Coverage Report

Created: 2025-06-13 06:06

/src/postgres/src/backend/utils/cache/catcache.c
Line
Count
Source (jump to first uncovered line)
1
/*-------------------------------------------------------------------------
2
 *
3
 * catcache.c
4
 *    System catalog cache for tuples matching a key.
5
 *
6
 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
7
 * Portions Copyright (c) 1994, Regents of the University of California
8
 *
9
 *
10
 * IDENTIFICATION
11
 *    src/backend/utils/cache/catcache.c
12
 *
13
 *-------------------------------------------------------------------------
14
 */
15
#include "postgres.h"
16
17
#include "access/genam.h"
18
#include "access/heaptoast.h"
19
#include "access/relscan.h"
20
#include "access/table.h"
21
#include "access/xact.h"
22
#include "catalog/catalog.h"
23
#include "catalog/pg_collation.h"
24
#include "catalog/pg_type.h"
25
#include "common/hashfn.h"
26
#include "common/pg_prng.h"
27
#include "miscadmin.h"
28
#include "port/pg_bitutils.h"
29
#ifdef CATCACHE_STATS
30
#include "storage/ipc.h"    /* for on_proc_exit */
31
#endif
32
#include "storage/lmgr.h"
33
#include "utils/builtins.h"
34
#include "utils/catcache.h"
35
#include "utils/datum.h"
36
#include "utils/fmgroids.h"
37
#include "utils/injection_point.h"
38
#include "utils/inval.h"
39
#include "utils/memutils.h"
40
#include "utils/rel.h"
41
#include "utils/resowner.h"
42
#include "utils/syscache.h"
43
44
/*
45
 * If a catcache invalidation is processed while we are in the middle of
46
 * creating a catcache entry (or list), it might apply to the entry we're
47
 * creating, making it invalid before it's been inserted to the catcache.  To
48
 * catch such cases, we have a stack of "create-in-progress" entries.  Cache
49
 * invalidation marks any matching entries in the stack as dead, in addition
50
 * to the actual CatCTup and CatCList entries.
51
 */
52
typedef struct CatCInProgress
53
{
54
  CatCache   *cache;      /* cache that the entry belongs to */
55
  uint32    hash_value;   /* hash of the entry; ignored for lists */
56
  bool    list;     /* is it a list entry? */
57
  bool    dead;     /* set when the entry is invalidated */
58
  struct CatCInProgress *next;
59
} CatCInProgress;
60
61
static CatCInProgress *catcache_in_progress_stack = NULL;
62
63
 /* #define CACHEDEBUG */ /* turns DEBUG elogs on */
64
65
/*
66
 * Given a hash value and the size of the hash table, find the bucket
67
 * in which the hash value belongs. Since the hash table must contain
68
 * a power-of-2 number of elements, this is a simple bitmask.
69
 */
70
0
#define HASH_INDEX(h, sz) ((Index) ((h) & ((sz) - 1)))
71
72
73
/*
74
 *    variables, macros and other stuff
75
 */
76
77
#ifdef CACHEDEBUG
78
#define CACHE_elog(...)       elog(__VA_ARGS__)
79
#else
80
#define CACHE_elog(...)
81
#endif
82
83
/* Cache management header --- pointer is NULL until created */
84
static CatCacheHeader *CacheHdr = NULL;
85
86
static inline HeapTuple SearchCatCacheInternal(CatCache *cache,
87
                         int nkeys,
88
                         Datum v1, Datum v2,
89
                         Datum v3, Datum v4);
90
91
static pg_noinline HeapTuple SearchCatCacheMiss(CatCache *cache,
92
                        int nkeys,
93
                        uint32 hashValue,
94
                        Index hashIndex,
95
                        Datum v1, Datum v2,
96
                        Datum v3, Datum v4);
97
98
static uint32 CatalogCacheComputeHashValue(CatCache *cache, int nkeys,
99
                       Datum v1, Datum v2, Datum v3, Datum v4);
100
static uint32 CatalogCacheComputeTupleHashValue(CatCache *cache, int nkeys,
101
                        HeapTuple tuple);
102
static inline bool CatalogCacheCompareTuple(const CatCache *cache, int nkeys,
103
                      const Datum *cachekeys,
104
                      const Datum *searchkeys);
105
106
#ifdef CATCACHE_STATS
107
static void CatCachePrintStats(int code, Datum arg);
108
#endif
109
static void CatCacheRemoveCTup(CatCache *cache, CatCTup *ct);
110
static void CatCacheRemoveCList(CatCache *cache, CatCList *cl);
111
static void RehashCatCache(CatCache *cp);
112
static void RehashCatCacheLists(CatCache *cp);
113
static void CatalogCacheInitializeCache(CatCache *cache);
114
static CatCTup *CatalogCacheCreateEntry(CatCache *cache, HeapTuple ntp,
115
                    Datum *arguments,
116
                    uint32 hashValue, Index hashIndex);
117
118
static void ReleaseCatCacheWithOwner(HeapTuple tuple, ResourceOwner resowner);
119
static void ReleaseCatCacheListWithOwner(CatCList *list, ResourceOwner resowner);
120
static void CatCacheFreeKeys(TupleDesc tupdesc, int nkeys, int *attnos,
121
               Datum *keys);
122
static void CatCacheCopyKeys(TupleDesc tupdesc, int nkeys, int *attnos,
123
               Datum *srckeys, Datum *dstkeys);
124
125
126
/*
127
 *          internal support functions
128
 */
129
130
/* ResourceOwner callbacks to hold catcache references */
131
132
static void ResOwnerReleaseCatCache(Datum res);
133
static char *ResOwnerPrintCatCache(Datum res);
134
static void ResOwnerReleaseCatCacheList(Datum res);
135
static char *ResOwnerPrintCatCacheList(Datum res);
136
137
static const ResourceOwnerDesc catcache_resowner_desc =
138
{
139
  /* catcache references */
140
  .name = "catcache reference",
141
  .release_phase = RESOURCE_RELEASE_AFTER_LOCKS,
142
  .release_priority = RELEASE_PRIO_CATCACHE_REFS,
143
  .ReleaseResource = ResOwnerReleaseCatCache,
144
  .DebugPrint = ResOwnerPrintCatCache
145
};
146
147
static const ResourceOwnerDesc catlistref_resowner_desc =
148
{
149
  /* catcache-list pins */
150
  .name = "catcache list reference",
151
  .release_phase = RESOURCE_RELEASE_AFTER_LOCKS,
152
  .release_priority = RELEASE_PRIO_CATCACHE_LIST_REFS,
153
  .ReleaseResource = ResOwnerReleaseCatCacheList,
154
  .DebugPrint = ResOwnerPrintCatCacheList
155
};
156
157
/* Convenience wrappers over ResourceOwnerRemember/Forget */
158
static inline void
159
ResourceOwnerRememberCatCacheRef(ResourceOwner owner, HeapTuple tuple)
160
0
{
161
0
  ResourceOwnerRemember(owner, PointerGetDatum(tuple), &catcache_resowner_desc);
162
0
}
163
static inline void
164
ResourceOwnerForgetCatCacheRef(ResourceOwner owner, HeapTuple tuple)
165
0
{
166
0
  ResourceOwnerForget(owner, PointerGetDatum(tuple), &catcache_resowner_desc);
167
0
}
168
static inline void
169
ResourceOwnerRememberCatCacheListRef(ResourceOwner owner, CatCList *list)
170
0
{
171
0
  ResourceOwnerRemember(owner, PointerGetDatum(list), &catlistref_resowner_desc);
172
0
}
173
static inline void
174
ResourceOwnerForgetCatCacheListRef(ResourceOwner owner, CatCList *list)
175
0
{
176
0
  ResourceOwnerForget(owner, PointerGetDatum(list), &catlistref_resowner_desc);
177
0
}
178
179
180
/*
181
 * Hash and equality functions for system types that are used as cache key
182
 * fields.  In some cases, we just call the regular SQL-callable functions for
183
 * the appropriate data type, but that tends to be a little slow, and the
184
 * speed of these functions is performance-critical.  Therefore, for data
185
 * types that frequently occur as catcache keys, we hard-code the logic here.
186
 * Avoiding the overhead of DirectFunctionCallN(...) is a substantial win, and
187
 * in certain cases (like int4) we can adopt a faster hash algorithm as well.
188
 */
189
190
static bool
191
chareqfast(Datum a, Datum b)
192
0
{
193
0
  return DatumGetChar(a) == DatumGetChar(b);
194
0
}
195
196
static uint32
197
charhashfast(Datum datum)
198
0
{
199
0
  return murmurhash32((int32) DatumGetChar(datum));
200
0
}
201
202
static bool
203
nameeqfast(Datum a, Datum b)
204
0
{
205
0
  char     *ca = NameStr(*DatumGetName(a));
206
0
  char     *cb = NameStr(*DatumGetName(b));
207
208
0
  return strncmp(ca, cb, NAMEDATALEN) == 0;
209
0
}
210
211
static uint32
212
namehashfast(Datum datum)
213
0
{
214
0
  char     *key = NameStr(*DatumGetName(datum));
215
216
0
  return hash_any((unsigned char *) key, strlen(key));
217
0
}
218
219
static bool
220
int2eqfast(Datum a, Datum b)
221
0
{
222
0
  return DatumGetInt16(a) == DatumGetInt16(b);
223
0
}
224
225
static uint32
226
int2hashfast(Datum datum)
227
0
{
228
0
  return murmurhash32((int32) DatumGetInt16(datum));
229
0
}
230
231
static bool
232
int4eqfast(Datum a, Datum b)
233
0
{
234
0
  return DatumGetInt32(a) == DatumGetInt32(b);
235
0
}
236
237
static uint32
238
int4hashfast(Datum datum)
239
0
{
240
0
  return murmurhash32((int32) DatumGetInt32(datum));
241
0
}
242
243
static bool
244
texteqfast(Datum a, Datum b)
245
0
{
246
  /*
247
   * The use of DEFAULT_COLLATION_OID is fairly arbitrary here.  We just
248
   * want to take the fast "deterministic" path in texteq().
