/src/postgres/src/backend/parser/parse_target.c
Line | Count | Source (jump to first uncovered line) |
1 | | /*------------------------------------------------------------------------- |
2 | | * |
3 | | * parse_target.c |
4 | | * handle target lists |
5 | | * |
6 | | * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group |
7 | | * Portions Copyright (c) 1994, Regents of the University of California |
8 | | * |
9 | | * |
10 | | * IDENTIFICATION |
11 | | * src/backend/parser/parse_target.c |
12 | | * |
13 | | *------------------------------------------------------------------------- |
14 | | */ |
15 | | #include "postgres.h" |
16 | | |
17 | | #include "catalog/namespace.h" |
18 | | #include "catalog/pg_type.h" |
19 | | #include "commands/dbcommands.h" |
20 | | #include "funcapi.h" |
21 | | #include "miscadmin.h" |
22 | | #include "nodes/makefuncs.h" |
23 | | #include "nodes/nodeFuncs.h" |
24 | | #include "parser/parse_coerce.h" |
25 | | #include "parser/parse_expr.h" |
26 | | #include "parser/parse_relation.h" |
27 | | #include "parser/parse_target.h" |
28 | | #include "parser/parse_type.h" |
29 | | #include "parser/parsetree.h" |
30 | | #include "utils/builtins.h" |
31 | | #include "utils/lsyscache.h" |
32 | | #include "utils/rel.h" |
33 | | |
34 | | static void markTargetListOrigin(ParseState *pstate, TargetEntry *tle, |
35 | | Var *var, int levelsup); |
36 | | static Node *transformAssignmentSubscripts(ParseState *pstate, |
37 | | Node *basenode, |
38 | | const char *targetName, |
39 | | Oid targetTypeId, |
40 | | int32 targetTypMod, |
41 | | Oid targetCollation, |
42 | | List *subscripts, |
43 | | List *indirection, |
44 | | ListCell *next_indirection, |
45 | | Node *rhs, |
46 | | CoercionContext ccontext, |
47 | | int location); |
48 | | static List *ExpandColumnRefStar(ParseState *pstate, ColumnRef *cref, |
49 | | bool make_target_entry); |
50 | | static List *ExpandAllTables(ParseState *pstate, int location); |
51 | | static List *ExpandIndirectionStar(ParseState *pstate, A_Indirection *ind, |
52 | | bool make_target_entry, ParseExprKind exprKind); |
53 | | static List *ExpandSingleTable(ParseState *pstate, ParseNamespaceItem *nsitem, |
54 | | int sublevels_up, int location, |
55 | | bool make_target_entry); |
56 | | static List *ExpandRowReference(ParseState *pstate, Node *expr, |
57 | | bool make_target_entry); |
58 | | static int FigureColnameInternal(Node *node, char **name); |
59 | | |
60 | | |
61 | | /* |
62 | | * transformTargetEntry() |
63 | | * Transform any ordinary "expression-type" node into a targetlist entry. |
64 | | * This is exported so that parse_clause.c can generate targetlist entries |
65 | | * for ORDER/GROUP BY items that are not already in the targetlist. |
66 | | * |
67 | | * node the (untransformed) parse tree for the value expression. |
68 | | * expr the transformed expression, or NULL if caller didn't do it yet. |
69 | | * exprKind expression kind (EXPR_KIND_SELECT_TARGET, etc) |
70 | | * colname the column name to be assigned, or NULL if none yet set. |
71 | | * resjunk true if the target should be marked resjunk, ie, it is not |
72 | | * wanted in the final projected tuple. |
73 | | */ |
74 | | TargetEntry * |
75 | | transformTargetEntry(ParseState *pstate, |
76 | | Node *node, |
77 | | Node *expr, |
78 | | ParseExprKind exprKind, |
79 | | char *colname, |
80 | | bool resjunk) |
81 | 0 | { |
82 | | /* Transform the node if caller didn't do it already */ |
83 | 0 | if (expr == NULL) |
84 | 0 | { |
85 | | /* |
86 | | * If it's a SetToDefault node and we should allow that, pass it |
87 | | * through unmodified. (transformExpr will throw the appropriate |
88 | | * error if we're disallowing it.) |
89 | | */ |
90 | 0 | if (exprKind == EXPR_KIND_UPDATE_SOURCE && IsA(node, SetToDefault)) |
91 | 0 | expr = node; |
92 | 0 | else |
93 | 0 | expr = transformExpr(pstate, node, exprKind); |
94 | 0 | } |
95 | |
|
96 | 0 | if (colname == NULL && !resjunk) |
97 | 0 | { |
98 | | /* |
99 | | * Generate a suitable column name for a column without any explicit |
100 | | * 'AS ColumnName' clause. |
101 | | */ |
102 | 0 | colname = FigureColname(node); |
103 | 0 | } |
104 | |
|
105 | 0 | return makeTargetEntry((Expr *) expr, |
106 | 0 | (AttrNumber) pstate->p_next_resno++, |
107 | 0 | colname, |
108 | 0 | resjunk); |
109 | 0 | } |
110 | | |
111 | | |
112 | | /* |
113 | | * transformTargetList() |
114 | | * Turns a list of ResTarget's into a list of TargetEntry's. |
115 | | * |
116 | | * This code acts mostly the same for SELECT, UPDATE, or RETURNING lists; |
117 | | * the main thing is to transform the given expressions (the "val" fields). |
118 | | * The exprKind parameter distinguishes these cases when necessary. |
119 | | */ |
120 | | List * |
121 | | transformTargetList(ParseState *pstate, List *targetlist, |
122 | | ParseExprKind exprKind) |
123 | 0 | { |
124 | 0 | List *p_target = NIL; |
125 | 0 | bool expand_star; |
126 | 0 | ListCell *o_target; |
127 | | |
128 | | /* Shouldn't have any leftover multiassign items at start */ |
129 | 0 | Assert(pstate->p_multiassign_exprs == NIL); |
130 | | |
131 | | /* Expand "something.*" in SELECT and RETURNING, but not UPDATE */ |
132 | 0 | expand_star = (exprKind != EXPR_KIND_UPDATE_SOURCE); |
133 | |
|
134 | 0 | foreach(o_target, targetlist) |
135 | 0 | { |
136 | 0 | ResTarget *res = (ResTarget *) lfirst(o_target); |
137 | | |
138 | | /* |
139 | | * Check for "something.*". Depending on the complexity of the |
140 | | * "something", the star could appear as the last field in ColumnRef, |
141 | | * or as the last indirection item in A_Indirection. |
142 | | */ |
143 | 0 | if (expand_star) |
144 | 0 | { |
145 | 0 | if (IsA(res->val, ColumnRef)) |
146 | 0 | { |
147 | 0 | ColumnRef *cref = (ColumnRef *) res->val; |
148 | |
|
149 | 0 | if (IsA(llast(cref->fields), A_Star)) |
150 | 0 | { |
151 | | /* It is something.*, expand into multiple items */ |
152 | 0 | p_target = list_concat(p_target, |
153 | 0 | ExpandColumnRefStar(pstate, |
154 | 0 | cref, |
155 | 0 | true)); |
156 | 0 | continue; |
157 | 0 | } |
158 | 0 | } |
159 | 0 | else if (IsA(res->val, A_Indirection)) |
160 | 0 | { |
161 | 0 | A_Indirection *ind = (A_Indirection *) res->val; |
162 | |
|
163 | 0 | if (IsA(llast(ind->indirection), A_Star)) |
164 | 0 | { |
165 | | /* It is something.*, expand into multiple items */ |
166 | 0 | p_target = list_concat(p_target, |
167 | 0 | ExpandIndirectionStar(pstate, |
168 | 0 | ind, |
169 | 0 | true, |
170 | 0 | exprKind)); |
171 | 0 | continue; |
172 | 0 | } |
173 | 0 | } |
174 | 0 | } |
175 | | |
176 | | /* |
177 | | * Not "something.*", or we want to treat that as a plain whole-row |
178 | | * variable, so transform as a single expression |
179 | | */ |
180 | 0 | p_target = lappend(p_target, |
181 | 0 | transformTargetEntry(pstate, |
182 | 0 | res->val, |
183 | 0 | NULL, |
184 | 0 | exprKind, |
185 | 0 | res->name, |
186 | 0 | false)); |
187 | 0 | } |
188 | | |
189 | | /* |
190 | | * If any multiassign resjunk items were created, attach them to the end |
191 | | * of the targetlist. This should only happen in an UPDATE tlist. We |
192 | | * don't need to worry about numbering of these items; transformUpdateStmt |
193 | | * will set their resnos. |
194 | | */ |
195 | 0 | if (pstate->p_multiassign_exprs) |
196 | 0 | { |
197 | 0 | Assert(exprKind == EXPR_KIND_UPDATE_SOURCE); |
198 | 0 | p_target = list_concat(p_target, pstate->p_multiassign_exprs); |
199 | 0 | pstate->p_multiassign_exprs = NIL; |
200 | 0 | } |
201 | |
|
202 | 0 | return p_target; |
203 | 0 | } |
204 | | |
205 | | |
206 | | /* |
207 | | * transformExpressionList() |
208 | | * |
209 | | * This is the identical transformation to transformTargetList, except that |
210 | | * the input list elements are bare expressions without ResTarget decoration, |
211 | | * and the output elements are likewise just expressions without TargetEntry |
212 | | * decoration. Also, we don't expect any multiassign constructs within the |
213 | | * list, so there's nothing to do for that. We use this for ROW() and |
214 | | * VALUES() constructs. |
215 | | * |
216 | | * exprKind is not enough to tell us whether to allow SetToDefault, so |
217 | | * an additional flag is needed for that. |
218 | | */ |
219 | | List * |
220 | | transformExpressionList(ParseState *pstate, List *exprlist, |
221 | | ParseExprKind exprKind, bool allowDefault) |
222 | 0 | { |
223 | 0 | List *result = NIL; |
224 | 0 | ListCell *lc; |
225 | |
|
226 | 0 | foreach(lc, exprlist) |
227 | 0 | { |
228 | 0 | Node *e = (Node *) lfirst(lc); |
229 | | |
230 | | /* |
231 | | * Check for "something.*". Depending on the complexity of the |
232 | | * "something", the star could appear as the last field in ColumnRef, |
233 | | * or as the last indirection item in A_Indirection. |
234 | | */ |
235 | 0 | if (IsA(e, ColumnRef)) |
236 | 0 | { |
237 | 0 | ColumnRef *cref = (ColumnRef *) e; |
238 | |
|
239 | 0 | if (IsA(llast(cref->fields), A_Star)) |
240 | 0 | { |
241 | | /* It is something.*, expand into multiple items */ |
242 | 0 | result = list_concat(result, |
243 | 0 | ExpandColumnRefStar(pstate, cref, |
244 | 0 | false)); |
245 | 0 | continue; |
246 | 0 | } |
247 | 0 | } |
248 | 0 | else if (IsA(e, A_Indirection)) |
249 | 0 | { |
250 | 0 | A_Indirection *ind = (A_Indirection *) e; |
251 | |
|
252 | 0 | if (IsA(llast(ind->indirection), A_Star)) |
253 | 0 | { |
254 | | /* It is something.*, expand into multiple items */ |
