/src/postgres/src/backend/postmaster/autovacuum.c
Line | Count | Source |
1 | | /*------------------------------------------------------------------------- |
2 | | * |
3 | | * autovacuum.c |
4 | | * |
5 | | * PostgreSQL Integrated Autovacuum Daemon |
6 | | * |
7 | | * The autovacuum system is structured in two different kinds of processes: the |
8 | | * autovacuum launcher and the autovacuum worker. The launcher is an |
9 | | * always-running process, started by the postmaster when the autovacuum GUC |
10 | | * parameter is set. The launcher schedules autovacuum workers to be started |
11 | | * when appropriate. The workers are the processes which execute the actual |
12 | | * vacuuming; they connect to a database as determined in the launcher, and |
13 | | * once connected they examine the catalogs to select the tables to vacuum. |
14 | | * |
15 | | * The autovacuum launcher cannot start the worker processes by itself, |
16 | | * because doing so would cause robustness issues (namely, failure to shut |
17 | | * them down on exceptional conditions, and also, since the launcher is |
18 | | * connected to shared memory and is thus subject to corruption there, it is |
19 | | * not as robust as the postmaster). So it leaves that task to the postmaster. |
20 | | * |
21 | | * There is an autovacuum shared memory area, where the launcher stores |
22 | | * information about the database it wants vacuumed. When it wants a new |
23 | | * worker to start, it sets a flag in shared memory and sends a signal to the |
24 | | * postmaster. Then postmaster knows nothing more than it must start a worker; |
25 | | * so it forks a new child, which turns into a worker. This new process |
26 | | * connects to shared memory, and there it can inspect the information that the |
27 | | * launcher has set up. |
28 | | * |
29 | | * If the fork() call fails in the postmaster, it sets a flag in the shared |
30 | | * memory area, and sends a signal to the launcher. The launcher, upon |
31 | | * noticing the flag, can try starting the worker again by resending the |
32 | | * signal. Note that the failure can only be transient (fork failure due to |
33 | | * high load, memory pressure, too many processes, etc); more permanent |
34 | | * problems, like failure to connect to a database, are detected later in the |
35 | | * worker and dealt with just by having the worker exit normally. The launcher |
36 | | * will launch a new worker again later, per schedule. |
37 | | * |
38 | | * When the worker is done vacuuming it sends SIGUSR2 to the launcher. The |
39 | | * launcher then wakes up and is able to launch another worker, if the schedule |
40 | | * is so tight that a new worker is needed immediately. At this time the |
41 | | * launcher can also balance the settings for the various remaining workers' |
42 | | * cost-based vacuum delay feature. |
43 | | * |
44 | | * Note that there can be more than one worker in a database concurrently. |
45 | | * They will store the table they are currently vacuuming in shared memory, so |
46 | | * that other workers avoid being blocked waiting for the vacuum lock for that |
47 | | * table. They will also fetch the last time the table was vacuumed from |
48 | | * pgstats just before vacuuming each table, to avoid vacuuming a table that |
49 | | * was just finished being vacuumed by another worker and thus is no longer |
50 | | * noted in shared memory. However, there is a small window (due to not yet |
51 | | * holding the relation lock) during which a worker may choose a table that was |
52 | | * already vacuumed; this is a bug in the current design. |
53 | | * |
54 | | * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group |
55 | | * Portions Copyright (c) 1994, Regents of the University of California |
56 | | * |
57 | | * |
58 | | * IDENTIFICATION |
59 | | * src/backend/postmaster/autovacuum.c |
60 | | * |
61 | | *------------------------------------------------------------------------- |
62 | | */ |
63 | | #include "postgres.h" |
64 | | |
65 | | #include <signal.h> |
66 | | #include <sys/time.h> |
67 | | #include <unistd.h> |
68 | | |
69 | | #include "access/heapam.h" |
70 | | #include "access/htup_details.h" |
71 | | #include "access/multixact.h" |
72 | | #include "access/reloptions.h" |
73 | | #include "access/tableam.h" |
74 | | #include "access/transam.h" |
75 | | #include "access/xact.h" |
76 | | #include "catalog/dependency.h" |
77 | | #include "catalog/namespace.h" |
78 | | #include "catalog/pg_database.h" |
79 | | #include "catalog/pg_namespace.h" |
80 | | #include "commands/vacuum.h" |
81 | | #include "common/int.h" |
82 | | #include "lib/ilist.h" |
83 | | #include "libpq/pqsignal.h" |
84 | | #include "miscadmin.h" |
85 | | #include "nodes/makefuncs.h" |
86 | | #include "pgstat.h" |
87 | | #include "postmaster/autovacuum.h" |
88 | | #include "postmaster/interrupt.h" |
89 | | #include "postmaster/postmaster.h" |
90 | | #include "storage/aio_subsys.h" |
91 | | #include "storage/bufmgr.h" |
92 | | #include "storage/ipc.h" |
93 | | #include "storage/latch.h" |
94 | | #include "storage/lmgr.h" |
95 | | #include "storage/pmsignal.h" |
96 | | #include "storage/proc.h" |
97 | | #include "storage/procsignal.h" |
98 | | #include "storage/smgr.h" |
99 | | #include "tcop/tcopprot.h" |
100 | | #include "utils/fmgroids.h" |
101 | | #include "utils/fmgrprotos.h" |
102 | | #include "utils/guc_hooks.h" |
103 | | #include "utils/injection_point.h" |
104 | | #include "utils/lsyscache.h" |
105 | | #include "utils/memutils.h" |
106 | | #include "utils/ps_status.h" |
107 | | #include "utils/rel.h" |
108 | | #include "utils/snapmgr.h" |
109 | | #include "utils/syscache.h" |
110 | | #include "utils/timeout.h" |
111 | | #include "utils/timestamp.h" |
112 | | |
113 | | |
114 | | /* |
115 | | * GUC parameters |
116 | | */ |
117 | | bool autovacuum_start_daemon = false; |
118 | | int autovacuum_worker_slots; |
119 | | int autovacuum_max_workers; |
120 | | int autovacuum_work_mem = -1; |
121 | | int autovacuum_naptime; |
122 | | int autovacuum_vac_thresh; |
123 | | int autovacuum_vac_max_thresh; |
124 | | double autovacuum_vac_scale; |
125 | | int autovacuum_vac_ins_thresh; |
126 | | double autovacuum_vac_ins_scale; |
127 | | int autovacuum_anl_thresh; |
128 | | double autovacuum_anl_scale; |
129 | | int autovacuum_freeze_max_age; |
130 | | int autovacuum_multixact_freeze_max_age; |
131 | | |
132 | | double autovacuum_vac_cost_delay; |
133 | | int autovacuum_vac_cost_limit; |
134 | | |
135 | | int Log_autovacuum_min_duration = 600000; |
136 | | |
137 | | /* the minimum allowed time between two awakenings of the launcher */ |
138 | 0 | #define MIN_AUTOVAC_SLEEPTIME 100.0 /* milliseconds */ |
139 | 0 | #define MAX_AUTOVAC_SLEEPTIME 300 /* seconds */ |
140 | | |
141 | | /* |
142 | | * Variables to save the cost-related storage parameters for the current |
143 | | * relation being vacuumed by this autovacuum worker. Using these, we can |
144 | | * ensure we don't overwrite the values of vacuum_cost_delay and |
145 | | * vacuum_cost_limit after reloading the configuration file. They are |
146 | | * initialized to "invalid" values to indicate that no cost-related storage |