249
   */
250
0
  return DatumGetBool(DirectFunctionCall2Coll(texteq, DEFAULT_COLLATION_OID, a, b));
251
0
}
252
253
static uint32
254
texthashfast(Datum datum)
255
0
{
256
  /* analogously here as in texteqfast() */
257
0
  return DatumGetInt32(DirectFunctionCall1Coll(hashtext, DEFAULT_COLLATION_OID, datum));
258
0
}
259
260
static bool
261
oidvectoreqfast(Datum a, Datum b)
262
0
{
263
0
  return DatumGetBool(DirectFunctionCall2(oidvectoreq, a, b));
264
0
}
265
266
static uint32
267
oidvectorhashfast(Datum datum)
268
0
{
269
0
  return DatumGetInt32(DirectFunctionCall1(hashoidvector, datum));
270
0
}
271
272
/* Lookup support functions for a type. */
273
static void
274
GetCCHashEqFuncs(Oid keytype, CCHashFN *hashfunc, RegProcedure *eqfunc, CCFastEqualFN *fasteqfunc)
275
0
{
276
0
  switch (keytype)
277
0
  {
278
0
    case BOOLOID:
279
0
      *hashfunc = charhashfast;
280
0
      *fasteqfunc = chareqfast;
281
0
      *eqfunc = F_BOOLEQ;
282
0
      break;
283
0
    case CHAROID:
284
0
      *hashfunc = charhashfast;
285
0
      *fasteqfunc = chareqfast;
286
0
      *eqfunc = F_CHAREQ;
287
0
      break;
288
0
    case NAMEOID:
289
0
      *hashfunc = namehashfast;
290
0
      *fasteqfunc = nameeqfast;
291
0
      *eqfunc = F_NAMEEQ;
292
0
      break;
293
0
    case INT2OID:
294
0
      *hashfunc = int2hashfast;
295
0
      *fasteqfunc = int2eqfast;
296
0
      *eqfunc = F_INT2EQ;
297
0
      break;
298
0
    case INT4OID:
299
0
      *hashfunc = int4hashfast;
300
0
      *fasteqfunc = int4eqfast;
301
0
      *eqfunc = F_INT4EQ;
302
0
      break;
303
0
    case TEXTOID:
304
0
      *hashfunc = texthashfast;
305
0
      *fasteqfunc = texteqfast;
306
0
      *eqfunc = F_TEXTEQ;
307
0
      break;
308
0
    case OIDOID:
309
0
    case REGPROCOID:
310
0
    case REGPROCEDUREOID:
311
0
    case REGOPEROID:
312
0
    case REGOPERATOROID:
313
0
    case REGCLASSOID:
314
0
    case REGTYPEOID:
315
0
    case REGCOLLATIONOID:
316
0
    case REGCONFIGOID:
317
0
    case REGDICTIONARYOID:
318
0
    case REGROLEOID:
319
0
    case REGNAMESPACEOID:
320
0
      *hashfunc = int4hashfast;
321
0
      *fasteqfunc = int4eqfast;
322
0
      *eqfunc = F_OIDEQ;
323
0
      break;
324
0
    case OIDVECTOROID:
325
0
      *hashfunc = oidvectorhashfast;
326
0
      *fasteqfunc = oidvectoreqfast;
327
0
      *eqfunc = F_OIDVECTOREQ;
328
0
      break;
329
0
    default:
330
0
      elog(FATAL, "type %u not supported as catcache key", keytype);
331
0
      *hashfunc = NULL; /* keep compiler quiet */
332
333
0
      *eqfunc = InvalidOid;
334
0
      break;
335
0
  }
336
0
}
337
338
/*
339
 *    CatalogCacheComputeHashValue
340
 *
341
 * Compute the hash value associated with a given set of lookup keys
342
 */
343
static uint32
344
CatalogCacheComputeHashValue(CatCache *cache, int nkeys,
345
               Datum v1, Datum v2, Datum v3, Datum v4)
346
0
{
347
0
  uint32    hashValue = 0;
348
0
  uint32    oneHash;
349
0
  CCHashFN   *cc_hashfunc = cache->cc_hashfunc;
350
351
0
  CACHE_elog(DEBUG2, "CatalogCacheComputeHashValue %s %d %p",
352
0
         cache->cc_relname, nkeys, cache);
353
354
0
  switch (nkeys)
355
0
  {
356
0
    case 4:
357
0
      oneHash = (cc_hashfunc[3]) (v4);
358
0
      hashValue ^= pg_rotate_left32(oneHash, 24);
359
      /* FALLTHROUGH */
360
0
    case 3:
361
0
      oneHash = (cc_hashfunc[2]) (v3);
362
0
      hashValue ^= pg_rotate_left32(oneHash, 16);
363
      /* FALLTHROUGH */
364
0
    case 2:
365
0
      oneHash = (cc_hashfunc[1]) (v2);
366
0
      hashValue ^= pg_rotate_left32(oneHash, 8);
367
      /* FALLTHROUGH */
368
0
    case 1:
369
0
      oneHash = (cc_hashfunc[0]) (v1);
370
0
      hashValue ^= oneHash;
371
0
      break;
372
0
    default:
373
0
      elog(FATAL, "wrong number of hash keys: %d", nkeys);
374
0
      break;
375
0
  }
376
377
0
  return hashValue;
378
0
}
379
380
/*
381
 *    CatalogCacheComputeTupleHashValue
382
 *
383
 * Compute the hash value associated with a given tuple to be cached
384
 */
385
static uint32
386
CatalogCacheComputeTupleHashValue(CatCache *cache, int nkeys, HeapTuple tuple)
387
0
{
388
0
  Datum   v1 = 0,
389
0
        v2 = 0,
390
0
        v3 = 0,
391
0
        v4 = 0;
392
0
  bool    isNull = false;
393
0
  int      *cc_keyno = cache->cc_keyno;
394
0
  TupleDesc cc_tupdesc = cache->cc_tupdesc;
395
396
  /* Now extract key fields from tuple, insert into scankey */
397
0
  switch (nkeys)
398
0
  {
399
0
    case 4:
400
0
      v4 = fastgetattr(tuple,
401
0
               cc_keyno[3],
402
0
               cc_tupdesc,
403
0
               &isNull);
404
0
      Assert(!isNull);
405
      /* FALLTHROUGH */
406
0
    case 3:
407
0
      v3 = fastgetattr(tuple,
408
0
               cc_keyno[2],
409
0
               cc_tupdesc,
410
0
               &isNull);
411
0
      Assert(!isNull);
412
      /* FALLTHROUGH */
413
0
    case 2:
414
0
      v2 = fastgetattr(tuple,
415
0
               cc_keyno[1],
416
0
               cc_tupdesc,
417
0
               &isNull);
418
0
      Assert(!isNull);
419
      /* FALLTHROUGH */
420
0
    case 1:
421
0
      v1 = fastgetattr(tuple,
422
0
               cc_keyno[0],
423
0
               cc_tupdesc,
424
0
               &isNull);
425
0
      Assert(!isNull);
426
0
      break;
427
0
    default:
428
0
      elog(FATAL, "wrong number of hash keys: %d", nkeys);
429
0
      break;
430
0
  }
431
432
0
  return CatalogCacheComputeHashValue(cache, nkeys, v1, v2, v3, v4);
433
0
}
434
435
/*
436
 *    CatalogCacheCompareTuple
437
 *
438
 * Compare a tuple to the passed arguments.
439
 */
440
static inline bool
441
CatalogCacheCompareTuple(const CatCache *cache, int nkeys,
442
             const Datum *cachekeys,
443
             const Datum *searchkeys)
444
0
{
445
0
  const CCFastEqualFN *cc_fastequal = cache->cc_fastequal;
446
0
  int     i;
447
448
0
  for (i = 0; i < nkeys; i++)
449
0
  {
450
0
    if (!(cc_fastequal[i]) (cachekeys[i], searchkeys[i]))
451
0
      return false;
452
0
  }
453
0
  return true;
454
0
}
455
456
457
#ifdef CATCACHE_STATS
458
459
static void
460
CatCachePrintStats(int code, Datum arg)
461
{
462
  slist_iter  iter;
463
  long    cc_searches = 0;
464
  long    cc_hits = 0;
465
  long    cc_neg_hits = 0;
466
  long    cc_newloads = 0;
467
  long    cc_invals = 0;
468
  long    cc_nlists = 0;
469
  long    cc_lsearches = 0;
470
  long    cc_lhits = 0;
471
472
  slist_foreach(iter, &CacheHdr->ch_caches)
473
  {
474
    CatCache   *cache = slist_container(CatCache, cc_next, iter.cur);
475
476
    if (cache->cc_ntup == 0 && cache->cc_searches == 0)
477
      continue;     /* don't print unused caches */
478
    elog(DEBUG2, "catcache %s/%u: %d tup, %ld srch, %ld+%ld=%ld hits, %ld+%ld=%ld loads, %ld invals, %d lists, %ld lsrch, %ld lhits",
479
       cache->cc_relname,
480
       cache->cc_indexoid,
481
       cache->cc_ntup,
482
       cache->cc_searches,
483
       cache->cc_hits,
484
       cache->cc_neg_hits,
485
       cache->cc_hits + cache->cc_neg_hits,
486
       cache->cc_newloads,
487
       cache->cc_searches - cache->cc_hits - cache->cc_neg_hits - cache->cc_newloads,
488
       cache->cc_searches - cache->cc_hits - cache->cc_neg_hits,
489
       cache->cc_invals,
490
       cache->cc_nlist,
491
       cache->cc_lsearches,
492
       cache->cc_lhits);
493
    cc_searches += cache->cc_searches;
494
    cc_hits += cache->cc_hits;
495
    cc_neg_hits += cache->cc_neg_hits;
496
    cc_newloads += cache->cc_newloads;
497
    cc_invals += cache->cc_invals;
498
    cc_nlists += cache->cc_nlist;
499
    cc_lsearches += cache->cc_lsearches;
500
    cc_lhits += cache->cc_lhits;
501
  }
502
  elog(DEBUG2, "catcache totals: %d tup, %ld srch, %ld+%ld=%ld hits, %ld+%ld=%ld loads, %ld invals, %ld lists, %ld lsrch, %ld lhits",
503
     CacheHdr->ch_ntup,
504
     cc_searches,
505
     cc_hits,
506
     cc_neg_hits,
507
     cc_hits + cc_neg_hits,
508
     cc_newloads,
509
     cc_searches - cc_hits - cc_neg_hits - cc_newloads,
510
     cc_searches - cc_hits - cc_neg_hits,
511
     cc_invals,
512
     cc_nlists,
513
     cc_lsearches,
514
     cc_lhits);
515
}
516
#endif              /* CATCACHE_STATS */
517
518
519
/*
520
 *    CatCacheRemoveCTup
521
 *
522
 * Unlink and delete the given cache entry
523
 *
524
 * NB: if it is a member of a CatCList, the CatCList is deleted too.
525
 * Both the cache entry and the list had better have zero refcount.
526
 */
527
static void
528
CatCacheRemoveCTup(CatCache *cache, CatCTup *ct)
529
0
{
530
0
  Assert(ct->refcount == 0);
531
0
  Assert(ct->my_cache == cache);
532
533
0
  if (ct->c_list)
534
0
  {
535
    /*
536
     * The cleanest way to handle this is to call CatCacheRemoveCList,
537
     * which will recurse back to me, and the recursive call will do the
538
     * work.  Set the "dead" flag to make sure it does recurse.
539
     */
540
0
    ct->dead = true;
541
0
    CatCacheRemoveCList(cache, ct->c_list);
542
0
    return;         /* nothing left to do */
543
0
  }
544
545
  /* delink from linked list */
546
0
  dlist_delete(&ct->cache_elem);
547
548
  /*
549
   * Free keys when we're dealing with a negative entry, normal entries just
550
   * point into tuple, allocated together with the CatCTup.
551
   */
552
0
  if (ct->negative)
553
0
    CatCacheFreeKeys(cache->cc_tupdesc, cache->cc_nkeys,
554
0
             cache->cc_keyno, ct->keys);
555
556
0
  pfree(ct);
557
558
0
  --cache->cc_ntup;
559
0
  --CacheHdr->ch_ntup;
560
0
}
561
562
/*
563
 *    CatCacheRemoveCList
564
 *
565
 * Unlink and delete the given cache list entry
566
 *
567
 * NB: any dead member entries that become unreferenced are deleted too.
568
 */
569
static void
570
CatCacheRemoveCList(CatCache *cache, CatCList *cl)
571
0
{
572
0
  int     i;
573
574
0
  Assert(cl->refcount == 0);
575
0
  Assert(cl->my_cache == cache);
576
577
  /* delink from member tuples */
578
0
  for (i = cl->n_members; --i >= 0;)
579
0
  {
580
0
    CatCTup    *ct = cl->members[i];
581
582
0
    Assert(ct->c_list == cl);
583
0
    ct->c_list = NULL;
584
    /* if the member is dead and now has no references, remove it */
585
0
    if (
586
0
#ifndef CATCACHE_FORCE_RELEASE
587
0
      ct->dead &&
588
0
#endif
589
0
      ct->refcount == 0)
590
0
      CatCacheRemoveCTup(cache, ct);
591
0
  }
592
593
  /* delink from linked list */
594
0
  dlist_delete(&cl->cache_elem);
595
596
  /* free associated column data */
597
0
  CatCacheFreeKeys(cache->cc_tupdesc, cl->nkeys,
598
0
           cache->cc_keyno, cl->keys);
599
600
0
  pfree(cl);
601
602
0
  --cache->cc_nlist;
603
0
}
604
605
606
/*
607
 *  CatCacheInvalidate
608
 *
609
 *  Invalidate entries in the specified cache, given a hash value.
610
 *
611
 *  We delete cache entries that match the hash value, whether positive
612
 *  or negative.  We don't care whether the invalidation is the result
613
 *  of a tuple insertion or a deletion.
614
 *
615
 *  We used to try to match positive cache entries by TID, but that is
616
 *  unsafe after a VACUUM FULL on a system catalog: an inval event could
617
 *  be queued before VACUUM FULL, and then processed afterwards, when the
618
 *  target tuple that has to be invalidated has a different TID than it
619
 *  did when the event was created.  So now we just compare hash values and
620
 *  accept the small risk of unnecessary invalidations due to false matches.
621
 *
622
 *  This routine is only quasi-public: it should only be used by inval.c.
623
 */
624
void
625
CatCacheInvalidate(CatCache *cache, uint32 hashValue)
626
0
{
627
0
  Index   hashIndex;
628
0
  dlist_mutable_iter iter;
629
630
0
  CACHE_elog(DEBUG2, "CatCacheInvalidate: called");
631
632
  /*
633
   * We don't bother to check whether the cache has finished initialization
634
   * yet; if not, there will be no entries in it so no problem.
