/src/postgres/src/backend/utils/adt/float.c
Line | Count | Source (jump to first uncovered line) |
1 | | /*------------------------------------------------------------------------- |
2 | | * |
3 | | * float.c |
4 | | * Functions for the built-in floating-point types. |
5 | | * |
6 | | * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group |
7 | | * Portions Copyright (c) 1994, Regents of the University of California |
8 | | * |
9 | | * |
10 | | * IDENTIFICATION |
11 | | * src/backend/utils/adt/float.c |
12 | | * |
13 | | *------------------------------------------------------------------------- |
14 | | */ |
15 | | #include "postgres.h" |
16 | | |
17 | | #include <ctype.h> |
18 | | #include <float.h> |
19 | | #include <math.h> |
20 | | #include <limits.h> |
21 | | |
22 | | #include "catalog/pg_type.h" |
23 | | #include "common/int.h" |
24 | | #include "common/shortest_dec.h" |
25 | | #include "libpq/pqformat.h" |
26 | | #include "utils/array.h" |
27 | | #include "utils/float.h" |
28 | | #include "utils/fmgrprotos.h" |
29 | | #include "utils/sortsupport.h" |
30 | | |
31 | | |
32 | | /* |
33 | | * Configurable GUC parameter |
34 | | * |
35 | | * If >0, use shortest-decimal format for output; this is both the default and |
36 | | * allows for compatibility with clients that explicitly set a value here to |
37 | | * get round-trip-accurate results. If 0 or less, then use the old, slow, |
38 | | * decimal rounding method. |
39 | | */ |
40 | | int extra_float_digits = 1; |
41 | | |
42 | | /* Cached constants for degree-based trig functions */ |
43 | | static bool degree_consts_set = false; |
44 | | static float8 sin_30 = 0; |
45 | | static float8 one_minus_cos_60 = 0; |
46 | | static float8 asin_0_5 = 0; |
47 | | static float8 acos_0_5 = 0; |
48 | | static float8 atan_1_0 = 0; |
49 | | static float8 tan_45 = 0; |
50 | | static float8 cot_45 = 0; |
51 | | |
52 | | /* |
53 | | * These are intentionally not static; don't "fix" them. They will never |
54 | | * be referenced by other files, much less changed; but we don't want the |
55 | | * compiler to know that, else it might try to precompute expressions |
56 | | * involving them. See comments for init_degree_constants(). |
57 | | * |
58 | | * The additional extern declarations are to silence |
59 | | * -Wmissing-variable-declarations. |
60 | | */ |
61 | | extern float8 degree_c_thirty; |
62 | | extern float8 degree_c_forty_five; |
63 | | extern float8 degree_c_sixty; |
64 | | extern float8 degree_c_one_half; |
65 | | extern float8 degree_c_one; |
66 | | float8 degree_c_thirty = 30.0; |
67 | | float8 degree_c_forty_five = 45.0; |
68 | | float8 degree_c_sixty = 60.0; |
69 | | float8 degree_c_one_half = 0.5; |
70 | | float8 degree_c_one = 1.0; |
71 | | |
72 | | /* Local function prototypes */ |
73 | | static double sind_q1(double x); |
74 | | static double cosd_q1(double x); |
75 | | static void init_degree_constants(void); |
76 | | |
77 | | |
78 | | /* |
79 | | * We use these out-of-line ereport() calls to report float overflow, |
80 | | * underflow, and zero-divide, because following our usual practice of |
81 | | * repeating them at each call site would lead to a lot of code bloat. |
82 | | * |
83 | | * This does mean that you don't get a useful error location indicator. |
84 | | */ |
85 | | pg_noinline void |
86 | | float_overflow_error(void) |
87 | 0 | { |
88 | 0 | ereport(ERROR, |
89 | 0 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
90 | 0 | errmsg("value out of range: overflow"))); |
91 | 0 | } |
92 | | |
93 | | pg_noinline void |
94 | | float_underflow_error(void) |
95 | 0 | { |
96 | 0 | ereport(ERROR, |
97 | 0 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
98 | 0 | errmsg("value out of range: underflow"))); |
99 | 0 | } |
100 | | |
101 | | pg_noinline void |
102 | | float_zero_divide_error(void) |
103 | 0 | { |
104 | 0 | ereport(ERROR, |
105 | 0 | (errcode(ERRCODE_DIVISION_BY_ZERO), |
106 | 0 | errmsg("division by zero"))); |
107 | 0 | } |
108 | | |
109 | | |
110 | | /* |
111 | | * Returns -1 if 'val' represents negative infinity, 1 if 'val' |
112 | | * represents (positive) infinity, and 0 otherwise. On some platforms, |
113 | | * this is equivalent to the isinf() macro, but not everywhere: C99 |
114 | | * does not specify that isinf() needs to distinguish between positive |
115 | | * and negative infinity. |
116 | | */ |
117 | | int |
118 | | is_infinite(double val) |
119 | 0 | { |
120 | 0 | int inf = isinf(val); |
121 | |
|
122 | 0 | if (inf == 0) |
123 | 0 | return 0; |
124 | 0 | else if (val > 0) |
125 | 0 | return 1; |
126 | 0 | else |
127 | 0 | return -1; |
128 | 0 | } |
129 | | |
130 | | |
131 | | /* ========== USER I/O ROUTINES ========== */ |
132 | | |
133 | | |
134 | | /* |
135 | | * float4in - converts "num" to float4 |
136 | | * |
137 | | * Note that this code now uses strtof(), where it used to use strtod(). |
138 | | * |
139 | | * The motivation for using strtof() is to avoid a double-rounding problem: |
140 | | * for certain decimal inputs, if you round the input correctly to a double, |
141 | | * and then round the double to a float, the result is incorrect in that it |
142 | | * does not match the result of rounding the decimal value to float directly. |
143 | | * |
144 | | * One of the best examples is 7.038531e-26: |
145 | | * |
146 | | * 0xAE43FDp-107 = 7.03853069185120912085...e-26 |
147 | | * midpoint 7.03853100000000022281...e-26 |
148 | | * 0xAE43FEp-107 = 7.03853130814879132477...e-26 |
149 | | * |
150 | | * making 0xAE43FDp-107 the correct float result, but if you do the conversion |
151 | | * via a double, you get |
152 | | * |
153 | | * 0xAE43FD.7FFFFFF8p-107 = 7.03853099999999907487...e-26 |
154 | | * midpoint 7.03853099999999964884...e-26 |
155 | | * 0xAE43FD.80000000p-107 = 7.03853100000000022281...e-26 |
156 | | * 0xAE43FD.80000008p-107 = 7.03853100000000137076...e-26 |
157 | | * |
158 | | * so the value rounds to the double exactly on the midpoint between the two |
159 | | * nearest floats, and then rounding again to a float gives the incorrect |
160 | | * result of 0xAE43FEp-107. |
161 | | * |
162 | | */ |
163 | | Datum |
164 | | float4in(PG_FUNCTION_ARGS) |
165 | 0 | { |
166 | 0 | char *num = PG_GETARG_CSTRING(0); |
167 | |
|
168 | 0 | PG_RETURN_FLOAT4(float4in_internal(num, NULL, "real", num, |
169 | 0 | fcinfo->context)); |
170 | 0 | } |
171 | | |
172 | | /* |
173 | | * float4in_internal - guts of float4in() |
174 | | * |
175 | | * This is exposed for use by functions that want a reasonably |
176 | | * platform-independent way of inputting floats. The behavior is |
177 | | * essentially like strtof + ereturn on error. |
178 | | * |
179 | | * Uses the same API as float8in_internal below, so most of its |
180 | | * comments also apply here, except regarding use in geometric types. |
181 | | */ |
182 | | float4 |
183 | | float4in_internal(char *num, char **endptr_p, |
184 | | const char *type_name, const char *orig_string, |
185 | | struct Node *escontext) |
186 | 0 | { |
187 | 0 | float val; |
188 | 0 | char *endptr; |
189 | | |
190 | | /* |
191 | | * endptr points to the first character _after_ the sequence we recognized |
192 | | * as a valid floating point number. orig_string points to the original |
193 | | * input string. |
194 | | */ |
195 | | |
196 | | /* skip leading whitespace */ |
197 | 0 | while (*num != '\0' && isspace((unsigned char) *num)) |
198 | 0 | num++; |
199 | | |
200 | | /* |
201 | | * Check for an empty-string input to begin with, to avoid the vagaries of |
202 | | * strtod() on different platforms. |
203 | | */ |
204 | 0 | if (*num == '\0') |
205 | 0 | ereturn(escontext, 0, |
206 | 0 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
207 | 0 | errmsg("invalid input syntax for type %s: \"%s\"", |
208 | 0 | type_name, orig_string))); |
209 | | |
210 | 0 | errno = 0; |
211 | 0 | val = strtof(num, &endptr); |
212 | | |
213 | | /* did we not see anything that looks like a double? */ |
214 | 0 | if (endptr == num || errno != 0) |
215 | 0 | { |
216 | 0 | int save_errno = errno; |
217 | | |
218 | | /* |
219 | | * C99 requires that strtof() accept NaN, [+-]Infinity, and [+-]Inf, |
220 | | * but not all platforms support all of these (and some accept them |
221 | | * but set ERANGE anyway...) Therefore, we check for these inputs |
222 | | * ourselves if strtof() fails. |
223 | | * |
224 | | * Note: C99 also requires hexadecimal input as well as some extended |
225 | | * forms of NaN, but we consider these forms unportable and don't try |
226 | | * to support them. You can use 'em if your strtof() takes 'em. |
227 | | */ |
228 | 0 | if (pg_strncasecmp(num, "NaN", 3) == 0) |
229 | 0 | { |
230 | 0 | val = get_float4_nan(); |
231 | 0 | endptr = num + 3; |
232 | 0 | } |
233 | 0 | else if (pg_strncasecmp(num, "Infinity", 8) == 0) |
234 | 0 | { |
235 | 0 | val = get_float4_infinity(); |
236 | 0 | endptr = num + 8; |
237 | 0 | } |
238 | 0 | else if (pg_strncasecmp(num, "+Infinity", 9) == 0) |
239 | 0 | { |
240 | 0 | val = get_float4_infinity(); |
241 | 0 | endptr = num + 9; |
242 | 0 | } |
243 | 0 | else if (pg_strncasecmp(num, "-Infinity", 9) == 0) |
244 | 0 | { |
245 | 0 | val = -get_float4_infinity(); |
246 | 0 | endptr = num + 9; |
247 | 0 | } |
248 | 0 | else if (pg_strncasecmp(num, "inf", 3) == 0) |
249 | 0 | { |
250 | 0 | val = get_float4_infinity(); |
251 | 0 | endptr = num + 3; |
252 | 0 | } |
253 | 0 | else if (pg_strncasecmp(num, "+inf", 4) == 0) |
254 | 0 | { |
255 | 0 | val = get_float4_infinity(); |
256 | 0 | endptr = num + 4; |
257 | 0 | } |
258 | 0 | else if (pg_strncasecmp(num, "-inf", 4) == 0) |
259 | 0 | { |
260 | 0 | val = -get_float4_infinity(); |
261 | 0 | endptr = num + 4; |
262 | 0 | } |
263 | 0 | else if (save_errno == ERANGE) |
264 | 0 | { |
265 | | /* |
266 | | * Some platforms return ERANGE for denormalized numbers (those |
267 | | * that are not zero, but are too close to zero to have full |
268 | | * precision). We'd prefer not to throw error for that, so try to |
269 | | * detect whether it's a "real" out-of-range condition by checking |
270 | | * to see if the result is zero or huge. |
271 | | */ |
272 | 0 | if (val == 0.0 || |
273 | | #if !defined(HUGE_VALF) |
274 | | isinf(val) |
275 | | #else |
276 | 0 | (val >= HUGE_VALF || val <= -HUGE_VALF) |
277 | 0 | #endif |
278 | 0 | ) |
279 | 0 | { |
280 | | /* see comments in float8in_internal for rationale */ |
281 | 0 | char *errnumber = pstrdup(num); |
282 | |
|
283 | 0 | errnumber[endptr - num] = '\0'; |
284 | |
|
285 | 0 | ereturn(escontext, 0, |
286 | 0 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
287 | 0 | errmsg("\"%s\" is out of range for type real", |
288 | 0 | errnumber))); |
289 | 0 | } |
290 | 0 | } |
291 | 0 | else |
292 | 0 | ereturn(escontext, 0, |
293 | 0 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
294 | 0 | errmsg("invalid input syntax for type %s: \"%s\"", |
295 | 0 | type_name, orig_string))); |
296 | 0 | } |
297 | | |
298 | | /* skip trailing whitespace */ |
299 | 0 | while (*endptr != '\0' && isspace((unsigned char) *endptr)) |
300 | 0 | endptr++; |
301 | | |
302 | | /* report stopping point if wanted, else complain if not end of string */ |
303 | 0 | if (endptr_p) |
304 | 0 | *endptr_p = endptr; |
305 | 0 | else if (*endptr != '\0') |
306 | 0 | ereturn(escontext, 0, |
307 | 0 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
308 | 0 | errmsg("invalid input syntax for type %s: \"%s\"", |
309 | 0 | type_name, orig_string))); |
310 | | |
311 | 0 | return val; |
312 | 0 | } |
313 | | |
314 | | /* |
315 | | * float4out - converts a float4 number to a string |
316 | | * using a standard output format |
317 | | */ |
318 | | Datum |
319 | | float4out(PG_FUNCTION_ARGS) |
320 | 0 | { |
321 | 0 | float4 num = PG_GETARG_FLOAT4(0); |
322 | 0 | char *ascii = (char *) palloc(32); |
323 | 0 | int ndig = FLT_DIG + extra_float_digits; |
324 | |
|
325 | 0 | if (extra_float_digits > 0) |
326 | 0 | { |
327 | 0 | float_to_shortest_decimal_buf(num, ascii); |
328 | 0 | PG_RETURN_CSTRING(ascii); |
329 | 0 | } |
330 | | |
331 | 0 | (void) pg_strfromd(ascii, 32, ndig, num); |
332 | 0 | PG_RETURN_CSTRING(ascii); |
333 | 0 | } |
334 | | |
335 | | /* |
336 | | * float4recv - converts external binary format to float4 |
337 | | */ |
338 | | Datum |
339 | | float4recv(PG_FUNCTION_ARGS) |
340 | 0 | { |
341 | 0 | StringInfo buf = (StringInfo) PG_GETARG_POINTER(0); |
342 | |
|
343 | 0 | PG_RETURN_FLOAT4(pq_getmsgfloat4(buf)); |
344 | 0 | } |
345 | | |
346 | | /* |
347 | | * float4send - converts float4 to binary format |
348 | | */ |
349 | | Datum |
350 | | float4send(PG_FUNCTION_ARGS) |
351 | 0 | { |
352 | 0 | float4 num = PG_GETARG_FLOAT4(0); |
353 | 0 | StringInfoData buf; |
354 | |
|
355 | 0 | pq_begintypsend(&buf); |
356 | 0 | pq_sendfloat4(&buf, num); |
357 | 0 | PG_RETURN_BYTEA_P(pq_endtypsend(&buf)); |
358 | 0 | } |
359 | | |
360 | | /* |
361 | | * float8in - converts "num" to float8 |
362 | | */ |
363 | | Datum |
364 | | float8in(PG_FUNCTION_ARGS) |
365 | 0 | { |
366 | 0 | char *num = PG_GETARG_CSTRING(0); |
367 | |
|
368 | 0 | PG_RETURN_FLOAT8(float8in_internal(num, NULL, "double precision", num, |
369 | 0 | fcinfo->context)); |
370 | 0 | } |
371 | | |
372 | | /* |
373 | | * float8in_internal - guts of float8in() |
374 | | * |
375 | | * This is exposed for use by functions that want a reasonably |
376 | | * platform-independent way of inputting doubles. The behavior is |
377 | | * essentially like strtod + ereturn on error, but note the following |
378 | | * differences: |
379 | | * 1. Both leading and trailing whitespace are skipped. |
380 | | * 2. If endptr_p is NULL, we report error if there's trailing junk. |
381 | | * Otherwise, it's up to the caller to complain about trailing junk. |
382 | | * 3. In event of a syntax error, the report mentions the given type_name |
383 | | * and prints orig_string as the input; this is meant to support use of |
384 | | * this function with types such as "box" and "point", where what we are |
385 | | * parsing here is just a substring of orig_string. |
386 | | * |
387 | | * If escontext points to an ErrorSaveContext node, that is filled instead |
388 | | * of throwing an error; the caller must check SOFT_ERROR_OCCURRED() |
389 | | * to detect errors. |
390 | | * |
391 | | * "num" could validly be declared "const char *", but that results in an |
392 | | * unreasonable amount of extra casting both here and in callers, so we don't. |
393 | | */ |
394 | | float8 |
395 | | float8in_internal(char *num, char **endptr_p, |
396 | | const char *type_name, const char *orig_string, |
397 | | struct Node *escontext) |
398 | 0 | { |
399 | 0 | double val; |
400 | 0 | char *endptr; |
401 | | |
402 | | /* skip leading whitespace */ |
403 | 0 | while (*num != '\0' && isspace((unsigned char) *num)) |
404 | 0 | num++; |
405 | | |
406 | | /* |
407 | | * Check for an empty-string input to begin with, to avoid the vagaries of |
408 | | * strtod() on different platforms. |
409 | | */ |
410 | 0 | if (*num == '\0') |
411 | 0 | ereturn(escontext, 0, |
412 | 0 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
413 | 0 | errmsg("invalid input syntax for type %s: \"%s\"", |
414 | 0 | type_name, orig_string))); |
415 | | |
416 | 0 | errno = 0; |
417 | 0 | val = strtod(num, &endptr); |
418 | | |
419 | | /* did we not see anything that looks like a double? */ |
420 | 0 | if (endptr == num || errno != 0) |
421 | 0 | { |
422 | 0 | int save_errno = errno; |
423 | | |
424 | | /* |
425 | | * C99 requires that strtod() accept NaN, [+-]Infinity, and [+-]Inf, |
426 | | * but not all platforms support all of these (and some accept them |
427 | | * but set ERANGE anyway...) Therefore, we check for these inputs |
428 | | * ourselves if strtod() fails. |
429 | | * |
430 | | * Note: C99 also requires hexadecimal input as well as some extended |
431 | | * forms of NaN, but we consider these forms unportable and don't try |
432 | | * to support them. You can use 'em if your strtod() takes 'em. |
433 | | */ |
434 | 0 | if (pg_strncasecmp(num, "NaN", 3) == 0) |
435 | 0 | { |
436 | 0 | val = get_float8_nan(); |
437 | 0 | endptr = num + 3; |
438 | 0 | } |
439 | 0 | else if (pg_strncasecmp(num, "Infinity", 8) == 0) |
440 | 0 | { |
441 | 0 | val = get_float8_infinity(); |
442 | 0 | endptr = num + 8; |
443 | 0 | } |
444 | 0 | else if (pg_strncasecmp(num, "+Infinity", 9) == 0) |
445 | 0 | { |
446 | 0 | val = get_float8_infinity(); |
447 | 0 | endptr = num + 9; |
448 | 0 | } |
449 | 0 | else if (pg_strncasecmp(num, "-Infinity", 9) == 0) |
450 | 0 | { |
451 | 0 | val = -get_float8_infinity(); |
452 | 0 | endptr = num + 9; |
453 | 0 | } |
454 | 0 | else if (pg_strncasecmp(num, "inf", 3) == 0) |
455 | 0 | { |
456 | 0 | val = get_float8_infinity(); |
457 | 0 | endptr = num + 3; |
458 | 0 | } |
459 | 0 | else if (pg_strncasecmp(num, "+inf", 4) == 0) |
460 | 0 | { |
461 | 0 | val = get_float8_infinity(); |
462 | 0 | endptr = num + 4; |
463 | 0 | } |
464 | 0 | else if (pg_strncasecmp(num, "-inf", 4) == 0) |
465 | 0 | { |
466 | 0 | val = -get_float8_infinity(); |
467 | 0 | endptr = num + 4; |
468 | 0 | } |
469 | 0 | else if (save_errno == ERANGE) |
470 | 0 | { |
471 | | /* |
472 | | * Some platforms return ERANGE for denormalized numbers (those |
473 | | * that are not zero, but are too close to zero to have full |
474 | | * precision). We'd prefer not to throw error for that, so try to |
475 | | * detect whether it's a "real" out-of-range condition by checking |