147 | | * parameters were specified and will be set in do_autovacuum() after checking |
148 | | * the storage parameters in table_recheck_autovac(). |
149 | | */ |
150 | | static double av_storage_param_cost_delay = -1; |
151 | | static int av_storage_param_cost_limit = -1; |
152 | | |
153 | | /* Flags set by signal handlers */ |
154 | | static volatile sig_atomic_t got_SIGUSR2 = false; |
155 | | |
156 | | /* Comparison points for determining whether freeze_max_age is exceeded */ |
157 | | static TransactionId recentXid; |
158 | | static MultiXactId recentMulti; |
159 | | |
160 | | /* Default freeze ages to use for autovacuum (varies by database) */ |
161 | | static int default_freeze_min_age; |
162 | | static int default_freeze_table_age; |
163 | | static int default_multixact_freeze_min_age; |
164 | | static int default_multixact_freeze_table_age; |
165 | | |
166 | | /* Memory context for long-lived data */ |
167 | | static MemoryContext AutovacMemCxt; |
168 | | |
169 | | /* struct to keep track of databases in launcher */ |
170 | | typedef struct avl_dbase |
171 | | { |
172 | | Oid adl_datid; /* hash key -- must be first */ |
173 | | TimestampTz adl_next_worker; |
174 | | int adl_score; |
175 | | dlist_node adl_node; |
176 | | } avl_dbase; |
177 | | |
178 | | /* struct to keep track of databases in worker */ |
179 | | typedef struct avw_dbase |
180 | | { |
181 | | Oid adw_datid; |
182 | | char *adw_name; |
183 | | TransactionId adw_frozenxid; |
184 | | MultiXactId adw_minmulti; |
185 | | PgStat_StatDBEntry *adw_entry; |
186 | | } avw_dbase; |
187 | | |
188 | | /* struct to keep track of tables to vacuum and/or analyze, in 1st pass */ |
189 | | typedef struct av_relation |
190 | | { |
191 | | Oid ar_toastrelid; /* hash key - must be first */ |
192 | | Oid ar_relid; |
193 | | bool ar_hasrelopts; |
194 | | AutoVacOpts ar_reloptions; /* copy of AutoVacOpts from the main table's |
195 | | * reloptions, or NULL if none */ |
196 | | } av_relation; |
197 | | |
198 | | /* struct to keep track of tables to vacuum and/or analyze, after rechecking */ |
199 | | typedef struct autovac_table |
200 | | { |
201 | | Oid at_relid; |
202 | | VacuumParams at_params; |
203 | | double at_storage_param_vac_cost_delay; |
204 | | int at_storage_param_vac_cost_limit; |
205 | | bool at_dobalance; |
206 | | bool at_sharedrel; |
207 | | char *at_relname; |
208 | | char *at_nspname; |
209 | | char *at_datname; |
210 | | } autovac_table; |
211 | | |
212 | | /*------------- |
213 | | * This struct holds information about a single worker's whereabouts. We keep |
214 | | * an array of these in shared memory, sized according to |
215 | | * autovacuum_worker_slots. |
216 | | * |
217 | | * wi_links entry into free list or running list |
218 | | * wi_dboid OID of the database this worker is supposed to work on |
219 | | * wi_tableoid OID of the table currently being vacuumed, if any |
220 | | * wi_sharedrel flag indicating whether table is marked relisshared |
221 | | * wi_proc pointer to PGPROC of the running worker, NULL if not started |
222 | | * wi_launchtime Time at which this worker was launched |
223 | | * wi_dobalance Whether this worker should be included in balance calculations |
224 | | * |
225 | | * All fields are protected by AutovacuumLock, except for wi_tableoid and |
226 | | * wi_sharedrel which are protected by AutovacuumScheduleLock (note these |
227 | | * two fields are read-only for everyone except that worker itself). |
228 | | *------------- |
229 | | */ |
230 | | typedef struct WorkerInfoData |
231 | | { |
232 | | dlist_node wi_links; |
233 | | Oid wi_dboid; |
234 | | Oid wi_tableoid; |
235 | | PGPROC *wi_proc; |
236 | | TimestampTz wi_launchtime; |
237 | | pg_atomic_flag wi_dobalance; |
238 | | bool wi_sharedrel; |
239 | | } WorkerInfoData; |
240 | | |
241 | | typedef struct WorkerInfoData *WorkerInfo; |
242 | | |
243 | | /* |
244 | | * Possible signals received by the launcher from remote processes. These are |
245 | | * stored atomically in shared memory so that other processes can set them |
246 | | * without locking. |
247 | | */ |
248 | | typedef enum |
249 | | { |
250 | | AutoVacForkFailed, /* failed trying to start a worker */ |
251 | | AutoVacRebalance, /* rebalance the cost limits */ |
252 | | } AutoVacuumSignal; |
253 | | |
254 | | #define AutoVacNumSignals (AutoVacRebalance + 1) |
255 | | |
256 | | /* |
257 | | * Autovacuum workitem array, stored in AutoVacuumShmem->av_workItems. This |
258 | | * list is mostly protected by AutovacuumLock, except that if an item is |
259 | | * marked 'active' other processes must not modify the work-identifying |
260 | | * members. |
261 | | */ |
262 | | typedef struct AutoVacuumWorkItem |
263 | | { |
264 | | AutoVacuumWorkItemType avw_type; |
265 | | bool avw_used; /* below data is valid */ |
266 | | bool avw_active; /* being processed */ |
267 | | Oid avw_database; |
268 | | Oid avw_relation; |
269 | | BlockNumber avw_blockNumber; |
270 | | } AutoVacuumWorkItem; |
271 | | |
272 | 0 | #define NUM_WORKITEMS 256 |
273 | | |
274 | | /*------------- |
275 | | * The main autovacuum shmem struct. On shared memory we store this main |
276 | | * struct and the array of WorkerInfo structs. This struct keeps: |
277 | | * |
278 | | * av_signal set by other processes to indicate various conditions |
279 | | * av_launcherpid the PID of the autovacuum launcher |
280 | | * av_freeWorkers the WorkerInfo freelist |
281 | | * av_runningWorkers the WorkerInfo non-free queue |
282 | | * av_startingWorker pointer to WorkerInfo currently being started (cleared by |
283 | | * the worker itself as soon as it's up and running) |
284 | | * av_workItems work item array |
285 | | * av_nworkersForBalance the number of autovacuum workers to use when |
286 | | * calculating the per worker cost limit |
287 | | * |
288 | | * This struct is protected by AutovacuumLock, except for av_signal and parts |
289 | | * of the worker list (see above). |
290 | | *------------- |
291 | | */ |
292 | | typedef struct |
293 | | { |
294 | | sig_atomic_t av_signal[AutoVacNumSignals]; |
295 | | pid_t av_launcherpid; |
296 | | dclist_head av_freeWorkers; |
297 | | dlist_head av_runningWorkers; |
298 | | WorkerInfo av_startingWorker; |
299 | | AutoVacuumWorkItem av_workItems[NUM_WORKITEMS]; |
300 | | pg_atomic_uint32 av_nworkersForBalance; |
301 | | } AutoVacuumShmemStruct; |
302 | | |
303 | | static AutoVacuumShmemStruct *AutoVacuumShmem; |
304 | | |
305 | | /* |
306 | | * the database list (of avl_dbase elements) in the launcher, and the context |
307 | | * that contains it |
308 | | */ |
309 | | static dlist_head DatabaseList = DLIST_STATIC_INIT(DatabaseList); |
310 | | static MemoryContext DatabaseListCxt = NULL; |
311 | | |
312 | | /* |
313 | | * Dummy pointer to persuade Valgrind that we've not leaked the array of |
314 | | * avl_dbase structs. Make it global to ensure the compiler doesn't |
315 | | * optimize it away. |
316 | | */ |
317 | | #ifdef USE_VALGRIND |
318 | | extern avl_dbase *avl_dbase_array; |
319 | | avl_dbase *avl_dbase_array; |
320 | | #endif |
321 | | |
322 | | /* Pointer to my own WorkerInfo, valid on each worker */ |
