Coverage Report

Created: 2025-07-03 06:49

/src/postgres/src/backend/optimizer/geqo/geqo_erx.c
Line
Count
Source (jump to first uncovered line)
1
/*------------------------------------------------------------------------
2
*
3
* geqo_erx.c
4
*  edge recombination crossover [ER]
5
*
6
* src/backend/optimizer/geqo/geqo_erx.c
7
*
8
*-------------------------------------------------------------------------
9
*/
10
11
/* contributed by:
12
   =*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=
13
   *  Martin Utesch        * Institute of Automatic Control    *
14
   =               = University of Mining and Technology =
15
   *  utesch@aut.tu-freiberg.de  * Freiberg, Germany           *
16
   =*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=
17
 */
18
19
/* the edge recombination algorithm is adopted from Genitor : */
20
/*************************************************************/
21
/*                               */
22
/*  Copyright (c) 1990                     */
23
/*  Darrell L. Whitley                     */
24
/*  Computer Science Department                */
25
/*  Colorado State University                */
26
/*                               */
27
/*  Permission is hereby granted to copy all or any part of  */
28
/*  this program for free distribution.   The author's name  */
29
/*  and this copyright notice must be included in any copy.  */
30
/*                               */
31
/*************************************************************/
32
33
34
#include "postgres.h"
35
#include "optimizer/geqo.h"
36
37
#if defined(ERX)
38
39
#include "optimizer/geqo_random.h"
40
#include "optimizer/geqo_recombination.h"
41
42
static int  gimme_edge(PlannerInfo *root, Gene gene1, Gene gene2, Edge *edge_table);
43
static void remove_gene(PlannerInfo *root, Gene gene, Edge edge, Edge *edge_table);
44
static Gene gimme_gene(PlannerInfo *root, Edge edge, Edge *edge_table);
45
46
static Gene edge_failure(PlannerInfo *root, Gene *gene, int index, Edge *edge_table, int num_gene);
47
48
49
/* alloc_edge_table
50
 *
51
 *   allocate memory for edge table
52
 *
53
 */
54
55
Edge *
56
alloc_edge_table(PlannerInfo *root, int num_gene)
57
0
{
58
0
  Edge     *edge_table;
59
60
  /*
61
   * palloc one extra location so that nodes numbered 1..n can be indexed
62
   * directly; 0 will not be used
63
   */
64
65
0
  edge_table = (Edge *) palloc((num_gene + 1) * sizeof(Edge));
66
67
0
  return edge_table;
68
0
}
69
70
/* free_edge_table
71
 *
72
 *    deallocate memory of edge table
73
 *
74
 */
75
void
76
free_edge_table(PlannerInfo *root, Edge *edge_table)
77
0
{
78
0
  pfree(edge_table);
79
0
}
80
81
/* gimme_edge_table
82
 *
83
 *   fills a data structure which represents the set of explicit
84
 *   edges between points in the (2) input genes
85
 *
86
 *   assumes circular tours and bidirectional edges
87
 *
88
 *   gimme_edge() will set "shared" edges to negative values
89
 *
90
 *   returns average number edges/city in range 2.0 - 4.0
91
 *   where 2.0=homogeneous; 4.0=diverse
92
 *
93
 */
94
float
95
gimme_edge_table(PlannerInfo *root, Gene *tour1, Gene *tour2,
96
         int num_gene, Edge *edge_table)
97
0
{
98
0
  int     i,
99
0
        index1,
100
0
        index2;
101
0
  int     edge_total;   /* total number of unique edges in two genes */
102
103
  /* at first clear the edge table's old data */
104
0
  for (i = 1; i <= num_gene; i++)
105
0
  {
106
0
    edge_table[i].total_edges = 0;
107
0
    edge_table[i].unused_edges = 0;
108
0
  }
109
110
  /* fill edge table with new data */
111
112
0
  edge_total = 0;
113
114
0
  for (index1 = 0; index1 < num_gene; index1++)
115
0
  {
116
    /*
117