476 | | * to see if the result is zero or huge. |
477 | | * |
478 | | * On error, we intentionally complain about double precision not |
479 | | * the given type name, and we print only the part of the string |
480 | | * that is the current number. |
481 | | */ |
482 | 0 | if (val == 0.0 || val >= HUGE_VAL || val <= -HUGE_VAL) |
483 | 0 | { |
484 | 0 | char *errnumber = pstrdup(num); |
485 | |
|
486 | 0 | errnumber[endptr - num] = '\0'; |
487 | 0 | ereturn(escontext, 0, |
488 | 0 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
489 | 0 | errmsg("\"%s\" is out of range for type double precision", |
490 | 0 | errnumber))); |
491 | 0 | } |
492 | 0 | } |
493 | 0 | else |
494 | 0 | ereturn(escontext, 0, |
495 | 0 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
496 | 0 | errmsg("invalid input syntax for type %s: \"%s\"", |
497 | 0 | type_name, orig_string))); |
498 | 0 | } |
499 | | |
500 | | /* skip trailing whitespace */ |
501 | 0 | while (*endptr != '\0' && isspace((unsigned char) *endptr)) |
502 | 0 | endptr++; |
503 | | |
504 | | /* report stopping point if wanted, else complain if not end of string */ |
505 | 0 | if (endptr_p) |
506 | 0 | *endptr_p = endptr; |
507 | 0 | else if (*endptr != '\0') |
508 | 0 | ereturn(escontext, 0, |
509 | 0 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
510 | 0 | errmsg("invalid input syntax for type %s: \"%s\"", |
511 | 0 | type_name, orig_string))); |
512 | | |
513 | 0 | return val; |
514 | 0 | } |
515 | | |
516 | | |
517 | | /* |
518 | | * float8out - converts float8 number to a string |
519 | | * using a standard output format |
520 | | */ |
521 | | Datum |
522 | | float8out(PG_FUNCTION_ARGS) |
523 | 0 | { |
524 | 0 | float8 num = PG_GETARG_FLOAT8(0); |
525 | |
|
526 | 0 | PG_RETURN_CSTRING(float8out_internal(num)); |
527 | 0 | } |
528 | | |
529 | | /* |
530 | | * float8out_internal - guts of float8out() |
531 | | * |
532 | | * This is exposed for use by functions that want a reasonably |
533 | | * platform-independent way of outputting doubles. |
534 | | * The result is always palloc'd. |
535 | | */ |
536 | | char * |
537 | | float8out_internal(double num) |
538 | 0 | { |
539 | 0 | char *ascii = (char *) palloc(32); |
540 | 0 | int ndig = DBL_DIG + extra_float_digits; |
541 | |
|
542 | 0 | if (extra_float_digits > 0) |
543 | 0 | { |
544 | 0 | double_to_shortest_decimal_buf(num, ascii); |
545 | 0 | return ascii; |
546 | 0 | } |
547 | | |
548 | 0 | (void) pg_strfromd(ascii, 32, ndig, num); |
549 | 0 | return ascii; |
550 | 0 | } |
551 | | |
552 | | /* |
553 | | * float8recv - converts external binary format to float8 |
554 | | */ |
555 | | Datum |
556 | | float8recv(PG_FUNCTION_ARGS) |
557 | 0 | { |
558 | 0 | StringInfo buf = (StringInfo) PG_GETARG_POINTER(0); |
559 | |
|
560 | 0 | PG_RETURN_FLOAT8(pq_getmsgfloat8(buf)); |
561 | 0 | } |
562 | | |
563 | | /* |
564 | | * float8send - converts float8 to binary format |
565 | | */ |
566 | | Datum |
567 | | float8send(PG_FUNCTION_ARGS) |
568 | 0 | { |
569 | 0 | float8 num = PG_GETARG_FLOAT8(0); |
570 | 0 | StringInfoData buf; |
571 | |
|
572 | 0 | pq_begintypsend(&buf); |
573 | 0 | pq_sendfloat8(&buf, num); |
574 | 0 | PG_RETURN_BYTEA_P(pq_endtypsend(&buf)); |
575 | 0 | } |
576 | | |
577 | | |
578 | | /* ========== PUBLIC ROUTINES ========== */ |
579 | | |
580 | | |
581 | | /* |
582 | | * ====================== |
583 | | * FLOAT4 BASE OPERATIONS |
584 | | * ====================== |
585 | | */ |
586 | | |
587 | | /* |
588 | | * float4abs - returns |arg1| (absolute value) |
589 | | */ |
590 | | Datum |
591 | | float4abs(PG_FUNCTION_ARGS) |
592 | 0 | { |
593 | 0 | float4 arg1 = PG_GETARG_FLOAT4(0); |
594 | |
|
595 | 0 | PG_RETURN_FLOAT4(fabsf(arg1)); |
596 | 0 | } |
597 | | |
598 | | /* |
599 | | * float4um - returns -arg1 (unary minus) |
600 | | */ |
601 | | Datum |
602 | | float4um(PG_FUNCTION_ARGS) |
603 | 0 | { |
604 | 0 | float4 arg1 = PG_GETARG_FLOAT4(0); |
605 | 0 | float4 result; |
606 | |
|
607 | 0 | result = -arg1; |
608 | 0 | PG_RETURN_FLOAT4(result); |
609 | 0 | } |
610 | | |
611 | | Datum |
612 | | float4up(PG_FUNCTION_ARGS) |
613 | 0 | { |
614 | 0 | float4 arg = PG_GETARG_FLOAT4(0); |
615 | |
|
616 | 0 | PG_RETURN_FLOAT4(arg); |
617 | 0 | } |
618 | | |
619 | | Datum |
620 | | float4larger(PG_FUNCTION_ARGS) |
621 | 0 | { |
622 | 0 | float4 arg1 = PG_GETARG_FLOAT4(0); |
623 | 0 | float4 arg2 = PG_GETARG_FLOAT4(1); |
624 | 0 | float4 result; |
625 | |
|
626 | 0 | if (float4_gt(arg1, arg2)) |
627 | 0 | result = arg1; |
628 | 0 | else |
629 | 0 | result = arg2; |
630 | 0 | PG_RETURN_FLOAT4(result); |
631 | 0 | } |
632 | | |
633 | | Datum |
634 | | float4smaller(PG_FUNCTION_ARGS) |
635 | 0 | { |
636 | 0 | float4 arg1 = PG_GETARG_FLOAT4(0); |
637 | 0 | float4 arg2 = PG_GETARG_FLOAT4(1); |
638 | 0 | float4 result; |
639 | |
|
640 | 0 | if (float4_lt(arg1, arg2)) |
641 | 0 | result = arg1; |
642 | 0 | else |
643 | 0 | result = arg2; |
644 | 0 | PG_RETURN_FLOAT4(result); |
645 | 0 | } |
646 | | |
647 | | /* |
648 | | * ====================== |
649 | | * FLOAT8 BASE OPERATIONS |
650 | | * ====================== |
651 | | */ |
652 | | |
653 | | /* |
654 | | * float8abs - returns |arg1| (absolute value) |
655 | | */ |
656 | | Datum |
657 | | float8abs(PG_FUNCTION_ARGS) |
658 | 0 | { |
659 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
660 | |
|
661 | 0 | PG_RETURN_FLOAT8(fabs(arg1)); |
662 | 0 | } |
663 | | |
664 | | |
665 | | /* |
666 | | * float8um - returns -arg1 (unary minus) |
667 | | */ |
668 | | Datum |
669 | | float8um(PG_FUNCTION_ARGS) |
670 | 0 | { |
671 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
672 | 0 | float8 result; |
673 | |
|
674 | 0 | result = -arg1; |
675 | 0 | PG_RETURN_FLOAT8(result); |
676 | 0 | } |
677 | | |
678 | | Datum |
679 | | float8up(PG_FUNCTION_ARGS) |
680 | 0 | { |
681 | 0 | float8 arg = PG_GETARG_FLOAT8(0); |
682 | |
|
683 | 0 | PG_RETURN_FLOAT8(arg); |
684 | 0 | } |
685 | | |
686 | | Datum |
687 | | float8larger(PG_FUNCTION_ARGS) |
688 | 0 | { |
689 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
690 | 0 | float8 arg2 = PG_GETARG_FLOAT8(1); |
691 | 0 | float8 result; |
692 | |
|
693 | 0 | if (float8_gt(arg1, arg2)) |
694 | 0 | result = arg1; |
695 | 0 | else |
696 | 0 | result = arg2; |
697 | 0 | PG_RETURN_FLOAT8(result); |
698 | 0 | } |
699 | | |
700 | | Datum |
701 | | float8smaller(PG_FUNCTION_ARGS) |
702 | 0 | { |
703 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
704 | 0 | float8 arg2 = PG_GETARG_FLOAT8(1); |
705 | 0 | float8 result; |
706 | |
|
707 | 0 | if (float8_lt(arg1, arg2)) |
708 | 0 | result = arg1; |
709 | 0 | else |
710 | 0 | result = arg2; |
711 | 0 | PG_RETURN_FLOAT8(result); |
712 | 0 | } |
713 | | |
714 | | |
715 | | /* |
716 | | * ==================== |
717 | | * ARITHMETIC OPERATORS |
718 | | * ==================== |
719 | | */ |
720 | | |
721 | | /* |
722 | | * float4pl - returns arg1 + arg2 |
723 | | * float4mi - returns arg1 - arg2 |
724 | | * float4mul - returns arg1 * arg2 |
725 | | * float4div - returns arg1 / arg2 |
726 | | */ |
727 | | Datum |
728 | | float4pl(PG_FUNCTION_ARGS) |
729 | 0 | { |
730 | 0 | float4 arg1 = PG_GETARG_FLOAT4(0); |
731 | 0 | float4 arg2 = PG_GETARG_FLOAT4(1); |
732 | |
|
733 | 0 | PG_RETURN_FLOAT4(float4_pl(arg1, arg2)); |
734 | 0 | } |
735 | | |
736 | | Datum |
737 | | float4mi(PG_FUNCTION_ARGS) |
738 | 0 | { |
739 | 0 | float4 arg1 = PG_GETARG_FLOAT4(0); |
740 | 0 | float4 arg2 = PG_GETARG_FLOAT4(1); |
741 | |
|
742 | 0 | PG_RETURN_FLOAT4(float4_mi(arg1, arg2)); |
743 | 0 | } |
744 | | |
745 | | Datum |
746 | | float4mul(PG_FUNCTION_ARGS) |
747 | 0 | { |
748 | 0 | float4 arg1 = PG_GETARG_FLOAT4(0); |
749 | 0 | float4 arg2 = PG_GETARG_FLOAT4(1); |
750 | |
|
751 | 0 | PG_RETURN_FLOAT4(float4_mul(arg1, arg2)); |
752 | 0 | } |
753 | | |
754 | | Datum |
755 | | float4div(PG_FUNCTION_ARGS) |
756 | 0 | { |
757 | 0 | float4 arg1 = PG_GETARG_FLOAT4(0); |
758 | 0 | float4 arg2 = PG_GETARG_FLOAT4(1); |
759 | |
|
760 | 0 | PG_RETURN_FLOAT4(float4_div(arg1, arg2)); |
761 | 0 | } |
762 | | |
763 | | /* |
764 | | * float8pl - returns arg1 + arg2 |
765 | | * float8mi - returns arg1 - arg2 |
766 | | * float8mul - returns arg1 * arg2 |
767 | | * float8div - returns arg1 / arg2 |
768 | | */ |
769 | | Datum |
770 | | float8pl(PG_FUNCTION_ARGS) |
771 | 0 | { |
772 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
773 | 0 | float8 arg2 = PG_GETARG_FLOAT8(1); |
774 | |
|
775 | 0 | PG_RETURN_FLOAT8(float8_pl(arg1, arg2)); |
776 | 0 | } |
777 | | |
778 | | Datum |
779 | | float8mi(PG_FUNCTION_ARGS) |
780 | 0 | { |
781 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
782 | 0 | float8 arg2 = PG_GETARG_FLOAT8(1); |
783 | |
|
784 | 0 | PG_RETURN_FLOAT8(float8_mi(arg1, arg2)); |
785 | 0 | } |
786 | | |
787 | | Datum |
788 | | float8mul(PG_FUNCTION_ARGS) |
789 | 0 | { |
790 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
791 | 0 | float8 arg2 = PG_GETARG_FLOAT8(1); |
792 | |
|
793 | 0 | PG_RETURN_FLOAT8(float8_mul(arg1, arg2)); |
794 | 0 | } |
795 | | |
796 | | Datum |
797 | | float8div(PG_FUNCTION_ARGS) |
798 | 0 | { |
799 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
800 | 0 | float8 arg2 = PG_GETARG_FLOAT8(1); |
801 | |
|
802 | 0 | PG_RETURN_FLOAT8(float8_div(arg1, arg2)); |
803 | 0 | } |
804 | | |
805 | | |
806 | | /* |
807 | | * ==================== |
808 | | * COMPARISON OPERATORS |
809 | | * ==================== |
810 | | */ |
811 | | |
812 | | /* |
813 | | * float4{eq,ne,lt,le,gt,ge} - float4/float4 comparison operations |
814 | | */ |
815 | | int |
816 | | float4_cmp_internal(float4 a, float4 b) |
817 | 0 | { |
818 | 0 | if (float4_gt(a, b)) |
819 | 0 | return 1; |
820 | 0 | if (float4_lt(a, b)) |
821 | 0 | return -1; |
822 | 0 | return 0; |
823 | 0 | } |
824 | | |
825 | | Datum |
826 | | float4eq(PG_FUNCTION_ARGS) |
827 | 0 | { |
828 | 0 | float4 arg1 = PG_GETARG_FLOAT4(0); |
829 | 0 | float4 arg2 = PG_GETARG_FLOAT4(1); |
830 | |
|
831 | 0 | PG_RETURN_BOOL(float4_eq(arg1, arg2)); |
832 | 0 | } |
833 | | |
834 | | Datum |
835 | | float4ne(PG_FUNCTION_ARGS) |
836 | 0 | { |
837 | 0 | float4 arg1 = PG_GETARG_FLOAT4(0); |
838 | 0 | float4 arg2 = PG_GETARG_FLOAT4(1); |
839 | |
|
840 | 0 | PG_RETURN_BOOL(float4_ne(arg1, arg2)); |
841 | 0 | } |
842 | | |
843 | | Datum |
844 | | float4lt(PG_FUNCTION_ARGS) |
845 | 0 | { |
846 | 0 | float4 arg1 = PG_GETARG_FLOAT4(0); |
847 | 0 | float4 arg2 = PG_GETARG_FLOAT4(1); |
848 | |
|
849 | 0 | PG_RETURN_BOOL(float4_lt(arg1, arg2)); |
850 | 0 | } |
851 | | |
852 | | Datum |
853 | | float4le(PG_FUNCTION_ARGS) |
854 | 0 | { |
855 | 0 | float4 arg1 = PG_GETARG_FLOAT4(0); |
856 | 0 | float4 arg2 = PG_GETARG_FLOAT4(1); |
857 | |
|
858 | 0 | PG_RETURN_BOOL(float4_le(arg1, arg2)); |
859 | 0 | } |
860 | | |
861 | | Datum |
862 | | float4gt(PG_FUNCTION_ARGS) |
863 | 0 | { |
864 | 0 | float4 arg1 = PG_GETARG_FLOAT4(0); |
865 | 0 | float4 arg2 = PG_GETARG_FLOAT4(1); |
866 | |
|
867 | 0 | PG_RETURN_BOOL(float4_gt(arg1, arg2)); |
868 | 0 | } |
869 | | |
870 | | Datum |
871 | | float4ge(PG_FUNCTION_ARGS) |
872 | 0 | { |
873 | 0 | float4 arg1 = PG_GETARG_FLOAT4(0); |
874 | 0 | float4 arg2 = PG_GETARG_FLOAT4(1); |
875 | |
|
876 | 0 | PG_RETURN_BOOL(float4_ge(arg1, arg2)); |
877 | 0 | } |
878 | | |
879 | | Datum |
880 | | btfloat4cmp(PG_FUNCTION_ARGS) |
881 | 0 | { |
882 | 0 | float4 arg1 = PG_GETARG_FLOAT4(0); |
883 | 0 | float4 arg2 = PG_GETARG_FLOAT4(1); |
884 | |
|
885 | 0 | PG_RETURN_INT32(float4_cmp_internal(arg1, arg2)); |
886 | 0 | } |
887 | | |
888 | | static int |
889 | | btfloat4fastcmp(Datum x, Datum y, SortSupport ssup) |
890 | 0 | { |
891 | 0 | float4 arg1 = DatumGetFloat4(x); |
892 | 0 | float4 arg2 = DatumGetFloat4(y); |
893 | |
|
894 | 0 | return float4_cmp_internal(arg1, arg2); |
895 | 0 | } |
896 | | |
897 | | Datum |
898 | | btfloat4sortsupport(PG_FUNCTION_ARGS) |
899 | 0 | { |
900 | 0 | SortSupport ssup = (SortSupport) PG_GETARG_POINTER(0); |
901 | |
|
902 | 0 | ssup->comparator = btfloat4fastcmp; |
903 | 0 | PG_RETURN_VOID(); |
904 | 0 | } |
905 | | |
906 | | /* |
907 | | * float8{eq,ne,lt,le,gt,ge} - float8/float8 comparison operations |
908 | | */ |
909 | | int |
910 | | float8_cmp_internal(float8 a, float8 b) |
911 | 0 | { |
912 | 0 | if (float8_gt(a, b)) |
913 | 0 | return 1; |
914 | 0 | if (float8_lt(a, b)) |
915 | 0 | return -1; |
916 | 0 | return 0; |
917 | 0 | } |
918 | | |
919 | | Datum |
920 | | float8eq(PG_FUNCTION_ARGS) |
921 | 0 | { |
922 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
923 | 0 | float8 arg2 = PG_GETARG_FLOAT8(1); |
924 | |
|
925 | 0 | PG_RETURN_BOOL(float8_eq(arg1, arg2)); |
926 | 0 | } |
927 | | |
928 | | Datum |
929 | | float8ne(PG_FUNCTION_ARGS) |
930 | 0 | { |
931 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
932 | 0 | float8 arg2 = PG_GETARG_FLOAT8(1); |
933 | |
|
934 | 0 | PG_RETURN_BOOL(float8_ne(arg1, arg2)); |
935 | 0 | } |
936 | | |
937 | | Datum |
938 | | float8lt(PG_FUNCTION_ARGS) |
939 | 0 | { |
940 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
941 | 0 | float8 arg2 = PG_GETARG_FLOAT8(1); |
942 | |
|
943 | 0 | PG_RETURN_BOOL(float8_lt(arg1, arg2)); |
944 | 0 | } |
945 | | |
946 | | Datum |
947 | | float8le(PG_FUNCTION_ARGS) |
948 | 0 | { |
949 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
950 | 0 | float8 arg2 = PG_GETARG_FLOAT8(1); |
951 | |
|
952 | 0 | PG_RETURN_BOOL(float8_le(arg1, arg2)); |
953 | 0 | } |
954 | | |
955 | | Datum |
956 | | float8gt(PG_FUNCTION_ARGS) |
957 | 0 | { |
958 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
959 | 0 | float8 arg2 = PG_GETARG_FLOAT8(1); |
960 | |
|
961 | 0 | PG_RETURN_BOOL(float8_gt(arg1, arg2)); |
962 | 0 | } |
963 | | |
964 | | Datum |
965 | | float8ge(PG_FUNCTION_ARGS) |
966 | 0 | { |
967 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
968 | 0 | float8 arg2 = PG_GETARG_FLOAT8(1); |
969 | |
|
970 | 0 | PG_RETURN_BOOL(float8_ge(arg1, arg2)); |
971 | 0 | } |
972 | | |
973 | | Datum |
974 | | btfloat8cmp(PG_FUNCTION_ARGS) |
975 | 0 | { |
976 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
977 | 0 | float8 arg2 = PG_GETARG_FLOAT8(1); |
978 | |
|
979 | 0 | PG_RETURN_INT32(float8_cmp_internal(arg1, arg2)); |
980 | 0 | } |
981 | | |
982 | | static int |
983 | | btfloat8fastcmp(Datum x, Datum y, SortSupport ssup) |
984 | 0 | { |
985 | 0 | float8 arg1 = DatumGetFloat8(x); |
986 | 0 | float8 arg2 = DatumGetFloat8(y); |
987 | |
|
988 | 0 | return float8_cmp_internal(arg1, arg2); |
989 | 0 | } |
990 | | |
991 | | Datum |
992 | | btfloat8sortsupport(PG_FUNCTION_ARGS) |
993 | 0 | { |
994 | 0 | SortSupport ssup = (SortSupport) PG_GETARG_POINTER(0); |
995 | |
|
996 | 0 | ssup->comparator = btfloat8fastcmp; |
997 | 0 | PG_RETURN_VOID(); |
998 | 0 | } |
999 | | |
1000 | | Datum |
1001 | | btfloat48cmp(PG_FUNCTION_ARGS) |
1002 | 0 | { |
1003 | 0 | float4 arg1 = PG_GETARG_FLOAT4(0); |
1004 | 0 | float8 arg2 = PG_GETARG_FLOAT8(1); |
1005 | | |
1006 | | /* widen float4 to float8 and then compare */ |
1007 | 0 | PG_RETURN_INT32(float8_cmp_internal(arg1, arg2)); |
1008 | 0 | } |
1009 | | |
1010 | | Datum |
1011 | | btfloat84cmp(PG_FUNCTION_ARGS) |
1012 | 0 | { |
1013 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1014 | 0 | float4 arg2 = PG_GETARG_FLOAT4(1); |
1015 | | |
1016 | | /* widen float4 to float8 and then compare */ |
1017 | 0 | PG_RETURN_INT32(float8_cmp_internal(arg1, arg2)); |
1018 | 0 | } |
1019 | | |
1020 | | /* |
1021 | | * in_range support function for float8. |
1022 | | * |
1023 | | * Note: we needn't supply a float8_float4 variant, as implicit coercion |
1024 | | * of the offset value takes care of that scenario just as well. |
1025 | | */ |
1026 | | Datum |
1027 | | in_range_float8_float8(PG_FUNCTION_ARGS) |
1028 | 0 | { |
1029 | 0 | float8 val = PG_GETARG_FLOAT8(0); |
1030 | 0 | float8 base = PG_GETARG_FLOAT8(1); |
1031 | 0 | float8 offset = PG_GETARG_FLOAT8(2); |
1032 | 0 | bool sub = PG_GETARG_BOOL(3); |
1033 | 0 | bool less = PG_GETARG_BOOL(4); |
1034 | 0 | float8 sum; |
1035 | | |
1036 | | /* |
1037 | | * Reject negative or NaN offset. Negative is per spec, and NaN is |
1038 | | * because appropriate semantics for that seem non-obvious. |
1039 | | */ |
1040 | 0 | if (isnan(offset) || offset < 0) |
1041 | 0 | ereport(ERROR, |
1042 | 0 | (errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE), |
1043 | 0 | errmsg("invalid preceding or following size in window function"))); |
1044 | | |
1045 | | /* |
1046 | | * Deal with cases where val and/or base is NaN, following the rule that |
1047 | | * NaN sorts after non-NaN (cf float8_cmp_internal). The offset cannot |
1048 | | * affect the conclusion. |
1049 | | */ |
1050 | 0 | if (isnan(val)) |
1051 | 0 | { |
1052 | 0 | if (isnan(base)) |
1053 | 0 | PG_RETURN_BOOL(true); /* NAN = NAN */ |
1054 | 0 | else |
1055 | 0 | PG_RETURN_BOOL(!less); /* NAN > non-NAN */ |
1056 | 0 | } |
1057 | 0 | else if (isnan(base)) |
1058 | 0 | { |
1059 | 0 | PG_RETURN_BOOL(less); /* non-NAN < NAN */ |
1060 | 0 | } |
1061 | | |
1062 | | /* |
1063 | | * Deal with cases where both base and offset are infinite, and computing |
1064 | | * base +/- offset would produce NaN. This corresponds to a window frame |
1065 | | * whose boundary infinitely precedes +inf or infinitely follows -inf, |
1066 | | * which is not well-defined. For consistency with other cases involving |
1067 | | * infinities, such as the fact that +inf infinitely follows +inf, we |
1068 | | * choose to assume that +inf infinitely precedes +inf and -inf infinitely |