323 | | static WorkerInfo MyWorkerInfo = NULL; |
324 | | |
325 | | /* PID of launcher, valid only in worker while shutting down */ |
326 | | int AutovacuumLauncherPid = 0; |
327 | | |
328 | | static Oid do_start_worker(void); |
329 | | static void ProcessAutoVacLauncherInterrupts(void); |
330 | | pg_noreturn static void AutoVacLauncherShutdown(void); |
331 | | static void launcher_determine_sleep(bool canlaunch, bool recursing, |
332 | | struct timeval *nap); |
333 | | static void launch_worker(TimestampTz now); |
334 | | static List *get_database_list(void); |
335 | | static void rebuild_database_list(Oid newdb); |
336 | | static int db_comparator(const void *a, const void *b); |
337 | | static void autovac_recalculate_workers_for_balance(void); |
338 | | |
339 | | static void do_autovacuum(void); |
340 | | static void FreeWorkerInfo(int code, Datum arg); |
341 | | |
342 | | static autovac_table *table_recheck_autovac(Oid relid, HTAB *table_toast_map, |
343 | | TupleDesc pg_class_desc, |
344 | | int effective_multixact_freeze_max_age); |
345 | | static void recheck_relation_needs_vacanalyze(Oid relid, AutoVacOpts *avopts, |
346 | | Form_pg_class classForm, |
347 | | int effective_multixact_freeze_max_age, |
348 | | bool *dovacuum, bool *doanalyze, bool *wraparound); |
349 | | static void relation_needs_vacanalyze(Oid relid, AutoVacOpts *relopts, |
350 | | Form_pg_class classForm, |
351 | | PgStat_StatTabEntry *tabentry, |
352 | | int effective_multixact_freeze_max_age, |
353 | | bool *dovacuum, bool *doanalyze, bool *wraparound); |
354 | | |
355 | | static void autovacuum_do_vac_analyze(autovac_table *tab, |
356 | | BufferAccessStrategy bstrategy); |
357 | | static AutoVacOpts *extract_autovac_opts(HeapTuple tup, |
358 | | TupleDesc pg_class_desc); |
359 | | static void perform_work_item(AutoVacuumWorkItem *workitem); |
360 | | static void autovac_report_activity(autovac_table *tab); |
361 | | static void autovac_report_workitem(AutoVacuumWorkItem *workitem, |
362 | | const char *nspname, const char *relname); |
363 | | static void avl_sigusr2_handler(SIGNAL_ARGS); |
364 | | static bool av_worker_available(void); |
365 | | static void check_av_worker_gucs(void); |
366 | | |
367 | | |
368 | | |
369 | | /******************************************************************** |
370 | | * AUTOVACUUM LAUNCHER CODE |
371 | | ********************************************************************/ |
372 | | |
373 | | /* |
374 | | * Main entry point for the autovacuum launcher process. |
375 | | */ |
376 | | void |
377 | | AutoVacLauncherMain(const void *startup_data, size_t startup_data_len) |
378 | 0 | { |
379 | 0 | sigjmp_buf local_sigjmp_buf; |
380 | |
|
381 | 0 | Assert(startup_data_len == 0); |
382 | | |
383 | | /* Release postmaster's working memory context */ |
384 | 0 | if (PostmasterContext) |
385 | 0 | { |
386 | 0 | MemoryContextDelete(PostmasterContext); |
387 | 0 | PostmasterContext = NULL; |
388 | 0 | } |
389 | |
|
390 | 0 | MyBackendType = B_AUTOVAC_LAUNCHER; |
391 | 0 | init_ps_display(NULL); |
392 | |
|
393 | 0 | ereport(DEBUG1, |
394 | 0 | (errmsg_internal("autovacuum launcher started"))); |
395 | | |
396 | 0 | if (PostAuthDelay) |
397 | 0 | pg_usleep(PostAuthDelay * 1000000L); |
398 | |
|
399 | 0 | Assert(GetProcessingMode() == InitProcessing); |
400 | | |
401 | | /* |
402 | | * Set up signal handlers. We operate on databases much like a regular |
403 | | * backend, so we use the same signal handling. See equivalent code in |
404 | | * tcop/postgres.c. |
405 | | */ |
406 | 0 | pqsignal(SIGHUP, SignalHandlerForConfigReload); |
407 | 0 | pqsignal(SIGINT, StatementCancelHandler); |
408 | 0 | pqsignal(SIGTERM, SignalHandlerForShutdownRequest); |
409 | | /* SIGQUIT handler was already set up by InitPostmasterChild */ |
410 | |
|
411 | 0 | InitializeTimeouts(); /* establishes SIGALRM handler */ |
412 | |
|
413 | 0 | pqsignal(SIGPIPE, SIG_IGN); |
414 | 0 | pqsignal(SIGUSR1, procsignal_sigusr1_handler); |
415 | 0 | pqsignal(SIGUSR2, avl_sigusr2_handler); |
416 | 0 | pqsignal(SIGFPE, FloatExceptionHandler); |
417 | 0 | pqsignal(SIGCHLD, SIG_DFL); |
418 | | |
419 | | /* |
420 | | * Create a per-backend PGPROC struct in shared memory. We must do this |
421 | | * before we can use LWLocks or access any shared memory. |
422 | | */ |
423 | 0 | InitProcess(); |
424 | | |
425 | | /* Early initialization */ |
426 | 0 | BaseInit(); |
427 | |
|
428 | 0 | InitPostgres(NULL, InvalidOid, NULL, InvalidOid, 0, NULL); |
429 | |
|
430 | 0 | SetProcessingMode(NormalProcessing); |
431 | | |
432 | | /* |
433 | | * Create a memory context that we will do all our work in. We do this so |
434 | | * that we can reset the context during error recovery and thereby avoid |
435 | | * possible memory leaks. |
436 | | */ |
437 | 0 | AutovacMemCxt = AllocSetContextCreate(TopMemoryContext, |
438 | 0 | "Autovacuum Launcher", |
439 | 0 | ALLOCSET_DEFAULT_SIZES); |
440 | 0 | MemoryContextSwitchTo(AutovacMemCxt); |
441 | | |
442 | | /* |
443 | | * If an exception is encountered, processing resumes here. |
444 | | * |
445 | | * This code is a stripped down version of PostgresMain error recovery. |
446 | | * |
447 | | * Note that we use sigsetjmp(..., 1), so that the prevailing signal mask |
448 | | * (to wit, BlockSig) will be restored when longjmp'ing to here. Thus, |
449 | | * signals other than SIGQUIT will be blocked until we complete error |
450 | | * recovery. It might seem that this policy makes the HOLD_INTERRUPTS() |
451 | | * call redundant, but it is not since InterruptPending might be set |
452 | | * already. |
453 | | */ |
454 | 0 | if (sigsetjmp(local_sigjmp_buf, 1) != 0) |
455 | 0 | { |
456 | | /* since not using PG_TRY, must reset error stack by hand */ |
457 | 0 | error_context_stack = NULL; |
458 | | |
459 | | /* Prevents interrupts while cleaning up */ |
460 | 0 | HOLD_INTERRUPTS(); |
461 | | |
462 | | /* Forget any pending QueryCancel or timeout request */ |
463 | 0 | disable_all_timeouts(false); |
464 | 0 | QueryCancelPending = false; /* second to avoid race condition */ |
465 | | |
466 | | /* Report the error to the server log */ |
467 | 0 | EmitErrorReport(); |
468 | | |
469 | | /* Abort the current transaction in order to recover */ |
470 | 0 | AbortCurrentTransaction(); |
471 | | |
472 | | /* |
473 | | * Release any other resources, for the case where we were not in a |
474 | | * transaction. |
475 | | */ |
476 | 0 | LWLockReleaseAll(); |
477 | 0 | pgstat_report_wait_end(); |
478 | 0 | pgaio_error_cleanup(); |
479 | 0 | UnlockBuffers(); |
480 | | /* this is probably dead code, but let's be safe: */ |
481 | 0 | if (AuxProcessResourceOwner) |
482 | 0 | ReleaseAuxProcessResources(false); |
483 | 0 | AtEOXact_Buffers(false); |
484 | 0 | AtEOXact_SMgr(); |
485 | 0 | AtEOXact_Files(false); |
486 | 0 | AtEOXact_HashTables(false); |
487 | | |
488 | | /* |
489 | | * Now return to normal top-level context and clear ErrorContext for |
490 | | * next time. |
491 | | */ |
492 | 0 | MemoryContextSwitchTo(AutovacMemCxt); |
493 | 0 | FlushErrorState(); |
494 | | |
495 | | /* Flush any leaked data in the top-level context */ |