635
   */
636
637
  /*
638
   * Invalidate *all* CatCLists in this cache; it's too hard to tell which
639
   * searches might still be correct, so just zap 'em all.
640
   */
641
0
  for (int i = 0; i < cache->cc_nlbuckets; i++)
642
0
  {
643
0
    dlist_head *bucket = &cache->cc_lbucket[i];
644
645
0
    dlist_foreach_modify(iter, bucket)
646
0
    {
647
0
      CatCList   *cl = dlist_container(CatCList, cache_elem, iter.cur);
648
649
0
      if (cl->refcount > 0)
650
0
        cl->dead = true;
651
0
      else
652
0
        CatCacheRemoveCList(cache, cl);
653
0
    }
654
0
  }
655
656
  /*
657
   * inspect the proper hash bucket for tuple matches
658
   */
659
0
  hashIndex = HASH_INDEX(hashValue, cache->cc_nbuckets);
660
0
  dlist_foreach_modify(iter, &cache->cc_bucket[hashIndex])
661
0
  {
662
0
    CatCTup    *ct = dlist_container(CatCTup, cache_elem, iter.cur);
663
664
0
    if (hashValue == ct->hash_value)
665
0
    {
666
0
      if (ct->refcount > 0 ||
667
0
        (ct->c_list && ct->c_list->refcount > 0))
668
0
      {
669
0
        ct->dead = true;
670
        /* list, if any, was marked dead above */
671
0
        Assert(ct->c_list == NULL || ct->c_list->dead);
672
0
      }
673
0
      else
674
0
        CatCacheRemoveCTup(cache, ct);
675
0
      CACHE_elog(DEBUG2, "CatCacheInvalidate: invalidated");
676
#ifdef CATCACHE_STATS
677
      cache->cc_invals++;
678
#endif
679
      /* could be multiple matches, so keep looking! */
680
0
    }
681
0
  }
682
683
  /* Also invalidate any entries that are being built */
684
0
  for (CatCInProgress *e = catcache_in_progress_stack; e != NULL; e = e->next)
685
0
  {
686
0
    if (e->cache == cache)
687
0
    {
688
0
      if (e->list || e->hash_value == hashValue)
689
0
        e->dead = true;
690
0
    }
691
0
  }
692
0
}
693
694
/* ----------------------------------------------------------------
695
 *             public functions
696
 * ----------------------------------------------------------------
697
 */
698
699
700
/*
701
 * Standard routine for creating cache context if it doesn't exist yet
702
 *
703
 * There are a lot of places (probably far more than necessary) that check
704
 * whether CacheMemoryContext exists yet and want to create it if not.
705
 * We centralize knowledge of exactly how to create it here.
706
 */
707
void
708
CreateCacheMemoryContext(void)
709
0
{
710
  /*
711
   * Purely for paranoia, check that context doesn't exist; caller probably
712
   * did so already.
713
   */
714
0
  if (!CacheMemoryContext)
715
0
    CacheMemoryContext = AllocSetContextCreate(TopMemoryContext,
716
0
                           "CacheMemoryContext",
717
0
                           ALLOCSET_DEFAULT_SIZES);
718
0
}
719
720
721
/*
722
 *    ResetCatalogCache
723
 *
724
 * Reset one catalog cache to empty.
725
 *
726
 * This is not very efficient if the target cache is nearly empty.
727
 * However, it shouldn't need to be efficient; we don't invoke it often.
728
 *
729
 * If 'debug_discard' is true, we are being called as part of
730
 * debug_discard_caches.  In that case, the cache is not reset for
731
 * correctness, but just to get more testing of cache invalidation.  We skip
732
 * resetting in-progress build entries in that case, or we'd never make any
733
 * progress.
734
 */
735
static void
736
ResetCatalogCache(CatCache *cache, bool debug_discard)
737
0
{
738
0
  dlist_mutable_iter iter;
739
0
  int     i;
740
741
  /* Remove each list in this cache, or at least mark it dead */
742
0
  for (i = 0; i < cache->cc_nlbuckets; i++)
743
0
  {
744
0
    dlist_head *bucket = &cache->cc_lbucket[i];
745
746
0
    dlist_foreach_modify(iter, bucket)
747
0
    {
748
0
      CatCList   *cl = dlist_container(CatCList, cache_elem, iter.cur);
749
750
0
      if (cl->refcount > 0)
751
0
        cl->dead = true;
752
0
      else
753
0
        CatCacheRemoveCList(cache, cl);
754
0
    }
755
0
  }
756
757
  /* Remove each tuple in this cache, or at least mark it dead */
758
0
  for (i = 0; i < cache->cc_nbuckets; i++)
759
0
  {
760
0
    dlist_head *bucket = &cache->cc_bucket[i];
761
762
0
    dlist_foreach_modify(iter, bucket)
763
0
    {
764
0
      CatCTup    *ct = dlist_container(CatCTup, cache_elem, iter.cur);
765
766
0
      if (ct->refcount > 0 ||
767
0
        (ct->c_list && ct->c_list->refcount > 0))
768
0
      {
769
0
        ct->dead = true;
770
        /* list, if any, was marked dead above */
771
0
        Assert(ct->c_list == NULL || ct->c_list->dead);
772
0
      }
773
0
      else
774
0
        CatCacheRemoveCTup(cache, ct);
775
#ifdef CATCACHE_STATS
776
      cache->cc_invals++;
777
#endif
778
0
    }
779
0
  }
780
781
  /* Also invalidate any entries that are being built */
782
0
  if (!debug_discard)
783
0
  {
784
0
    for (CatCInProgress *e = catcache_in_progress_stack; e != NULL; e = e->next)
785
0
    {
786
0
      if (e->cache == cache)
787
0
        e->dead = true;
788
0
    }
789
0
  }
790
0
}
791
792
/*
793
 *    ResetCatalogCaches
794
 *
795
 * Reset all caches when a shared cache inval event forces it
796
 */
797
void
798
ResetCatalogCaches(void)
799
0
{
800
0
  ResetCatalogCachesExt(false);
801
0
}
802
803
void
804
ResetCatalogCachesExt(bool debug_discard)
805
0
{
806
0
  slist_iter  iter;
807
808
0
  CACHE_elog(DEBUG2, "ResetCatalogCaches called");
809
810
0
  slist_foreach(iter, &CacheHdr->ch_caches)
811
0
  {
812
0
    CatCache   *cache = slist_container(CatCache, cc_next, iter.cur);
813
814
0
    ResetCatalogCache(cache, debug_discard);
815
0
  }
816
817
0
  CACHE_elog(DEBUG2, "end of ResetCatalogCaches call");
818
0
}
819
820
/*
821
 *    CatalogCacheFlushCatalog
822
 *
823
 *  Flush all catcache entries that came from the specified system catalog.
824
 *  This is needed after VACUUM FULL/CLUSTER on the catalog, since the
825
 *  tuples very likely now have different TIDs than before.  (At one point
826
 *  we also tried to force re-execution of CatalogCacheInitializeCache for
827
 *  the cache(s) on that catalog.  This is a bad idea since it leads to all
828
 *  kinds of trouble if a cache flush occurs while loading cache entries.
829
 *  We now avoid the need to do it by copying cc_tupdesc out of the relcache,
830
 *  rather than relying on the relcache to keep a tupdesc for us.  Of course
831
 *  this assumes the tupdesc of a cachable system table will not change...)
832
 */
833
void
834
CatalogCacheFlushCatalog(Oid catId)
835
0
{
836
0
  slist_iter  iter;
837
838
0
  CACHE_elog(DEBUG2, "CatalogCacheFlushCatalog called for %u", catId);
839
840
0
  slist_foreach(iter, &CacheHdr->ch_caches)
841
0
  {
842
0
    CatCache   *cache = slist_container(CatCache, cc_next, iter.cur);
843
844
    /* Does this cache store tuples of the target catalog? */
845
0
    if (cache->cc_reloid == catId)
846
0
    {
847
      /* Yes, so flush all its contents */
848
0
      ResetCatalogCache(cache, false);
849
850
      /* Tell inval.c to call syscache callbacks for this cache */
851
0
      CallSyscacheCallbacks(cache->id, 0);
852
0
    }
853
0
  }
854
855
0
  CACHE_elog(DEBUG2, "end of CatalogCacheFlushCatalog call");
856
0
}
857
858
/*
859
 *    InitCatCache
860
 *
861
 *  This allocates and initializes a cache for a system catalog relation.
862
 *  Actually, the cache is only partially initialized to avoid opening the
863
 *  relation.  The relation will be opened and the rest of the cache
864
 *  structure initialized on the first access.
865
 */
866
#ifdef CACHEDEBUG
867
#define InitCatCache_DEBUG2 \
868
do { \
869
  elog(DEBUG2, "InitCatCache: rel=%u ind=%u id=%d nkeys=%d size=%d", \
870
     cp->cc_reloid, cp->cc_indexoid, cp->id, \
871
     cp->cc_nkeys, cp->cc_nbuckets); \
872
} while(0)
873
#else
874
#define InitCatCache_DEBUG2
875
#endif
876
877
CatCache *
878
InitCatCache(int id,
879
       Oid reloid,
880
       Oid indexoid,
881
       int nkeys,
882
       const int *key,
883
       int nbuckets)
884
0
{
885
0
  CatCache   *cp;
886
0
  MemoryContext oldcxt;
887
0
  int     i;
888
889
  /*
890
   * nbuckets is the initial number of hash buckets to use in this catcache.
891
   * It will be enlarged later if it becomes too full.
892
   *
893
   * nbuckets must be a power of two.  We check this via Assert rather than
894
   * a full runtime check because the values will be coming from constant
895
   * tables.
896
   *
897
   * If you're confused by the power-of-two check, see comments in
898
   * bitmapset.c for an explanation.
899
   */
900
0
  Assert(nbuckets > 0 && (nbuckets & -nbuckets) == nbuckets);
901
902
  /*
903
   * first switch to the cache context so our allocations do not vanish at
904
   * the end of a transaction
905
   */
906
0
  if (!CacheMemoryContext)
907
0
    CreateCacheMemoryContext();
908
909
0
  oldcxt = MemoryContextSwitchTo(CacheMemoryContext);
910
911
  /*
912
   * if first time through, initialize the cache group header
913
   */
914
0
  if (CacheHdr == NULL)
915
0
  {
916
0
    CacheHdr = (CatCacheHeader *) palloc(sizeof(CatCacheHeader));
917
0
    slist_init(&CacheHdr->ch_caches);
918
0
    CacheHdr->ch_ntup = 0;
919
#ifdef CATCACHE_STATS
920
    /* set up to dump stats at backend exit */
921
    on_proc_exit(CatCachePrintStats, 0);
922
#endif
923
0
  }
924
925
  /*
926
   * Allocate a new cache structure, aligning to a cacheline boundary
927
   *
928
   * Note: we rely on zeroing to initialize all the dlist headers correctly
929
   */
930
0
  cp = (CatCache *) palloc_aligned(sizeof(CatCache), PG_CACHE_LINE_SIZE,
931
0
                   MCXT_ALLOC_ZERO);
932
0
  cp->cc_bucket = palloc0(nbuckets * sizeof(dlist_head));
933
934
  /*
935
   * Many catcaches never receive any list searches.  Therefore, we don't
936
   * allocate the cc_lbuckets till we get a list search.
937
   */
938
0
  cp->cc_lbucket = NULL;
939
940
  /*
941
   * initialize the cache's relation information for the relation
942
   * corresponding to this cache, and initialize some of the new cache's
943
   * other internal fields.  But don't open the relation yet.
944
   */
945
0
  cp->id = id;
946
0
  cp->cc_relname = "(not known yet)";
947
0
  cp->cc_reloid = reloid;
948
0
  cp->cc_indexoid = indexoid;
949
0
  cp->cc_relisshared = false; /* temporary */
950
0
  cp->cc_tupdesc = (TupleDesc) NULL;
951
0
  cp->cc_ntup = 0;
952
0
  cp->cc_nlist = 0;
953
0
  cp->cc_nbuckets = nbuckets;
954
0
  cp->cc_nlbuckets = 0;
955
0
  cp->cc_nkeys = nkeys;
956
0
  for (i = 0; i < nkeys; ++i)
957
0
  {
958
0
    Assert(AttributeNumberIsValid(key[i]));
959
0
    cp->cc_keyno[i] = key[i];
960
0
  }
961
962
  /*
963
   * new cache is initialized as far as we can go for now. print some
964
   * debugging information, if appropriate.