1069 | | * follows -inf, and therefore that all finite and infinite values are in |
1070 | | * such a window frame. |
1071 | | * |
1072 | | * offset is known positive, so we need only check the sign of base in |
1073 | | * this test. |
1074 | | */ |
1075 | 0 | if (isinf(offset) && isinf(base) && |
1076 | 0 | (sub ? base > 0 : base < 0)) |
1077 | 0 | PG_RETURN_BOOL(true); |
1078 | | |
1079 | | /* |
1080 | | * Otherwise it should be safe to compute base +/- offset. We trust the |
1081 | | * FPU to cope if an input is +/-inf or the true sum would overflow, and |
1082 | | * produce a suitably signed infinity, which will compare properly against |
1083 | | * val whether or not that's infinity. |
1084 | | */ |
1085 | 0 | if (sub) |
1086 | 0 | sum = base - offset; |
1087 | 0 | else |
1088 | 0 | sum = base + offset; |
1089 | |
|
1090 | 0 | if (less) |
1091 | 0 | PG_RETURN_BOOL(val <= sum); |
1092 | 0 | else |
1093 | 0 | PG_RETURN_BOOL(val >= sum); |
1094 | 0 | } |
1095 | | |
1096 | | /* |
1097 | | * in_range support function for float4. |
1098 | | * |
1099 | | * We would need a float4_float8 variant in any case, so we supply that and |
1100 | | * let implicit coercion take care of the float4_float4 case. |
1101 | | */ |
1102 | | Datum |
1103 | | in_range_float4_float8(PG_FUNCTION_ARGS) |
1104 | 0 | { |
1105 | 0 | float4 val = PG_GETARG_FLOAT4(0); |
1106 | 0 | float4 base = PG_GETARG_FLOAT4(1); |
1107 | 0 | float8 offset = PG_GETARG_FLOAT8(2); |
1108 | 0 | bool sub = PG_GETARG_BOOL(3); |
1109 | 0 | bool less = PG_GETARG_BOOL(4); |
1110 | 0 | float8 sum; |
1111 | | |
1112 | | /* |
1113 | | * Reject negative or NaN offset. Negative is per spec, and NaN is |
1114 | | * because appropriate semantics for that seem non-obvious. |
1115 | | */ |
1116 | 0 | if (isnan(offset) || offset < 0) |
1117 | 0 | ereport(ERROR, |
1118 | 0 | (errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE), |
1119 | 0 | errmsg("invalid preceding or following size in window function"))); |
1120 | | |
1121 | | /* |
1122 | | * Deal with cases where val and/or base is NaN, following the rule that |
1123 | | * NaN sorts after non-NaN (cf float8_cmp_internal). The offset cannot |
1124 | | * affect the conclusion. |
1125 | | */ |
1126 | 0 | if (isnan(val)) |
1127 | 0 | { |
1128 | 0 | if (isnan(base)) |
1129 | 0 | PG_RETURN_BOOL(true); /* NAN = NAN */ |
1130 | 0 | else |
1131 | 0 | PG_RETURN_BOOL(!less); /* NAN > non-NAN */ |
1132 | 0 | } |
1133 | 0 | else if (isnan(base)) |
1134 | 0 | { |
1135 | 0 | PG_RETURN_BOOL(less); /* non-NAN < NAN */ |
1136 | 0 | } |
1137 | | |
1138 | | /* |
1139 | | * Deal with cases where both base and offset are infinite, and computing |
1140 | | * base +/- offset would produce NaN. This corresponds to a window frame |
1141 | | * whose boundary infinitely precedes +inf or infinitely follows -inf, |
1142 | | * which is not well-defined. For consistency with other cases involving |
1143 | | * infinities, such as the fact that +inf infinitely follows +inf, we |
1144 | | * choose to assume that +inf infinitely precedes +inf and -inf infinitely |
1145 | | * follows -inf, and therefore that all finite and infinite values are in |
1146 | | * such a window frame. |
1147 | | * |
1148 | | * offset is known positive, so we need only check the sign of base in |
1149 | | * this test. |
1150 | | */ |
1151 | 0 | if (isinf(offset) && isinf(base) && |
1152 | 0 | (sub ? base > 0 : base < 0)) |
1153 | 0 | PG_RETURN_BOOL(true); |
1154 | | |
1155 | | /* |
1156 | | * Otherwise it should be safe to compute base +/- offset. We trust the |
1157 | | * FPU to cope if an input is +/-inf or the true sum would overflow, and |
1158 | | * produce a suitably signed infinity, which will compare properly against |
1159 | | * val whether or not that's infinity. |
1160 | | */ |
1161 | 0 | if (sub) |
1162 | 0 | sum = base - offset; |
1163 | 0 | else |
1164 | 0 | sum = base + offset; |
1165 | |
|
1166 | 0 | if (less) |
1167 | 0 | PG_RETURN_BOOL(val <= sum); |
1168 | 0 | else |
1169 | 0 | PG_RETURN_BOOL(val >= sum); |
1170 | 0 | } |
1171 | | |
1172 | | |
1173 | | /* |
1174 | | * =================== |
1175 | | * CONVERSION ROUTINES |
1176 | | * =================== |
1177 | | */ |
1178 | | |
1179 | | /* |
1180 | | * ftod - converts a float4 number to a float8 number |
1181 | | */ |
1182 | | Datum |
1183 | | ftod(PG_FUNCTION_ARGS) |
1184 | 0 | { |
1185 | 0 | float4 num = PG_GETARG_FLOAT4(0); |
1186 | |
|
1187 | 0 | PG_RETURN_FLOAT8((float8) num); |
1188 | 0 | } |
1189 | | |
1190 | | |
1191 | | /* |
1192 | | * dtof - converts a float8 number to a float4 number |
1193 | | */ |
1194 | | Datum |
1195 | | dtof(PG_FUNCTION_ARGS) |
1196 | 0 | { |
1197 | 0 | float8 num = PG_GETARG_FLOAT8(0); |
1198 | 0 | float4 result; |
1199 | |
|
1200 | 0 | result = (float4) num; |
1201 | 0 | if (unlikely(isinf(result)) && !isinf(num)) |
1202 | 0 | float_overflow_error(); |
1203 | 0 | if (unlikely(result == 0.0f) && num != 0.0) |
1204 | 0 | float_underflow_error(); |
1205 | |
|
1206 | 0 | PG_RETURN_FLOAT4(result); |
1207 | 0 | } |
1208 | | |
1209 | | |
1210 | | /* |
1211 | | * dtoi4 - converts a float8 number to an int4 number |
1212 | | */ |
1213 | | Datum |
1214 | | dtoi4(PG_FUNCTION_ARGS) |
1215 | 0 | { |
1216 | 0 | float8 num = PG_GETARG_FLOAT8(0); |
1217 | | |
1218 | | /* |
1219 | | * Get rid of any fractional part in the input. This is so we don't fail |
1220 | | * on just-out-of-range values that would round into range. Note |
1221 | | * assumption that rint() will pass through a NaN or Inf unchanged. |
1222 | | */ |
1223 | 0 | num = rint(num); |
1224 | | |
1225 | | /* Range check */ |
1226 | 0 | if (unlikely(isnan(num) || !FLOAT8_FITS_IN_INT32(num))) |
1227 | 0 | ereport(ERROR, |
1228 | 0 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
1229 | 0 | errmsg("integer out of range"))); |
1230 | | |
1231 | 0 | PG_RETURN_INT32((int32) num); |
1232 | 0 | } |
1233 | | |
1234 | | |
1235 | | /* |
1236 | | * dtoi2 - converts a float8 number to an int2 number |
1237 | | */ |
1238 | | Datum |
1239 | | dtoi2(PG_FUNCTION_ARGS) |
1240 | 0 | { |
1241 | 0 | float8 num = PG_GETARG_FLOAT8(0); |
1242 | | |
1243 | | /* |
1244 | | * Get rid of any fractional part in the input. This is so we don't fail |
1245 | | * on just-out-of-range values that would round into range. Note |
1246 | | * assumption that rint() will pass through a NaN or Inf unchanged. |
1247 | | */ |
1248 | 0 | num = rint(num); |
1249 | | |
1250 | | /* Range check */ |
1251 | 0 | if (unlikely(isnan(num) || !FLOAT8_FITS_IN_INT16(num))) |
1252 | 0 | ereport(ERROR, |
1253 | 0 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
1254 | 0 | errmsg("smallint out of range"))); |
1255 | | |
1256 | 0 | PG_RETURN_INT16((int16) num); |
1257 | 0 | } |
1258 | | |
1259 | | |
1260 | | /* |
1261 | | * i4tod - converts an int4 number to a float8 number |
1262 | | */ |
1263 | | Datum |
1264 | | i4tod(PG_FUNCTION_ARGS) |
1265 | 0 | { |
1266 | 0 | int32 num = PG_GETARG_INT32(0); |
1267 | |
|
1268 | 0 | PG_RETURN_FLOAT8((float8) num); |
1269 | 0 | } |
1270 | | |
1271 | | |
1272 | | /* |
1273 | | * i2tod - converts an int2 number to a float8 number |
1274 | | */ |
1275 | | Datum |
1276 | | i2tod(PG_FUNCTION_ARGS) |
1277 | 0 | { |
1278 | 0 | int16 num = PG_GETARG_INT16(0); |
1279 | |
|
1280 | 0 | PG_RETURN_FLOAT8((float8) num); |
1281 | 0 | } |
1282 | | |
1283 | | |
1284 | | /* |
1285 | | * ftoi4 - converts a float4 number to an int4 number |
1286 | | */ |
1287 | | Datum |
1288 | | ftoi4(PG_FUNCTION_ARGS) |
1289 | 0 | { |
1290 | 0 | float4 num = PG_GETARG_FLOAT4(0); |
1291 | | |
1292 | | /* |
1293 | | * Get rid of any fractional part in the input. This is so we don't fail |
1294 | | * on just-out-of-range values that would round into range. Note |
1295 | | * assumption that rint() will pass through a NaN or Inf unchanged. |
1296 | | */ |
1297 | 0 | num = rint(num); |
1298 | | |
1299 | | /* Range check */ |
1300 | 0 | if (unlikely(isnan(num) || !FLOAT4_FITS_IN_INT32(num))) |
1301 | 0 | ereport(ERROR, |
1302 | 0 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
1303 | 0 | errmsg("integer out of range"))); |
1304 | | |
1305 | 0 | PG_RETURN_INT32((int32) num); |
1306 | 0 | } |
1307 | | |
1308 | | |
1309 | | /* |
1310 | | * ftoi2 - converts a float4 number to an int2 number |
1311 | | */ |
1312 | | Datum |
1313 | | ftoi2(PG_FUNCTION_ARGS) |
1314 | 0 | { |
1315 | 0 | float4 num = PG_GETARG_FLOAT4(0); |
1316 | | |
1317 | | /* |
1318 | | * Get rid of any fractional part in the input. This is so we don't fail |
1319 | | * on just-out-of-range values that would round into range. Note |
1320 | | * assumption that rint() will pass through a NaN or Inf unchanged. |
1321 | | */ |
1322 | 0 | num = rint(num); |
1323 | | |
1324 | | /* Range check */ |
1325 | 0 | if (unlikely(isnan(num) || !FLOAT4_FITS_IN_INT16(num))) |
1326 | 0 | ereport(ERROR, |
1327 | 0 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
1328 | 0 | errmsg("smallint out of range"))); |
1329 | | |
1330 | 0 | PG_RETURN_INT16((int16) num); |
1331 | 0 | } |
1332 | | |
1333 | | |
1334 | | /* |
1335 | | * i4tof - converts an int4 number to a float4 number |
1336 | | */ |
1337 | | Datum |
1338 | | i4tof(PG_FUNCTION_ARGS) |
1339 | 0 | { |
1340 | 0 | int32 num = PG_GETARG_INT32(0); |
1341 | |
|
1342 | 0 | PG_RETURN_FLOAT4((float4) num); |
1343 | 0 | } |
1344 | | |
1345 | | |
1346 | | /* |
1347 | | * i2tof - converts an int2 number to a float4 number |
1348 | | */ |
1349 | | Datum |
1350 | | i2tof(PG_FUNCTION_ARGS) |
1351 | 0 | { |
1352 | 0 | int16 num = PG_GETARG_INT16(0); |
1353 | |
|
1354 | 0 | PG_RETURN_FLOAT4((float4) num); |
1355 | 0 | } |
1356 | | |
1357 | | |
1358 | | /* |
1359 | | * ======================= |
1360 | | * RANDOM FLOAT8 OPERATORS |
1361 | | * ======================= |
1362 | | */ |
1363 | | |
1364 | | /* |
1365 | | * dround - returns ROUND(arg1) |
1366 | | */ |
1367 | | Datum |
1368 | | dround(PG_FUNCTION_ARGS) |
1369 | 0 | { |
1370 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1371 | |
|
1372 | 0 | PG_RETURN_FLOAT8(rint(arg1)); |
1373 | 0 | } |
1374 | | |
1375 | | /* |
1376 | | * dceil - returns the smallest integer greater than or |
1377 | | * equal to the specified float |
1378 | | */ |
1379 | | Datum |
1380 | | dceil(PG_FUNCTION_ARGS) |
1381 | 0 | { |
1382 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1383 | |
|
1384 | 0 | PG_RETURN_FLOAT8(ceil(arg1)); |
1385 | 0 | } |
1386 | | |
1387 | | /* |
1388 | | * dfloor - returns the largest integer lesser than or |
1389 | | * equal to the specified float |
1390 | | */ |
1391 | | Datum |
1392 | | dfloor(PG_FUNCTION_ARGS) |
1393 | 0 | { |
1394 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1395 | |
|
1396 | 0 | PG_RETURN_FLOAT8(floor(arg1)); |
1397 | 0 | } |
1398 | | |
1399 | | /* |
1400 | | * dsign - returns -1 if the argument is less than 0, 0 |
1401 | | * if the argument is equal to 0, and 1 if the |
1402 | | * argument is greater than zero. |
1403 | | */ |
1404 | | Datum |
1405 | | dsign(PG_FUNCTION_ARGS) |
1406 | 0 | { |
1407 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1408 | 0 | float8 result; |
1409 | |
|
1410 | 0 | if (arg1 > 0) |
1411 | 0 | result = 1.0; |
1412 | 0 | else if (arg1 < 0) |
1413 | 0 | result = -1.0; |
1414 | 0 | else |
1415 | 0 | result = 0.0; |
1416 | |
|
1417 | 0 | PG_RETURN_FLOAT8(result); |
1418 | 0 | } |
1419 | | |
1420 | | /* |
1421 | | * dtrunc - returns truncation-towards-zero of arg1, |
1422 | | * arg1 >= 0 ... the greatest integer less |
1423 | | * than or equal to arg1 |
1424 | | * arg1 < 0 ... the least integer greater |
1425 | | * than or equal to arg1 |
1426 | | */ |
1427 | | Datum |
1428 | | dtrunc(PG_FUNCTION_ARGS) |
1429 | 0 | { |
1430 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1431 | 0 | float8 result; |
1432 | |
|
1433 | 0 | if (arg1 >= 0) |
1434 | 0 | result = floor(arg1); |
1435 | 0 | else |
1436 | 0 | result = -floor(-arg1); |
1437 | |
|
1438 | 0 | PG_RETURN_FLOAT8(result); |
1439 | 0 | } |
1440 | | |
1441 | | |
1442 | | /* |
1443 | | * dsqrt - returns square root of arg1 |
1444 | | */ |
1445 | | Datum |
1446 | | dsqrt(PG_FUNCTION_ARGS) |
1447 | 0 | { |
1448 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1449 | 0 | float8 result; |
1450 | |
|
1451 | 0 | if (arg1 < 0) |
1452 | 0 | ereport(ERROR, |
1453 | 0 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION), |
1454 | 0 | errmsg("cannot take square root of a negative number"))); |
1455 | | |
1456 | 0 | result = sqrt(arg1); |
1457 | 0 | if (unlikely(isinf(result)) && !isinf(arg1)) |
1458 | 0 | float_overflow_error(); |
1459 | 0 | if (unlikely(result == 0.0) && arg1 != 0.0) |
1460 | 0 | float_underflow_error(); |
1461 | |
|
1462 | 0 | PG_RETURN_FLOAT8(result); |
1463 | 0 | } |
1464 | | |
1465 | | |
1466 | | /* |
1467 | | * dcbrt - returns cube root of arg1 |
1468 | | */ |
1469 | | Datum |
1470 | | dcbrt(PG_FUNCTION_ARGS) |
1471 | 0 | { |
1472 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1473 | 0 | float8 result; |
1474 | |
|
1475 | 0 | result = cbrt(arg1); |
1476 | 0 | if (unlikely(isinf(result)) && !isinf(arg1)) |
1477 | 0 | float_overflow_error(); |
1478 | 0 | if (unlikely(result == 0.0) && arg1 != 0.0) |
1479 | 0 | float_underflow_error(); |
1480 | |
|
1481 | 0 | PG_RETURN_FLOAT8(result); |
1482 | 0 | } |
1483 | | |
1484 | | |
1485 | | /* |
1486 | | * dpow - returns pow(arg1,arg2) |
1487 | | */ |
1488 | | Datum |
1489 | | dpow(PG_FUNCTION_ARGS) |
1490 | 0 | { |
1491 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1492 | 0 | float8 arg2 = PG_GETARG_FLOAT8(1); |
1493 | 0 | float8 result; |
1494 | | |
1495 | | /* |
1496 | | * The POSIX spec says that NaN ^ 0 = 1, and 1 ^ NaN = 1, while all other |
1497 | | * cases with NaN inputs yield NaN (with no error). Many older platforms |
1498 | | * get one or more of these cases wrong, so deal with them via explicit |
1499 | | * logic rather than trusting pow(3). |
1500 | | */ |
1501 | 0 | if (isnan(arg1)) |
1502 | 0 | { |
1503 | 0 | if (isnan(arg2) || arg2 != 0.0) |
1504 | 0 | PG_RETURN_FLOAT8(get_float8_nan()); |
1505 | 0 | PG_RETURN_FLOAT8(1.0); |
1506 | 0 | } |
1507 | 0 | if (isnan(arg2)) |
1508 | 0 | { |
1509 | 0 | if (arg1 != 1.0) |
1510 | 0 | PG_RETURN_FLOAT8(get_float8_nan()); |
1511 | 0 | PG_RETURN_FLOAT8(1.0); |
1512 | 0 | } |
1513 | | |
1514 | | /* |
1515 | | * The SQL spec requires that we emit a particular SQLSTATE error code for |
1516 | | * certain error conditions. Specifically, we don't return a |
1517 | | * divide-by-zero error code for 0 ^ -1. |
1518 | | */ |
1519 | 0 | if (arg1 == 0 && arg2 < 0) |
1520 | 0 | ereport(ERROR, |
1521 | 0 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION), |
1522 | 0 | errmsg("zero raised to a negative power is undefined"))); |
1523 | 0 | if (arg1 < 0 && floor(arg2) != arg2) |
1524 | 0 | ereport(ERROR, |
1525 | 0 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION), |
1526 | 0 | errmsg("a negative number raised to a non-integer power yields a complex result"))); |
1527 | | |
1528 | | /* |
1529 | | * We don't trust the platform's pow() to handle infinity cases per POSIX |
1530 | | * spec either, so deal with those explicitly too. It's easier to handle |
1531 | | * infinite y first, so that it doesn't matter if x is also infinite. |
1532 | | */ |
1533 | 0 | if (isinf(arg2)) |
1534 | 0 | { |
1535 | 0 | float8 absx = fabs(arg1); |
1536 | |
|
1537 | 0 | if (absx == 1.0) |
1538 | 0 | result = 1.0; |
1539 | 0 | else if (arg2 > 0.0) /* y = +Inf */ |
1540 | 0 | { |
1541 | 0 | if (absx > 1.0) |
1542 | 0 | result = arg2; |
1543 | 0 | else |
1544 | 0 | result = 0.0; |
1545 | 0 | } |
1546 | 0 | else /* y = -Inf */ |
1547 | 0 | { |
1548 | 0 | if (absx > 1.0) |
1549 | 0 | result = 0.0; |
1550 | 0 | else |
1551 | 0 | result = -arg2; |
1552 | 0 | } |
1553 | 0 | } |
1554 | 0 | else if (isinf(arg1)) |
1555 | 0 | { |
1556 | 0 | if (arg2 == 0.0) |
1557 | 0 | result = 1.0; |
1558 | 0 | else if (arg1 > 0.0) /* x = +Inf */ |
1559 | 0 | { |
1560 | 0 | if (arg2 > 0.0) |
1561 | 0 | result = arg1; |
1562 | 0 | else |
1563 | 0 | result = 0.0; |
1564 | 0 | } |
1565 | 0 | else /* x = -Inf */ |
1566 | 0 | { |
1567 | | /* |
1568 | | * Per POSIX, the sign of the result depends on whether y is an |
1569 | | * odd integer. Since x < 0, we already know from the previous |
1570 | | * domain check that y is an integer. It is odd if y/2 is not |
1571 | | * also an integer. |
1572 | | */ |
1573 | 0 | float8 halfy = arg2 / 2; /* should be computed exactly */ |
1574 | 0 | bool yisoddinteger = (floor(halfy) != halfy); |
1575 | |
|
1576 | 0 | if (arg2 > 0.0) |
1577 | 0 | result = yisoddinteger ? arg1 : -arg1; |
1578 | 0 | else |
1579 | 0 | result = yisoddinteger ? -0.0 : 0.0; |
1580 | 0 | } |
1581 | 0 | } |
1582 | 0 | else |
1583 | 0 | { |
1584 | | /* |
1585 | | * pow() sets errno on only some platforms, depending on whether it |
1586 | | * follows _IEEE_, _POSIX_, _XOPEN_, or _SVID_, so we must check both |
1587 | | * errno and invalid output values. (We can't rely on just the |
1588 | | * latter, either; some old platforms return a large-but-finite |
1589 | | * HUGE_VAL when reporting overflow.) |
1590 | | */ |
1591 | 0 | errno = 0; |
1592 | 0 | result = pow(arg1, arg2); |
1593 | 0 | if (errno == EDOM || isnan(result)) |
1594 | 0 | { |
1595 | | /* |
1596 | | * We handled all possible domain errors above, so this should be |
1597 | | * impossible. However, old glibc versions on x86 have a bug that |
1598 | | * causes them to fail this way for abs(y) greater than 2^63: |
1599 | | * |
1600 | | * https://sourceware.org/bugzilla/show_bug.cgi?id=3866 |