496 | 0 | MemoryContextReset(AutovacMemCxt); |
497 | | |
498 | | /* don't leave dangling pointers to freed memory */ |
499 | 0 | DatabaseListCxt = NULL; |
500 | 0 | dlist_init(&DatabaseList); |
501 | | |
502 | | /* Now we can allow interrupts again */ |
503 | 0 | RESUME_INTERRUPTS(); |
504 | | |
505 | | /* if in shutdown mode, no need for anything further; just go away */ |
506 | 0 | if (ShutdownRequestPending) |
507 | 0 | AutoVacLauncherShutdown(); |
508 | | |
509 | | /* |
510 | | * Sleep at least 1 second after any error. We don't want to be |
511 | | * filling the error logs as fast as we can. |
512 | | */ |
513 | 0 | pg_usleep(1000000L); |
514 | 0 | } |
515 | | |
516 | | /* We can now handle ereport(ERROR) */ |
517 | 0 | PG_exception_stack = &local_sigjmp_buf; |
518 | | |
519 | | /* must unblock signals before calling rebuild_database_list */ |
520 | 0 | sigprocmask(SIG_SETMASK, &UnBlockSig, NULL); |
521 | | |
522 | | /* |
523 | | * Set always-secure search path. Launcher doesn't connect to a database, |
524 | | * so this has no effect. |
525 | | */ |
526 | 0 | SetConfigOption("search_path", "", PGC_SUSET, PGC_S_OVERRIDE); |
527 | | |
528 | | /* |
529 | | * Force zero_damaged_pages OFF in the autovac process, even if it is set |
530 | | * in postgresql.conf. We don't really want such a dangerous option being |
531 | | * applied non-interactively. |
532 | | */ |
533 | 0 | SetConfigOption("zero_damaged_pages", "false", PGC_SUSET, PGC_S_OVERRIDE); |
534 | | |
535 | | /* |
536 | | * Force settable timeouts off to avoid letting these settings prevent |
537 | | * regular maintenance from being executed. |
538 | | */ |
539 | 0 | SetConfigOption("statement_timeout", "0", PGC_SUSET, PGC_S_OVERRIDE); |
540 | 0 | SetConfigOption("transaction_timeout", "0", PGC_SUSET, PGC_S_OVERRIDE); |
541 | 0 | SetConfigOption("lock_timeout", "0", PGC_SUSET, PGC_S_OVERRIDE); |
542 | 0 | SetConfigOption("idle_in_transaction_session_timeout", "0", |
543 | 0 | PGC_SUSET, PGC_S_OVERRIDE); |
544 | | |
545 | | /* |
546 | | * Force default_transaction_isolation to READ COMMITTED. We don't want |
547 | | * to pay the overhead of serializable mode, nor add any risk of causing |
548 | | * deadlocks or delaying other transactions. |
549 | | */ |
550 | 0 | SetConfigOption("default_transaction_isolation", "read committed", |
551 | 0 | PGC_SUSET, PGC_S_OVERRIDE); |
552 | | |
553 | | /* |
554 | | * Even when system is configured to use a different fetch consistency, |
555 | | * for autovac we always want fresh stats. |
556 | | */ |
557 | 0 | SetConfigOption("stats_fetch_consistency", "none", PGC_SUSET, PGC_S_OVERRIDE); |
558 | | |
559 | | /* |
560 | | * In emergency mode, just start a worker (unless shutdown was requested) |
561 | | * and go away. |
562 | | */ |
563 | 0 | if (!AutoVacuumingActive()) |
564 | 0 | { |
565 | 0 | if (!ShutdownRequestPending) |
566 | 0 | do_start_worker(); |
567 | 0 | proc_exit(0); /* done */ |
568 | 0 | } |
569 | |
|
570 | 0 | AutoVacuumShmem->av_launcherpid = MyProcPid; |
571 | | |
572 | | /* |
573 | | * Create the initial database list. The invariant we want this list to |
574 | | * keep is that it's ordered by decreasing next_worker. As soon as an |
575 | | * entry is updated to a higher time, it will be moved to the front (which |
576 | | * is correct because the only operation is to add autovacuum_naptime to |
577 | | * the entry, and time always increases). |
578 | | */ |
579 | 0 | rebuild_database_list(InvalidOid); |
580 | | |
581 | | /* loop until shutdown request */ |
582 | 0 | while (!ShutdownRequestPending) |
583 | 0 | { |
584 | 0 | struct timeval nap; |
585 | 0 | TimestampTz current_time = 0; |
586 | 0 | bool can_launch; |
587 | | |
588 | | /* |
589 | | * This loop is a bit different from the normal use of WaitLatch, |
590 | | * because we'd like to sleep before the first launch of a child |
591 | | * process. So it's WaitLatch, then ResetLatch, then check for |
592 | | * wakening conditions. |
593 | | */ |
594 | |
|
595 | 0 | launcher_determine_sleep(av_worker_available(), false, &nap); |
596 | | |
597 | | /* |
598 | | * Wait until naptime expires or we get some type of signal (all the |
599 | | * signal handlers will wake us by calling SetLatch). |
600 | | */ |
601 | 0 | (void) WaitLatch(MyLatch, |
602 | 0 | WL_LATCH_SET | WL_TIMEOUT | WL_EXIT_ON_PM_DEATH, |
603 | 0 | (nap.tv_sec * 1000L) + (nap.tv_usec / 1000L), |
604 | 0 | WAIT_EVENT_AUTOVACUUM_MAIN); |
605 | |
|
606 | 0 | ResetLatch(MyLatch); |
607 | |
|
608 | 0 | ProcessAutoVacLauncherInterrupts(); |
609 | | |
610 | | /* |
611 | | * a worker finished, or postmaster signaled failure to start a worker |
612 | | */ |
613 | 0 | if (got_SIGUSR2) |
614 | 0 | { |
615 | 0 | got_SIGUSR2 = false; |
616 | | |
617 | | /* rebalance cost limits, if needed */ |
618 | 0 | if (AutoVacuumShmem->av_signal[AutoVacRebalance]) |
619 | 0 | { |
620 | 0 | LWLockAcquire(AutovacuumLock, LW_EXCLUSIVE); |
621 | 0 | AutoVacuumShmem->av_signal[AutoVacRebalance] = false; |
622 | 0 | autovac_recalculate_workers_for_balance(); |
623 | 0 | LWLockRelease(AutovacuumLock); |
624 | 0 | } |
625 | |
|
626 | 0 | if (AutoVacuumShmem->av_signal[AutoVacForkFailed]) |
627 | 0 | { |
628 | | /* |
629 | | * If the postmaster failed to start a new worker, we sleep |
630 | | * for a little while and resend the signal. The new worker's |
631 | | * state is still in memory, so this is sufficient. After |
632 | | * that, we restart the main loop. |
633 | | * |
634 | | * XXX should we put a limit to the number of times we retry? |
635 | | * I don't think it makes much sense, because a future start |
636 | | * of a worker will continue to fail in the same way. |
637 | | */ |
638 | 0 | AutoVacuumShmem->av_signal[AutoVacForkFailed] = false; |
639 | 0 | pg_usleep(1000000L); /* 1s */ |
640 | 0 | SendPostmasterSignal(PMSIGNAL_START_AUTOVAC_WORKER); |
641 | 0 | continue; |
642 | 0 | } |
643 | 0 | } |
644 | | |
645 | | /* |
646 | | * There are some conditions that we need to check before trying to |
647 | | * start a worker. First, we need to make sure that there is a worker |
648 | | * slot available. Second, we need to make sure that no other worker |
649 | | * failed while starting up. |
650 | | */ |
651 | | |
652 | 0 | current_time = GetCurrentTimestamp(); |
653 | 0 | LWLockAcquire(AutovacuumLock, LW_SHARED); |
654 | |
|
655 | 0 | can_launch = av_worker_available(); |
656 | |
|
657 | 0 | if (AutoVacuumShmem->av_startingWorker != NULL) |
658 | 0 | { |
659 | 0 | int waittime; |
660 | 0 | WorkerInfo worker = AutoVacuumShmem->av_startingWorker; |
661 | | |
662 | | /* |
663 | | * We can't launch another worker when another one is still |
664 | | * starting up (or failed while doing so), so just sleep for a bit |
665 | | * more; that worker will wake us up again as soon as it's ready. |
666 | | * We will only wait autovacuum_naptime seconds (up to a maximum |
667 | | * of 60 seconds) for this to happen however. Note that failure |
668 | | * to connect to a particular database is not a problem here, |
669 | | * because the worker removes itself from the startingWorker |
670 | | * pointer before trying to connect. Problems detected by the |
