumentation->num_workers = nworkers; |
821 | 0 | memset(jit_instrumentation->jit_instr, 0, |
822 | 0 | sizeof(JitInstrumentation) * nworkers); |
823 | 0 | shm_toc_insert(pcxt->toc, PARALLEL_KEY_JIT_INSTRUMENTATION, |
824 | 0 | jit_instrumentation); |
825 | 0 | pei->jit_instrumentation = jit_instrumentation; |
826 | 0 | } |
827 | 0 | } |
828 | | |
829 | | /* |
830 | | * Create a DSA area that can be used by the leader and all workers. |
831 | | * (However, if we failed to create a DSM and are using private memory |
832 | | * instead, then skip this.) |
833 | | */ |
834 | 0 | if (pcxt->seg != NULL) |
835 | 0 | { |
836 | 0 | char *area_space; |
837 | |
|
838 | 0 | area_space = shm_toc_allocate(pcxt->toc, dsa_minsize); |
839 | 0 | shm_toc_insert(pcxt->toc, PARALLEL_KEY_DSA, area_space); |
840 | 0 | pei->area = dsa_create_in_place(area_space, dsa_minsize, |
841 | 0 | LWTRANCHE_PARALLEL_QUERY_DSA, |
842 | 0 | pcxt->seg); |
843 | | |
844 | | /* |
845 | | * Serialize parameters, if any, using DSA storage. We don't dare use |
846 | | * the main parallel query DSM for this because we might relaunch |
847 | | * workers after the values have changed (and thus the amount of |
848 | | * storage required has changed). |
849 | | */ |
850 | 0 | if (!bms_is_empty(sendParams)) |
851 | 0 | { |
852 | 0 | pei->param_exec = SerializeParamExecParams(estate, sendParams, |
853 | 0 | pei->area); |
854 | 0 | fpes->param_exec = pei->param_exec; |
855 | 0 | } |
856 | 0 | } |
857 | | |
858 | | /* |
859 | | * Give parallel-aware nodes a chance to initialize their shared data. |
860 | | * This also initializes the elements of instrumentation->ps_instrument, |
861 | | * if it exists. |
862 | | */ |
863 | 0 | d.pcxt = pcxt; |
864 | 0 | d.instrumentation = instrumentation; |
865 | 0 | d.nnodes = 0; |
866 | | |
867 | | /* Install our DSA area while initializing the plan. */ |
868 | 0 | estate->es_query_dsa = pei->area; |
869 | 0 | ExecParallelInitializeDSM(planstate, &d); |
870 | 0 | estate->es_query_dsa = NULL; |
871 | | |
872 | | /* |
873 | | * Make sure that the world hasn't shifted under our feet. This could |
874 | | * probably just be an Assert(), but let's be conservative for now. |
875 | | */ |
876 | 0 | if (e.nnodes != d.nnodes) |
877 | 0 | elog(ERROR, "inconsistent count of PlanState nodes"); |
878 | | |
879 | | /* OK, we're ready to rock and roll. */ |
880 | 0 | return pei; |
881 | 0 | } |
882 | | |
883 | | /* |
884 | | * Set up tuple queue readers to read the results of a parallel subplan. |
885 | | * |
886 | | * This is separate from ExecInitParallelPlan() because we can launch the |
887 | | * worker processes and let them start doing something before we do this. |
888 | | */ |
889 | | void |
890 | | ExecParallelCreateReaders(ParallelExecutorInfo *pei) |
891 | 0 | { |
892 | 0 | int nworkers = pei->pcxt->nworkers_launched; |
893 | 0 | int i; |
894 | |
|
895 | 0 | Assert(pei->reader == NULL); |
896 | |
|
897 | 0 | if (nworkers > 0) |
898 | 0 | { |
899 | 0 | pei->reader = (TupleQueueReader **) |
900 | 0 | palloc(nworkers * sizeof(TupleQueueReader *)); |
901 | |
|
902 | 0 | for (i = 0; i < nworkers; i++) |
903 | 0 | { |
904 | 0 | shm_mq_set_handle(pei->tqueue[i], |
905 | 0 | pei->pcxt->worker[i].bgwhandle); |
906 | 0 | pei->reader[i] = CreateTupleQueueReader(pei->tqueue[i]); |
907 | 0 | } |
908 | 0 | } |
909 | 0 | } |
910 | | |
911 | | /* |
912 | | * Re-initialize the parallel executor shared memory state before launching |
913 | | * a fresh batch of workers. |
914 | | */ |
915 | | void |
916 | | ExecParallelReinitialize(PlanState *planstate, |
917 | | ParallelExecutorInfo *pei, |