1601 | | * |
1602 | | * Hence, if we get here, assume y is finite but large (large |
1603 | | * enough to be certainly even). The result should be 0 if x == 0, |
1604 | | * 1.0 if abs(x) == 1.0, otherwise an overflow or underflow error. |
1605 | | */ |
1606 | 0 | if (arg1 == 0.0) |
1607 | 0 | result = 0.0; /* we already verified y is positive */ |
1608 | 0 | else |
1609 | 0 | { |
1610 | 0 | float8 absx = fabs(arg1); |
1611 | |
|
1612 | 0 | if (absx == 1.0) |
1613 | 0 | result = 1.0; |
1614 | 0 | else if (arg2 >= 0.0 ? (absx > 1.0) : (absx < 1.0)) |
1615 | 0 | float_overflow_error(); |
1616 | 0 | else |
1617 | 0 | float_underflow_error(); |
1618 | 0 | } |
1619 | 0 | } |
1620 | 0 | else if (errno == ERANGE) |
1621 | 0 | { |
1622 | 0 | if (result != 0.0) |
1623 | 0 | float_overflow_error(); |
1624 | 0 | else |
1625 | 0 | float_underflow_error(); |
1626 | 0 | } |
1627 | 0 | else |
1628 | 0 | { |
1629 | 0 | if (unlikely(isinf(result))) |
1630 | 0 | float_overflow_error(); |
1631 | 0 | if (unlikely(result == 0.0) && arg1 != 0.0) |
1632 | 0 | float_underflow_error(); |
1633 | 0 | } |
1634 | 0 | } |
1635 | |
|
1636 | 0 | PG_RETURN_FLOAT8(result); |
1637 | 0 | } |
1638 | | |
1639 | | |
1640 | | /* |
1641 | | * dexp - returns the exponential function of arg1 |
1642 | | */ |
1643 | | Datum |
1644 | | dexp(PG_FUNCTION_ARGS) |
1645 | 0 | { |
1646 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1647 | 0 | float8 result; |
1648 | | |
1649 | | /* |
1650 | | * Handle NaN and Inf cases explicitly. This avoids needing to assume |
1651 | | * that the platform's exp() conforms to POSIX for these cases, and it |
1652 | | * removes some edge cases for the overflow checks below. |
1653 | | */ |
1654 | 0 | if (isnan(arg1)) |
1655 | 0 | result = arg1; |
1656 | 0 | else if (isinf(arg1)) |
1657 | 0 | { |
1658 | | /* Per POSIX, exp(-Inf) is 0 */ |
1659 | 0 | result = (arg1 > 0.0) ? arg1 : 0; |
1660 | 0 | } |
1661 | 0 | else |
1662 | 0 | { |
1663 | | /* |
1664 | | * On some platforms, exp() will not set errno but just return Inf or |
1665 | | * zero to report overflow/underflow; therefore, test both cases. |
1666 | | */ |
1667 | 0 | errno = 0; |
1668 | 0 | result = exp(arg1); |
1669 | 0 | if (unlikely(errno == ERANGE)) |
1670 | 0 | { |
1671 | 0 | if (result != 0.0) |
1672 | 0 | float_overflow_error(); |
1673 | 0 | else |
1674 | 0 | float_underflow_error(); |
1675 | 0 | } |
1676 | 0 | else if (unlikely(isinf(result))) |
1677 | 0 | float_overflow_error(); |
1678 | 0 | else if (unlikely(result == 0.0)) |
1679 | 0 | float_underflow_error(); |
1680 | 0 | } |
1681 | |
|
1682 | 0 | PG_RETURN_FLOAT8(result); |
1683 | 0 | } |
1684 | | |
1685 | | |
1686 | | /* |
1687 | | * dlog1 - returns the natural logarithm of arg1 |
1688 | | */ |
1689 | | Datum |
1690 | | dlog1(PG_FUNCTION_ARGS) |
1691 | 0 | { |
1692 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1693 | 0 | float8 result; |
1694 | | |
1695 | | /* |
1696 | | * Emit particular SQLSTATE error codes for ln(). This is required by the |
1697 | | * SQL standard. |
1698 | | */ |
1699 | 0 | if (arg1 == 0.0) |
1700 | 0 | ereport(ERROR, |
1701 | 0 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG), |
1702 | 0 | errmsg("cannot take logarithm of zero"))); |
1703 | 0 | if (arg1 < 0) |
1704 | 0 | ereport(ERROR, |
1705 | 0 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG), |
1706 | 0 | errmsg("cannot take logarithm of a negative number"))); |
1707 | | |
1708 | 0 | result = log(arg1); |
1709 | 0 | if (unlikely(isinf(result)) && !isinf(arg1)) |
1710 | 0 | float_overflow_error(); |
1711 | 0 | if (unlikely(result == 0.0) && arg1 != 1.0) |
1712 | 0 | float_underflow_error(); |
1713 | |
|
1714 | 0 | PG_RETURN_FLOAT8(result); |
1715 | 0 | } |
1716 | | |
1717 | | |
1718 | | /* |
1719 | | * dlog10 - returns the base 10 logarithm of arg1 |
1720 | | */ |
1721 | | Datum |
1722 | | dlog10(PG_FUNCTION_ARGS) |
1723 | 0 | { |
1724 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1725 | 0 | float8 result; |
1726 | | |
1727 | | /* |
1728 | | * Emit particular SQLSTATE error codes for log(). The SQL spec doesn't |
1729 | | * define log(), but it does define ln(), so it makes sense to emit the |
1730 | | * same error code for an analogous error condition. |
1731 | | */ |
1732 | 0 | if (arg1 == 0.0) |
1733 | 0 | ereport(ERROR, |
1734 | 0 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG), |
1735 | 0 | errmsg("cannot take logarithm of zero"))); |
1736 | 0 | if (arg1 < 0) |
1737 | 0 | ereport(ERROR, |
1738 | 0 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG), |
1739 | 0 | errmsg("cannot take logarithm of a negative number"))); |
1740 | | |
1741 | 0 | result = log10(arg1); |
1742 | 0 | if (unlikely(isinf(result)) && !isinf(arg1)) |
1743 | 0 | float_overflow_error(); |
1744 | 0 | if (unlikely(result == 0.0) && arg1 != 1.0) |
1745 | 0 | float_underflow_error(); |
1746 | |
|
1747 | 0 | PG_RETURN_FLOAT8(result); |
1748 | 0 | } |
1749 | | |
1750 | | |
1751 | | /* |
1752 | | * dacos - returns the arccos of arg1 (radians) |
1753 | | */ |
1754 | | Datum |
1755 | | dacos(PG_FUNCTION_ARGS) |
1756 | 0 | { |
1757 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1758 | 0 | float8 result; |
1759 | | |
1760 | | /* Per the POSIX spec, return NaN if the input is NaN */ |
1761 | 0 | if (isnan(arg1)) |
1762 | 0 | PG_RETURN_FLOAT8(get_float8_nan()); |
1763 | | |
1764 | | /* |
1765 | | * The principal branch of the inverse cosine function maps values in the |
1766 | | * range [-1, 1] to values in the range [0, Pi], so we should reject any |
1767 | | * inputs outside that range and the result will always be finite. |
1768 | | */ |
1769 | 0 | if (arg1 < -1.0 || arg1 > 1.0) |
1770 | 0 | ereport(ERROR, |
1771 | 0 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
1772 | 0 | errmsg("input is out of range"))); |
1773 | | |
1774 | 0 | result = acos(arg1); |
1775 | 0 | if (unlikely(isinf(result))) |
1776 | 0 | float_overflow_error(); |
1777 | |
|
1778 | 0 | PG_RETURN_FLOAT8(result); |
1779 | 0 | } |
1780 | | |
1781 | | |
1782 | | /* |
1783 | | * dasin - returns the arcsin of arg1 (radians) |
1784 | | */ |
1785 | | Datum |
1786 | | dasin(PG_FUNCTION_ARGS) |
1787 | 0 | { |
1788 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1789 | 0 | float8 result; |
1790 | | |
1791 | | /* Per the POSIX spec, return NaN if the input is NaN */ |
1792 | 0 | if (isnan(arg1)) |
1793 | 0 | PG_RETURN_FLOAT8(get_float8_nan()); |
1794 | | |
1795 | | /* |
1796 | | * The principal branch of the inverse sine function maps values in the |
1797 | | * range [-1, 1] to values in the range [-Pi/2, Pi/2], so we should reject |
1798 | | * any inputs outside that range and the result will always be finite. |
1799 | | */ |
1800 | 0 | if (arg1 < -1.0 || arg1 > 1.0) |
1801 | 0 | ereport(ERROR, |
1802 | 0 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
1803 | 0 | errmsg("input is out of range"))); |
1804 | | |
1805 | 0 | result = asin(arg1); |
1806 | 0 | if (unlikely(isinf(result))) |
1807 | 0 | float_overflow_error(); |
1808 | |
|
1809 | 0 | PG_RETURN_FLOAT8(result); |
1810 | 0 | } |
1811 | | |
1812 | | |
1813 | | /* |
1814 | | * datan - returns the arctan of arg1 (radians) |
1815 | | */ |
1816 | | Datum |
1817 | | datan(PG_FUNCTION_ARGS) |
1818 | 0 | { |
1819 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1820 | 0 | float8 result; |
1821 | | |
1822 | | /* Per the POSIX spec, return NaN if the input is NaN */ |
1823 | 0 | if (isnan(arg1)) |
1824 | 0 | PG_RETURN_FLOAT8(get_float8_nan()); |
1825 | | |
1826 | | /* |
1827 | | * The principal branch of the inverse tangent function maps all inputs to |
1828 | | * values in the range [-Pi/2, Pi/2], so the result should always be |
1829 | | * finite, even if the input is infinite. |
1830 | | */ |
1831 | 0 | result = atan(arg1); |
1832 | 0 | if (unlikely(isinf(result))) |
1833 | 0 | float_overflow_error(); |
1834 | |
|
1835 | 0 | PG_RETURN_FLOAT8(result); |
1836 | 0 | } |
1837 | | |
1838 | | |
1839 | | /* |
1840 | | * atan2 - returns the arctan of arg1/arg2 (radians) |
1841 | | */ |
1842 | | Datum |
1843 | | datan2(PG_FUNCTION_ARGS) |
1844 | 0 | { |
1845 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1846 | 0 | float8 arg2 = PG_GETARG_FLOAT8(1); |
1847 | 0 | float8 result; |
1848 | | |
1849 | | /* Per the POSIX spec, return NaN if either input is NaN */ |
1850 | 0 | if (isnan(arg1) || isnan(arg2)) |
1851 | 0 | PG_RETURN_FLOAT8(get_float8_nan()); |
1852 | | |
1853 | | /* |
1854 | | * atan2 maps all inputs to values in the range [-Pi, Pi], so the result |
1855 | | * should always be finite, even if the inputs are infinite. |
1856 | | */ |
1857 | 0 | result = atan2(arg1, arg2); |
1858 | 0 | if (unlikely(isinf(result))) |
1859 | 0 | float_overflow_error(); |
1860 | |
|
1861 | 0 | PG_RETURN_FLOAT8(result); |
1862 | 0 | } |
1863 | | |
1864 | | |
1865 | | /* |
1866 | | * dcos - returns the cosine of arg1 (radians) |
1867 | | */ |
1868 | | Datum |
1869 | | dcos(PG_FUNCTION_ARGS) |
1870 | 0 | { |
1871 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1872 | 0 | float8 result; |
1873 | | |
1874 | | /* Per the POSIX spec, return NaN if the input is NaN */ |
1875 | 0 | if (isnan(arg1)) |
1876 | 0 | PG_RETURN_FLOAT8(get_float8_nan()); |
1877 | | |
1878 | | /* |
1879 | | * cos() is periodic and so theoretically can work for all finite inputs, |
1880 | | * but some implementations may choose to throw error if the input is so |
1881 | | * large that there are no significant digits in the result. So we should |
1882 | | * check for errors. POSIX allows an error to be reported either via |
1883 | | * errno or via fetestexcept(), but currently we only support checking |
1884 | | * errno. (fetestexcept() is rumored to report underflow unreasonably |
1885 | | * early on some platforms, so it's not clear that believing it would be a |
1886 | | * net improvement anyway.) |
1887 | | * |
1888 | | * For infinite inputs, POSIX specifies that the trigonometric functions |
1889 | | * should return a domain error; but we won't notice that unless the |
1890 | | * platform reports via errno, so also explicitly test for infinite |
1891 | | * inputs. |
1892 | | */ |
1893 | 0 | errno = 0; |
1894 | 0 | result = cos(arg1); |
1895 | 0 | if (errno != 0 || isinf(arg1)) |
1896 | 0 | ereport(ERROR, |
1897 | 0 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
1898 | 0 | errmsg("input is out of range"))); |
1899 | 0 | if (unlikely(isinf(result))) |
1900 | 0 | float_overflow_error(); |
1901 | |
|
1902 | 0 | PG_RETURN_FLOAT8(result); |
1903 | 0 | } |
1904 | | |
1905 | | |
1906 | | /* |
1907 | | * dcot - returns the cotangent of arg1 (radians) |
1908 | | */ |
1909 | | Datum |
1910 | | dcot(PG_FUNCTION_ARGS) |
1911 | 0 | { |
1912 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1913 | 0 | float8 result; |
1914 | | |
1915 | | /* Per the POSIX spec, return NaN if the input is NaN */ |
1916 | 0 | if (isnan(arg1)) |
1917 | 0 | PG_RETURN_FLOAT8(get_float8_nan()); |
1918 | | |
1919 | | /* Be sure to throw an error if the input is infinite --- see dcos() */ |
1920 | 0 | errno = 0; |
1921 | 0 | result = tan(arg1); |
1922 | 0 | if (errno != 0 || isinf(arg1)) |
1923 | 0 | ereport(ERROR, |
1924 | 0 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
1925 | 0 | errmsg("input is out of range"))); |
1926 | | |
1927 | 0 | result = 1.0 / result; |
1928 | | /* Not checking for overflow because cot(0) == Inf */ |
1929 | |
|
1930 | 0 | PG_RETURN_FLOAT8(result); |
1931 | 0 | } |
1932 | | |
1933 | | |
1934 | | /* |
1935 | | * dsin - returns the sine of arg1 (radians) |
1936 | | */ |
1937 | | Datum |
1938 | | dsin(PG_FUNCTION_ARGS) |
1939 | 0 | { |
1940 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1941 | 0 | float8 result; |
1942 | | |
1943 | | /* Per the POSIX spec, return NaN if the input is NaN */ |
1944 | 0 | if (isnan(arg1)) |
1945 | 0 | PG_RETURN_FLOAT8(get_float8_nan()); |
1946 | | |
1947 | | /* Be sure to throw an error if the input is infinite --- see dcos() */ |
1948 | 0 | errno = 0; |
1949 | 0 | result = sin(arg1); |
1950 | 0 | if (errno != 0 || isinf(arg1)) |
1951 | 0 | ereport(ERROR, |
1952 | 0 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
1953 | 0 | errmsg("input is out of range"))); |
1954 | 0 | if (unlikely(isinf(result))) |
1955 | 0 | float_overflow_error(); |
1956 | |
|
1957 | 0 | PG_RETURN_FLOAT8(result); |
1958 | 0 | } |
1959 | | |
1960 | | |
1961 | | /* |
1962 | | * dtan - returns the tangent of arg1 (radians) |
1963 | | */ |
1964 | | Datum |
1965 | | dtan(PG_FUNCTION_ARGS) |
1966 | 0 | { |
1967 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1968 | 0 | float8 result; |
1969 | | |
1970 | | /* Per the POSIX spec, return NaN if the input is NaN */ |
1971 | 0 | if (isnan(arg1)) |
1972 | 0 | PG_RETURN_FLOAT8(get_float8_nan()); |
1973 | | |
1974 | | /* Be sure to throw an error if the input is infinite --- see dcos() */ |
1975 | 0 | errno = 0; |
1976 | 0 | result = tan(arg1); |
1977 | 0 | if (errno != 0 || isinf(arg1)) |
1978 | 0 | ereport(ERROR, |
1979 | 0 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
1980 | 0 | errmsg("input is out of range"))); |
1981 | | /* Not checking for overflow because tan(pi/2) == Inf */ |
1982 | | |
1983 | 0 | PG_RETURN_FLOAT8(result); |
1984 | 0 | } |
1985 | | |
1986 | | |
1987 | | /* ========== DEGREE-BASED TRIGONOMETRIC FUNCTIONS ========== */ |
1988 | | |
1989 | | |
1990 | | /* |
1991 | | * Initialize the cached constants declared at the head of this file |
1992 | | * (sin_30 etc). The fact that we need those at all, let alone need this |
1993 | | * Rube-Goldberg-worthy method of initializing them, is because there are |
1994 | | * compilers out there that will precompute expressions such as sin(constant) |
1995 | | * using a sin() function different from what will be used at runtime. If we |
1996 | | * want exact results, we must ensure that none of the scaling constants used |
1997 | | * in the degree-based trig functions are computed that way. To do so, we |
1998 | | * compute them from the variables degree_c_thirty etc, which are also really |
1999 | | * constants, but the compiler cannot assume that. |
2000 | | * |
2001 | | * Other hazards we are trying to forestall with this kluge include the |
2002 | | * possibility that compilers will rearrange the expressions, or compute |
2003 | | * some intermediate results in registers wider than a standard double. |
2004 | | * |
2005 | | * In the places where we use these constants, the typical pattern is like |
2006 | | * volatile float8 sin_x = sin(x * RADIANS_PER_DEGREE); |
2007 | | * return (sin_x / sin_30); |
2008 | | * where we hope to get a value of exactly 1.0 from the division when x = 30. |
2009 | | * The volatile temporary variable is needed on machines with wide float |
2010 | | * registers, to ensure that the result of sin(x) is rounded to double width |
2011 | | * the same as the value of sin_30 has been. Experimentation with gcc shows |
2012 | | * that marking the temp variable volatile is necessary to make the store and |
2013 | | * reload actually happen; hopefully the same trick works for other compilers. |
2014 | | * (gcc's documentation suggests using the -ffloat-store compiler switch to |
2015 | | * ensure this, but that is compiler-specific and it also pessimizes code in |
2016 | | * many places where we don't care about this.) |
2017 | | */ |
2018 | | static void |
2019 | | init_degree_constants(void) |
2020 | 0 | { |
2021 | 0 | sin_30 = sin(degree_c_thirty * RADIANS_PER_DEGREE); |
2022 | 0 | one_minus_cos_60 = 1.0 - cos(degree_c_sixty * RADIANS_PER_DEGREE); |
2023 | 0 | asin_0_5 = asin(degree_c_one_half); |
2024 | 0 | acos_0_5 = acos(degree_c_one_half); |
2025 | 0 | atan_1_0 = atan(degree_c_one); |
2026 | 0 | tan_45 = sind_q1(degree_c_forty_five) / cosd_q1(degree_c_forty_five); |
2027 | 0 | cot_45 = cosd_q1(degree_c_forty_five) / sind_q1(degree_c_forty_five); |
2028 | 0 | degree_consts_set = true; |
2029 | 0 | } |
2030 | | |
2031 | 0 | #define INIT_DEGREE_CONSTANTS() \ |
2032 | 0 | do { \ |
2033 | 0 | if (!degree_consts_set) \ |
2034 | 0 | init_degree_constants(); \ |
2035 | 0 | } while(0) |
2036 | | |
2037 | | |
2038 | | /* |
2039 | | * asind_q1 - returns the inverse sine of x in degrees, for x in |
2040 | | * the range [0, 1]. The result is an angle in the |
2041 | | * first quadrant --- [0, 90] degrees. |
2042 | | * |
2043 | | * For the 3 special case inputs (0, 0.5 and 1), this |
2044 | | * function will return exact values (0, 30 and 90 |
2045 | | * degrees respectively). |
2046 | | */ |
2047 | | static double |
2048 | | asind_q1(double x) |
2049 | 0 | { |
2050 | | /* |
2051 | | * Stitch together inverse sine and cosine functions for the ranges [0, |
2052 | | * 0.5] and (0.5, 1]. Each expression below is guaranteed to return |
2053 | | * exactly 30 for x=0.5, so the result is a continuous monotonic function |
2054 | | * over the full range. |
2055 | | */ |
2056 | 0 | if (x <= 0.5) |
2057 | 0 | { |
2058 | 0 | volatile float8 asin_x = asin(x); |
2059 | |
|
2060 | 0 | return (asin_x / asin_0_5) * 30.0; |
2061 | 0 | } |
2062 | 0 | else |
2063 | 0 | { |
2064 | 0 | volatile float8 acos_x = acos(x); |
2065 | |
|
2066 | 0 | return 90.0 - (acos_x / acos_0_5) * 60.0; |
2067 | 0 | } |
2068 | 0 | } |
2069 | | |
2070 | | |
2071 | | /* |
2072 | | * acosd_q1 - returns the inverse cosine of x in degrees, for x in |
2073 | | * the range [0, 1]. The result is an angle in the |
2074 | | * first quadrant --- [0, 90] degrees. |
2075 | | * |
