/src/postgres/src/backend/nodes/list.c
Line | Count | Source (jump to first uncovered line) |
1 | | /*------------------------------------------------------------------------- |
2 | | * |
3 | | * list.c |
4 | | * implementation for PostgreSQL generic list package |
5 | | * |
6 | | * See comments in pg_list.h. |
7 | | * |
8 | | * |
9 | | * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group |
10 | | * Portions Copyright (c) 1994, Regents of the University of California |
11 | | * |
12 | | * |
13 | | * IDENTIFICATION |
14 | | * src/backend/nodes/list.c |
15 | | * |
16 | | *------------------------------------------------------------------------- |
17 | | */ |
18 | | #include "postgres.h" |
19 | | |
20 | | #include "common/int.h" |
21 | | #include "nodes/pg_list.h" |
22 | | #include "port/pg_bitutils.h" |
23 | | #include "utils/memdebug.h" |
24 | | #include "utils/memutils.h" |
25 | | |
26 | | |
27 | | /* |
28 | | * The previous List implementation, since it used a separate palloc chunk |
29 | | * for each cons cell, had the property that adding or deleting list cells |
30 | | * did not move the storage of other existing cells in the list. Quite a |
31 | | * bit of existing code depended on that, by retaining ListCell pointers |
32 | | * across such operations on a list. There is no such guarantee in this |
33 | | * implementation, so instead we have debugging support that is meant to |
34 | | * help flush out now-broken assumptions. Defining DEBUG_LIST_MEMORY_USAGE |
35 | | * while building this file causes the List operations to forcibly move |
36 | | * all cells in a list whenever a cell is added or deleted. In combination |
37 | | * with MEMORY_CONTEXT_CHECKING and/or Valgrind, this can usually expose |
38 | | * broken code. It's a bit expensive though, as there's many more palloc |
39 | | * cycles and a lot more data-copying than in a default build. |
40 | | * |
41 | | * By default, we enable this when building for Valgrind. |
42 | | */ |
43 | | #ifdef USE_VALGRIND |
44 | | #define DEBUG_LIST_MEMORY_USAGE |
45 | | #endif |
46 | | |
47 | | /* Overhead for the fixed part of a List header, measured in ListCells */ |
48 | | #define LIST_HEADER_OVERHEAD \ |
49 | 0 | ((int) ((offsetof(List, initial_elements) - 1) / sizeof(ListCell) + 1)) |
50 | | |
51 | | /* |
52 | | * Macros to simplify writing assertions about the type of a list; a |
53 | | * NIL list is considered to be an empty list of any type. |
54 | | */ |
55 | | #define IsPointerList(l) ((l) == NIL || IsA((l), List)) |
56 | | #define IsIntegerList(l) ((l) == NIL || IsA((l), IntList)) |
57 | | #define IsOidList(l) ((l) == NIL || IsA((l), OidList)) |
58 | | #define IsXidList(l) ((l) == NIL || IsA((l), XidList)) |
59 | | |
60 | | #ifdef USE_ASSERT_CHECKING |
61 | | /* |
62 | | * Check that the specified List is valid (so far as we can tell). |
63 | | */ |
64 | | static void |
65 | | check_list_invariants(const List *list) |
66 | | { |
67 | | if (list == NIL) |
68 | | return; |
69 | | |
70 | | Assert(list->length > 0); |
71 | | Assert(list->length <= list->max_length); |
72 | | Assert(list->elements != NULL); |
73 | | |
74 | | Assert(list->type == T_List || |
75 | | list->type == T_IntList || |
76 | | list->type == T_OidList || |
77 | | list->type == T_XidList); |
78 | | } |
79 | | #else |
80 | 0 | #define check_list_invariants(l) ((void) 0) |
81 | | #endif /* USE_ASSERT_CHECKING */ |
82 | | |
83 | | /* |
84 | | * Return a freshly allocated List with room for at least min_size cells. |
85 | | * |
86 | | * Since empty non-NIL lists are invalid, new_list() sets the initial length |
87 | | * to min_size, effectively marking that number of cells as valid; the caller |
88 | | * is responsible for filling in their data. |
89 | | */ |
90 | | static List * |
91 | | new_list(NodeTag type, int min_size) |
92 | 0 | { |
93 | 0 | List *newlist; |
94 | 0 | int max_size; |
95 | |
|
96 | 0 | Assert(min_size > 0); |
97 | | |
98 | | /* |
99 | | * We allocate all the requested cells, and possibly some more, as part of |
100 | | * the same palloc request as the List header. This is a big win for the |
101 | | * typical case of short fixed-length lists. It can lose if we allocate a |
102 | | * moderately long list and then it gets extended; we'll be wasting more |
103 | | * initial_elements[] space than if we'd made the header small. However, |
104 | | * rounding up the request as we do in the normal code path provides some |
105 | | * defense against small extensions. |
106 | | */ |
107 | |
|
108 | 0 | #ifndef DEBUG_LIST_MEMORY_USAGE |
109 | | |
110 | | /* |
111 | | * Normally, we set up a list with some extra cells, to allow it to grow |
112 | | * without a repalloc. Prefer cell counts chosen to make the total |
113 | | * allocation a power-of-2, since palloc would round it up to that anyway. |
114 | | * (That stops being true for very large allocations, but very long lists |
115 | | * are infrequent, so it doesn't seem worth special logic for such cases.) |
116 | | * |
117 | | * The minimum allocation is 8 ListCell units, providing either 4 or 5 |
118 | | * available ListCells depending on the machine's word width. Counting |
119 | | * palloc's overhead, this uses the same amount of space as a one-cell |
120 | | * list did in the old implementation, and less space for any longer list. |
121 | | * |
122 | | * We needn't worry about integer overflow; no caller passes min_size |
123 | | * that's more than twice the size of an existing list, so the size limits |
124 | | * within palloc will ensure that we don't overflow here. |
125 | | */ |
126 | 0 | max_size = pg_nextpower2_32(Max(8, min_size + LIST_HEADER_OVERHEAD)); |
127 | 0 | max_size -= LIST_HEADER_OVERHEAD; |
128 | | #else |
129 | | |
130 | | /* |
131 | | * For debugging, don't allow any extra space. This forces any cell |
132 | | * addition to go through enlarge_list() and thus move the existing data. |
133 | | */ |
134 | | max_size = min_size; |
135 | | #endif |
136 | |
|
137 | 0 | newlist = (List *) palloc(offsetof(List, initial_elements) + |
138 | 0 | max_size * sizeof(ListCell)); |
139 | 0 | newlist->type = type; |
140 | 0 | newlist->length = min_size; |
141 | 0 | newlist->max_length = max_size; |
142 | 0 | newlist->elements = newlist->initial_elements; |
143 | |
|
144 | 0 | return newlist; |
145 | 0 | } |
146 | | |
147 | | /* |
148 | | * Enlarge an existing non-NIL List to have room for at least min_size cells. |
149 | | * |
150 | | * This does *not* update list->length, as some callers would find that |
151 | | * inconvenient. (list->length had better be the correct number of existing |
152 | | * valid cells, though.) |
153 | | */ |
154 | | static void |
155 | | enlarge_list(List *list, int min_size) |
156 | 0 | { |
157 | 0 | int new_max_len; |
158 | |
|
159 | 0 | Assert(min_size > list->max_length); /* else we shouldn't be here */ |
160 | |
|
161 | 0 | #ifndef DEBUG_LIST_MEMORY_USAGE |
162 | | |
163 | | /* |
164 | | * As above, we prefer power-of-two total allocations; but here we need |
165 | | * not account for list header overhead. |
166 | | */ |
167 | | |
168 | | /* clamp the minimum value to 16, a semi-arbitrary small power of 2 */ |
169 | 0 | new_max_len = pg_nextpower2_32(Max(16, min_size)); |
170 | |
|
171 | | #else |
172 | | /* As above, don't allocate anything extra */ |
