/src/postgres/src/backend/lib/bipartite_match.c
Line | Count | Source (jump to first uncovered line) |
1 | | /*------------------------------------------------------------------------- |
2 | | * |
3 | | * bipartite_match.c |
4 | | * Hopcroft-Karp maximum cardinality algorithm for bipartite graphs |
5 | | * |
6 | | * This implementation is based on pseudocode found at: |
7 | | * |
8 | | * https://en.wikipedia.org/w/index.php?title=Hopcroft%E2%80%93Karp_algorithm&oldid=593898016 |
9 | | * |
10 | | * Copyright (c) 2015-2025, PostgreSQL Global Development Group |
11 | | * |
12 | | * IDENTIFICATION |
13 | | * src/backend/lib/bipartite_match.c |
14 | | * |
15 | | *------------------------------------------------------------------------- |
16 | | */ |
17 | | #include "postgres.h" |
18 | | |
19 | | #include <limits.h> |
20 | | |
21 | | #include "lib/bipartite_match.h" |
22 | | #include "miscadmin.h" |
23 | | |
24 | | /* |
25 | | * The distances computed in hk_breadth_search can easily be seen to never |
26 | | * exceed u_size. Since we restrict u_size to be less than SHRT_MAX, we |
27 | | * can therefore use SHRT_MAX as the "infinity" distance needed as a marker. |
28 | | */ |
29 | 0 | #define HK_INFINITY SHRT_MAX |
30 | | |
31 | | static bool hk_breadth_search(BipartiteMatchState *state); |
32 | | static bool hk_depth_search(BipartiteMatchState *state, int u); |
33 | | |
34 | | /* |
35 | | * Given the size of U and V, where each is indexed 1..size, and an adjacency |
36 | | * list, perform the matching and return the resulting state. |
37 | | */ |
38 | | BipartiteMatchState * |
39 | | BipartiteMatch(int u_size, int v_size, short **adjacency) |
40 | 0 | { |
41 | 0 | BipartiteMatchState *state = palloc(sizeof(BipartiteMatchState)); |
42 | |
|
43 | 0 | if (u_size < 0 || u_size >= SHRT_MAX || |
44 | 0 | v_size < 0 || v_size >= SHRT_MAX) |
45 | 0 | elog(ERROR, "invalid set size for BipartiteMatch"); |
46 | | |
47 | 0 | state->u_size = u_size; |
48 | 0 | state->v_size = v_size; |
49 | 0 | state->adjacency = adjacency; |
50 | 0 | state->matching = 0; |
51 | 0 | state->pair_uv = (short *) palloc0((u_size + 1) * sizeof(short)); |
52 | 0 | state->pair_vu = (short *) palloc0((v_size + 1) * sizeof(short)); |
53 | 0 | state->distance = (short *) palloc((u_size + 1) * sizeof(short)); |
54 | 0 | state->queue = (short *) palloc((u_size + 2) * sizeof(short)); |
55 | |
|
56 | 0 | while (hk_breadth_search(state)) |
57 | 0 | { |
58 | 0 | int u; |
59 | |
|
60 | 0 | for (u = 1; u <= u_size; u++) |
61 | 0 | { |
62 | 0 | if (state->pair_uv[u] == 0) |
63 | 0 | if (hk_depth_search(state, u)) |
64 | 0 | state->matching++; |
65 | 0 | } |
66 | |
|
67 | 0 | CHECK_FOR_INTERRUPTS(); /* just in case */ |
68 | 0 | } |
69 | |
|
70 | 0 | return state; |
71 | 0 | } |
72 | | |
73 | | /* |
74 | | * Free a state returned by BipartiteMatch, except for the original adjacency |
75 | | * list, which is owned by the caller. This only frees memory, so it's optional. |