918 | | Bitmapset *sendParams) |
919 | 0 | { |
920 | 0 | EState *estate = planstate->state; |
921 | 0 | FixedParallelExecutorState *fpes; |
922 | | |
923 | | /* Old workers must already be shut down */ |
924 | 0 | Assert(pei->finished); |
925 | | |
926 | | /* |
927 | | * Force any initplan outputs that we're going to pass to workers to be |
928 | | * evaluated, if they weren't already (see comments in |
929 | | * ExecInitParallelPlan). |
930 | | */ |
931 | 0 | ExecSetParamPlanMulti(sendParams, GetPerTupleExprContext(estate)); |
932 | |
|
933 | 0 | ReinitializeParallelDSM(pei->pcxt); |
934 | 0 | pei->tqueue = ExecParallelSetupTupleQueues(pei->pcxt, true); |
935 | 0 | pei->reader = NULL; |
936 | 0 | pei->finished = false; |
937 | |
|
938 | 0 | fpes = shm_toc_lookup(pei->pcxt->toc, PARALLEL_KEY_EXECUTOR_FIXED, false); |
939 | | |
940 | | /* Free any serialized parameters from the last round. */ |
941 | 0 | if (DsaPointerIsValid(fpes->param_exec)) |
942 | 0 | { |
943 | 0 | dsa_free(pei->area, fpes->param_exec); |
944 | 0 | fpes->param_exec = InvalidDsaPointer; |
945 | 0 | } |
946 | | |
947 | | /* Serialize current parameter values if required. */ |
948 | 0 | if (!bms_is_empty(sendParams)) |
949 | 0 | { |
950 | 0 | pei->param_exec = SerializeParamExecParams(estate, sendParams, |
951 | 0 | pei->area); |
952 | 0 | fpes->param_exec = pei->param_exec; |
953 | 0 | } |
954 | | |
955 | | /* Traverse plan tree and let each child node reset associated state. */ |
956 | 0 | estate->es_query_dsa = pei->area; |
957 | 0 | ExecParallelReInitializeDSM(planstate, pei->pcxt); |
958 | 0 | estate->es_query_dsa = NULL; |
959 | 0 | } |
960 | | |
961 | | /* |
962 | | * Traverse plan tree to reinitialize per-node dynamic shared memory state |
963 | | */ |
964 | | static bool |
965 | | ExecParallelReInitializeDSM(PlanState *planstate, |
966 | | ParallelContext *pcxt) |
967 | 0 | { |
968 | 0 | if (planstate == NULL) |
969 | 0 | return false; |
970 | | |
971 | | /* |
972 | | * Call reinitializers for DSM-using plan nodes. |
973 | | */ |
974 | 0 | switch (nodeTag(planstate)) |
975 | 0 | { |
976 | 0 | case T_SeqScanState: |
977 | 0 | if (planstate->plan->parallel_aware) |
978 | 0 | ExecSeqScanReInitializeDSM((SeqScanState *) planstate, |
979 | 0 | pcxt); |
980 | 0 | break; |
981 | 0 | case T_IndexScanState: |
982 | 0 | if (planstate->plan->parallel_aware) |
983 | 0 | ExecIndexScanReInitializeDSM((IndexScanState *) planstate, |
984 | 0 | pcxt); |
985 | 0 | break; |
986 | 0 | case T_IndexOnlyScanState: |
987 | 0 | if (planstate->plan->parallel_aware) |
988 | 0 | ExecIndexOnlyScanReInitializeDSM((IndexOnlyScanState *) planstate, |
989 | 0 | pcxt); |
990 | 0 | break; |
991 | 0 | case T_ForeignScanState: |
992 | 0 | if (planstate->plan->parallel_aware) |
993 | 0 | ExecForeignScanReInitializeDSM((ForeignScanState *) planstate, |
994 | 0 | pcxt); |
995 | 0 | break; |
996 | 0 | case T_AppendState: |
997 | 0 | if (planstate->plan->parallel_aware) |
998 | 0 | ExecAppendReInitializeDSM((AppendState *) planstate, pcxt); |
999 | 0 | break; |
1000 | 0 | case T_CustomScanState: |
1001 | 0 | if (planstate->plan->parallel_aware) |
1002 | 0 | ExecCustomScanReInitializeDSM((CustomScanState *) planstate, |
1003 | 0 | pcxt); |
1004 | 0 | break; |
1005 | 0 | case T_BitmapHeapScanState: |
1006 | 0 | if (planstate->plan->parallel_aware) |
1007 | 0 | ExecBitmapHeapReInitializeDSM((BitmapHeapScanState *) planstate, |
1008 | 0 | pcxt); |
1009 | 0 | break; |
1010 | 0 | case T_HashJoinState: |
1011 | 0 | if (planstate->plan->parallel_aware) |
1012 | 0 | ExecHashJoinReInitializeDSM((HashJoinState *) planstate, |