671 | | * postmaster (like fork() failure) are also reported and handled |
672 | | * differently. The only problems that may cause this code to |
673 | | * fire are errors in the earlier sections of AutoVacWorkerMain, |
674 | | * before the worker removes the WorkerInfo from the |
675 | | * startingWorker pointer. |
676 | | */ |
677 | 0 | waittime = Min(autovacuum_naptime, 60) * 1000; |
678 | 0 | if (TimestampDifferenceExceeds(worker->wi_launchtime, current_time, |
679 | 0 | waittime)) |
680 | 0 | { |
681 | 0 | LWLockRelease(AutovacuumLock); |
682 | 0 | LWLockAcquire(AutovacuumLock, LW_EXCLUSIVE); |
683 | | |
684 | | /* |
685 | | * No other process can put a worker in starting mode, so if |
686 | | * startingWorker is still INVALID after exchanging our lock, |
687 | | * we assume it's the same one we saw above (so we don't |
688 | | * recheck the launch time). |
689 | | */ |
690 | 0 | if (AutoVacuumShmem->av_startingWorker != NULL) |
691 | 0 | { |
692 | 0 | worker = AutoVacuumShmem->av_startingWorker; |
693 | 0 | worker->wi_dboid = InvalidOid; |
694 | 0 | worker->wi_tableoid = InvalidOid; |
695 | 0 | worker->wi_sharedrel = false; |
696 | 0 | worker->wi_proc = NULL; |
697 | 0 | worker->wi_launchtime = 0; |
698 | 0 | dclist_push_head(&AutoVacuumShmem->av_freeWorkers, |
699 | 0 | &worker->wi_links); |
700 | 0 | AutoVacuumShmem->av_startingWorker = NULL; |
701 | 0 | ereport(WARNING, |
702 | 0 | errmsg("autovacuum worker took too long to start; canceled")); |
703 | 0 | } |
704 | 0 | } |
705 | 0 | else |
706 | 0 | can_launch = false; |
707 | 0 | } |
708 | 0 | LWLockRelease(AutovacuumLock); /* either shared or exclusive */ |
709 | | |
710 | | /* if we can't do anything, just go back to sleep */ |
711 | 0 | if (!can_launch) |
712 | 0 | continue; |
713 | | |
714 | | /* We're OK to start a new worker */ |
715 | | |
716 | 0 | if (dlist_is_empty(&DatabaseList)) |
717 | 0 | { |
718 | | /* |
719 | | * Special case when the list is empty: start a worker right away. |
720 | | * This covers the initial case, when no database is in pgstats |
721 | | * (thus the list is empty). Note that the constraints in |
722 | | * launcher_determine_sleep keep us from starting workers too |
723 | | * quickly (at most once every autovacuum_naptime when the list is |
724 | | * empty). |
725 | | */ |
726 | 0 | launch_worker(current_time); |
727 | 0 | } |
728 | 0 | else |
729 | 0 | { |
730 | | /* |
731 | | * because rebuild_database_list constructs a list with most |
732 | | * distant adl_next_worker first, we obtain our database from the |
733 | | * tail of the list. |
734 | | */ |
735 | 0 | avl_dbase *avdb; |
736 | |
|
737 | 0 | avdb = dlist_tail_element(avl_dbase, adl_node, &DatabaseList); |
738 | | |
739 | | /* |
740 | | * launch a worker if next_worker is right now or it is in the |
741 | | * past |
742 | | */ |
743 | 0 | if (TimestampDifferenceExceeds(avdb->adl_next_worker, |
744 | 0 | current_time, 0)) |
745 | 0 | launch_worker(current_time); |
746 | 0 | } |
747 | 0 | } |
748 | | |
749 | 0 | AutoVacLauncherShutdown(); |
750 | 0 | } |
751 | | |
752 | | /* |
753 | | * Process any new interrupts. |
754 | | */ |
755 | | static void |
756 | | ProcessAutoVacLauncherInterrupts(void) |
757 | 0 | { |
758 | | /* the normal shutdown case */ |
759 | 0 | if (ShutdownRequestPending) |
760 | 0 | AutoVacLauncherShutdown(); |
761 | |
|
762 | 0 | if (ConfigReloadPending) |
763 | 0 | { |
764 | 0 | int autovacuum_max_workers_prev = autovacuum_max_workers; |
765 | |
|
766 | 0 | ConfigReloadPending = false; |
767 | 0 | ProcessConfigFile(PGC_SIGHUP); |
768 | | |
769 | | /* shutdown requested in config file? */ |
770 | 0 | if (!AutoVacuumingActive()) |
771 | 0 | AutoVacLauncherShutdown(); |
772 | | |
773 | | /* |
774 | | * If autovacuum_max_workers changed, emit a WARNING if |
775 | | * autovacuum_worker_slots < autovacuum_max_workers. If it didn't |
776 | | * change, skip this to avoid too many repeated log messages. |
777 | | */ |
778 | 0 | if (autovacuum_max_workers_prev != autovacuum_max_workers) |
779 | 0 | check_av_worker_gucs(); |
780 | | |
781 | | /* rebuild the list in case the naptime changed */ |
782 | 0 | rebuild_database_list(InvalidOid); |
783 | 0 | } |
784 | | |
785 | | /* Process barrier events */ |
786 | 0 | if (ProcSignalBarrierPending) |
787 | 0 | ProcessProcSignalBarrier(); |
788 | | |
789 | | /* Perform logging of memory contexts of this process */ |
790 | 0 | if (LogMemoryContextPending) |
791 | 0 | ProcessLogMemoryContextInterrupt(); |
792 | | |
793 | | /* Process sinval catchup interrupts that happened while sleeping */ |
794 | 0 | ProcessCatchupInterrupt(); |
795 | 0 | } |
796 | | |
797 | | /* |
798 | | * Perform a normal exit from the autovac launcher. |
799 | | */ |
800 | | static void |
801 | | AutoVacLauncherShutdown(void) |
802 | | { |
803 | | ereport(DEBUG1, |
804 | | (errmsg_internal("autovacuum launcher shutting down"))); |
805 | | AutoVacuumShmem->av_launcherpid = 0; |
806 | | |
807 | | proc_exit(0); /* done */ |
808 | | } |
809 | | |
810 | | /* |
811 | | * Determine the time to sleep, based on the database list. |
812 | | * |
813 | | * The "canlaunch" parameter indicates whether we can start a worker right now, |
814 | | * for example due to the workers being all busy. If this is false, we will |
815 | | * cause a long sleep, which will be interrupted when a worker exits. |
816 | | */ |
817 | | static void |
818 | | launcher_determine_sleep(bool canlaunch, bool recursing, struct timeval *nap) |
819 | 0 | { |
820 | | /* |
821 | | * We sleep until the next scheduled vacuum. We trust that when the |
822 | | * database list was built, care was taken so that no entries have times |
823 | | * in the past; if the first entry has too close a next_worker value, or a |
824 | | * time in the past, we will sleep a small nominal time. |
825 | | */ |
826 | 0 | if (!canlaunch) |
827 | 0 | { |
828 | 0 | nap->tv_sec = autovacuum_naptime; |
829 | 0 | nap->tv_usec = 0; |
830 | 0 | } |
831 | 0 | else if (!dlist_is_empty(&DatabaseList)) |
832 | 0 | { |
833 | 0 | TimestampTz current_time = GetCurrentTimestamp(); |
834 | 0 | TimestampTz next_wakeup; |
835 | 0 | avl_dbase *avdb; |
836 | 0 | long secs; |
837 | 0 | int usecs; |
838 | |
|
839 | 0 | avdb = dlist_tail_element(avl_dbase, adl_node, &DatabaseList); |
840 | |
|
841 | 0 | next_wakeup = avdb->adl_next_worker; |
842 | 0 | TimestampDifference(current_time, next_wakeup, &secs, &usecs); |
843 | |
|
844 | 0 | nap->tv_sec = secs; |
845 | 0 | nap->tv_usec = usecs; |
846 | 0 | } |
847 | 0 | else |
848 | 0 | { |
849 | | /* list is empty, sleep for whole autovacuum_naptime seconds */ |
850 | 0 | nap->tv_sec = autovacuum_naptime; |
851 | 0 | nap->tv_usec = 0; |
852 | 0 | } |
853 | | |
854 | | /* |
855 | | * If the result is exactly zero, it means a database had an entry with |
856 | | * time in the past. Rebuild the list so that the databases are evenly |
857 | | * distributed again, and recalculate the time to sleep. This can happen |
858 | | * if there are more tables needing vacuum than workers, and they all take |
859 | | * longer to vacuum than autovacuum_naptime. |
860 | | * |
861 | | * We only recurse once. rebuild_database_list should always return times |