173 | | new_max_len = min_size; |
174 | | #endif |
175 | |
|
176 | 0 | if (list->elements == list->initial_elements) |
177 | 0 | { |
178 | | /* |
179 | | * Replace original in-line allocation with a separate palloc block. |
180 | | * Ensure it is in the same memory context as the List header. (The |
181 | | * previous List implementation did not offer any guarantees about |
182 | | * keeping all list cells in the same context, but it seems reasonable |
183 | | * to create such a guarantee now.) |
184 | | */ |
185 | 0 | list->elements = (ListCell *) |
186 | 0 | MemoryContextAlloc(GetMemoryChunkContext(list), |
187 | 0 | new_max_len * sizeof(ListCell)); |
188 | 0 | memcpy(list->elements, list->initial_elements, |
189 | 0 | list->length * sizeof(ListCell)); |
190 | | |
191 | | /* |
192 | | * We must not move the list header, so it's unsafe to try to reclaim |
193 | | * the initial_elements[] space via repalloc. In debugging builds, |
194 | | * however, we can clear that space and/or mark it inaccessible. |
195 | | * (wipe_mem includes VALGRIND_MAKE_MEM_NOACCESS.) |
196 | | */ |
197 | | #ifdef CLOBBER_FREED_MEMORY |
198 | | wipe_mem(list->initial_elements, |
199 | | list->max_length * sizeof(ListCell)); |
200 | | #else |
201 | 0 | VALGRIND_MAKE_MEM_NOACCESS(list->initial_elements, |
202 | 0 | list->max_length * sizeof(ListCell)); |
203 | 0 | #endif |
204 | 0 | } |
205 | 0 | else |
206 | 0 | { |
207 | 0 | #ifndef DEBUG_LIST_MEMORY_USAGE |
208 | | /* Normally, let repalloc deal with enlargement */ |
209 | 0 | list->elements = (ListCell *) repalloc(list->elements, |
210 | 0 | new_max_len * sizeof(ListCell)); |
211 | | #else |
212 | | /* |
213 | | * repalloc() might enlarge the space in-place, which we don't want |
214 | | * for debugging purposes, so forcibly move the data somewhere else. |
215 | | */ |
216 | | ListCell *newelements; |
217 | | |
218 | | newelements = (ListCell *) |
219 | | MemoryContextAlloc(GetMemoryChunkContext(list), |
220 | | new_max_len * sizeof(ListCell)); |
221 | | memcpy(newelements, list->elements, |
222 | | list->length * sizeof(ListCell)); |
223 | | pfree(list->elements); |
224 | | list->elements = newelements; |
225 | | #endif |
226 | 0 | } |
227 | |
|
228 | 0 | list->max_length = new_max_len; |
229 | 0 | } |
230 | | |
231 | | /* |
232 | | * Convenience functions to construct short Lists from given values. |
233 | | * (These are normally invoked via the list_makeN macros.) |
234 | | */ |
235 | | List * |
236 | | list_make1_impl(NodeTag t, ListCell datum1) |
237 | 0 | { |
238 | 0 | List *list = new_list(t, 1); |
239 | |
|
240 | 0 | list->elements[0] = datum1; |
241 | 0 | check_list_invariants(list); |
242 | 0 | return list; |
243 | 0 | } |
244 | | |
245 | | List * |
246 | | list_make2_impl(NodeTag t, ListCell datum1, ListCell datum2) |
247 | 0 | { |
248 | 0 | List *list = new_list(t, 2); |
249 | |
|
250 | 0 | list->elements[0] = datum1; |
251 | 0 | list->elements[1] = datum2; |
252 | 0 | check_list_invariants(list); |
253 | 0 | return list; |
254 | 0 | } |
255 | | |
256 | | List * |
257 | | list_make3_impl(NodeTag t, ListCell datum1, ListCell datum2, |
258 | | ListCell datum3) |
259 | 0 | { |
260 | 0 | List *list = new_list(t, 3); |
261 | |
|
262 | 0 | list->elements[0] = datum1; |
263 | 0 | list->elements[1] = datum2; |
264 | 0 | list->elements[2] = datum3; |
265 | 0 | check_list_invariants(list); |
266 | 0 | return list; |
267 | 0 | } |
268 | | |
269 | | List * |
270 | | list_make4_impl(NodeTag t, ListCell datum1, ListCell datum2, |
271 | | ListCell datum3, ListCell datum4) |
272 | 0 | { |
273 | 0 | List *list = new_list(t, 4); |
274 | |
|
275 | 0 | list->elements[0] = datum1; |
276 | 0 | list->elements[1] = datum2; |
277 | 0 | list->elements[2] = datum3; |
278 | 0 | list->elements[3] = datum4; |
279 | 0 | check_list_invariants(list); |
280 | 0 | return list; |
281 | 0 | } |
282 | | |
283 | | List * |
284 | | list_make5_impl(NodeTag t, ListCell datum1, ListCell datum2, |
285 | | ListCell datum3, ListCell datum4, ListCell datum5) |
286 | 0 | { |
287 | 0 | List *list = new_list(t, 5); |
288 | |
|
289 | 0 | list->elements[0] = datum1; |
290 | 0 | list->elements[1] = datum2; |
291 | 0 | list->elements[2] = datum3; |
292 | 0 | list->elements[3] = datum4; |
293 | 0 | list->elements[4] = datum5; |
294 | 0 | check_list_invariants(list); |
295 | 0 | return list; |
296 | 0 | } |
297 | | |
298 | | /* |
299 | | * Make room for a new head cell in the given (non-NIL) list. |
300 | | * |
301 | | * The data in the new head cell is undefined; the caller should be |
302 | | * sure to fill it in |
303 | | */ |
304 | | static void |
305 | | new_head_cell(List *list) |
306 | 0 | { |
307 | | /* Enlarge array if necessary */ |
308 | 0 | if (list->length >= list->max_length) |
309 | 0 | enlarge_list(list, list->length + 1); |
310 | | /* Now shove the existing data over */ |
311 | 0 | memmove(&list->elements[1], &list->elements[0], |
312 | 0 | list->length * sizeof(ListCell)); |
313 | 0 | list->length++; |
314 | 0 | } |
315 | | |
316 | | /* |
317 | | * Make room for a new tail cell in the given (non-NIL) list. |
318 | | * |
319 | | * The data in the new tail cell is undefined; the caller should be |
320 | | * sure to fill it in |
321 | | */ |
322 | | static void |
323 | | new_tail_cell(List *list) |
324 | 0 | { |
325 | | /* Enlarge array if necessary */ |
326 | 0 | if (list->length >= list->max_length) |
327 | 0 | enlarge_list(list, list->length + 1); |
328 | 0 | list->length++; |
329 | 0 | } |
330 | | |
331 | | /* |
332 | | * Append a pointer to the list. A pointer to the modified list is |
333 | | * returned. Note that this function may or may not destructively |
334 | | * modify the list; callers should always use this function's return |
335 | | * value, rather than continuing to use the pointer passed as the |
336 | | * first argument. |
337 | | */ |
338 | | List * |
339 | | lappend(List *list, void *datum) |
340 | 0 | { |
341 | 0 | Assert(IsPointerList(list)); |
342 | |
|
343 | 0 | if (list == NIL) |
344 | 0 | list = new_list(T_List, 1); |
345 | 0 | else |
346 | 0 | new_tail_cell(list); |
347 | |
|
348 | 0 | llast(list) = datum; |
349 | 0 | check_list_invariants(list); |
350 | 0 | return list; |
351 | 0 | } |
352 | | |
353 | | /* |
354 | | * Append an integer to the specified list. See lappend() |
355 | | */ |
356 | | List * |
357 | | lappend_int(List *list, int datum) |
358 | 0 | { |
359 | 0 | Assert(IsIntegerList(list)); |
360 | |
|
361 | 0 | if (list == NIL) |
362 | 0 | list = new_list(T_IntList, 1); |
363 | 0 | else |
364 | 0 | new_tail_cell(list); |
365 | |
|
366 | 0 | llast_int(list) = datum; |
367 | 0 | check_list_invariants(list); |
368 | 0 | return list; |
369 | 0 | } |
370 | | |
371 | | /* |
372 | | * Append an OID to the specified list. See lappend() |
373 | | */ |
374 | | List * |
375 | | lappend_oid(List *list, Oid datum) |
376 | 0 | { |
377 | 0 | Assert(IsOidList(list)); |
378 | |
|
379 | 0 | if (list == NIL) |
380 | 0 | list = new_list(T_OidList, 1); |
381 | 0 | else |
382 | 0 | new_tail_cell(list); |
383 | |
|
384 | 0 | llast_oid(list) = datum; |
385 | 0 | check_list_invariants(list); |
386 | 0 | return list; |
387 | 0 | } |
388 | | |
389 | | /* |
390 | | * Append a TransactionId to the specified list. See lappend() |
391 | | */ |
392 | | List * |
393 | | lappend_xid(List *list, TransactionId datum) |
