Coverage Report

Created: 2025-06-13 06:06

/src/postgres/src/backend/executor/nodeGatherMerge.c
Line
Count
Source (jump to first uncovered line)
1
/*-------------------------------------------------------------------------
2
 *
3
 * nodeGatherMerge.c
4
 *    Scan a plan in multiple workers, and do order-preserving merge.
5
 *
6
 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
7
 * Portions Copyright (c) 1994, Regents of the University of California
8
 *
9
 * IDENTIFICATION
10
 *    src/backend/executor/nodeGatherMerge.c
11
 *
12
 *-------------------------------------------------------------------------
13
 */
14
15
#include "postgres.h"
16
17
#include "executor/executor.h"
18
#include "executor/execParallel.h"
19
#include "executor/nodeGatherMerge.h"
20
#include "executor/tqueue.h"
21
#include "lib/binaryheap.h"
22
#include "miscadmin.h"
23
#include "optimizer/optimizer.h"
24
25
/*
26
 * When we read tuples from workers, it's a good idea to read several at once
27
 * for efficiency when possible: this minimizes context-switching overhead.
28
 * But reading too many at a time wastes memory without improving performance.
29
 * We'll read up to MAX_TUPLE_STORE tuples (in addition to the first one).
30
 */
31
0
#define MAX_TUPLE_STORE 10
32
33
/*
34
 * Pending-tuple array for each worker.  This holds additional tuples that
35
 * we were able to fetch from the worker, but can't process yet.  In addition,
36
 * this struct holds the "done" flag indicating the worker is known to have
37
 * no more tuples.  (We do not use this struct for the leader; we don't keep
38
 * any pending tuples for the leader, and the need_to_scan_locally flag serves
39
 * as its "done" indicator.)
40
 */
41
typedef struct GMReaderTupleBuffer
42
{
43
  MinimalTuple *tuple;    /* array of length MAX_TUPLE_STORE */
44
  int     nTuples;    /* number of tuples currently stored */
45
  int     readCounter;  /* index of next tuple to extract */
46
  bool    done;     /* true if reader is known exhausted */
47
} GMReaderTupleBuffer;
48
49
static TupleTableSlot *ExecGatherMerge(PlanState *pstate);
50
static int32 heap_compare_slots(Datum a, Datum b, void *arg);
51
static TupleTableSlot *gather_merge_getnext(GatherMergeState *gm_state);
52
static MinimalTuple gm_readnext_tuple(GatherMergeState *gm_state, int nreader,
53
                    bool nowait, bool *done);
54
static void ExecShutdownGatherMergeWorkers(GatherMergeState *node);
55
static void gather_merge_setup(GatherMergeState *gm_state);
56
static void gather_merge_init(GatherMergeState *gm_state);
57
static void gather_merge_clear_tuples(GatherMergeState *gm_state);
58
static bool gather_merge_readnext(GatherMergeState *gm_state, int reader,
59
                  bool nowait);
60
static void load_tuple_array(GatherMergeState *gm_state, int reader);
61
62
/* ----------------------------------------------------------------
63
 *    ExecInitGather
64
 * ----------------------------------------------------------------
65
 */
66
GatherMergeState *
67
ExecInitGatherMerge(GatherMerge *node, EState *estate, int eflags)
68
0
{
69
0
  GatherMergeState *gm_state;
70
0
  Plan     *outerNode;
71
0
  TupleDesc tupDesc;
72
73
  /* Gather merge node doesn't have innerPlan node. */
74
0
  Assert(innerPlan(node) == NULL);
75
76
  /*
77
   * create state structure
78
   */
79
0
  gm_state = makeNode(GatherMergeState);
80
0
  gm_state->ps.plan = (Plan *) node;
81
0
  gm_state->ps.state = estate;
82
0
  gm_state->ps.ExecProcNode = ExecGatherMerge;
83
84
0
  gm_state->initialized = false;
85
0
  gm_state->gm_initialized = false;
86
0
  gm_state->tuples_needed = -1;
87
88
  /*
89
   * Miscellaneous initialization
90
   *
91
   * create expression context for node
92
   */
93
0
  ExecAssignExprContext(estate, &gm_state->ps);
94
95
  /*
96
   * GatherMerge doesn't support checking a qual (it's always more efficient
97
   * to do it in the child node).