255 | 0 | result = list_concat(result, |
256 | 0 | ExpandIndirectionStar(pstate, ind, |
257 | 0 | false, exprKind)); |
258 | 0 | continue; |
259 | 0 | } |
260 | 0 | } |
261 | | |
262 | | /* |
263 | | * Not "something.*", so transform as a single expression. If it's a |
264 | | * SetToDefault node and we should allow that, pass it through |
265 | | * unmodified. (transformExpr will throw the appropriate error if |
266 | | * we're disallowing it.) |
267 | | */ |
268 | 0 | if (allowDefault && IsA(e, SetToDefault)) |
269 | 0 | /* do nothing */ ; |
270 | 0 | else |
271 | 0 | e = transformExpr(pstate, e, exprKind); |
272 | |
|
273 | 0 | result = lappend(result, e); |
274 | 0 | } |
275 | |
|
276 | 0 | return result; |
277 | 0 | } |
278 | | |
279 | | |
280 | | /* |
281 | | * resolveTargetListUnknowns() |
282 | | * Convert any unknown-type targetlist entries to type TEXT. |
283 | | * |
284 | | * We do this after we've exhausted all other ways of identifying the output |
285 | | * column types of a query. |
286 | | */ |
287 | | void |
288 | | resolveTargetListUnknowns(ParseState *pstate, List *targetlist) |
289 | 0 | { |
290 | 0 | ListCell *l; |
291 | |
|
292 | 0 | foreach(l, targetlist) |
293 | 0 | { |
294 | 0 | TargetEntry *tle = (TargetEntry *) lfirst(l); |
295 | 0 | Oid restype = exprType((Node *) tle->expr); |
296 | |
|
297 | 0 | if (restype == UNKNOWNOID) |
298 | 0 | { |
299 | 0 | tle->expr = (Expr *) coerce_type(pstate, (Node *) tle->expr, |
300 | 0 | restype, TEXTOID, -1, |
301 | 0 | COERCION_IMPLICIT, |
302 | 0 | COERCE_IMPLICIT_CAST, |
303 | 0 | -1); |
304 | 0 | } |
305 | 0 | } |
306 | 0 | } |
307 | | |
308 | | |
309 | | /* |
310 | | * markTargetListOrigins() |
311 | | * Mark targetlist columns that are simple Vars with the source |
312 | | * table's OID and column number. |
313 | | * |
314 | | * Currently, this is done only for SELECT targetlists and RETURNING lists, |
315 | | * since we only need the info if we are going to send it to the frontend. |
316 | | */ |
317 | | void |
318 | | markTargetListOrigins(ParseState *pstate, List *targetlist) |
319 | 0 | { |
320 | 0 | ListCell *l; |
321 | |
|
322 | 0 | foreach(l, targetlist) |
323 | 0 | { |
324 | 0 | TargetEntry *tle = (TargetEntry *) lfirst(l); |
325 | |
|
326 | 0 | markTargetListOrigin(pstate, tle, (Var *) tle->expr, 0); |
327 | 0 | } |
328 | 0 | } |
329 | | |
330 | | /* |
331 | | * markTargetListOrigin() |
332 | | * If 'var' is a Var of a plain relation, mark 'tle' with its origin |
333 | | * |
334 | | * levelsup is an extra offset to interpret the Var's varlevelsup correctly. |
335 | | * |
336 | | * Note that we do not drill down into views, but report the view as the |
337 | | * column owner. There's also no need to drill down into joins: if we see |
338 | | * a join alias Var, it must be a merged JOIN USING column (or possibly a |
339 | | * whole-row Var); that is not a direct reference to any plain table column, |
340 | | * so we don't report it. |
341 | | */ |
342 | | static void |
343 | | markTargetListOrigin(ParseState *pstate, TargetEntry *tle, |
344 | | Var *var, int levelsup) |
345 | 0 | { |
346 | 0 | int netlevelsup; |
347 | 0 | RangeTblEntry *rte; |
348 | 0 | AttrNumber attnum; |
349 | |
|
350 | 0 | if (var == NULL || !IsA(var, Var)) |
351 | 0 | return; |
352 | 0 | netlevelsup = var->varlevelsup + levelsup; |
353 | 0 | rte = GetRTEByRangeTablePosn(pstate, var->varno, netlevelsup); |
354 | 0 | attnum = var->varattno; |
355 | |
|
356 | 0 | switch (rte->rtekind) |
357 | 0 | { |
358 | 0 | case RTE_RELATION: |
359 | | /* It's a table or view, report it */ |
360 | 0 | tle->resorigtbl = rte->relid; |
361 | 0 | tle->resorigcol = attnum; |
362 | 0 | break; |
363 | 0 | case RTE_SUBQUERY: |
364 | | /* Subselect-in-FROM: copy up from the subselect */ |
365 | 0 | if (attnum != InvalidAttrNumber) |
366 | 0 | { |
367 | 0 | TargetEntry *ste = get_tle_by_resno(rte->subquery->targetList, |
368 | 0 | attnum); |
369 | |
|
370 | 0 | if (ste == NULL || ste->resjunk) |
371 | 0 | elog(ERROR, "subquery %s does not have attribute %d", |
372 | 0 | rte->eref->aliasname, attnum); |
373 | 0 | tle->resorigtbl = ste->resorigtbl; |
374 | 0 | tle->resorigcol = ste->resorigcol; |
375 | 0 | } |
376 | 0 | break; |
377 | 0 | case RTE_JOIN: |
378 | 0 | case RTE_FUNCTION: |
379 | 0 | case RTE_VALUES: |
380 | 0 | case RTE_TABLEFUNC: |
381 | 0 | case RTE_NAMEDTUPLESTORE: |
382 | 0 | case RTE_RESULT: |
383 | | /* not a simple relation, leave it unmarked */ |
384 | 0 | break; |
385 | 0 | case RTE_CTE: |
386 | | |
387 | | /* |
388 | | * CTE reference: copy up from the subquery, if possible. If the |
389 | | * RTE is a recursive self-reference then we can't do anything |
390 | | * because we haven't finished analyzing it yet. However, it's no |
391 | | * big loss because we must be down inside the recursive term of a |
392 | | * recursive CTE, and so any markings on the current targetlist |
393 | | * are not going to affect the results anyway. |
394 | | */ |
395 | 0 | if (attnum != InvalidAttrNumber && !rte->self_reference) |
396 | 0 | { |
397 | 0 | CommonTableExpr *cte = GetCTEForRTE(pstate, rte, netlevelsup); |
398 | 0 | TargetEntry *ste; |
399 | 0 | List *tl = GetCTETargetList(cte); |
400 | 0 | int extra_cols = 0; |
401 | | |
402 | | /* |
403 | | * RTE for CTE will already have the search and cycle columns |
404 | | * added, but the subquery won't, so skip looking those up. |
405 | | */ |
406 | 0 | if (cte->search_clause) |
407 | 0 | extra_cols += 1; |
408 | 0 | if (cte->cycle_clause) |
409 | 0 | extra_cols += 2; |
410 | 0 | if (extra_cols && |
411 | 0 | attnum > list_length(tl) && |
412 | 0 | attnum <= list_length(tl) + extra_cols) |
413 | 0 | break; |
414 | | |
415 | 0 | ste = get_tle_by_resno(tl, attnum); |
416 | 0 | if (ste == NULL || ste->resjunk) |
417 | 0 | elog(ERROR, "CTE %s does not have attribute %d", |
418 | 0 | rte->eref->aliasname, attnum); |
419 | 0 | tle->resorigtbl = ste->resorigtbl; |
420 | 0 | tle->resorigcol = ste->resorigcol; |
421 | 0 | } |
422 | 0 | break; |
423 | 0 | case RTE_GROUP: |
424 | | /* We couldn't get here: the RTE_GROUP RTE has not been added */ |
425 | 0 | break; |
426 | 0 | } |
427 | 0 | } |
428 | | |
429 | | |
430 | | /* |
431 | | * transformAssignedExpr() |
432 | | * This is used in INSERT and UPDATE statements only. It prepares an |
433 | | * expression for assignment to a column of the target table. |
434 | | * This includes coercing the given value to the target column's type |
435 | | * (if necessary), and dealing with any subfield names or subscripts |
436 | | * attached to the target column itself. The input expression has |
437 | | * already been through transformExpr(). |
438 | | * |
439 | | * pstate parse state |
440 | | * expr expression to be modified |
441 | | * exprKind indicates which type of statement we're dealing with |
442 | | * colname target column name (ie, name of attribute to be assigned to) |
443 | | * attrno target attribute number |
444 | | * indirection subscripts/field names for target column, if any |
445 | | * location error cursor position for the target column, or -1 |
446 | | * |
447 | | * Returns the modified expression. |
448 | | * |
449 | | * Note: location points at the target column name (SET target or INSERT |
450 | | * column name list entry), and must therefore be -1 in an INSERT that |
451 | | * omits the column name list. So we should usually prefer to use |
452 | | * exprLocation(expr) for errors that can happen in a default INSERT. |
453 | | */ |
454 | | Expr * |
455 | | transformAssignedExpr(ParseState *pstate, |
456 | | Expr *expr, |
457 | | ParseExprKind exprKind, |
458 | | const char *colname, |
459 | | int attrno, |
460 | | List *indirection, |
461 | | int location) |
462 | 0 | { |
463 | 0 | Relation rd = pstate->p_target_relation; |
464 | 0 | Oid type_id; /* type of value provided */ |
465 | 0 | Oid attrtype; /* type of target column */ |
466 | 0 | int32 attrtypmod; |
467 | 0 | Oid attrcollation; /* collation of target column */ |
468 | 0 | ParseExprKind sv_expr_kind; |
469 | | |
470 | | /* |
471 | | * Save and restore identity of expression type we're parsing. We must |
472 | | * set p_expr_kind here because we can parse subscripts without going |
473 | | * through transformExpr(). |
474 | | */ |
475 | 0 | Assert(exprKind != EXPR_KIND_NONE); |
476 | 0 | sv_expr_kind = pstate->p_expr_kind; |
477 | 0 | pstate->p_expr_kind = exprKind; |
478 | |
|
479 | 0 | Assert(rd != NULL); |
480 | 0 | if (attrno <= 0) |
481 | 0 | ereport(ERROR, |
482 | 0 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
483 | 0 | errmsg("cannot assign to system column \"%s\"", |
484 | 0 | colname), |
485 | 0 | parser_errposition(pstate, location))); |
486 | 0 | attrtype = attnumTypeId(rd, attrno); |
487 | 0 | attrtypmod = TupleDescAttr(rd->rd_att, attrno - 1)->atttypmod; |
488 | 0 | attrcollation = TupleDescAttr(rd->rd_att, attrno - 1)->attcollation; |
489 | | |
490 | | /* |
491 | | * If the expression is a DEFAULT placeholder, insert the attribute's |
492 | | * type/typmod/collation into it so that exprType etc will report the |
493 | | * right things. (We expect that the eventually substituted default |
494 | | * expression will in fact have this type and typmod. The collation |
495 | | * likely doesn't matter, but let's set it correctly anyway.) Also, |
496 | | * reject trying to update a subfield or array element with DEFAULT, since |
497 | | * there can't be any default for portions of a column. |
498 | | */ |