394 | 0 | { |
395 | 0 | Assert(IsXidList(list)); |
396 | |
|
397 | 0 | if (list == NIL) |
398 | 0 | list = new_list(T_XidList, 1); |
399 | 0 | else |
400 | 0 | new_tail_cell(list); |
401 | |
|
402 | 0 | llast_xid(list) = datum; |
403 | 0 | check_list_invariants(list); |
404 | 0 | return list; |
405 | 0 | } |
406 | | |
407 | | /* |
408 | | * Make room for a new cell at position 'pos' (measured from 0). |
409 | | * The data in the cell is left undefined, and must be filled in by the |
410 | | * caller. 'list' is assumed to be non-NIL, and 'pos' must be a valid |
411 | | * list position, ie, 0 <= pos <= list's length. |
412 | | * Returns address of the new cell. |
413 | | */ |
414 | | static ListCell * |
415 | | insert_new_cell(List *list, int pos) |
416 | 0 | { |
417 | 0 | Assert(pos >= 0 && pos <= list->length); |
418 | | |
419 | | /* Enlarge array if necessary */ |
420 | 0 | if (list->length >= list->max_length) |
421 | 0 | enlarge_list(list, list->length + 1); |
422 | | /* Now shove the existing data over */ |
423 | 0 | if (pos < list->length) |
424 | 0 | memmove(&list->elements[pos + 1], &list->elements[pos], |
425 | 0 | (list->length - pos) * sizeof(ListCell)); |
426 | 0 | list->length++; |
427 | |
|
428 | 0 | return &list->elements[pos]; |
429 | 0 | } |
430 | | |
431 | | /* |
432 | | * Insert the given datum at position 'pos' (measured from 0) in the list. |
433 | | * 'pos' must be valid, ie, 0 <= pos <= list's length. |
434 | | * |
435 | | * Note that this takes time proportional to the distance to the end of the |
436 | | * list, since the following entries must be moved. |
437 | | */ |
438 | | List * |
439 | | list_insert_nth(List *list, int pos, void *datum) |
440 | 0 | { |
441 | 0 | if (list == NIL) |
442 | 0 | { |
443 | 0 | Assert(pos == 0); |
444 | 0 | return list_make1(datum); |
445 | 0 | } |
446 | 0 | Assert(IsPointerList(list)); |
447 | 0 | lfirst(insert_new_cell(list, pos)) = datum; |
448 | 0 | check_list_invariants(list); |
449 | 0 | return list; |
450 | 0 | } |
451 | | |
452 | | List * |
453 | | list_insert_nth_int(List *list, int pos, int datum) |
454 | 0 | { |
455 | 0 | if (list == NIL) |
456 | 0 | { |
457 | 0 | Assert(pos == 0); |
458 | 0 | return list_make1_int(datum); |
459 | 0 | } |
460 | 0 | Assert(IsIntegerList(list)); |
461 | 0 | lfirst_int(insert_new_cell(list, pos)) = datum; |
462 | 0 | check_list_invariants(list); |
463 | 0 | return list; |
464 | 0 | } |
465 | | |
466 | | List * |
467 | | list_insert_nth_oid(List *list, int pos, Oid datum) |
468 | 0 | { |
469 | 0 | if (list == NIL) |
470 | 0 | { |
471 | 0 | Assert(pos == 0); |
472 | 0 | return list_make1_oid(datum); |
473 | 0 | } |
474 | 0 | Assert(IsOidList(list)); |
475 | 0 | lfirst_oid(insert_new_cell(list, pos)) = datum; |
476 | 0 | check_list_invariants(list); |
477 | 0 | return list; |
478 | 0 | } |
479 | | |
480 | | /* |
481 | | * Prepend a new element to the list. A pointer to the modified list |
482 | | * is returned. Note that this function may or may not destructively |
483 | | * modify the list; callers should always use this function's return |
484 | | * value, rather than continuing to use the pointer passed as the |
485 | | * second argument. |
486 | | * |
487 | | * Note that this takes time proportional to the length of the list, |
488 | | * since the existing entries must be moved. |
489 | | * |
490 | | * Caution: before Postgres 8.0, the original List was unmodified and |
491 | | * could be considered to retain its separate identity. This is no longer |
492 | | * the case. |
493 | | */ |
494 | | List * |
495 | | lcons(void *datum, List *list) |
496 | 0 | { |
497 | 0 | Assert(IsPointerList(list)); |
498 | |
|
499 | 0 | if (list == NIL) |
500 | 0 | list = new_list(T_List, 1); |
501 | 0 | else |
502 | 0 | new_head_cell(list); |
503 | |
|
504 | 0 | linitial(list) = datum; |
505 | 0 | check_list_invariants(list); |
506 | 0 | return list; |
507 | 0 | } |
508 | | |
509 | | /* |
510 | | * Prepend an integer to the list. See lcons() |
511 | | */ |
512 | | List * |
513 | | lcons_int(int datum, List *list) |
514 | 0 | { |
515 | 0 | Assert(IsIntegerList(list)); |
516 | |
|
517 | 0 | if (list == NIL) |
518 | 0 | list = new_list(T_IntList, 1); |
519 | 0 | else |
520 | 0 | new_head_cell(list); |
521 | |
|
522 | 0 | linitial_int(list) = datum; |
523 | 0 | check_list_invariants(list); |
524 | 0 | return list; |
525 | 0 | } |
526 | | |
527 | | /* |
528 | | * Prepend an OID to the list. See lcons() |
529 | | */ |
530 | | List * |
531 | | lcons_oid(Oid datum, List *list) |
532 | 0 | { |
533 | 0 | Assert(IsOidList(list)); |
534 | |
|
535 | 0 | if (list == NIL) |
536 | 0 | list = new_list(T_OidList, 1); |
537 | 0 | else |
538 | 0 | new_head_cell(list); |
539 | |
|
540 | 0 | linitial_oid(list) = datum; |
541 | 0 | check_list_invariants(list); |
542 | 0 | return list; |
543 | 0 | } |
544 | | |
545 | | /* |
546 | | * Concatenate list2 to the end of list1, and return list1. |
547 | | * |
548 | | * This is equivalent to lappend'ing each element of list2, in order, to list1. |
549 | | * list1 is destructively changed, list2 is not. (However, in the case of |
550 | | * pointer lists, list1 and list2 will point to the same structures.) |
551 | | * |
552 | | * Callers should be sure to use the return value as the new pointer to the |
553 | | * concatenated list: the 'list1' input pointer may or may not be the same |
554 | | * as the returned pointer. |
555 | | * |
556 | | * Note that this takes at least time proportional to the length of list2. |
557 | | * It'd typically be the case that we have to enlarge list1's storage, |
558 | | * probably adding time proportional to the length of list1. |
559 | | */ |
560 | | List * |
561 | | list_concat(List *list1, const List *list2) |
562 | 0 | { |
563 | 0 | int new_len; |
564 | |
|
565 | 0 | if (list1 == NIL) |
566 | 0 | return list_copy(list2); |
567 | 0 | if (list2 == NIL) |
568 | 0 | return list1; |
569 | | |
570 | 0 | Assert(list1->type == list2->type); |
571 | |
|
572 | 0 | new_len = list1->length + list2->length; |
573 | | /* Enlarge array if necessary */ |
574 | 0 | if (new_len > list1->max_length) |
575 | 0 | enlarge_list(list1, new_len); |
576 | | |
577 | | /* Even if list1 == list2, using memcpy should be safe here */ |
578 | 0 | memcpy(&list1->elements[list1->length], &list2->elements[0], |
579 | 0 | list2->length * sizeof(ListCell)); |
580 | 0 | list1->length = new_len; |
581 | |
|
582 | 0 | check_list_invariants(list1); |
583 | 0 | return list1; |
584 | 0 | } |
585 | | |
586 | | /* |
587 | | * Form a new list by concatenating the elements of list1 and list2. |
588 | | * |
589 | | * Neither input list is modified. (However, if they are pointer lists, |
590 | | * the output list will point to the same structures.) |
591 | | * |
592 | | * This is equivalent to, but more efficient than, |
593 | | * list_concat(list_copy(list1), list2). |
594 | | * Note that some pre-v13 code might list_copy list2 as well, but that's |
595 | | * pointless now. |
596 | | */ |
597 | | List * |
598 | | list_concat_copy(const List *list1, const List *list2) |
599 | 0 | { |
600 | 0 | List *result; |
601 | 0 | int new_len; |
602 | |
|
603 | 0 | if (list1 == NIL) |
604 | 0 | return list_copy(list2); |
605 | 0 | if (list2 == NIL) |
606 | 0 | return list_copy(list1); |
607 | | |