     * presume the tour is circular, i.e. 1->2, 2->3, 3->1 this operation
118
     * maps n back to 1
119
     */
120
121
0
    index2 = (index1 + 1) % num_gene;
122
123
    /*
124
     * edges are bidirectional, i.e. 1->2 is same as 2->1 call gimme_edge
125
     * twice per edge
126
     */
127
128
0
    edge_total += gimme_edge(root, tour1[index1], tour1[index2], edge_table);
129
0
    gimme_edge(root, tour1[index2], tour1[index1], edge_table);
130
131
0
    edge_total += gimme_edge(root, tour2[index1], tour2[index2], edge_table);
132
0
    gimme_edge(root, tour2[index2], tour2[index1], edge_table);
133
0
  }
134
135
  /* return average number of edges per index */
136
0
  return ((float) (edge_total * 2) / (float) num_gene);
137
0
}
138
139
/* gimme_edge
140
 *
141
 *    registers edge from city1 to city2 in input edge table
142
 *
143
 *    no assumptions about directionality are made;
144
 *    therefore it is up to the calling routine to
145
 *    call gimme_edge twice to make a bi-directional edge
146
 *    between city1 and city2;
147
 *    uni-directional edges are possible as well (just call gimme_edge
148
 *    once with the direction from city1 to city2)
149
 *
150
 *    returns 1 if edge was not already registered and was just added;
151
 *        0 if edge was already registered and edge_table is unchanged
152
 */
153
static int
154
gimme_edge(PlannerInfo *root, Gene gene1, Gene gene2, Edge *edge_table)
155
0
{
156
0
  int     i;
157
0
  int     edges;
158
0
  int     city1 = (int) gene1;
159
0
  int     city2 = (int) gene2;
160
161
162
  /* check whether edge city1->city2 already exists */
163
0
  edges = edge_table[city1].total_edges;
164
165
0
  for (i = 0; i < edges; i++)
166
0
  {
167
0
    if ((Gene) abs(edge_table[city1].edge_list[i]) == city2)
168
0
    {
169
170
      /* mark shared edges as negative */
171
0
      edge_table[city1].edge_list[i] = 0 - city2;
172
173
0
      return 0;
174
0
    }
175
0
  }
176
177
  /* add city1->city2; */
178
0
  edge_table[city1].edge_list[edges] = city2;
179
180
  /* increment the number of edges from city1 */
181
0
  edge_table[city1].total_edges++;
182
0
  edge_table[city1].unused_edges++;
183
184
0
  return 1;
185
0
}
186
187
/* gimme_tour
188
 *
189
 *    creates a new tour using edges from the edge table.
190
 *    priority is given to "shared" edges (i.e. edges which
191
 *    all parent genes possess and are marked as negative
192
 *    in the edge table.)
193
 *
194
 */
195
int
196
gimme_tour(PlannerInfo *root, Edge *edge_table, Gene *new_gene, int num_gene)
197
0
{
198
0
  int     i;
199
0
  int     edge_failures = 0;
200
201
  /* choose int between 1 and num_gene */
202
0
  new_gene[0] = (Gene) geqo_randint(root, num_gene, 1);
203
204
0
  for (i = 1; i < num_gene; i++)
205
0
  {
206
    /*
207
     * as each point is entered into the tour, remove it from the edge
208
     * table
209
     */
210
211
0
    remove_gene(root, new_gene[i - 1], edge_table[(int) new_gene[i - 1]], edge_table);
212
213
    /* find destination for the newly entered point */
214
215
0
    if (edge_table[new_gene[i - 1]].unused_edges > 0)
216
0
      new_gene[i] = gimme_gene(root, edge_table[(int) new_gene[i - 1]], edge_table);
217
218
0
    else
219
0
    {           /* cope with fault */
220
0
      edge_failures++;
221
222
0
      new_gene[i] = edge_failure(root, new_gene, i - 1, edge_table, num_gene);
223
0
    }
224
225
    /* mark this node as incorporated */
226
0
    edge_table[(int) new_gene[i - 1]].unused_edges = -1;
227
0
  }             /* for (i=1; i<num_gene; i++) */
228
229
0
  return edge_failures;
230
0
}
231
232
/* remove_gene
233
 *
234
 *   removes input gene from edge_table.