499 | 0 | if (expr && IsA(expr, SetToDefault)) |
500 | 0 | { |
501 | 0 | SetToDefault *def = (SetToDefault *) expr; |
502 | |
|
503 | 0 | def->typeId = attrtype; |
504 | 0 | def->typeMod = attrtypmod; |
505 | 0 | def->collation = attrcollation; |
506 | 0 | if (indirection) |
507 | 0 | { |
508 | 0 | if (IsA(linitial(indirection), A_Indices)) |
509 | 0 | ereport(ERROR, |
510 | 0 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
511 | 0 | errmsg("cannot set an array element to DEFAULT"), |
512 | 0 | parser_errposition(pstate, location))); |
513 | 0 | else |
514 | 0 | ereport(ERROR, |
515 | 0 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
516 | 0 | errmsg("cannot set a subfield to DEFAULT"), |
517 | 0 | parser_errposition(pstate, location))); |
518 | 0 | } |
519 | 0 | } |
520 | | |
521 | | /* Now we can use exprType() safely. */ |
522 | 0 | type_id = exprType((Node *) expr); |
523 | | |
524 | | /* |
525 | | * If there is indirection on the target column, prepare an array or |
526 | | * subfield assignment expression. This will generate a new column value |
527 | | * that the source value has been inserted into, which can then be placed |
528 | | * in the new tuple constructed by INSERT or UPDATE. |
529 | | */ |
530 | 0 | if (indirection) |
531 | 0 | { |
532 | 0 | Node *colVar; |
533 | |
|
534 | 0 | if (pstate->p_is_insert) |
535 | 0 | { |
536 | | /* |
537 | | * The command is INSERT INTO table (col.something) ... so there |
538 | | * is not really a source value to work with. Insert a NULL |
539 | | * constant as the source value. |
540 | | */ |
541 | 0 | colVar = (Node *) makeNullConst(attrtype, attrtypmod, |
542 | 0 | attrcollation); |
543 | 0 | } |
544 | 0 | else |
545 | 0 | { |
546 | | /* |
547 | | * Build a Var for the column to be updated. |
548 | | */ |
549 | 0 | Var *var; |
550 | |
|
551 | 0 | var = makeVar(pstate->p_target_nsitem->p_rtindex, attrno, |
552 | 0 | attrtype, attrtypmod, attrcollation, 0); |
553 | 0 | var->location = location; |
554 | |
|
555 | 0 | colVar = (Node *) var; |
556 | 0 | } |
557 | |
|
558 | 0 | expr = (Expr *) |
559 | 0 | transformAssignmentIndirection(pstate, |
560 | 0 | colVar, |
561 | 0 | colname, |
562 | 0 | false, |
563 | 0 | attrtype, |
564 | 0 | attrtypmod, |
565 | 0 | attrcollation, |
566 | 0 | indirection, |
567 | 0 | list_head(indirection), |
568 | 0 | (Node *) expr, |
569 | 0 | COERCION_ASSIGNMENT, |
570 | 0 | location); |
571 | 0 | } |
572 | 0 | else |
573 | 0 | { |
574 | | /* |
575 | | * For normal non-qualified target column, do type checking and |
576 | | * coercion. |
577 | | */ |
578 | 0 | Node *orig_expr = (Node *) expr; |
579 | |
|
580 | 0 | expr = (Expr *) |
581 | 0 | coerce_to_target_type(pstate, |
582 | 0 | orig_expr, type_id, |
583 | 0 | attrtype, attrtypmod, |
584 | 0 | COERCION_ASSIGNMENT, |
585 | 0 | COERCE_IMPLICIT_CAST, |
586 | 0 | -1); |
587 | 0 | if (expr == NULL) |
588 | 0 | ereport(ERROR, |
589 | 0 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
590 | 0 | errmsg("column \"%s\" is of type %s" |
591 | 0 | " but expression is of type %s", |
592 | 0 | colname, |
593 | 0 | format_type_be(attrtype), |
594 | 0 | format_type_be(type_id)), |
595 | 0 | errhint("You will need to rewrite or cast the expression."), |
596 | 0 | parser_errposition(pstate, exprLocation(orig_expr)))); |
597 | 0 | } |
598 | | |
599 | 0 | pstate->p_expr_kind = sv_expr_kind; |
600 | |
|
601 | 0 | return expr; |
602 | 0 | } |
603 | | |
604 | | |
605 | | /* |
606 | | * updateTargetListEntry() |
607 | | * This is used in UPDATE statements (and ON CONFLICT DO UPDATE) |
608 | | * only. It prepares an UPDATE TargetEntry for assignment to a |
609 | | * column of the target table. This includes coercing the given |
610 | | * value to the target column's type (if necessary), and dealing with |
611 | | * any subfield names or subscripts attached to the target column |
612 | | * itself. |
613 | | * |
614 | | * pstate parse state |
615 | | * tle target list entry to be modified |
616 | | * colname target column name (ie, name of attribute to be assigned to) |
617 | | * attrno target attribute number |
618 | | * indirection subscripts/field names for target column, if any |
619 | | * location error cursor position (should point at column name), or -1 |
620 | | */ |
621 | | void |
622 | | updateTargetListEntry(ParseState *pstate, |
623 | | TargetEntry *tle, |
624 | | char *colname, |
625 | | int attrno, |
626 | | List *indirection, |
627 | | int location) |
628 | 0 | { |
629 | | /* Fix up expression as needed */ |
630 | 0 | tle->expr = transformAssignedExpr(pstate, |
631 | 0 | tle->expr, |
632 | 0 | EXPR_KIND_UPDATE_TARGET, |
633 | 0 | colname, |
634 | 0 | attrno, |
635 | 0 | indirection, |
636 | 0 | location); |
637 | | |
638 | | /* |
639 | | * Set the resno to identify the target column --- the rewriter and |
640 | | * planner depend on this. We also set the resname to identify the target |
641 | | * column, but this is only for debugging purposes; it should not be |
642 | | * relied on. (In particular, it might be out of date in a stored rule.) |
643 | | */ |
644 | 0 | tle->resno = (AttrNumber) attrno; |
645 | 0 | tle->resname = colname; |
646 | 0 | } |
647 | | |
648 | | |
649 | | /* |
650 | | * Process indirection (field selection or subscripting) of the target |
651 | | * column in INSERT/UPDATE/assignment. This routine recurses for multiple |
652 | | * levels of indirection --- but note that several adjacent A_Indices nodes |
653 | | * in the indirection list are treated as a single multidimensional subscript |
654 | | * operation. |
655 | | * |
656 | | * In the initial call, basenode is a Var for the target column in UPDATE, |
657 | | * or a null Const of the target's type in INSERT, or a Param for the target |
658 | | * variable in PL/pgSQL assignment. In recursive calls, basenode is NULL, |
659 | | * indicating that a substitute node should be consed up if needed. |
660 | | * |
661 | | * targetName is the name of the field or subfield we're assigning to, and |
662 | | * targetIsSubscripting is true if we're subscripting it. These are just for |
663 | | * error reporting. |
664 | | * |
665 | | * targetTypeId, targetTypMod, targetCollation indicate the datatype and |
666 | | * collation of the object to be assigned to (initially the target column, |
667 | | * later some subobject). |
668 | | * |
669 | | * indirection is the list of indirection nodes, and indirection_cell is the |
670 | | * start of the sublist remaining to process. When it's NULL, we're done |
671 | | * recursing and can just coerce and return the RHS. |
672 | | * |
673 | | * rhs is the already-transformed value to be assigned; note it has not been |
674 | | * coerced to any particular type. |
675 | | * |
676 | | * ccontext is the coercion level to use while coercing the rhs. For |
677 | | * normal statements it'll be COERCION_ASSIGNMENT, but PL/pgSQL uses |
678 | | * a special value. |
679 | | * |
680 | | * location is the cursor error position for any errors. (Note: this points |
681 | | * to the head of the target clause, eg "foo" in "foo.bar[baz]". Later we |
682 | | * might want to decorate indirection cells with their own location info, |
683 | | * in which case the location argument could probably be dropped.) |
684 | | */ |
685 | | Node * |
686 | | transformAssignmentIndirection(ParseState *pstate, |
687 | | Node *basenode, |
688 | | const char *targetName, |
689 | | bool targetIsSubscripting, |
690 | | Oid targetTypeId, |
691 | | int32 targetTypMod, |
692 | | Oid targetCollation, |
693 | | List *indirection, |
694 | | ListCell *indirection_cell, |
695 | | Node *rhs, |
696 | | CoercionContext ccontext, |
697 | | int location) |
698 | 0 | { |
699 | 0 | Node *result; |
700 | 0 | List *subscripts = NIL; |
701 | 0 | ListCell *i; |
702 | |
|
703 | 0 | if (indirection_cell && !basenode) |
704 | 0 | { |
705 | | /* |
706 | | * Set up a substitution. We abuse CaseTestExpr for this. It's safe |
707 | | * to do so because the only nodes that will be above the CaseTestExpr |
708 | | * in the finished expression will be FieldStore and SubscriptingRef |
709 | | * nodes. (There could be other stuff in the tree, but it will be |
710 | | * within other child fields of those node types.) |
711 | | */ |
712 | 0 | CaseTestExpr *ctest = makeNode(CaseTestExpr); |
713 | |
|
714 | 0 | ctest->typeId = targetTypeId; |
715 | 0 | ctest->typeMod = targetTypMod; |
716 | 0 | ctest->collation = targetCollation; |
717 | 0 | basenode = (Node *) ctest; |
718 | 0 | } |
719 | | |
720 | | /* |
721 | | * We have to split any field-selection operations apart from |
722 | | * subscripting. Adjacent A_Indices nodes have to be treated as a single |
723 | | * multidimensional subscript operation. |
724 | | */ |
725 | 0 | for_each_cell(i, indirection, indirection_cell) |
726 | 0 | { |
727 | 0 | Node *n = lfirst(i); |
728 | |
|
729 | 0 | if (IsA(n, A_Indices)) |
730 | 0 | subscripts = lappend(subscripts, n); |
731 | 0 | else if (IsA(n, A_Star)) |
732 | 0 | { |
733 | 0 | ereport(ERROR, |
734 | 0 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
735 | 0 | errmsg("row expansion via \"*\" is not supported here"), |
736 | 0 | parser_errposition(pstate, location))); |
737 | 0 | } |
738 | 0 | else |
739 | 0 | { |
740 | 0 | FieldStore *fstore; |
741 | 0 | Oid baseTypeId; |
742 | 0 | int32 baseTypeMod; |
743 | 0 | Oid typrelid; |
744 | 0 | AttrNumber attnum; |
745 | 0 | Oid fieldTypeId; |
746 | 0 | int32 fieldTypMod; |
747 | 0 | Oid fieldCollation; |