965
   */
966
0
  InitCatCache_DEBUG2;
967
968
  /*
969
   * add completed cache to top of group header's list
970
   */
971
0
  slist_push_head(&CacheHdr->ch_caches, &cp->cc_next);
972
973
  /*
974
   * back to the old context before we return...
975
   */
976
0
  MemoryContextSwitchTo(oldcxt);
977
978
0
  return cp;
979
0
}
980
981
/*
982
 * Enlarge a catcache, doubling the number of buckets.
983
 */
984
static void
985
RehashCatCache(CatCache *cp)
986
0
{
987
0
  dlist_head *newbucket;
988
0
  int     newnbuckets;
989
0
  int     i;
990
991
0
  elog(DEBUG1, "rehashing catalog cache id %d for %s; %d tups, %d buckets",
992
0
     cp->id, cp->cc_relname, cp->cc_ntup, cp->cc_nbuckets);
993
994
  /* Allocate a new, larger, hash table. */
995
0
  newnbuckets = cp->cc_nbuckets * 2;
996
0
  newbucket = (dlist_head *) MemoryContextAllocZero(CacheMemoryContext, newnbuckets * sizeof(dlist_head));
997
998
  /* Move all entries from old hash table to new. */
999
0
  for (i = 0; i < cp->cc_nbuckets; i++)
1000
0
  {
1001
0
    dlist_mutable_iter iter;
1002
1003
0
    dlist_foreach_modify(iter, &cp->cc_bucket[i])
1004
0
    {
1005
0
      CatCTup    *ct = dlist_container(CatCTup, cache_elem, iter.cur);
1006
0
      int     hashIndex = HASH_INDEX(ct->hash_value, newnbuckets);
1007
1008
0
      dlist_delete(iter.cur);
1009
0
      dlist_push_head(&newbucket[hashIndex], &ct->cache_elem);
1010
0
    }
1011
0
  }
1012
1013
  /* Switch to the new array. */
1014
0
  pfree(cp->cc_bucket);
1015
0
  cp->cc_nbuckets = newnbuckets;
1016
0
  cp->cc_bucket = newbucket;
1017
0
}
1018
1019
/*
1020
 * Enlarge a catcache's list storage, doubling the number of buckets.
1021
 */
1022
static void
1023
RehashCatCacheLists(CatCache *cp)
1024
0
{
1025
0
  dlist_head *newbucket;
1026
0
  int     newnbuckets;
1027
0
  int     i;
1028
1029
0
  elog(DEBUG1, "rehashing catalog cache id %d for %s; %d lists, %d buckets",
1030
0
     cp->id, cp->cc_relname, cp->cc_nlist, cp->cc_nlbuckets);
1031
1032
  /* Allocate a new, larger, hash table. */
1033
0
  newnbuckets = cp->cc_nlbuckets * 2;
1034
0
  newbucket = (dlist_head *) MemoryContextAllocZero(CacheMemoryContext, newnbuckets * sizeof(dlist_head));
1035
1036
  /* Move all entries from old hash table to new. */
1037
0
  for (i = 0; i < cp->cc_nlbuckets; i++)
1038
0
  {
1039
0
    dlist_mutable_iter iter;
1040
1041
0
    dlist_foreach_modify(iter, &cp->cc_lbucket[i])
1042
0
    {
1043
0
      CatCList   *cl = dlist_container(CatCList, cache_elem, iter.cur);
1044
0
      int     hashIndex = HASH_INDEX(cl->hash_value, newnbuckets);
1045
1046
0
      dlist_delete(iter.cur);
1047
0
      dlist_push_head(&newbucket[hashIndex], &cl->cache_elem);
1048
0
    }
1049
0
  }
1050
1051
  /* Switch to the new array. */
1052
0
  pfree(cp->cc_lbucket);
1053
0
  cp->cc_nlbuckets = newnbuckets;
1054
0
  cp->cc_lbucket = newbucket;
1055
0
}
1056
1057
/*
1058
 *    ConditionalCatalogCacheInitializeCache
1059
 *
1060
 * Call CatalogCacheInitializeCache() if not yet done.
1061
 */
1062
pg_attribute_always_inline
1063
static void
1064
ConditionalCatalogCacheInitializeCache(CatCache *cache)
1065
0
{
1066
#ifdef USE_ASSERT_CHECKING
1067
  /*
1068
   * TypeCacheRelCallback() runs outside transactions and relies on TYPEOID
1069
   * for hashing.  This isn't ideal.  Since lookup_type_cache() both
1070
   * registers the callback and searches TYPEOID, reaching trouble likely
1071
   * requires OOM at an unlucky moment.
1072
   *
1073
   * InvalidateAttoptCacheCallback() runs outside transactions and likewise
1074
   * relies on ATTNUM.  InitPostgres() initializes ATTNUM, so it's reliable.
1075
   */
1076
  if (!(cache->id == TYPEOID || cache->id == ATTNUM) ||
1077
    IsTransactionState())
1078
    AssertCouldGetRelation();
1079
  else
1080
    Assert(cache->cc_tupdesc != NULL);
1081
#endif
1082
1083
0
  if (unlikely(cache->cc_tupdesc == NULL))
1084
0
    CatalogCacheInitializeCache(cache);
1085
0
}
1086
1087
/*
1088
 *    CatalogCacheInitializeCache
1089
 *
1090
 * This function does final initialization of a catcache: obtain the tuple
1091
 * descriptor and set up the hash and equality function links.
1092
 */
1093
#ifdef CACHEDEBUG
1094
#define CatalogCacheInitializeCache_DEBUG1 \
1095
  elog(DEBUG2, "CatalogCacheInitializeCache: cache @%p rel=%u", cache, \
1096
     cache->cc_reloid)
1097
1098
#define CatalogCacheInitializeCache_DEBUG2 \
1099
do { \
1100
    if (cache->cc_keyno[i] > 0) { \
1101
      elog(DEBUG2, "CatalogCacheInitializeCache: load %d/%d w/%d, %u", \
1102
        i+1, cache->cc_nkeys, cache->cc_keyno[i], \
1103
         TupleDescAttr(tupdesc, cache->cc_keyno[i] - 1)->atttypid); \
1104
    } else { \
1105
      elog(DEBUG2, "CatalogCacheInitializeCache: load %d/%d w/%d", \
1106
        i+1, cache->cc_nkeys, cache->cc_keyno[i]); \
1107
    } \
1108
} while(0)
1109
#else
1110
#define CatalogCacheInitializeCache_DEBUG1
1111
#define CatalogCacheInitializeCache_DEBUG2
1112
#endif
1113
1114
static void
1115
CatalogCacheInitializeCache(CatCache *cache)
1116
0
{
1117
0
  Relation  relation;
1118
0
  MemoryContext oldcxt;
1119
0
  TupleDesc tupdesc;
1120
0
  int     i;
1121
1122
0
  CatalogCacheInitializeCache_DEBUG1;
1123
1124
0
  relation = table_open(cache->cc_reloid, AccessShareLock);
1125
1126
  /*
1127
   * switch to the cache context so our allocations do not vanish at the end
1128
   * of a transaction
1129
   */
1130
0
  Assert(CacheMemoryContext != NULL);
1131
1132
0
  oldcxt = MemoryContextSwitchTo(CacheMemoryContext);
1133
1134
  /*
1135
   * copy the relcache's tuple descriptor to permanent cache storage
1136
   */
1137
0
  tupdesc = CreateTupleDescCopyConstr(RelationGetDescr(relation));
1138
1139
  /*
1140
   * save the relation's name and relisshared flag, too (cc_relname is used
1141
   * only for debugging purposes)
1142
   */
1143
0
  cache->cc_relname = pstrdup(RelationGetRelationName(relation));
1144
0
  cache->cc_relisshared = RelationGetForm(relation)->relisshared;
1145
1146
  /*
1147
   * return to the caller's memory context and close the rel
1148
   */
1149
0
  MemoryContextSwitchTo(oldcxt);
1150
1151
0
  table_close(relation, AccessShareLock);
1152
1153
0
  CACHE_elog(DEBUG2, "CatalogCacheInitializeCache: %s, %d keys",
1154
0
         cache->cc_relname, cache->cc_nkeys);
1155
1156
  /*
1157
   * initialize cache's key information
1158
   */
1159
0
  for (i = 0; i < cache->cc_nkeys; ++i)
1160
0
  {
1161
0
    Oid     keytype;
1162
0
    RegProcedure eqfunc;
1163
1164
0
    CatalogCacheInitializeCache_DEBUG2;
1165
1166
0
    if (cache->cc_keyno[i] > 0)
1167
0
    {
1168
0
      Form_pg_attribute attr = TupleDescAttr(tupdesc,
1169
0
                           cache->cc_keyno[i] - 1);
1170
1171
0
      keytype = attr->atttypid;
1172
      /* cache key columns should always be NOT NULL */
1173
0
      Assert(attr->attnotnull);
1174
0
    }
1175
0
    else
1176
0
    {
1177
0
      if (cache->cc_keyno[i] < 0)
1178
0
        elog(FATAL, "sys attributes are not supported in caches");
1179
0
      keytype = OIDOID;
1180
0
    }
1181
1182
0
    GetCCHashEqFuncs(keytype,
1183
0
             &cache->cc_hashfunc[i],
1184
0
             &eqfunc,
1185
0
             &cache->cc_fastequal[i]);
1186
1187
    /*
1188
     * Do equality-function lookup (we assume this won't need a catalog
1189
     * lookup for any supported type)
1190
     */
1191
0
    fmgr_info_cxt(eqfunc,
1192
0
            &cache->cc_skey[i].sk_func,
1193
0
            CacheMemoryContext);
1194
1195
    /* Initialize sk_attno suitably for HeapKeyTest() and heap scans */
1196
0
    cache->cc_skey[i].sk_attno = cache->cc_keyno[i];
1197
1198
    /* Fill in sk_strategy as well --- always standard equality */
1199
0
    cache->cc_skey[i].sk_strategy = BTEqualStrategyNumber;
1200
0
    cache->cc_skey[i].sk_subtype = InvalidOid;
1201
    /* If a catcache key requires a collation, it must be C collation */
1202
0
    cache->cc_skey[i].sk_collation = C_COLLATION_OID;
1203
1204
0
    CACHE_elog(DEBUG2, "CatalogCacheInitializeCache %s %d %p",
1205
0
           cache->cc_relname, i, cache);
1206
0
  }
1207
1208
  /*
1209
   * mark this cache fully initialized
1210
   */
1211
0
  cache->cc_tupdesc = tupdesc;
1212
0
}
1213
1214
/*
1215
 * InitCatCachePhase2 -- external interface for CatalogCacheInitializeCache
1216
 *
1217
 * One reason to call this routine is to ensure that the relcache has
1218
 * created entries for all the catalogs and indexes referenced by catcaches.
1219
 * Therefore, provide an option to open the index as well as fixing the
1220
 * cache itself.  An exception is the indexes on pg_am, which we don't use
1221
 * (cf. IndexScanOK).
1222
 */
1223
void
1224
InitCatCachePhase2(CatCache *cache, bool touch_index)
1225
0
{
1226
0
  ConditionalCatalogCacheInitializeCache(cache);
1227
1228
0
  if (touch_index &&
1229
0
    cache->id != AMOID &&
1230
0
    cache->id != AMNAME)
1231
0
  {
1232
0
    Relation  idesc;
1233
1234
    /*
1235
     * We must lock the underlying catalog before opening the index to
1236
     * avoid deadlock, since index_open could possibly result in reading
1237
     * this same catalog, and if anyone else is exclusive-locking this
1238
     * catalog and index they'll be doing it in that order.
1239
     */
1240
0
    LockRelationOid(cache->cc_reloid, AccessShareLock);
1241
0
    idesc = index_open(cache->cc_indexoid, AccessShareLock);
1242
1243
    /*
1244
     * While we've got the index open, let's check that it's unique (and
1245
     * not just deferrable-unique, thank you very much).  This is just to
1246
     * catch thinkos in definitions of new catcaches, so we don't worry
1247
     * about the pg_am indexes not getting tested.
1248
     */
1249
0
    Assert(idesc->rd_index->indisunique &&
1250
0
         idesc->rd_index->indimmediate);
1251
1252
0
    index_close(idesc, AccessShareLock);
1253
0
    UnlockRelationOid(cache->cc_reloid, AccessShareLock);
1254
0
  }
1255
0
}
1256
1257
1258
/*
1259
 *    IndexScanOK
1260
 *
1261
 *    This function checks for tuples that will be fetched by
1262
 *    IndexSupportInitialize() during relcache initialization for
1263
 *    certain system indexes that support critical syscaches.