235
 *   input edge is used
236
 *   to identify deletion locations within edge table.
237
 *
238
 */
239
static void
240
remove_gene(PlannerInfo *root, Gene gene, Edge edge, Edge *edge_table)
241
0
{
242
0
  int     i,
243
0
        j;
244
0
  int     possess_edge;
245
0
  int     genes_remaining;
246
247
  /*
248
   * do for every gene known to have an edge to input gene (i.e. in
249
   * edge_list for input edge)
250
   */
251
252
0
  for (i = 0; i < edge.unused_edges; i++)
253
0
  {
254
0
    possess_edge = abs(edge.edge_list[i]);
255
0
    genes_remaining = edge_table[possess_edge].unused_edges;
256
257
    /* find the input gene in all edge_lists and delete it */
258
0
    for (j = 0; j < genes_remaining; j++)
259
0
    {
260
261
0
      if ((Gene) abs(edge_table[possess_edge].edge_list[j]) == gene)
262
0
      {
263
264
0
        edge_table[possess_edge].unused_edges--;
265
266
0
        edge_table[possess_edge].edge_list[j] =
267
0
          edge_table[possess_edge].edge_list[genes_remaining - 1];
268
269
0
        break;
270
0
      }
271
0
    }
272
0
  }
273
0
}
274
275
/* gimme_gene
276
 *
277
 *    priority is given to "shared" edges
278
 *    (i.e. edges which both genes possess)
279
 *
280
 */
281
static Gene
282
gimme_gene(PlannerInfo *root, Edge edge, Edge *edge_table)
283
0
{
284
0
  int     i;
285
0
  Gene    friend;
286
0
  int     minimum_edges;
287
0
  int     minimum_count = -1;
288
0
  int     rand_decision;
289
290
  /*
291
   * no point has edges to more than 4 other points thus, this contrived
292
   * minimum will be replaced
293
   */
294
295
0
  minimum_edges = 5;
296
297
  /* consider candidate destination points in edge list */
298
299
0
  for (i = 0; i < edge.unused_edges; i++)
300
0
  {
301
0
    friend = (Gene) edge.edge_list[i];
302
303
    /*
304
     * give priority to shared edges that are negative; so return 'em
305
     */
306
307
    /*
308
     * negative values are caught here so we need not worry about
309
     * converting to absolute values
310
     */
311
0
    if (friend < 0)
312
0
      return (Gene) abs(friend);
313
314
315
    /*
316
     * give priority to candidates with fewest remaining unused edges;
317
     * find out what the minimum number of unused edges is
318
     * (minimum_edges); if there is more than one candidate with the
319
     * minimum number of unused edges keep count of this number
320
     * (minimum_count);
321
     */
322
323
    /*
324
     * The test for minimum_count can probably be removed at some point
325
     * but comments should probably indicate exactly why it is guaranteed
326
     * that the test will always succeed the first time around.  If it can
327
     * fail then the code is in error
328
     */
329
330
331
0
    if (edge_table[(int) friend].unused_edges < minimum_edges)
332
0
    {
333
0
      minimum_edges = edge_table[(int) friend].unused_edges;
334
0
      minimum_count = 1;
335
0
    }
336
0
    else if (minimum_count == -1)
337
0
      elog(ERROR, "minimum_count not set");
338
0
    else if (edge_table[(int) friend].unused_edges == minimum_edges)
339
0
      minimum_count++;
340
0
  }             /* for (i=0; i<edge.unused_edges; i++) */
341
342
343
  /* random decision of the possible candidates to use */
344
0
  rand_decision = geqo_randint(root, minimum_count - 1, 0);
345
346
347
0
  for (i = 0; i < edge.unused_edges; i++)