2076 | | * For the 3 special case inputs (0, 0.5 and 1), this |
2077 | | * function will return exact values (0, 60 and 90 |
2078 | | * degrees respectively). |
2079 | | */ |
2080 | | static double |
2081 | | acosd_q1(double x) |
2082 | 0 | { |
2083 | | /* |
2084 | | * Stitch together inverse sine and cosine functions for the ranges [0, |
2085 | | * 0.5] and (0.5, 1]. Each expression below is guaranteed to return |
2086 | | * exactly 60 for x=0.5, so the result is a continuous monotonic function |
2087 | | * over the full range. |
2088 | | */ |
2089 | 0 | if (x <= 0.5) |
2090 | 0 | { |
2091 | 0 | volatile float8 asin_x = asin(x); |
2092 | |
|
2093 | 0 | return 90.0 - (asin_x / asin_0_5) * 30.0; |
2094 | 0 | } |
2095 | 0 | else |
2096 | 0 | { |
2097 | 0 | volatile float8 acos_x = acos(x); |
2098 | |
|
2099 | 0 | return (acos_x / acos_0_5) * 60.0; |
2100 | 0 | } |
2101 | 0 | } |
2102 | | |
2103 | | |
2104 | | /* |
2105 | | * dacosd - returns the arccos of arg1 (degrees) |
2106 | | */ |
2107 | | Datum |
2108 | | dacosd(PG_FUNCTION_ARGS) |
2109 | 0 | { |
2110 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
2111 | 0 | float8 result; |
2112 | | |
2113 | | /* Per the POSIX spec, return NaN if the input is NaN */ |
2114 | 0 | if (isnan(arg1)) |
2115 | 0 | PG_RETURN_FLOAT8(get_float8_nan()); |
2116 | | |
2117 | 0 | INIT_DEGREE_CONSTANTS(); |
2118 | | |
2119 | | /* |
2120 | | * The principal branch of the inverse cosine function maps values in the |
2121 | | * range [-1, 1] to values in the range [0, 180], so we should reject any |
2122 | | * inputs outside that range and the result will always be finite. |
2123 | | */ |
2124 | 0 | if (arg1 < -1.0 || arg1 > 1.0) |
2125 | 0 | ereport(ERROR, |
2126 | 0 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
2127 | 0 | errmsg("input is out of range"))); |
2128 | | |
2129 | 0 | if (arg1 >= 0.0) |
2130 | 0 | result = acosd_q1(arg1); |
2131 | 0 | else |
2132 | 0 | result = 90.0 + asind_q1(-arg1); |
2133 | |
|
2134 | 0 | if (unlikely(isinf(result))) |
2135 | 0 | float_overflow_error(); |
2136 | |
|
2137 | 0 | PG_RETURN_FLOAT8(result); |
2138 | 0 | } |
2139 | | |
2140 | | |
2141 | | /* |
2142 | | * dasind - returns the arcsin of arg1 (degrees) |
2143 | | */ |
2144 | | Datum |
2145 | | dasind(PG_FUNCTION_ARGS) |
2146 | 0 | { |
2147 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
2148 | 0 | float8 result; |
2149 | | |
2150 | | /* Per the POSIX spec, return NaN if the input is NaN */ |
2151 | 0 | if (isnan(arg1)) |
2152 | 0 | PG_RETURN_FLOAT8(get_float8_nan()); |
2153 | | |
2154 | 0 | INIT_DEGREE_CONSTANTS(); |
2155 | | |
2156 | | /* |
2157 | | * The principal branch of the inverse sine function maps values in the |
2158 | | * range [-1, 1] to values in the range [-90, 90], so we should reject any |
2159 | | * inputs outside that range and the result will always be finite. |
2160 | | */ |
2161 | 0 | if (arg1 < -1.0 || arg1 > 1.0) |
2162 | 0 | ereport(ERROR, |
2163 | 0 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
2164 | 0 | errmsg("input is out of range"))); |
2165 | | |
2166 | 0 | if (arg1 >= 0.0) |
2167 | 0 | result = asind_q1(arg1); |
2168 | 0 | else |
2169 | 0 | result = -asind_q1(-arg1); |
2170 | |
|
2171 | 0 | if (unlikely(isinf(result))) |
2172 | 0 | float_overflow_error(); |
2173 | |
|
2174 | 0 | PG_RETURN_FLOAT8(result); |
2175 | 0 | } |
2176 | | |
2177 | | |
2178 | | /* |
2179 | | * datand - returns the arctan of arg1 (degrees) |
2180 | | */ |
2181 | | Datum |
2182 | | datand(PG_FUNCTION_ARGS) |
2183 | 0 | { |
2184 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
2185 | 0 | float8 result; |
2186 | 0 | volatile float8 atan_arg1; |
2187 | | |
2188 | | /* Per the POSIX spec, return NaN if the input is NaN */ |
2189 | 0 | if (isnan(arg1)) |
2190 | 0 | PG_RETURN_FLOAT8(get_float8_nan()); |
2191 | | |
2192 | 0 | INIT_DEGREE_CONSTANTS(); |
2193 | | |
2194 | | /* |
2195 | | * The principal branch of the inverse tangent function maps all inputs to |
2196 | | * values in the range [-90, 90], so the result should always be finite, |
2197 | | * even if the input is infinite. Additionally, we take care to ensure |
2198 | | * than when arg1 is 1, the result is exactly 45. |
2199 | | */ |
2200 | 0 | atan_arg1 = atan(arg1); |
2201 | 0 | result = (atan_arg1 / atan_1_0) * 45.0; |
2202 | |
|
2203 | 0 | if (unlikely(isinf(result))) |
2204 | 0 | float_overflow_error(); |
2205 | |
|
2206 | 0 | PG_RETURN_FLOAT8(result); |
2207 | 0 | } |
2208 | | |
2209 | | |
2210 | | /* |
2211 | | * atan2d - returns the arctan of arg1/arg2 (degrees) |
2212 | | */ |
2213 | | Datum |
2214 | | datan2d(PG_FUNCTION_ARGS) |
2215 | 0 | { |
2216 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
2217 | 0 | float8 arg2 = PG_GETARG_FLOAT8(1); |
2218 | 0 | float8 result; |
2219 | 0 | volatile float8 atan2_arg1_arg2; |
2220 | | |
2221 | | /* Per the POSIX spec, return NaN if either input is NaN */ |
2222 | 0 | if (isnan(arg1) || isnan(arg2)) |
2223 | 0 | PG_RETURN_FLOAT8(get_float8_nan()); |
2224 | | |
2225 | 0 | INIT_DEGREE_CONSTANTS(); |
2226 | | |
2227 | | /* |
2228 | | * atan2d maps all inputs to values in the range [-180, 180], so the |
2229 | | * result should always be finite, even if the inputs are infinite. |
2230 | | * |
2231 | | * Note: this coding assumes that atan(1.0) is a suitable scaling constant |
2232 | | * to get an exact result from atan2(). This might well fail on us at |
2233 | | * some point, requiring us to decide exactly what inputs we think we're |
2234 | | * going to guarantee an exact result for. |
2235 | | */ |
2236 | 0 | atan2_arg1_arg2 = atan2(arg1, arg2); |
2237 | 0 | result = (atan2_arg1_arg2 / atan_1_0) * 45.0; |
2238 | |
|
2239 | 0 | if (unlikely(isinf(result))) |
2240 | 0 | float_overflow_error(); |
2241 | |
|
2242 | 0 | PG_RETURN_FLOAT8(result); |
2243 | 0 | } |
2244 | | |
2245 | | |
2246 | | /* |
2247 | | * sind_0_to_30 - returns the sine of an angle that lies between 0 and |
2248 | | * 30 degrees. This will return exactly 0 when x is 0, |
2249 | | * and exactly 0.5 when x is 30 degrees. |
2250 | | */ |
2251 | | static double |
2252 | | sind_0_to_30(double x) |
2253 | 0 | { |
2254 | 0 | volatile float8 sin_x = sin(x * RADIANS_PER_DEGREE); |
2255 | |
|
2256 | 0 | return (sin_x / sin_30) / 2.0; |
2257 | 0 | } |
2258 | | |
2259 | | |
2260 | | /* |
2261 | | * cosd_0_to_60 - returns the cosine of an angle that lies between 0 |
2262 | | * and 60 degrees. This will return exactly 1 when x |
2263 | | * is 0, and exactly 0.5 when x is 60 degrees. |
2264 | | */ |
2265 | | static double |
2266 | | cosd_0_to_60(double x) |
2267 | 0 | { |
2268 | 0 | volatile float8 one_minus_cos_x = 1.0 - cos(x * RADIANS_PER_DEGREE); |
2269 | |
|
2270 | 0 | return 1.0 - (one_minus_cos_x / one_minus_cos_60) / 2.0; |
2271 | 0 | } |
2272 | | |
2273 | | |
2274 | | /* |
2275 | | * sind_q1 - returns the sine of an angle in the first quadrant |
2276 | | * (0 to 90 degrees). |
2277 | | */ |
2278 | | static double |
2279 | | sind_q1(double x) |
2280 | 0 | { |
2281 | | /* |
2282 | | * Stitch together the sine and cosine functions for the ranges [0, 30] |
2283 | | * and (30, 90]. These guarantee to return exact answers at their |
2284 | | * endpoints, so the overall result is a continuous monotonic function |
2285 | | * that gives exact results when x = 0, 30 and 90 degrees. |
2286 | | */ |
2287 | 0 | if (x <= 30.0) |
2288 | 0 | return sind_0_to_30(x); |
2289 | 0 | else |
2290 | 0 | return cosd_0_to_60(90.0 - x); |
2291 | 0 | } |
2292 | | |
2293 | | |
2294 | | /* |
2295 | | * cosd_q1 - returns the cosine of an angle in the first quadrant |
2296 | | * (0 to 90 degrees). |
2297 | | */ |
2298 | | static double |
2299 | | cosd_q1(double x) |
2300 | 0 | { |
2301 | | /* |
2302 | | * Stitch together the sine and cosine functions for the ranges [0, 60] |
2303 | | * and (60, 90]. These guarantee to return exact answers at their |
2304 | | * endpoints, so the overall result is a continuous monotonic function |
2305 | | * that gives exact results when x = 0, 60 and 90 degrees. |
2306 | | */ |
2307 | 0 | if (x <= 60.0) |
2308 | 0 | return cosd_0_to_60(x); |
2309 | 0 | else |
2310 | 0 | return sind_0_to_30(90.0 - x); |
2311 | 0 | } |
2312 | | |
2313 | | |
2314 | | /* |
2315 | | * dcosd - returns the cosine of arg1 (degrees) |
2316 | | */ |
2317 | | Datum |
2318 | | dcosd(PG_FUNCTION_ARGS) |
2319 | 0 | { |
2320 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
2321 | 0 | float8 result; |
2322 | 0 | int sign = 1; |
2323 | | |
2324 | | /* |
2325 | | * Per the POSIX spec, return NaN if the input is NaN and throw an error |
2326 | | * if the input is infinite. |
2327 | | */ |
2328 | 0 | if (isnan(arg1)) |
2329 | 0 | PG_RETURN_FLOAT8(get_float8_nan()); |
2330 | | |
2331 | 0 | if (isinf(arg1)) |
2332 | 0 | ereport(ERROR, |
2333 | 0 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
2334 | 0 | errmsg("input is out of range"))); |
2335 | | |
2336 | 0 | INIT_DEGREE_CONSTANTS(); |
2337 | | |
2338 | | /* Reduce the range of the input to [0,90] degrees */ |
2339 | 0 | arg1 = fmod(arg1, 360.0); |
2340 | |
|
2341 | 0 | if (arg1 < 0.0) |
2342 | 0 | { |
2343 | | /* cosd(-x) = cosd(x) */ |
2344 | 0 | arg1 = -arg1; |
2345 | 0 | } |
2346 | |
|
2347 | 0 | if (arg1 > 180.0) |
2348 | 0 | { |
2349 | | /* cosd(360-x) = cosd(x) */ |
2350 | 0 | arg1 = 360.0 - arg1; |
2351 | 0 | } |
2352 | |
|
2353 | 0 | if (arg1 > 90.0) |
2354 | 0 | { |
2355 | | /* cosd(180-x) = -cosd(x) */ |
2356 | 0 | arg1 = 180.0 - arg1; |
2357 | 0 | sign = -sign; |
2358 | 0 | } |
2359 | |
|
2360 | 0 | result = sign * cosd_q1(arg1); |
2361 | |
|
2362 | 0 | if (unlikely(isinf(result))) |
2363 | 0 | float_overflow_error(); |
2364 | |
|
2365 | 0 | PG_RETURN_FLOAT8(result); |
2366 | 0 | } |
2367 | | |
2368 | | |
2369 | | /* |
2370 | | * dcotd - returns the cotangent of arg1 (degrees) |
2371 | | */ |
2372 | | Datum |
2373 | | dcotd(PG_FUNCTION_ARGS) |
2374 | 0 | { |
2375 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
2376 | 0 | float8 result; |
2377 | 0 | volatile float8 cot_arg1; |
2378 | 0 | int sign = 1; |
2379 | | |
2380 | | /* |
2381 | | * Per the POSIX spec, return NaN if the input is NaN and throw an error |
2382 | | * if the input is infinite. |
2383 | | */ |
2384 | 0 | if (isnan(arg1)) |
2385 | 0 | PG_RETURN_FLOAT8(get_float8_nan()); |
2386 | | |
2387 | 0 | if (isinf(arg1)) |
2388 | 0 | ereport(ERROR, |
2389 | 0 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
2390 | 0 | errmsg("input is out of range"))); |
2391 | | |
2392 | 0 | INIT_DEGREE_CONSTANTS(); |
2393 | | |
2394 | | /* Reduce the range of the input to [0,90] degrees */ |
2395 | 0 | arg1 = fmod(arg1, 360.0); |
2396 | |
|
2397 | 0 | if (arg1 < 0.0) |
2398 | 0 | { |
2399 | | /* cotd(-x) = -cotd(x) */ |
2400 | 0 | arg1 = -arg1; |
2401 | 0 | sign = -sign; |
2402 | 0 | } |
2403 | |
|
2404 | 0 | if (arg1 > 180.0) |
2405 | 0 | { |
2406 | | /* cotd(360-x) = -cotd(x) */ |
2407 | 0 | arg1 = 360.0 - arg1; |
2408 | 0 | sign = -sign; |
2409 | 0 | } |
2410 | |
|
2411 | 0 | if (arg1 > 90.0) |
2412 | 0 | { |
2413 | | /* cotd(180-x) = -cotd(x) */ |
2414 | 0 | arg1 = 180.0 - arg1; |
2415 | 0 | sign = -sign; |
2416 | 0 | } |
2417 | |
|
2418 | 0 | cot_arg1 = cosd_q1(arg1) / sind_q1(arg1); |
2419 | 0 | result = sign * (cot_arg1 / cot_45); |
2420 | | |
2421 | | /* |
2422 | | * On some machines we get cotd(270) = minus zero, but this isn't always |
2423 | | * true. For portability, and because the user constituency for this |
2424 | | * function probably doesn't want minus zero, force it to plain zero. |
2425 | | */ |
2426 | 0 | if (result == 0.0) |
2427 | 0 | result = 0.0; |
2428 | | |
2429 | | /* Not checking for overflow because cotd(0) == Inf */ |
2430 | |
|
2431 | 0 | PG_RETURN_FLOAT8(result); |
2432 | 0 | } |
2433 | | |
2434 | | |
2435 | | /* |
2436 | | * dsind - returns the sine of arg1 (degrees) |
2437 | | */ |
2438 | | Datum |
2439 | | dsind(PG_FUNCTION_ARGS) |
2440 | 0 | { |
2441 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
2442 | 0 | float8 result; |
2443 | 0 | int sign = 1; |
2444 | | |
2445 | | /* |
2446 | | * Per the POSIX spec, return NaN if the input is NaN and throw an error |
2447 | | * if the input is infinite. |
2448 | | */ |
2449 | 0 | if (isnan(arg1)) |
2450 | 0 | PG_RETURN_FLOAT8(get_float8_nan()); |
2451 | | |
2452 | 0 | if (isinf(arg1)) |
2453 | 0 | ereport(ERROR, |
2454 | 0 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
2455 | 0 | errmsg("input is out of range"))); |
2456 | | |
2457 | 0 | INIT_DEGREE_CONSTANTS(); |
2458 | | |
2459 | | /* Reduce the range of the input to [0,90] degrees */ |
2460 | 0 | arg1 = fmod(arg1, 360.0); |
2461 | |
|
2462 | 0 | if (arg1 < 0.0) |
2463 | 0 | { |
2464 | | /* sind(-x) = -sind(x) */ |
2465 | 0 | arg1 = -arg1; |
2466 | 0 | sign = -sign; |
2467 | 0 | } |
2468 | |
|
2469 | 0 | if (arg1 > 180.0) |
2470 | 0 | { |
2471 | | /* sind(360-x) = -sind(x) */ |
2472 | 0 | arg1 = 360.0 - arg1; |
2473 | 0 | sign = -sign; |
2474 | 0 | } |
2475 | |
|
2476 | 0 | if (arg1 > 90.0) |
2477 | 0 | { |
2478 | | /* sind(180-x) = sind(x) */ |
2479 | 0 | arg1 = 180.0 - arg1; |
2480 | 0 | } |
2481 | |
|
2482 | 0 | result = sign * sind_q1(arg1); |
2483 | |
|
2484 | 0 | if (unlikely(isinf(result))) |
2485 | 0 | float_overflow_error(); |
2486 | |
|
2487 | 0 | PG_RETURN_FLOAT8(result); |
2488 | 0 | } |
2489 | | |
2490 | | |
2491 | | /* |
2492 | | * dtand - returns the tangent of arg1 (degrees) |
2493 | | */ |
2494 | | Datum |
2495 | | dtand(PG_FUNCTION_ARGS) |
2496 | 0 | { |
2497 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
2498 | 0 | float8 result; |
2499 | 0 | volatile float8 tan_arg1; |
2500 | 0 | int sign = 1; |
2501 | | |
2502 | | /* |
2503 | | * Per the POSIX spec, return NaN if the input is NaN and throw an error |
2504 | | * if the input is infinite. |
2505 | | */ |
2506 | 0 | if (isnan(arg1)) |
2507 | 0 | PG_RETURN_FLOAT8(get_float8_nan()); |
2508 | | |
2509 | 0 | if (isinf(arg1)) |
2510 | 0 | ereport(ERROR, |
2511 | 0 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
2512 | 0 | errmsg("input is out of range"))); |
2513 | | |
2514 | 0 | INIT_DEGREE_CONSTANTS(); |
2515 | | |
2516 | | /* Reduce the range of the input to [0,90] degrees */ |
2517 | 0 | arg1 = fmod(arg1, 360.0); |
2518 | |
|
2519 | 0 | if (arg1 < 0.0) |
2520 | 0 | { |
2521 | | /* tand(-x) = -tand(x) */ |
2522 | 0 | arg1 = -arg1; |
2523 | 0 | sign = -sign; |
2524 | 0 | } |
2525 | |
|
2526 | 0 | if (arg1 > 180.0) |
2527 | 0 | { |
2528 | | /* tand(360-x) = -tand(x) */ |
2529 | 0 | arg1 = 360.0 - arg1; |
2530 | 0 | sign = -sign; |
2531 | 0 | } |
2532 | |
|
2533 | 0 | if (arg1 > 90.0) |
2534 | 0 | { |
2535 | | /* tand(180-x) = -tand(x) */ |
2536 | 0 | arg1 = 180.0 - arg1; |
2537 | 0 | sign = -sign; |
2538 | 0 | } |
2539 | |
|
2540 | 0 | tan_arg1 = sind_q1(arg1) / cosd_q1(arg1); |
2541 | 0 | result = sign * (tan_arg1 / tan_45); |
2542 | | |
2543 | | /* |
2544 | | * On some machines we get tand(180) = minus zero, but this isn't always |
2545 | | * true. For portability, and because the user constituency for this |
2546 | | * function probably doesn't want minus zero, force it to plain zero. |
2547 | | */ |
2548 | 0 | if (result == 0.0) |
2549 | 0 | result = 0.0; |
2550 | | |
2551 | | /* Not checking for overflow because tand(90) == Inf */ |
2552 | |
|
2553 | 0 | PG_RETURN_FLOAT8(result); |
2554 | 0 | } |
2555 | | |
2556 | | |
2557 | | /* |
2558 | | * degrees - returns degrees converted from radians |
2559 | | */ |
2560 | | Datum |
2561 | | degrees(PG_FUNCTION_ARGS) |
2562 | 0 | { |
2563 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
2564 | |
|
2565 | 0 | PG_RETURN_FLOAT8(float8_div(arg1, RADIANS_PER_DEGREE)); |
2566 | 0 | } |
2567 | | |
2568 | | |
2569 | | /* |
2570 | | * dpi - returns the constant PI |
2571 | | */ |
2572 | | Datum |
2573 | | dpi(PG_FUNCTION_ARGS) |
2574 | 0 | { |
2575 | 0 | PG_RETURN_FLOAT8(M_PI); |
2576 | 0 | } |
2577 | | |
2578 | | |
2579 | | /* |
2580 | | * radians - returns radians converted from degrees |
2581 | | */ |
2582 | | Datum |
2583 | | radians(PG_FUNCTION_ARGS) |
2584 | 0 | { |
2585 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
2586 | |
|
2587 | 0 | PG_RETURN_FLOAT8(float8_mul(arg1, RADIANS_PER_DEGREE)); |
2588 | 0 | } |
2589 | | |
2590 | | |
2591 | | /* ========== HYPERBOLIC FUNCTIONS ========== */ |
2592 | | |
2593 | | |
2594 | | /* |
2595 | | * dsinh - returns the hyperbolic sine of arg1 |
2596 | | */ |
2597 | | Datum |
2598 | | dsinh(PG_FUNCTION_ARGS) |
2599 | 0 | { |
2600 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
2601 | 0 | float8 result; |
2602 | |
|
2603 | 0 | errno = 0; |
2604 | 0 | result = sinh(arg1); |
2605 | | |
2606 | | /* |
2607 | | * if an ERANGE error occurs, it means there is an overflow. For sinh, |
2608 | | * the result should be either -infinity or infinity, depending on the |
2609 | | * sign of arg1. |
2610 | | */ |
2611 | 0 | if (errno == ERANGE) |
2612 | 0 | { |
2613 | 0 | if (arg1 < 0) |
2614 | 0 | result = -get_float8_infinity(); |
2615 | 0 | else |
2616 | 0 | result = get_float8_infinity(); |
2617 | 0 | } |
2618 | |
|
2619 | 0 | PG_RETURN_FLOAT8(result); |
2620 | 0 | } |
2621 | | |
2622 | | |
2623 | | /* |
2624 | | * dcosh - returns the hyperbolic cosine of arg1 |
2625 | | */ |
2626 | | Datum |
2627 | | dcosh(PG_FUNCTION_ARGS) |
2628 | 0 | { |
2629 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
2630 | 0 | float8 result; |
2631 | |
|
2632 | 0 | errno = 0; |
2633 | 0 | result = cosh(arg1); |
2634 | | |
2635 | | /* |
2636 | | * if an ERANGE error occurs, it means there is an overflow. As cosh is |