98
   */
99
0
  Assert(!node->plan.qual);
100
101
  /*
102
   * now initialize outer plan
103
   */
104
0
  outerNode = outerPlan(node);
105
0
  outerPlanState(gm_state) = ExecInitNode(outerNode, estate, eflags);
106
107
  /*
108
   * Leader may access ExecProcNode result directly (if
109
   * need_to_scan_locally), or from workers via tuple queue.  So we can't
110
   * trivially rely on the slot type being fixed for expressions evaluated
111
   * within this node.
112
   */
113
0
  gm_state->ps.outeropsset = true;
114
0
  gm_state->ps.outeropsfixed = false;
115
116
  /*
117
   * Store the tuple descriptor into gather merge state, so we can use it
118
   * while initializing the gather merge slots.
119
   */
120
0
  tupDesc = ExecGetResultType(outerPlanState(gm_state));
121
0
  gm_state->tupDesc = tupDesc;
122
123
  /*
124
   * Initialize result type and projection.
125
   */
126
0
  ExecInitResultTypeTL(&gm_state->ps);
127
0
  ExecConditionalAssignProjectionInfo(&gm_state->ps, tupDesc, OUTER_VAR);
128
129
  /*
130
   * Without projections result slot type is not trivially known, see
131
   * comment above.
132
   */
133
0
  if (gm_state->ps.ps_ProjInfo == NULL)
134
0
  {
135
0
    gm_state->ps.resultopsset = true;
136
0
    gm_state->ps.resultopsfixed = false;
137
0
  }
138
139
  /*
140
   * initialize sort-key information
141
   */
142
0
  if (node->numCols)
143
0
  {
144
0
    int     i;
145
146
0
    gm_state->gm_nkeys = node->numCols;
147
0
    gm_state->gm_sortkeys =
148
0
      palloc0(sizeof(SortSupportData) * node->numCols);
149
150
0
    for (i = 0; i < node->numCols; i++)
151
0
    {
152
0
      SortSupport sortKey = gm_state->gm_sortkeys + i;
153
154
0
      sortKey->ssup_cxt = CurrentMemoryContext;
155
0
      sortKey->ssup_collation = node->collations[i];
156
0
      sortKey->ssup_nulls_first = node->nullsFirst[i];
157
0
      sortKey->ssup_attno = node->sortColIdx[i];
158
159
      /*
160
       * We don't perform abbreviated key conversion here, for the same
161
       * reasons that it isn't used in MergeAppend
162
       */
163
0
      sortKey->abbreviate = false;
164
165
0
      PrepareSortSupportFromOrderingOp(node->sortOperators[i], sortKey);
166
0
    }
167
0
  }
168
169
  /* Now allocate the workspace for gather merge */
170
0
  gather_merge_setup(gm_state);
171
172
0
  return gm_state;
173
0
}
174
175
/* ----------------------------------------------------------------
176
 *    ExecGatherMerge(node)
177
 *
178
 *    Scans the relation via multiple workers and returns
179
 *    the next qualifying tuple.
180
 * ----------------------------------------------------------------
181
 */
182
static TupleTableSlot *
183
ExecGatherMerge(PlanState *pstate)
184
0
{
185
0
  GatherMergeState *node = castNode(GatherMergeState, pstate);
186
0
  TupleTableSlot *slot;
187
0
  ExprContext *econtext;
188
189
0
  CHECK_FOR_INTERRUPTS();
190
191
  /*
192
   * As with Gather, we don't launch workers until this node is actually
193
   * executed.
