/src/postgres/src/backend/utils/adt/regexp.c
Line | Count | Source (jump to first uncovered line) |
1 | | /*------------------------------------------------------------------------- |
2 | | * |
3 | | * regexp.c |
4 | | * Postgres' interface to the regular expression package. |
5 | | * |
6 | | * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group |
7 | | * Portions Copyright (c) 1994, Regents of the University of California |
8 | | * |
9 | | * |
10 | | * IDENTIFICATION |
11 | | * src/backend/utils/adt/regexp.c |
12 | | * |
13 | | * Alistair Crooks added the code for the regex caching |
14 | | * agc - cached the regular expressions used - there's a good chance |
15 | | * that we'll get a hit, so this saves a compile step for every |
16 | | * attempted match. I haven't actually measured the speed improvement, |
17 | | * but it `looks' a lot quicker visually when watching regression |
18 | | * test output. |
19 | | * |
20 | | * agc - incorporated Keith Bostic's Berkeley regex code into |
21 | | * the tree for all ports. To distinguish this regex code from any that |
22 | | * is existent on a platform, I've prepended the string "pg_" to |
23 | | * the functions regcomp, regerror, regexec and regfree. |
24 | | * Fixed a bug that was originally a typo by me, where `i' was used |
25 | | * instead of `oldest' when compiling regular expressions - benign |
26 | | * results mostly, although occasionally it bit you... |
27 | | * |
28 | | *------------------------------------------------------------------------- |
29 | | */ |
30 | | #include "postgres.h" |
31 | | |
32 | | #include "catalog/pg_type.h" |
33 | | #include "funcapi.h" |
34 | | #include "regex/regex.h" |
35 | | #include "utils/array.h" |
36 | | #include "utils/builtins.h" |
37 | | #include "utils/memutils.h" |
38 | | #include "utils/varlena.h" |
39 | | |
40 | | #define PG_GETARG_TEXT_PP_IF_EXISTS(_n) \ |
41 | 0 | (PG_NARGS() > (_n) ? PG_GETARG_TEXT_PP(_n) : NULL) |
42 | | |
43 | | |
44 | | /* all the options of interest for regex functions */ |
45 | | typedef struct pg_re_flags |
46 | | { |
47 | | int cflags; /* compile flags for Spencer's regex code */ |
48 | | bool glob; /* do it globally (for each occurrence) */ |
49 | | } pg_re_flags; |
50 | | |
51 | | /* cross-call state for regexp_match and regexp_split functions */ |
52 | | typedef struct regexp_matches_ctx |
53 | | { |
54 | | text *orig_str; /* data string in original TEXT form */ |
55 | | int nmatches; /* number of places where pattern matched */ |
56 | | int npatterns; /* number of capturing subpatterns */ |
57 | | /* We store start char index and end+1 char index for each match */ |
58 | | /* so the number of entries in match_locs is nmatches * npatterns * 2 */ |
59 | | int *match_locs; /* 0-based character indexes */ |
60 | | int next_match; /* 0-based index of next match to process */ |
61 | | /* workspace for build_regexp_match_result() */ |
62 | | Datum *elems; /* has npatterns elements */ |
63 | | bool *nulls; /* has npatterns elements */ |
64 | | pg_wchar *wide_str; /* wide-char version of original string */ |
65 | | char *conv_buf; /* conversion buffer, if needed */ |
66 | | int conv_bufsiz; /* size thereof */ |
67 | | } regexp_matches_ctx; |
68 | | |
69 | | /* |
70 | | * We cache precompiled regular expressions using a "self organizing list" |
71 | | * structure, in which recently-used items tend to be near the front. |
72 | | * Whenever we use an entry, it's moved up to the front of the list. |
73 | | * Over time, an item's average position corresponds to its frequency of use. |
74 | | * |
75 | | * When we first create an entry, it's inserted at the front of |
76 | | * the array, dropping the entry at the end of the array if necessary to |
77 | | * make room. (This might seem to be weighting the new entry too heavily, |
78 | | * but if we insert new entries further back, we'll be unable to adjust to |
79 | | * a sudden shift in the query mix where we are presented with MAX_CACHED_RES |
80 | | * never-before-seen items used circularly. We ought to be able to handle |
81 | | * that case, so we have to insert at the front.) |
82 | | * |
83 | | * Knuth mentions a variant strategy in which a used item is moved up just |
84 | | * one place in the list. Although he says this uses fewer comparisons on |
85 | | * average, it seems not to adapt very well to the situation where you have |
86 | | * both some reusable patterns and a steady stream of non-reusable patterns. |
87 | | * A reusable pattern that isn't used at least as often as non-reusable |
88 | | * patterns are seen will "fail to keep up" and will drop off the end of the |
89 | | * cache. With move-to-front, a reusable pattern is guaranteed to stay in |
90 | | * the cache as long as it's used at least once in every MAX_CACHED_RES uses. |
91 | | */ |
92 | | |
93 | | /* this is the maximum number of cached regular expressions */ |
94 | | #ifndef MAX_CACHED_RES |
95 | 0 | #define MAX_CACHED_RES 32 |
96 | | #endif |
97 | | |
98 | | /* A parent memory context for regular expressions. */ |
99 | | static MemoryContext RegexpCacheMemoryContext; |
100 | | |
101 | | /* this structure describes one cached regular expression */ |
102 | | typedef struct cached_re_str |
103 | | { |
104 | | MemoryContext cre_context; /* memory context for this regexp */ |
105 | | char *cre_pat; /* original RE (not null terminated!) */ |
106 | | int cre_pat_len; /* length of original RE, in bytes */ |
107 | | int cre_flags; /* compile flags: extended,icase etc */ |
108 | | Oid cre_collation; /* collation to use */ |
109 | | regex_t cre_re; /* the compiled regular expression */ |
110 | | } cached_re_str; |
111 | | |
112 | | static int num_res = 0; /* # of cached re's */ |
113 | | static cached_re_str re_array[MAX_CACHED_RES]; /* cached re's */ |
114 | | |
115 | | |
116 | | /* Local functions */ |
117 | | static regexp_matches_ctx *setup_regexp_matches(text *orig_str, text *pattern, |
118 | | pg_re_flags *re_flags, |
119 | | int start_search, |
120 | | Oid collation, |
121 | | bool use_subpatterns, |
122 | | bool ignore_degenerate, |
123 | | bool fetching_unmatched); |
124 | | static ArrayType *build_regexp_match_result(regexp_matches_ctx *matchctx); |
125 | | static Datum build_regexp_split_result(regexp_matches_ctx *splitctx); |
126 | | |
127 | | |
128 | | /* |
129 | | * RE_compile_and_cache - compile a RE, caching if possible |
130 | | * |
131 | | * Returns regex_t * |
132 | | * |
133 | | * text_re --- the pattern, expressed as a TEXT object |
134 | | * cflags --- compile options for the pattern |
135 | | * collation --- collation to use for LC_CTYPE-dependent behavior |
136 | | * |
137 | | * Pattern is given in the database encoding. We internally convert to |
138 | | * an array of pg_wchar, which is what Spencer's regex package wants. |
139 | | */ |
140 | | regex_t * |
141 | | RE_compile_and_cache(text *text_re, int cflags, Oid collation) |
142 | 0 | { |
143 | 0 | int text_re_len = VARSIZE_ANY_EXHDR(text_re); |
144 | 0 | char *text_re_val = VARDATA_ANY(text_re); |
145 | 0 | pg_wchar *pattern; |
146 | 0 | int pattern_len; |
147 | 0 | int i; |
148 | 0 | int regcomp_result; |
149 | 0 | cached_re_str re_temp; |
150 | 0 | char errMsg[100]; |
151 | 0 | MemoryContext oldcontext; |
152 | | |
153 | | /* |
154 | | * Look for a match among previously compiled REs. Since the data |
155 | | * structure is self-organizing with most-used entries at the front, our |
156 | | * search strategy can just be to scan from the front. |
157 | | */ |
158 | 0 | for (i = 0; i < num_res; i++) |
159 | 0 | { |
160 | 0 | if (re_array[i].cre_pat_len == text_re_len && |
161 | 0 | re_array[i].cre_flags == cflags && |
162 | 0 | re_array[i].cre_collation == collation && |
163 | 0 | memcmp(re_array[i].cre_pat, text_re_val, text_re_len) == 0) |
164 | 0 | { |
165 | | /* |
166 | | * Found a match; move it to front if not there already. |
167 | | */ |
168 | 0 | if (i > 0) |
169 | 0 | { |
170 | 0 | re_temp = re_array[i]; |
171 | 0 | memmove(&re_array[1], &re_array[0], i * sizeof(cached_re_str)); |
172 | 0 | re_array[0] = re_temp; |
173 | 0 | } |
174 | |
|
175 | 0 | return &re_array[0].cre_re; |
176 | 0 | } |
177 | 0 | } |
178 | | |
179 | | /* Set up the cache memory on first go through. */ |
180 | 0 | if (unlikely(RegexpCacheMemoryContext == NULL)) |
181 | 0 | RegexpCacheMemoryContext = |
182 | 0 | AllocSetContextCreate(TopMemoryContext, |
183 | 0 | "RegexpCacheMemoryContext", |
184 | 0 | ALLOCSET_SMALL_SIZES); |
185 | | |
186 | | /* |
187 | | * Couldn't find it, so try to compile the new RE. To avoid leaking |
188 | | * resources on failure, we build into the re_temp local. |
189 | | */ |
190 | | |
191 | | /* Convert pattern string to wide characters */ |
192 | 0 | pattern = (pg_wchar *) palloc((text_re_len + 1) * sizeof(pg_wchar)); |
193 | 0 | pattern_len = pg_mb2wchar_with_len(text_re_val, |
194 | 0 | pattern, |
195 | 0 | text_re_len); |
196 | | |
197 | | /* |
198 | | * Make a memory context for this compiled regexp. This is initially a |
199 | | * child of the current memory context, so it will be cleaned up |
200 | | * automatically if compilation is interrupted and throws an ERROR. We'll |
201 | | * re-parent it under the longer lived cache context if we make it to the |
202 | | * bottom of this function. |
203 | | */ |
204 | 0 | re_temp.cre_context = AllocSetContextCreate(CurrentMemoryContext, |