1013 | 0 | pcxt); |
1014 | 0 | break; |
1015 | 0 | case T_BitmapIndexScanState: |
1016 | 0 | case T_HashState: |
1017 | 0 | case T_SortState: |
1018 | 0 | case T_IncrementalSortState: |
1019 | 0 | case T_MemoizeState: |
1020 | | /* these nodes have DSM state, but no reinitialization is required */ |
1021 | 0 | break; |
1022 | | |
1023 | 0 | default: |
1024 | 0 | break; |
1025 | 0 | } |
1026 | | |
1027 | 0 | return planstate_tree_walker(planstate, ExecParallelReInitializeDSM, pcxt); |
1028 | 0 | } |
1029 | | |
1030 | | /* |
1031 | | * Copy instrumentation information about this node and its descendants from |
1032 | | * dynamic shared memory. |
1033 | | */ |
1034 | | static bool |
1035 | | ExecParallelRetrieveInstrumentation(PlanState *planstate, |
1036 | | SharedExecutorInstrumentation *instrumentation) |
1037 | 0 | { |
1038 | 0 | Instrumentation *instrument; |
1039 | 0 | int i; |
1040 | 0 | int n; |
1041 | 0 | int ibytes; |
1042 | 0 | int plan_node_id = planstate->plan->plan_node_id; |
1043 | 0 | MemoryContext oldcontext; |
1044 | | |
1045 | | /* Find the instrumentation for this node. */ |
1046 | 0 | for (i = 0; i < instrumentation->num_plan_nodes; ++i) |
1047 | 0 | if (instrumentation->plan_node_id[i] == plan_node_id) |
1048 | 0 | break; |
1049 | 0 | if (i >= instrumentation->num_plan_nodes) |
1050 | 0 | elog(ERROR, "plan node %d not found", plan_node_id); |
1051 | | |
1052 | | /* Accumulate the statistics from all workers. */ |
1053 | 0 | instrument = GetInstrumentationArray(instrumentation); |
1054 | 0 | instrument += i * instrumentation->num_workers; |
1055 | 0 | for (n = 0; n < instrumentation->num_workers; ++n) |
1056 | 0 | InstrAggNode(planstate->instrument, &instrument[n]); |
1057 | | |
1058 | | /* |
1059 | | * Also store the per-worker detail. |
1060 | | * |
1061 | | * Worker instrumentation should be allocated in the same context as the |
1062 | | * regular instrumentation information, which is the per-query context. |
1063 | | * Switch into per-query memory context. |
1064 | | */ |
1065 | 0 | oldcontext = MemoryContextSwitchTo(planstate->state->es_query_cxt); |
1066 | 0 | ibytes = mul_size(instrumentation->num_workers, sizeof(Instrumentation)); |
1067 | 0 | planstate->worker_instrument = |
1068 | 0 | palloc(ibytes + offsetof(WorkerInstrumentation, instrument)); |
1069 | 0 | MemoryContextSwitchTo(oldcontext); |
1070 | |
|
1071 | 0 | planstate->worker_instrument->num_workers = instrumentation->num_workers; |
1072 | 0 | memcpy(&planstate->worker_instrument->instrument, instrument, ibytes); |
1073 | | |
1074 | | /* Perform any node-type-specific work that needs to be done. */ |
1075 | 0 | switch (nodeTag(planstate)) |
1076 | 0 | { |
1077 | 0 | case T_IndexScanState: |
1078 | 0 | ExecIndexScanRetrieveInstrumentation((IndexScanState *) planstate); |
1079 | 0 | break; |
1080 | 0 | case T_IndexOnlyScanState: |
1081 | 0 | ExecIndexOnlyScanRetrieveInstrumentation((IndexOnlyScanState *) planstate); |
1082 | 0 | break; |
1083 | 0 | case T_BitmapIndexScanState: |
1084 | 0 | ExecBitmapIndexScanRetrieveInstrumentation((BitmapIndexScanState *) planstate); |
1085 | 0 | break; |
1086 | 0 | case T_SortState: |
1087 | 0 | ExecSortRetrieveInstrumentation((SortState *) planstate); |
1088 | 0 | break; |
1089 | 0 | case T_IncrementalSortState: |
1090 | 0 | ExecIncrementalSortRetrieveInstrumentation((IncrementalSortState *) planstate); |
1091 | 0 | break; |
1092 | 0 | case T_HashState: |
1093 | 0 | ExecHashRetrieveInstrumentation((HashState *) planstate); |
1094 | 0 | break; |
1095 | 0 | case T_AggState: |
1096 | 0 | ExecAggRetrieveInstrumentation((AggState *) planstate); |