194
   */
195
0
  if (!node->initialized)
196
0
  {
197
0
    EState     *estate = node->ps.state;
198
0
    GatherMerge *gm = castNode(GatherMerge, node->ps.plan);
199
200
    /*
201
     * Sometimes we might have to run without parallelism; but if parallel
202
     * mode is active then we can try to fire up some workers.
203
     */
204
0
    if (gm->num_workers > 0 && estate->es_use_parallel_mode)
205
0
    {
206
0
      ParallelContext *pcxt;
207
208
      /* Initialize, or re-initialize, shared state needed by workers. */
209
0
      if (!node->pei)
210
0
        node->pei = ExecInitParallelPlan(outerPlanState(node),
211
0
                         estate,
212
0
                         gm->initParam,
213
0
                         gm->num_workers,
214
0
                         node->tuples_needed);
215
0
      else
216
0
        ExecParallelReinitialize(outerPlanState(node),
217
0
                     node->pei,
218
0
                     gm->initParam);
219
220
      /* Try to launch workers. */
221
0
      pcxt = node->pei->pcxt;
222
0
      LaunchParallelWorkers(pcxt);
223
      /* We save # workers launched for the benefit of EXPLAIN */
224
0
      node->nworkers_launched = pcxt->nworkers_launched;
225
226
      /*
227
       * Count number of workers originally wanted and actually
228
       * launched.
229
       */
230
0
      estate->es_parallel_workers_to_launch += pcxt->nworkers_to_launch;
231
0
      estate->es_parallel_workers_launched += pcxt->nworkers_launched;
232
233
      /* Set up tuple queue readers to read the results. */
234
0
      if (pcxt->nworkers_launched > 0)
235
0
      {
236
0
        ExecParallelCreateReaders(node->pei);
237
        /* Make a working array showing the active readers */
238
0
        node->nreaders = pcxt->nworkers_launched;
239
0
        node->reader = (TupleQueueReader **)
240
0
          palloc(node->nreaders * sizeof(TupleQueueReader *));
241
0
        memcpy(node->reader, node->pei->reader,
242
0
             node->nreaders * sizeof(TupleQueueReader *));
243
0
      }
244
0
      else
245
0
      {
246
        /* No workers?  Then never mind. */
247
0
        node->nreaders = 0;
248
0
        node->reader = NULL;
249
0
      }
250
0
    }
251
252
    /* allow leader to participate if enabled or no choice */
253
0
    if (parallel_leader_participation || node->nreaders == 0)
254
0
      node->need_to_scan_locally = true;
255
0
    node->initialized = true;
256
0
  }
257
258
  /*
259
   * Reset per-tuple memory context to free any expression evaluation
260
   * storage allocated in the previous tuple cycle.
261
   */
262
0
  econtext = node->ps.ps_ExprContext;
263
0
  ResetExprContext(econtext);
264
265
  /*
266
   * Get next tuple, either from one of our workers, or by running the plan
267
   * ourselves.
268
   */
269
0
  slot = gather_merge_getnext(node);
270
0
  if (TupIsNull(slot))
271
0
    return NULL;
272
273
  /* If no projection is required, we're done. */
274
0
  if (node->ps.ps_ProjInfo == NULL)
275
0
    return slot;
276
277
  /*
278
   * Form the result tuple using ExecProject(), and return it.
279
   */
280
0
  econtext->ecxt_outertuple = slot;
281
0
  return ExecProject(node->ps.ps_ProjInfo);
282
0
}
283
284
/* ----------------------------------------------------------------
285
 *    ExecEndGatherMerge
286
 *
287
 *    frees any storage allocated through C routines.
288
 * ----------------------------------------------------------------
289
 */
290
void
291
ExecEndGatherMerge(GatherMergeState *node)
292
0
{
293
0
  ExecEndNode(outerPlanState(node));  /* let children clean up first */
294
0
  ExecShutdownGatherMerge(node);
295
0
}
296
297
/* ----------------------------------------------------------------
298
 *    ExecShutdownGatherMerge
299
 *
300
 *    Destroy the setup for parallel workers including parallel context.