1264
 *    We can't use an indexscan to fetch these, else we'll get into
1265
 *    infinite recursion.  A plain heap scan will work, however.
1266
 *    Once we have completed relcache initialization (signaled by
1267
 *    criticalRelcachesBuilt), we don't have to worry anymore.
1268
 *
1269
 *    Similarly, during backend startup we have to be able to use the
1270
 *    pg_authid, pg_auth_members and pg_database syscaches for
1271
 *    authentication even if we don't yet have relcache entries for those
1272
 *    catalogs' indexes.
1273
 */
1274
static bool
1275
IndexScanOK(CatCache *cache)
1276
0
{
1277
0
  switch (cache->id)
1278
0
  {
1279
0
    case INDEXRELID:
1280
1281
      /*
1282
       * Rather than tracking exactly which indexes have to be loaded
1283
       * before we can use indexscans (which changes from time to time),
1284
       * just force all pg_index searches to be heap scans until we've
1285
       * built the critical relcaches.
1286
       */
1287
0
      if (!criticalRelcachesBuilt)
1288
0
        return false;
1289
0
      break;
1290
1291
0
    case AMOID:
1292
0
    case AMNAME:
1293
1294
      /*
1295
       * Always do heap scans in pg_am, because it's so small there's
1296
       * not much point in an indexscan anyway.  We *must* do this when
1297
       * initially building critical relcache entries, but we might as
1298
       * well just always do it.
1299
       */
1300
0
      return false;
1301
1302
0
    case AUTHNAME:
1303
0
    case AUTHOID:
1304
0
    case AUTHMEMMEMROLE:
1305
0
    case DATABASEOID:
1306
1307
      /*
1308
       * Protect authentication lookups occurring before relcache has
1309
       * collected entries for shared indexes.
1310
       */
1311
0
      if (!criticalSharedRelcachesBuilt)
1312
0
        return false;
1313
0
      break;
1314
1315
0
    default:
1316
0
      break;
1317
0
  }
1318
1319
  /* Normal case, allow index scan */
1320
0
  return true;
1321
0
}
1322
1323
/*
1324
 *  SearchCatCache
1325
 *
1326
 *    This call searches a system cache for a tuple, opening the relation
1327
 *    if necessary (on the first access to a particular cache).
1328
 *
1329
 *    The result is NULL if not found, or a pointer to a HeapTuple in
1330
 *    the cache.  The caller must not modify the tuple, and must call
1331
 *    ReleaseCatCache() when done with it.
1332
 *
1333
 * The search key values should be expressed as Datums of the key columns'
1334
 * datatype(s).  (Pass zeroes for any unused parameters.)  As a special
1335
 * exception, the passed-in key for a NAME column can be just a C string;
1336
 * the caller need not go to the trouble of converting it to a fully
1337
 * null-padded NAME.
1338
 */
1339
HeapTuple
1340
SearchCatCache(CatCache *cache,
1341
         Datum v1,
1342
         Datum v2,
1343
         Datum v3,
1344
         Datum v4)
1345
0
{
1346
0
  return SearchCatCacheInternal(cache, cache->cc_nkeys, v1, v2, v3, v4);
1347
0
}
1348
1349
1350
/*
1351
 * SearchCatCacheN() are SearchCatCache() versions for a specific number of
1352
 * arguments. The compiler can inline the body and unroll loops, making them a
1353
 * bit faster than SearchCatCache().
1354
 */
1355
1356
HeapTuple
1357
SearchCatCache1(CatCache *cache,
1358
        Datum v1)
1359
0
{
1360
0
  return SearchCatCacheInternal(cache, 1, v1, 0, 0, 0);
1361
0
}
1362
1363
1364
HeapTuple
1365
SearchCatCache2(CatCache *cache,
1366
        Datum v1, Datum v2)
1367
0
{
1368
0
  return SearchCatCacheInternal(cache, 2, v1, v2, 0, 0);
1369
0
}
1370
1371
1372
HeapTuple
1373
SearchCatCache3(CatCache *cache,
1374
        Datum v1, Datum v2, Datum v3)
1375
0
{
1376
0
  return SearchCatCacheInternal(cache, 3, v1, v2, v3, 0);
1377
0
}
1378
1379
1380
HeapTuple
1381
SearchCatCache4(CatCache *cache,
1382
        Datum v1, Datum v2, Datum v3, Datum v4)
1383
0
{
1384
0
  return SearchCatCacheInternal(cache, 4, v1, v2, v3, v4);
1385
0
}
1386
1387
/*
1388
 * Work-horse for SearchCatCache/SearchCatCacheN.
1389
 */
1390
static inline HeapTuple
1391
SearchCatCacheInternal(CatCache *cache,
1392
             int nkeys,
1393
             Datum v1,
1394
             Datum v2,
1395
             Datum v3,
1396
             Datum v4)
1397
0
{
1398
0
  Datum   arguments[CATCACHE_MAXKEYS];
1399
0
  uint32    hashValue;
1400
0
  Index   hashIndex;
1401
0
  dlist_iter  iter;
1402
0
  dlist_head *bucket;
1403
0
  CatCTup    *ct;
1404
1405
0
  Assert(cache->cc_nkeys == nkeys);
1406
1407
  /*
1408
   * one-time startup overhead for each cache
1409
   */
1410
0
  ConditionalCatalogCacheInitializeCache(cache);
1411
1412
#ifdef CATCACHE_STATS
1413
  cache->cc_searches++;
1414
#endif
1415
1416
  /* Initialize local parameter array */
1417
0
  arguments[0] = v1;
1418
0
  arguments[1] = v2;
1419
0
  arguments[2] = v3;
1420
0
  arguments[3] = v4;
1421
1422
  /*
1423
   * find the hash bucket in which to look for the tuple
1424
   */
1425
0
  hashValue = CatalogCacheComputeHashValue(cache, nkeys, v1, v2, v3, v4);
1426
0
  hashIndex = HASH_INDEX(hashValue, cache->cc_nbuckets);
1427
1428
  /*
1429
   * scan the hash bucket until we find a match or exhaust our tuples
1430
   *
1431
   * Note: it's okay to use dlist_foreach here, even though we modify the
1432
   * dlist within the loop, because we don't continue the loop afterwards.
1433
   */
1434
0
  bucket = &cache->cc_bucket[hashIndex];
1435
0
  dlist_foreach(iter, bucket)
1436
0
  {
1437
0
    ct = dlist_container(CatCTup, cache_elem, iter.cur);
1438
1439
0
    if (ct->dead)
1440
0
      continue;     /* ignore dead entries */
1441
1442
0
    if (ct->hash_value != hashValue)
1443
0
      continue;     /* quickly skip entry if wrong hash val */
1444
1445
0
    if (!CatalogCacheCompareTuple(cache, nkeys, ct->keys, arguments))
1446
0
      continue;
1447
1448
    /*
1449
     * We found a match in the cache.  Move it to the front of the list
1450
     * for its hashbucket, in order to speed subsequent searches.  (The
1451
     * most frequently accessed elements in any hashbucket will tend to be
1452
     * near the front of the hashbucket's list.)
1453
     */
1454
0
    dlist_move_head(bucket, &ct->cache_elem);
1455
1456
    /*
1457
     * If it's a positive entry, bump its refcount and return it. If it's
1458
     * negative, we can report failure to the caller.
1459
     */
1460
0
    if (!ct->negative)
1461
0
    {
1462
0
      ResourceOwnerEnlarge(CurrentResourceOwner);
1463
0
      ct->refcount++;
1464
0
      ResourceOwnerRememberCatCacheRef(CurrentResourceOwner, &ct->tuple);
1465
1466
0
      CACHE_elog(DEBUG2, "SearchCatCache(%s): found in bucket %d",
1467
0
             cache->cc_relname, hashIndex);
1468
1469
#ifdef CATCACHE_STATS
1470
      cache->cc_hits++;
1471
#endif
1472
1473
0
      return &ct->tuple;
1474
0
    }
1475
0
    else
1476
0
    {
1477
0
      CACHE_elog(DEBUG2, "SearchCatCache(%s): found neg entry in bucket %d",
1478
0
             cache->cc_relname, hashIndex);
1479
1480
#ifdef CATCACHE_STATS
1481
      cache->cc_neg_hits++;
1482
#endif
1483
1484
0
      return NULL;
1485
0
    }
1486
0
  }
1487
1488
0
  return SearchCatCacheMiss(cache, nkeys, hashValue, hashIndex, v1, v2, v3, v4);
1489
0
}
1490
1491
/*
1492
 * Search the actual catalogs, rather than the cache.
1493
 *
1494
 * This is kept separate from SearchCatCacheInternal() to keep the fast-path
1495
 * as small as possible.  To avoid that effort being undone by a helpful
1496
 * compiler, try to explicitly forbid inlining.
1497
 */
1498
static pg_noinline HeapTuple
1499
SearchCatCacheMiss(CatCache *cache,
1500
           int nkeys,
1501
           uint32 hashValue,
1502
           Index hashIndex,
1503
           Datum v1,
1504
           Datum v2,
1505
           Datum v3,
1506
           Datum v4)
1507
0
{
1508
0
  ScanKeyData cur_skey[CATCACHE_MAXKEYS];
1509
0
  Relation  relation;
1510
0
  SysScanDesc scandesc;
1511
0
  HeapTuple ntp;
1512
0
  CatCTup    *ct;
1513
0
  bool    stale;
1514
0
  Datum   arguments[CATCACHE_MAXKEYS];
1515
1516
  /* Initialize local parameter array */
1517
0
  arguments[0] = v1;
1518
0
  arguments[1] = v2;
1519
0
  arguments[2] = v3;
1520
0
  arguments[3] = v4;
1521
1522
  /*
1523
   * Tuple was not found in cache, so we have to try to retrieve it directly
1524
   * from the relation.  If found, we will add it to the cache; if not
1525
   * found, we will add a negative cache entry instead.
1526
   *
1527
   * NOTE: it is possible for recursive cache lookups to occur while reading
1528
   * the relation --- for example, due to shared-cache-inval messages being
1529
   * processed during table_open().  This is OK.  It's even possible for one
1530
   * of those lookups to find and enter the very same tuple we are trying to
1531
   * fetch here.  If that happens, we will enter a second copy of the tuple
1532
   * into the cache.  The first copy will never be referenced again, and
1533
   * will eventually age out of the cache, so there's no functional problem.
1534
   * This case is rare enough that it's not worth expending extra cycles to
1535
   * detect.
1536
   *
1537
   * Another case, which we *must* handle, is that the tuple could become
1538
   * outdated during CatalogCacheCreateEntry's attempt to detoast it (since
1539
   * AcceptInvalidationMessages can run during TOAST table access).  We do
1540
   * not want to return already-stale catcache entries, so we loop around
1541
   * and do the table scan again if that happens.
1542
   */
1543
0
  relation = table_open(cache->cc_reloid, AccessShareLock);
1544
1545
  /*
1546
   * Ok, need to make a lookup in the relation, copy the scankey and fill
1547
   * out any per-call fields.
1548
   */
1549
0
  memcpy(cur_skey, cache->cc_skey, sizeof(ScanKeyData) * nkeys);
1550
0
  cur_skey[0].sk_argument = v1;
1551
0
  cur_skey[1].sk_argument = v2;
1552
0
  cur_skey[2].sk_argument = v3;
1553
0
  cur_skey[3].sk_argument = v4;
1554
1555
0
  do
1556
0
  {
1557
0
    scandesc = systable_beginscan(relation,
1558
0
                    cache->cc_indexoid,
1559
0
                    IndexScanOK(cache),
1560
0
                    NULL,
1561
0
                    nkeys,
1562
0
                    cur_skey);
1563
1564
0
    ct = NULL;
1565
0
    stale = false;
1566
1567
0
    while (HeapTupleIsValid(ntp = systable_getnext(scandesc)))
1568
0
    {
1569
0
      ct = CatalogCacheCreateEntry(cache, ntp, NULL,
1570
0
                     hashValue, hashIndex);
1571
      /* upon failure, we must start the scan over */
1572
0
      if (ct == NULL)
1573
0
      {
1574
0
        stale = true;
1575
0
        break;
1576
0
      }
1577
      /* immediately set the refcount to 1 */
1578
0
      ResourceOwnerEnlarge(CurrentResourceOwner);
1579
0
      ct->refcount++;
1580
0
      ResourceOwnerRememberCatCacheRef(CurrentResourceOwner, &ct->tuple);
1581
0
      break;       /* assume only one match */
1582
0
    }
1583
1584
0
    systable_endscan(scandesc);
1585
0
  } while (stale);
1586
1587
0
  table_close(relation, AccessShareLock);
1588
1589
  /*
1590
   * If tuple was not found, we need to build a negative cache entry
1591
   * containing a fake tuple.  The fake tuple has the correct key columns,
1592
   * but nulls everywhere else.