205 | 0 | "RegexpMemoryContext", |
206 | 0 | ALLOCSET_SMALL_SIZES); |
207 | 0 | oldcontext = MemoryContextSwitchTo(re_temp.cre_context); |
208 | |
|
209 | 0 | regcomp_result = pg_regcomp(&re_temp.cre_re, |
210 | 0 | pattern, |
211 | 0 | pattern_len, |
212 | 0 | cflags, |
213 | 0 | collation); |
214 | |
|
215 | 0 | pfree(pattern); |
216 | |
|
217 | 0 | if (regcomp_result != REG_OKAY) |
218 | 0 | { |
219 | | /* re didn't compile (no need for pg_regfree, if so) */ |
220 | 0 | pg_regerror(regcomp_result, &re_temp.cre_re, errMsg, sizeof(errMsg)); |
221 | 0 | ereport(ERROR, |
222 | 0 | (errcode(ERRCODE_INVALID_REGULAR_EXPRESSION), |
223 | 0 | errmsg("invalid regular expression: %s", errMsg))); |
224 | 0 | } |
225 | | |
226 | | /* Copy the pattern into the per-regexp memory context. */ |
227 | 0 | re_temp.cre_pat = palloc(text_re_len + 1); |
228 | 0 | memcpy(re_temp.cre_pat, text_re_val, text_re_len); |
229 | | |
230 | | /* |
231 | | * NUL-terminate it only for the benefit of the identifier used for the |
232 | | * memory context, visible in the pg_backend_memory_contexts view. |
233 | | */ |
234 | 0 | re_temp.cre_pat[text_re_len] = 0; |
235 | 0 | MemoryContextSetIdentifier(re_temp.cre_context, re_temp.cre_pat); |
236 | |
|
237 | 0 | re_temp.cre_pat_len = text_re_len; |
238 | 0 | re_temp.cre_flags = cflags; |
239 | 0 | re_temp.cre_collation = collation; |
240 | | |
241 | | /* |
242 | | * Okay, we have a valid new item in re_temp; insert it into the storage |
243 | | * array. Discard last entry if needed. |
244 | | */ |
245 | 0 | if (num_res >= MAX_CACHED_RES) |
246 | 0 | { |
247 | 0 | --num_res; |
248 | 0 | Assert(num_res < MAX_CACHED_RES); |
249 | | /* Delete the memory context holding the regexp and pattern. */ |
250 | 0 | MemoryContextDelete(re_array[num_res].cre_context); |
251 | 0 | } |
252 | | |
253 | | /* Re-parent the memory context to our long-lived cache context. */ |
254 | 0 | MemoryContextSetParent(re_temp.cre_context, RegexpCacheMemoryContext); |
255 | |
|
256 | 0 | if (num_res > 0) |
257 | 0 | memmove(&re_array[1], &re_array[0], num_res * sizeof(cached_re_str)); |
258 | |
|
259 | 0 | re_array[0] = re_temp; |
260 | 0 | num_res++; |
261 | |
|
262 | 0 | MemoryContextSwitchTo(oldcontext); |
263 | |
|
264 | 0 | return &re_array[0].cre_re; |
265 | 0 | } |
266 | | |
267 | | /* |
268 | | * RE_wchar_execute - execute a RE on pg_wchar data |
269 | | * |
270 | | * Returns true on match, false on no match |
271 | | * |
272 | | * re --- the compiled pattern as returned by RE_compile_and_cache |
273 | | * data --- the data to match against (need not be null-terminated) |
274 | | * data_len --- the length of the data string |
275 | | * start_search -- the offset in the data to start searching |
276 | | * nmatch, pmatch --- optional return area for match details |
277 | | * |
278 | | * Data is given as array of pg_wchar which is what Spencer's regex package |
279 | | * wants. |
280 | | */ |
281 | | static bool |
282 | | RE_wchar_execute(regex_t *re, pg_wchar *data, int data_len, |
283 | | int start_search, int nmatch, regmatch_t *pmatch) |
284 | 0 | { |
285 | 0 | int regexec_result; |
286 | 0 | char errMsg[100]; |
287 | | |
288 | | /* Perform RE match and return result */ |
289 | 0 | regexec_result = pg_regexec(re, |
290 | 0 | data, |
291 | 0 | data_len, |
292 | 0 | start_search, |
293 | 0 | NULL, /* no details */ |
294 | 0 | nmatch, |
295 | 0 | pmatch, |
296 | 0 | 0); |
297 | |
|
298 | 0 | if (regexec_result != REG_OKAY && regexec_result != REG_NOMATCH) |
299 | 0 | { |
300 | | /* re failed??? */ |
301 | 0 | pg_regerror(regexec_result, re, errMsg, sizeof(errMsg)); |
302 | 0 | ereport(ERROR, |
303 | 0 | (errcode(ERRCODE_INVALID_REGULAR_EXPRESSION), |
304 | 0 | errmsg("regular expression failed: %s", errMsg))); |
305 | 0 | } |
306 | | |
307 | 0 | return (regexec_result == REG_OKAY); |
308 | 0 | } |
309 | | |
310 | | /* |
311 | | * RE_execute - execute a RE |
312 | | * |
313 | | * Returns true on match, false on no match |
314 | | * |
315 | | * re --- the compiled pattern as returned by RE_compile_and_cache |
316 | | * dat --- the data to match against (need not be null-terminated) |
317 | | * dat_len --- the length of the data string |
318 | | * nmatch, pmatch --- optional return area for match details |
319 | | * |
320 | | * Data is given in the database encoding. We internally |
321 | | * convert to array of pg_wchar which is what Spencer's regex package wants. |
322 | | */ |
323 | | static bool |
324 | | RE_execute(regex_t *re, char *dat, int dat_len, |
325 | | int nmatch, regmatch_t *pmatch) |
326 | 0 | { |
327 | 0 | pg_wchar *data; |
328 | 0 | int data_len; |
329 | 0 | bool match; |
330 | | |
331 | | /* Convert data string to wide characters */ |
332 | 0 | data = (pg_wchar *) palloc((dat_len + 1) * sizeof(pg_wchar)); |
333 | 0 | data_len = pg_mb2wchar_with_len(dat, data, dat_len); |
334 | | |
335 | | /* Perform RE match and return result */ |
336 | 0 | match = RE_wchar_execute(re, data, data_len, 0, nmatch, pmatch); |
337 | |
|
338 | 0 | pfree(data); |
339 | 0 | return match; |
340 | 0 | } |
341 | | |
342 | | /* |
343 | | * RE_compile_and_execute - compile and execute a RE |
344 | | * |
345 | | * Returns true on match, false on no match |
346 | | * |
347 | | * text_re --- the pattern, expressed as a TEXT object |
348 | | * dat --- the data to match against (need not be null-terminated) |
349 | | * dat_len --- the length of the data string |
350 | | * cflags --- compile options for the pattern |
351 | | * collation --- collation to use for LC_CTYPE-dependent behavior |
352 | | * nmatch, pmatch --- optional return area for match details |
353 | | * |
354 | | * Both pattern and data are given in the database encoding. We internally |
355 | | * convert to array of pg_wchar which is what Spencer's regex package wants. |
356 | | */ |
357 | | bool |
358 | | RE_compile_and_execute(text *text_re, char *dat, int dat_len, |
359 | | int cflags, Oid collation, |
360 | | int nmatch, regmatch_t *pmatch) |
361 | 0 | { |
362 | 0 | regex_t *re; |
363 | | |
364 | | /* Use REG_NOSUB if caller does not want sub-match details */ |
365 | 0 | if (nmatch < 2) |
366 | 0 | cflags |= REG_NOSUB; |
367 | | |
368 | | /* Compile RE */ |
369 | 0 | re = RE_compile_and_cache(text_re, cflags, collation); |
370 | |
|
371 | 0 | return RE_execute(re, dat, dat_len, nmatch, pmatch); |
372 | 0 | } |
373 | | |
374 | | |
375 | | /* |
376 | | * parse_re_flags - parse the options argument of regexp_match and friends |
377 | | * |
378 | | * flags --- output argument, filled with desired options |
379 | | * opts --- TEXT object, or NULL for defaults |
380 | | * |
381 | | * This accepts all the options allowed by any of the callers; callers that |
382 | | * don't want some have to reject them after the fact. |
383 | | */ |
384 | | static void |
385 | | parse_re_flags(pg_re_flags *flags, text *opts) |
386 | 0 | { |
387 | | /* regex flavor is always folded into the compile flags */ |
388 | 0 | flags->cflags = REG_ADVANCED; |
389 | 0 | flags->glob = false; |
390 | |
|
391 | 0 | if (opts) |
392 | 0 | { |
393 | 0 | char *opt_p = VARDATA_ANY(opts); |
394 | 0 | int opt_len = VARSIZE_ANY_EXHDR(opts); |
395 | 0 | int i; |
396 | |
|
397 | 0 | for (i = 0; i < opt_len; i++) |
398 | 0 | { |
399 | 0 | switch (opt_p[i]) |
400 | 0 | { |
401 | 0 | case 'g': |
402 | 0 | flags->glob = true; |
403 | 0 | break; |
404 | 0 | case 'b': /* BREs (but why???) */ |
405 | 0 | flags->cflags &= ~(REG_ADVANCED | REG_EXTENDED | REG_QUOTE); |
406 | 0 | break; |
407 | 0 | case 'c': /* case sensitive */ |
408 | 0 | flags->cflags &= ~REG_ICASE; |
409 | 0 | break; |
410 | 0 | case 'e': /* plain EREs */ |
411 | 0 | flags->cflags |= REG_EXTENDED; |
412 | 0 | flags->cflags &= ~(REG_ADVANCED | REG_QUOTE); |
413 | 0 | break; |
414 | 0 | case 'i': /* case insensitive */ |
415 | 0 | flags->cflags |= REG_ICASE; |
416 | 0 | break; |
417 | 0 | case 'm': /* Perloid synonym for n */ |
418 | 0 | case 'n': /* \n affects ^ $ . [^ */ |
419 | 0 | flags->cflags |= REG_NEWLINE; |
420 | 0 | break; |
421 | 0 | case 'p': /* ~Perl, \n affects . [^ */ |
422 | 0 | flags->cflags |= REG_NLSTOP; |
423 | 0 | flags->cflags &= ~REG_NLANCH; |
424 | 0 | break; |
425 | 0 | case 'q': /* literal string */ |
426 | 0 | flags->cflags |= REG_QUOTE; |
427 | 0 | flags->cflags &= ~(REG_ADVANCED | REG_EXTENDED); |
428 | 0 | break; |
429 | 0 | case 's': /* single line, \n ordinary */ |
430 | 0 | flags->cflags &= ~REG_NEWLINE; |
431 | 0 | break; |
432 | 0 | case 't': /* tight syntax */ |
433 | 0 | flags->cflags &= ~REG_EXPANDED; |
434 | 0 | break; |
435 | 0 | case 'w': /* weird, \n affects ^ $ only */ |
436 | 0 | flags->cflags &= ~REG_NLSTOP; |
437 | 0 | flags->cflags |= REG_NLANCH; |
438 | 0 | break; |
439 | 0 | case 'x': /* expanded syntax */ |
440 | 0 | flags->cflags |= REG_EXPANDED; |
441 | 0 | break; |
442 | 0 | default: |
443 | 0 | ereport(ERROR, |
444 | 0 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
445 | 0 | errmsg("invalid regular expression option: \"%.*s\"", |
446 | 0 | pg_mblen(opt_p + i), opt_p + i))); |
447 | 0 | break; |
448 | 0 | } |
449 | 0 | } |
450 | 0 | } |
451 | 0 | } |
452 | | |
453 | | |
454 | | /* |
455 | | * interface routines called by the function manager |
456 | | */ |
457 | | |
458 | | Datum |
459 | | nameregexeq(PG_FUNCTION_ARGS) |