301
 * ----------------------------------------------------------------
302
 */
303
void
304
ExecShutdownGatherMerge(GatherMergeState *node)
305
0
{
306
0
  ExecShutdownGatherMergeWorkers(node);
307
308
  /* Now destroy the parallel context. */
309
0
  if (node->pei != NULL)
310
0
  {
311
0
    ExecParallelCleanup(node->pei);
312
0
    node->pei = NULL;
313
0
  }
314
0
}
315
316
/* ----------------------------------------------------------------
317
 *    ExecShutdownGatherMergeWorkers
318
 *
319
 *    Stop all the parallel workers.
320
 * ----------------------------------------------------------------
321
 */
322
static void
323
ExecShutdownGatherMergeWorkers(GatherMergeState *node)
324
0
{
325
0
  if (node->pei != NULL)
326
0
    ExecParallelFinish(node->pei);
327
328
  /* Flush local copy of reader array */
329
0
  if (node->reader)
330
0
    pfree(node->reader);
331
0
  node->reader = NULL;
332
0
}
333
334
/* ----------------------------------------------------------------
335
 *    ExecReScanGatherMerge
336
 *
337
 *    Prepare to re-scan the result of a GatherMerge.
338
 * ----------------------------------------------------------------
339
 */
340
void
341
ExecReScanGatherMerge(GatherMergeState *node)
342
0
{
343
0
  GatherMerge *gm = (GatherMerge *) node->ps.plan;
344
0
  PlanState  *outerPlan = outerPlanState(node);
345
346
  /* Make sure any existing workers are gracefully shut down */
347
0
  ExecShutdownGatherMergeWorkers(node);
348
349
  /* Free any unused tuples, so we don't leak memory across rescans */
350
0
  gather_merge_clear_tuples(node);
351
352
  /* Mark node so that shared state will be rebuilt at next call */
353
0
  node->initialized = false;
354
0
  node->gm_initialized = false;
355
356
  /*
357
   * Set child node's chgParam to tell it that the next scan might deliver a
358
   * different set of rows within the leader process.  (The overall rowset
359
   * shouldn't change, but the leader process's subset might; hence nodes
360
   * between here and the parallel table scan node mustn't optimize on the
361
   * assumption of an unchanging rowset.)
362
   */
363
0
  if (gm->rescan_param >= 0)
364
0
    outerPlan->chgParam = bms_add_member(outerPlan->chgParam,
365
0
                       gm->rescan_param);
366
367
  /*
368
   * If chgParam of subnode is not null then plan will be re-scanned by
369
   * first ExecProcNode.  Note: because this does nothing if we have a
370
   * rescan_param, it's currently guaranteed that parallel-aware child nodes
371
   * will not see a ReScan call until after they get a ReInitializeDSM call.
372
   * That ordering might not be something to rely on, though.  A good rule
373
   * of thumb is that ReInitializeDSM should reset only shared state, ReScan
374
   * should reset only local state, and anything that depends on both of
375
   * those steps being finished must wait until the first ExecProcNode call.
376
   */
377
0
  if (outerPlan->chgParam == NULL)
378
0
    ExecReScan(outerPlan);
379
0
}
380
381
/*
382
 * Set up the data structures that we'll need for Gather Merge.
383
 *
384
 * We allocate these once on the basis of gm->num_workers, which is an
385
 * upper bound for the number of workers we'll actually have.  During
386
 * a rescan, we reset the structures to empty.  This approach simplifies
387
 * not leaking memory across rescans.
388
 *
389
 * In the gm_slots[] array, index 0 is for the leader, and indexes 1 to n
390
 * are for workers.  The values placed into gm_heap correspond to indexes
391
 * in gm_slots[].  The gm_tuple_buffers[] array, however, is indexed from
392
 * 0 to n-1; it has no entry for the leader.