2637 | | * always positive, it always means the result is positive infinity. |
2638 | | */ |
2639 | 0 | if (errno == ERANGE) |
2640 | 0 | result = get_float8_infinity(); |
2641 | |
|
2642 | 0 | if (unlikely(result == 0.0)) |
2643 | 0 | float_underflow_error(); |
2644 | |
|
2645 | 0 | PG_RETURN_FLOAT8(result); |
2646 | 0 | } |
2647 | | |
2648 | | /* |
2649 | | * dtanh - returns the hyperbolic tangent of arg1 |
2650 | | */ |
2651 | | Datum |
2652 | | dtanh(PG_FUNCTION_ARGS) |
2653 | 0 | { |
2654 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
2655 | 0 | float8 result; |
2656 | | |
2657 | | /* |
2658 | | * For tanh, we don't need an errno check because it never overflows. |
2659 | | */ |
2660 | 0 | result = tanh(arg1); |
2661 | |
|
2662 | 0 | if (unlikely(isinf(result))) |
2663 | 0 | float_overflow_error(); |
2664 | |
|
2665 | 0 | PG_RETURN_FLOAT8(result); |
2666 | 0 | } |
2667 | | |
2668 | | /* |
2669 | | * dasinh - returns the inverse hyperbolic sine of arg1 |
2670 | | */ |
2671 | | Datum |
2672 | | dasinh(PG_FUNCTION_ARGS) |
2673 | 0 | { |
2674 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
2675 | 0 | float8 result; |
2676 | | |
2677 | | /* |
2678 | | * For asinh, we don't need an errno check because it never overflows. |
2679 | | */ |
2680 | 0 | result = asinh(arg1); |
2681 | |
|
2682 | 0 | PG_RETURN_FLOAT8(result); |
2683 | 0 | } |
2684 | | |
2685 | | /* |
2686 | | * dacosh - returns the inverse hyperbolic cosine of arg1 |
2687 | | */ |
2688 | | Datum |
2689 | | dacosh(PG_FUNCTION_ARGS) |
2690 | 0 | { |
2691 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
2692 | 0 | float8 result; |
2693 | | |
2694 | | /* |
2695 | | * acosh is only defined for inputs >= 1.0. By checking this ourselves, |
2696 | | * we need not worry about checking for an EDOM error, which is a good |
2697 | | * thing because some implementations will report that for NaN. Otherwise, |
2698 | | * no error is possible. |
2699 | | */ |
2700 | 0 | if (arg1 < 1.0) |
2701 | 0 | ereport(ERROR, |
2702 | 0 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
2703 | 0 | errmsg("input is out of range"))); |
2704 | | |
2705 | 0 | result = acosh(arg1); |
2706 | |
|
2707 | 0 | PG_RETURN_FLOAT8(result); |
2708 | 0 | } |
2709 | | |
2710 | | /* |
2711 | | * datanh - returns the inverse hyperbolic tangent of arg1 |
2712 | | */ |
2713 | | Datum |
2714 | | datanh(PG_FUNCTION_ARGS) |
2715 | 0 | { |
2716 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
2717 | 0 | float8 result; |
2718 | | |
2719 | | /* |
2720 | | * atanh is only defined for inputs between -1 and 1. By checking this |
2721 | | * ourselves, we need not worry about checking for an EDOM error, which is |
2722 | | * a good thing because some implementations will report that for NaN. |
2723 | | */ |
2724 | 0 | if (arg1 < -1.0 || arg1 > 1.0) |
2725 | 0 | ereport(ERROR, |
2726 | 0 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
2727 | 0 | errmsg("input is out of range"))); |
2728 | | |
2729 | | /* |
2730 | | * Also handle the infinity cases ourselves; this is helpful because old |
2731 | | * glibc versions may produce the wrong errno for this. All other inputs |
2732 | | * cannot produce an error. |
2733 | | */ |
2734 | 0 | if (arg1 == -1.0) |
2735 | 0 | result = -get_float8_infinity(); |
2736 | 0 | else if (arg1 == 1.0) |
2737 | 0 | result = get_float8_infinity(); |
2738 | 0 | else |
2739 | 0 | result = atanh(arg1); |
2740 | |
|
2741 | 0 | PG_RETURN_FLOAT8(result); |
2742 | 0 | } |
2743 | | |
2744 | | |
2745 | | /* ========== ERROR FUNCTIONS ========== */ |
2746 | | |
2747 | | |
2748 | | /* |
2749 | | * derf - returns the error function: erf(arg1) |
2750 | | */ |
2751 | | Datum |
2752 | | derf(PG_FUNCTION_ARGS) |
2753 | 0 | { |
2754 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
2755 | 0 | float8 result; |
2756 | | |
2757 | | /* |
2758 | | * For erf, we don't need an errno check because it never overflows. |
2759 | | */ |
2760 | 0 | result = erf(arg1); |
2761 | |
|
2762 | 0 | if (unlikely(isinf(result))) |
2763 | 0 | float_overflow_error(); |
2764 | |
|
2765 | 0 | PG_RETURN_FLOAT8(result); |
2766 | 0 | } |
2767 | | |
2768 | | /* |
2769 | | * derfc - returns the complementary error function: 1 - erf(arg1) |
2770 | | */ |
2771 | | Datum |
2772 | | derfc(PG_FUNCTION_ARGS) |
2773 | 0 | { |
2774 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
2775 | 0 | float8 result; |
2776 | | |
2777 | | /* |
2778 | | * For erfc, we don't need an errno check because it never overflows. |
2779 | | */ |
2780 | 0 | result = erfc(arg1); |
2781 | |
|
2782 | 0 | if (unlikely(isinf(result))) |
2783 | 0 | float_overflow_error(); |
2784 | |
|
2785 | 0 | PG_RETURN_FLOAT8(result); |
2786 | 0 | } |
2787 | | |
2788 | | |
2789 | | /* ========== GAMMA FUNCTIONS ========== */ |
2790 | | |
2791 | | |
2792 | | /* |
2793 | | * dgamma - returns the gamma function of arg1 |
2794 | | */ |
2795 | | Datum |
2796 | | dgamma(PG_FUNCTION_ARGS) |
2797 | 0 | { |
2798 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
2799 | 0 | float8 result; |
2800 | | |
2801 | | /* |
2802 | | * Handle NaN and Inf cases explicitly. This simplifies the overflow |
2803 | | * checks on platforms that do not set errno. |
2804 | | */ |
2805 | 0 | if (isnan(arg1)) |
2806 | 0 | result = arg1; |
2807 | 0 | else if (isinf(arg1)) |
2808 | 0 | { |
2809 | | /* Per POSIX, an input of -Inf causes a domain error */ |
2810 | 0 | if (arg1 < 0) |
2811 | 0 | { |
2812 | 0 | float_overflow_error(); |
2813 | 0 | result = get_float8_nan(); /* keep compiler quiet */ |
2814 | 0 | } |
2815 | 0 | else |
2816 | 0 | result = arg1; |
2817 | 0 | } |
2818 | 0 | else |
2819 | 0 | { |
2820 | | /* |
2821 | | * Note: the POSIX/C99 gamma function is called "tgamma", not "gamma". |
2822 | | * |
2823 | | * On some platforms, tgamma() will not set errno but just return Inf, |
2824 | | * NaN, or zero to report overflow/underflow; therefore, test those |
2825 | | * cases explicitly (note that, like the exponential function, the |
2826 | | * gamma function has no zeros). |
2827 | | */ |
2828 | 0 | errno = 0; |
2829 | 0 | result = tgamma(arg1); |
2830 | |
|
2831 | 0 | if (errno != 0 || isinf(result) || isnan(result)) |
2832 | 0 | { |
2833 | 0 | if (result != 0.0) |
2834 | 0 | float_overflow_error(); |
2835 | 0 | else |
2836 | 0 | float_underflow_error(); |
2837 | 0 | } |
2838 | 0 | else if (result == 0.0) |
2839 | 0 | float_underflow_error(); |
2840 | 0 | } |
2841 | |
|
2842 | 0 | PG_RETURN_FLOAT8(result); |
2843 | 0 | } |
2844 | | |
2845 | | |
2846 | | /* |
2847 | | * dlgamma - natural logarithm of absolute value of gamma of arg1 |
2848 | | */ |
2849 | | Datum |
2850 | | dlgamma(PG_FUNCTION_ARGS) |
2851 | 0 | { |
2852 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
2853 | 0 | float8 result; |
2854 | | |
2855 | | /* |
2856 | | * Note: lgamma may not be thread-safe because it may write to a global |
2857 | | * variable signgam, which may not be thread-local. However, this doesn't |
2858 | | * matter to us, since we don't use signgam. |
2859 | | */ |
2860 | 0 | errno = 0; |
2861 | 0 | result = lgamma(arg1); |
2862 | | |
2863 | | /* |
2864 | | * If an ERANGE error occurs, it means there was an overflow or a pole |
2865 | | * error (which happens for zero and negative integer inputs). |
2866 | | * |
2867 | | * On some platforms, lgamma() will not set errno but just return infinity |
2868 | | * to report overflow, but it should never underflow. |
2869 | | */ |
2870 | 0 | if (errno == ERANGE || (isinf(result) && !isinf(arg1))) |
2871 | 0 | float_overflow_error(); |
2872 | |
|
2873 | 0 | PG_RETURN_FLOAT8(result); |
2874 | 0 | } |
2875 | | |
2876 | | |
2877 | | |
2878 | | /* |
2879 | | * ========================= |
2880 | | * FLOAT AGGREGATE OPERATORS |
2881 | | * ========================= |
2882 | | * |
2883 | | * float8_accum - accumulate for AVG(), variance aggregates, etc. |
2884 | | * float4_accum - same, but input data is float4 |
2885 | | * float8_avg - produce final result for float AVG() |
2886 | | * float8_var_samp - produce final result for float VAR_SAMP() |
2887 | | * float8_var_pop - produce final result for float VAR_POP() |
2888 | | * float8_stddev_samp - produce final result for float STDDEV_SAMP() |
2889 | | * float8_stddev_pop - produce final result for float STDDEV_POP() |
2890 | | * |
2891 | | * The naive schoolbook implementation of these aggregates works by |
2892 | | * accumulating sum(X) and sum(X^2). However, this approach suffers from |
2893 | | * large rounding errors in the final computation of quantities like the |
2894 | | * population variance (N*sum(X^2) - sum(X)^2) / N^2, since each of the |
2895 | | * intermediate terms is potentially very large, while the difference is often |
2896 | | * quite small. |
2897 | | * |
2898 | | * Instead we use the Youngs-Cramer algorithm [1] which works by accumulating |
2899 | | * Sx=sum(X) and Sxx=sum((X-Sx/N)^2), using a numerically stable algorithm to |
2900 | | * incrementally update those quantities. The final computations of each of |
2901 | | * the aggregate values is then trivial and gives more accurate results (for |
2902 | | * example, the population variance is just Sxx/N). This algorithm is also |
2903 | | * fairly easy to generalize to allow parallel execution without loss of |
2904 | | * precision (see, for example, [2]). For more details, and a comparison of |
2905 | | * this with other algorithms, see [3]. |
2906 | | * |
2907 | | * The transition datatype for all these aggregates is a 3-element array |
2908 | | * of float8, holding the values N, Sx, Sxx in that order. |
2909 | | * |
2910 | | * Note that we represent N as a float to avoid having to build a special |
2911 | | * datatype. Given a reasonable floating-point implementation, there should |
2912 | | * be no accuracy loss unless N exceeds 2 ^ 52 or so (by which time the |
2913 | | * user will have doubtless lost interest anyway...) |
2914 | | * |
2915 | | * [1] Some Results Relevant to Choice of Sum and Sum-of-Product Algorithms, |
2916 | | * E. A. Youngs and E. M. Cramer, Technometrics Vol 13, No 3, August 1971. |
2917 | | * |
2918 | | * [2] Updating Formulae and a Pairwise Algorithm for Computing Sample |
2919 | | * Variances, T. F. Chan, G. H. Golub & R. J. LeVeque, COMPSTAT 1982. |
2920 | | * |
2921 | | * [3] Numerically Stable Parallel Computation of (Co-)Variance, Erich |
2922 | | * Schubert and Michael Gertz, Proceedings of the 30th International |
2923 | | * Conference on Scientific and Statistical Database Management, 2018. |
2924 | | */ |
2925 | | |
2926 | | static float8 * |
2927 | | check_float8_array(ArrayType *transarray, const char *caller, int n) |
2928 | 0 | { |
2929 | | /* |
2930 | | * We expect the input to be an N-element float array; verify that. We |
2931 | | * don't need to use deconstruct_array() since the array data is just |
2932 | | * going to look like a C array of N float8 values. |
2933 | | */ |
2934 | 0 | if (ARR_NDIM(transarray) != 1 || |
2935 | 0 | ARR_DIMS(transarray)[0] != n || |
2936 | 0 | ARR_HASNULL(transarray) || |
2937 | 0 | ARR_ELEMTYPE(transarray) != FLOAT8OID) |
2938 | 0 | elog(ERROR, "%s: expected %d-element float8 array", caller, n); |
2939 | 0 | return (float8 *) ARR_DATA_PTR(transarray); |
2940 | 0 | } |
2941 | | |
2942 | | /* |
2943 | | * float8_combine |
2944 | | * |
2945 | | * An aggregate combine function used to combine two 3 fields |
2946 | | * aggregate transition data into a single transition data. |
2947 | | * This function is used only in two stage aggregation and |
2948 | | * shouldn't be called outside aggregate context. |
2949 | | */ |
2950 | | Datum |
2951 | | float8_combine(PG_FUNCTION_ARGS) |
2952 | 0 | { |
2953 | 0 | ArrayType *transarray1 = PG_GETARG_ARRAYTYPE_P(0); |
2954 | 0 | ArrayType *transarray2 = PG_GETARG_ARRAYTYPE_P(1); |
2955 | 0 | float8 *transvalues1; |
2956 | 0 | float8 *transvalues2; |
2957 | 0 | float8 N1, |
2958 | 0 | Sx1, |
2959 | 0 | Sxx1, |
2960 | 0 | N2, |
2961 | 0 | Sx2, |
2962 | 0 | Sxx2, |
2963 | 0 | tmp, |
2964 | 0 | N, |
2965 | 0 | Sx, |
2966 | 0 | Sxx; |
2967 | |
|
2968 | 0 | transvalues1 = check_float8_array(transarray1, "float8_combine", 3); |
2969 | 0 | transvalues2 = check_float8_array(transarray2, "float8_combine", 3); |
2970 | |
|
2971 | 0 | N1 = transvalues1[0]; |
2972 | 0 | Sx1 = transvalues1[1]; |
2973 | 0 | Sxx1 = transvalues1[2]; |
2974 | |
|
2975 | 0 | N2 = transvalues2[0]; |
2976 | 0 | Sx2 = transvalues2[1]; |
2977 | 0 | Sxx2 = transvalues2[2]; |
2978 | | |
2979 | | /*-------------------- |
2980 | | * The transition values combine using a generalization of the |
2981 | | * Youngs-Cramer algorithm as follows: |
2982 | | * |
2983 | | * N = N1 + N2 |
2984 | | * Sx = Sx1 + Sx2 |
2985 | | * Sxx = Sxx1 + Sxx2 + N1 * N2 * (Sx1/N1 - Sx2/N2)^2 / N; |
2986 | | * |
2987 | | * It's worth handling the special cases N1 = 0 and N2 = 0 separately |
2988 | | * since those cases are trivial, and we then don't need to worry about |
2989 | | * division-by-zero errors in the general case. |
2990 | | *-------------------- |
2991 | | */ |
2992 | 0 | if (N1 == 0.0) |
2993 | 0 | { |
2994 | 0 | N = N2; |
2995 | 0 | Sx = Sx2; |
2996 | 0 | Sxx = Sxx2; |
2997 | 0 | } |
2998 | 0 | else if (N2 == 0.0) |
2999 | 0 | { |
3000 | 0 | N = N1; |
3001 | 0 | Sx = Sx1; |
3002 | 0 | Sxx = Sxx1; |
3003 | 0 | } |
3004 | 0 | else |
3005 | 0 | { |
3006 | 0 | N = N1 + N2; |
3007 | 0 | Sx = float8_pl(Sx1, Sx2); |
3008 | 0 | tmp = Sx1 / N1 - Sx2 / N2; |
3009 | 0 | Sxx = Sxx1 + Sxx2 + N1 * N2 * tmp * tmp / N; |
3010 | 0 | if (unlikely(isinf(Sxx)) && !isinf(Sxx1) && !isinf(Sxx2)) |
3011 | 0 | float_overflow_error(); |
3012 | 0 | } |
3013 | | |
3014 | | /* |
3015 | | * If we're invoked as an aggregate, we can cheat and modify our first |
3016 | | * parameter in-place to reduce palloc overhead. Otherwise we construct a |
3017 | | * new array with the updated transition data and return it. |
3018 | | */ |
3019 | 0 | if (AggCheckCallContext(fcinfo, NULL)) |
3020 | 0 | { |
3021 | 0 | transvalues1[0] = N; |
3022 | 0 | transvalues1[1] = Sx; |
3023 | 0 | transvalues1[2] = Sxx; |
3024 | |
|
3025 | 0 | PG_RETURN_ARRAYTYPE_P(transarray1); |
3026 | 0 | } |
3027 | 0 | else |
3028 | 0 | { |
3029 | 0 | Datum transdatums[3]; |
3030 | 0 | ArrayType *result; |
3031 | |
|
3032 | 0 | transdatums[0] = Float8GetDatumFast(N); |
3033 | 0 | transdatums[1] = Float8GetDatumFast(Sx); |
3034 | 0 | transdatums[2] = Float8GetDatumFast(Sxx); |
3035 | |
|
3036 | 0 | result = construct_array_builtin(transdatums, 3, FLOAT8OID); |
3037 | |
|
3038 | 0 | PG_RETURN_ARRAYTYPE_P(result); |
3039 | 0 | } |
3040 | 0 | } |
3041 | | |
3042 | | Datum |
3043 | | float8_accum(PG_FUNCTION_ARGS) |
3044 | 0 | { |
3045 | 0 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
3046 | 0 | float8 newval = PG_GETARG_FLOAT8(1); |
3047 | 0 | float8 *transvalues; |
3048 | 0 | float8 N, |
3049 | 0 | Sx, |
3050 | 0 | Sxx, |
3051 | 0 | tmp; |
3052 | |
|
3053 | 0 | transvalues = check_float8_array(transarray, "float8_accum", 3); |
3054 | 0 | N = transvalues[0]; |
3055 | 0 | Sx = transvalues[1]; |
3056 | 0 | Sxx = transvalues[2]; |
3057 | | |
3058 | | /* |
3059 | | * Use the Youngs-Cramer algorithm to incorporate the new value into the |
3060 | | * transition values. |
3061 | | */ |
3062 | 0 | N += 1.0; |
3063 | 0 | Sx += newval; |
3064 | 0 | if (transvalues[0] > 0.0) |
3065 | 0 | { |
3066 | 0 | tmp = newval * N - Sx; |
3067 | 0 | Sxx += tmp * tmp / (N * transvalues[0]); |
3068 | | |
3069 | | /* |
3070 | | * Overflow check. We only report an overflow error when finite |
3071 | | * inputs lead to infinite results. Note also that Sxx should be NaN |
3072 | | * if any of the inputs are infinite, so we intentionally prevent Sxx |
3073 | | * from becoming infinite. |
3074 | | */ |
3075 | 0 | if (isinf(Sx) || isinf(Sxx)) |
3076 | 0 | { |
3077 | 0 | if (!isinf(transvalues[1]) && !isinf(newval)) |
3078 | 0 | float_overflow_error(); |
3079 | |
|
3080 | 0 | Sxx = get_float8_nan(); |
3081 | 0 | } |
3082 | 0 | } |
3083 | 0 | else |
3084 | 0 | { |
3085 | | /* |
3086 | | * At the first input, we normally can leave Sxx as 0. However, if |
3087 | | * the first input is Inf or NaN, we'd better force Sxx to NaN; |
3088 | | * otherwise we will falsely report variance zero when there are no |
3089 | | * more inputs. |
3090 | | */ |
3091 | 0 | if (isnan(newval) || isinf(newval)) |
3092 | 0 | Sxx = get_float8_nan(); |
3093 | 0 | } |
3094 | | |
3095 | | /* |
3096 | | * If we're invoked as an aggregate, we can cheat and modify our first |
3097 | | * parameter in-place to reduce palloc overhead. Otherwise we construct a |
3098 | | * new array with the updated transition data and return it. |
3099 | | */ |
3100 | 0 | if (AggCheckCallContext(fcinfo, NULL)) |
3101 | 0 | { |
3102 | 0 | transvalues[0] = N; |
3103 | 0 | transvalues[1] = Sx; |
3104 | 0 | transvalues[2] = Sxx; |
3105 | |
|
3106 | 0 | PG_RETURN_ARRAYTYPE_P(transarray); |
3107 | 0 | } |
3108 | 0 | else |
3109 | 0 | { |
3110 | 0 | Datum transdatums[3]; |
3111 | 0 | ArrayType *result; |
3112 | |
|
3113 | 0 | transdatums[0] = Float8GetDatumFast(N); |
3114 | 0 | transdatums[1] = Float8GetDatumFast(Sx); |
3115 | 0 | transdatums[2] = Float8GetDatumFast(Sxx); |
3116 | |
|
3117 | 0 | result = construct_array_builtin(transdatums, 3, FLOAT8OID); |
3118 | |
|
3119 | 0 | PG_RETURN_ARRAYTYPE_P(result); |
3120 | 0 | } |
3121 | 0 | } |
3122 | | |
3123 | | Datum |
3124 | | float4_accum(PG_FUNCTION_ARGS) |
3125 | 0 | { |