348
0
  {
349
0
    friend = (Gene) edge.edge_list[i];
350
351
    /* return the chosen candidate point */
352
0
    if (edge_table[(int) friend].unused_edges == minimum_edges)
353
0
    {
354
0
      minimum_count--;
355
356
0
      if (minimum_count == rand_decision)
357
0
        return friend;
358
0
    }
359
0
  }
360
361
  /* ... should never be reached */
362
0
  elog(ERROR, "neither shared nor minimum number nor random edge found");
363
0
  return 0;         /* to keep the compiler quiet */
364
0
}
365
366
/* edge_failure
367
 *
368
 *    routine for handling edge failure
369
 *
370
 */
371
static Gene
372
edge_failure(PlannerInfo *root, Gene *gene, int index, Edge *edge_table, int num_gene)
373
0
{
374
0
  int     i;
375
0
  Gene    fail_gene = gene[index];
376
0
  int     remaining_edges = 0;
377
0
  int     four_count = 0;
378
0
  int     rand_decision;
379
380
381
  /*
382
   * how many edges remain? how many gene with four total (initial) edges
383
   * remain?
384
   */
385
386
0
  for (i = 1; i <= num_gene; i++)
387
0
  {
388
0
    if ((edge_table[i].unused_edges != -1) && (i != (int) fail_gene))
389
0
    {
390
0
      remaining_edges++;
391
392
0
      if (edge_table[i].total_edges == 4)
393
0
        four_count++;
394
0
    }
395
0
  }
396
397
  /*
398
   * random decision of the gene with remaining edges and whose total_edges
399
   * == 4
400
   */
401
402
0
  if (four_count != 0)
403
0
  {
404
405
0
    rand_decision = geqo_randint(root, four_count - 1, 0);
406
407
0
    for (i = 1; i <= num_gene; i++)
408
0
    {
409
410
0
      if ((Gene) i != fail_gene &&
411
0
        edge_table[i].unused_edges != -1 &&
412
0
        edge_table[i].total_edges == 4)
413
0
      {
414
415
0
        four_count--;
416
417
0
        if (rand_decision == four_count)
418
0
          return (Gene) i;
419
0
      }
420
0
    }
421
422
0
    elog(LOG, "no edge found via random decision and total_edges == 4");
423
0
  }
424
0
  else if (remaining_edges != 0)
425
0
  {
426
    /* random decision of the gene with remaining edges */
427
0
    rand_decision = geqo_randint(root, remaining_edges - 1, 0);
428
429
0
    for (i = 1; i <= num_gene; i++)
430
0
    {
431
432
0
      if ((Gene) i != fail_gene &&
433
0
        edge_table[i].unused_edges != -1)
434
0
      {
435
436
0
        remaining_edges--;
437
438
0
        if (rand_decision == remaining_edges)
439
0
          return i;
440
0
      }
441
0
    }
442
443
0
    elog(LOG, "no edge found via random decision with remaining edges");
444
0
  }
445
446
  /*
447
   * edge table seems to be empty; this happens sometimes on the last point
448
   * due to the fact that the first point is removed from the table even
449
   * though only one of its edges has been determined
450
   */
451
452
0
  else
453
0
  {             /* occurs only at the last point in the tour;
454
                 * simply look for the point which is not yet
455
                 * used */
456
457
0
    for (i = 1; i <= num_gene; i++)
458
0
      if (edge_table[i].unused_edges >= 0)
459
0
        return (Gene) i;
460
461
0
    elog(LOG, "no edge found via looking for the last unused point");
462
0
  }
463
464
465
  /* ... should never be reached */
466
0
  elog(ERROR, "no edge found");
467
0
  return 0;         /* to keep the compiler quiet */
468
0
}
469
470
#endif              /* defined(ERX) */