393
 */
394
static void
395
gather_merge_setup(GatherMergeState *gm_state)
396
0
{
397
0
  GatherMerge *gm = castNode(GatherMerge, gm_state->ps.plan);
398
0
  int     nreaders = gm->num_workers;
399
0
  int     i;
400
401
  /*
402
   * Allocate gm_slots for the number of workers + one more slot for leader.
403
   * Slot 0 is always for the leader.  Leader always calls ExecProcNode() to
404
   * read the tuple, and then stores it directly into its gm_slots entry.
405
   * For other slots, code below will call ExecInitExtraTupleSlot() to
406
   * create a slot for the worker's results.  Note that during any single
407
   * scan, we might have fewer than num_workers available workers, in which
408
   * case the extra array entries go unused.
409
   */
410
0
  gm_state->gm_slots = (TupleTableSlot **)
411
0
    palloc0((nreaders + 1) * sizeof(TupleTableSlot *));
412
413
  /* Allocate the tuple slot and tuple array for each worker */
414
0
  gm_state->gm_tuple_buffers = (GMReaderTupleBuffer *)
415
0
    palloc0(nreaders * sizeof(GMReaderTupleBuffer));
416
417
0
  for (i = 0; i < nreaders; i++)
418
0
  {
419
    /* Allocate the tuple array with length MAX_TUPLE_STORE */
420
0
    gm_state->gm_tuple_buffers[i].tuple =
421
0
      (MinimalTuple *) palloc0(sizeof(MinimalTuple) * MAX_TUPLE_STORE);
422
423
    /* Initialize tuple slot for worker */
424
0
    gm_state->gm_slots[i + 1] =
425
0
      ExecInitExtraTupleSlot(gm_state->ps.state, gm_state->tupDesc,
426
0
                   &TTSOpsMinimalTuple);
427
0
  }
428
429
  /* Allocate the resources for the merge */
430
0
  gm_state->gm_heap = binaryheap_allocate(nreaders + 1,
431
0
                      heap_compare_slots,
432
0
                      gm_state);
433
0
}
434
435
/*
436
 * Initialize the Gather Merge.
437
 *
438
 * Reset data structures to ensure they're empty.  Then pull at least one
439
 * tuple from leader + each worker (or set its "done" indicator), and set up
440
 * the heap.
441
 */
442
static void
443
gather_merge_init(GatherMergeState *gm_state)
444
0
{
445
0
  int     nreaders = gm_state->nreaders;
446
0
  bool    nowait = true;
447
0
  int     i;
448
449
  /* Assert that gather_merge_setup made enough space */
450
0
  Assert(nreaders <= castNode(GatherMerge, gm_state->ps.plan)->num_workers);
451
452
  /* Reset leader's tuple slot to empty */
453
0
  gm_state->gm_slots[0] = NULL;
454
455
  /* Reset the tuple slot and tuple array for each worker */
456
0
  for (i = 0; i < nreaders; i++)
457
0
  {
458
    /* Reset tuple array to empty */
459
0
    gm_state->gm_tuple_buffers[i].nTuples = 0;
460
0
    gm_state->gm_tuple_buffers[i].readCounter = 0;
461
    /* Reset done flag to not-done */
462
0
    gm_state->gm_tuple_buffers[i].done = false;
463
    /* Ensure output slot is empty */
464
0
    ExecClearTuple(gm_state->gm_slots[i + 1]);
465
0
  }
466
467
  /* Reset binary heap to empty */
468
0
  binaryheap_reset(gm_state->gm_heap);
469
470
  /*
471
   * First, try to read a tuple from each worker (including leader) in
472
   * nowait mode.  After this, if not all workers were able to produce a
473
   * tuple (or a "done" indication), then re-read from remaining workers,
474
   * this time using wait mode.  Add all live readers (those producing at
475
   * least one tuple) to the heap.