460 | 0 | { |
461 | 0 | Name n = PG_GETARG_NAME(0); |
462 | 0 | text *p = PG_GETARG_TEXT_PP(1); |
463 | |
|
464 | 0 | PG_RETURN_BOOL(RE_compile_and_execute(p, |
465 | 0 | NameStr(*n), |
466 | 0 | strlen(NameStr(*n)), |
467 | 0 | REG_ADVANCED, |
468 | 0 | PG_GET_COLLATION(), |
469 | 0 | 0, NULL)); |
470 | 0 | } |
471 | | |
472 | | Datum |
473 | | nameregexne(PG_FUNCTION_ARGS) |
474 | 0 | { |
475 | 0 | Name n = PG_GETARG_NAME(0); |
476 | 0 | text *p = PG_GETARG_TEXT_PP(1); |
477 | |
|
478 | 0 | PG_RETURN_BOOL(!RE_compile_and_execute(p, |
479 | 0 | NameStr(*n), |
480 | 0 | strlen(NameStr(*n)), |
481 | 0 | REG_ADVANCED, |
482 | 0 | PG_GET_COLLATION(), |
483 | 0 | 0, NULL)); |
484 | 0 | } |
485 | | |
486 | | Datum |
487 | | textregexeq(PG_FUNCTION_ARGS) |
488 | 0 | { |
489 | 0 | text *s = PG_GETARG_TEXT_PP(0); |
490 | 0 | text *p = PG_GETARG_TEXT_PP(1); |
491 | |
|
492 | 0 | PG_RETURN_BOOL(RE_compile_and_execute(p, |
493 | 0 | VARDATA_ANY(s), |
494 | 0 | VARSIZE_ANY_EXHDR(s), |
495 | 0 | REG_ADVANCED, |
496 | 0 | PG_GET_COLLATION(), |
497 | 0 | 0, NULL)); |
498 | 0 | } |
499 | | |
500 | | Datum |
501 | | textregexne(PG_FUNCTION_ARGS) |
502 | 0 | { |
503 | 0 | text *s = PG_GETARG_TEXT_PP(0); |
504 | 0 | text *p = PG_GETARG_TEXT_PP(1); |
505 | |
|
506 | 0 | PG_RETURN_BOOL(!RE_compile_and_execute(p, |
507 | 0 | VARDATA_ANY(s), |
508 | 0 | VARSIZE_ANY_EXHDR(s), |
509 | 0 | REG_ADVANCED, |
510 | 0 | PG_GET_COLLATION(), |
511 | 0 | 0, NULL)); |
512 | 0 | } |
513 | | |
514 | | |
515 | | /* |
516 | | * routines that use the regexp stuff, but ignore the case. |
517 | | * for this, we use the REG_ICASE flag to pg_regcomp |
518 | | */ |
519 | | |
520 | | |
521 | | Datum |
522 | | nameicregexeq(PG_FUNCTION_ARGS) |
523 | 0 | { |
524 | 0 | Name n = PG_GETARG_NAME(0); |
525 | 0 | text *p = PG_GETARG_TEXT_PP(1); |
526 | |
|
527 | 0 | PG_RETURN_BOOL(RE_compile_and_execute(p, |
528 | 0 | NameStr(*n), |
529 | 0 | strlen(NameStr(*n)), |
530 | 0 | REG_ADVANCED | REG_ICASE, |
531 | 0 | PG_GET_COLLATION(), |
532 | 0 | 0, NULL)); |
533 | 0 | } |
534 | | |
535 | | Datum |
536 | | nameicregexne(PG_FUNCTION_ARGS) |
537 | 0 | { |
538 | 0 | Name n = PG_GETARG_NAME(0); |
539 | 0 | text *p = PG_GETARG_TEXT_PP(1); |
540 | |
|
541 | 0 | PG_RETURN_BOOL(!RE_compile_and_execute(p, |
542 | 0 | NameStr(*n), |
543 | 0 | strlen(NameStr(*n)), |
544 | 0 | REG_ADVANCED | REG_ICASE, |
545 | 0 | PG_GET_COLLATION(), |
546 | 0 | 0, NULL)); |
547 | 0 | } |
548 | | |
549 | | Datum |
550 | | texticregexeq(PG_FUNCTION_ARGS) |
551 | 0 | { |
552 | 0 | text *s = PG_GETARG_TEXT_PP(0); |
553 | 0 | text *p = PG_GETARG_TEXT_PP(1); |
554 | |
|
555 | 0 | PG_RETURN_BOOL(RE_compile_and_execute(p, |
556 | 0 | VARDATA_ANY(s), |
557 | 0 | VARSIZE_ANY_EXHDR(s), |
558 | 0 | REG_ADVANCED | REG_ICASE, |
559 | 0 | PG_GET_COLLATION(), |
560 | 0 | 0, NULL)); |
561 | 0 | } |
562 | | |
563 | | Datum |
564 | | texticregexne(PG_FUNCTION_ARGS) |
565 | 0 | { |
566 | 0 | text *s = PG_GETARG_TEXT_PP(0); |
567 | 0 | text *p = PG_GETARG_TEXT_PP(1); |
568 | |
|
569 | 0 | PG_RETURN_BOOL(!RE_compile_and_execute(p, |
570 | 0 | VARDATA_ANY(s), |
571 | 0 | VARSIZE_ANY_EXHDR(s), |
572 | 0 | REG_ADVANCED | REG_ICASE, |
573 | 0 | PG_GET_COLLATION(), |
574 | 0 | 0, NULL)); |
575 | 0 | } |
576 | | |
577 | | |
578 | | /* |
579 | | * textregexsubstr() |
580 | | * Return a substring matched by a regular expression. |
581 | | */ |
582 | | Datum |
583 | | textregexsubstr(PG_FUNCTION_ARGS) |
584 | 0 | { |
585 | 0 | text *s = PG_GETARG_TEXT_PP(0); |
586 | 0 | text *p = PG_GETARG_TEXT_PP(1); |
587 | 0 | regex_t *re; |
588 | 0 | regmatch_t pmatch[2]; |
589 | 0 | int so, |
590 | 0 | eo; |
591 | | |
592 | | /* Compile RE */ |
593 | 0 | re = RE_compile_and_cache(p, REG_ADVANCED, PG_GET_COLLATION()); |
594 | | |
595 | | /* |
596 | | * We pass two regmatch_t structs to get info about the overall match and |
597 | | * the match for the first parenthesized subexpression (if any). If there |
598 | | * is a parenthesized subexpression, we return what it matched; else |
599 | | * return what the whole regexp matched. |
600 | | */ |
601 | 0 | if (!RE_execute(re, |
602 | 0 | VARDATA_ANY(s), VARSIZE_ANY_EXHDR(s), |
603 | 0 | 2, pmatch)) |
604 | 0 | PG_RETURN_NULL(); /* definitely no match */ |
605 | | |
606 | 0 | if (re->re_nsub > 0) |
607 | 0 | { |
608 | | /* has parenthesized subexpressions, use the first one */ |
609 | 0 | so = pmatch[1].rm_so; |
610 | 0 | eo = pmatch[1].rm_eo; |
611 | 0 | } |
612 | 0 | else |
613 | 0 | { |
614 | | /* no parenthesized subexpression, use whole match */ |
615 | 0 | so = pmatch[0].rm_so; |
616 | 0 | eo = pmatch[0].rm_eo; |
617 | 0 | } |
618 | | |
619 | | /* |
620 | | * It is possible to have a match to the whole pattern but no match for a |
621 | | * subexpression; for example 'foo(bar)?' is considered to match 'foo' but |
622 | | * there is no subexpression match. So this extra test for match failure |
623 | | * is not redundant. |
624 | | */ |
625 | 0 | if (so < 0 || eo < 0) |
626 | 0 | PG_RETURN_NULL(); |
627 | | |
628 | 0 | return DirectFunctionCall3(text_substr, |
629 | 0 | PointerGetDatum(s), |
630 | 0 | Int32GetDatum(so + 1), |
631 | 0 | Int32GetDatum(eo - so)); |
632 | 0 | } |
633 | | |
634 | | /* |
635 | | * textregexreplace_noopt() |
636 | | * Return a string matched by a regular expression, with replacement. |
637 | | * |
638 | | * This version doesn't have an option argument: we default to case |
639 | | * sensitive match, replace the first instance only. |
640 | | */ |
641 | | Datum |
642 | | textregexreplace_noopt(PG_FUNCTION_ARGS) |
643 | 0 | { |
644 | 0 | text *s = PG_GETARG_TEXT_PP(0); |
645 | 0 | text *p = PG_GETARG_TEXT_PP(1); |
646 | 0 | text *r = PG_GETARG_TEXT_PP(2); |
647 | |
|
648 | 0 | PG_RETURN_TEXT_P(replace_text_regexp(s, p, r, |
649 | 0 | REG_ADVANCED, PG_GET_COLLATION(), |
650 | 0 | 0, 1)); |
651 | 0 | } |
652 | | |
653 | | /* |
654 | | * textregexreplace() |
655 | | * Return a string matched by a regular expression, with replacement. |
656 | | */ |
657 | | Datum |
658 | | textregexreplace(PG_FUNCTION_ARGS) |
659 | 0 | { |
660 | 0 | text *s = PG_GETARG_TEXT_PP(0); |
661 | 0 | text *p = PG_GETARG_TEXT_PP(1); |
662 | 0 | text *r = PG_GETARG_TEXT_PP(2); |
663 | 0 | text *opt = PG_GETARG_TEXT_PP(3); |
664 | 0 | pg_re_flags flags; |
665 | | |
666 | | /* |
667 | | * regexp_replace() with four arguments will be preferentially resolved as |
668 | | * this form when the fourth argument is of type UNKNOWN. However, the |
669 | | * user might have intended to call textregexreplace_extended_no_n. If we |
670 | | * see flags that look like an integer, emit the same error that |
671 | | * parse_re_flags would, but add a HINT about how to fix it. |
672 | | */ |
673 | 0 | if (VARSIZE_ANY_EXHDR(opt) > 0) |
674 | 0 | { |
675 | 0 | char *opt_p = VARDATA_ANY(opt); |
676 | |
|
677 | 0 | if (*opt_p >= '0' && *opt_p <= '9') |
678 | 0 | ereport(ERROR, |
679 | 0 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
680 | 0 | errmsg("invalid regular expression option: \"%.*s\"", |
681 | 0 | pg_mblen(opt_p), opt_p), |
682 | 0 | errhint("If you meant to use regexp_replace() with a start parameter, cast the fourth argument to integer explicitly."))); |
683 | 0 | } |
684 | | |
685 | 0 | parse_re_flags(&flags, opt); |
686 | |
|
687 | 0 | PG_RETURN_TEXT_P(replace_text_regexp(s, p, r, |
688 | 0 | flags.cflags, PG_GET_COLLATION(), |
689 | 0 | 0, flags.glob ? 0 : 1)); |
690 | 0 | } |
691 | | |
692 | | /* |
693 | | * textregexreplace_extended() |
694 | | * Return a string matched by a regular expression, with replacement. |
695 | | * Extends textregexreplace by allowing a start position and the |
696 | | * choice of the occurrence to replace (0 means all occurrences). |
697 | | */ |
698 | | Datum |
699 | | textregexreplace_extended(PG_FUNCTION_ARGS) |
700 | 0 | { |
701 | 0 | text *s = PG_GETARG_TEXT_PP(0); |
702 | 0 | text *p = PG_GETARG_TEXT_PP(1); |
703 | 0 | text *r = PG_GETARG_TEXT_PP(2); |
704 | 0 | int start = 1; |
705 | 0 | int n = 1; |
706 | 0 | text *flags = PG_GETARG_TEXT_PP_IF_EXISTS(5); |
707 | 0 | pg_re_flags re_flags; |
708 | | |
709 | | /* Collect optional parameters */ |
710 | 0 | if (PG_NARGS() > 3) |
711 | 0 | { |
712 | 0 | start = PG_GETARG_INT32(3); |
713 | 0 | if (start <= 0) |
714 | 0 | ereport(ERROR, |
715 | 0 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
716 | 0 | errmsg("invalid value for parameter \"%s\": %d", |
717 | 0 | "start", start))); |
718 | 0 | } |
719 | 0 | if (PG_NARGS() > 4) |
720 | 0 | { |
721 | 0 | n = PG_GETARG_INT32(4); |
722 | 0 | if (n < 0) |
723 | 0 | ereport(ERROR, |
724 | 0 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
725 | 0 | errmsg("invalid value for parameter \"%s\": %d", |
726 | 0 | "n", n))); |
727 | 0 | } |
728 | | |
729 | | /* Determine options */ |
730 | 0 | parse_re_flags(&re_flags, flags); |
731 | | |
732 | | /* If N was not specified, deduce it from the 'g' flag */ |
733 | 0 | if (PG_NARGS() <= 4) |
734 | 0 | n = re_flags.glob ? 0 : 1; |
735 | | |
736 | | /* Do the replacement(s) */ |
737 | 0 | PG_RETURN_TEXT_P(replace_text_regexp(s, p, r, |
738 | 0 | re_flags.cflags, PG_GET_COLLATION(), |
739 | 0 | start - 1, n)); |
740 | 0 | } |
741 | | |
742 | | /* This is separate to keep the opr_sanity regression test from complaining */ |
743 | | Datum |
744 | | textregexreplace_extended_no_n(PG_FUNCTION_ARGS) |