1097 | 0 | break; |
1098 | 0 | case T_MemoizeState: |
1099 | 0 | ExecMemoizeRetrieveInstrumentation((MemoizeState *) planstate); |
1100 | 0 | break; |
1101 | 0 | case T_BitmapHeapScanState: |
1102 | 0 | ExecBitmapHeapRetrieveInstrumentation((BitmapHeapScanState *) planstate); |
1103 | 0 | break; |
1104 | 0 | default: |
1105 | 0 | break; |
1106 | 0 | } |
1107 | | |
1108 | 0 | return planstate_tree_walker(planstate, ExecParallelRetrieveInstrumentation, |
1109 | 0 | instrumentation); |
1110 | 0 | } |
1111 | | |
1112 | | /* |
1113 | | * Add up the workers' JIT instrumentation from dynamic shared memory. |
1114 | | */ |
1115 | | static void |
1116 | | ExecParallelRetrieveJitInstrumentation(PlanState *planstate, |
1117 | | SharedJitInstrumentation *shared_jit) |
1118 | 0 | { |
1119 | 0 | JitInstrumentation *combined; |
1120 | 0 | int ibytes; |
1121 | |
|
1122 | 0 | int n; |
1123 | | |
1124 | | /* |
1125 | | * Accumulate worker JIT instrumentation into the combined JIT |
1126 | | * instrumentation, allocating it if required. |
1127 | | */ |
1128 | 0 | if (!planstate->state->es_jit_worker_instr) |
1129 | 0 | planstate->state->es_jit_worker_instr = |
1130 | 0 | MemoryContextAllocZero(planstate->state->es_query_cxt, sizeof(JitInstrumentation)); |
1131 | 0 | combined = planstate->state->es_jit_worker_instr; |
1132 | | |
1133 | | /* Accumulate all the workers' instrumentations. */ |
1134 | 0 | for (n = 0; n < shared_jit->num_workers; ++n) |
1135 | 0 | InstrJitAgg(combined, &shared_jit->jit_instr[n]); |
1136 | | |
1137 | | /* |
1138 | | * Store the per-worker detail. |
1139 | | * |
1140 | | * Similar to ExecParallelRetrieveInstrumentation(), allocate the |
1141 | | * instrumentation in per-query context. |
1142 | | */ |
1143 | 0 | ibytes = offsetof(SharedJitInstrumentation, jit_instr) |
1144 | 0 | + mul_size(shared_jit->num_workers, sizeof(JitInstrumentation)); |
1145 | 0 | planstate->worker_jit_instrument = |
1146 | 0 | MemoryContextAlloc(planstate->state->es_query_cxt, ibytes); |
1147 | |
|
1148 | 0 | memcpy(planstate->worker_jit_instrument, shared_jit, ibytes); |
1149 | 0 | } |
1150 | | |
1151 | | /* |
1152 | | * Finish parallel execution. We wait for parallel workers to finish, and |
1153 | | * accumulate their buffer/WAL usage. |
1154 | | */ |
1155 | | void |
1156 | | ExecParallelFinish(ParallelExecutorInfo *pei) |
1157 | 0 | { |
1158 | 0 | int nworkers = pei->pcxt->nworkers_launched; |
1159 | 0 | int i; |
1160 | | |
1161 | | /* Make this be a no-op if called twice in a row. */ |
1162 | 0 | if (pei->finished) |
1163 | 0 | return; |
1164 | | |
1165 | | /* |
1166 | | * Detach from tuple queues ASAP, so that any still-active workers will |
1167 | | * notice that no further results are wanted. |
1168 | | */ |
1169 | 0 | if (pei->tqueue != NULL) |
1170 | 0 | { |
1171 | 0 | for (i = 0; i < nworkers; i++) |
1172 | 0 | shm_mq_detach(pei->tqueue[i]); |
1173 | 0 | pfree(pei->tqueue); |
1174 | 0 | pei->tqueue = NULL; |
1175 | 0 | } |
1176 | | |
1177 | | /* |
1178 | | * While we're waiting for the workers to finish, let's get rid of the |
1179 | | * tuple queue readers. (Any other local cleanup could be done here too.) |
1180 | | */ |
1181 | 0 | if (pei->reader != NULL) |
1182 | 0 | { |
1183 | 0 | for (i = 0; i < nworkers; i++) |
1184 | 0 | DestroyTupleQueueReader(pei->reader[i]); |
1185 | 0 | pfree(pei->reader); |
1186 | 0 | pei->reader = NULL; |
1187 | 0 | } |
1188 | | |
1189 | | /* Now wait for the workers to finish. */ |
1190 | 0 | WaitForParallelWorkersToFinish(pei->pcxt); |
1191 | | |
1192 | | /* |
1193 | | * Next, accumulate buffer/WAL usage. (This must wait for the workers to |