608 | 0 | Assert(list1->type == list2->type); |
609 | |
|
610 | 0 | new_len = list1->length + list2->length; |
611 | 0 | result = new_list(list1->type, new_len); |
612 | 0 | memcpy(result->elements, list1->elements, |
613 | 0 | list1->length * sizeof(ListCell)); |
614 | 0 | memcpy(result->elements + list1->length, list2->elements, |
615 | 0 | list2->length * sizeof(ListCell)); |
616 | |
|
617 | 0 | check_list_invariants(result); |
618 | 0 | return result; |
619 | 0 | } |
620 | | |
621 | | /* |
622 | | * Truncate 'list' to contain no more than 'new_size' elements. This |
623 | | * modifies the list in-place! Despite this, callers should use the |
624 | | * pointer returned by this function to refer to the newly truncated |
625 | | * list -- it may or may not be the same as the pointer that was |
626 | | * passed. |
627 | | * |
628 | | * Note that any cells removed by list_truncate() are NOT pfree'd. |
629 | | */ |
630 | | List * |
631 | | list_truncate(List *list, int new_size) |
632 | 0 | { |
633 | 0 | if (new_size <= 0) |
634 | 0 | return NIL; /* truncate to zero length */ |
635 | | |
636 | | /* If asked to effectively extend the list, do nothing */ |
637 | 0 | if (new_size < list_length(list)) |
638 | 0 | list->length = new_size; |
639 | | |
640 | | /* |
641 | | * Note: unlike the individual-list-cell deletion functions, we don't move |
642 | | * the list cells to new storage, even in DEBUG_LIST_MEMORY_USAGE mode. |
643 | | * This is because none of them can move in this operation, so just like |
644 | | * in the old cons-cell-based implementation, this function doesn't |
645 | | * invalidate any pointers to cells of the list. This is also the reason |
646 | | * for not wiping the memory of the deleted cells: the old code didn't |
647 | | * free them either. Perhaps later we'll tighten this up. |
648 | | */ |
649 | |
|
650 | 0 | return list; |
651 | 0 | } |
652 | | |
653 | | /* |
654 | | * Return true iff 'datum' is a member of the list. Equality is |
655 | | * determined via equal(), so callers should ensure that they pass a |
656 | | * Node as 'datum'. |
657 | | * |
658 | | * This does a simple linear search --- avoid using it on long lists. |
659 | | */ |
660 | | bool |
661 | | list_member(const List *list, const void *datum) |
662 | 0 | { |
663 | 0 | const ListCell *cell; |
664 | |
|
665 | 0 | Assert(IsPointerList(list)); |
666 | 0 | check_list_invariants(list); |
667 | |
|
668 | 0 | foreach(cell, list) |
669 | 0 | { |
670 | 0 | if (equal(lfirst(cell), datum)) |
671 | 0 | return true; |
672 | 0 | } |
673 | | |
674 | 0 | return false; |
675 | 0 | } |
676 | | |
677 | | /* |
678 | | * Return true iff 'datum' is a member of the list. Equality is |
679 | | * determined by using simple pointer comparison. |
680 | | */ |
681 | | bool |
682 | | list_member_ptr(const List *list, const void *datum) |
683 | 0 | { |
684 | 0 | const ListCell *cell; |
685 | |
|
686 | 0 | Assert(IsPointerList(list)); |
687 | 0 | check_list_invariants(list); |
688 | |
|
689 | 0 | foreach(cell, list) |
690 | 0 | { |
691 | 0 | if (lfirst(cell) == datum) |
692 | 0 | return true; |
693 | 0 | } |
694 | | |
695 | 0 | return false; |
696 | 0 | } |
697 | | |
698 | | /* |
699 | | * Return true iff the integer 'datum' is a member of the list. |
700 | | */ |
701 | | bool |
702 | | list_member_int(const List *list, int datum) |
703 | 0 | { |
704 | 0 | const ListCell *cell; |
705 | |
|
706 | 0 | Assert(IsIntegerList(list)); |
707 | 0 | check_list_invariants(list); |
708 | |
|
709 | 0 | foreach(cell, list) |
710 | 0 | { |
711 | 0 | if (lfirst_int(cell) == datum) |
712 | 0 | return true; |
713 | 0 | } |
714 | | |
715 | 0 | return false; |
716 | 0 | } |
717 | | |
718 | | /* |
719 | | * Return true iff the OID 'datum' is a member of the list. |
720 | | */ |
721 | | bool |
722 | | list_member_oid(const List *list, Oid datum) |
723 | 0 | { |
724 | 0 | const ListCell *cell; |
725 | |
|
726 | 0 | Assert(IsOidList(list)); |
727 | 0 | check_list_invariants(list); |
728 | |
|
729 | 0 | foreach(cell, list) |
730 | 0 | { |
731 | 0 | if (lfirst_oid(cell) == datum) |
732 | 0 | return true; |
733 | 0 | } |
734 | | |
735 | 0 | return false; |
736 | 0 | } |
737 | | |
738 | | /* |
739 | | * Return true iff the TransactionId 'datum' is a member of the list. |
740 | | */ |
741 | | bool |
742 | | list_member_xid(const List *list, TransactionId datum) |
743 | 0 | { |
744 | 0 | const ListCell *cell; |
745 | |
|
746 | 0 | Assert(IsXidList(list)); |
747 | 0 | check_list_invariants(list); |
748 | |
|
749 | 0 | foreach(cell, list) |
750 | 0 | { |
751 | 0 | if (lfirst_xid(cell) == datum) |
752 | 0 | return true; |
753 | 0 | } |
754 | | |
755 | 0 | return false; |
756 | 0 | } |
757 | | |
758 | | /* |
759 | | * Delete the n'th cell (counting from 0) in list. |
760 | | * |
761 | | * The List is pfree'd if this was the last member. |
762 | | * |
763 | | * Note that this takes time proportional to the distance to the end of the |
764 | | * list, since the following entries must be moved. |
765 | | */ |
766 | | List * |
767 | | list_delete_nth_cell(List *list, int n) |
768 | 0 | { |
769 | 0 | check_list_invariants(list); |
770 | |
|
771 | 0 | Assert(n >= 0 && n < list->length); |
772 | | |
773 | | /* |
774 | | * If we're about to delete the last node from the list, free the whole |
775 | | * list instead and return NIL, which is the only valid representation of |
776 | | * a zero-length list. |
777 | | */ |
778 | 0 | if (list->length == 1) |
779 | 0 | { |
780 | 0 | list_free(list); |
781 | 0 | return NIL; |
782 | 0 | } |
783 | | |
784 | | /* |
785 | | * Otherwise, we normally just collapse out the removed element. But for |
786 | | * debugging purposes, move the whole list contents someplace else. |
787 | | * |
788 | | * (Note that we *must* keep the contents in the same memory context.) |
789 | | */ |
790 | 0 | #ifndef DEBUG_LIST_MEMORY_USAGE |
791 | 0 | memmove(&list->elements[n], &list->elements[n + 1], |
792 | 0 | (list->length - 1 - n) * sizeof(ListCell)); |
793 | 0 | list->length--; |
794 | | #else |
795 | | { |
796 | | ListCell *newelems; |
797 | | int newmaxlen = list->length - 1; |
798 | | |
799 | | newelems = (ListCell *) |
800 | | MemoryContextAlloc(GetMemoryChunkContext(list), |
801 | | newmaxlen * sizeof(ListCell)); |
802 | | memcpy(newelems, list->elements, n * sizeof(ListCell)); |
803 | | memcpy(&newelems[n], &list->elements[n + 1], |
804 | | (list->length - 1 - n) * sizeof(ListCell)); |
805 | | if (list->elements != list->initial_elements) |
806 | | pfree(list->elements); |
807 | | else |
808 | | { |
809 | | /* |
810 | | * As in enlarge_list(), clear the initial_elements[] space and/or |
811 | | * mark it inaccessible. |
812 | | */ |
813 | | #ifdef CLOBBER_FREED_MEMORY |
814 | | wipe_mem(list->initial_elements, |
815 | | list->max_length * sizeof(ListCell)); |
816 | | #else |
817 | | VALGRIND_MAKE_MEM_NOACCESS(list->initial_elements, |
818 | | list->max_length * sizeof(ListCell)); |
819 | | #endif |
820 | | } |
821 | | list->elements = newelems; |
822 | | list->max_length = newmaxlen; |
823 | | list->length--; |
824 | | check_list_invariants(list); |
825 | | } |
826 | | #endif |
827 | |
|
828 | 0 | return list; |
829 | 0 | } |
830 | | |
831 | | /* |
832 | | * Delete 'cell' from 'list'. |
833 | | * |
834 | | * The List is pfree'd if this was the last member. However, we do not |