745 | 0 | { |
746 | 0 | return textregexreplace_extended(fcinfo); |
747 | 0 | } |
748 | | |
749 | | /* This is separate to keep the opr_sanity regression test from complaining */ |
750 | | Datum |
751 | | textregexreplace_extended_no_flags(PG_FUNCTION_ARGS) |
752 | 0 | { |
753 | 0 | return textregexreplace_extended(fcinfo); |
754 | 0 | } |
755 | | |
756 | | /* |
757 | | * similar_to_escape(), similar_escape() |
758 | | * |
759 | | * Convert a SQL "SIMILAR TO" regexp pattern to POSIX style, so it can be |
760 | | * used by our regexp engine. |
761 | | * |
762 | | * similar_escape_internal() is the common workhorse for three SQL-exposed |
763 | | * functions. esc_text can be passed as NULL to select the default escape |
764 | | * (which is '\'), or as an empty string to select no escape character. |
765 | | */ |
766 | | static text * |
767 | | similar_escape_internal(text *pat_text, text *esc_text) |
768 | 0 | { |
769 | 0 | text *result; |
770 | 0 | char *p, |
771 | 0 | *e, |
772 | 0 | *r; |
773 | 0 | int plen, |
774 | 0 | elen; |
775 | 0 | bool afterescape = false; |
776 | 0 | int nquotes = 0; |
777 | 0 | int charclass_depth = 0; /* Nesting level of character classes, |
778 | | * encompassed by square brackets */ |
779 | 0 | int charclass_start = 0; /* State of the character class start, |
780 | | * for carets */ |
781 | |
|
782 | 0 | p = VARDATA_ANY(pat_text); |
783 | 0 | plen = VARSIZE_ANY_EXHDR(pat_text); |
784 | 0 | if (esc_text == NULL) |
785 | 0 | { |
786 | | /* No ESCAPE clause provided; default to backslash as escape */ |
787 | 0 | e = "\\"; |
788 | 0 | elen = 1; |
789 | 0 | } |
790 | 0 | else |
791 | 0 | { |
792 | 0 | e = VARDATA_ANY(esc_text); |
793 | 0 | elen = VARSIZE_ANY_EXHDR(esc_text); |
794 | 0 | if (elen == 0) |
795 | 0 | e = NULL; /* no escape character */ |
796 | 0 | else if (elen > 1) |
797 | 0 | { |
798 | 0 | int escape_mblen = pg_mbstrlen_with_len(e, elen); |
799 | |
|
800 | 0 | if (escape_mblen > 1) |
801 | 0 | ereport(ERROR, |
802 | 0 | (errcode(ERRCODE_INVALID_ESCAPE_SEQUENCE), |
803 | 0 | errmsg("invalid escape string"), |
804 | 0 | errhint("Escape string must be empty or one character."))); |
805 | 0 | } |
806 | 0 | } |
807 | | |
808 | | /*---------- |
809 | | * We surround the transformed input string with |
810 | | * ^(?: ... )$ |
811 | | * which requires some explanation. We need "^" and "$" to force |
812 | | * the pattern to match the entire input string as per the SQL spec. |
813 | | * The "(?:" and ")" are a non-capturing set of parens; we have to have |
814 | | * parens in case the string contains "|", else the "^" and "$" will |
815 | | * be bound into the first and last alternatives which is not what we |
816 | | * want, and the parens must be non capturing because we don't want them |
817 | | * to count when selecting output for SUBSTRING. |
818 | | * |
819 | | * When the pattern is divided into three parts by escape-double-quotes, |
820 | | * what we emit is |
821 | | * ^(?:part1){1,1}?(part2){1,1}(?:part3)$ |
822 | | * which requires even more explanation. The "{1,1}?" on part1 makes it |
823 | | * non-greedy so that it will match the smallest possible amount of text |
824 | | * not the largest, as required by SQL. The plain parens around part2 |
825 | | * are capturing parens so that that part is what controls the result of |
826 | | * SUBSTRING. The "{1,1}" forces part2 to be greedy, so that it matches |
827 | | * the largest possible amount of text; hence part3 must match the |
828 | | * smallest amount of text, as required by SQL. We don't need an explicit |
829 | | * greediness marker on part3. Note that this also confines the effects |
830 | | * of any "|" characters to the respective part, which is what we want. |
831 | | * |
832 | | * The SQL spec says that SUBSTRING's pattern must contain exactly two |
833 | | * escape-double-quotes, but we only complain if there's more than two. |
834 | | * With none, we act as though part1 and part3 are empty; with one, we |
835 | | * act as though part3 is empty. Both behaviors fall out of omitting |
836 | | * the relevant part separators in the above expansion. If the result |
837 | | * of this function is used in a plain regexp match (SIMILAR TO), the |
838 | | * escape-double-quotes have no effect on the match behavior. |
839 | | *---------- |
840 | | */ |
841 | | |
842 | | /* |
843 | | * We need room for the prefix/postfix and part separators, plus as many |
844 | | * as 3 output bytes per input byte; since the input is at most 1GB this |
845 | | * can't overflow size_t. |
846 | | */ |
847 | 0 | result = (text *) palloc(VARHDRSZ + 23 + 3 * (size_t) plen); |
848 | 0 | r = VARDATA(result); |
849 | |
|
850 | 0 | *r++ = '^'; |
851 | 0 | *r++ = '('; |
852 | 0 | *r++ = '?'; |
853 | 0 | *r++ = ':'; |
854 | |
|
855 | 0 | while (plen > 0) |
856 | 0 | { |
857 | 0 | char pchar = *p; |
858 | | |
859 | | /* |
860 | | * If both the escape character and the current character from the |
861 | | * pattern are multi-byte, we need to take the slow path. |
862 | | * |
863 | | * But if one of them is single-byte, we can process the pattern one |
864 | | * byte at a time, ignoring multi-byte characters. (This works |
865 | | * because all server-encodings have the property that a valid |
866 | | * multi-byte character representation cannot contain the |
867 | | * representation of a valid single-byte character.) |
868 | | */ |
869 | |
|
870 | 0 | if (elen > 1) |
871 | 0 | { |
872 | 0 | int mblen = pg_mblen(p); |
873 | |
|
874 | 0 | if (mblen > 1) |
875 | 0 | { |
876 | | /* slow, multi-byte path */ |
877 | 0 | if (afterescape) |
878 | 0 | { |
879 | 0 | *r++ = '\\'; |
880 | 0 | memcpy(r, p, mblen); |
881 | 0 | r += mblen; |
882 | 0 | afterescape = false; |
883 | 0 | } |
884 | 0 | else if (e && elen == mblen && memcmp(e, p, mblen) == 0) |
885 | 0 | { |
886 | | /* SQL escape character; do not send to output */ |
887 | 0 | afterescape = true; |
888 | 0 | } |
889 | 0 | else |
890 | 0 | { |
891 | | /* |
892 | | * We know it's a multi-byte character, so we don't need |
893 | | * to do all the comparisons to single-byte characters |
894 | | * that we do below. |
895 | | */ |
896 | 0 | memcpy(r, p, mblen); |
897 | 0 | r += mblen; |
898 | 0 | } |
899 | |
|
900 | 0 | p += mblen; |
901 | 0 | plen -= mblen; |
902 | |
|
903 | 0 | continue; |
904 | 0 | } |
905 | 0 | } |
906 | | |
907 | | /* fast path */ |
908 | 0 | if (afterescape) |
909 | 0 | { |
910 | 0 | if (pchar == '"' && charclass_depth < 1) /* escape-double-quote? */ |
911 | 0 | { |
912 | | /* emit appropriate part separator, per notes above */ |
913 | 0 | if (nquotes == 0) |
914 | 0 | { |
915 | 0 | *r++ = ')'; |
916 | 0 | *r++ = '{'; |
917 | 0 | *r++ = '1'; |
918 | 0 | *r++ = ','; |
919 | 0 | *r++ = '1'; |
920 | 0 | *r++ = '}'; |
921 | 0 | *r++ = '?'; |
922 | 0 | *r++ = '('; |
923 | 0 | } |
924 | 0 | else if (nquotes == 1) |
925 | 0 | { |
926 | 0 | *r++ = ')'; |
927 | 0 | *r++ = '{'; |
928 | 0 | *r++ = '1'; |
929 | 0 | *r++ = ','; |
930 | 0 | *r++ = '1'; |
931 | 0 | *r++ = '}'; |
932 | 0 | *r++ = '('; |
933 | 0 | *r++ = '?'; |
934 | 0 | *r++ = ':'; |
935 | 0 | } |
936 | 0 | else |
937 | 0 | ereport(ERROR, |
938 | 0 | (errcode(ERRCODE_INVALID_USE_OF_ESCAPE_CHARACTER), |
939 | 0 | errmsg("SQL regular expression may not contain more than two escape-double-quote separators"))); |
940 | 0 | nquotes++; |
941 | 0 | } |
942 | 0 | else |
943 | 0 | { |
944 | | /* |
945 | | * We allow any character at all to be escaped; notably, this |
946 | | * allows access to POSIX character-class escapes such as |
947 | | * "\d". The SQL spec is considerably more restrictive. |
948 | | */ |
949 | 0 | *r++ = '\\'; |
950 | 0 | *r++ = pchar; |
951 | 0 | } |
952 | 0 | afterescape = false; |
953 | 0 | } |
954 | 0 | else if (e && pchar == *e) |
955 | 0 | { |
956 | | /* SQL escape character; do not send to output */ |
957 | 0 | afterescape = true; |
958 | 0 | } |
959 | 0 | else if (charclass_depth > 0) |
960 | 0 | { |
961 | 0 | if (pchar == '\\') |
962 | 0 | *r++ = '\\'; |
963 | 0 | *r++ = pchar; |
964 | | |
965 | | /* |
966 | | * Ignore a closing bracket at the start of a character class. |
967 | | * Such a bracket is taken literally rather than closing the |
968 | | * class. "charclass_start" is 1 right at the beginning of a |
969 | | * class and 2 after an initial caret. |
970 | | */ |
971 | 0 | if (pchar == ']' && charclass_start > 2) |
972 | 0 | charclass_depth--; |
973 | 0 | else if (pchar == '[') |
974 | 0 | charclass_depth++; |
975 | | |
976 | | /* |
977 | | * If there is a caret right after the opening bracket, it negates |
978 | | * the character class, but a following closing bracket should |
979 | | * still be treated as a normal character. That holds only for |
980 | | * the first caret, so only the values 1 and 2 mean that closing |
981 | | * brackets should be taken literally. |
982 | | */ |
983 | 0 | if (pchar == '^') |
984 | 0 | charclass_start++; |
985 | 0 | else |
986 | 0 | charclass_start = 3; /* definitely past the start */ |
987 | 0 | } |
988 | 0 | else if (pchar == '[') |
989 | 0 | { |
990 | | /* start of a character class */ |
991 | 0 | *r++ = pchar; |
992 | 0 | charclass_depth++; |
993 | 0 | charclass_start = 1; |
994 | 0 | } |
995 | 0 | else if (pchar == '%') |
996 | 0 | { |
997 | 0 | *r++ = '.'; |
998 | 0 | *r++ = '*'; |
999 | 0 | } |
1000 | 0 | else if (pchar == '_') |