748 | |
|
749 | 0 | Assert(IsA(n, String)); |
750 | | |
751 | | /* process subscripts before this field selection */ |
752 | 0 | if (subscripts) |
753 | 0 | { |
754 | | /* recurse, and then return because we're done */ |
755 | 0 | return transformAssignmentSubscripts(pstate, |
756 | 0 | basenode, |
757 | 0 | targetName, |
758 | 0 | targetTypeId, |
759 | 0 | targetTypMod, |
760 | 0 | targetCollation, |
761 | 0 | subscripts, |
762 | 0 | indirection, |
763 | 0 | i, |
764 | 0 | rhs, |
765 | 0 | ccontext, |
766 | 0 | location); |
767 | 0 | } |
768 | | |
769 | | /* No subscripts, so can process field selection here */ |
770 | | |
771 | | /* |
772 | | * Look up the composite type, accounting for possibility that |
773 | | * what we are given is a domain over composite. |
774 | | */ |
775 | 0 | baseTypeMod = targetTypMod; |
776 | 0 | baseTypeId = getBaseTypeAndTypmod(targetTypeId, &baseTypeMod); |
777 | |
|
778 | 0 | typrelid = typeidTypeRelid(baseTypeId); |
779 | 0 | if (!typrelid) |
780 | 0 | ereport(ERROR, |
781 | 0 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
782 | 0 | errmsg("cannot assign to field \"%s\" of column \"%s\" because its type %s is not a composite type", |
783 | 0 | strVal(n), targetName, |
784 | 0 | format_type_be(targetTypeId)), |
785 | 0 | parser_errposition(pstate, location))); |
786 | | |
787 | 0 | attnum = get_attnum(typrelid, strVal(n)); |
788 | 0 | if (attnum == InvalidAttrNumber) |
789 | 0 | ereport(ERROR, |
790 | 0 | (errcode(ERRCODE_UNDEFINED_COLUMN), |
791 | 0 | errmsg("cannot assign to field \"%s\" of column \"%s\" because there is no such column in data type %s", |
792 | 0 | strVal(n), targetName, |
793 | 0 | format_type_be(targetTypeId)), |
794 | 0 | parser_errposition(pstate, location))); |
795 | 0 | if (attnum < 0) |
796 | 0 | ereport(ERROR, |
797 | 0 | (errcode(ERRCODE_UNDEFINED_COLUMN), |
798 | 0 | errmsg("cannot assign to system column \"%s\"", |
799 | 0 | strVal(n)), |
800 | 0 | parser_errposition(pstate, location))); |
801 | | |
802 | 0 | get_atttypetypmodcoll(typrelid, attnum, |
803 | 0 | &fieldTypeId, &fieldTypMod, &fieldCollation); |
804 | | |
805 | | /* recurse to create appropriate RHS for field assign */ |
806 | 0 | rhs = transformAssignmentIndirection(pstate, |
807 | 0 | NULL, |
808 | 0 | strVal(n), |
809 | 0 | false, |
810 | 0 | fieldTypeId, |
811 | 0 | fieldTypMod, |
812 | 0 | fieldCollation, |
813 | 0 | indirection, |
814 | 0 | lnext(indirection, i), |
815 | 0 | rhs, |
816 | 0 | ccontext, |
817 | 0 | location); |
818 | | |
819 | | /* and build a FieldStore node */ |
820 | 0 | fstore = makeNode(FieldStore); |
821 | 0 | fstore->arg = (Expr *) basenode; |
822 | 0 | fstore->newvals = list_make1(rhs); |
823 | 0 | fstore->fieldnums = list_make1_int(attnum); |
824 | 0 | fstore->resulttype = baseTypeId; |
825 | | |
826 | | /* |
827 | | * If target is a domain, apply constraints. Notice that this |
828 | | * isn't totally right: the expression tree we build would check |
829 | | * the domain's constraints on a composite value with only this |
830 | | * one field populated or updated, possibly leading to an unwanted |
831 | | * failure. The rewriter will merge together any subfield |
832 | | * assignments to the same table column, resulting in the domain's |
833 | | * constraints being checked only once after we've assigned to all |
834 | | * the fields that the INSERT or UPDATE means to. |
835 | | */ |
836 | 0 | if (baseTypeId != targetTypeId) |
837 | 0 | return coerce_to_domain((Node *) fstore, |
838 | 0 | baseTypeId, baseTypeMod, |
839 | 0 | targetTypeId, |
840 | 0 | COERCION_IMPLICIT, |
841 | 0 | COERCE_IMPLICIT_CAST, |
842 | 0 | location, |
843 | 0 | false); |
844 | | |
845 | 0 | return (Node *) fstore; |
846 | 0 | } |
847 | 0 | } |
848 | | |
849 | | /* process trailing subscripts, if any */ |
850 | 0 | if (subscripts) |
851 | 0 | { |
852 | | /* recurse, and then return because we're done */ |
853 | 0 | return transformAssignmentSubscripts(pstate, |
854 | 0 | basenode, |
855 | 0 | targetName, |
856 | 0 | targetTypeId, |
857 | 0 | targetTypMod, |
858 | 0 | targetCollation, |
859 | 0 | subscripts, |
860 | 0 | indirection, |
861 | 0 | NULL, |
862 | 0 | rhs, |
863 | 0 | ccontext, |
864 | 0 | location); |
865 | 0 | } |
866 | | |
867 | | /* base case: just coerce RHS to match target type ID */ |
868 | | |
869 | 0 | result = coerce_to_target_type(pstate, |
870 | 0 | rhs, exprType(rhs), |
871 | 0 | targetTypeId, targetTypMod, |
872 | 0 | ccontext, |
873 | 0 | COERCE_IMPLICIT_CAST, |
874 | 0 | -1); |
875 | 0 | if (result == NULL) |
876 | 0 | { |
877 | 0 | if (targetIsSubscripting) |
878 | 0 | ereport(ERROR, |
879 | 0 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
880 | 0 | errmsg("subscripted assignment to \"%s\" requires type %s" |
881 | 0 | " but expression is of type %s", |
882 | 0 | targetName, |
883 | 0 | format_type_be(targetTypeId), |
884 | 0 | format_type_be(exprType(rhs))), |
885 | 0 | errhint("You will need to rewrite or cast the expression."), |
886 | 0 | parser_errposition(pstate, location))); |
887 | 0 | else |
888 | 0 | ereport(ERROR, |
889 | 0 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
890 | 0 | errmsg("subfield \"%s\" is of type %s" |
891 | 0 | " but expression is of type %s", |
892 | 0 | targetName, |
893 | 0 | format_type_be(targetTypeId), |
894 | 0 | format_type_be(exprType(rhs))), |
895 | 0 | errhint("You will need to rewrite or cast the expression."), |
896 | 0 | parser_errposition(pstate, location))); |
897 | 0 | } |
898 | | |
899 | 0 | return result; |
900 | 0 | } |
901 | | |
902 | | /* |
903 | | * helper for transformAssignmentIndirection: process container assignment |
904 | | */ |
905 | | static Node * |
906 | | transformAssignmentSubscripts(ParseState *pstate, |
907 | | Node *basenode, |
908 | | const char *targetName, |
909 | | Oid targetTypeId, |
910 | | int32 targetTypMod, |
911 | | Oid targetCollation, |
912 | | List *subscripts, |
913 | | List *indirection, |
914 | | ListCell *next_indirection, |
915 | | Node *rhs, |
916 | | CoercionContext ccontext, |
917 | | int location) |
918 | 0 | { |
919 | 0 | Node *result; |
920 | 0 | SubscriptingRef *sbsref; |
921 | 0 | Oid containerType; |
922 | 0 | int32 containerTypMod; |
923 | 0 | Oid typeNeeded; |
924 | 0 | int32 typmodNeeded; |
925 | 0 | Oid collationNeeded; |
926 | |
|
927 | 0 | Assert(subscripts != NIL); |
928 | | |
929 | | /* Identify the actual container type involved */ |
930 | 0 | containerType = targetTypeId; |
931 | 0 | containerTypMod = targetTypMod; |
932 | 0 | transformContainerType(&containerType, &containerTypMod); |
933 | | |
934 | | /* Process subscripts and identify required type for RHS */ |
935 | 0 | sbsref = transformContainerSubscripts(pstate, |
936 | 0 | basenode, |
937 | 0 | containerType, |
938 | 0 | containerTypMod, |
939 | 0 | subscripts, |
940 | 0 | true); |
941 | |
|
942 | 0 | typeNeeded = sbsref->refrestype; |
943 | 0 | typmodNeeded = sbsref->reftypmod; |
944 | | |
945 | | /* |
946 | | * Container normally has same collation as its elements, but there's an |
947 | | * exception: we might be subscripting a domain over a container type. In |
948 | | * that case use collation of the base type. (This is shaky for arbitrary |
949 | | * subscripting semantics, but it doesn't matter all that much since we |
950 | | * only use this to label the collation of a possible CaseTestExpr.) |
951 | | */ |
952 | 0 | if (containerType == targetTypeId) |
953 | 0 | collationNeeded = targetCollation; |
954 | 0 | else |
955 | 0 | collationNeeded = get_typcollation(containerType); |
956 | | |
957 | | /* recurse to create appropriate RHS for container assign */ |
958 | 0 | rhs = transformAssignmentIndirection(pstate, |
959 | 0 | NULL, |
960 | 0 | targetName, |
961 | 0 | true, |
962 | 0 | typeNeeded, |
963 | 0 | typmodNeeded, |
964 | 0 | collationNeeded, |
965 | 0 | indirection, |
966 | 0 | next_indirection, |
967 | 0 | rhs, |
968 | 0 | ccontext, |
969 | 0 | location); |
970 | | |
971 | | /* |
972 | | * Insert the already-properly-coerced RHS into the SubscriptingRef. Then |
973 | | * set refrestype and reftypmod back to the container type's values. |
974 | | */ |
975 | 0 | sbsref->refassgnexpr = (Expr *) rhs; |
976 | 0 | sbsref->refrestype = containerType; |
977 | 0 | sbsref->reftypmod = containerTypMod; |
978 | |
|
979 | 0 | result = (Node *) sbsref; |
980 | | |
981 | | /* |
982 | | * If target was a domain over container, need to coerce up to the domain. |
983 | | * As in transformAssignmentIndirection, this coercion is premature if the |
984 | | * query assigns to multiple elements of the container; but we'll fix that |
985 | | * during query rewrite. |
986 | | */ |
987 | 0 | if (containerType != targetTypeId) |
988 | 0 | { |
989 | 0 | Oid resulttype = exprType(result); |
990 | |
|
991 | 0 | result = coerce_to_target_type(pstate, |
992 | 0 | result, resulttype, |
993 | 0 | targetTypeId, targetTypMod, |
994 | 0 | ccontext, |
995 | 0 | COERCE_IMPLICIT_CAST, |
996 | 0 | -1); |
997 | | /* can fail if we had int2vector/oidvector, but not for true domains */ |
998 | 0 | if (result == NULL) |
999 | 0 | ereport(ERROR, |
1000 | 0 | (errcode(ERRCODE_CANNOT_COERCE), |
1001 | 0 | errmsg("cannot cast type %s to %s", |
1002 | 0 | format_type_be(resulttype), |
1003 | 0 | format_type_be(targetTypeId)), |
1004 | 0 | parser_errposition(pstate, location))); |
1005 | 0 | } |
1006 | | |
1007 | 0 | return result; |
1008 | 0 | } |
1009 | | |
1010 | | |
1011 | | /* |