476
   */
477
0
reread:
478
0
  for (i = 0; i <= nreaders; i++)
479
0
  {
480
0
    CHECK_FOR_INTERRUPTS();
481
482
    /* skip this source if already known done */
483
0
    if ((i == 0) ? gm_state->need_to_scan_locally :
484
0
      !gm_state->gm_tuple_buffers[i - 1].done)
485
0
    {
486
0
      if (TupIsNull(gm_state->gm_slots[i]))
487
0
      {
488
        /* Don't have a tuple yet, try to get one */
489
0
        if (gather_merge_readnext(gm_state, i, nowait))
490
0
          binaryheap_add_unordered(gm_state->gm_heap,
491
0
                       Int32GetDatum(i));
492
0
      }
493
0
      else
494
0
      {
495
        /*
496
         * We already got at least one tuple from this worker, but
497
         * might as well see if it has any more ready by now.
498
         */
499
0
        load_tuple_array(gm_state, i);
500
0
      }
501
0
    }
502
0
  }
503
504
  /* need not recheck leader, since nowait doesn't matter for it */
505
0
  for (i = 1; i <= nreaders; i++)
506
0
  {
507
0
    if (!gm_state->gm_tuple_buffers[i - 1].done &&
508
0
      TupIsNull(gm_state->gm_slots[i]))
509
0
    {
510
0
      nowait = false;
511
0
      goto reread;
512
0
    }
513
0
  }
514
515
  /* Now heapify the heap. */
516
0
  binaryheap_build(gm_state->gm_heap);
517
518
0
  gm_state->gm_initialized = true;
519
0
}
520
521
/*
522
 * Clear out the tuple table slot, and any unused pending tuples,
523
 * for each gather merge input.
524
 */
525
static void
526
gather_merge_clear_tuples(GatherMergeState *gm_state)
527
0
{
528
0
  int     i;
529
530
0
  for (i = 0; i < gm_state->nreaders; i++)
531
0
  {
532
0
    GMReaderTupleBuffer *tuple_buffer = &gm_state->gm_tuple_buffers[i];
533
534
0
    while (tuple_buffer->readCounter < tuple_buffer->nTuples)
535
0
      pfree(tuple_buffer->tuple[tuple_buffer->readCounter++]);
536
537
0
    ExecClearTuple(gm_state->gm_slots[i + 1]);
538
0
  }
539
0
}
540
541
/*
542
 * Read the next tuple for gather merge.
543
 *
544
 * Fetch the sorted tuple out of the heap.
545
 */
546
static TupleTableSlot *
547
gather_merge_getnext(GatherMergeState *gm_state)
548
0
{
549
0
  int     i;
550
551
0
  if (!gm_state->gm_initialized)
552
0
  {
553
    /*
554
     * First time through: pull the first tuple from each participant, and
555
     * set up the heap.
556
     */
557
0
    gather_merge_init(gm_state);
558
0
  }
559
0
  else
560
0
  {
561
    /*
562
     * Otherwise, pull the next tuple from whichever participant we
563
     * returned from last time, and reinsert that participant's index into
564
     * the heap, because it might now compare differently against the
565
     * other elements of the heap.
566
     */
567
0
    i = DatumGetInt32(binaryheap_first(gm_state->gm_heap));
568
569
0
    if (gather_merge_readnext(gm_state, i, false))
570
0
      binaryheap_replace_first(gm_state->gm_heap, Int32GetDatum(i));
571
0
    else
572
0
    {
573
      /* reader exhausted, remove it from heap */
574
0
      (void) binaryheap_remove_first(gm_state->gm_heap);
575
0
    }
576
0
  }
577
578
0
  if (binaryheap_empty(gm_state->gm_heap))
579
0
  {
580
    /* All the queues are exhausted, and so is the heap */
581
0
    gather_merge_clear_tuples(gm_state);
582
0
    return NULL;
583
0
  }
584
0
  else
585
0
  {
586
    /* Return next tuple from whichever participant has the leading one */
587
0
    i = DatumGetInt32(binaryheap_first(gm_state->gm_heap));
588
0
    return gm_state->gm_slots[i];
589
0
  }
590
0
}
591
592
/*
593
 * Read tuple(s) for given reader in nowait mode, and load into its tuple
594
 * array, until we have MAX_TUPLE_STORE of them or would have to block.