835 | | * touch any data the cell might've been pointing to. |
836 | | * |
837 | | * Note that this takes time proportional to the distance to the end of the |
838 | | * list, since the following entries must be moved. |
839 | | */ |
840 | | List * |
841 | | list_delete_cell(List *list, ListCell *cell) |
842 | 0 | { |
843 | 0 | return list_delete_nth_cell(list, cell - list->elements); |
844 | 0 | } |
845 | | |
846 | | /* |
847 | | * Delete the first cell in list that matches datum, if any. |
848 | | * Equality is determined via equal(). |
849 | | * |
850 | | * This does a simple linear search --- avoid using it on long lists. |
851 | | */ |
852 | | List * |
853 | | list_delete(List *list, void *datum) |
854 | 0 | { |
855 | 0 | ListCell *cell; |
856 | |
|
857 | 0 | Assert(IsPointerList(list)); |
858 | 0 | check_list_invariants(list); |
859 | |
|
860 | 0 | foreach(cell, list) |
861 | 0 | { |
862 | 0 | if (equal(lfirst(cell), datum)) |
863 | 0 | return list_delete_cell(list, cell); |
864 | 0 | } |
865 | | |
866 | | /* Didn't find a match: return the list unmodified */ |
867 | 0 | return list; |
868 | 0 | } |
869 | | |
870 | | /* As above, but use simple pointer equality */ |
871 | | List * |
872 | | list_delete_ptr(List *list, void *datum) |
873 | 0 | { |
874 | 0 | ListCell *cell; |
875 | |
|
876 | 0 | Assert(IsPointerList(list)); |
877 | 0 | check_list_invariants(list); |
878 | |
|
879 | 0 | foreach(cell, list) |
880 | 0 | { |
881 | 0 | if (lfirst(cell) == datum) |
882 | 0 | return list_delete_cell(list, cell); |
883 | 0 | } |
884 | | |
885 | | /* Didn't find a match: return the list unmodified */ |
886 | 0 | return list; |
887 | 0 | } |
888 | | |
889 | | /* As above, but for integers */ |
890 | | List * |
891 | | list_delete_int(List *list, int datum) |
892 | 0 | { |
893 | 0 | ListCell *cell; |
894 | |
|
895 | 0 | Assert(IsIntegerList(list)); |
896 | 0 | check_list_invariants(list); |
897 | |
|
898 | 0 | foreach(cell, list) |
899 | 0 | { |
900 | 0 | if (lfirst_int(cell) == datum) |
901 | 0 | return list_delete_cell(list, cell); |
902 | 0 | } |
903 | | |
904 | | /* Didn't find a match: return the list unmodified */ |
905 | 0 | return list; |
906 | 0 | } |
907 | | |
908 | | /* As above, but for OIDs */ |
909 | | List * |
910 | | list_delete_oid(List *list, Oid datum) |
911 | 0 | { |
912 | 0 | ListCell *cell; |
913 | |
|
914 | 0 | Assert(IsOidList(list)); |
915 | 0 | check_list_invariants(list); |
916 | |
|
917 | 0 | foreach(cell, list) |
918 | 0 | { |
919 | 0 | if (lfirst_oid(cell) == datum) |
920 | 0 | return list_delete_cell(list, cell); |
921 | 0 | } |
922 | | |
923 | | /* Didn't find a match: return the list unmodified */ |
924 | 0 | return list; |
925 | 0 | } |
926 | | |
927 | | /* |
928 | | * Delete the first element of the list. |
929 | | * |
930 | | * This is useful to replace the Lisp-y code "list = lnext(list);" in cases |
931 | | * where the intent is to alter the list rather than just traverse it. |
932 | | * Beware that the list is modified, whereas the Lisp-y coding leaves |
933 | | * the original list head intact in case there's another pointer to it. |
934 | | * |
935 | | * Note that this takes time proportional to the length of the list, |
936 | | * since the remaining entries must be moved. Consider reversing the |
937 | | * list order so that you can use list_delete_last() instead. However, |
938 | | * if that causes you to replace lappend() with lcons(), you haven't |
939 | | * improved matters. (In short, you can make an efficient stack from |
940 | | * a List, but not an efficient FIFO queue.) |
941 | | */ |
942 | | List * |
943 | | list_delete_first(List *list) |
944 | 0 | { |
945 | 0 | check_list_invariants(list); |
946 | |
|
947 | 0 | if (list == NIL) |
948 | 0 | return NIL; /* would an error be better? */ |
949 | | |
950 | 0 | return list_delete_nth_cell(list, 0); |
951 | 0 | } |
952 | | |
953 | | /* |
954 | | * Delete the last element of the list. |
955 | | */ |
956 | | List * |
957 | | list_delete_last(List *list) |
958 | 0 | { |
959 | 0 | check_list_invariants(list); |
960 | |
|
961 | 0 | if (list == NIL) |
962 | 0 | return NIL; /* would an error be better? */ |
963 | | |
964 | | /* list_truncate won't free list if it goes to empty, but this should */ |
965 | 0 | if (list_length(list) <= 1) |
966 | 0 | { |
967 | 0 | list_free(list); |
968 | 0 | return NIL; |
969 | 0 | } |
970 | | |
971 | 0 | return list_truncate(list, list_length(list) - 1); |
972 | 0 | } |
973 | | |
974 | | /* |
975 | | * Delete the first N cells of the list. |
976 | | * |
977 | | * The List is pfree'd if the request causes all cells to be deleted. |
978 | | * |
979 | | * Note that this takes time proportional to the distance to the end of the |
980 | | * list, since the following entries must be moved. |
981 | | */ |
982 | | List * |
983 | | list_delete_first_n(List *list, int n) |
984 | 0 | { |
985 | 0 | check_list_invariants(list); |
986 | | |
987 | | /* No-op request? */ |
988 | 0 | if (n <= 0) |
989 | 0 | return list; |
990 | | |
991 | | /* Delete whole list? */ |
992 | 0 | if (n >= list_length(list)) |
993 | 0 | { |
994 | 0 | list_free(list); |
995 | 0 | return NIL; |
996 | 0 | } |
997 | | |
998 | | /* |
999 | | * Otherwise, we normally just collapse out the removed elements. But for |
1000 | | * debugging purposes, move the whole list contents someplace else. |
1001 | | * |
1002 | | * (Note that we *must* keep the contents in the same memory context.) |
1003 | | */ |
1004 | 0 | #ifndef DEBUG_LIST_MEMORY_USAGE |
1005 | 0 | memmove(&list->elements[0], &list->elements[n], |
1006 | 0 | (list->length - n) * sizeof(ListCell)); |
1007 | 0 | list->length -= n; |
1008 | | #else |
1009 | | { |
1010 | | ListCell *newelems; |
1011 | | int newmaxlen = list->length - n; |
1012 | | |
1013 | | newelems = (ListCell *) |
1014 | | MemoryContextAlloc(GetMemoryChunkContext(list), |
1015 | | newmaxlen * sizeof(ListCell)); |
1016 | | memcpy(newelems, &list->elements[n], newmaxlen * sizeof(ListCell)); |
1017 | | if (list->elements != list->initial_elements) |
1018 | | pfree(list->elements); |
1019 | | else |
1020 | | { |
1021 | | /* |
1022 | | * As in enlarge_list(), clear the initial_elements[] space and/or |
1023 | | * mark it inaccessible. |
1024 | | */ |
1025 | | #ifdef CLOBBER_FREED_MEMORY |
1026 | | wipe_mem(list->initial_elements, |
1027 | | list->max_length * sizeof(ListCell)); |
1028 | | #else |
1029 | | VALGRIND_MAKE_MEM_NOACCESS(list->initial_elements, |
1030 | | list->max_length * sizeof(ListCell)); |
1031 | | #endif |
1032 | | } |
1033 | | list->elements = newelems; |
1034 | | list->max_length = newmaxlen; |
1035 | | list->length = newmaxlen; |
1036 | | check_list_invariants(list); |
1037 | | } |
1038 | | #endif |
1039 | |
|
1040 | 0 | return list; |
1041 | 0 | } |
1042 | | |
1043 | | /* |
1044 | | * Generate the union of two lists. This is calculated by copying |
1045 | | * list1 via list_copy(), then adding to it all the members of list2 |
1046 | | * that aren't already in list1. |
1047 | | * |
1048 | | * Whether an element is already a member of the list is determined |
1049 | | * via equal(). |
1050 | | * |
1051 | | * The returned list is newly-allocated, although the content of the |
1052 | | * cells is the same (i.e. any pointed-to objects are not copied). |
1053 | | * |