1012 | | * checkInsertTargets - |
1013 | | * generate a list of INSERT column targets if not supplied, or |
1014 | | * test supplied column names to make sure they are in target table. |
1015 | | * Also return an integer list of the columns' attribute numbers. |
1016 | | */ |
1017 | | List * |
1018 | | checkInsertTargets(ParseState *pstate, List *cols, List **attrnos) |
1019 | 0 | { |
1020 | 0 | *attrnos = NIL; |
1021 | |
|
1022 | 0 | if (cols == NIL) |
1023 | 0 | { |
1024 | | /* |
1025 | | * Generate default column list for INSERT. |
1026 | | */ |
1027 | 0 | int numcol = RelationGetNumberOfAttributes(pstate->p_target_relation); |
1028 | |
|
1029 | 0 | int i; |
1030 | |
|
1031 | 0 | for (i = 0; i < numcol; i++) |
1032 | 0 | { |
1033 | 0 | ResTarget *col; |
1034 | 0 | Form_pg_attribute attr; |
1035 | |
|
1036 | 0 | attr = TupleDescAttr(pstate->p_target_relation->rd_att, i); |
1037 | |
|
1038 | 0 | if (attr->attisdropped) |
1039 | 0 | continue; |
1040 | | |
1041 | 0 | col = makeNode(ResTarget); |
1042 | 0 | col->name = pstrdup(NameStr(attr->attname)); |
1043 | 0 | col->indirection = NIL; |
1044 | 0 | col->val = NULL; |
1045 | 0 | col->location = -1; |
1046 | 0 | cols = lappend(cols, col); |
1047 | 0 | *attrnos = lappend_int(*attrnos, i + 1); |
1048 | 0 | } |
1049 | 0 | } |
1050 | 0 | else |
1051 | 0 | { |
1052 | | /* |
1053 | | * Do initial validation of user-supplied INSERT column list. |
1054 | | */ |
1055 | 0 | Bitmapset *wholecols = NULL; |
1056 | 0 | Bitmapset *partialcols = NULL; |
1057 | 0 | ListCell *tl; |
1058 | |
|
1059 | 0 | foreach(tl, cols) |
1060 | 0 | { |
1061 | 0 | ResTarget *col = (ResTarget *) lfirst(tl); |
1062 | 0 | char *name = col->name; |
1063 | 0 | int attrno; |
1064 | | |
1065 | | /* Lookup column name, ereport on failure */ |
1066 | 0 | attrno = attnameAttNum(pstate->p_target_relation, name, false); |
1067 | 0 | if (attrno == InvalidAttrNumber) |
1068 | 0 | ereport(ERROR, |
1069 | 0 | (errcode(ERRCODE_UNDEFINED_COLUMN), |
1070 | 0 | errmsg("column \"%s\" of relation \"%s\" does not exist", |
1071 | 0 | name, |
1072 | 0 | RelationGetRelationName(pstate->p_target_relation)), |
1073 | 0 | parser_errposition(pstate, col->location))); |
1074 | | |
1075 | | /* |
1076 | | * Check for duplicates, but only of whole columns --- we allow |
1077 | | * INSERT INTO foo (col.subcol1, col.subcol2) |
1078 | | */ |
1079 | 0 | if (col->indirection == NIL) |
1080 | 0 | { |
1081 | | /* whole column; must not have any other assignment */ |
1082 | 0 | if (bms_is_member(attrno, wholecols) || |
1083 | 0 | bms_is_member(attrno, partialcols)) |
1084 | 0 | ereport(ERROR, |
1085 | 0 | (errcode(ERRCODE_DUPLICATE_COLUMN), |
1086 | 0 | errmsg("column \"%s\" specified more than once", |
1087 | 0 | name), |
1088 | 0 | parser_errposition(pstate, col->location))); |
1089 | 0 | wholecols = bms_add_member(wholecols, attrno); |
1090 | 0 | } |
1091 | 0 | else |
1092 | 0 | { |
1093 | | /* partial column; must not have any whole assignment */ |
1094 | 0 | if (bms_is_member(attrno, wholecols)) |
1095 | 0 | ereport(ERROR, |
1096 | 0 | (errcode(ERRCODE_DUPLICATE_COLUMN), |
1097 | 0 | errmsg("column \"%s\" specified more than once", |
1098 | 0 | name), |
1099 | 0 | parser_errposition(pstate, col->location))); |
1100 | 0 | partialcols = bms_add_member(partialcols, attrno); |
1101 | 0 | } |
1102 | | |
1103 | 0 | *attrnos = lappend_int(*attrnos, attrno); |
1104 | 0 | } |
1105 | 0 | } |
1106 | | |
1107 | 0 | return cols; |
1108 | 0 | } |
1109 | | |
1110 | | /* |
1111 | | * ExpandColumnRefStar() |
1112 | | * Transforms foo.* into a list of expressions or targetlist entries. |
1113 | | * |
1114 | | * This handles the case where '*' appears as the last or only item in a |
1115 | | * ColumnRef. The code is shared between the case of foo.* at the top level |
1116 | | * in a SELECT target list (where we want TargetEntry nodes in the result) |
1117 | | * and foo.* in a ROW() or VALUES() construct (where we want just bare |
1118 | | * expressions). |
1119 | | * |
1120 | | * The referenced columns are marked as requiring SELECT access. |
1121 | | */ |
1122 | | static List * |
1123 | | ExpandColumnRefStar(ParseState *pstate, ColumnRef *cref, |
1124 | | bool make_target_entry) |
1125 | 0 | { |
1126 | 0 | List *fields = cref->fields; |
1127 | 0 | int numnames = list_length(fields); |
1128 | |
|
1129 | 0 | if (numnames == 1) |
1130 | 0 | { |
1131 | | /* |
1132 | | * Target item is a bare '*', expand all tables |
1133 | | * |
1134 | | * (e.g., SELECT * FROM emp, dept) |
1135 | | * |
1136 | | * Since the grammar only accepts bare '*' at top level of SELECT, we |
1137 | | * need not handle the make_target_entry==false case here. |
1138 | | */ |
1139 | 0 | Assert(make_target_entry); |
1140 | 0 | return ExpandAllTables(pstate, cref->location); |
1141 | 0 | } |
1142 | 0 | else |
1143 | 0 | { |
1144 | | /* |
1145 | | * Target item is relation.*, expand that table |
1146 | | * |
1147 | | * (e.g., SELECT emp.*, dname FROM emp, dept) |
1148 | | * |
1149 | | * Note: this code is a lot like transformColumnRef; it's tempting to |
1150 | | * call that instead and then replace the resulting whole-row Var with |
1151 | | * a list of Vars. However, that would leave us with the relation's |
1152 | | * selectedCols bitmap showing the whole row as needing select |
1153 | | * permission, as well as the individual columns. That would be |
1154 | | * incorrect (since columns added later shouldn't need select |
1155 | | * permissions). We could try to remove the whole-row permission bit |
1156 | | * after the fact, but duplicating code is less messy. |
1157 | | */ |
1158 | 0 | char *nspname = NULL; |
1159 | 0 | char *relname = NULL; |
1160 | 0 | ParseNamespaceItem *nsitem = NULL; |
1161 | 0 | int levels_up; |
1162 | 0 | enum |
1163 | 0 | { |
1164 | 0 | CRSERR_NO_RTE, |
1165 | 0 | CRSERR_WRONG_DB, |
1166 | 0 | CRSERR_TOO_MANY |
1167 | 0 | } crserr = CRSERR_NO_RTE; |
1168 | | |
1169 | | /* |
1170 | | * Give the PreParseColumnRefHook, if any, first shot. If it returns |
1171 | | * non-null then we should use that expression. |
1172 | | */ |
1173 | 0 | if (pstate->p_pre_columnref_hook != NULL) |
1174 | 0 | { |
1175 | 0 | Node *node; |
1176 | |
|
1177 | 0 | node = pstate->p_pre_columnref_hook(pstate, cref); |
1178 | 0 | if (node != NULL) |
1179 | 0 | return ExpandRowReference(pstate, node, make_target_entry); |
1180 | 0 | } |
1181 | | |
1182 | 0 | switch (numnames) |
1183 | 0 | { |
1184 | 0 | case 2: |
1185 | 0 | relname = strVal(linitial(fields)); |
1186 | 0 | nsitem = refnameNamespaceItem(pstate, nspname, relname, |
1187 | 0 | cref->location, |
1188 | 0 | &levels_up); |
1189 | 0 | break; |
1190 | 0 | case 3: |
1191 | 0 | nspname = strVal(linitial(fields)); |
1192 | 0 | relname = strVal(lsecond(fields)); |
1193 | 0 | nsitem = refnameNamespaceItem(pstate, nspname, relname, |
1194 | 0 | cref->location, |
1195 | 0 | &levels_up); |
1196 | 0 | break; |
1197 | 0 | case 4: |
1198 | 0 | { |
1199 | 0 | char *catname = strVal(linitial(fields)); |
1200 | | |
1201 | | /* |
1202 | | * We check the catalog name and then ignore it. |
1203 | | */ |
1204 | 0 | if (strcmp(catname, get_database_name(MyDatabaseId)) != 0) |
1205 | 0 | { |
1206 | 0 | crserr = CRSERR_WRONG_DB; |
1207 | 0 | break; |
1208 | 0 | } |
1209 | 0 | nspname = strVal(lsecond(fields)); |
1210 | 0 | relname = strVal(lthird(fields)); |
1211 | 0 | nsitem = refnameNamespaceItem(pstate, nspname, relname, |
1212 | 0 | cref->location, |
1213 | 0 | &levels_up); |
1214 | 0 | break; |
1215 | 0 | } |
1216 | 0 | default: |
1217 | 0 | crserr = CRSERR_TOO_MANY; |
1218 | 0 | break; |
1219 | 0 | } |
1220 | | |
1221 | | /* |
1222 | | * Now give the PostParseColumnRefHook, if any, a chance. We cheat a |
1223 | | * bit by passing the RangeTblEntry, not a Var, as the planned |
1224 | | * translation. (A single Var wouldn't be strictly correct anyway. |
1225 | | * This convention allows hooks that really care to know what is |
1226 | | * happening. It might be better to pass the nsitem, but we'd have to |
1227 | | * promote that struct to a full-fledged Node type so that callees |
1228 | | * could identify its type.) |
1229 | | */ |
1230 | 0 | if (pstate->p_post_columnref_hook != NULL) |
1231 | 0 | { |
1232 | 0 | Node *node; |
1233 | |
|
1234 | 0 | node = pstate->p_post_columnref_hook(pstate, cref, |
1235 | 0 | (Node *) (nsitem ? nsitem->p_rte : NULL)); |
1236 | 0 | if (node != NULL) |
1237 | 0 | { |
1238 | 0 | if (nsitem != NULL) |
1239 | 0 | ereport(ERROR, |
1240 | 0 | (errcode(ERRCODE_AMBIGUOUS_COLUMN), |
1241 | 0 | errmsg("column reference \"%s\" is ambiguous", |
1242 | 0 | NameListToString(cref->fields)), |
1243 | 0 | parser_errposition(pstate, cref->location))); |
1244 | 0 | return ExpandRowReference(pstate, node, make_target_entry); |
1245 | 0 | } |
1246 | 0 | } |
1247 | | |
1248 | | /* |
1249 | | * Throw error if no translation found. |
1250 | | */ |
1251 | 0 | if (nsitem == NULL) |
1252 | 0 | { |
1253 | 0 | switch (crserr) |
1254 | 0 | { |
1255 | 0 | case CRSERR_NO_RTE: |
1256 | 0 | errorMissingRTE(pstate, makeRangeVar(nspname, relname, |
1257 | 0 | cref->location)); |
1258 | 0 | break; |
1259 | 0 | case CRSERR_WRONG_DB: |
1260 | 0 | ereport(ERROR, |
1261 | 0 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
1262 | 0 | errmsg("cross-database references are not implemented: %s", |
1263 | 0 | NameListToString(cref->fields)), |
1264 | 0 | parser_errposition(pstate, cref->location))); |
1265 | 0 | break; |