1194 | | * finish, or we might get incomplete data.) |
1195 | | */ |
1196 | 0 | for (i = 0; i < nworkers; i++) |
1197 | 0 | InstrAccumParallelQuery(&pei->buffer_usage[i], &pei->wal_usage[i]); |
1198 | |
|
1199 | 0 | pei->finished = true; |
1200 | 0 | } |
1201 | | |
1202 | | /* |
1203 | | * Accumulate instrumentation, and then clean up whatever ParallelExecutorInfo |
1204 | | * resources still exist after ExecParallelFinish. We separate these |
1205 | | * routines because someone might want to examine the contents of the DSM |
1206 | | * after ExecParallelFinish and before calling this routine. |
1207 | | */ |
1208 | | void |
1209 | | ExecParallelCleanup(ParallelExecutorInfo *pei) |
1210 | 0 | { |
1211 | | /* Accumulate instrumentation, if any. */ |
1212 | 0 | if (pei->instrumentation) |
1213 | 0 | ExecParallelRetrieveInstrumentation(pei->planstate, |
1214 | 0 | pei->instrumentation); |
1215 | | |
1216 | | /* Accumulate JIT instrumentation, if any. */ |
1217 | 0 | if (pei->jit_instrumentation) |
1218 | 0 | ExecParallelRetrieveJitInstrumentation(pei->planstate, |
1219 | 0 | pei->jit_instrumentation); |
1220 | | |
1221 | | /* Free any serialized parameters. */ |
1222 | 0 | if (DsaPointerIsValid(pei->param_exec)) |
1223 | 0 | { |
1224 | 0 | dsa_free(pei->area, pei->param_exec); |
1225 | 0 | pei->param_exec = InvalidDsaPointer; |
1226 | 0 | } |
1227 | 0 | if (pei->area != NULL) |
1228 | 0 | { |
1229 | 0 | dsa_detach(pei->area); |
1230 | 0 | pei->area = NULL; |
1231 | 0 | } |
1232 | 0 | if (pei->pcxt != NULL) |
1233 | 0 | { |
1234 | 0 | DestroyParallelContext(pei->pcxt); |
1235 | 0 | pei->pcxt = NULL; |
1236 | 0 | } |
1237 | 0 | pfree(pei); |
1238 | 0 | } |
1239 | | |
1240 | | /* |
1241 | | * Create a DestReceiver to write tuples we produce to the shm_mq designated |
1242 | | * for that purpose. |
1243 | | */ |
1244 | | static DestReceiver * |
1245 | | ExecParallelGetReceiver(dsm_segment *seg, shm_toc *toc) |
1246 | 0 | { |
1247 | 0 | char *mqspace; |
1248 | 0 | shm_mq *mq; |
1249 | |
|
1250 | 0 | mqspace = shm_toc_lookup(toc, PARALLEL_KEY_TUPLE_QUEUE, false); |
1251 | 0 | mqspace += ParallelWorkerNumber * PARALLEL_TUPLE_QUEUE_SIZE; |
1252 | 0 | mq = (shm_mq *) mqspace; |
1253 | 0 | shm_mq_set_sender(mq, MyProc); |
1254 | 0 | return CreateTupleQueueDestReceiver(shm_mq_attach(mq, seg, NULL)); |
1255 | 0 | } |
1256 | | |
1257 | | /* |
1258 | | * Create a QueryDesc for the PlannedStmt we are to execute, and return it. |
1259 | | */ |
1260 | | static QueryDesc * |
1261 | | ExecParallelGetQueryDesc(shm_toc *toc, DestReceiver *receiver, |
1262 | | int instrument_options) |
1263 | 0 | { |
1264 | 0 | char *pstmtspace; |
1265 | 0 | char *paramspace; |
1266 | 0 | PlannedStmt *pstmt; |
1267 | 0 | ParamListInfo paramLI; |
1268 | 0 | char *queryString; |
1269 | | |
1270 | | /* Get the query string from shared memory */ |
1271 | 0 | queryString = shm_toc_lookup(toc, PARALLEL_KEY_QUERY_TEXT, false); |
1272 | | |
1273 | | /* Reconstruct leader-supplied PlannedStmt. */ |
1274 | 0 | pstmtspace = shm_toc_lookup(toc, PARALLEL_KEY_PLANNEDSTMT, false); |
1275 | 0 | pstmt = (PlannedStmt *) stringToNode(pstmtspace); |
1276 | | |
1277 | | /* Reconstruct ParamListInfo. */ |
1278 | 0 | paramspace = shm_toc_lookup(toc, PARALLEL_KEY_PARAMLISTINFO, false); |
1279 | 0 | paramLI = RestoreParamList(¶mspace); |
1280 | | |
1281 | | /* Create a QueryDesc for the query. */ |
1282 | 0 | return CreateQueryDesc(pstmt, |
1283 | 0 | queryString, |
1284 | 0 | GetActiveSnapshot(), InvalidSnapshot, |
1285 | 0 | receiver, paramLI, NULL, instrument_options); |
1286 | 0 | } |
1287 | | |
1288 | | /* |