1001 | 0 | *r++ = '.'; |
1002 | 0 | else if (pchar == '(') |
1003 | 0 | { |
1004 | | /* convert to non-capturing parenthesis */ |
1005 | 0 | *r++ = '('; |
1006 | 0 | *r++ = '?'; |
1007 | 0 | *r++ = ':'; |
1008 | 0 | } |
1009 | 0 | else if (pchar == '\\' || pchar == '.' || |
1010 | 0 | pchar == '^' || pchar == '$') |
1011 | 0 | { |
1012 | 0 | *r++ = '\\'; |
1013 | 0 | *r++ = pchar; |
1014 | 0 | } |
1015 | 0 | else |
1016 | 0 | *r++ = pchar; |
1017 | 0 | p++, plen--; |
1018 | 0 | } |
1019 | | |
1020 | 0 | *r++ = ')'; |
1021 | 0 | *r++ = '$'; |
1022 | |
|
1023 | 0 | SET_VARSIZE(result, r - ((char *) result)); |
1024 | |
|
1025 | 0 | return result; |
1026 | 0 | } |
1027 | | |
1028 | | /* |
1029 | | * similar_to_escape(pattern, escape) |
1030 | | */ |
1031 | | Datum |
1032 | | similar_to_escape_2(PG_FUNCTION_ARGS) |
1033 | 0 | { |
1034 | 0 | text *pat_text = PG_GETARG_TEXT_PP(0); |
1035 | 0 | text *esc_text = PG_GETARG_TEXT_PP(1); |
1036 | 0 | text *result; |
1037 | |
|
1038 | 0 | result = similar_escape_internal(pat_text, esc_text); |
1039 | |
|
1040 | 0 | PG_RETURN_TEXT_P(result); |
1041 | 0 | } |
1042 | | |
1043 | | /* |
1044 | | * similar_to_escape(pattern) |
1045 | | * Inserts a default escape character. |
1046 | | */ |
1047 | | Datum |
1048 | | similar_to_escape_1(PG_FUNCTION_ARGS) |
1049 | 0 | { |
1050 | 0 | text *pat_text = PG_GETARG_TEXT_PP(0); |
1051 | 0 | text *result; |
1052 | |
|
1053 | 0 | result = similar_escape_internal(pat_text, NULL); |
1054 | |
|
1055 | 0 | PG_RETURN_TEXT_P(result); |
1056 | 0 | } |
1057 | | |
1058 | | /* |
1059 | | * similar_escape(pattern, escape) |
1060 | | * |
1061 | | * Legacy function for compatibility with views stored using the |
1062 | | * pre-v13 expansion of SIMILAR TO. Unlike the above functions, this |
1063 | | * is non-strict, which leads to not-per-spec handling of "ESCAPE NULL". |
1064 | | */ |
1065 | | Datum |
1066 | | similar_escape(PG_FUNCTION_ARGS) |
1067 | 0 | { |
1068 | 0 | text *pat_text; |
1069 | 0 | text *esc_text; |
1070 | 0 | text *result; |
1071 | | |
1072 | | /* This function is not strict, so must test explicitly */ |
1073 | 0 | if (PG_ARGISNULL(0)) |
1074 | 0 | PG_RETURN_NULL(); |
1075 | 0 | pat_text = PG_GETARG_TEXT_PP(0); |
1076 | |
|
1077 | 0 | if (PG_ARGISNULL(1)) |
1078 | 0 | esc_text = NULL; /* use default escape character */ |
1079 | 0 | else |
1080 | 0 | esc_text = PG_GETARG_TEXT_PP(1); |
1081 | |
|
1082 | 0 | result = similar_escape_internal(pat_text, esc_text); |
1083 | |
|
1084 | 0 | PG_RETURN_TEXT_P(result); |
1085 | 0 | } |
1086 | | |
1087 | | /* |
1088 | | * regexp_count() |
1089 | | * Return the number of matches of a pattern within a string. |
1090 | | */ |
1091 | | Datum |
1092 | | regexp_count(PG_FUNCTION_ARGS) |
1093 | 0 | { |
1094 | 0 | text *str = PG_GETARG_TEXT_PP(0); |
1095 | 0 | text *pattern = PG_GETARG_TEXT_PP(1); |
1096 | 0 | int start = 1; |
1097 | 0 | text *flags = PG_GETARG_TEXT_PP_IF_EXISTS(3); |
1098 | 0 | pg_re_flags re_flags; |
1099 | 0 | regexp_matches_ctx *matchctx; |
1100 | | |
1101 | | /* Collect optional parameters */ |
1102 | 0 | if (PG_NARGS() > 2) |
1103 | 0 | { |
1104 | 0 | start = PG_GETARG_INT32(2); |
1105 | 0 | if (start <= 0) |
1106 | 0 | ereport(ERROR, |
1107 | 0 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
1108 | 0 | errmsg("invalid value for parameter \"%s\": %d", |
1109 | 0 | "start", start))); |
1110 | 0 | } |
1111 | | |
1112 | | /* Determine options */ |
1113 | 0 | parse_re_flags(&re_flags, flags); |
1114 | | /* User mustn't specify 'g' */ |
1115 | 0 | if (re_flags.glob) |
1116 | 0 | ereport(ERROR, |
1117 | 0 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
1118 | | /* translator: %s is a SQL function name */ |
1119 | 0 | errmsg("%s does not support the \"global\" option", |
1120 | 0 | "regexp_count()"))); |
1121 | | /* But we find all the matches anyway */ |
1122 | 0 | re_flags.glob = true; |
1123 | | |
1124 | | /* Do the matching */ |
1125 | 0 | matchctx = setup_regexp_matches(str, pattern, &re_flags, start - 1, |
1126 | 0 | PG_GET_COLLATION(), |
1127 | 0 | false, /* can ignore subexprs */ |
1128 | 0 | false, false); |
1129 | |
|
1130 | 0 | PG_RETURN_INT32(matchctx->nmatches); |
1131 | 0 | } |
1132 | | |
1133 | | /* This is separate to keep the opr_sanity regression test from complaining */ |
1134 | | Datum |
1135 | | regexp_count_no_start(PG_FUNCTION_ARGS) |
1136 | 0 | { |
1137 | 0 | return regexp_count(fcinfo); |
1138 | 0 | } |
1139 | | |
1140 | | /* This is separate to keep the opr_sanity regression test from complaining */ |
1141 | | Datum |
1142 | | regexp_count_no_flags(PG_FUNCTION_ARGS) |
1143 | 0 | { |
1144 | 0 | return regexp_count(fcinfo); |
1145 | 0 | } |
1146 | | |
1147 | | /* |
1148 | | * regexp_instr() |
1149 | | * Return the match's position within the string |
1150 | | */ |
1151 | | Datum |
1152 | | regexp_instr(PG_FUNCTION_ARGS) |
1153 | 0 | { |
1154 | 0 | text *str = PG_GETARG_TEXT_PP(0); |
1155 | 0 | text *pattern = PG_GETARG_TEXT_PP(1); |
1156 | 0 | int start = 1; |
1157 | 0 | int n = 1; |
1158 | 0 | int endoption = 0; |
1159 | 0 | text *flags = PG_GETARG_TEXT_PP_IF_EXISTS(5); |
1160 | 0 | int subexpr = 0; |
1161 | 0 | int pos; |
1162 | 0 | pg_re_flags re_flags; |
1163 | 0 | regexp_matches_ctx *matchctx; |
1164 | | |
1165 | | /* Collect optional parameters */ |
1166 | 0 | if (PG_NARGS() > 2) |
1167 | 0 | { |
1168 | 0 | start = PG_GETARG_INT32(2); |
1169 | 0 | if (start <= 0) |
1170 | 0 | ereport(ERROR, |
1171 | 0 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
1172 | 0 | errmsg("invalid value for parameter \"%s\": %d", |
1173 | 0 | "start", start))); |
1174 | 0 | } |
1175 | 0 | if (PG_NARGS() > 3) |
1176 | 0 | { |
1177 | 0 | n = PG_GETARG_INT32(3); |
1178 | 0 | if (n <= 0) |
1179 | 0 | ereport(ERROR, |
1180 | 0 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
1181 | 0 | errmsg("invalid value for parameter \"%s\": %d", |
1182 | 0 | "n", n))); |
1183 | 0 | } |
1184 | 0 | if (PG_NARGS() > 4) |
1185 | 0 | { |
1186 | 0 | endoption = PG_GETARG_INT32(4); |
1187 | 0 | if (endoption != 0 && endoption != 1) |
1188 | 0 | ereport(ERROR, |
1189 | 0 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
1190 | 0 | errmsg("invalid value for parameter \"%s\": %d", |
1191 | 0 | "endoption", endoption))); |
1192 | 0 | } |
1193 | 0 | if (PG_NARGS() > 6) |
1194 | 0 | { |
1195 | 0 | subexpr = PG_GETARG_INT32(6); |
1196 | 0 | if (subexpr < 0) |
1197 | 0 | ereport(ERROR, |
1198 | 0 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
1199 | 0 | errmsg("invalid value for parameter \"%s\": %d", |
1200 | 0 | "subexpr", subexpr))); |
1201 | 0 | } |
1202 | | |
1203 | | /* Determine options */ |
1204 | 0 | parse_re_flags(&re_flags, flags); |
1205 | | /* User mustn't specify 'g' */ |
1206 | 0 | if (re_flags.glob) |
1207 | 0 | ereport(ERROR, |
1208 | 0 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
1209 | | /* translator: %s is a SQL function name */ |
1210 | 0 | errmsg("%s does not support the \"global\" option", |
1211 | 0 | "regexp_instr()"))); |
1212 | | /* But we find all the matches anyway */ |
1213 | 0 | re_flags.glob = true; |
1214 | | |
1215 | | /* Do the matching */ |
1216 | 0 | matchctx = setup_regexp_matches(str, pattern, &re_flags, start - 1, |
1217 | 0 | PG_GET_COLLATION(), |
1218 | 0 | (subexpr > 0), /* need submatches? */ |
1219 | 0 | false, false); |
1220 | | |
1221 | | /* When n exceeds matches return 0 (includes case of no matches) */ |
1222 | 0 | if (n > matchctx->nmatches) |
1223 | 0 | PG_RETURN_INT32(0); |
1224 | | |
1225 | | /* When subexpr exceeds number of subexpressions return 0 */ |
1226 | 0 | if (subexpr > matchctx->npatterns) |
1227 | 0 | PG_RETURN_INT32(0); |
1228 | | |
1229 | | /* Select the appropriate match position to return */ |
1230 | 0 | pos = (n - 1) * matchctx->npatterns; |
1231 | 0 | if (subexpr > 0) |
1232 | 0 | pos += subexpr - 1; |
1233 | 0 | pos *= 2; |
1234 | 0 | if (endoption == 1) |
1235 | 0 | pos += 1; |
1236 | |
|
1237 | 0 | if (matchctx->match_locs[pos] >= 0) |
1238 | 0 | PG_RETURN_INT32(matchctx->match_locs[pos] + 1); |
1239 | 0 | else |
1240 | 0 | PG_RETURN_INT32(0); /* position not identifiable */ |
1241 | 0 | } |
1242 | | |
1243 | | /* This is separate to keep the opr_sanity regression test from complaining */ |
1244 | | Datum |
1245 | | regexp_instr_no_start(PG_FUNCTION_ARGS) |
1246 | 0 | { |
1247 | 0 | return regexp_instr(fcinfo); |
1248 | 0 | } |
1249 | | |
1250 | | /* This is separate to keep the opr_sanity regression test from complaining */ |
1251 | | Datum |
1252 | | regexp_instr_no_n(PG_FUNCTION_ARGS) |
1253 | 0 | { |
1254 | 0 | return regexp_instr(fcinfo); |
1255 | 0 | } |
1256 | | |
1257 | | /* This is separate to keep the opr_sanity regression test from complaining */ |
1258 | | Datum |
1259 | | regexp_instr_no_endoption(PG_FUNCTION_ARGS) |
1260 | 0 | { |
1261 | 0 | return regexp_instr(fcinfo); |
1262 | 0 | } |
1263 | | |
1264 | | /* This is separate to keep the opr_sanity regression test from complaining */ |
1265 | | Datum |
1266 | | regexp_instr_no_flags(PG_FUNCTION_ARGS) |
1267 | 0 | { |
1268 | 0 | return regexp_instr(fcinfo); |
1269 | 0 | } |
1270 | | |
1271 | | /* This is separate to keep the opr_sanity regression test from complaining */ |
1272 | | Datum |
1273 | | regexp_instr_no_subexpr(PG_FUNCTION_ARGS) |
1274 | 0 | { |
1275 | 0 | return regexp_instr(fcinfo); |