1266 | 0 | case CRSERR_TOO_MANY: |
1267 | 0 | ereport(ERROR, |
1268 | 0 | (errcode(ERRCODE_SYNTAX_ERROR), |
1269 | 0 | errmsg("improper qualified name (too many dotted names): %s", |
1270 | 0 | NameListToString(cref->fields)), |
1271 | 0 | parser_errposition(pstate, cref->location))); |
1272 | 0 | break; |
1273 | 0 | } |
1274 | 0 | } |
1275 | | |
1276 | | /* |
1277 | | * OK, expand the nsitem into fields. |
1278 | | */ |
1279 | 0 | return ExpandSingleTable(pstate, nsitem, levels_up, cref->location, |
1280 | 0 | make_target_entry); |
1281 | 0 | } |
1282 | 0 | } |
1283 | | |
1284 | | /* |
1285 | | * ExpandAllTables() |
1286 | | * Transforms '*' (in the target list) into a list of targetlist entries. |
1287 | | * |
1288 | | * tlist entries are generated for each relation visible for unqualified |
1289 | | * column name access. We do not consider qualified-name-only entries because |
1290 | | * that would include input tables of aliasless JOINs, NEW/OLD pseudo-entries, |
1291 | | * etc. |
1292 | | * |
1293 | | * The referenced relations/columns are marked as requiring SELECT access. |
1294 | | */ |
1295 | | static List * |
1296 | | ExpandAllTables(ParseState *pstate, int location) |
1297 | 0 | { |
1298 | 0 | List *target = NIL; |
1299 | 0 | bool found_table = false; |
1300 | 0 | ListCell *l; |
1301 | |
|
1302 | 0 | foreach(l, pstate->p_namespace) |
1303 | 0 | { |
1304 | 0 | ParseNamespaceItem *nsitem = (ParseNamespaceItem *) lfirst(l); |
1305 | | |
1306 | | /* Ignore table-only items */ |
1307 | 0 | if (!nsitem->p_cols_visible) |
1308 | 0 | continue; |
1309 | | /* Should not have any lateral-only items when parsing targetlist */ |
1310 | 0 | Assert(!nsitem->p_lateral_only); |
1311 | | /* Remember we found a p_cols_visible item */ |
1312 | 0 | found_table = true; |
1313 | |
|
1314 | 0 | target = list_concat(target, |
1315 | 0 | expandNSItemAttrs(pstate, |
1316 | 0 | nsitem, |
1317 | 0 | 0, |
1318 | 0 | true, |
1319 | 0 | location)); |
1320 | 0 | } |
1321 | | |
1322 | | /* |
1323 | | * Check for "SELECT *;". We do it this way, rather than checking for |
1324 | | * target == NIL, because we want to allow SELECT * FROM a zero_column |
1325 | | * table. |
1326 | | */ |
1327 | 0 | if (!found_table) |
1328 | 0 | ereport(ERROR, |
1329 | 0 | (errcode(ERRCODE_SYNTAX_ERROR), |
1330 | 0 | errmsg("SELECT * with no tables specified is not valid"), |
1331 | 0 | parser_errposition(pstate, location))); |
1332 | | |
1333 | 0 | return target; |
1334 | 0 | } |
1335 | | |
1336 | | /* |
1337 | | * ExpandIndirectionStar() |
1338 | | * Transforms foo.* into a list of expressions or targetlist entries. |
1339 | | * |
1340 | | * This handles the case where '*' appears as the last item in A_Indirection. |
1341 | | * The code is shared between the case of foo.* at the top level in a SELECT |
1342 | | * target list (where we want TargetEntry nodes in the result) and foo.* in |
1343 | | * a ROW() or VALUES() construct (where we want just bare expressions). |
1344 | | * For robustness, we use a separate "make_target_entry" flag to control |
1345 | | * this rather than relying on exprKind. |
1346 | | */ |
1347 | | static List * |
1348 | | ExpandIndirectionStar(ParseState *pstate, A_Indirection *ind, |
1349 | | bool make_target_entry, ParseExprKind exprKind) |
1350 | 0 | { |
1351 | 0 | Node *expr; |
1352 | | |
1353 | | /* Strip off the '*' to create a reference to the rowtype object */ |
1354 | 0 | ind = copyObject(ind); |
1355 | 0 | ind->indirection = list_truncate(ind->indirection, |
1356 | 0 | list_length(ind->indirection) - 1); |
1357 | | |
1358 | | /* And transform that */ |
1359 | 0 | expr = transformExpr(pstate, (Node *) ind, exprKind); |
1360 | | |
1361 | | /* Expand the rowtype expression into individual fields */ |
1362 | 0 | return ExpandRowReference(pstate, expr, make_target_entry); |
1363 | 0 | } |
1364 | | |
1365 | | /* |
1366 | | * ExpandSingleTable() |
1367 | | * Transforms foo.* into a list of expressions or targetlist entries. |
1368 | | * |
1369 | | * This handles the case where foo has been determined to be a simple |
1370 | | * reference to an RTE, so we can just generate Vars for the expressions. |
1371 | | * |
1372 | | * The referenced columns are marked as requiring SELECT access. |
1373 | | */ |
1374 | | static List * |
1375 | | ExpandSingleTable(ParseState *pstate, ParseNamespaceItem *nsitem, |
1376 | | int sublevels_up, int location, bool make_target_entry) |
1377 | 0 | { |
1378 | 0 | if (make_target_entry) |
1379 | 0 | { |
1380 | | /* expandNSItemAttrs handles permissions marking */ |
1381 | 0 | return expandNSItemAttrs(pstate, nsitem, sublevels_up, true, location); |
1382 | 0 | } |
1383 | 0 | else |
1384 | 0 | { |
1385 | 0 | RangeTblEntry *rte = nsitem->p_rte; |
1386 | 0 | RTEPermissionInfo *perminfo = nsitem->p_perminfo; |
1387 | 0 | List *vars; |
1388 | 0 | ListCell *l; |
1389 | |
|
1390 | 0 | vars = expandNSItemVars(pstate, nsitem, sublevels_up, location, NULL); |
1391 | | |
1392 | | /* |
1393 | | * Require read access to the table. This is normally redundant with |
1394 | | * the markVarForSelectPriv calls below, but not if the table has zero |
1395 | | * columns. We need not do anything if the nsitem is for a join: its |
1396 | | * component tables will have been marked ACL_SELECT when they were |
1397 | | * added to the rangetable. (This step changes things only for the |
1398 | | * target relation of UPDATE/DELETE, which cannot be under a join.) |
1399 | | */ |
1400 | 0 | if (rte->rtekind == RTE_RELATION) |
1401 | 0 | { |
1402 | 0 | Assert(perminfo != NULL); |
1403 | 0 | perminfo->requiredPerms |= ACL_SELECT; |
1404 | 0 | } |
1405 | | |
1406 | | /* Require read access to each column */ |
1407 | 0 | foreach(l, vars) |
1408 | 0 | { |
1409 | 0 | Var *var = (Var *) lfirst(l); |
1410 | |
|
1411 | 0 | markVarForSelectPriv(pstate, var); |
1412 | 0 | } |
1413 | |
|
1414 | 0 | return vars; |
1415 | 0 | } |
1416 | 0 | } |
1417 | | |
1418 | | /* |
1419 | | * ExpandRowReference() |
1420 | | * Transforms foo.* into a list of expressions or targetlist entries. |
1421 | | * |
1422 | | * This handles the case where foo is an arbitrary expression of composite |
1423 | | * type. |
1424 | | */ |
1425 | | static List * |
1426 | | ExpandRowReference(ParseState *pstate, Node *expr, |
1427 | | bool make_target_entry) |
1428 | 0 | { |
1429 | 0 | List *result = NIL; |
1430 | 0 | TupleDesc tupleDesc; |
1431 | 0 | int numAttrs; |
1432 | 0 | int i; |
1433 | | |
1434 | | /* |
1435 | | * If the rowtype expression is a whole-row Var, we can expand the fields |
1436 | | * as simple Vars. Note: if the RTE is a relation, this case leaves us |
1437 | | * with its RTEPermissionInfo's selectedCols bitmap showing the whole row |
1438 | | * as needing select permission, as well as the individual columns. |
1439 | | * However, we can only get here for weird notations like (table.*).*, so |
1440 | | * it's not worth trying to clean up --- arguably, the permissions marking |
1441 | | * is correct anyway for such cases. |
1442 | | */ |
1443 | 0 | if (IsA(expr, Var) && |
1444 | 0 | ((Var *) expr)->varattno == InvalidAttrNumber) |
1445 | 0 | { |
1446 | 0 | Var *var = (Var *) expr; |
1447 | 0 | ParseNamespaceItem *nsitem; |
1448 | |
|
1449 | 0 | nsitem = GetNSItemByRangeTablePosn(pstate, var->varno, var->varlevelsup); |
1450 | 0 | return ExpandSingleTable(pstate, nsitem, var->varlevelsup, var->location, make_target_entry); |
1451 | 0 | } |
1452 | | |
1453 | | /* |
1454 | | * Otherwise we have to do it the hard way. Our current implementation is |
1455 | | * to generate multiple copies of the expression and do FieldSelects. |
1456 | | * (This can be pretty inefficient if the expression involves nontrivial |
1457 | | * computation :-(.) |
1458 | | * |
1459 | | * Verify it's a composite type, and get the tupdesc. |
1460 | | * get_expr_result_tupdesc() handles this conveniently. |
1461 | | * |
1462 | | * If it's a Var of type RECORD, we have to work even harder: we have to |
1463 | | * find what the Var refers to, and pass that to get_expr_result_tupdesc. |
1464 | | * That task is handled by expandRecordVariable(). |
1465 | | */ |
1466 | 0 | if (IsA(expr, Var) && |
1467 | 0 | ((Var *) expr)->vartype == RECORDOID) |
1468 | 0 | tupleDesc = expandRecordVariable(pstate, (Var *) expr, 0); |
1469 | 0 | else |
1470 | 0 | tupleDesc = get_expr_result_tupdesc(expr, false); |
1471 | 0 | Assert(tupleDesc); |
1472 | | |
1473 | | /* Generate a list of references to the individual fields */ |
1474 | 0 | numAttrs = tupleDesc->natts; |
1475 | 0 | for (i = 0; i < numAttrs; i++) |
1476 | 0 | { |
1477 | 0 | Form_pg_attribute att = TupleDescAttr(tupleDesc, i); |
1478 | 0 | FieldSelect *fselect; |
1479 | |
|
1480 | 0 | if (att->attisdropped) |
1481 | 0 | continue; |
1482 | | |
1483 | 0 | fselect = makeNode(FieldSelect); |
1484 | 0 | fselect->arg = (Expr *) copyObject(expr); |
1485 | 0 | fselect->fieldnum = i + 1; |
1486 | 0 | fselect->resulttype = att->atttypid; |
1487 | 0 | fselect->resulttypmod = att->atttypmod; |
1488 | | /* save attribute's collation for parse_collate.c */ |
1489 | 0 | fselect->resultcollid = att->attcollation; |
1490 | |
|
1491 | 0 | if (make_target_entry) |
1492 | 0 | { |
1493 | | /* add TargetEntry decoration */ |
1494 | 0 | TargetEntry *te; |
1495 | |
|
1496 | 0 | te = makeTargetEntry((Expr *) fselect, |
1497 | 0 | (AttrNumber) pstate->p_next_resno++, |
1498 | 0 | pstrdup(NameStr(att->attname)), |
1499 | 0 | false); |
1500 | 0 | result = lappend(result, te); |