1289 | | * Copy instrumentation information from this node and its descendants into |
1290 | | * dynamic shared memory, so that the parallel leader can retrieve it. |
1291 | | */ |
1292 | | static bool |
1293 | | ExecParallelReportInstrumentation(PlanState *planstate, |
1294 | | SharedExecutorInstrumentation *instrumentation) |
1295 | 0 | { |
1296 | 0 | int i; |
1297 | 0 | int plan_node_id = planstate->plan->plan_node_id; |
1298 | 0 | Instrumentation *instrument; |
1299 | |
|
1300 | 0 | InstrEndLoop(planstate->instrument); |
1301 | | |
1302 | | /* |
1303 | | * If we shuffled the plan_node_id values in ps_instrument into sorted |
1304 | | * order, we could use binary search here. This might matter someday if |
1305 | | * we're pushing down sufficiently large plan trees. For now, do it the |
1306 | | * slow, dumb way. |
1307 | | */ |
1308 | 0 | for (i = 0; i < instrumentation->num_plan_nodes; ++i) |
1309 | 0 | if (instrumentation->plan_node_id[i] == plan_node_id) |
1310 | 0 | break; |
1311 | 0 | if (i >= instrumentation->num_plan_nodes) |
1312 | 0 | elog(ERROR, "plan node %d not found", plan_node_id); |
1313 | | |
1314 | | /* |
1315 | | * Add our statistics to the per-node, per-worker totals. It's possible |
1316 | | * that this could happen more than once if we relaunched workers. |
1317 | | */ |
1318 | 0 | instrument = GetInstrumentationArray(instrumentation); |
1319 | 0 | instrument += i * instrumentation->num_workers; |
1320 | 0 | Assert(IsParallelWorker()); |
1321 | 0 | Assert(ParallelWorkerNumber < instrumentation->num_workers); |
1322 | 0 | InstrAggNode(&instrument[ParallelWorkerNumber], planstate->instrument); |
1323 | |
|
1324 | 0 | return planstate_tree_walker(planstate, ExecParallelReportInstrumentation, |
1325 | 0 | instrumentation); |
1326 | 0 | } |
1327 | | |
1328 | | /* |
1329 | | * Initialize the PlanState and its descendants with the information |
1330 | | * retrieved from shared memory. This has to be done once the PlanState |
1331 | | * is allocated and initialized by executor; that is, after ExecutorStart(). |
1332 | | */ |
1333 | | static bool |
1334 | | ExecParallelInitializeWorker(PlanState *planstate, ParallelWorkerContext *pwcxt) |
1335 | 0 | { |
1336 | 0 | if (planstate == NULL) |
1337 | 0 | return false; |
1338 | | |
1339 | 0 | switch (nodeTag(planstate)) |
1340 | 0 | { |
1341 | 0 | case T_SeqScanState: |
1342 | 0 | if (planstate->plan->parallel_aware) |
1343 | 0 | ExecSeqScanInitializeWorker((SeqScanState *) planstate, pwcxt); |
1344 | 0 | break; |
1345 | 0 | case T_IndexScanState: |
1346 | | /* even when not parallel-aware, for EXPLAIN ANALYZE */ |
1347 | 0 | ExecIndexScanInitializeWorker((IndexScanState *) planstate, pwcxt); |
1348 | 0 | break; |
1349 | 0 | case T_IndexOnlyScanState: |
1350 | | /* even when not parallel-aware, for EXPLAIN ANALYZE */ |
1351 | 0 | ExecIndexOnlyScanInitializeWorker((IndexOnlyScanState *) planstate, |
1352 | 0 | pwcxt); |
1353 | 0 | break; |
1354 | 0 | case T_BitmapIndexScanState: |
1355 | | /* even when not parallel-aware, for EXPLAIN ANALYZE */ |
1356 | 0 | ExecBitmapIndexScanInitializeWorker((BitmapIndexScanState *) planstate, |
1357 | 0 | pwcxt); |
1358 | 0 | break; |
1359 | 0 | case T_ForeignScanState: |
1360 | 0 | if (planstate->plan->parallel_aware) |
1361 | 0 | ExecForeignScanInitializeWorker((ForeignScanState *) planstate, |
1362 | 0 | pwcxt); |
1363 | 0 | break; |
1364 | 0 | case T_AppendState: |
1365 | 0 | if (planstate->plan->parallel_aware) |
1366 | 0 | ExecAppendInitializeWorker((AppendState *) planstate, pwcxt); |
1367 | 0 | break; |
1368 | 0 | case T_CustomScanState: |