1276 | 0 | } |
1277 | | |
1278 | | /* |
1279 | | * regexp_like() |
1280 | | * Test for a pattern match within a string. |
1281 | | */ |
1282 | | Datum |
1283 | | regexp_like(PG_FUNCTION_ARGS) |
1284 | 0 | { |
1285 | 0 | text *str = PG_GETARG_TEXT_PP(0); |
1286 | 0 | text *pattern = PG_GETARG_TEXT_PP(1); |
1287 | 0 | text *flags = PG_GETARG_TEXT_PP_IF_EXISTS(2); |
1288 | 0 | pg_re_flags re_flags; |
1289 | | |
1290 | | /* Determine options */ |
1291 | 0 | parse_re_flags(&re_flags, flags); |
1292 | | /* User mustn't specify 'g' */ |
1293 | 0 | if (re_flags.glob) |
1294 | 0 | ereport(ERROR, |
1295 | 0 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
1296 | | /* translator: %s is a SQL function name */ |
1297 | 0 | errmsg("%s does not support the \"global\" option", |
1298 | 0 | "regexp_like()"))); |
1299 | | |
1300 | | /* Otherwise it's like textregexeq/texticregexeq */ |
1301 | 0 | PG_RETURN_BOOL(RE_compile_and_execute(pattern, |
1302 | 0 | VARDATA_ANY(str), |
1303 | 0 | VARSIZE_ANY_EXHDR(str), |
1304 | 0 | re_flags.cflags, |
1305 | 0 | PG_GET_COLLATION(), |
1306 | 0 | 0, NULL)); |
1307 | 0 | } |
1308 | | |
1309 | | /* This is separate to keep the opr_sanity regression test from complaining */ |
1310 | | Datum |
1311 | | regexp_like_no_flags(PG_FUNCTION_ARGS) |
1312 | 0 | { |
1313 | 0 | return regexp_like(fcinfo); |
1314 | 0 | } |
1315 | | |
1316 | | /* |
1317 | | * regexp_match() |
1318 | | * Return the first substring(s) matching a pattern within a string. |
1319 | | */ |
1320 | | Datum |
1321 | | regexp_match(PG_FUNCTION_ARGS) |
1322 | 0 | { |
1323 | 0 | text *orig_str = PG_GETARG_TEXT_PP(0); |
1324 | 0 | text *pattern = PG_GETARG_TEXT_PP(1); |
1325 | 0 | text *flags = PG_GETARG_TEXT_PP_IF_EXISTS(2); |
1326 | 0 | pg_re_flags re_flags; |
1327 | 0 | regexp_matches_ctx *matchctx; |
1328 | | |
1329 | | /* Determine options */ |
1330 | 0 | parse_re_flags(&re_flags, flags); |
1331 | | /* User mustn't specify 'g' */ |
1332 | 0 | if (re_flags.glob) |
1333 | 0 | ereport(ERROR, |
1334 | 0 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
1335 | | /* translator: %s is a SQL function name */ |
1336 | 0 | errmsg("%s does not support the \"global\" option", |
1337 | 0 | "regexp_match()"), |
1338 | 0 | errhint("Use the regexp_matches function instead."))); |
1339 | | |
1340 | 0 | matchctx = setup_regexp_matches(orig_str, pattern, &re_flags, 0, |
1341 | 0 | PG_GET_COLLATION(), true, false, false); |
1342 | |
|
1343 | 0 | if (matchctx->nmatches == 0) |
1344 | 0 | PG_RETURN_NULL(); |
1345 | | |
1346 | 0 | Assert(matchctx->nmatches == 1); |
1347 | | |
1348 | | /* Create workspace that build_regexp_match_result needs */ |
1349 | 0 | matchctx->elems = (Datum *) palloc(sizeof(Datum) * matchctx->npatterns); |
1350 | 0 | matchctx->nulls = (bool *) palloc(sizeof(bool) * matchctx->npatterns); |
1351 | |
|
1352 | 0 | PG_RETURN_DATUM(PointerGetDatum(build_regexp_match_result(matchctx))); |
1353 | 0 | } |
1354 | | |
1355 | | /* This is separate to keep the opr_sanity regression test from complaining */ |
1356 | | Datum |
1357 | | regexp_match_no_flags(PG_FUNCTION_ARGS) |
1358 | 0 | { |
1359 | 0 | return regexp_match(fcinfo); |
1360 | 0 | } |
1361 | | |
1362 | | /* |
1363 | | * regexp_matches() |
1364 | | * Return a table of all matches of a pattern within a string. |
1365 | | */ |
1366 | | Datum |
1367 | | regexp_matches(PG_FUNCTION_ARGS) |
1368 | 0 | { |
1369 | 0 | FuncCallContext *funcctx; |
1370 | 0 | regexp_matches_ctx *matchctx; |
1371 | |
|
1372 | 0 | if (SRF_IS_FIRSTCALL()) |
1373 | 0 | { |
1374 | 0 | text *pattern = PG_GETARG_TEXT_PP(1); |
1375 | 0 | text *flags = PG_GETARG_TEXT_PP_IF_EXISTS(2); |
1376 | 0 | pg_re_flags re_flags; |
1377 | 0 | MemoryContext oldcontext; |
1378 | |
|
1379 | 0 | funcctx = SRF_FIRSTCALL_INIT(); |
1380 | 0 | oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); |
1381 | | |
1382 | | /* Determine options */ |
1383 | 0 | parse_re_flags(&re_flags, flags); |
1384 | | |
1385 | | /* be sure to copy the input string into the multi-call ctx */ |
1386 | 0 | matchctx = setup_regexp_matches(PG_GETARG_TEXT_P_COPY(0), pattern, |
1387 | 0 | &re_flags, 0, |
1388 | 0 | PG_GET_COLLATION(), |
1389 | 0 | true, false, false); |
1390 | | |
1391 | | /* Pre-create workspace that build_regexp_match_result needs */ |
1392 | 0 | matchctx->elems = (Datum *) palloc(sizeof(Datum) * matchctx->npatterns); |
1393 | 0 | matchctx->nulls = (bool *) palloc(sizeof(bool) * matchctx->npatterns); |
1394 | |
|
1395 | 0 | MemoryContextSwitchTo(oldcontext); |
1396 | 0 | funcctx->user_fctx = matchctx; |
1397 | 0 | } |
1398 | |
|
1399 | 0 | funcctx = SRF_PERCALL_SETUP(); |
1400 | 0 | matchctx = (regexp_matches_ctx *) funcctx->user_fctx; |
1401 | |
|
1402 | 0 | if (matchctx->next_match < matchctx->nmatches) |
1403 | 0 | { |
1404 | 0 | ArrayType *result_ary; |
1405 | |
|
1406 | 0 | result_ary = build_regexp_match_result(matchctx); |
1407 | 0 | matchctx->next_match++; |
1408 | 0 | SRF_RETURN_NEXT(funcctx, PointerGetDatum(result_ary)); |
1409 | 0 | } |
1410 | | |
1411 | 0 | SRF_RETURN_DONE(funcctx); |
1412 | 0 | } |
1413 | | |
1414 | | /* This is separate to keep the opr_sanity regression test from complaining */ |
1415 | | Datum |
1416 | | regexp_matches_no_flags(PG_FUNCTION_ARGS) |
1417 | 0 | { |
1418 | 0 | return regexp_matches(fcinfo); |
1419 | 0 | } |
1420 | | |
1421 | | /* |
1422 | | * setup_regexp_matches --- do the initial matching for regexp_match, |
1423 | | * regexp_split, and related functions |
1424 | | * |
1425 | | * To avoid having to re-find the compiled pattern on each call, we do |
1426 | | * all the matching in one swoop. The returned regexp_matches_ctx contains |
1427 | | * the locations of all the substrings matching the pattern. |
1428 | | * |
1429 | | * start_search: the character (not byte) offset in orig_str at which to |
1430 | | * begin the search. Returned positions are relative to orig_str anyway. |
1431 | | * use_subpatterns: collect data about matches to parenthesized subexpressions. |
1432 | | * ignore_degenerate: ignore zero-length matches. |
1433 | | * fetching_unmatched: caller wants to fetch unmatched substrings. |
1434 | | * |
1435 | | * We don't currently assume that fetching_unmatched is exclusive of fetching |
1436 | | * the matched text too; if it's set, the conversion buffer is large enough to |
1437 | | * fetch any single matched or unmatched string, but not any larger |
1438 | | * substring. (In practice, when splitting the matches are usually small |
1439 | | * anyway, and it didn't seem worth complicating the code further.) |
1440 | | */ |
1441 | | static regexp_matches_ctx * |
1442 | | setup_regexp_matches(text *orig_str, text *pattern, pg_re_flags *re_flags, |
1443 | | int start_search, |
1444 | | Oid collation, |
1445 | | bool use_subpatterns, |
1446 | | bool ignore_degenerate, |
1447 | | bool fetching_unmatched) |
1448 | 0 | { |
1449 | 0 | regexp_matches_ctx *matchctx = palloc0(sizeof(regexp_matches_ctx)); |
1450 | 0 | int eml = pg_database_encoding_max_length(); |
1451 | 0 | int orig_len; |
1452 | 0 | pg_wchar *wide_str; |
1453 | 0 | int wide_len; |
1454 | 0 | int cflags; |
1455 | 0 | regex_t *cpattern; |
1456 | 0 | regmatch_t *pmatch; |
1457 | 0 | int pmatch_len; |
1458 | 0 | int array_len; |
1459 | 0 | int array_idx; |
1460 | 0 | int prev_match_end; |
1461 | 0 | int prev_valid_match_end; |
1462 | 0 | int maxlen = 0; /* largest fetch length in characters */ |
1463 | | |
1464 | | /* save original string --- we'll extract result substrings from it */ |
1465 | 0 | matchctx->orig_str = orig_str; |
1466 | | |
1467 | | /* convert string to pg_wchar form for matching */ |
1468 | 0 | orig_len = VARSIZE_ANY_EXHDR(orig_str); |
1469 | 0 | wide_str = (pg_wchar *) palloc(sizeof(pg_wchar) * (orig_len + 1)); |
1470 | 0 | wide_len = pg_mb2wchar_with_len(VARDATA_ANY(orig_str), wide_str, orig_len); |
1471 | | |
1472 | | /* set up the compiled pattern */ |
1473 | 0 | cflags = re_flags->cflags; |
1474 | 0 | if (!use_subpatterns) |
1475 | 0 | cflags |= REG_NOSUB; |
1476 | 0 | cpattern = RE_compile_and_cache(pattern, cflags, collation); |
1477 | | |
1478 | | /* do we want to remember subpatterns? */ |
1479 | 0 | if (use_subpatterns && cpattern->re_nsub > 0) |
1480 | 0 | { |
1481 | 0 | matchctx->npatterns = cpattern->re_nsub; |
1482 | 0 | pmatch_len = cpattern->re_nsub + 1; |
1483 | 0 | } |
1484 | 0 | else |
1485 | 0 | { |
1486 | 0 | use_subpatterns = false; |
1487 | 0 | matchctx->npatterns = 1; |
1488 | 0 | pmatch_len = 1; |
1489 | 0 | } |
1490 | | |
1491 | | /* temporary output space for RE package */ |
1492 | 0 | pmatch = palloc(sizeof(regmatch_t) * pmatch_len); |
1493 | | |
1494 | | /* |
1495 | | * the real output space (grown dynamically if needed) |
1496 | | * |
1497 | | * use values 2^n-1, not 2^n, so that we hit the limit at 2^28-1 rather |
1498 | | * than at 2^27 |
1499 | | */ |
1500 | 0 | array_len = re_flags->glob ? 255 : 31; |
1501 | 0 | matchctx->match_locs = (int *) palloc(sizeof(int) * array_len); |
1502 | 0 | array_idx = 0; |
1503 | | |
1504 | | /* search for the pattern, perhaps repeatedly */ |
1505 | 0 | prev_match_end = 0; |
1506 | 0 | prev_valid_match_end = 0; |
1507 | 0 | while (RE_wchar_execute(cpattern, wide_str, wide_len, start_search, |
1508 | 0 | pmatch_len, pmatch)) |
1509 | 0 | { |
1510 | | /* |