862 | | * in the future, but it seems best not to trust too much on that. |
863 | | */ |
864 | 0 | if (nap->tv_sec == 0 && nap->tv_usec == 0 && !recursing) |
865 | 0 | { |
866 | 0 | rebuild_database_list(InvalidOid); |
867 | 0 | launcher_determine_sleep(canlaunch, true, nap); |
868 | 0 | return; |
869 | 0 | } |
870 | | |
871 | | /* The smallest time we'll allow the launcher to sleep. */ |
872 | 0 | if (nap->tv_sec <= 0 && nap->tv_usec <= MIN_AUTOVAC_SLEEPTIME * 1000) |
873 | 0 | { |
874 | 0 | nap->tv_sec = 0; |
875 | 0 | nap->tv_usec = MIN_AUTOVAC_SLEEPTIME * 1000; |
876 | 0 | } |
877 | | |
878 | | /* |
879 | | * If the sleep time is too large, clamp it to an arbitrary maximum (plus |
880 | | * any fractional seconds, for simplicity). This avoids an essentially |
881 | | * infinite sleep in strange cases like the system clock going backwards a |
882 | | * few years. |
883 | | */ |
884 | 0 | if (nap->tv_sec > MAX_AUTOVAC_SLEEPTIME) |
885 | 0 | nap->tv_sec = MAX_AUTOVAC_SLEEPTIME; |
886 | 0 | } |
887 | | |
888 | | /* |
889 | | * Build an updated DatabaseList. It must only contain databases that appear |
890 | | * in pgstats, and must be sorted by next_worker from highest to lowest, |
891 | | * distributed regularly across the next autovacuum_naptime interval. |
892 | | * |
893 | | * Receives the Oid of the database that made this list be generated (we call |
894 | | * this the "new" database, because when the database was already present on |
895 | | * the list, we expect that this function is not called at all). The |
896 | | * preexisting list, if any, will be used to preserve the order of the |
897 | | * databases in the autovacuum_naptime period. The new database is put at the |
898 | | * end of the interval. The actual values are not saved, which should not be |
899 | | * much of a problem. |
900 | | */ |
901 | | static void |
902 | | rebuild_database_list(Oid newdb) |
903 | 0 | { |
904 | 0 | List *dblist; |
905 | 0 | ListCell *cell; |
906 | 0 | MemoryContext newcxt; |
907 | 0 | MemoryContext oldcxt; |
908 | 0 | MemoryContext tmpcxt; |
909 | 0 | HASHCTL hctl; |
910 | 0 | int score; |
911 | 0 | int nelems; |
912 | 0 | HTAB *dbhash; |
913 | 0 | dlist_iter iter; |
914 | |
|
915 | 0 | newcxt = AllocSetContextCreate(AutovacMemCxt, |
916 | 0 | "Autovacuum database list", |
917 | 0 | ALLOCSET_DEFAULT_SIZES); |
918 | 0 | tmpcxt = AllocSetContextCreate(newcxt, |
919 | 0 | "Autovacuum database list (tmp)", |
920 | 0 | ALLOCSET_DEFAULT_SIZES); |
921 | 0 | oldcxt = MemoryContextSwitchTo(tmpcxt); |
922 | | |
923 | | /* |
924 | | * Implementing this is not as simple as it sounds, because we need to put |
925 | | * the new database at the end of the list; next the databases that were |
926 | | * already on the list, and finally (at the tail of the list) all the |
927 | | * other databases that are not on the existing list. |
928 | | * |
929 | | * To do this, we build an empty hash table of scored databases. We will |
930 | | * start with the lowest score (zero) for the new database, then |
931 | | * increasing scores for the databases in the existing list, in order, and |
932 | | * lastly increasing scores for all databases gotten via |
933 | | * get_database_list() that are not already on the hash. |
934 | | * |
935 | | * Then we will put all the hash elements into an array, sort the array by |
936 | | * score, and finally put the array elements into the new doubly linked |
937 | | * list. |
938 | | */ |
939 | 0 | hctl.keysize = sizeof(Oid); |
940 | 0 | hctl.entrysize = sizeof(avl_dbase); |
941 | 0 | hctl.hcxt = tmpcxt; |
942 | 0 | dbhash = hash_create("autovacuum db hash", 20, &hctl, /* magic number here |
943 | | * FIXME */ |
944 | 0 | HASH_ELEM | HASH_BLOBS | HASH_CONTEXT); |
945 | | |
946 | | /* start by inserting the new database */ |
947 | 0 | score = 0; |
948 | 0 | if (OidIsValid(newdb)) |
949 | 0 | { |
950 | 0 | avl_dbase *db; |
951 | 0 | PgStat_StatDBEntry *entry; |
952 | | |
953 | | /* only consider this database if it has a pgstat entry */ |
954 | 0 | entry = pgstat_fetch_stat_dbentry(newdb); |
955 | 0 | if (entry != NULL) |
956 | 0 | { |
957 | | /* we assume it isn't found because the hash was just created */ |
958 | 0 | db = hash_search(dbhash, &newdb, HASH_ENTER, NULL); |
959 | | |
960 | | /* hash_search already filled in the key */ |
961 | 0 | db->adl_score = score++; |
962 | | /* next_worker is filled in later */ |
963 | 0 | } |
964 | 0 | } |
965 | | |
966 | | /* Now insert the databases from the existing list */ |
967 | 0 | dlist_foreach(iter, &DatabaseList) |
968 | 0 | { |
969 | 0 | avl_dbase *avdb = dlist_container(avl_dbase, adl_node, iter.cur); |
970 | 0 | avl_dbase *db; |
971 | 0 | bool found; |
972 | 0 | PgStat_StatDBEntry *entry; |
973 | | |
974 | | /* |
975 | | * skip databases with no stat entries -- in particular, this gets rid |
976 | | * of dropped databases |
977 | | */ |
978 | 0 | entry = pgstat_fetch_stat_dbentry(avdb->adl_datid); |
979 | 0 | if (entry == NULL) |
980 | 0 | continue; |
981 | | |
982 | 0 | db = hash_search(dbhash, &(avdb->adl_datid), HASH_ENTER, &found); |
983 | |
|
984 | 0 | if (!found) |
985 | 0 | { |
986 | | /* hash_search already filled in the key */ |
987 | 0 | db->adl_score = score++; |
988 | | /* next_worker is filled in later */ |
989 | 0 | } |
990 | 0 | } |
991 | | |
992 | | /* finally, insert all qualifying databases not previously inserted */ |
993 | 0 | dblist = get_database_list(); |
994 | 0 | foreach(cell, dblist) |
995 | 0 | { |
996 | 0 | avw_dbase *avdb = lfirst(cell); |
997 | 0 | avl_dbase *db; |
998 | 0 | bool found; |
999 | 0 | PgStat_StatDBEntry *entry; |
1000 | | |
1001 | | /* only consider databases with a pgstat entry */ |
1002 | 0 | entry = pgstat_fetch_stat_dbentry(avdb->adw_datid); |
1003 | 0 | if (entry == NULL) |
1004 | 0 | continue; |
1005 | | |
1006 | 0 | db = hash_search(dbhash, &(avdb->adw_datid), HASH_ENTER, &found); |
1007 | | /* only update the score if the database was not already on the hash */ |
1008 | 0 | if (!found) |
1009 | 0 | { |
1010 | | /* hash_search already filled in the key */ |
1011 | 0 | db->adl_score = score++; |
1012 | | /* next_worker is filled in later */ |
1013 | 0 | } |
1014 | 0 | } |
1015 | 0 | nelems = score; |
1016 | | |
1017 | | /* from here on, the allocated memory belongs to the new list */ |
1018 | 0 | MemoryContextSwitchTo(newcxt); |
1019 | 0 | dlist_init(&DatabaseList); |
1020 | |
|
1021 | 0 | if (nelems > 0) |
1022 | 0 | { |
1023 | 0 | TimestampTz current_time; |
1024 | 0 | int millis_increment; |
1025 | 0 | avl_dbase *dbary; |
1026 | 0 | avl_dbase *db; |
1027 | 0 | HASH_SEQ_STATUS seq; |
1028 | 0 | int i; |
1029 | | |
1030 | | /* put all the hash elements into an array */ |
1031 | 0 | dbary = palloc(nelems * sizeof(avl_dbase)); |
1032 | | /* keep Valgrind quiet */ |
1033 | | #ifdef USE_VALGRIND |
1034 | | avl_dbase_array = dbary; |
1035 | | #endif |
1036 | |
|
1037 | 0 | i = 0; |
1038 | 0 | hash_seq_init(&seq, dbhash); |
1039 | 0 | while ((db = hash_seq_search(&seq)) != NULL) |
1040 | 0 | memcpy(&(dbary[i++]), db, sizeof(avl_dbase)); |
1041 | | |
1042 | | /* sort the array */ |