1593
   *
1594
   * In bootstrap mode, we don't build negative entries, because the cache
1595
   * invalidation mechanism isn't alive and can't clear them if the tuple
1596
   * gets created later.  (Bootstrap doesn't do UPDATEs, so it doesn't need
1597
   * cache inval for that.)
1598
   */
1599
0
  if (ct == NULL)
1600
0
  {
1601
0
    if (IsBootstrapProcessingMode())
1602
0
      return NULL;
1603
1604
0
    ct = CatalogCacheCreateEntry(cache, NULL, arguments,
1605
0
                   hashValue, hashIndex);
1606
1607
    /* Creating a negative cache entry shouldn't fail */
1608
0
    Assert(ct != NULL);
1609
1610
0
    CACHE_elog(DEBUG2, "SearchCatCache(%s): Contains %d/%d tuples",
1611
0
           cache->cc_relname, cache->cc_ntup, CacheHdr->ch_ntup);
1612
0
    CACHE_elog(DEBUG2, "SearchCatCache(%s): put neg entry in bucket %d",
1613
0
           cache->cc_relname, hashIndex);
1614
1615
    /*
1616
     * We are not returning the negative entry to the caller, so leave its
1617
     * refcount zero.
1618
     */
1619
1620
0
    return NULL;
1621
0
  }
1622
1623
0
  CACHE_elog(DEBUG2, "SearchCatCache(%s): Contains %d/%d tuples",
1624
0
         cache->cc_relname, cache->cc_ntup, CacheHdr->ch_ntup);
1625
0
  CACHE_elog(DEBUG2, "SearchCatCache(%s): put in bucket %d",
1626
0
         cache->cc_relname, hashIndex);
1627
1628
#ifdef CATCACHE_STATS
1629
  cache->cc_newloads++;
1630
#endif
1631
1632
0
  return &ct->tuple;
1633
0
}
1634
1635
/*
1636
 *  ReleaseCatCache
1637
 *
1638
 *  Decrement the reference count of a catcache entry (releasing the
1639
 *  hold grabbed by a successful SearchCatCache).
1640
 *
1641
 *  NOTE: if compiled with -DCATCACHE_FORCE_RELEASE then catcache entries
1642
 *  will be freed as soon as their refcount goes to zero.  In combination
1643
 *  with aset.c's CLOBBER_FREED_MEMORY option, this provides a good test
1644
 *  to catch references to already-released catcache entries.
1645
 */
1646
void
1647
ReleaseCatCache(HeapTuple tuple)
1648
0
{
1649
0
  ReleaseCatCacheWithOwner(tuple, CurrentResourceOwner);
1650
0
}
1651
1652
static void
1653
ReleaseCatCacheWithOwner(HeapTuple tuple, ResourceOwner resowner)
1654
0
{
1655
0
  CatCTup    *ct = (CatCTup *) (((char *) tuple) -
1656
0
                  offsetof(CatCTup, tuple));
1657
1658
  /* Safety checks to ensure we were handed a cache entry */
1659
0
  Assert(ct->ct_magic == CT_MAGIC);
1660
0
  Assert(ct->refcount > 0);
1661
1662
0
  ct->refcount--;
1663
0
  if (resowner)
1664
0
    ResourceOwnerForgetCatCacheRef(CurrentResourceOwner, &ct->tuple);
1665
1666
0
  if (
1667
0
#ifndef CATCACHE_FORCE_RELEASE
1668
0
    ct->dead &&
1669
0
#endif
1670
0
    ct->refcount == 0 &&
1671
0
    (ct->c_list == NULL || ct->c_list->refcount == 0))
1672
0
    CatCacheRemoveCTup(ct->my_cache, ct);
1673
0
}
1674
1675
1676
/*
1677
 *  GetCatCacheHashValue
1678
 *
1679
 *    Compute the hash value for a given set of search keys.
1680
 *
1681
 * The reason for exposing this as part of the API is that the hash value is
1682
 * exposed in cache invalidation operations, so there are places outside the
1683
 * catcache code that need to be able to compute the hash values.
1684
 */
1685
uint32
1686
GetCatCacheHashValue(CatCache *cache,
1687
           Datum v1,
1688
           Datum v2,
1689
           Datum v3,
1690
           Datum v4)
1691
0
{
1692
  /*
1693
   * one-time startup overhead for each cache
1694
   */
1695
0
  ConditionalCatalogCacheInitializeCache(cache);
1696
1697
  /*
1698
   * calculate the hash value
1699
   */
1700
0
  return CatalogCacheComputeHashValue(cache, cache->cc_nkeys, v1, v2, v3, v4);
1701
0
}
1702
1703
1704
/*
1705
 *  SearchCatCacheList
1706
 *
1707
 *    Generate a list of all tuples matching a partial key (that is,
1708
 *    a key specifying just the first K of the cache's N key columns).
1709
 *
1710
 *    It doesn't make any sense to specify all of the cache's key columns
1711
 *    here: since the key is unique, there could be at most one match, so
1712
 *    you ought to use SearchCatCache() instead.  Hence this function takes
1713
 *    one fewer Datum argument than SearchCatCache() does.
1714
 *
1715
 *    The caller must not modify the list object or the pointed-to tuples,
1716
 *    and must call ReleaseCatCacheList() when done with the list.
1717
 */
1718
CatCList *
1719
SearchCatCacheList(CatCache *cache,
1720
           int nkeys,
1721
           Datum v1,
1722
           Datum v2,
1723
           Datum v3)
1724
0
{
1725
0
  Datum   v4 = 0;     /* dummy last-column value */
1726
0
  Datum   arguments[CATCACHE_MAXKEYS];
1727
0
  uint32    lHashValue;
1728
0
  Index   lHashIndex;
1729
0
  dlist_iter  iter;
1730
0
  dlist_head *lbucket;
1731
0
  CatCList   *cl;
1732
0
  CatCTup    *ct;
1733
0
  List     *volatile ctlist;
1734
0
  ListCell   *ctlist_item;
1735
0
  int     nmembers;
1736
0
  bool    ordered;
1737
0
  HeapTuple ntp;
1738
0
  MemoryContext oldcxt;
1739
0
  int     i;
1740
0
  CatCInProgress *save_in_progress;
1741
0
  CatCInProgress in_progress_ent;
1742
1743
  /*
1744
   * one-time startup overhead for each cache
1745
   */
1746
0
  ConditionalCatalogCacheInitializeCache(cache);
1747
1748
0
  Assert(nkeys > 0 && nkeys < cache->cc_nkeys);
1749
1750
#ifdef CATCACHE_STATS
1751
  cache->cc_lsearches++;
1752
#endif
1753
1754
  /* Initialize local parameter array */
1755
0
  arguments[0] = v1;
1756
0
  arguments[1] = v2;
1757
0
  arguments[2] = v3;
1758
0
  arguments[3] = v4;
1759
1760
  /*
1761
   * If we haven't previously done a list search in this cache, create the
1762
   * bucket header array; otherwise, consider whether it's time to enlarge
1763
   * it.
1764
   */
1765
0
  if (cache->cc_lbucket == NULL)
1766
0
  {
1767
    /* Arbitrary initial size --- must be a power of 2 */
1768
0
    int     nbuckets = 16;
1769
1770
0
    cache->cc_lbucket = (dlist_head *)
1771
0
      MemoryContextAllocZero(CacheMemoryContext,
1772
0
                   nbuckets * sizeof(dlist_head));
1773
    /* Don't set cc_nlbuckets if we get OOM allocating cc_lbucket */
1774
0
    cache->cc_nlbuckets = nbuckets;
1775
0
  }
1776
0
  else
1777
0
  {
1778
    /*
1779
     * If the hash table has become too full, enlarge the buckets array.
1780
     * Quite arbitrarily, we enlarge when fill factor > 2.
1781
     */
1782
0
    if (cache->cc_nlist > cache->cc_nlbuckets * 2)
1783
0
      RehashCatCacheLists(cache);
1784
0
  }
1785
1786
  /*
1787
   * Find the hash bucket in which to look for the CatCList.
1788
   */
1789
0
  lHashValue = CatalogCacheComputeHashValue(cache, nkeys, v1, v2, v3, v4);
1790
0
  lHashIndex = HASH_INDEX(lHashValue, cache->cc_nlbuckets);
1791
1792
  /*
1793
   * scan the items until we find a match or exhaust our list
1794
   *
1795
   * Note: it's okay to use dlist_foreach here, even though we modify the
1796
   * dlist within the loop, because we don't continue the loop afterwards.
1797
   */
1798
0
  lbucket = &cache->cc_lbucket[lHashIndex];
1799
0
  dlist_foreach(iter, lbucket)
1800
0
  {
1801
0
    cl = dlist_container(CatCList, cache_elem, iter.cur);
1802
1803
0
    if (cl->dead)
1804
0
      continue;     /* ignore dead entries */
1805
1806
0
    if (cl->hash_value != lHashValue)
1807
0
      continue;     /* quickly skip entry if wrong hash val */
1808
1809
    /*
1810
     * see if the cached list matches our key.
1811
     */
1812
0
    if (cl->nkeys != nkeys)
1813
0
      continue;
1814
1815
0
    if (!CatalogCacheCompareTuple(cache, nkeys, cl->keys, arguments))
1816
0
      continue;
1817
1818
    /*
1819
     * We found a matching list.  Move the list to the front of the list
1820
     * for its hashbucket, so as to speed subsequent searches.  (We do not
1821
     * move the members to the fronts of their hashbucket lists, however,
1822
     * since there's no point in that unless they are searched for
1823
     * individually.)
1824
     */
1825
0
    dlist_move_head(lbucket, &cl->cache_elem);
1826
1827
    /* Bump the list's refcount and return it */
1828
0
    ResourceOwnerEnlarge(CurrentResourceOwner);
1829
0
    cl->refcount++;
1830
0
    ResourceOwnerRememberCatCacheListRef(CurrentResourceOwner, cl);
1831
1832
0
    CACHE_elog(DEBUG2, "SearchCatCacheList(%s): found list",
1833
0
           cache->cc_relname);
1834
1835
#ifdef CATCACHE_STATS
1836
    cache->cc_lhits++;
1837
#endif
1838
1839
0
    return cl;
1840
0
  }
1841
1842
  /*
1843
   * List was not found in cache, so we have to build it by reading the
1844
   * relation.  For each matching tuple found in the relation, use an
1845
   * existing cache entry if possible, else build a new one.
1846
   *
1847
   * We have to bump the member refcounts temporarily to ensure they won't
1848
   * get dropped from the cache while loading other members. We use a PG_TRY
1849
   * block to ensure we can undo those refcounts if we get an error before
1850
   * we finish constructing the CatCList.  ctlist must be valid throughout
1851
   * the PG_TRY block.
1852
   */
1853
0
  ctlist = NIL;
1854
1855
  /*
1856
   * Cache invalidation can happen while we're building the list.
1857
   * CatalogCacheCreateEntry() handles concurrent invalidation of individual
1858
   * tuples, but it's also possible that a new entry is concurrently added
1859
   * that should be part of the list we're building.  Register an
1860
   * "in-progress" entry that will receive the invalidation, until we have
1861
   * built the final list entry.
1862
   */
1863
0
  save_in_progress = catcache_in_progress_stack;
1864
0
  in_progress_ent.next = catcache_in_progress_stack;
1865
0
  in_progress_ent.cache = cache;
1866
0
  in_progress_ent.hash_value = lHashValue;
1867
0
  in_progress_ent.list = true;
1868
0
  in_progress_ent.dead = false;
1869
0
  catcache_in_progress_stack = &in_progress_ent;
1870
1871
0
  PG_TRY();
1872
0
  {
1873
0
    ScanKeyData cur_skey[CATCACHE_MAXKEYS];
1874
0
    Relation  relation;
1875
0
    SysScanDesc scandesc;
1876
0
    bool    first_iter = true;
1877
1878
0
    relation = table_open(cache->cc_reloid, AccessShareLock);
1879
1880
    /*
1881
     * Ok, need to make a lookup in the relation, copy the scankey and
1882
     * fill out any per-call fields.