3126 | 0 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
3127 | | |
3128 | | /* do computations as float8 */ |
3129 | 0 | float8 newval = PG_GETARG_FLOAT4(1); |
3130 | 0 | float8 *transvalues; |
3131 | 0 | float8 N, |
3132 | 0 | Sx, |
3133 | 0 | Sxx, |
3134 | 0 | tmp; |
3135 | |
|
3136 | 0 | transvalues = check_float8_array(transarray, "float4_accum", 3); |
3137 | 0 | N = transvalues[0]; |
3138 | 0 | Sx = transvalues[1]; |
3139 | 0 | Sxx = transvalues[2]; |
3140 | | |
3141 | | /* |
3142 | | * Use the Youngs-Cramer algorithm to incorporate the new value into the |
3143 | | * transition values. |
3144 | | */ |
3145 | 0 | N += 1.0; |
3146 | 0 | Sx += newval; |
3147 | 0 | if (transvalues[0] > 0.0) |
3148 | 0 | { |
3149 | 0 | tmp = newval * N - Sx; |
3150 | 0 | Sxx += tmp * tmp / (N * transvalues[0]); |
3151 | | |
3152 | | /* |
3153 | | * Overflow check. We only report an overflow error when finite |
3154 | | * inputs lead to infinite results. Note also that Sxx should be NaN |
3155 | | * if any of the inputs are infinite, so we intentionally prevent Sxx |
3156 | | * from becoming infinite. |
3157 | | */ |
3158 | 0 | if (isinf(Sx) || isinf(Sxx)) |
3159 | 0 | { |
3160 | 0 | if (!isinf(transvalues[1]) && !isinf(newval)) |
3161 | 0 | float_overflow_error(); |
3162 | |
|
3163 | 0 | Sxx = get_float8_nan(); |
3164 | 0 | } |
3165 | 0 | } |
3166 | 0 | else |
3167 | 0 | { |
3168 | | /* |
3169 | | * At the first input, we normally can leave Sxx as 0. However, if |
3170 | | * the first input is Inf or NaN, we'd better force Sxx to NaN; |
3171 | | * otherwise we will falsely report variance zero when there are no |
3172 | | * more inputs. |
3173 | | */ |
3174 | 0 | if (isnan(newval) || isinf(newval)) |
3175 | 0 | Sxx = get_float8_nan(); |
3176 | 0 | } |
3177 | | |
3178 | | /* |
3179 | | * If we're invoked as an aggregate, we can cheat and modify our first |
3180 | | * parameter in-place to reduce palloc overhead. Otherwise we construct a |
3181 | | * new array with the updated transition data and return it. |
3182 | | */ |
3183 | 0 | if (AggCheckCallContext(fcinfo, NULL)) |
3184 | 0 | { |
3185 | 0 | transvalues[0] = N; |
3186 | 0 | transvalues[1] = Sx; |
3187 | 0 | transvalues[2] = Sxx; |
3188 | |
|
3189 | 0 | PG_RETURN_ARRAYTYPE_P(transarray); |
3190 | 0 | } |
3191 | 0 | else |
3192 | 0 | { |
3193 | 0 | Datum transdatums[3]; |
3194 | 0 | ArrayType *result; |
3195 | |
|
3196 | 0 | transdatums[0] = Float8GetDatumFast(N); |
3197 | 0 | transdatums[1] = Float8GetDatumFast(Sx); |
3198 | 0 | transdatums[2] = Float8GetDatumFast(Sxx); |
3199 | |
|
3200 | 0 | result = construct_array_builtin(transdatums, 3, FLOAT8OID); |
3201 | |
|
3202 | 0 | PG_RETURN_ARRAYTYPE_P(result); |
3203 | 0 | } |
3204 | 0 | } |
3205 | | |
3206 | | Datum |
3207 | | float8_avg(PG_FUNCTION_ARGS) |
3208 | 0 | { |
3209 | 0 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
3210 | 0 | float8 *transvalues; |
3211 | 0 | float8 N, |
3212 | 0 | Sx; |
3213 | |
|
3214 | 0 | transvalues = check_float8_array(transarray, "float8_avg", 3); |
3215 | 0 | N = transvalues[0]; |
3216 | 0 | Sx = transvalues[1]; |
3217 | | /* ignore Sxx */ |
3218 | | |
3219 | | /* SQL defines AVG of no values to be NULL */ |
3220 | 0 | if (N == 0.0) |
3221 | 0 | PG_RETURN_NULL(); |
3222 | | |
3223 | 0 | PG_RETURN_FLOAT8(Sx / N); |
3224 | 0 | } |
3225 | | |
3226 | | Datum |
3227 | | float8_var_pop(PG_FUNCTION_ARGS) |
3228 | 0 | { |
3229 | 0 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
3230 | 0 | float8 *transvalues; |
3231 | 0 | float8 N, |
3232 | 0 | Sxx; |
3233 | |
|
3234 | 0 | transvalues = check_float8_array(transarray, "float8_var_pop", 3); |
3235 | 0 | N = transvalues[0]; |
3236 | | /* ignore Sx */ |
3237 | 0 | Sxx = transvalues[2]; |
3238 | | |
3239 | | /* Population variance is undefined when N is 0, so return NULL */ |
3240 | 0 | if (N == 0.0) |
3241 | 0 | PG_RETURN_NULL(); |
3242 | | |
3243 | | /* Note that Sxx is guaranteed to be non-negative */ |
3244 | | |
3245 | 0 | PG_RETURN_FLOAT8(Sxx / N); |
3246 | 0 | } |
3247 | | |
3248 | | Datum |
3249 | | float8_var_samp(PG_FUNCTION_ARGS) |
3250 | 0 | { |
3251 | 0 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
3252 | 0 | float8 *transvalues; |
3253 | 0 | float8 N, |
3254 | 0 | Sxx; |
3255 | |
|
3256 | 0 | transvalues = check_float8_array(transarray, "float8_var_samp", 3); |
3257 | 0 | N = transvalues[0]; |
3258 | | /* ignore Sx */ |
3259 | 0 | Sxx = transvalues[2]; |
3260 | | |
3261 | | /* Sample variance is undefined when N is 0 or 1, so return NULL */ |
3262 | 0 | if (N <= 1.0) |
3263 | 0 | PG_RETURN_NULL(); |
3264 | | |
3265 | | /* Note that Sxx is guaranteed to be non-negative */ |
3266 | | |
3267 | 0 | PG_RETURN_FLOAT8(Sxx / (N - 1.0)); |
3268 | 0 | } |
3269 | | |
3270 | | Datum |
3271 | | float8_stddev_pop(PG_FUNCTION_ARGS) |
3272 | 0 | { |
3273 | 0 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
3274 | 0 | float8 *transvalues; |
3275 | 0 | float8 N, |
3276 | 0 | Sxx; |
3277 | |
|
3278 | 0 | transvalues = check_float8_array(transarray, "float8_stddev_pop", 3); |
3279 | 0 | N = transvalues[0]; |
3280 | | /* ignore Sx */ |
3281 | 0 | Sxx = transvalues[2]; |
3282 | | |
3283 | | /* Population stddev is undefined when N is 0, so return NULL */ |
3284 | 0 | if (N == 0.0) |
3285 | 0 | PG_RETURN_NULL(); |
3286 | | |
3287 | | /* Note that Sxx is guaranteed to be non-negative */ |
3288 | | |
3289 | 0 | PG_RETURN_FLOAT8(sqrt(Sxx / N)); |
3290 | 0 | } |
3291 | | |
3292 | | Datum |
3293 | | float8_stddev_samp(PG_FUNCTION_ARGS) |
3294 | 0 | { |
3295 | 0 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
3296 | 0 | float8 *transvalues; |
3297 | 0 | float8 N, |
3298 | 0 | Sxx; |
3299 | |
|
3300 | 0 | transvalues = check_float8_array(transarray, "float8_stddev_samp", 3); |
3301 | 0 | N = transvalues[0]; |
3302 | | /* ignore Sx */ |
3303 | 0 | Sxx = transvalues[2]; |
3304 | | |
3305 | | /* Sample stddev is undefined when N is 0 or 1, so return NULL */ |
3306 | 0 | if (N <= 1.0) |
3307 | 0 | PG_RETURN_NULL(); |
3308 | | |
3309 | | /* Note that Sxx is guaranteed to be non-negative */ |
3310 | | |
3311 | 0 | PG_RETURN_FLOAT8(sqrt(Sxx / (N - 1.0))); |
3312 | 0 | } |
3313 | | |
3314 | | /* |
3315 | | * ========================= |
3316 | | * SQL2003 BINARY AGGREGATES |
3317 | | * ========================= |
3318 | | * |
3319 | | * As with the preceding aggregates, we use the Youngs-Cramer algorithm to |
3320 | | * reduce rounding errors in the aggregate final functions. |
3321 | | * |
3322 | | * The transition datatype for all these aggregates is a 6-element array of |
3323 | | * float8, holding the values N, Sx=sum(X), Sxx=sum((X-Sx/N)^2), Sy=sum(Y), |
3324 | | * Syy=sum((Y-Sy/N)^2), Sxy=sum((X-Sx/N)*(Y-Sy/N)) in that order. |
3325 | | * |
3326 | | * Note that Y is the first argument to all these aggregates! |
3327 | | * |
3328 | | * It might seem attractive to optimize this by having multiple accumulator |
3329 | | * functions that only calculate the sums actually needed. But on most |
3330 | | * modern machines, a couple of extra floating-point multiplies will be |
3331 | | * insignificant compared to the other per-tuple overhead, so I've chosen |
3332 | | * to minimize code space instead. |
3333 | | */ |
3334 | | |
3335 | | Datum |
3336 | | float8_regr_accum(PG_FUNCTION_ARGS) |
3337 | 0 | { |
3338 | 0 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
3339 | 0 | float8 newvalY = PG_GETARG_FLOAT8(1); |
3340 | 0 | float8 newvalX = PG_GETARG_FLOAT8(2); |
3341 | 0 | float8 *transvalues; |
3342 | 0 | float8 N, |
3343 | 0 | Sx, |
3344 | 0 | Sxx, |
3345 | 0 | Sy, |
3346 | 0 | Syy, |
3347 | 0 | Sxy, |
3348 | 0 | tmpX, |
3349 | 0 | tmpY, |
3350 | 0 | scale; |
3351 | |
|
3352 | 0 | transvalues = check_float8_array(transarray, "float8_regr_accum", 6); |
3353 | 0 | N = transvalues[0]; |
3354 | 0 | Sx = transvalues[1]; |
3355 | 0 | Sxx = transvalues[2]; |
3356 | 0 | Sy = transvalues[3]; |
3357 | 0 | Syy = transvalues[4]; |
3358 | 0 | Sxy = transvalues[5]; |
3359 | | |
3360 | | /* |
3361 | | * Use the Youngs-Cramer algorithm to incorporate the new values into the |
3362 | | * transition values. |
3363 | | */ |
3364 | 0 | N += 1.0; |
3365 | 0 | Sx += newvalX; |
3366 | 0 | Sy += newvalY; |
3367 | 0 | if (transvalues[0] > 0.0) |
3368 | 0 | { |
3369 | 0 | tmpX = newvalX * N - Sx; |
3370 | 0 | tmpY = newvalY * N - Sy; |
3371 | 0 | scale = 1.0 / (N * transvalues[0]); |
3372 | 0 | Sxx += tmpX * tmpX * scale; |
3373 | 0 | Syy += tmpY * tmpY * scale; |
3374 | 0 | Sxy += tmpX * tmpY * scale; |
3375 | | |
3376 | | /* |
3377 | | * Overflow check. We only report an overflow error when finite |
3378 | | * inputs lead to infinite results. Note also that Sxx, Syy and Sxy |
3379 | | * should be NaN if any of the relevant inputs are infinite, so we |
3380 | | * intentionally prevent them from becoming infinite. |
3381 | | */ |
3382 | 0 | if (isinf(Sx) || isinf(Sxx) || isinf(Sy) || isinf(Syy) || isinf(Sxy)) |
3383 | 0 | { |
3384 | 0 | if (((isinf(Sx) || isinf(Sxx)) && |
3385 | 0 | !isinf(transvalues[1]) && !isinf(newvalX)) || |
3386 | 0 | ((isinf(Sy) || isinf(Syy)) && |
3387 | 0 | !isinf(transvalues[3]) && !isinf(newvalY)) || |
3388 | 0 | (isinf(Sxy) && |
3389 | 0 | !isinf(transvalues[1]) && !isinf(newvalX) && |
3390 | 0 | !isinf(transvalues[3]) && !isinf(newvalY))) |
3391 | 0 | float_overflow_error(); |
3392 | |
|
3393 | 0 | if (isinf(Sxx)) |
3394 | 0 | Sxx = get_float8_nan(); |
3395 | 0 | if (isinf(Syy)) |
3396 | 0 | Syy = get_float8_nan(); |
3397 | 0 | if (isinf(Sxy)) |
3398 | 0 | Sxy = get_float8_nan(); |
3399 | 0 | } |
3400 | 0 | } |
3401 | 0 | else |
3402 | 0 | { |
3403 | | /* |
3404 | | * At the first input, we normally can leave Sxx et al as 0. However, |
3405 | | * if the first input is Inf or NaN, we'd better force the dependent |
3406 | | * sums to NaN; otherwise we will falsely report variance zero when |
3407 | | * there are no more inputs. |
3408 | | */ |
3409 | 0 | if (isnan(newvalX) || isinf(newvalX)) |
3410 | 0 | Sxx = Sxy = get_float8_nan(); |
3411 | 0 | if (isnan(newvalY) || isinf(newvalY)) |
3412 | 0 | Syy = Sxy = get_float8_nan(); |
3413 | 0 | } |
3414 | | |
3415 | | /* |
3416 | | * If we're invoked as an aggregate, we can cheat and modify our first |
3417 | | * parameter in-place to reduce palloc overhead. Otherwise we construct a |
3418 | | * new array with the updated transition data and return it. |
3419 | | */ |
3420 | 0 | if (AggCheckCallContext(fcinfo, NULL)) |
3421 | 0 | { |
3422 | 0 | transvalues[0] = N; |
3423 | 0 | transvalues[1] = Sx; |
3424 | 0 | transvalues[2] = Sxx; |
3425 | 0 | transvalues[3] = Sy; |
3426 | 0 | transvalues[4] = Syy; |
3427 | 0 | transvalues[5] = Sxy; |
3428 | |
|
3429 | 0 | PG_RETURN_ARRAYTYPE_P(transarray); |
3430 | 0 | } |
3431 | 0 | else |
3432 | 0 | { |
3433 | 0 | Datum transdatums[6]; |
3434 | 0 | ArrayType *result; |
3435 | |
|
3436 | 0 | transdatums[0] = Float8GetDatumFast(N); |
3437 | 0 | transdatums[1] = Float8GetDatumFast(Sx); |
3438 | 0 | transdatums[2] = Float8GetDatumFast(Sxx); |
3439 | 0 | transdatums[3] = Float8GetDatumFast(Sy); |
3440 | 0 | transdatums[4] = Float8GetDatumFast(Syy); |
3441 | 0 | transdatums[5] = Float8GetDatumFast(Sxy); |
3442 | |
|
3443 | 0 | result = construct_array_builtin(transdatums, 6, FLOAT8OID); |
3444 | |
|
3445 | 0 | PG_RETURN_ARRAYTYPE_P(result); |
3446 | 0 | } |
3447 | 0 | } |
3448 | | |
3449 | | /* |
3450 | | * float8_regr_combine |
3451 | | * |
3452 | | * An aggregate combine function used to combine two 6 fields |
3453 | | * aggregate transition data into a single transition data. |
3454 | | * This function is used only in two stage aggregation and |
3455 | | * shouldn't be called outside aggregate context. |
3456 | | */ |
3457 | | Datum |
3458 | | float8_regr_combine(PG_FUNCTION_ARGS) |
3459 | 0 | { |
3460 | 0 | ArrayType *transarray1 = PG_GETARG_ARRAYTYPE_P(0); |
3461 | 0 | ArrayType *transarray2 = PG_GETARG_ARRAYTYPE_P(1); |
3462 | 0 | float8 *transvalues1; |
3463 | 0 | float8 *transvalues2; |
3464 | 0 | float8 N1, |
3465 | 0 | Sx1, |
3466 | 0 | Sxx1, |
3467 | 0 | Sy1, |
3468 | 0 | Syy1, |
3469 | 0 | Sxy1, |
3470 | 0 | N2, |
3471 | 0 | Sx2, |
3472 | 0 | Sxx2, |
3473 | 0 | Sy2, |
3474 | 0 | Syy2, |
3475 | 0 | Sxy2, |
3476 | 0 | tmp1, |
3477 | 0 | tmp2, |
3478 | 0 | N, |
3479 | 0 | Sx, |
3480 | 0 | Sxx, |
3481 | 0 | Sy, |
3482 | 0 | Syy, |
3483 | 0 | Sxy; |
3484 | |
|
3485 | 0 | transvalues1 = check_float8_array(transarray1, "float8_regr_combine", 6); |
3486 | 0 | transvalues2 = check_float8_array(transarray2, "float8_regr_combine", 6); |
3487 | |
|
3488 | 0 | N1 = transvalues1[0]; |
3489 | 0 | Sx1 = transvalues1[1]; |
3490 | 0 | Sxx1 = transvalues1[2]; |
3491 | 0 | Sy1 = transvalues1[3]; |
3492 | 0 | Syy1 = transvalues1[4]; |
3493 | 0 | Sxy1 = transvalues1[5]; |
3494 | |
|
3495 | 0 | N2 = transvalues2[0]; |
3496 | 0 | Sx2 = transvalues2[1]; |
3497 | 0 | Sxx2 = transvalues2[2]; |
3498 | 0 | Sy2 = transvalues2[3]; |
3499 | 0 | Syy2 = transvalues2[4]; |
3500 | 0 | Sxy2 = transvalues2[5]; |
3501 | | |
3502 | | /*-------------------- |
3503 | | * The transition values combine using a generalization of the |
3504 | | * Youngs-Cramer algorithm as follows: |
3505 | | * |
3506 | | * N = N1 + N2 |
3507 | | * Sx = Sx1 + Sx2 |
3508 | | * Sxx = Sxx1 + Sxx2 + N1 * N2 * (Sx1/N1 - Sx2/N2)^2 / N |
3509 | | * Sy = Sy1 + Sy2 |
3510 | | * Syy = Syy1 + Syy2 + N1 * N2 * (Sy1/N1 - Sy2/N2)^2 / N |
3511 | | * Sxy = Sxy1 + Sxy2 + N1 * N2 * (Sx1/N1 - Sx2/N2) * (Sy1/N1 - Sy2/N2) / N |
3512 | | * |
3513 | | * It's worth handling the special cases N1 = 0 and N2 = 0 separately |
3514 | | * since those cases are trivial, and we then don't need to worry about |
3515 | | * division-by-zero errors in the general case. |
3516 | | *-------------------- |
3517 | | */ |
3518 | 0 | if (N1 == 0.0) |
3519 | 0 | { |
3520 | 0 | N = N2; |
3521 | 0 | Sx = Sx2; |
3522 | 0 | Sxx = Sxx2; |
3523 | 0 | Sy = Sy2; |
3524 | 0 | Syy = Syy2; |
3525 | 0 | Sxy = Sxy2; |
3526 | 0 | } |
3527 | 0 | else if (N2 == 0.0) |
3528 | 0 | { |
3529 | 0 | N = N1; |
3530 | 0 | Sx = Sx1; |
3531 | 0 | Sxx = Sxx1; |
3532 | 0 | Sy = Sy1; |
3533 | 0 | Syy = Syy1; |
3534 | 0 | Sxy = Sxy1; |
3535 | 0 | } |
3536 | 0 | else |
3537 | 0 | { |
3538 | 0 | N = N1 + N2; |
3539 | 0 | Sx = float8_pl(Sx1, Sx2); |
3540 | 0 | tmp1 = Sx1 / N1 - Sx2 / N2; |
3541 | 0 | Sxx = Sxx1 + Sxx2 + N1 * N2 * tmp1 * tmp1 / N; |
3542 | 0 | if (unlikely(isinf(Sxx)) && !isinf(Sxx1) && !isinf(Sxx2)) |
3543 | 0 | float_overflow_error(); |
3544 | 0 | Sy = float8_pl(Sy1, Sy2); |
3545 | 0 | tmp2 = Sy1 / N1 - Sy2 / N2; |
3546 | 0 | Syy = Syy1 + Syy2 + N1 * N2 * tmp2 * tmp2 / N; |
3547 | 0 | if (unlikely(isinf(Syy)) && !isinf(Syy1) && !isinf(Syy2)) |
3548 | 0 | float_overflow_error(); |
3549 | 0 | Sxy = Sxy1 + Sxy2 + N1 * N2 * tmp1 * tmp2 / N; |
3550 | 0 | if (unlikely(isinf(Sxy)) && !isinf(Sxy1) && !isinf(Sxy2)) |
3551 | 0 | float_overflow_error(); |
3552 | 0 | } |
3553 | | |
3554 | | /* |
3555 | | * If we're invoked as an aggregate, we can cheat and modify our first |
3556 | | * parameter in-place to reduce palloc overhead. Otherwise we construct a |
3557 | | * new array with the updated transition data and return it. |
3558 | | */ |
3559 | 0 | if (AggCheckCallContext(fcinfo, NULL)) |
3560 | 0 | { |
3561 | 0 | transvalues1[0] = N; |
3562 | 0 | transvalues1[1] = Sx; |
3563 | 0 | transvalues1[2] = Sxx; |
3564 | 0 | transvalues1[3] = Sy; |
3565 | 0 | transvalues1[4] = Syy; |
3566 | 0 | transvalues1[5] = Sxy; |
3567 | |
|
3568 | 0 | PG_RETURN_ARRAYTYPE_P(transarray1); |
3569 | 0 | } |
3570 | 0 | else |
3571 | 0 | { |
3572 | 0 | Datum transdatums[6]; |
3573 | 0 | ArrayType *result; |
3574 | |
|
3575 | 0 | transdatums[0] = Float8GetDatumFast(N); |
3576 | 0 | transdatums[1] = Float8GetDatumFast(Sx); |
3577 | 0 | transdatums[2] = Float8GetDatumFast(Sxx); |
3578 | 0 | transdatums[3] = Float8GetDatumFast(Sy); |
3579 | 0 | transdatums[4] = Float8GetDatumFast(Syy); |
3580 | 0 | transdatums[5] = Float8GetDatumFast(Sxy); |
3581 | |
|
3582 | 0 | result = construct_array_builtin(transdatums, 6, FLOAT8OID); |
3583 | |
|
3584 | 0 | PG_RETURN_ARRAYTYPE_P(result); |
3585 | 0 | } |
3586 | 0 | } |
3587 | | |
3588 | | |
3589 | | Datum |
3590 | | float8_regr_sxx(PG_FUNCTION_ARGS) |
3591 | 0 | { |
3592 | 0 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
3593 | 0 | float8 *transvalues; |
3594 | 0 | float8 N, |
3595 | 0 | Sxx; |
3596 | |
|
3597 | 0 | transvalues = check_float8_array(transarray, "float8_regr_sxx", 6); |
3598 | 0 | N = transvalues[0]; |
3599 | 0 | Sxx = transvalues[2]; |
3600 | | |
3601 | | /* if N is 0 we should return NULL */ |
3602 | 0 | if (N < 1.0) |
3603 | 0 | PG_RETURN_NULL(); |
3604 | | |
3605 | | /* Note that Sxx is guaranteed to be non-negative */ |
3606 | | |
3607 | 0 | PG_RETURN_FLOAT8(Sxx); |
3608 | 0 | } |
3609 | | |
3610 | | Datum |
3611 | | float8_regr_syy(PG_FUNCTION_ARGS) |
3612 | 0 | { |
3613 | 0 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
3614 | 0 | float8 *transvalues; |
3615 | 0 | float8 N, |
3616 | 0 | Syy; |
3617 | |
|
3618 | 0 | transvalues = check_float8_array(transarray, "float8_regr_syy", 6); |
3619 | 0 | N = transvalues[0]; |
3620 | 0 | Syy = transvalues[4]; |
3621 | | |
3622 | | /* if N is 0 we should return NULL */ |
3623 | 0 | if (N < 1.0) |
3624 | 0 | PG_RETURN_NULL(); |
3625 | | |
3626 | | /* Note that Syy is guaranteed to be non-negative */ |
3627 | | |
3628 | 0 | PG_RETURN_FLOAT8(Syy); |
3629 | 0 | } |
3630 | | |
3631 | | Datum |
3632 | | float8_regr_sxy(PG_FUNCTION_ARGS) |
3633 | 0 | { |