1511 | | * If requested, ignore degenerate matches, which are zero-length |
1512 | | * matches occurring at the start or end of a string or just after a |
1513 | | * previous match. |
1514 | | */ |
1515 | 0 | if (!ignore_degenerate || |
1516 | 0 | (pmatch[0].rm_so < wide_len && |
1517 | 0 | pmatch[0].rm_eo > prev_match_end)) |
1518 | 0 | { |
1519 | | /* enlarge output space if needed */ |
1520 | 0 | while (array_idx + matchctx->npatterns * 2 + 1 > array_len) |
1521 | 0 | { |
1522 | 0 | array_len += array_len + 1; /* 2^n-1 => 2^(n+1)-1 */ |
1523 | 0 | if (array_len > MaxAllocSize / sizeof(int)) |
1524 | 0 | ereport(ERROR, |
1525 | 0 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
1526 | 0 | errmsg("too many regular expression matches"))); |
1527 | 0 | matchctx->match_locs = (int *) repalloc(matchctx->match_locs, |
1528 | 0 | sizeof(int) * array_len); |
1529 | 0 | } |
1530 | | |
1531 | | /* save this match's locations */ |
1532 | 0 | if (use_subpatterns) |
1533 | 0 | { |
1534 | 0 | int i; |
1535 | |
|
1536 | 0 | for (i = 1; i <= matchctx->npatterns; i++) |
1537 | 0 | { |
1538 | 0 | int so = pmatch[i].rm_so; |
1539 | 0 | int eo = pmatch[i].rm_eo; |
1540 | |
|
1541 | 0 | matchctx->match_locs[array_idx++] = so; |
1542 | 0 | matchctx->match_locs[array_idx++] = eo; |
1543 | 0 | if (so >= 0 && eo >= 0 && (eo - so) > maxlen) |
1544 | 0 | maxlen = (eo - so); |
1545 | 0 | } |
1546 | 0 | } |
1547 | 0 | else |
1548 | 0 | { |
1549 | 0 | int so = pmatch[0].rm_so; |
1550 | 0 | int eo = pmatch[0].rm_eo; |
1551 | |
|
1552 | 0 | matchctx->match_locs[array_idx++] = so; |
1553 | 0 | matchctx->match_locs[array_idx++] = eo; |
1554 | 0 | if (so >= 0 && eo >= 0 && (eo - so) > maxlen) |
1555 | 0 | maxlen = (eo - so); |
1556 | 0 | } |
1557 | 0 | matchctx->nmatches++; |
1558 | | |
1559 | | /* |
1560 | | * check length of unmatched portion between end of previous valid |
1561 | | * (nondegenerate, or degenerate but not ignored) match and start |
1562 | | * of current one |
1563 | | */ |
1564 | 0 | if (fetching_unmatched && |
1565 | 0 | pmatch[0].rm_so >= 0 && |
1566 | 0 | (pmatch[0].rm_so - prev_valid_match_end) > maxlen) |
1567 | 0 | maxlen = (pmatch[0].rm_so - prev_valid_match_end); |
1568 | 0 | prev_valid_match_end = pmatch[0].rm_eo; |
1569 | 0 | } |
1570 | 0 | prev_match_end = pmatch[0].rm_eo; |
1571 | | |
1572 | | /* if not glob, stop after one match */ |
1573 | 0 | if (!re_flags->glob) |
1574 | 0 | break; |
1575 | | |
1576 | | /* |
1577 | | * Advance search position. Normally we start the next search at the |
1578 | | * end of the previous match; but if the match was of zero length, we |
1579 | | * have to advance by one character, or we'd just find the same match |
1580 | | * again. |
1581 | | */ |
1582 | 0 | start_search = prev_match_end; |
1583 | 0 | if (pmatch[0].rm_so == pmatch[0].rm_eo) |
1584 | 0 | start_search++; |
1585 | 0 | if (start_search > wide_len) |
1586 | 0 | break; |
1587 | 0 | } |
1588 | | |
1589 | | /* |
1590 | | * check length of unmatched portion between end of last match and end of |
1591 | | * input string |
1592 | | */ |
1593 | 0 | if (fetching_unmatched && |
1594 | 0 | (wide_len - prev_valid_match_end) > maxlen) |
1595 | 0 | maxlen = (wide_len - prev_valid_match_end); |
1596 | | |
1597 | | /* |
1598 | | * Keep a note of the end position of the string for the benefit of |
1599 | | * splitting code. |
1600 | | */ |
1601 | 0 | matchctx->match_locs[array_idx] = wide_len; |
1602 | |
|
1603 | 0 | if (eml > 1) |
1604 | 0 | { |
1605 | 0 | int64 maxsiz = eml * (int64) maxlen; |
1606 | 0 | int conv_bufsiz; |
1607 | | |
1608 | | /* |
1609 | | * Make the conversion buffer large enough for any substring of |
1610 | | * interest. |
1611 | | * |
1612 | | * Worst case: assume we need the maximum size (maxlen*eml), but take |
1613 | | * advantage of the fact that the original string length in bytes is |
1614 | | * an upper bound on the byte length of any fetched substring (and we |
1615 | | * know that len+1 is safe to allocate because the varlena header is |
1616 | | * longer than 1 byte). |
1617 | | */ |
1618 | 0 | if (maxsiz > orig_len) |
1619 | 0 | conv_bufsiz = orig_len + 1; |
1620 | 0 | else |
1621 | 0 | conv_bufsiz = maxsiz + 1; /* safe since maxsiz < 2^30 */ |
1622 | |
|
1623 | 0 | matchctx->conv_buf = palloc(conv_bufsiz); |
1624 | 0 | matchctx->conv_bufsiz = conv_bufsiz; |
1625 | 0 | matchctx->wide_str = wide_str; |
1626 | 0 | } |
1627 | 0 | else |
1628 | 0 | { |
1629 | | /* No need to keep the wide string if we're in a single-byte charset. */ |
1630 | 0 | pfree(wide_str); |
1631 | 0 | matchctx->wide_str = NULL; |
1632 | 0 | matchctx->conv_buf = NULL; |
1633 | 0 | matchctx->conv_bufsiz = 0; |
1634 | 0 | } |
1635 | | |
1636 | | /* Clean up temp storage */ |
1637 | 0 | pfree(pmatch); |
1638 | |
|
1639 | 0 | return matchctx; |
1640 | 0 | } |
1641 | | |
1642 | | /* |
1643 | | * build_regexp_match_result - build output array for current match |
1644 | | */ |
1645 | | static ArrayType * |
1646 | | build_regexp_match_result(regexp_matches_ctx *matchctx) |
1647 | 0 | { |
1648 | 0 | char *buf = matchctx->conv_buf; |
1649 | 0 | Datum *elems = matchctx->elems; |
1650 | 0 | bool *nulls = matchctx->nulls; |
1651 | 0 | int dims[1]; |
1652 | 0 | int lbs[1]; |
1653 | 0 | int loc; |
1654 | 0 | int i; |
1655 | | |
1656 | | /* Extract matching substrings from the original string */ |
1657 | 0 | loc = matchctx->next_match * matchctx->npatterns * 2; |
1658 | 0 | for (i = 0; i < matchctx->npatterns; i++) |
1659 | 0 | { |
1660 | 0 | int so = matchctx->match_locs[loc++]; |
1661 | 0 | int eo = matchctx->match_locs[loc++]; |
1662 | |
|
1663 | 0 | if (so < 0 || eo < 0) |
1664 | 0 | { |
1665 | 0 | elems[i] = (Datum) 0; |
1666 | 0 | nulls[i] = true; |
1667 | 0 | } |
1668 | 0 | else if (buf) |
1669 | 0 | { |
1670 | 0 | int len = pg_wchar2mb_with_len(matchctx->wide_str + so, |
1671 | 0 | buf, |
1672 | 0 | eo - so); |
1673 | |
|
1674 | 0 | Assert(len < matchctx->conv_bufsiz); |
1675 | 0 | elems[i] = PointerGetDatum(cstring_to_text_with_len(buf, len)); |
1676 | 0 | nulls[i] = false; |
1677 | 0 | } |
1678 | 0 | else |
1679 | 0 | { |
1680 | 0 | elems[i] = DirectFunctionCall3(text_substr, |
1681 | 0 | PointerGetDatum(matchctx->orig_str), |
1682 | 0 | Int32GetDatum(so + 1), |
1683 | 0 | Int32GetDatum(eo - so)); |
1684 | 0 | nulls[i] = false; |
1685 | 0 | } |
1686 | 0 | } |
1687 | | |
1688 | | /* And form an array */ |
1689 | 0 | dims[0] = matchctx->npatterns; |
1690 | 0 | lbs[0] = 1; |
1691 | | /* XXX: this hardcodes assumptions about the text type */ |
1692 | 0 | return construct_md_array(elems, nulls, 1, dims, lbs, |
1693 | 0 | TEXTOID, -1, false, TYPALIGN_INT); |
1694 | 0 | } |
1695 | | |
1696 | | /* |
1697 | | * regexp_split_to_table() |
1698 | | * Split the string at matches of the pattern, returning the |
1699 | | * split-out substrings as a table. |
1700 | | */ |
1701 | | Datum |
1702 | | regexp_split_to_table(PG_FUNCTION_ARGS) |
1703 | 0 | { |
1704 | 0 | FuncCallContext *funcctx; |
1705 | 0 | regexp_matches_ctx *splitctx; |
1706 | |
|
1707 | 0 | if (SRF_IS_FIRSTCALL()) |
1708 | 0 | { |
1709 | 0 | text *pattern = PG_GETARG_TEXT_PP(1); |
1710 | 0 | text *flags = PG_GETARG_TEXT_PP_IF_EXISTS(2); |
1711 | 0 | pg_re_flags re_flags; |
1712 | 0 | MemoryContext oldcontext; |
1713 | |
|
1714 | 0 | funcctx = SRF_FIRSTCALL_INIT(); |
1715 | 0 | oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); |
1716 | | |
1717 | | /* Determine options */ |
1718 | 0 | parse_re_flags(&re_flags, flags); |
1719 | | /* User mustn't specify 'g' */ |
1720 | 0 | if (re_flags.glob) |
1721 | 0 | ereport(ERROR, |
1722 | 0 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
1723 | | /* translator: %s is a SQL function name */ |
1724 | 0 | errmsg("%s does not support the \"global\" option", |
1725 | 0 | "regexp_split_to_table()"))); |
1726 | | /* But we find all the matches anyway */ |
1727 | 0 | re_flags.glob = true; |
1728 | | |
1729 | | /* be sure to copy the input string into the multi-call ctx */ |
1730 | 0 | splitctx = setup_regexp_matches(PG_GETARG_TEXT_P_COPY(0), pattern, |
1731 | 0 | &re_flags, 0, |
1732 | 0 | PG_GET_COLLATION(), |
1733 | 0 | false, true, true); |
1734 | |
|
1735 | 0 | MemoryContextSwitchTo(oldcontext); |
1736 | 0 | funcctx->user_fctx = splitctx; |
1737 | 0 | } |
1738 | | |
1739 | 0 | funcctx = SRF_PERCALL_SETUP(); |
1740 | 0 | splitctx = (regexp_matches_ctx *) funcctx->user_fctx; |
1741 | |
|
1742 | 0 | if (splitctx->next_match <= splitctx->nmatches) |
1743 | 0 | { |
1744 | 0 | Datum result = build_regexp_split_result(splitctx); |
1745 | |
|
1746 | 0 | splitctx->next_match++; |
1747 | 0 | SRF_RETURN_NEXT(funcctx, result); |
1748 | 0 | } |
1749 | | |
1750 | 0 | SRF_RETURN_DONE(funcctx); |
1751 | 0 | } |
1752 | | |
1753 | | /* This is separate to keep the opr_sanity regression test from complaining */ |
1754 | | Datum |
1755 | | regexp_split_to_table_no_flags(PG_FUNCTION_ARGS) |
1756 | 0 | { |
1757 | 0 | return regexp_split_to_table(fcinfo); |
1758 | 0 | } |
1759 | | |
1760 | | /* |
1761 | | * regexp_split_to_array() |
1762 | | * Split the string at matches of the pattern, returning the |
1763 | | * split-out substrings as an array. |
1764 | | */ |
1765 | | Datum |
1766 | | regexp_split_to_array(PG_FUNCTION_ARGS) |
1767 | 0 | { |
1768 | 0 | ArrayBuildState *astate = NULL; |
1769 | 0 | pg_re_flags re_flags; |
1770 | 0 | regexp_matches_ctx *splitctx; |