1883
     */
1884
0
    memcpy(cur_skey, cache->cc_skey, sizeof(ScanKeyData) * cache->cc_nkeys);
1885
0
    cur_skey[0].sk_argument = v1;
1886
0
    cur_skey[1].sk_argument = v2;
1887
0
    cur_skey[2].sk_argument = v3;
1888
0
    cur_skey[3].sk_argument = v4;
1889
1890
    /*
1891
     * Scan the table for matching entries.  If an invalidation arrives
1892
     * mid-build, we will loop back here to retry.
1893
     */
1894
0
    do
1895
0
    {
1896
      /*
1897
       * If we are retrying, release refcounts on any items created on
1898
       * the previous iteration.  We dare not try to free them if
1899
       * they're now unreferenced, since an error while doing that would
1900
       * result in the PG_CATCH below doing extra refcount decrements.
1901
       * Besides, we'll likely re-adopt those items in the next
1902
       * iteration, so it's not worth complicating matters to try to get
1903
       * rid of them.
1904
       */
1905
0
      foreach(ctlist_item, ctlist)
1906
0
      {
1907
0
        ct = (CatCTup *) lfirst(ctlist_item);
1908
0
        Assert(ct->c_list == NULL);
1909
0
        Assert(ct->refcount > 0);
1910
0
        ct->refcount--;
1911
0
      }
1912
      /* Reset ctlist in preparation for new try */
1913
0
      ctlist = NIL;
1914
0
      in_progress_ent.dead = false;
1915
1916
0
      scandesc = systable_beginscan(relation,
1917
0
                      cache->cc_indexoid,
1918
0
                      IndexScanOK(cache),
1919
0
                      NULL,
1920
0
                      nkeys,
1921
0
                      cur_skey);
1922
1923
      /* The list will be ordered iff we are doing an index scan */
1924
0
      ordered = (scandesc->irel != NULL);
1925
1926
      /* Injection point to help testing the recursive invalidation case */
1927
0
      if (first_iter)
1928
0
      {
1929
0
        INJECTION_POINT("catcache-list-miss-systable-scan-started", NULL);
1930
0
        first_iter = false;
1931
0
      }
1932
1933
0
      while (HeapTupleIsValid(ntp = systable_getnext(scandesc)) &&
1934
0
           !in_progress_ent.dead)
1935
0
      {
1936
0
        uint32    hashValue;
1937
0
        Index   hashIndex;
1938
0
        bool    found = false;
1939
0
        dlist_head *bucket;
1940
1941
        /*
1942
         * See if there's an entry for this tuple already.
1943
         */
1944
0
        ct = NULL;
1945
0
        hashValue = CatalogCacheComputeTupleHashValue(cache, cache->cc_nkeys, ntp);
1946
0
        hashIndex = HASH_INDEX(hashValue, cache->cc_nbuckets);
1947
1948
0
        bucket = &cache->cc_bucket[hashIndex];
1949
0
        dlist_foreach(iter, bucket)
1950
0
        {
1951
0
          ct = dlist_container(CatCTup, cache_elem, iter.cur);
1952
1953
0
          if (ct->dead || ct->negative)
1954
0
            continue; /* ignore dead and negative entries */
1955
1956
0
          if (ct->hash_value != hashValue)
1957
0
            continue; /* quickly skip entry if wrong hash val */
1958
1959
0
          if (!ItemPointerEquals(&(ct->tuple.t_self), &(ntp->t_self)))
1960
0
            continue; /* not same tuple */
1961
1962
          /*
1963
           * Found a match, but can't use it if it belongs to
1964
           * another list already
1965
           */
1966
0
          if (ct->c_list)
1967
0
            continue;
1968
1969
0
          found = true;
1970
0
          break;   /* A-OK */
1971
0
        }
1972
1973
0
        if (!found)
1974
0
        {
1975
          /* We didn't find a usable entry, so make a new one */
1976
0
          ct = CatalogCacheCreateEntry(cache, ntp, NULL,
1977
0
                         hashValue, hashIndex);
1978
1979
          /* upon failure, we must start the scan over */
1980
0
          if (ct == NULL)
1981
0
          {
1982
0
            in_progress_ent.dead = true;
1983
0
            break;
1984
0
          }
1985
0
        }
1986
1987
        /* Careful here: add entry to ctlist, then bump its refcount */
1988
        /* This way leaves state correct if lappend runs out of memory */
1989
0
        ctlist = lappend(ctlist, ct);
1990
0
        ct->refcount++;
1991
0
      }
1992
1993
0
      systable_endscan(scandesc);
1994
0
    } while (in_progress_ent.dead);
1995
1996
0
    table_close(relation, AccessShareLock);
1997
1998
    /* Make sure the resource owner has room to remember this entry. */
1999
0
    ResourceOwnerEnlarge(CurrentResourceOwner);
2000
2001
    /* Now we can build the CatCList entry. */
2002
0
    oldcxt = MemoryContextSwitchTo(CacheMemoryContext);
2003
0
    nmembers = list_length(ctlist);
2004
0
    cl = (CatCList *)
2005
0
      palloc(offsetof(CatCList, members) + nmembers * sizeof(CatCTup *));
2006
2007
    /* Extract key values */
2008
0
    CatCacheCopyKeys(cache->cc_tupdesc, nkeys, cache->cc_keyno,
2009
0
             arguments, cl->keys);
2010
0
    MemoryContextSwitchTo(oldcxt);
2011
2012
    /*
2013
     * We are now past the last thing that could trigger an elog before we
2014
     * have finished building the CatCList and remembering it in the
2015
     * resource owner.  So it's OK to fall out of the PG_TRY, and indeed
2016
     * we'd better do so before we start marking the members as belonging
2017
     * to the list.
2018
     */
2019
0
  }
2020
0
  PG_CATCH();
2021
0
  {
2022
0
    Assert(catcache_in_progress_stack == &in_progress_ent);
2023
0
    catcache_in_progress_stack = save_in_progress;
2024
2025
0
    foreach(ctlist_item, ctlist)
2026
0
    {
2027
0
      ct = (CatCTup *) lfirst(ctlist_item);
2028
0
      Assert(ct->c_list == NULL);
2029
0
      Assert(ct->refcount > 0);
2030
0
      ct->refcount--;
2031
0
      if (
2032
0
#ifndef CATCACHE_FORCE_RELEASE
2033
0
        ct->dead &&
2034
0
#endif
2035
0
        ct->refcount == 0 &&
2036
0
        (ct->c_list == NULL || ct->c_list->refcount == 0))
2037
0
        CatCacheRemoveCTup(cache, ct);
2038
0
    }
2039
2040
0
    PG_RE_THROW();
2041
0
  }
2042
0
  PG_END_TRY();
2043
0
  Assert(catcache_in_progress_stack == &in_progress_ent);
2044
0
  catcache_in_progress_stack = save_in_progress;
2045
2046
0
  cl->cl_magic = CL_MAGIC;
2047
0
  cl->my_cache = cache;
2048
0
  cl->refcount = 0;     /* for the moment */
2049
0
  cl->dead = false;
2050
0
  cl->ordered = ordered;
2051
0
  cl->nkeys = nkeys;
2052
0
  cl->hash_value = lHashValue;
2053
0
  cl->n_members = nmembers;
2054
2055
0
  i = 0;
2056
0
  foreach(ctlist_item, ctlist)
2057
0
  {
2058
0
    cl->members[i++] = ct = (CatCTup *) lfirst(ctlist_item);
2059
0
    Assert(ct->c_list == NULL);
2060
0
    ct->c_list = cl;
2061
    /* release the temporary refcount on the member */
2062
0
    Assert(ct->refcount > 0);
2063
0
    ct->refcount--;
2064
    /* mark list dead if any members already dead */
2065
0
    if (ct->dead)
2066
0
      cl->dead = true;
2067
0
  }
2068
0
  Assert(i == nmembers);
2069
2070
  /*
2071
   * Add the CatCList to the appropriate bucket, and count it.
2072
   */
2073
0
  dlist_push_head(lbucket, &cl->cache_elem);
2074
2075
0
  cache->cc_nlist++;
2076
2077
  /* Finally, bump the list's refcount and return it */
2078
0
  cl->refcount++;
2079
0
  ResourceOwnerRememberCatCacheListRef(CurrentResourceOwner, cl);
2080
2081
0
  CACHE_elog(DEBUG2, "SearchCatCacheList(%s): made list of %d members",
2082
0
         cache->cc_relname, nmembers);
2083
2084
0
  return cl;
2085
0
}
2086
2087
/*
2088
 *  ReleaseCatCacheList
2089
 *
2090
 *  Decrement the reference count of a catcache list.
2091
 */
2092
void
2093
ReleaseCatCacheList(CatCList *list)
2094
0
{
2095
0
  ReleaseCatCacheListWithOwner(list, CurrentResourceOwner);
2096
0
}
2097
2098
static void
2099
ReleaseCatCacheListWithOwner(CatCList *list, ResourceOwner resowner)
2100
0
{
2101
  /* Safety checks to ensure we were handed a cache entry */
2102
0
  Assert(list->cl_magic == CL_MAGIC);
2103
0
  Assert(list->refcount > 0);
2104
0
  list->refcount--;
2105
0
  if (resowner)
2106
0
    ResourceOwnerForgetCatCacheListRef(CurrentResourceOwner, list);
2107
2108
0
  if (
2109
0
#ifndef CATCACHE_FORCE_RELEASE
2110
0
    list->dead &&
2111
0
#endif
2112
0
    list->refcount == 0)
2113
0
    CatCacheRemoveCList(list->my_cache, list);
2114
0
}
2115
2116
2117
/*
2118
 * CatalogCacheCreateEntry
2119
 *    Create a new CatCTup entry, copying the given HeapTuple and other
2120
 *    supplied data into it.  The new entry initially has refcount 0.
2121
 *
2122
 * To create a normal cache entry, ntp must be the HeapTuple just fetched
2123
 * from scandesc, and "arguments" is not used.  To create a negative cache
2124
 * entry, pass NULL for ntp; then "arguments" is the cache keys to use.
2125
 * In either case, hashValue/hashIndex are the hash values computed from
2126
 * the cache keys.
2127
 *
2128
 * Returns NULL if we attempt to detoast the tuple and observe that it
2129
 * became stale.  (This cannot happen for a negative entry.)  Caller must
2130
 * retry the tuple lookup in that case.
2131
 */
2132
static CatCTup *
2133
CatalogCacheCreateEntry(CatCache *cache, HeapTuple ntp, Datum *arguments,
2134
            uint32 hashValue, Index hashIndex)
2135
0
{
2136
0
  CatCTup    *ct;
2137
0
  MemoryContext oldcxt;
2138
2139
0
  if (ntp)
2140
0
  {
2141
0
    int     i;
2142
0
    HeapTuple dtp = NULL;
2143
2144
    /*
2145
     * The invalidation of the in-progress entry essentially never happens
2146
     * during our regression tests, and there's no easy way to force it to
2147
     * fail for testing purposes.  To ensure we have test coverage for the
2148
     * retry paths in our callers, make debug builds randomly fail about
2149
     * 0.1% of the times through this code path, even when there's no
2150
     * toasted fields.
2151
     */
2152
#ifdef USE_ASSERT_CHECKING
2153
    if (pg_prng_uint32(&pg_global_prng_state) <= (PG_UINT32_MAX / 1000))
2154
      return NULL;
2155
#endif
2156
2157
    /*
2158
     * If there are any out-of-line toasted fields in the tuple, expand
2159
     * them in-line.  This saves cycles during later use of the catcache
2160
     * entry, and also protects us against the possibility of the toast
2161
     * tuples being freed before we attempt to fetch them, in case of
2162
     * something using a slightly stale catcache entry.
2163
     */
2164
0
    if (HeapTupleHasExternal(ntp))
2165
0
    {
2166
0
      CatCInProgress *save_in_progress;
2167
0
      CatCInProgress in_progress_ent;
2168
2169
      /*
2170
       * The tuple could become stale while we are doing toast table
2171
       * access (since AcceptInvalidationMessages can run then).  The
2172
       * invalidation will mark our in-progress entry as dead.