595
 */
596
static void
597
load_tuple_array(GatherMergeState *gm_state, int reader)
598
0
{
599
0
  GMReaderTupleBuffer *tuple_buffer;
600
0
  int     i;
601
602
  /* Don't do anything if this is the leader. */
603
0
  if (reader == 0)
604
0
    return;
605
606
0
  tuple_buffer = &gm_state->gm_tuple_buffers[reader - 1];
607
608
  /* If there's nothing in the array, reset the counters to zero. */
609
0
  if (tuple_buffer->nTuples == tuple_buffer->readCounter)
610
0
    tuple_buffer->nTuples = tuple_buffer->readCounter = 0;
611
612
  /* Try to fill additional slots in the array. */
613
0
  for (i = tuple_buffer->nTuples; i < MAX_TUPLE_STORE; i++)
614
0
  {
615
0
    MinimalTuple tuple;
616
617
0
    tuple = gm_readnext_tuple(gm_state,
618
0
                  reader,
619
0
                  true,
620
0
                  &tuple_buffer->done);
621
0
    if (!tuple)
622
0
      break;
623
0
    tuple_buffer->tuple[i] = tuple;
624
0
    tuple_buffer->nTuples++;
625
0
  }
626
0
}
627
628
/*
629
 * Store the next tuple for a given reader into the appropriate slot.
630
 *
631
 * Returns true if successful, false if not (either reader is exhausted,
632
 * or we didn't want to wait for a tuple).  Sets done flag if reader
633
 * is found to be exhausted.
634
 */
635
static bool
636
gather_merge_readnext(GatherMergeState *gm_state, int reader, bool nowait)
637
0
{
638
0
  GMReaderTupleBuffer *tuple_buffer;
639
0
  MinimalTuple tup;
640
641
  /*
642
   * If we're being asked to generate a tuple from the leader, then we just
643
   * call ExecProcNode as normal to produce one.
644
   */
645
0
  if (reader == 0)
646
0
  {
647
0
    if (gm_state->need_to_scan_locally)
648
0
    {
649
0
      PlanState  *outerPlan = outerPlanState(gm_state);
650
0
      TupleTableSlot *outerTupleSlot;
651
0
      EState     *estate = gm_state->ps.state;
652
653
      /* Install our DSA area while executing the plan. */
654
0
      estate->es_query_dsa = gm_state->pei ? gm_state->pei->area : NULL;
655
0
      outerTupleSlot = ExecProcNode(outerPlan);
656
0
      estate->es_query_dsa = NULL;
657
658
0
      if (!TupIsNull(outerTupleSlot))
659
0
      {
660
0
        gm_state->gm_slots[0] = outerTupleSlot;
661
0
        return true;
662
0
      }
663
      /* need_to_scan_locally serves as "done" flag for leader */
664
0
      gm_state->need_to_scan_locally = false;
665
0
    }
666
0
    return false;
667
0
  }
668
669
  /* Otherwise, check the state of the relevant tuple buffer. */
670
0
  tuple_buffer = &gm_state->gm_tuple_buffers[reader - 1];
671
672
0
  if (tuple_buffer->nTuples > tuple_buffer->readCounter)
673
0
  {
674
    /* Return any tuple previously read that is still buffered. */
675
0
    tup = tuple_buffer->tuple[tuple_buffer->readCounter++];
676
0
  }
677
0
  else if (tuple_buffer->done)
678
0
  {
679
    /* Reader is known to be exhausted. */
680
0
    return false;
681
0
  }
682
0
  else
683
0
  {
684
    /* Read and buffer next tuple. */
685
0
    tup = gm_readnext_tuple(gm_state,
686
0
                reader,
687
0
                nowait,
688
0
                &tuple_buffer->done);
689
0
    if (!tup)
690
0
      return false;
691
692
    /*
693
     * Attempt to read more tuples in nowait mode and store them in the
694
     * pending-tuple array for the reader.