1369 | 0 | if (planstate->plan->parallel_aware) |
1370 | 0 | ExecCustomScanInitializeWorker((CustomScanState *) planstate, |
1371 | 0 | pwcxt); |
1372 | 0 | break; |
1373 | 0 | case T_BitmapHeapScanState: |
1374 | 0 | if (planstate->plan->parallel_aware) |
1375 | 0 | ExecBitmapHeapInitializeWorker((BitmapHeapScanState *) planstate, |
1376 | 0 | pwcxt); |
1377 | 0 | break; |
1378 | 0 | case T_HashJoinState: |
1379 | 0 | if (planstate->plan->parallel_aware) |
1380 | 0 | ExecHashJoinInitializeWorker((HashJoinState *) planstate, |
1381 | 0 | pwcxt); |
1382 | 0 | break; |
1383 | 0 | case T_HashState: |
1384 | | /* even when not parallel-aware, for EXPLAIN ANALYZE */ |
1385 | 0 | ExecHashInitializeWorker((HashState *) planstate, pwcxt); |
1386 | 0 | break; |
1387 | 0 | case T_SortState: |
1388 | | /* even when not parallel-aware, for EXPLAIN ANALYZE */ |
1389 | 0 | ExecSortInitializeWorker((SortState *) planstate, pwcxt); |
1390 | 0 | break; |
1391 | 0 | case T_IncrementalSortState: |
1392 | | /* even when not parallel-aware, for EXPLAIN ANALYZE */ |
1393 | 0 | ExecIncrementalSortInitializeWorker((IncrementalSortState *) planstate, |
1394 | 0 | pwcxt); |
1395 | 0 | break; |
1396 | 0 | case T_AggState: |
1397 | | /* even when not parallel-aware, for EXPLAIN ANALYZE */ |
1398 | 0 | ExecAggInitializeWorker((AggState *) planstate, pwcxt); |
1399 | 0 | break; |
1400 | 0 | case T_MemoizeState: |
1401 | | /* even when not parallel-aware, for EXPLAIN ANALYZE */ |
1402 | 0 | ExecMemoizeInitializeWorker((MemoizeState *) planstate, pwcxt); |
1403 | 0 | break; |
1404 | 0 | default: |
1405 | 0 | break; |
1406 | 0 | } |
1407 | | |
1408 | 0 | return planstate_tree_walker(planstate, ExecParallelInitializeWorker, |
1409 | 0 | pwcxt); |
1410 | 0 | } |
1411 | | |
1412 | | /* |
1413 | | * Main entrypoint for parallel query worker processes. |
1414 | | * |
1415 | | * We reach this function from ParallelWorkerMain, so the setup necessary to |
1416 | | * create a sensible parallel environment has already been done; |
1417 | | * ParallelWorkerMain worries about stuff like the transaction state, combo |
1418 | | * CID mappings, and GUC values, so we don't need to deal with any of that |
1419 | | * here. |
1420 | | * |
1421 | | * Our job is to deal with concerns specific to the executor. The parallel |
1422 | | * group leader will have stored a serialized PlannedStmt, and it's our job |
1423 | | * to execute that plan and write the resulting tuples to the appropriate |
1424 | | * tuple queue. Various bits of supporting information that we need in order |
1425 | | * to do this are also stored in the dsm_segment and can be accessed through |
1426 | | * the shm_toc. |
1427 | | */ |
1428 | | void |
1429 | | ParallelQueryMain(dsm_segment *seg, shm_toc *toc) |
1430 | 0 | { |
1431 | 0 | FixedParallelExecutorState *fpes; |
1432 | 0 | BufferUsage *buffer_usage; |
1433 | 0 | WalUsage *wal_usage; |
1434 | 0 | DestReceiver *receiver; |
1435 | 0 | QueryDesc *queryDesc; |
1436 | 0 | SharedExecutorInstrumentation *instrumentation; |
1437 | 0 | SharedJitInstrumentation *jit_instrumentation; |
1438 | 0 | int instrument_options = 0; |
1439 | 0 | void *area_space; |
1440 | 0 | dsa_area *area; |
1441 | 0 | ParallelWorkerContext pwcxt; |
1442 | | |
1443 | | /* Get fixed-size state. */ |
1444 | 0 | fpes = shm_toc_lookup(toc, PARALLEL_KEY_EXECUTOR_FIXED, false); |
1445 | | |
1446 | | /* Set up DestReceiver, SharedExecutorInstrumentation, and QueryDesc. */ |
1447 | 0 | receiver = ExecParallelGetReceiver(seg, toc); |
1448 | 0 | instrumentation = shm_toc_lookup(toc, PARALLEL_KEY_INSTRUMENTATION, true); |
1449 | 0 | if (instrumentation != NULL) |