1501 | 0 | } |
1502 | 0 | else |
1503 | 0 | result = lappend(result, fselect); |
1504 | 0 | } |
1505 | |
|
1506 | 0 | return result; |
1507 | 0 | } |
1508 | | |
1509 | | /* |
1510 | | * expandRecordVariable |
1511 | | * Get the tuple descriptor for a Var of type RECORD, if possible. |
1512 | | * |
1513 | | * Since no actual table or view column is allowed to have type RECORD, such |
1514 | | * a Var must refer to a JOIN or FUNCTION RTE or to a subquery output. We |
1515 | | * drill down to find the ultimate defining expression and attempt to infer |
1516 | | * the tupdesc from it. We ereport if we can't determine the tupdesc. |
1517 | | * |
1518 | | * levelsup is an extra offset to interpret the Var's varlevelsup correctly |
1519 | | * when recursing. Outside callers should pass zero. |
1520 | | */ |
1521 | | TupleDesc |
1522 | | expandRecordVariable(ParseState *pstate, Var *var, int levelsup) |
1523 | 0 | { |
1524 | 0 | TupleDesc tupleDesc; |
1525 | 0 | int netlevelsup; |
1526 | 0 | RangeTblEntry *rte; |
1527 | 0 | AttrNumber attnum; |
1528 | 0 | Node *expr; |
1529 | | |
1530 | | /* Check my caller didn't mess up */ |
1531 | 0 | Assert(IsA(var, Var)); |
1532 | 0 | Assert(var->vartype == RECORDOID); |
1533 | | |
1534 | | /* |
1535 | | * Note: it's tempting to use GetNSItemByRangeTablePosn here so that we |
1536 | | * can use expandNSItemVars instead of expandRTE; but that does not work |
1537 | | * for some of the recursion cases below, where we have consed up a |
1538 | | * ParseState that lacks p_namespace data. |
1539 | | */ |
1540 | 0 | netlevelsup = var->varlevelsup + levelsup; |
1541 | 0 | rte = GetRTEByRangeTablePosn(pstate, var->varno, netlevelsup); |
1542 | 0 | attnum = var->varattno; |
1543 | |
|
1544 | 0 | if (attnum == InvalidAttrNumber) |
1545 | 0 | { |
1546 | | /* Whole-row reference to an RTE, so expand the known fields */ |
1547 | 0 | List *names, |
1548 | 0 | *vars; |
1549 | 0 | ListCell *lname, |
1550 | 0 | *lvar; |
1551 | 0 | int i; |
1552 | |
|
1553 | 0 | expandRTE(rte, var->varno, 0, var->varreturningtype, |
1554 | 0 | var->location, false, &names, &vars); |
1555 | |
|
1556 | 0 | tupleDesc = CreateTemplateTupleDesc(list_length(vars)); |
1557 | 0 | i = 1; |
1558 | 0 | forboth(lname, names, lvar, vars) |
1559 | 0 | { |
1560 | 0 | char *label = strVal(lfirst(lname)); |
1561 | 0 | Node *varnode = (Node *) lfirst(lvar); |
1562 | |
|
1563 | 0 | TupleDescInitEntry(tupleDesc, i, |
1564 | 0 | label, |
1565 | 0 | exprType(varnode), |
1566 | 0 | exprTypmod(varnode), |
1567 | 0 | 0); |
1568 | 0 | TupleDescInitEntryCollation(tupleDesc, i, |
1569 | 0 | exprCollation(varnode)); |
1570 | 0 | i++; |
1571 | 0 | } |
1572 | 0 | Assert(lname == NULL && lvar == NULL); /* lists same length? */ |
1573 | |
|
1574 | 0 | return tupleDesc; |
1575 | 0 | } |
1576 | | |
1577 | 0 | expr = (Node *) var; /* default if we can't drill down */ |
1578 | |
|
1579 | 0 | switch (rte->rtekind) |
1580 | 0 | { |
1581 | 0 | case RTE_RELATION: |
1582 | 0 | case RTE_VALUES: |
1583 | 0 | case RTE_NAMEDTUPLESTORE: |
1584 | 0 | case RTE_RESULT: |
1585 | | |
1586 | | /* |
1587 | | * This case should not occur: a column of a table, values list, |
1588 | | * or ENR shouldn't have type RECORD. Fall through and fail (most |
1589 | | * likely) at the bottom. |
1590 | | */ |
1591 | 0 | break; |
1592 | 0 | case RTE_SUBQUERY: |
1593 | 0 | { |
1594 | | /* Subselect-in-FROM: examine sub-select's output expr */ |
1595 | 0 | TargetEntry *ste = get_tle_by_resno(rte->subquery->targetList, |
1596 | 0 | attnum); |
1597 | |
|
1598 | 0 | if (ste == NULL || ste->resjunk) |
1599 | 0 | elog(ERROR, "subquery %s does not have attribute %d", |
1600 | 0 | rte->eref->aliasname, attnum); |
1601 | 0 | expr = (Node *) ste->expr; |
1602 | 0 | if (IsA(expr, Var)) |
1603 | 0 | { |
1604 | | /* |
1605 | | * Recurse into the sub-select to see what its Var refers |
1606 | | * to. We have to build an additional level of ParseState |
1607 | | * to keep in step with varlevelsup in the subselect; |
1608 | | * furthermore, the subquery RTE might be from an outer |
1609 | | * query level, in which case the ParseState for the |
1610 | | * subselect must have that outer level as parent. |
1611 | | */ |
1612 | 0 | ParseState mypstate = {0}; |
1613 | 0 | Index levelsup; |
1614 | | |
1615 | | /* this loop must work, since GetRTEByRangeTablePosn did */ |
1616 | 0 | for (levelsup = 0; levelsup < netlevelsup; levelsup++) |
1617 | 0 | pstate = pstate->parentParseState; |
1618 | 0 | mypstate.parentParseState = pstate; |
1619 | 0 | mypstate.p_rtable = rte->subquery->rtable; |
1620 | | /* don't bother filling the rest of the fake pstate */ |
1621 | |
|
1622 | 0 | return expandRecordVariable(&mypstate, (Var *) expr, 0); |
1623 | 0 | } |
1624 | | /* else fall through to inspect the expression */ |
1625 | 0 | } |
1626 | 0 | break; |
1627 | 0 | case RTE_JOIN: |
1628 | | /* Join RTE --- recursively inspect the alias variable */ |
1629 | 0 | Assert(attnum > 0 && attnum <= list_length(rte->joinaliasvars)); |
1630 | 0 | expr = (Node *) list_nth(rte->joinaliasvars, attnum - 1); |
1631 | 0 | Assert(expr != NULL); |
1632 | | /* We intentionally don't strip implicit coercions here */ |
1633 | 0 | if (IsA(expr, Var)) |
1634 | 0 | return expandRecordVariable(pstate, (Var *) expr, netlevelsup); |
1635 | | /* else fall through to inspect the expression */ |
1636 | 0 | break; |
1637 | 0 | case RTE_FUNCTION: |
1638 | | |
1639 | | /* |
1640 | | * We couldn't get here unless a function is declared with one of |
1641 | | * its result columns as RECORD, which is not allowed. |
1642 | | */ |
1643 | 0 | break; |
1644 | 0 | case RTE_TABLEFUNC: |
1645 | | |
1646 | | /* |
1647 | | * Table function cannot have columns with RECORD type. |
1648 | | */ |
1649 | 0 | break; |
1650 | 0 | case RTE_CTE: |
1651 | | /* CTE reference: examine subquery's output expr */ |
1652 | 0 | if (!rte->self_reference) |
1653 | 0 | { |
1654 | 0 | CommonTableExpr *cte = GetCTEForRTE(pstate, rte, netlevelsup); |
1655 | 0 | TargetEntry *ste; |
1656 | |
|
1657 | 0 | ste = get_tle_by_resno(GetCTETargetList(cte), attnum); |
1658 | 0 | if (ste == NULL || ste->resjunk) |
1659 | 0 | elog(ERROR, "CTE %s does not have attribute %d", |
1660 | 0 | rte->eref->aliasname, attnum); |
1661 | 0 | expr = (Node *) ste->expr; |
1662 | 0 | if (IsA(expr, Var)) |
1663 | 0 | { |
1664 | | /* |
1665 | | * Recurse into the CTE to see what its Var refers to. We |
1666 | | * have to build an additional level of ParseState to keep |
1667 | | * in step with varlevelsup in the CTE; furthermore it |
1668 | | * could be an outer CTE (compare SUBQUERY case above). |
1669 | | */ |
1670 | 0 | ParseState mypstate = {0}; |
1671 | 0 | Index levelsup; |
1672 | | |
1673 | | /* this loop must work, since GetCTEForRTE did */ |
1674 | 0 | for (levelsup = 0; |
1675 | 0 | levelsup < rte->ctelevelsup + netlevelsup; |
1676 | 0 | levelsup++) |
1677 | 0 | pstate = pstate->parentParseState; |
1678 | 0 | mypstate.parentParseState = pstate; |
1679 | 0 | mypstate.p_rtable = ((Query *) cte->ctequery)->rtable; |
1680 | | /* don't bother filling the rest of the fake pstate */ |
1681 | |
|
1682 | 0 | return expandRecordVariable(&mypstate, (Var *) expr, 0); |
1683 | 0 | } |
1684 | | /* else fall through to inspect the expression */ |
1685 | 0 | } |
1686 | 0 | break; |
1687 | 0 | case RTE_GROUP: |
1688 | | |
1689 | | /* |
1690 | | * We couldn't get here: the RTE_GROUP RTE has not been added. |
1691 | | */ |
1692 | 0 | break; |
1693 | 0 | } |
1694 | | |
1695 | | /* |
1696 | | * We now have an expression we can't expand any more, so see if |
1697 | | * get_expr_result_tupdesc() can do anything with it. |
1698 | | */ |
1699 | 0 | return get_expr_result_tupdesc(expr, false); |
1700 | 0 | } |
1701 | | |
1702 | | |
1703 | | /* |
1704 | | * FigureColname - |
1705 | | * if the name of the resulting column is not specified in the target |
1706 | | * list, we have to guess a suitable name. The SQL spec provides some |
1707 | | * guidance, but not much... |
1708 | | * |
1709 | | * Note that the argument is the *untransformed* parse tree for the target |
1710 | | * item. This is a shade easier to work with than the transformed tree. |
1711 | | */ |
1712 | | char * |
1713 | | FigureColname(Node *node) |
1714 | 0 | { |
1715 | 0 | char *name = NULL; |
1716 | |
|
1717 | 0 | (void) FigureColnameInternal(node, &name); |
1718 | 0 | if (name != NULL) |
1719 | 0 | return name; |
1720 | | /* default result if we can't guess anything */ |
1721 | 0 | return "?column?"; |
1722 | 0 | } |
1723 | | |
1724 | | /* |
1725 | | * FigureIndexColname - |
1726 | | * choose the name for an expression column in an index |
1727 | | * |
1728 | | * This is actually just like FigureColname, except we return NULL if |
1729 | | * we can't pick a good name. |
1730 | | */ |
1731 | | char * |
1732 | | FigureIndexColname(Node *node) |
1733 | 0 | { |
1734 | 0 | char *name = NULL; |
1735 | |
|
1736 | 0 | (void) FigureColnameInternal(node, &name); |
1737 | 0 | return name; |
1738 | 0 | } |
1739 | | |
1740 | | /* |
1741 | | * FigureColnameInternal - |
1742 | | * internal workhorse for FigureColname |
1743 | | * |
1744 | | * Return value indicates strength of confidence in result: |
1745 | | * 0 - no information |
1746 | | * 1 - second-best name choice |
1747 | | * 2 - good name choice |
1748 | | * The return value is actually only used internally. |
1749 | | * If the result isn't zero, *name is set to the chosen name. |