1054 | | * NB: this function will NOT remove any duplicates that are present |
1055 | | * in list1 (so it only performs a "union" if list1 is known unique to |
1056 | | * start with). Also, if you are about to write "x = list_union(x, y)" |
1057 | | * you probably want to use list_concat_unique() instead to avoid wasting |
1058 | | * the storage of the old x list. |
1059 | | * |
1060 | | * Note that this takes time proportional to the product of the list |
1061 | | * lengths, so beware of using it on long lists. (We could probably |
1062 | | * improve that, but really you should be using some other data structure |
1063 | | * if this'd be a performance bottleneck.) |
1064 | | */ |
1065 | | List * |
1066 | | list_union(const List *list1, const List *list2) |
1067 | 0 | { |
1068 | 0 | List *result; |
1069 | 0 | const ListCell *cell; |
1070 | |
|
1071 | 0 | Assert(IsPointerList(list1)); |
1072 | 0 | Assert(IsPointerList(list2)); |
1073 | |
|
1074 | 0 | result = list_copy(list1); |
1075 | 0 | foreach(cell, list2) |
1076 | 0 | { |
1077 | 0 | if (!list_member(result, lfirst(cell))) |
1078 | 0 | result = lappend(result, lfirst(cell)); |
1079 | 0 | } |
1080 | |
|
1081 | 0 | check_list_invariants(result); |
1082 | 0 | return result; |
1083 | 0 | } |
1084 | | |
1085 | | /* |
1086 | | * This variant of list_union() determines duplicates via simple |
1087 | | * pointer comparison. |
1088 | | */ |
1089 | | List * |
1090 | | list_union_ptr(const List *list1, const List *list2) |
1091 | 0 | { |
1092 | 0 | List *result; |
1093 | 0 | const ListCell *cell; |
1094 | |
|
1095 | 0 | Assert(IsPointerList(list1)); |
1096 | 0 | Assert(IsPointerList(list2)); |
1097 | |
|
1098 | 0 | result = list_copy(list1); |
1099 | 0 | foreach(cell, list2) |
1100 | 0 | { |
1101 | 0 | if (!list_member_ptr(result, lfirst(cell))) |
1102 | 0 | result = lappend(result, lfirst(cell)); |
1103 | 0 | } |
1104 | |
|
1105 | 0 | check_list_invariants(result); |
1106 | 0 | return result; |
1107 | 0 | } |
1108 | | |
1109 | | /* |
1110 | | * This variant of list_union() operates upon lists of integers. |
1111 | | */ |
1112 | | List * |
1113 | | list_union_int(const List *list1, const List *list2) |
1114 | 0 | { |
1115 | 0 | List *result; |
1116 | 0 | const ListCell *cell; |
1117 | |
|
1118 | 0 | Assert(IsIntegerList(list1)); |
1119 | 0 | Assert(IsIntegerList(list2)); |
1120 | |
|
1121 | 0 | result = list_copy(list1); |
1122 | 0 | foreach(cell, list2) |
1123 | 0 | { |
1124 | 0 | if (!list_member_int(result, lfirst_int(cell))) |
1125 | 0 | result = lappend_int(result, lfirst_int(cell)); |
1126 | 0 | } |
1127 | |
|
1128 | 0 | check_list_invariants(result); |
1129 | 0 | return result; |
1130 | 0 | } |
1131 | | |
1132 | | /* |
1133 | | * This variant of list_union() operates upon lists of OIDs. |
1134 | | */ |
1135 | | List * |
1136 | | list_union_oid(const List *list1, const List *list2) |
1137 | 0 | { |
1138 | 0 | List *result; |
1139 | 0 | const ListCell *cell; |
1140 | |
|
1141 | 0 | Assert(IsOidList(list1)); |
1142 | 0 | Assert(IsOidList(list2)); |
1143 | |
|
1144 | 0 | result = list_copy(list1); |
1145 | 0 | foreach(cell, list2) |
1146 | 0 | { |
1147 | 0 | if (!list_member_oid(result, lfirst_oid(cell))) |
1148 | 0 | result = lappend_oid(result, lfirst_oid(cell)); |
1149 | 0 | } |
1150 | |
|
1151 | 0 | check_list_invariants(result); |
1152 | 0 | return result; |
1153 | 0 | } |
1154 | | |
1155 | | /* |
1156 | | * Return a list that contains all the cells that are in both list1 and |
1157 | | * list2. The returned list is freshly allocated via palloc(), but the |
1158 | | * cells themselves point to the same objects as the cells of the |
1159 | | * input lists. |
1160 | | * |
1161 | | * Duplicate entries in list1 will not be suppressed, so it's only a true |
1162 | | * "intersection" if list1 is known unique beforehand. |
1163 | | * |
1164 | | * This variant works on lists of pointers, and determines list |
1165 | | * membership via equal(). Note that the list1 member will be pointed |
1166 | | * to in the result. |
1167 | | * |
1168 | | * Note that this takes time proportional to the product of the list |
1169 | | * lengths, so beware of using it on long lists. (We could probably |
1170 | | * improve that, but really you should be using some other data structure |
1171 | | * if this'd be a performance bottleneck.) |
1172 | | */ |
1173 | | List * |
1174 | | list_intersection(const List *list1, const List *list2) |
1175 | 0 | { |
1176 | 0 | List *result; |
1177 | 0 | const ListCell *cell; |
1178 | |
|
1179 | 0 | if (list1 == NIL || list2 == NIL) |
1180 | 0 | return NIL; |
1181 | | |
1182 | 0 | Assert(IsPointerList(list1)); |
1183 | 0 | Assert(IsPointerList(list2)); |
1184 | |
|
1185 | 0 | result = NIL; |
1186 | 0 | foreach(cell, list1) |
1187 | 0 | { |
1188 | 0 | if (list_member(list2, lfirst(cell))) |
1189 | 0 | result = lappend(result, lfirst(cell)); |
1190 | 0 | } |
1191 | |
|
1192 | 0 | check_list_invariants(result); |
1193 | 0 | return result; |
1194 | 0 | } |
1195 | | |
1196 | | /* |
1197 | | * As list_intersection but operates on lists of integers. |
1198 | | */ |
1199 | | List * |
1200 | | list_intersection_int(const List *list1, const List *list2) |
1201 | 0 | { |
1202 | 0 | List *result; |
1203 | 0 | const ListCell *cell; |
1204 | |
|
1205 | 0 | if (list1 == NIL || list2 == NIL) |
1206 | 0 | return NIL; |
1207 | | |
1208 | 0 | Assert(IsIntegerList(list1)); |
1209 | 0 | Assert(IsIntegerList(list2)); |
1210 | |
|
1211 | 0 | result = NIL; |
1212 | 0 | foreach(cell, list1) |
1213 | 0 | { |
1214 | 0 | if (list_member_int(list2, lfirst_int(cell))) |
1215 | 0 | result = lappend_int(result, lfirst_int(cell)); |
1216 | 0 | } |
1217 | |
|
1218 | 0 | check_list_invariants(result); |
1219 | 0 | return result; |
1220 | 0 | } |
1221 | | |
1222 | | /* |
1223 | | * Return a list that contains all the cells in list1 that are not in |
1224 | | * list2. The returned list is freshly allocated via palloc(), but the |
1225 | | * cells themselves point to the same objects as the cells of the |
1226 | | * input lists. |
1227 | | * |
1228 | | * This variant works on lists of pointers, and determines list |
1229 | | * membership via equal() |
1230 | | * |
1231 | | * Note that this takes time proportional to the product of the list |
1232 | | * lengths, so beware of using it on long lists. (We could probably |
1233 | | * improve that, but really you should be using some other data structure |
1234 | | * if this'd be a performance bottleneck.) |
1235 | | */ |
1236 | | List * |
1237 | | list_difference(const List *list1, const List *list2) |
1238 | 0 | { |
1239 | 0 | const ListCell *cell; |
1240 | 0 | List *result = NIL; |
1241 | |
|
1242 | 0 | Assert(IsPointerList(list1)); |
1243 | 0 | Assert(IsPointerList(list2)); |
1244 | |
|
1245 | 0 | if (list2 == NIL) |
1246 | 0 | return list_copy(list1); |
1247 | | |
1248 | 0 | foreach(cell, list1) |
1249 | 0 | { |
1250 | 0 | if (!list_member(list2, lfirst(cell))) |
1251 | 0 | result = lappend(result, lfirst(cell)); |
1252 | 0 | } |
1253 | |
|
1254 | 0 | check_list_invariants(result); |
1255 | 0 | return result; |
1256 | 0 | } |
1257 | | |
1258 | | /* |
1259 | | * This variant of list_difference() determines list membership via |
1260 | | * simple pointer equality. |
1261 | | */ |
1262 | | List * |
1263 | | list_difference_ptr(const List *list1, const List *list2) |