1450 | 0 | instrument_options = instrumentation->instrument_options; |
1451 | 0 | jit_instrumentation = shm_toc_lookup(toc, PARALLEL_KEY_JIT_INSTRUMENTATION, |
1452 | 0 | true); |
1453 | 0 | queryDesc = ExecParallelGetQueryDesc(toc, receiver, instrument_options); |
1454 | | |
1455 | | /* Setting debug_query_string for individual workers */ |
1456 | 0 | debug_query_string = queryDesc->sourceText; |
1457 | | |
1458 | | /* Report workers' query for monitoring purposes */ |
1459 | 0 | pgstat_report_activity(STATE_RUNNING, debug_query_string); |
1460 | | |
1461 | | /* Attach to the dynamic shared memory area. */ |
1462 | 0 | area_space = shm_toc_lookup(toc, PARALLEL_KEY_DSA, false); |
1463 | 0 | area = dsa_attach_in_place(area_space, seg); |
1464 | | |
1465 | | /* Start up the executor */ |
1466 | 0 | queryDesc->plannedstmt->jitFlags = fpes->jit_flags; |
1467 | 0 | ExecutorStart(queryDesc, fpes->eflags); |
1468 | | |
1469 | | /* Special executor initialization steps for parallel workers */ |
1470 | 0 | queryDesc->planstate->state->es_query_dsa = area; |
1471 | 0 | if (DsaPointerIsValid(fpes->param_exec)) |
1472 | 0 | { |
1473 | 0 | char *paramexec_space; |
1474 | |
|
1475 | 0 | paramexec_space = dsa_get_address(area, fpes->param_exec); |
1476 | 0 | RestoreParamExecParams(paramexec_space, queryDesc->estate); |
1477 | 0 | } |
1478 | 0 | pwcxt.toc = toc; |
1479 | 0 | pwcxt.seg = seg; |
1480 | 0 | ExecParallelInitializeWorker(queryDesc->planstate, &pwcxt); |
1481 | | |
1482 | | /* Pass down any tuple bound */ |
1483 | 0 | ExecSetTupleBound(fpes->tuples_needed, queryDesc->planstate); |
1484 | | |
1485 | | /* |
1486 | | * Prepare to track buffer/WAL usage during query execution. |
1487 | | * |
1488 | | * We do this after starting up the executor to match what happens in the |
1489 | | * leader, which also doesn't count buffer accesses and WAL activity that |
1490 | | * occur during executor startup. |
1491 | | */ |
1492 | 0 | InstrStartParallelQuery(); |
1493 | | |
1494 | | /* |
1495 | | * Run the plan. If we specified a tuple bound, be careful not to demand |
1496 | | * more tuples than that. |
1497 | | */ |
1498 | 0 | ExecutorRun(queryDesc, |
1499 | 0 | ForwardScanDirection, |
1500 | 0 | fpes->tuples_needed < 0 ? (int64) 0 : fpes->tuples_needed); |
1501 | | |
1502 | | /* Shut down the executor */ |
1503 | 0 | ExecutorFinish(queryDesc); |
1504 | | |
1505 | | /* Report buffer/WAL usage during parallel execution. */ |
1506 | 0 | buffer_usage = shm_toc_lookup(toc, PARALLEL_KEY_BUFFER_USAGE, false); |
1507 | 0 | wal_usage = shm_toc_lookup(toc, PARALLEL_KEY_WAL_USAGE, false); |
1508 | 0 | InstrEndParallelQuery(&buffer_usage[ParallelWorkerNumber], |
1509 | 0 | &wal_usage[ParallelWorkerNumber]); |
1510 | | |
1511 | | /* Report instrumentation data if any instrumentation options are set. */ |
1512 | 0 | if (instrumentation != NULL) |
1513 | 0 | ExecParallelReportInstrumentation(queryDesc->planstate, |
1514 | 0 | instrumentation); |
1515 | | |
1516 | | /* Report JIT instrumentation data if any */ |
1517 | 0 | if (queryDesc->estate->es_jit && jit_instrumentation != NULL) |
1518 | 0 | { |
1519 | 0 | Assert(ParallelWorkerNumber < jit_instrumentation->num_workers); |
1520 | 0 | jit_instrumentation->jit_instr[ParallelWorkerNumber] = |
1521 | 0 | queryDesc->estate->es_jit->instr; |
1522 | 0 | } |
1523 | | |
1524 | | /* Must do this after capturing instrumentation. */ |
1525 | 0 | ExecutorEnd(queryDesc); |
1526 | | |
1527 | | /* Cleanup. */ |
1528 | 0 | dsa_detach(area); |
1529 | 0 | FreeQueryDesc(queryDesc); |
1530 | 0 | receiver->rDestroy(receiver); |
1531 | 0 | } |