1043 | 0 | qsort(dbary, nelems, sizeof(avl_dbase), db_comparator); |
1044 | | |
1045 | | /* |
1046 | | * Determine the time interval between databases in the schedule. If |
1047 | | * we see that the configured naptime would take us to sleep times |
1048 | | * lower than our min sleep time (which launcher_determine_sleep is |
1049 | | * coded not to allow), silently use a larger naptime (but don't touch |
1050 | | * the GUC variable). |
1051 | | */ |
1052 | 0 | millis_increment = 1000.0 * autovacuum_naptime / nelems; |
1053 | 0 | if (millis_increment <= MIN_AUTOVAC_SLEEPTIME) |
1054 | 0 | millis_increment = MIN_AUTOVAC_SLEEPTIME * 1.1; |
1055 | |
|
1056 | 0 | current_time = GetCurrentTimestamp(); |
1057 | | |
1058 | | /* |
1059 | | * move the elements from the array into the dlist, setting the |
1060 | | * next_worker while walking the array |
1061 | | */ |
1062 | 0 | for (i = 0; i < nelems; i++) |
1063 | 0 | { |
1064 | 0 | db = &(dbary[i]); |
1065 | |
|
1066 | 0 | current_time = TimestampTzPlusMilliseconds(current_time, |
1067 | 0 | millis_increment); |
1068 | 0 | db->adl_next_worker = current_time; |
1069 | | |
1070 | | /* later elements should go closer to the head of the list */ |
1071 | 0 | dlist_push_head(&DatabaseList, &db->adl_node); |
1072 | 0 | } |
1073 | 0 | } |
1074 | | |
1075 | | /* all done, clean up memory */ |
1076 | 0 | if (DatabaseListCxt != NULL) |
1077 | 0 | MemoryContextDelete(DatabaseListCxt); |
1078 | 0 | MemoryContextDelete(tmpcxt); |
1079 | 0 | DatabaseListCxt = newcxt; |
1080 | 0 | MemoryContextSwitchTo(oldcxt); |
1081 | 0 | } |
1082 | | |
1083 | | /* qsort comparator for avl_dbase, using adl_score */ |
1084 | | static int |
1085 | | db_comparator(const void *a, const void *b) |
1086 | 0 | { |
1087 | 0 | return pg_cmp_s32(((const avl_dbase *) a)->adl_score, |
1088 | 0 | ((const avl_dbase *) b)->adl_score); |
1089 | 0 | } |
1090 | | |
1091 | | /* |
1092 | | * do_start_worker |
1093 | | * |
1094 | | * Bare-bones procedure for starting an autovacuum worker from the launcher. |
1095 | | * It determines what database to work on, sets up shared memory stuff and |
1096 | | * signals postmaster to start the worker. It fails gracefully if invoked when |
1097 | | * autovacuum_workers are already active. |
1098 | | * |
1099 | | * Return value is the OID of the database that the worker is going to process, |
1100 | | * or InvalidOid if no worker was actually started. |
1101 | | */ |
1102 | | static Oid |
1103 | | do_start_worker(void) |
1104 | 0 | { |
1105 | 0 | List *dblist; |
1106 | 0 | ListCell *cell; |
1107 | 0 | TransactionId xidForceLimit; |
1108 | 0 | MultiXactId multiForceLimit; |
1109 | 0 | bool for_xid_wrap; |
1110 | 0 | bool for_multi_wrap; |
1111 | 0 | avw_dbase *avdb; |
1112 | 0 | TimestampTz current_time; |
1113 | 0 | bool skipit = false; |
1114 | 0 | Oid retval = InvalidOid; |
1115 | 0 | MemoryContext tmpcxt, |
1116 | 0 | oldcxt; |
1117 | | |
1118 | | /* return quickly when there are no free workers */ |
1119 | 0 | LWLockAcquire(AutovacuumLock, LW_SHARED); |
1120 | 0 | if (!av_worker_available()) |
1121 | 0 | { |
1122 | 0 | LWLockRelease(AutovacuumLock); |
1123 | 0 | return InvalidOid; |
1124 | 0 | } |
1125 | 0 | LWLockRelease(AutovacuumLock); |
1126 | | |
1127 | | /* |
1128 | | * Create and switch to a temporary context to avoid leaking the memory |
1129 | | * allocated for the database list. |
1130 | | */ |
1131 | 0 | tmpcxt = AllocSetContextCreate(CurrentMemoryContext, |
1132 | 0 | "Autovacuum start worker (tmp)", |
1133 | 0 | ALLOCSET_DEFAULT_SIZES); |
1134 | 0 | oldcxt = MemoryContextSwitchTo(tmpcxt); |
1135 | | |
1136 | | /* Get a list of databases */ |
1137 | 0 | dblist = get_database_list(); |
1138 | | |
1139 | | /* |
1140 | | * Determine the oldest datfrozenxid/relfrozenxid that we will allow to |
1141 | | * pass without forcing a vacuum. (This limit can be tightened for |
1142 | | * particular tables, but not loosened.) |
1143 | | */ |
1144 | 0 | recentXid = ReadNextTransactionId(); |
1145 | 0 | xidForceLimit = recentXid - autovacuum_freeze_max_age; |
1146 | | /* ensure it's a "normal" XID, else TransactionIdPrecedes misbehaves */ |
1147 | | /* this can cause the limit to go backwards by 3, but that's OK */ |
1148 | 0 | if (xidForceLimit < FirstNormalTransactionId) |
1149 | 0 | xidForceLimit -= FirstNormalTransactionId; |
1150 | | |
1151 | | /* Also determine the oldest datminmxid we will consider. */ |
1152 | 0 | recentMulti = ReadNextMultiXactId(); |
1153 | 0 | multiForceLimit = recentMulti - MultiXactMemberFreezeThreshold(); |
1154 | 0 | if (multiForceLimit < FirstMultiXactId) |
1155 | 0 | multiForceLimit -= FirstMultiXactId; |
1156 | | |
1157 | | /* |
1158 | | * Choose a database to connect to. We pick the database that was least |
1159 | | * recently auto-vacuumed, or one that needs vacuuming to prevent Xid |
1160 | | * wraparound-related data loss. If any db at risk of Xid wraparound is |
1161 | | * found, we pick the one with oldest datfrozenxid, independently of |
1162 | | * autovacuum times; similarly we pick the one with the oldest datminmxid |
1163 | | * if any is in MultiXactId wraparound. Note that those in Xid wraparound |
1164 | | * danger are given more priority than those in multi wraparound danger. |
1165 | | * |
1166 | | * Note that a database with no stats entry is not considered, except for |
1167 | | * Xid wraparound purposes. The theory is that if no one has ever |
1168 | | * connected to it since the stats were last initialized, it doesn't need |
1169 | | * vacuuming. |
1170 | | * |
1171 | | * XXX This could be improved if we had more info about whether it needs |
1172 | | * vacuuming before connecting to it. Perhaps look through the pgstats |
1173 | | * data for the database's tables? One idea is to keep track of the |
1174 | | * number of new and dead tuples per database in pgstats. However it |
1175 | | * isn't clear how to construct a metric that measures that and not cause |
1176 | | * starvation for less busy databases. |
1177 | | */ |
1178 | 0 | avdb = NULL; |
1179 | 0 | for_xid_wrap = false; |
1180 | 0 | for_multi_wrap = false; |
1181 | 0 | current_time = GetCurrentTimestamp(); |
1182 | 0 | foreach(cell, dblist) |
1183 | 0 | { |
1184 | 0 | avw_dbase *tmp = lfirst(cell); |
1185 | 0 | dlist_iter iter; |
1186 | | |
1187 | | /* Check to see if this one is at risk of wraparound */ |
1188 | 0 | if (TransactionIdPrecedes(tmp->adw_frozenxid, xidForceLimit)) |
1189 | 0 | { |
1190 | 0 | if (avdb == NULL || |
1191 | 0 | TransactionIdPrecedes(tmp->adw_frozenxid, |
1192 | 0 | avdb->adw_frozenxid)) |
1193 | 0 | avdb = tmp; |
1194 | 0 | for_xid_wrap = true; |
1195 | 0 | continue; |
1196 | 0 | } |
1197 | 0 | else if (for_xid_wrap) |
1198 | 0 | continue; /* ignore not-at-risk DBs */ |
1199 | 0 | else if (MultiXactIdPrecedes(tmp->adw_minmulti, multiForceLimit)) |
1200 | 0 | { |
1201 | 0 | if (avdb == NULL || |
1202 | 0 | MultiXactIdPrecedes(tmp->adw_minmulti, avdb->adw_minmulti)) |
1203 | 0 | avdb = tmp; |
1204 | 0 | for_multi_wrap = true; |
1205 | 0 | continue; |
1206 | 0 | } |
1207 | 0 | else if (for_multi_wrap) |
1208 | 0 | continue; /* ignore not-at-risk DBs */ |
1209 | | |
1210 | | /* Find pgstat entry if any */ |