76 | | */ |
77 | | void |
78 | | BipartiteMatchFree(BipartiteMatchState *state) |
79 | 0 | { |
80 | | /* adjacency matrix is treated as owned by the caller */ |
81 | 0 | pfree(state->pair_uv); |
82 | 0 | pfree(state->pair_vu); |
83 | 0 | pfree(state->distance); |
84 | 0 | pfree(state->queue); |
85 | 0 | pfree(state); |
86 | 0 | } |
87 | | |
88 | | /* |
89 | | * Perform the breadth-first search step of H-K matching. |
90 | | * Returns true if successful. |
91 | | */ |
92 | | static bool |
93 | | hk_breadth_search(BipartiteMatchState *state) |
94 | 0 | { |
95 | 0 | int usize = state->u_size; |
96 | 0 | short *queue = state->queue; |
97 | 0 | short *distance = state->distance; |
98 | 0 | int qhead = 0; /* we never enqueue any node more than once */ |
99 | 0 | int qtail = 0; /* so don't have to worry about wrapping */ |
100 | 0 | int u; |
101 | |
|
102 | 0 | distance[0] = HK_INFINITY; |
103 | |
|
104 | 0 | for (u = 1; u <= usize; u++) |
105 | 0 | { |
106 | 0 | if (state->pair_uv[u] == 0) |
107 | 0 | { |
108 | 0 | distance[u] = 0; |
109 | 0 | queue[qhead++] = u; |
110 | 0 | } |
111 | 0 | else |
112 | 0 | distance[u] = HK_INFINITY; |
113 | 0 | } |
114 | |
|
115 | 0 | while (qtail < qhead) |
116 | 0 | { |
117 | 0 | u = queue[qtail++]; |
118 | |
|
119 | 0 | if (distance[u] < distance[0]) |
120 | 0 | { |
121 | 0 | short *u_adj = state->adjacency[u]; |
122 | 0 | int i = u_adj ? u_adj[0] : 0; |
123 | |
|
124 | 0 | for (; i > 0; i--) |
125 | 0 | { |
126 | 0 | int u_next = state->pair_vu[u_adj[i]]; |
127 | |
|
128 | 0 | if (distance[u_next] == HK_INFINITY) |
129 | 0 | { |
130 | 0 | distance[u_next] = 1 + distance[u]; |
131 | 0 | Assert(qhead < usize + 2); |
132 | 0 | queue[qhead++] = u_next; |
133 | 0 | } |
134 | 0 | } |
135 | 0 | } |
136 | 0 | } |
137 | |
|
138 | 0 | return (distance[0] != HK_INFINITY); |
139 | 0 | } |
140 | | |
141 | | /* |
142 | | * Perform the depth-first search step of H-K matching. |
143 | | * Returns true if successful. |
144 | | */ |
145 | | static bool |
146 | | hk_depth_search(BipartiteMatchState *state, int u) |
147 | 0 | { |
148 | 0 | short *distance = state->distance; |
149 | 0 | short *pair_uv = state->pair_uv; |
150 | 0 | short *pair_vu = state->pair_vu; |
151 | 0 | short *u_adj = state->adjacency[u]; |
152 | 0 | int i = u_adj ? u_adj[0] : 0; |
153 | 0 | short nextdist; |
154 | |
|
155 | 0 | if (u == 0) |
156 | 0 | return true; |
157 | 0 | if (distance[u] == HK_INFINITY) |
158 | 0 | return false; |
159 | 0 | nextdist = distance[u] + 1; |
160 | |
|
161 | 0 | check_stack_depth(); |
162 | |
|
163 | 0 | for (; i > 0; i--) |
164 | 0 | { |
165 | 0 | int v = u_adj[i]; |
166 | |
|
167 | 0 | if (distance[pair_vu[v]] == nextdist) |
168 | 0 | { |
169 | 0 | if (hk_depth_search(state, pair_vu[v])) |
170 | 0 | { |
171 | 0 | pair_vu[v] = u; |
172 | 0 | pair_uv[u] = v; |
173 | 0 | return true; |
174 | 0 | } |
175 | 0 | } |
176 | 0 | } |
177 | | |
178 | 0 | distance[u] = HK_INFINITY; |
179 | 0 | return false; |
180 | 0 | } |