1750 | | */ |
1751 | | static int |
1752 | | FigureColnameInternal(Node *node, char **name) |
1753 | 0 | { |
1754 | 0 | int strength = 0; |
1755 | |
|
1756 | 0 | if (node == NULL) |
1757 | 0 | return strength; |
1758 | | |
1759 | 0 | switch (nodeTag(node)) |
1760 | 0 | { |
1761 | 0 | case T_ColumnRef: |
1762 | 0 | { |
1763 | 0 | char *fname = NULL; |
1764 | 0 | ListCell *l; |
1765 | | |
1766 | | /* find last field name, if any, ignoring "*" */ |
1767 | 0 | foreach(l, ((ColumnRef *) node)->fields) |
1768 | 0 | { |
1769 | 0 | Node *i = lfirst(l); |
1770 | |
|
1771 | 0 | if (IsA(i, String)) |
1772 | 0 | fname = strVal(i); |
1773 | 0 | } |
1774 | 0 | if (fname) |
1775 | 0 | { |
1776 | 0 | *name = fname; |
1777 | 0 | return 2; |
1778 | 0 | } |
1779 | 0 | } |
1780 | 0 | break; |
1781 | 0 | case T_A_Indirection: |
1782 | 0 | { |
1783 | 0 | A_Indirection *ind = (A_Indirection *) node; |
1784 | 0 | char *fname = NULL; |
1785 | 0 | ListCell *l; |
1786 | | |
1787 | | /* find last field name, if any, ignoring "*" and subscripts */ |
1788 | 0 | foreach(l, ind->indirection) |
1789 | 0 | { |
1790 | 0 | Node *i = lfirst(l); |
1791 | |
|
1792 | 0 | if (IsA(i, String)) |
1793 | 0 | fname = strVal(i); |
1794 | 0 | } |
1795 | 0 | if (fname) |
1796 | 0 | { |
1797 | 0 | *name = fname; |
1798 | 0 | return 2; |
1799 | 0 | } |
1800 | 0 | return FigureColnameInternal(ind->arg, name); |
1801 | 0 | } |
1802 | 0 | break; |
1803 | 0 | case T_FuncCall: |
1804 | 0 | *name = strVal(llast(((FuncCall *) node)->funcname)); |
1805 | 0 | return 2; |
1806 | 0 | case T_A_Expr: |
1807 | 0 | if (((A_Expr *) node)->kind == AEXPR_NULLIF) |
1808 | 0 | { |
1809 | | /* make nullif() act like a regular function */ |
1810 | 0 | *name = "nullif"; |
1811 | 0 | return 2; |
1812 | 0 | } |
1813 | 0 | break; |
1814 | 0 | case T_TypeCast: |
1815 | 0 | strength = FigureColnameInternal(((TypeCast *) node)->arg, |
1816 | 0 | name); |
1817 | 0 | if (strength <= 1) |
1818 | 0 | { |
1819 | 0 | if (((TypeCast *) node)->typeName != NULL) |
1820 | 0 | { |
1821 | 0 | *name = strVal(llast(((TypeCast *) node)->typeName->names)); |
1822 | 0 | return 1; |
1823 | 0 | } |
1824 | 0 | } |
1825 | 0 | break; |
1826 | 0 | case T_CollateClause: |
1827 | 0 | return FigureColnameInternal(((CollateClause *) node)->arg, name); |
1828 | 0 | case T_GroupingFunc: |
1829 | | /* make GROUPING() act like a regular function */ |
1830 | 0 | *name = "grouping"; |
1831 | 0 | return 2; |
1832 | 0 | case T_MergeSupportFunc: |
1833 | | /* make MERGE_ACTION() act like a regular function */ |
1834 | 0 | *name = "merge_action"; |
1835 | 0 | return 2; |
1836 | 0 | case T_SubLink: |
1837 | 0 | switch (((SubLink *) node)->subLinkType) |
1838 | 0 | { |
1839 | 0 | case EXISTS_SUBLINK: |
1840 | 0 | *name = "exists"; |
1841 | 0 | return 2; |
1842 | 0 | case ARRAY_SUBLINK: |
1843 | 0 | *name = "array"; |
1844 | 0 | return 2; |
1845 | 0 | case EXPR_SUBLINK: |
1846 | 0 | { |
1847 | | /* Get column name of the subquery's single target */ |
1848 | 0 | SubLink *sublink = (SubLink *) node; |
1849 | 0 | Query *query = (Query *) sublink->subselect; |
1850 | | |
1851 | | /* |
1852 | | * The subquery has probably already been transformed, |
1853 | | * but let's be careful and check that. (The reason |
1854 | | * we can see a transformed subquery here is that |
1855 | | * transformSubLink is lazy and modifies the SubLink |
1856 | | * node in-place.) |
1857 | | */ |
1858 | 0 | if (IsA(query, Query)) |
1859 | 0 | { |
1860 | 0 | TargetEntry *te = (TargetEntry *) linitial(query->targetList); |
1861 | |
|
1862 | 0 | if (te->resname) |
1863 | 0 | { |
1864 | 0 | *name = te->resname; |
1865 | 0 | return 2; |
1866 | 0 | } |
1867 | 0 | } |
1868 | 0 | } |
1869 | 0 | break; |
1870 | | /* As with other operator-like nodes, these have no names */ |
1871 | 0 | case MULTIEXPR_SUBLINK: |
1872 | 0 | case ALL_SUBLINK: |
1873 | 0 | case ANY_SUBLINK: |
1874 | 0 | case ROWCOMPARE_SUBLINK: |
1875 | 0 | case CTE_SUBLINK: |
1876 | 0 | break; |
1877 | 0 | } |
1878 | 0 | break; |
1879 | 0 | case T_CaseExpr: |
1880 | 0 | strength = FigureColnameInternal((Node *) ((CaseExpr *) node)->defresult, |
1881 | 0 | name); |
1882 | 0 | if (strength <= 1) |
1883 | 0 | { |
1884 | 0 | *name = "case"; |
1885 | 0 | return 1; |
1886 | 0 | } |
1887 | 0 | break; |
1888 | 0 | case T_A_ArrayExpr: |
1889 | | /* make ARRAY[] act like a function */ |
1890 | 0 | *name = "array"; |
1891 | 0 | return 2; |
1892 | 0 | case T_RowExpr: |
1893 | | /* make ROW() act like a function */ |
1894 | 0 | *name = "row"; |
1895 | 0 | return 2; |
1896 | 0 | case T_CoalesceExpr: |
1897 | | /* make coalesce() act like a regular function */ |
1898 | 0 | *name = "coalesce"; |
1899 | 0 | return 2; |
1900 | 0 | case T_MinMaxExpr: |
1901 | | /* make greatest/least act like a regular function */ |
1902 | 0 | switch (((MinMaxExpr *) node)->op) |
1903 | 0 | { |
1904 | 0 | case IS_GREATEST: |
1905 | 0 | *name = "greatest"; |
1906 | 0 | return 2; |
1907 | 0 | case IS_LEAST: |
1908 | 0 | *name = "least"; |
1909 | 0 | return 2; |
1910 | 0 | } |
1911 | 0 | break; |
1912 | 0 | case T_SQLValueFunction: |
1913 | | /* make these act like a function or variable */ |
1914 | 0 | switch (((SQLValueFunction *) node)->op) |
1915 | 0 | { |
1916 | 0 | case SVFOP_CURRENT_DATE: |
1917 | 0 | *name = "current_date"; |
1918 | 0 | return 2; |
1919 | 0 | case SVFOP_CURRENT_TIME: |
1920 | 0 | case SVFOP_CURRENT_TIME_N: |
1921 | 0 | *name = "current_time"; |
1922 | 0 | return 2; |
1923 | 0 | case SVFOP_CURRENT_TIMESTAMP: |
1924 | 0 | case SVFOP_CURRENT_TIMESTAMP_N: |
1925 | 0 | *name = "current_timestamp"; |
1926 | 0 | return 2; |
1927 | 0 | case SVFOP_LOCALTIME: |
1928 | 0 | case SVFOP_LOCALTIME_N: |
1929 | 0 | *name = "localtime"; |
1930 | 0 | return 2; |
1931 | 0 | case SVFOP_LOCALTIMESTAMP: |
1932 | 0 | case SVFOP_LOCALTIMESTAMP_N: |
1933 | 0 | *name = "localtimestamp"; |
1934 | 0 | return 2; |
1935 | 0 | case SVFOP_CURRENT_ROLE: |
1936 | 0 | *name = "current_role"; |
1937 | 0 | return 2; |
1938 | 0 | case SVFOP_CURRENT_USER: |
1939 | 0 | *name = "current_user"; |
1940 | 0 | return 2; |
1941 | 0 | case SVFOP_USER: |
1942 | 0 | *name = "user"; |
1943 | 0 | return 2; |
1944 | 0 | case SVFOP_SESSION_USER: |
1945 | 0 | *name = "session_user"; |
1946 | 0 | return 2; |
1947 | 0 | case SVFOP_CURRENT_CATALOG: |
1948 | 0 | *name = "current_catalog"; |
1949 | 0 | return 2; |
1950 | 0 | case SVFOP_CURRENT_SCHEMA: |
1951 | 0 | *name = "current_schema"; |
1952 | 0 | return 2; |
1953 | 0 | } |
1954 | 0 | break; |
1955 | 0 | case T_XmlExpr: |
1956 | | /* make SQL/XML functions act like a regular function */ |
1957 | 0 | switch (((XmlExpr *) node)->op) |
1958 | 0 | { |
1959 | 0 | case IS_XMLCONCAT: |
1960 | 0 | *name = "xmlconcat"; |
1961 | 0 | return 2; |
1962 | 0 | case IS_XMLELEMENT: |
1963 | 0 | *name = "xmlelement"; |
1964 | 0 | return 2; |
1965 | 0 | case IS_XMLFOREST: |
1966 | 0 | *name = "xmlforest"; |
1967 | 0 | return 2; |
1968 | 0 | case IS_XMLPARSE: |
1969 | 0 | *name = "xmlparse"; |
1970 | 0 | return 2; |
1971 | 0 | case IS_XMLPI: |
1972 | 0 | *name = "xmlpi"; |
1973 | 0 | return 2; |
1974 | 0 | case IS_XMLROOT: |
1975 | 0 | *name = "xmlroot"; |
1976 | 0 | return 2; |
1977 | 0 | case IS_XMLSERIALIZE: |
1978 | 0 | *name = "xmlserialize"; |
1979 | 0 | return 2; |
1980 | 0 | case IS_DOCUMENT: |
1981 | | /* nothing */ |
1982 | 0 | break; |
1983 | 0 | } |
1984 | 0 | break; |
1985 | 0 | case T_XmlSerialize: |
1986 | | /* make XMLSERIALIZE act like a regular function */ |
1987 | 0 | *name = "xmlserialize"; |
1988 | 0 | return 2; |
1989 | 0 | case T_JsonParseExpr: |
1990 | | /* make JSON act like a regular function */ |
1991 | 0 | *name = "json"; |
1992 | 0 | return 2; |
1993 | 0 | case T_JsonScalarExpr: |
1994 | | /* make JSON_SCALAR act like a regular function */ |
1995 | 0 | *name = "json_scalar"; |
1996 | 0 | return 2; |
1997 | 0 | case T_JsonSerializeExpr: |
1998 | | /* make JSON_SERIALIZE act like a regular function */ |
1999 | 0 | *name = "json_serialize"; |
2000 | 0 | return 2; |
2001 | 0 | case T_JsonObjectConstructor: |
2002 | | /* make JSON_OBJECT act like a regular function */ |
2003 | 0 | *name = "json_object"; |
2004 | 0 | return 2; |
2005 | 0 | case T_JsonArrayConstructor: |
2006 | 0 | case T_JsonArrayQueryConstructor: |
2007 | | /* make JSON_ARRAY act like a regular function */ |
2008 | 0 | *name = "json_array"; |
2009 | 0 | return 2; |
2010 | 0 | case T_JsonObjectAgg: |
2011 | | /* make JSON_OBJECTAGG act like a regular function */ |
2012 | 0 | *name = "json_objectagg"; |
2013 | 0 | return 2; |
2014 | 0 | case T_JsonArrayAgg: |
2015 | | /* make JSON_ARRAYAGG act like a regular function */ |
2016 | 0 | *name = "json_arrayagg"; |
2017 | 0 | return 2; |
2018 | 0 | case T_JsonFuncExpr: |
2019 | | /* make SQL/JSON functions act like a regular function */ |
2020 | 0 | switch (((JsonFuncExpr *) node)->op) |
2021 | 0 | { |
2022 | 0 | case JSON_EXISTS_OP: |
2023 | 0 | *name = "json_exists"; |
2024 | 0 | return 2; |
2025 | 0 | case JSON_QUERY_OP: |
2026 | 0 | *name = "json_query"; |
2027 | 0 | return 2; |
2028 | 0 | case JSON_VALUE_OP: |
2029 | 0 | *name = "json_value"; |
2030 | 0 | return 2; |
2031 | | /* JSON_TABLE_OP can't happen here. */ |
2032 | 0 | default: |
2033 | 0 | elog(ERROR, "unrecognized JsonExpr op: %d", |
2034 | 0 | (int) ((JsonFuncExpr *) node)->op); |
2035 | 0 | } |
2036 | 0 | break; |
2037 | 0 | default: |
2038 | 0 | break; |
2039 | 0 | } |
2040 | | |
2041 | 0 | return strength; |
2042 | 0 | } |