1264 | 0 | { |
1265 | 0 | const ListCell *cell; |
1266 | 0 | List *result = NIL; |
1267 | |
|
1268 | 0 | Assert(IsPointerList(list1)); |
1269 | 0 | Assert(IsPointerList(list2)); |
1270 | |
|
1271 | 0 | if (list2 == NIL) |
1272 | 0 | return list_copy(list1); |
1273 | | |
1274 | 0 | foreach(cell, list1) |
1275 | 0 | { |
1276 | 0 | if (!list_member_ptr(list2, lfirst(cell))) |
1277 | 0 | result = lappend(result, lfirst(cell)); |
1278 | 0 | } |
1279 | |
|
1280 | 0 | check_list_invariants(result); |
1281 | 0 | return result; |
1282 | 0 | } |
1283 | | |
1284 | | /* |
1285 | | * This variant of list_difference() operates upon lists of integers. |
1286 | | */ |
1287 | | List * |
1288 | | list_difference_int(const List *list1, const List *list2) |
1289 | 0 | { |
1290 | 0 | const ListCell *cell; |
1291 | 0 | List *result = NIL; |
1292 | |
|
1293 | 0 | Assert(IsIntegerList(list1)); |
1294 | 0 | Assert(IsIntegerList(list2)); |
1295 | |
|
1296 | 0 | if (list2 == NIL) |
1297 | 0 | return list_copy(list1); |
1298 | | |
1299 | 0 | foreach(cell, list1) |
1300 | 0 | { |
1301 | 0 | if (!list_member_int(list2, lfirst_int(cell))) |
1302 | 0 | result = lappend_int(result, lfirst_int(cell)); |
1303 | 0 | } |
1304 | |
|
1305 | 0 | check_list_invariants(result); |
1306 | 0 | return result; |
1307 | 0 | } |
1308 | | |
1309 | | /* |
1310 | | * This variant of list_difference() operates upon lists of OIDs. |
1311 | | */ |
1312 | | List * |
1313 | | list_difference_oid(const List *list1, const List *list2) |
1314 | 0 | { |
1315 | 0 | const ListCell *cell; |
1316 | 0 | List *result = NIL; |
1317 | |
|
1318 | 0 | Assert(IsOidList(list1)); |
1319 | 0 | Assert(IsOidList(list2)); |
1320 | |
|
1321 | 0 | if (list2 == NIL) |
1322 | 0 | return list_copy(list1); |
1323 | | |
1324 | 0 | foreach(cell, list1) |
1325 | 0 | { |
1326 | 0 | if (!list_member_oid(list2, lfirst_oid(cell))) |
1327 | 0 | result = lappend_oid(result, lfirst_oid(cell)); |
1328 | 0 | } |
1329 | |
|
1330 | 0 | check_list_invariants(result); |
1331 | 0 | return result; |
1332 | 0 | } |
1333 | | |
1334 | | /* |
1335 | | * Append datum to list, but only if it isn't already in the list. |
1336 | | * |
1337 | | * Whether an element is already a member of the list is determined |
1338 | | * via equal(). |
1339 | | * |
1340 | | * This does a simple linear search --- avoid using it on long lists. |
1341 | | */ |
1342 | | List * |
1343 | | list_append_unique(List *list, void *datum) |
1344 | 0 | { |
1345 | 0 | if (list_member(list, datum)) |
1346 | 0 | return list; |
1347 | 0 | else |
1348 | 0 | return lappend(list, datum); |
1349 | 0 | } |
1350 | | |
1351 | | /* |
1352 | | * This variant of list_append_unique() determines list membership via |
1353 | | * simple pointer equality. |
1354 | | */ |
1355 | | List * |
1356 | | list_append_unique_ptr(List *list, void *datum) |
1357 | 0 | { |
1358 | 0 | if (list_member_ptr(list, datum)) |
1359 | 0 | return list; |
1360 | 0 | else |
1361 | 0 | return lappend(list, datum); |
1362 | 0 | } |
1363 | | |
1364 | | /* |
1365 | | * This variant of list_append_unique() operates upon lists of integers. |
1366 | | */ |
1367 | | List * |
1368 | | list_append_unique_int(List *list, int datum) |
1369 | 0 | { |
1370 | 0 | if (list_member_int(list, datum)) |
1371 | 0 | return list; |
1372 | 0 | else |
1373 | 0 | return lappend_int(list, datum); |
1374 | 0 | } |
1375 | | |
1376 | | /* |
1377 | | * This variant of list_append_unique() operates upon lists of OIDs. |
1378 | | */ |
1379 | | List * |
1380 | | list_append_unique_oid(List *list, Oid datum) |
1381 | 0 | { |
1382 | 0 | if (list_member_oid(list, datum)) |
1383 | 0 | return list; |
1384 | 0 | else |
1385 | 0 | return lappend_oid(list, datum); |
1386 | 0 | } |
1387 | | |
1388 | | /* |
1389 | | * Append to list1 each member of list2 that isn't already in list1. |
1390 | | * |
1391 | | * Whether an element is already a member of the list is determined |
1392 | | * via equal(). |
1393 | | * |
1394 | | * This is almost the same functionality as list_union(), but list1 is |
1395 | | * modified in-place rather than being copied. However, callers of this |
1396 | | * function may have strict ordering expectations -- i.e. that the relative |
1397 | | * order of those list2 elements that are not duplicates is preserved. |
1398 | | * |
1399 | | * Note that this takes time proportional to the product of the list |
1400 | | * lengths, so beware of using it on long lists. (We could probably |
1401 | | * improve that, but really you should be using some other data structure |
1402 | | * if this'd be a performance bottleneck.) |
1403 | | */ |
1404 | | List * |
1405 | | list_concat_unique(List *list1, const List *list2) |
1406 | 0 | { |
1407 | 0 | ListCell *cell; |
1408 | |
|
1409 | 0 | Assert(IsPointerList(list1)); |
1410 | 0 | Assert(IsPointerList(list2)); |
1411 | |
|
1412 | 0 | foreach(cell, list2) |
1413 | 0 | { |
1414 | 0 | if (!list_member(list1, lfirst(cell))) |
1415 | 0 | list1 = lappend(list1, lfirst(cell)); |
1416 | 0 | } |
1417 | |
|
1418 | 0 | check_list_invariants(list1); |
1419 | 0 | return list1; |
1420 | 0 | } |
1421 | | |
1422 | | /* |
1423 | | * This variant of list_concat_unique() determines list membership via |
1424 | | * simple pointer equality. |
1425 | | */ |
1426 | | List * |
1427 | | list_concat_unique_ptr(List *list1, const List *list2) |
1428 | 0 | { |
1429 | 0 | ListCell *cell; |
1430 | |
|
1431 | 0 | Assert(IsPointerList(list1)); |
1432 | 0 | Assert(IsPointerList(list2)); |
1433 | |
|
1434 | 0 | foreach(cell, list2) |
1435 | 0 | { |
1436 | 0 | if (!list_member_ptr(list1, lfirst(cell))) |
1437 | 0 | list1 = lappend(list1, lfirst(cell)); |
1438 | 0 | } |
1439 | |
|
1440 | 0 | check_list_invariants(list1); |
1441 | 0 | return list1; |
1442 | 0 | } |
1443 | | |
1444 | | /* |
1445 | | * This variant of list_concat_unique() operates upon lists of integers. |
1446 | | */ |
1447 | | List * |
1448 | | list_concat_unique_int(List *list1, const List *list2) |
1449 | 0 | { |
1450 | 0 | ListCell *cell; |
1451 | |
|
1452 | 0 | Assert(IsIntegerList(list1)); |
1453 | 0 | Assert(IsIntegerList(list2)); |
1454 | |
|
1455 | 0 | foreach(cell, list2) |
1456 | 0 | { |
1457 | 0 | if (!list_member_int(list1, lfirst_int(cell))) |
1458 | 0 | list1 = lappend_int(list1, lfirst_int(cell)); |
1459 | 0 | } |
1460 | |
|
1461 | 0 | check_list_invariants(list1); |
1462 | 0 | return list1; |
1463 | 0 | } |
1464 | | |
1465 | | /* |
1466 | | * This variant of list_concat_unique() operates upon lists of OIDs. |
1467 | | */ |
1468 | | List * |
1469 | | list_concat_unique_oid(List *list1, const List *list2) |
1470 | 0 | { |
1471 | 0 | ListCell *cell; |
1472 | |
|
1473 | 0 | Assert(IsOidList(list1)); |
1474 | 0 | Assert(IsOidList(list2)); |
1475 | |
|
1476 | 0 | foreach(cell, list2) |
1477 | 0 | { |
1478 | 0 | if (!list_member_oid(list1, lfirst_oid(cell))) |
1479 | 0 | list1 = lappend_oid(list1, lfirst_oid(cell)); |
1480 | 0 | } |
1481 | |
|
1482 | 0 | check_list_invariants(list1); |
1483 | 0 | return list1; |
1484 | 0 | } |
1485 | | |
1486 | | /* |
1487 | | * Remove adjacent duplicates in a list of OIDs. |
1488 | | * |
1489 | | * It is caller's responsibility to have sorted the list to bring duplicates |
1490 | | * together, perhaps via list_sort(list, list_oid_cmp). |
1491 | | * |