2173
       */
2174
0
      save_in_progress = catcache_in_progress_stack;
2175
0
      in_progress_ent.next = catcache_in_progress_stack;
2176
0
      in_progress_ent.cache = cache;
2177
0
      in_progress_ent.hash_value = hashValue;
2178
0
      in_progress_ent.list = false;
2179
0
      in_progress_ent.dead = false;
2180
0
      catcache_in_progress_stack = &in_progress_ent;
2181
2182
0
      PG_TRY();
2183
0
      {
2184
0
        dtp = toast_flatten_tuple(ntp, cache->cc_tupdesc);
2185
0
      }
2186
0
      PG_FINALLY();
2187
0
      {
2188
0
        Assert(catcache_in_progress_stack == &in_progress_ent);
2189
0
        catcache_in_progress_stack = save_in_progress;
2190
0
      }
2191
0
      PG_END_TRY();
2192
2193
0
      if (in_progress_ent.dead)
2194
0
      {
2195
0
        heap_freetuple(dtp);
2196
0
        return NULL;
2197
0
      }
2198
0
    }
2199
0
    else
2200
0
      dtp = ntp;
2201
2202
    /* Allocate memory for CatCTup and the cached tuple in one go */
2203
0
    oldcxt = MemoryContextSwitchTo(CacheMemoryContext);
2204
2205
0
    ct = (CatCTup *) palloc(sizeof(CatCTup) +
2206
0
                MAXIMUM_ALIGNOF + dtp->t_len);
2207
0
    ct->tuple.t_len = dtp->t_len;
2208
0
    ct->tuple.t_self = dtp->t_self;
2209
0
    ct->tuple.t_tableOid = dtp->t_tableOid;
2210
0
    ct->tuple.t_data = (HeapTupleHeader)
2211
0
      MAXALIGN(((char *) ct) + sizeof(CatCTup));
2212
    /* copy tuple contents */
2213
0
    memcpy((char *) ct->tuple.t_data,
2214
0
         (const char *) dtp->t_data,
2215
0
         dtp->t_len);
2216
0
    MemoryContextSwitchTo(oldcxt);
2217
2218
0
    if (dtp != ntp)
2219
0
      heap_freetuple(dtp);
2220
2221
    /* extract keys - they'll point into the tuple if not by-value */
2222
0
    for (i = 0; i < cache->cc_nkeys; i++)
2223
0
    {
2224
0
      Datum   atp;
2225
0
      bool    isnull;
2226
2227
0
      atp = heap_getattr(&ct->tuple,
2228
0
                 cache->cc_keyno[i],
2229
0
                 cache->cc_tupdesc,
2230
0
                 &isnull);
2231
0
      Assert(!isnull);
2232
0
      ct->keys[i] = atp;
2233
0
    }
2234
0
  }
2235
0
  else
2236
0
  {
2237
    /* Set up keys for a negative cache entry */
2238
0
    oldcxt = MemoryContextSwitchTo(CacheMemoryContext);
2239
0
    ct = (CatCTup *) palloc(sizeof(CatCTup));
2240
2241
    /*
2242
     * Store keys - they'll point into separately allocated memory if not
2243
     * by-value.
2244
     */
2245
0
    CatCacheCopyKeys(cache->cc_tupdesc, cache->cc_nkeys, cache->cc_keyno,
2246
0
             arguments, ct->keys);
2247
0
    MemoryContextSwitchTo(oldcxt);
2248
0
  }
2249
2250
  /*
2251
   * Finish initializing the CatCTup header, and add it to the cache's
2252
   * linked list and counts.
2253
   */
2254
0
  ct->ct_magic = CT_MAGIC;
2255
0
  ct->my_cache = cache;
2256
0
  ct->c_list = NULL;
2257
0
  ct->refcount = 0;     /* for the moment */
2258
0
  ct->dead = false;
2259
0
  ct->negative = (ntp == NULL);
2260
0
  ct->hash_value = hashValue;
2261
2262
0
  dlist_push_head(&cache->cc_bucket[hashIndex], &ct->cache_elem);
2263
2264
0
  cache->cc_ntup++;
2265
0
  CacheHdr->ch_ntup++;
2266
2267
  /*
2268
   * If the hash table has become too full, enlarge the buckets array. Quite
2269
   * arbitrarily, we enlarge when fill factor > 2.
2270
   */
2271
0
  if (cache->cc_ntup > cache->cc_nbuckets * 2)
2272
0
    RehashCatCache(cache);
2273
2274
0
  return ct;
2275
0
}
2276
2277
/*
2278
 * Helper routine that frees keys stored in the keys array.
2279
 */
2280
static void
2281
CatCacheFreeKeys(TupleDesc tupdesc, int nkeys, int *attnos, Datum *keys)
2282
0
{
2283
0
  int     i;
2284
2285
0
  for (i = 0; i < nkeys; i++)
2286
0
  {
2287
0
    int     attnum = attnos[i];
2288
0
    Form_pg_attribute att;
2289
2290
    /* system attribute are not supported in caches */
2291
0
    Assert(attnum > 0);
2292
2293
0
    att = TupleDescAttr(tupdesc, attnum - 1);
2294
2295
0
    if (!att->attbyval)
2296
0
      pfree(DatumGetPointer(keys[i]));
2297
0
  }
2298
0
}
2299
2300
/*
2301
 * Helper routine that copies the keys in the srckeys array into the dstkeys
2302
 * one, guaranteeing that the datums are fully allocated in the current memory
2303
 * context.
2304
 */
2305
static void
2306
CatCacheCopyKeys(TupleDesc tupdesc, int nkeys, int *attnos,
2307
         Datum *srckeys, Datum *dstkeys)
2308
0
{
2309
0
  int     i;
2310
2311
  /*
2312
   * XXX: memory and lookup performance could possibly be improved by
2313
   * storing all keys in one allocation.
2314
   */
2315
2316
0
  for (i = 0; i < nkeys; i++)
2317
0
  {
2318
0
    int     attnum = attnos[i];
2319
0
    Form_pg_attribute att = TupleDescAttr(tupdesc, attnum - 1);
2320
0
    Datum   src = srckeys[i];
2321
0
    NameData  srcname;
2322
2323
    /*
2324
     * Must be careful in case the caller passed a C string where a NAME
2325
     * is wanted: convert the given argument to a correctly padded NAME.
2326
     * Otherwise the memcpy() done by datumCopy() could fall off the end
2327
     * of memory.
2328
     */
2329
0
    if (att->atttypid == NAMEOID)
2330
0
    {
2331
0
      namestrcpy(&srcname, DatumGetCString(src));
2332
0
      src = NameGetDatum(&srcname);
2333
0
    }
2334
2335
0
    dstkeys[i] = datumCopy(src,
2336
0
                 att->attbyval,
2337
0
                 att->attlen);
2338
0
  }
2339
0
}
2340
2341
/*
2342
 *  PrepareToInvalidateCacheTuple()
2343
 *
2344
 *  This is part of a rather subtle chain of events, so pay attention:
2345
 *
2346
 *  When a tuple is inserted or deleted, it cannot be flushed from the
2347
 *  catcaches immediately, for reasons explained at the top of cache/inval.c.
2348
 *  Instead we have to add entry(s) for the tuple to a list of pending tuple
2349
 *  invalidations that will be done at the end of the command or transaction.
2350
 *
2351
 *  The lists of tuples that need to be flushed are kept by inval.c.  This
2352
 *  routine is a helper routine for inval.c.  Given a tuple belonging to
2353
 *  the specified relation, find all catcaches it could be in, compute the
2354
 *  correct hash value for each such catcache, and call the specified
2355
 *  function to record the cache id and hash value in inval.c's lists.
2356
 *  SysCacheInvalidate will be called later, if appropriate,
2357
 *  using the recorded information.
2358
 *
2359
 *  For an insert or delete, tuple is the target tuple and newtuple is NULL.
2360
 *  For an update, we are called just once, with tuple being the old tuple
2361
 *  version and newtuple the new version.  We should make two list entries
2362
 *  if the tuple's hash value changed, but only one if it didn't.
2363
 *
2364
 *  Note that it is irrelevant whether the given tuple is actually loaded
2365
 *  into the catcache at the moment.  Even if it's not there now, it might
2366
 *  be by the end of the command, or there might be a matching negative entry
2367
 *  to flush --- or other backends' caches might have such entries --- so
2368
 *  we have to make list entries to flush it later.
2369
 *
2370
 *  Also note that it's not an error if there are no catcaches for the
2371
 *  specified relation.  inval.c doesn't know exactly which rels have
2372
 *  catcaches --- it will call this routine for any tuple that's in a
2373
 *  system relation.
2374
 */
2375
void
2376
PrepareToInvalidateCacheTuple(Relation relation,
2377
                HeapTuple tuple,
2378
                HeapTuple newtuple,
2379
                void (*function) (int, uint32, Oid, void *),
2380
                void *context)
2381
0
{
2382
0
  slist_iter  iter;
2383
0
  Oid     reloid;
2384
2385
0
  CACHE_elog(DEBUG2, "PrepareToInvalidateCacheTuple: called");
2386
2387
  /*
2388
   * sanity checks
2389
   */
2390
0
  Assert(RelationIsValid(relation));
2391
0
  Assert(HeapTupleIsValid(tuple));
2392
0
  Assert(PointerIsValid(function));
2393
0
  Assert(CacheHdr != NULL);
2394
2395
0
  reloid = RelationGetRelid(relation);
2396
2397
  /* ----------------
2398
   *  for each cache
2399
   *     if the cache contains tuples from the specified relation
2400
   *       compute the tuple's hash value(s) in this cache,
2401
   *       and call the passed function to register the information.
2402
   * ----------------
2403
   */
2404
2405
0
  slist_foreach(iter, &CacheHdr->ch_caches)
2406
0
  {
2407
0
    CatCache   *ccp = slist_container(CatCache, cc_next, iter.cur);
2408
0
    uint32    hashvalue;
2409
0
    Oid     dbid;
2410
2411
0
    if (ccp->cc_reloid != reloid)
2412
0
      continue;
2413
2414
    /* Just in case cache hasn't finished initialization yet... */
2415
0
    ConditionalCatalogCacheInitializeCache(ccp);
2416
2417
0
    hashvalue = CatalogCacheComputeTupleHashValue(ccp, ccp->cc_nkeys, tuple);
2418
0
    dbid = ccp->cc_relisshared ? (Oid) 0 : MyDatabaseId;
2419
2420
0
    (*function) (ccp->id, hashvalue, dbid, context);
2421
2422
0
    if (newtuple)
2423
0
    {
2424
0
      uint32    newhashvalue;
2425
2426
0
      newhashvalue = CatalogCacheComputeTupleHashValue(ccp, ccp->cc_nkeys, newtuple);
2427
2428
0
      if (newhashvalue != hashvalue)
2429
0
        (*function) (ccp->id, newhashvalue, dbid, context);
2430
0
    }
2431
0
  }
2432
0
}
2433
2434
/* ResourceOwner callbacks */
2435
2436
static void
2437
ResOwnerReleaseCatCache(Datum res)
2438
0
{
2439
0
  ReleaseCatCacheWithOwner((HeapTuple) DatumGetPointer(res), NULL);
2440
0
}
2441
2442
static char *
2443
ResOwnerPrintCatCache(Datum res)
2444
0
{
2445
0
  HeapTuple tuple = (HeapTuple) DatumGetPointer(res);
2446
0
  CatCTup    *ct = (CatCTup *) (((char *) tuple) -
2447
0
                  offsetof(CatCTup, tuple));
2448
2449
  /* Safety check to ensure we were handed a cache entry */
2450
0
  Assert(ct->ct_magic == CT_MAGIC);
2451
2452
0
  return psprintf("cache %s (%d), tuple %u/%u has count %d",
2453
0
          ct->my_cache->cc_relname, ct->my_cache->id,
2454
0
          ItemPointerGetBlockNumber(&(tuple->t_self)),
2455
0
          ItemPointerGetOffsetNumber(&(tuple->t_self)),
2456
0
          ct->refcount);
2457
0
}
2458
2459
static void
2460
ResOwnerReleaseCatCacheList(Datum res)
2461
0
{
2462
0
  ReleaseCatCacheListWithOwner((CatCList *) DatumGetPointer(res), NULL);
2463
0
}
2464
2465
static char *
2466
ResOwnerPrintCatCacheList(Datum res)
2467
0
{
2468
0
  CatCList   *list = (CatCList *) DatumGetPointer(res);
2469
2470
0
  return psprintf("cache %s (%d), list %p has count %d",
2471
0
          list->my_cache->cc_relname, list->my_cache->id,
2472
0
          list, list->refcount);
2473
0
}