3634 | 0 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
3635 | 0 | float8 *transvalues; |
3636 | 0 | float8 N, |
3637 | 0 | Sxy; |
3638 | |
|
3639 | 0 | transvalues = check_float8_array(transarray, "float8_regr_sxy", 6); |
3640 | 0 | N = transvalues[0]; |
3641 | 0 | Sxy = transvalues[5]; |
3642 | | |
3643 | | /* if N is 0 we should return NULL */ |
3644 | 0 | if (N < 1.0) |
3645 | 0 | PG_RETURN_NULL(); |
3646 | | |
3647 | | /* A negative result is valid here */ |
3648 | | |
3649 | 0 | PG_RETURN_FLOAT8(Sxy); |
3650 | 0 | } |
3651 | | |
3652 | | Datum |
3653 | | float8_regr_avgx(PG_FUNCTION_ARGS) |
3654 | 0 | { |
3655 | 0 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
3656 | 0 | float8 *transvalues; |
3657 | 0 | float8 N, |
3658 | 0 | Sx; |
3659 | |
|
3660 | 0 | transvalues = check_float8_array(transarray, "float8_regr_avgx", 6); |
3661 | 0 | N = transvalues[0]; |
3662 | 0 | Sx = transvalues[1]; |
3663 | | |
3664 | | /* if N is 0 we should return NULL */ |
3665 | 0 | if (N < 1.0) |
3666 | 0 | PG_RETURN_NULL(); |
3667 | | |
3668 | 0 | PG_RETURN_FLOAT8(Sx / N); |
3669 | 0 | } |
3670 | | |
3671 | | Datum |
3672 | | float8_regr_avgy(PG_FUNCTION_ARGS) |
3673 | 0 | { |
3674 | 0 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
3675 | 0 | float8 *transvalues; |
3676 | 0 | float8 N, |
3677 | 0 | Sy; |
3678 | |
|
3679 | 0 | transvalues = check_float8_array(transarray, "float8_regr_avgy", 6); |
3680 | 0 | N = transvalues[0]; |
3681 | 0 | Sy = transvalues[3]; |
3682 | | |
3683 | | /* if N is 0 we should return NULL */ |
3684 | 0 | if (N < 1.0) |
3685 | 0 | PG_RETURN_NULL(); |
3686 | | |
3687 | 0 | PG_RETURN_FLOAT8(Sy / N); |
3688 | 0 | } |
3689 | | |
3690 | | Datum |
3691 | | float8_covar_pop(PG_FUNCTION_ARGS) |
3692 | 0 | { |
3693 | 0 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
3694 | 0 | float8 *transvalues; |
3695 | 0 | float8 N, |
3696 | 0 | Sxy; |
3697 | |
|
3698 | 0 | transvalues = check_float8_array(transarray, "float8_covar_pop", 6); |
3699 | 0 | N = transvalues[0]; |
3700 | 0 | Sxy = transvalues[5]; |
3701 | | |
3702 | | /* if N is 0 we should return NULL */ |
3703 | 0 | if (N < 1.0) |
3704 | 0 | PG_RETURN_NULL(); |
3705 | | |
3706 | 0 | PG_RETURN_FLOAT8(Sxy / N); |
3707 | 0 | } |
3708 | | |
3709 | | Datum |
3710 | | float8_covar_samp(PG_FUNCTION_ARGS) |
3711 | 0 | { |
3712 | 0 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
3713 | 0 | float8 *transvalues; |
3714 | 0 | float8 N, |
3715 | 0 | Sxy; |
3716 | |
|
3717 | 0 | transvalues = check_float8_array(transarray, "float8_covar_samp", 6); |
3718 | 0 | N = transvalues[0]; |
3719 | 0 | Sxy = transvalues[5]; |
3720 | | |
3721 | | /* if N is <= 1 we should return NULL */ |
3722 | 0 | if (N < 2.0) |
3723 | 0 | PG_RETURN_NULL(); |
3724 | | |
3725 | 0 | PG_RETURN_FLOAT8(Sxy / (N - 1.0)); |
3726 | 0 | } |
3727 | | |
3728 | | Datum |
3729 | | float8_corr(PG_FUNCTION_ARGS) |
3730 | 0 | { |
3731 | 0 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
3732 | 0 | float8 *transvalues; |
3733 | 0 | float8 N, |
3734 | 0 | Sxx, |
3735 | 0 | Syy, |
3736 | 0 | Sxy; |
3737 | |
|
3738 | 0 | transvalues = check_float8_array(transarray, "float8_corr", 6); |
3739 | 0 | N = transvalues[0]; |
3740 | 0 | Sxx = transvalues[2]; |
3741 | 0 | Syy = transvalues[4]; |
3742 | 0 | Sxy = transvalues[5]; |
3743 | | |
3744 | | /* if N is 0 we should return NULL */ |
3745 | 0 | if (N < 1.0) |
3746 | 0 | PG_RETURN_NULL(); |
3747 | | |
3748 | | /* Note that Sxx and Syy are guaranteed to be non-negative */ |
3749 | | |
3750 | | /* per spec, return NULL for horizontal and vertical lines */ |
3751 | 0 | if (Sxx == 0 || Syy == 0) |
3752 | 0 | PG_RETURN_NULL(); |
3753 | | |
3754 | 0 | PG_RETURN_FLOAT8(Sxy / sqrt(Sxx * Syy)); |
3755 | 0 | } |
3756 | | |
3757 | | Datum |
3758 | | float8_regr_r2(PG_FUNCTION_ARGS) |
3759 | 0 | { |
3760 | 0 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
3761 | 0 | float8 *transvalues; |
3762 | 0 | float8 N, |
3763 | 0 | Sxx, |
3764 | 0 | Syy, |
3765 | 0 | Sxy; |
3766 | |
|
3767 | 0 | transvalues = check_float8_array(transarray, "float8_regr_r2", 6); |
3768 | 0 | N = transvalues[0]; |
3769 | 0 | Sxx = transvalues[2]; |
3770 | 0 | Syy = transvalues[4]; |
3771 | 0 | Sxy = transvalues[5]; |
3772 | | |
3773 | | /* if N is 0 we should return NULL */ |
3774 | 0 | if (N < 1.0) |
3775 | 0 | PG_RETURN_NULL(); |
3776 | | |
3777 | | /* Note that Sxx and Syy are guaranteed to be non-negative */ |
3778 | | |
3779 | | /* per spec, return NULL for a vertical line */ |
3780 | 0 | if (Sxx == 0) |
3781 | 0 | PG_RETURN_NULL(); |
3782 | | |
3783 | | /* per spec, return 1.0 for a horizontal line */ |
3784 | 0 | if (Syy == 0) |
3785 | 0 | PG_RETURN_FLOAT8(1.0); |
3786 | | |
3787 | 0 | PG_RETURN_FLOAT8((Sxy * Sxy) / (Sxx * Syy)); |
3788 | 0 | } |
3789 | | |
3790 | | Datum |
3791 | | float8_regr_slope(PG_FUNCTION_ARGS) |
3792 | 0 | { |
3793 | 0 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
3794 | 0 | float8 *transvalues; |
3795 | 0 | float8 N, |
3796 | 0 | Sxx, |
3797 | 0 | Sxy; |
3798 | |
|
3799 | 0 | transvalues = check_float8_array(transarray, "float8_regr_slope", 6); |
3800 | 0 | N = transvalues[0]; |
3801 | 0 | Sxx = transvalues[2]; |
3802 | 0 | Sxy = transvalues[5]; |
3803 | | |
3804 | | /* if N is 0 we should return NULL */ |
3805 | 0 | if (N < 1.0) |
3806 | 0 | PG_RETURN_NULL(); |
3807 | | |
3808 | | /* Note that Sxx is guaranteed to be non-negative */ |
3809 | | |
3810 | | /* per spec, return NULL for a vertical line */ |
3811 | 0 | if (Sxx == 0) |
3812 | 0 | PG_RETURN_NULL(); |
3813 | | |
3814 | 0 | PG_RETURN_FLOAT8(Sxy / Sxx); |
3815 | 0 | } |
3816 | | |
3817 | | Datum |
3818 | | float8_regr_intercept(PG_FUNCTION_ARGS) |
3819 | 0 | { |
3820 | 0 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
3821 | 0 | float8 *transvalues; |
3822 | 0 | float8 N, |
3823 | 0 | Sx, |
3824 | 0 | Sxx, |
3825 | 0 | Sy, |
3826 | 0 | Sxy; |
3827 | |
|
3828 | 0 | transvalues = check_float8_array(transarray, "float8_regr_intercept", 6); |
3829 | 0 | N = transvalues[0]; |
3830 | 0 | Sx = transvalues[1]; |
3831 | 0 | Sxx = transvalues[2]; |
3832 | 0 | Sy = transvalues[3]; |
3833 | 0 | Sxy = transvalues[5]; |
3834 | | |
3835 | | /* if N is 0 we should return NULL */ |
3836 | 0 | if (N < 1.0) |
3837 | 0 | PG_RETURN_NULL(); |
3838 | | |
3839 | | /* Note that Sxx is guaranteed to be non-negative */ |
3840 | | |
3841 | | /* per spec, return NULL for a vertical line */ |
3842 | 0 | if (Sxx == 0) |
3843 | 0 | PG_RETURN_NULL(); |
3844 | | |
3845 | 0 | PG_RETURN_FLOAT8((Sy - Sx * Sxy / Sxx) / N); |
3846 | 0 | } |
3847 | | |
3848 | | |
3849 | | /* |
3850 | | * ==================================== |
3851 | | * MIXED-PRECISION ARITHMETIC OPERATORS |
3852 | | * ==================================== |
3853 | | */ |
3854 | | |
3855 | | /* |
3856 | | * float48pl - returns arg1 + arg2 |
3857 | | * float48mi - returns arg1 - arg2 |
3858 | | * float48mul - returns arg1 * arg2 |
3859 | | * float48div - returns arg1 / arg2 |
3860 | | */ |
3861 | | Datum |
3862 | | float48pl(PG_FUNCTION_ARGS) |
3863 | 0 | { |
3864 | 0 | float4 arg1 = PG_GETARG_FLOAT4(0); |
3865 | 0 | float8 arg2 = PG_GETARG_FLOAT8(1); |
3866 | |
|
3867 | 0 | PG_RETURN_FLOAT8(float8_pl((float8) arg1, arg2)); |
3868 | 0 | } |
3869 | | |
3870 | | Datum |
3871 | | float48mi(PG_FUNCTION_ARGS) |
3872 | 0 | { |
3873 | 0 | float4 arg1 = PG_GETARG_FLOAT4(0); |
3874 | 0 | float8 arg2 = PG_GETARG_FLOAT8(1); |
3875 | |
|
3876 | 0 | PG_RETURN_FLOAT8(float8_mi((float8) arg1, arg2)); |
3877 | 0 | } |
3878 | | |
3879 | | Datum |
3880 | | float48mul(PG_FUNCTION_ARGS) |
3881 | 0 | { |
3882 | 0 | float4 arg1 = PG_GETARG_FLOAT4(0); |
3883 | 0 | float8 arg2 = PG_GETARG_FLOAT8(1); |
3884 | |
|
3885 | 0 | PG_RETURN_FLOAT8(float8_mul((float8) arg1, arg2)); |
3886 | 0 | } |
3887 | | |
3888 | | Datum |
3889 | | float48div(PG_FUNCTION_ARGS) |
3890 | 0 | { |
3891 | 0 | float4 arg1 = PG_GETARG_FLOAT4(0); |
3892 | 0 | float8 arg2 = PG_GETARG_FLOAT8(1); |
3893 | |
|
3894 | 0 | PG_RETURN_FLOAT8(float8_div((float8) arg1, arg2)); |
3895 | 0 | } |
3896 | | |
3897 | | /* |
3898 | | * float84pl - returns arg1 + arg2 |
3899 | | * float84mi - returns arg1 - arg2 |
3900 | | * float84mul - returns arg1 * arg2 |
3901 | | * float84div - returns arg1 / arg2 |
3902 | | */ |
3903 | | Datum |
3904 | | float84pl(PG_FUNCTION_ARGS) |
3905 | 0 | { |
3906 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
3907 | 0 | float4 arg2 = PG_GETARG_FLOAT4(1); |
3908 | |
|
3909 | 0 | PG_RETURN_FLOAT8(float8_pl(arg1, (float8) arg2)); |
3910 | 0 | } |
3911 | | |
3912 | | Datum |
3913 | | float84mi(PG_FUNCTION_ARGS) |
3914 | 0 | { |
3915 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
3916 | 0 | float4 arg2 = PG_GETARG_FLOAT4(1); |
3917 | |
|
3918 | 0 | PG_RETURN_FLOAT8(float8_mi(arg1, (float8) arg2)); |
3919 | 0 | } |
3920 | | |
3921 | | Datum |
3922 | | float84mul(PG_FUNCTION_ARGS) |
3923 | 0 | { |
3924 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
3925 | 0 | float4 arg2 = PG_GETARG_FLOAT4(1); |
3926 | |
|
3927 | 0 | PG_RETURN_FLOAT8(float8_mul(arg1, (float8) arg2)); |
3928 | 0 | } |
3929 | | |
3930 | | Datum |
3931 | | float84div(PG_FUNCTION_ARGS) |
3932 | 0 | { |
3933 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
3934 | 0 | float4 arg2 = PG_GETARG_FLOAT4(1); |
3935 | |
|
3936 | 0 | PG_RETURN_FLOAT8(float8_div(arg1, (float8) arg2)); |
3937 | 0 | } |
3938 | | |
3939 | | /* |
3940 | | * ==================== |
3941 | | * COMPARISON OPERATORS |
3942 | | * ==================== |
3943 | | */ |
3944 | | |
3945 | | /* |
3946 | | * float48{eq,ne,lt,le,gt,ge} - float4/float8 comparison operations |
3947 | | */ |
3948 | | Datum |
3949 | | float48eq(PG_FUNCTION_ARGS) |
3950 | 0 | { |
3951 | 0 | float4 arg1 = PG_GETARG_FLOAT4(0); |
3952 | 0 | float8 arg2 = PG_GETARG_FLOAT8(1); |
3953 | |
|
3954 | 0 | PG_RETURN_BOOL(float8_eq((float8) arg1, arg2)); |
3955 | 0 | } |
3956 | | |
3957 | | Datum |
3958 | | float48ne(PG_FUNCTION_ARGS) |
3959 | 0 | { |
3960 | 0 | float4 arg1 = PG_GETARG_FLOAT4(0); |
3961 | 0 | float8 arg2 = PG_GETARG_FLOAT8(1); |
3962 | |
|
3963 | 0 | PG_RETURN_BOOL(float8_ne((float8) arg1, arg2)); |
3964 | 0 | } |
3965 | | |
3966 | | Datum |
3967 | | float48lt(PG_FUNCTION_ARGS) |
3968 | 0 | { |
3969 | 0 | float4 arg1 = PG_GETARG_FLOAT4(0); |
3970 | 0 | float8 arg2 = PG_GETARG_FLOAT8(1); |
3971 | |
|
3972 | 0 | PG_RETURN_BOOL(float8_lt((float8) arg1, arg2)); |
3973 | 0 | } |
3974 | | |
3975 | | Datum |
3976 | | float48le(PG_FUNCTION_ARGS) |
3977 | 0 | { |
3978 | 0 | float4 arg1 = PG_GETARG_FLOAT4(0); |
3979 | 0 | float8 arg2 = PG_GETARG_FLOAT8(1); |
3980 | |
|
3981 | 0 | PG_RETURN_BOOL(float8_le((float8) arg1, arg2)); |
3982 | 0 | } |
3983 | | |
3984 | | Datum |
3985 | | float48gt(PG_FUNCTION_ARGS) |
3986 | 0 | { |
3987 | 0 | float4 arg1 = PG_GETARG_FLOAT4(0); |
3988 | 0 | float8 arg2 = PG_GETARG_FLOAT8(1); |
3989 | |
|
3990 | 0 | PG_RETURN_BOOL(float8_gt((float8) arg1, arg2)); |
3991 | 0 | } |
3992 | | |
3993 | | Datum |
3994 | | float48ge(PG_FUNCTION_ARGS) |
3995 | 0 | { |
3996 | 0 | float4 arg1 = PG_GETARG_FLOAT4(0); |
3997 | 0 | float8 arg2 = PG_GETARG_FLOAT8(1); |
3998 | |
|
3999 | 0 | PG_RETURN_BOOL(float8_ge((float8) arg1, arg2)); |
4000 | 0 | } |
4001 | | |
4002 | | /* |
4003 | | * float84{eq,ne,lt,le,gt,ge} - float8/float4 comparison operations |
4004 | | */ |
4005 | | Datum |
4006 | | float84eq(PG_FUNCTION_ARGS) |
4007 | 0 | { |
4008 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
4009 | 0 | float4 arg2 = PG_GETARG_FLOAT4(1); |
4010 | |
|
4011 | 0 | PG_RETURN_BOOL(float8_eq(arg1, (float8) arg2)); |
4012 | 0 | } |
4013 | | |
4014 | | Datum |
4015 | | float84ne(PG_FUNCTION_ARGS) |
4016 | 0 | { |
4017 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
4018 | 0 | float4 arg2 = PG_GETARG_FLOAT4(1); |
4019 | |
|
4020 | 0 | PG_RETURN_BOOL(float8_ne(arg1, (float8) arg2)); |
4021 | 0 | } |
4022 | | |
4023 | | Datum |
4024 | | float84lt(PG_FUNCTION_ARGS) |
4025 | 0 | { |
4026 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
4027 | 0 | float4 arg2 = PG_GETARG_FLOAT4(1); |
4028 | |
|
4029 | 0 | PG_RETURN_BOOL(float8_lt(arg1, (float8) arg2)); |
4030 | 0 | } |
4031 | | |
4032 | | Datum |
4033 | | float84le(PG_FUNCTION_ARGS) |
4034 | 0 | { |
4035 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
4036 | 0 | float4 arg2 = PG_GETARG_FLOAT4(1); |
4037 | |
|
4038 | 0 | PG_RETURN_BOOL(float8_le(arg1, (float8) arg2)); |
4039 | 0 | } |
4040 | | |
4041 | | Datum |
4042 | | float84gt(PG_FUNCTION_ARGS) |
4043 | 0 | { |
4044 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
4045 | 0 | float4 arg2 = PG_GETARG_FLOAT4(1); |
4046 | |
|
4047 | 0 | PG_RETURN_BOOL(float8_gt(arg1, (float8) arg2)); |
4048 | 0 | } |
4049 | | |
4050 | | Datum |
4051 | | float84ge(PG_FUNCTION_ARGS) |
4052 | 0 | { |
4053 | 0 | float8 arg1 = PG_GETARG_FLOAT8(0); |
4054 | 0 | float4 arg2 = PG_GETARG_FLOAT4(1); |
4055 | |
|
4056 | 0 | PG_RETURN_BOOL(float8_ge(arg1, (float8) arg2)); |
4057 | 0 | } |
4058 | | |
4059 | | /* |
4060 | | * Implements the float8 version of the width_bucket() function |
4061 | | * defined by SQL2003. See also width_bucket_numeric(). |
4062 | | * |
4063 | | * 'bound1' and 'bound2' are the lower and upper bounds of the |
4064 | | * histogram's range, respectively. 'count' is the number of buckets |
4065 | | * in the histogram. width_bucket() returns an integer indicating the |
4066 | | * bucket number that 'operand' belongs to in an equiwidth histogram |
4067 | | * with the specified characteristics. An operand smaller than the |
4068 | | * lower bound is assigned to bucket 0. An operand greater than the |
4069 | | * upper bound is assigned to an additional bucket (with number |
4070 | | * count+1). We don't allow "NaN" for any of the float8 inputs, and we |
4071 | | * don't allow either of the histogram bounds to be +/- infinity. |
4072 | | */ |
4073 | | Datum |
4074 | | width_bucket_float8(PG_FUNCTION_ARGS) |
4075 | 0 | { |
4076 | 0 | float8 operand = PG_GETARG_FLOAT8(0); |
4077 | 0 | float8 bound1 = PG_GETARG_FLOAT8(1); |
4078 | 0 | float8 bound2 = PG_GETARG_FLOAT8(2); |
4079 | 0 | int32 count = PG_GETARG_INT32(3); |
4080 | 0 | int32 result; |
4081 | |
|
4082 | 0 | if (count <= 0) |
4083 | 0 | ereport(ERROR, |
4084 | 0 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION), |
4085 | 0 | errmsg("count must be greater than zero"))); |
4086 | | |
4087 | 0 | if (isnan(operand) || isnan(bound1) || isnan(bound2)) |
4088 | 0 | ereport(ERROR, |
4089 | 0 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION), |
4090 | 0 | errmsg("operand, lower bound, and upper bound cannot be NaN"))); |
4091 | | |
4092 | | /* Note that we allow "operand" to be infinite */ |
4093 | 0 | if (isinf(bound1) || isinf(bound2)) |
4094 | 0 | ereport(ERROR, |
4095 | 0 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION), |
4096 | 0 | errmsg("lower and upper bounds must be finite"))); |
4097 | | |
4098 | 0 | if (bound1 < bound2) |
4099 | 0 | { |
4100 | 0 | if (operand < bound1) |
4101 | 0 | result = 0; |
4102 | 0 | else if (operand >= bound2) |
4103 | 0 | { |
4104 | 0 | if (pg_add_s32_overflow(count, 1, &result)) |
4105 | 0 | ereport(ERROR, |
4106 | 0 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
4107 | 0 | errmsg("integer out of range"))); |
4108 | 0 | } |
4109 | 0 | else |
4110 | 0 | { |
4111 | 0 | if (!isinf(bound2 - bound1)) |
4112 | 0 | { |
4113 | | /* The quotient is surely in [0,1], so this can't overflow */ |
4114 | 0 | result = count * ((operand - bound1) / (bound2 - bound1)); |
4115 | 0 | } |
4116 | 0 | else |
4117 | 0 | { |
4118 | | /* |
4119 | | * We get here if bound2 - bound1 overflows DBL_MAX. Since |
4120 | | * both bounds are finite, their difference can't exceed twice |
4121 | | * DBL_MAX; so we can perform the computation without overflow |
4122 | | * by dividing all the inputs by 2. That should be exact too, |
4123 | | * except in the case where a very small operand underflows to |
4124 | | * zero, which would have negligible impact on the result |
4125 | | * given such large bounds. |
4126 | | */ |
4127 | 0 | result = count * ((operand / 2 - bound1 / 2) / (bound2 / 2 - bound1 / 2)); |
4128 | 0 | } |
4129 | | /* The quotient could round to 1.0, which would be a lie */ |
4130 | 0 | if (result >= count) |
4131 | 0 | result = count - 1; |
4132 | | /* Having done that, we can add 1 without fear of overflow */ |
4133 | 0 | result++; |
4134 | 0 | } |
4135 | 0 | } |
4136 | 0 | else if (bound1 > bound2) |
4137 | 0 | { |
4138 | 0 | if (operand > bound1) |
4139 | 0 | result = 0; |
4140 | 0 | else if (operand <= bound2) |
4141 | 0 | { |
4142 | 0 | if (pg_add_s32_overflow(count, 1, &result)) |
4143 | 0 | ereport(ERROR, |
4144 | 0 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
4145 | 0 | errmsg("integer out of range"))); |
4146 | 0 | } |
4147 | 0 | else |
4148 | 0 | { |
4149 | 0 | if (!isinf(bound1 - bound2)) |
4150 | 0 | result = count * ((bound1 - operand) / (bound1 - bound2)); |
4151 | 0 | else |
4152 | 0 | result = count * ((bound1 / 2 - operand / 2) / (bound1 / 2 - bound2 / 2)); |
4153 | 0 | if (result >= count) |
4154 | 0 | result = count - 1; |
4155 | 0 | result++; |
4156 | 0 | } |
4157 | 0 | } |
4158 | 0 | else |
4159 | 0 | { |
4160 | 0 | ereport(ERROR, |
4161 | 0 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION), |
4162 | 0 | errmsg("lower bound cannot equal upper bound"))); |
4163 | 0 | result = 0; /* keep the compiler quiet */ |
4164 | 0 | } |
4165 | | |
4166 | 0 | PG_RETURN_INT32(result); |
4167 | 0 | } |