1771 | | |
1772 | | /* Determine options */ |
1773 | 0 | parse_re_flags(&re_flags, PG_GETARG_TEXT_PP_IF_EXISTS(2)); |
1774 | | /* User mustn't specify 'g' */ |
1775 | 0 | if (re_flags.glob) |
1776 | 0 | ereport(ERROR, |
1777 | 0 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
1778 | | /* translator: %s is a SQL function name */ |
1779 | 0 | errmsg("%s does not support the \"global\" option", |
1780 | 0 | "regexp_split_to_array()"))); |
1781 | | /* But we find all the matches anyway */ |
1782 | 0 | re_flags.glob = true; |
1783 | |
|
1784 | 0 | splitctx = setup_regexp_matches(PG_GETARG_TEXT_PP(0), |
1785 | 0 | PG_GETARG_TEXT_PP(1), |
1786 | 0 | &re_flags, 0, |
1787 | 0 | PG_GET_COLLATION(), |
1788 | 0 | false, true, true); |
1789 | |
|
1790 | 0 | while (splitctx->next_match <= splitctx->nmatches) |
1791 | 0 | { |
1792 | 0 | astate = accumArrayResult(astate, |
1793 | 0 | build_regexp_split_result(splitctx), |
1794 | 0 | false, |
1795 | 0 | TEXTOID, |
1796 | 0 | CurrentMemoryContext); |
1797 | 0 | splitctx->next_match++; |
1798 | 0 | } |
1799 | |
|
1800 | 0 | PG_RETURN_DATUM(makeArrayResult(astate, CurrentMemoryContext)); |
1801 | 0 | } |
1802 | | |
1803 | | /* This is separate to keep the opr_sanity regression test from complaining */ |
1804 | | Datum |
1805 | | regexp_split_to_array_no_flags(PG_FUNCTION_ARGS) |
1806 | 0 | { |
1807 | 0 | return regexp_split_to_array(fcinfo); |
1808 | 0 | } |
1809 | | |
1810 | | /* |
1811 | | * build_regexp_split_result - build output string for current match |
1812 | | * |
1813 | | * We return the string between the current match and the previous one, |
1814 | | * or the string after the last match when next_match == nmatches. |
1815 | | */ |
1816 | | static Datum |
1817 | | build_regexp_split_result(regexp_matches_ctx *splitctx) |
1818 | 0 | { |
1819 | 0 | char *buf = splitctx->conv_buf; |
1820 | 0 | int startpos; |
1821 | 0 | int endpos; |
1822 | |
|
1823 | 0 | if (splitctx->next_match > 0) |
1824 | 0 | startpos = splitctx->match_locs[splitctx->next_match * 2 - 1]; |
1825 | 0 | else |
1826 | 0 | startpos = 0; |
1827 | 0 | if (startpos < 0) |
1828 | 0 | elog(ERROR, "invalid match ending position"); |
1829 | | |
1830 | 0 | endpos = splitctx->match_locs[splitctx->next_match * 2]; |
1831 | 0 | if (endpos < startpos) |
1832 | 0 | elog(ERROR, "invalid match starting position"); |
1833 | | |
1834 | 0 | if (buf) |
1835 | 0 | { |
1836 | 0 | int len; |
1837 | |
|
1838 | 0 | len = pg_wchar2mb_with_len(splitctx->wide_str + startpos, |
1839 | 0 | buf, |
1840 | 0 | endpos - startpos); |
1841 | 0 | Assert(len < splitctx->conv_bufsiz); |
1842 | 0 | return PointerGetDatum(cstring_to_text_with_len(buf, len)); |
1843 | 0 | } |
1844 | 0 | else |
1845 | 0 | { |
1846 | 0 | return DirectFunctionCall3(text_substr, |
1847 | 0 | PointerGetDatum(splitctx->orig_str), |
1848 | 0 | Int32GetDatum(startpos + 1), |
1849 | 0 | Int32GetDatum(endpos - startpos)); |
1850 | 0 | } |
1851 | 0 | } |
1852 | | |
1853 | | /* |
1854 | | * regexp_substr() |
1855 | | * Return the substring that matches a regular expression pattern |
1856 | | */ |
1857 | | Datum |
1858 | | regexp_substr(PG_FUNCTION_ARGS) |
1859 | 0 | { |
1860 | 0 | text *str = PG_GETARG_TEXT_PP(0); |
1861 | 0 | text *pattern = PG_GETARG_TEXT_PP(1); |
1862 | 0 | int start = 1; |
1863 | 0 | int n = 1; |
1864 | 0 | text *flags = PG_GETARG_TEXT_PP_IF_EXISTS(4); |
1865 | 0 | int subexpr = 0; |
1866 | 0 | int so, |
1867 | 0 | eo, |
1868 | 0 | pos; |
1869 | 0 | pg_re_flags re_flags; |
1870 | 0 | regexp_matches_ctx *matchctx; |
1871 | | |
1872 | | /* Collect optional parameters */ |
1873 | 0 | if (PG_NARGS() > 2) |
1874 | 0 | { |
1875 | 0 | start = PG_GETARG_INT32(2); |
1876 | 0 | if (start <= 0) |
1877 | 0 | ereport(ERROR, |
1878 | 0 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
1879 | 0 | errmsg("invalid value for parameter \"%s\": %d", |
1880 | 0 | "start", start))); |
1881 | 0 | } |
1882 | 0 | if (PG_NARGS() > 3) |
1883 | 0 | { |
1884 | 0 | n = PG_GETARG_INT32(3); |
1885 | 0 | if (n <= 0) |
1886 | 0 | ereport(ERROR, |
1887 | 0 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
1888 | 0 | errmsg("invalid value for parameter \"%s\": %d", |
1889 | 0 | "n", n))); |
1890 | 0 | } |
1891 | 0 | if (PG_NARGS() > 5) |
1892 | 0 | { |
1893 | 0 | subexpr = PG_GETARG_INT32(5); |
1894 | 0 | if (subexpr < 0) |
1895 | 0 | ereport(ERROR, |
1896 | 0 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
1897 | 0 | errmsg("invalid value for parameter \"%s\": %d", |
1898 | 0 | "subexpr", subexpr))); |
1899 | 0 | } |
1900 | | |
1901 | | /* Determine options */ |
1902 | 0 | parse_re_flags(&re_flags, flags); |
1903 | | /* User mustn't specify 'g' */ |
1904 | 0 | if (re_flags.glob) |
1905 | 0 | ereport(ERROR, |
1906 | 0 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
1907 | | /* translator: %s is a SQL function name */ |
1908 | 0 | errmsg("%s does not support the \"global\" option", |
1909 | 0 | "regexp_substr()"))); |
1910 | | /* But we find all the matches anyway */ |
1911 | 0 | re_flags.glob = true; |
1912 | | |
1913 | | /* Do the matching */ |
1914 | 0 | matchctx = setup_regexp_matches(str, pattern, &re_flags, start - 1, |
1915 | 0 | PG_GET_COLLATION(), |
1916 | 0 | (subexpr > 0), /* need submatches? */ |
1917 | 0 | false, false); |
1918 | | |
1919 | | /* When n exceeds matches return NULL (includes case of no matches) */ |
1920 | 0 | if (n > matchctx->nmatches) |
1921 | 0 | PG_RETURN_NULL(); |
1922 | | |
1923 | | /* When subexpr exceeds number of subexpressions return NULL */ |
1924 | 0 | if (subexpr > matchctx->npatterns) |
1925 | 0 | PG_RETURN_NULL(); |
1926 | | |
1927 | | /* Select the appropriate match position to return */ |
1928 | 0 | pos = (n - 1) * matchctx->npatterns; |
1929 | 0 | if (subexpr > 0) |
1930 | 0 | pos += subexpr - 1; |
1931 | 0 | pos *= 2; |
1932 | 0 | so = matchctx->match_locs[pos]; |
1933 | 0 | eo = matchctx->match_locs[pos + 1]; |
1934 | |
|
1935 | 0 | if (so < 0 || eo < 0) |
1936 | 0 | PG_RETURN_NULL(); /* unidentifiable location */ |
1937 | | |
1938 | 0 | PG_RETURN_DATUM(DirectFunctionCall3(text_substr, |
1939 | 0 | PointerGetDatum(matchctx->orig_str), |
1940 | 0 | Int32GetDatum(so + 1), |
1941 | 0 | Int32GetDatum(eo - so))); |
1942 | 0 | } |
1943 | | |
1944 | | /* This is separate to keep the opr_sanity regression test from complaining */ |
1945 | | Datum |
1946 | | regexp_substr_no_start(PG_FUNCTION_ARGS) |
1947 | 0 | { |
1948 | 0 | return regexp_substr(fcinfo); |
1949 | 0 | } |
1950 | | |
1951 | | /* This is separate to keep the opr_sanity regression test from complaining */ |
1952 | | Datum |
1953 | | regexp_substr_no_n(PG_FUNCTION_ARGS) |
1954 | 0 | { |
1955 | 0 | return regexp_substr(fcinfo); |
1956 | 0 | } |
1957 | | |
1958 | | /* This is separate to keep the opr_sanity regression test from complaining */ |
1959 | | Datum |
1960 | | regexp_substr_no_flags(PG_FUNCTION_ARGS) |
1961 | 0 | { |
1962 | 0 | return regexp_substr(fcinfo); |
1963 | 0 | } |
1964 | | |
1965 | | /* This is separate to keep the opr_sanity regression test from complaining */ |
1966 | | Datum |
1967 | | regexp_substr_no_subexpr(PG_FUNCTION_ARGS) |
1968 | 0 | { |
1969 | 0 | return regexp_substr(fcinfo); |
1970 | 0 | } |
1971 | | |
1972 | | /* |
1973 | | * regexp_fixed_prefix - extract fixed prefix, if any, for a regexp |
1974 | | * |
1975 | | * The result is NULL if there is no fixed prefix, else a palloc'd string. |
1976 | | * If it is an exact match, not just a prefix, *exact is returned as true. |
1977 | | */ |
1978 | | char * |
1979 | | regexp_fixed_prefix(text *text_re, bool case_insensitive, Oid collation, |
1980 | | bool *exact) |
1981 | 0 | { |
1982 | 0 | char *result; |
1983 | 0 | regex_t *re; |
1984 | 0 | int cflags; |
1985 | 0 | int re_result; |
1986 | 0 | pg_wchar *str; |
1987 | 0 | size_t slen; |
1988 | 0 | size_t maxlen; |
1989 | 0 | char errMsg[100]; |
1990 | |
|
1991 | 0 | *exact = false; /* default result */ |
1992 | | |
1993 | | /* Compile RE */ |
1994 | 0 | cflags = REG_ADVANCED; |
1995 | 0 | if (case_insensitive) |
1996 | 0 | cflags |= REG_ICASE; |
1997 | |
|
1998 | 0 | re = RE_compile_and_cache(text_re, cflags | REG_NOSUB, collation); |
1999 | | |
2000 | | /* Examine it to see if there's a fixed prefix */ |
2001 | 0 | re_result = pg_regprefix(re, &str, &slen); |
2002 | |
|
2003 | 0 | switch (re_result) |
2004 | 0 | { |
2005 | 0 | case REG_NOMATCH: |
2006 | 0 | return NULL; |
2007 | | |
2008 | 0 | case REG_PREFIX: |
2009 | | /* continue with wchar conversion */ |
2010 | 0 | break; |
2011 | | |
2012 | 0 | case REG_EXACT: |
2013 | 0 | *exact = true; |
2014 | | /* continue with wchar conversion */ |
2015 | 0 | break; |
2016 | | |
2017 | 0 | default: |
2018 | | /* re failed??? */ |
2019 | 0 | pg_regerror(re_result, re, errMsg, sizeof(errMsg)); |
2020 | 0 | ereport(ERROR, |
2021 | 0 | (errcode(ERRCODE_INVALID_REGULAR_EXPRESSION), |
2022 | 0 | errmsg("regular expression failed: %s", errMsg))); |
2023 | 0 | break; |
2024 | 0 | } |
2025 | | |
2026 | | /* Convert pg_wchar result back to database encoding */ |
2027 | 0 | maxlen = pg_database_encoding_max_length() * slen + 1; |
2028 | 0 | result = (char *) palloc(maxlen); |
2029 | 0 | slen = pg_wchar2mb_with_len(str, result, slen); |
2030 | 0 | Assert(slen < maxlen); |
2031 | |
|
2032 | 0 | pfree(str); |
2033 | |
|
2034 | 0 | return result; |
2035 | 0 | } |