695
     */
696
0
    load_tuple_array(gm_state, reader);
697
0
  }
698
699
0
  Assert(tup);
700
701
  /* Build the TupleTableSlot for the given tuple */
702
0
  ExecStoreMinimalTuple(tup,  /* tuple to store */
703
0
              gm_state->gm_slots[reader], /* slot in which to
704
                             * store the tuple */
705
0
              true);  /* pfree tuple when done with it */
706
707
0
  return true;
708
0
}
709
710
/*
711
 * Attempt to read a tuple from given worker.
712
 */
713
static MinimalTuple
714
gm_readnext_tuple(GatherMergeState *gm_state, int nreader, bool nowait,
715
          bool *done)
716
0
{
717
0
  TupleQueueReader *reader;
718
0
  MinimalTuple tup;
719
720
  /* Check for async events, particularly messages from workers. */
721
0
  CHECK_FOR_INTERRUPTS();
722
723
  /*
724
   * Attempt to read a tuple.
725
   *
726
   * Note that TupleQueueReaderNext will just return NULL for a worker which
727
   * fails to initialize.  We'll treat that worker as having produced no
728
   * tuples; WaitForParallelWorkersToFinish will error out when we get
729
   * there.
730
   */
731
0
  reader = gm_state->reader[nreader - 1];
732
0
  tup = TupleQueueReaderNext(reader, nowait, done);
733
734
  /*
735
   * Since we'll be buffering these across multiple calls, we need to make a
736
   * copy.
737
   */
738
0
  return tup ? heap_copy_minimal_tuple(tup, 0) : NULL;
739
0
}
740
741
/*
742
 * We have one slot for each item in the heap array.  We use SlotNumber
743
 * to store slot indexes.  This doesn't actually provide any formal
744
 * type-safety, but it makes the code more self-documenting.
745
 */
746
typedef int32 SlotNumber;
747
748
/*
749
 * Compare the tuples in the two given slots.
750
 */
751
static int32
752
heap_compare_slots(Datum a, Datum b, void *arg)
753
0
{
754
0
  GatherMergeState *node = (GatherMergeState *) arg;
755
0
  SlotNumber  slot1 = DatumGetInt32(a);
756
0
  SlotNumber  slot2 = DatumGetInt32(b);
757
758
0
  TupleTableSlot *s1 = node->gm_slots[slot1];
759
0
  TupleTableSlot *s2 = node->gm_slots[slot2];
760
0
  int     nkey;
761
762
0
  Assert(!TupIsNull(s1));
763
0
  Assert(!TupIsNull(s2));
764
765
0
  for (nkey = 0; nkey < node->gm_nkeys; nkey++)
766
0
  {
767
0
    SortSupport sortKey = node->gm_sortkeys + nkey;
768
0
    AttrNumber  attno = sortKey->ssup_attno;
769
0
    Datum   datum1,
770
0
          datum2;
771
0
    bool    isNull1,
772
0
          isNull2;
773
0
    int     compare;
774
775
0
    datum1 = slot_getattr(s1, attno, &isNull1);
776
0
    datum2 = slot_getattr(s2, attno, &isNull2);
777
778
0
    compare = ApplySortComparator(datum1, isNull1,
779
0
                    datum2, isNull2,
780
0
                    sortKey);
781
0
    if (compare != 0)
782
0
    {
783
0
      INVERT_COMPARE_RESULT(compare);
784
0
      return compare;
785
0
    }
786
0
  }
787
0
  return 0;
788
0
}