1492 | | * Note that this takes time proportional to the length of the list. |
1493 | | */ |
1494 | | void |
1495 | | list_deduplicate_oid(List *list) |
1496 | 0 | { |
1497 | 0 | int len; |
1498 | |
|
1499 | 0 | Assert(IsOidList(list)); |
1500 | 0 | len = list_length(list); |
1501 | 0 | if (len > 1) |
1502 | 0 | { |
1503 | 0 | ListCell *elements = list->elements; |
1504 | 0 | int i = 0; |
1505 | |
|
1506 | 0 | for (int j = 1; j < len; j++) |
1507 | 0 | { |
1508 | 0 | if (elements[i].oid_value != elements[j].oid_value) |
1509 | 0 | elements[++i].oid_value = elements[j].oid_value; |
1510 | 0 | } |
1511 | 0 | list->length = i + 1; |
1512 | 0 | } |
1513 | 0 | check_list_invariants(list); |
1514 | 0 | } |
1515 | | |
1516 | | /* |
1517 | | * Free all storage in a list, and optionally the pointed-to elements |
1518 | | */ |
1519 | | static void |
1520 | | list_free_private(List *list, bool deep) |
1521 | 0 | { |
1522 | 0 | if (list == NIL) |
1523 | 0 | return; /* nothing to do */ |
1524 | | |
1525 | 0 | check_list_invariants(list); |
1526 | |
|
1527 | 0 | if (deep) |
1528 | 0 | { |
1529 | 0 | for (int i = 0; i < list->length; i++) |
1530 | 0 | pfree(lfirst(&list->elements[i])); |
1531 | 0 | } |
1532 | 0 | if (list->elements != list->initial_elements) |
1533 | 0 | pfree(list->elements); |
1534 | 0 | pfree(list); |
1535 | 0 | } |
1536 | | |
1537 | | /* |
1538 | | * Free all the cells of the list, as well as the list itself. Any |
1539 | | * objects that are pointed-to by the cells of the list are NOT |
1540 | | * free'd. |
1541 | | * |
1542 | | * On return, the argument to this function has been freed, so the |
1543 | | * caller would be wise to set it to NIL for safety's sake. |
1544 | | */ |
1545 | | void |
1546 | | list_free(List *list) |
1547 | 0 | { |
1548 | 0 | list_free_private(list, false); |
1549 | 0 | } |
1550 | | |
1551 | | /* |
1552 | | * Free all the cells of the list, the list itself, and all the |
1553 | | * objects pointed-to by the cells of the list (each element in the |
1554 | | * list must contain a pointer to a palloc()'d region of memory!) |
1555 | | * |
1556 | | * On return, the argument to this function has been freed, so the |
1557 | | * caller would be wise to set it to NIL for safety's sake. |
1558 | | */ |
1559 | | void |
1560 | | list_free_deep(List *list) |
1561 | 0 | { |
1562 | | /* |
1563 | | * A "deep" free operation only makes sense on a list of pointers. |
1564 | | */ |
1565 | 0 | Assert(IsPointerList(list)); |
1566 | 0 | list_free_private(list, true); |
1567 | 0 | } |
1568 | | |
1569 | | /* |
1570 | | * Return a shallow copy of the specified list. |
1571 | | */ |
1572 | | List * |
1573 | | list_copy(const List *oldlist) |
1574 | 0 | { |
1575 | 0 | List *newlist; |
1576 | |
|
1577 | 0 | if (oldlist == NIL) |
1578 | 0 | return NIL; |
1579 | | |
1580 | 0 | newlist = new_list(oldlist->type, oldlist->length); |
1581 | 0 | memcpy(newlist->elements, oldlist->elements, |
1582 | 0 | newlist->length * sizeof(ListCell)); |
1583 | |
|
1584 | 0 | check_list_invariants(newlist); |
1585 | 0 | return newlist; |
1586 | 0 | } |
1587 | | |
1588 | | /* |
1589 | | * Return a shallow copy of the specified list containing only the first 'len' |
1590 | | * elements. If oldlist is shorter than 'len' then we copy the entire list. |
1591 | | */ |
1592 | | List * |
1593 | | list_copy_head(const List *oldlist, int len) |
1594 | 0 | { |
1595 | 0 | List *newlist; |
1596 | |
|
1597 | 0 | if (oldlist == NIL || len <= 0) |
1598 | 0 | return NIL; |
1599 | | |
1600 | 0 | len = Min(oldlist->length, len); |
1601 | |
|
1602 | 0 | newlist = new_list(oldlist->type, len); |
1603 | 0 | memcpy(newlist->elements, oldlist->elements, len * sizeof(ListCell)); |
1604 | |
|
1605 | 0 | check_list_invariants(newlist); |
1606 | 0 | return newlist; |
1607 | 0 | } |
1608 | | |
1609 | | /* |
1610 | | * Return a shallow copy of the specified list, without the first N elements. |
1611 | | */ |
1612 | | List * |
1613 | | list_copy_tail(const List *oldlist, int nskip) |
1614 | 0 | { |
1615 | 0 | List *newlist; |
1616 | |
|
1617 | 0 | if (nskip < 0) |
1618 | 0 | nskip = 0; /* would it be better to elog? */ |
1619 | |
|
1620 | 0 | if (oldlist == NIL || nskip >= oldlist->length) |
1621 | 0 | return NIL; |
1622 | | |
1623 | 0 | newlist = new_list(oldlist->type, oldlist->length - nskip); |
1624 | 0 | memcpy(newlist->elements, &oldlist->elements[nskip], |
1625 | 0 | newlist->length * sizeof(ListCell)); |
1626 | |
|
1627 | 0 | check_list_invariants(newlist); |
1628 | 0 | return newlist; |
1629 | 0 | } |
1630 | | |
1631 | | /* |
1632 | | * Return a deep copy of the specified list. |
1633 | | * |
1634 | | * The list elements are copied via copyObject(), so that this function's |
1635 | | * idea of a "deep" copy is considerably deeper than what list_free_deep() |
1636 | | * means by the same word. |
1637 | | */ |
1638 | | List * |
1639 | | list_copy_deep(const List *oldlist) |
1640 | 0 | { |
1641 | 0 | List *newlist; |
1642 | |
|
1643 | 0 | if (oldlist == NIL) |
1644 | 0 | return NIL; |
1645 | | |
1646 | | /* This is only sensible for pointer Lists */ |
1647 | 0 | Assert(IsA(oldlist, List)); |
1648 | |
|
1649 | 0 | newlist = new_list(oldlist->type, oldlist->length); |
1650 | 0 | for (int i = 0; i < newlist->length; i++) |
1651 | 0 | lfirst(&newlist->elements[i]) = |
1652 | 0 | copyObjectImpl(lfirst(&oldlist->elements[i])); |
1653 | |
|
1654 | 0 | check_list_invariants(newlist); |
1655 | 0 | return newlist; |
1656 | 0 | } |
1657 | | |
1658 | | /* |
1659 | | * Sort a list according to the specified comparator function. |
1660 | | * |
1661 | | * The list is sorted in-place. |
1662 | | * |
1663 | | * The comparator function is declared to receive arguments of type |
1664 | | * const ListCell *; this allows it to use lfirst() and variants |
1665 | | * without casting its arguments. Otherwise it behaves the same as |
1666 | | * the comparator function for standard qsort(). |
1667 | | * |
1668 | | * Like qsort(), this provides no guarantees about sort stability |
1669 | | * for equal keys. |
1670 | | * |
1671 | | * This is based on qsort(), so it likewise has O(N log N) runtime. |
1672 | | */ |
1673 | | void |
1674 | | list_sort(List *list, list_sort_comparator cmp) |
1675 | 0 | { |
1676 | 0 | typedef int (*qsort_comparator) (const void *a, const void *b); |
1677 | 0 | int len; |
1678 | |
|
1679 | 0 | check_list_invariants(list); |
1680 | | |
1681 | | /* Nothing to do if there's less than two elements */ |
1682 | 0 | len = list_length(list); |
1683 | 0 | if (len > 1) |
1684 | 0 | qsort(list->elements, len, sizeof(ListCell), (qsort_comparator) cmp); |
1685 | 0 | } |
1686 | | |
1687 | | /* |
1688 | | * list_sort comparator for sorting a list into ascending int order. |
1689 | | */ |
1690 | | int |
1691 | | list_int_cmp(const ListCell *p1, const ListCell *p2) |
1692 | 0 | { |
1693 | 0 | int v1 = lfirst_int(p1); |
1694 | 0 | int v2 = lfirst_int(p2); |
1695 | |
|
1696 | 0 | return pg_cmp_s32(v1, v2); |
1697 | 0 | } |
1698 | | |
1699 | | /* |
1700 | | * list_sort comparator for sorting a list into ascending OID order. |
1701 | | */ |
1702 | | int |
1703 | | list_oid_cmp(const ListCell *p1, const ListCell *p2) |
1704 | 0 | { |
1705 | 0 | Oid v1 = lfirst_oid(p1); |
1706 | 0 | Oid v2 = lfirst_oid(p2); |
1707 | |
|
1708 | 0 | return pg_cmp_u32(v1, v2); |
1709 | 0 | } |