1211 | 0 | tmp->adw_entry = pgstat_fetch_stat_dbentry(tmp->adw_datid); |
1212 | | |
1213 | | /* |
1214 | | * Skip a database with no pgstat entry; it means it hasn't seen any |
1215 | | * activity. |
1216 | | */ |
1217 | 0 | if (!tmp->adw_entry) |
1218 | 0 | continue; |
1219 | | |
1220 | | /* |
1221 | | * Also, skip a database that appears on the database list as having |
1222 | | * been processed recently (less than autovacuum_naptime seconds ago). |
1223 | | * We do this so that we don't select a database which we just |
1224 | | * selected, but that pgstat hasn't gotten around to updating the last |
1225 | | * autovacuum time yet. |
1226 | | */ |
1227 | 0 | skipit = false; |
1228 | |
|
1229 | 0 | dlist_reverse_foreach(iter, &DatabaseList) |
1230 | 0 | { |
1231 | 0 | avl_dbase *dbp = dlist_container(avl_dbase, adl_node, iter.cur); |
1232 | |
|
1233 | 0 | if (dbp->adl_datid == tmp->adw_datid) |
1234 | 0 | { |
1235 | | /* |
1236 | | * Skip this database if its next_worker value falls between |
1237 | | * the current time and the current time plus naptime. |
1238 | | */ |
1239 | 0 | if (!TimestampDifferenceExceeds(dbp->adl_next_worker, |
1240 | 0 | current_time, 0) && |
1241 | 0 | !TimestampDifferenceExceeds(current_time, |
1242 | 0 | dbp->adl_next_worker, |
1243 | 0 | autovacuum_naptime * 1000)) |
1244 | 0 | skipit = true; |
1245 | |
|
1246 | 0 | break; |
1247 | 0 | } |
1248 | 0 | } |
1249 | 0 | if (skipit) |
1250 | 0 | continue; |
1251 | | |
1252 | | /* |
1253 | | * Remember the db with oldest autovac time. (If we are here, both |
1254 | | * tmp->entry and db->entry must be non-null.) |
1255 | | */ |
1256 | 0 | if (avdb == NULL || |
1257 | 0 | tmp->adw_entry->last_autovac_time < avdb->adw_entry->last_autovac_time) |
1258 | 0 | avdb = tmp; |
1259 | 0 | } |
1260 | | |
1261 | | /* Found a database -- process it */ |
1262 | 0 | if (avdb != NULL) |
1263 | 0 | { |
1264 | 0 | WorkerInfo worker; |
1265 | 0 | dlist_node *wptr; |
1266 | |
|
1267 | 0 | LWLockAcquire(AutovacuumLock, LW_EXCLUSIVE); |
1268 | | |
1269 | | /* |
1270 | | * Get a worker entry from the freelist. We checked above, so there |
1271 | | * really should be a free slot. |
1272 | | */ |
1273 | 0 | wptr = dclist_pop_head_node(&AutoVacuumShmem->av_freeWorkers); |
1274 | |
|
1275 | 0 | worker = dlist_container(WorkerInfoData, wi_links, wptr); |
1276 | 0 | worker->wi_dboid = avdb->adw_datid; |
1277 | 0 | worker->wi_proc = NULL; |
1278 | 0 | worker->wi_launchtime = GetCurrentTimestamp(); |
1279 | |
|
1280 | 0 | AutoVacuumShmem->av_startingWorker = worker; |
1281 | |
|
1282 | 0 | LWLockRelease(AutovacuumLock); |
1283 | |
|
1284 | 0 | SendPostmasterSignal(PMSIGNAL_START_AUTOVAC_WORKER); |
1285 | |
|
1286 | 0 | retval = avdb->adw_datid; |
1287 | 0 | } |
1288 | 0 | else if (skipit) |
1289 | 0 | { |
1290 | | /* |
1291 | | * If we skipped all databases on the list, rebuild it, because it |
1292 | | * probably contains a dropped database. |
1293 | | */ |
1294 | 0 | rebuild_database_list(InvalidOid); |
1295 | 0 | } |
1296 | |
|
1297 | 0 | MemoryContextSwitchTo(oldcxt); |
1298 | 0 | MemoryContextDelete(tmpcxt); |
1299 | |
|
1300 | 0 | return retval; |
1301 | 0 | } |
1302 | | |
1303 | | /* |
1304 | | * launch_worker |
1305 | | * |
1306 | | * Wrapper for starting a worker from the launcher. Besides actually starting |
1307 | | * it, update the database list to reflect the next time that another one will |
1308 | | * need to be started on the selected database. The actual database choice is |
1309 | | * left to do_start_worker. |
1310 | | * |
1311 | | * This routine is also expected to insert an entry into the database list if |
1312 | | * the selected database was previously absent from the list. |
1313 | | */ |
1314 | | static void |
1315 | | launch_worker(TimestampTz now) |
1316 | 0 | { |
1317 | 0 | Oid dbid; |
1318 | 0 | dlist_iter iter; |
1319 | |
|
1320 | 0 | dbid = do_start_worker(); |
1321 | 0 | if (OidIsValid(dbid)) |
1322 | 0 | { |
1323 | 0 | bool found = false; |
1324 | | |
1325 | | /* |
1326 | | * Walk the database list and update the corresponding entry. If the |
1327 | | * database is not on the list, we'll recreate the list. |
1328 | | */ |
1329 | 0 | dlist_foreach(iter, &DatabaseList) |
1330 | 0 | { |
1331 | 0 | avl_dbase *avdb = dlist_container(avl_dbase, adl_node, iter.cur); |
1332 | |
|
1333 | 0 | if (avdb->adl_datid == dbid) |
1334 | 0 | { |
1335 | 0 | found = true; |
1336 | | |
1337 | | /* |
1338 | | * add autovacuum_naptime seconds to the current time, and use |
1339 | | * that as the new "next_worker" field for this database. |
1340 | | */ |
1341 | 0 | avdb->adl_next_worker = |
1342 | 0 | TimestampTzPlusMilliseconds(now, autovacuum_naptime * 1000); |
1343 | |
|
1344 | 0 | dlist_move_head(&DatabaseList, iter.cur); |
1345 | 0 | break; |
1346 | 0 | } |
1347 | 0 | } |
1348 | | |
1349 | | /* |
1350 | | * If the database was not present in the database list, we rebuild |
1351 | | * the list. It's possible that the database does not get into the |
1352 | | * list anyway, for example if it's a database that doesn't have a |
1353 | | * pgstat entry, but this is not a problem because we don't want to |
1354 | | * schedule workers regularly into those in any case. |
1355 | | */ |
1356 | 0 | if (!found) |
1357 | 0 | rebuild_database_list(dbid); |
1358 | 0 | } |
1359 | 0 | } |
1360 | | |
1361 | | /* |
1362 | | * Called from postmaster to signal a failure to fork a process to become |
1363 | | * worker. The postmaster should kill(SIGUSR2) the launcher shortly |
1364 | | * after calling this function. |
1365 | | */ |
1366 | | void |
1367 | | AutoVacWorkerFailed(void) |
1368 | 0 | { |
1369 | 0 | AutoVacuumShmem->av_signal[AutoVacForkFailed] = true; |
1370 | 0 | } |
1371 | | |
1372 | | /* SIGUSR2: a worker is up and running, or just finished, or failed to fork */ |
1373 | | static void |
1374 | | avl_sigusr2_handler(SIGNAL_ARGS) |
1375 | 0 | { |
1376 | 0 | got_SIGUSR2 = true; |
1377 | 0 | SetLatch(MyLatch); |
1378 | 0 | } |
1379 | | |
1380 | | |
1381 | | /******************************************************************** |
1382 | | * AUTOVACUUM WORKER CODE |
1383 | | ********************************************************************/ |
1384 | | |
1385 | | /* |
1386 | | * Main entry point for autovacuum worker processes. |
1387 | | */ |
1388 | | void |
1389 | | AutoVacWorkerMain(const void *startup_data, size_t startup_data_len) |
1390 | 0 | { |
1391 | 0 | sigjmp_buf local_sigjmp_buf; |
1392 | 0 | Oid dbid; |
1393 | |
|
1394 | 0 | Assert(startup_data_len == 0); |
1395 | | |
1396 | | /* Release postmaster's working memory context */ |
1397 | 0 | if (PostmasterContext) |
1398 | 0 | { |
1399 | 0 | MemoryContextDelete(PostmasterContext); |
1400 | 0 | PostmasterContext = NULL; |
1401 | 0 | } |
1402 | |
|
1403 | 0 | MyBackendType = B_AUTOVAC_WORKER; |
1404 | 0 | init_ps_display(NULL); |
1405 | |
|
1406 | 0 | Assert(GetProcessingMode() == InitProcessing); |
1407 | | |
1408 | | /* |
1409 | | * Set up signal handlers. We operate on databases much like a regular |
1410 | | * backend, so we use the same signal handling. See equivalent code in |
1411 | | * tcop/postgres.c. |
1412 | | */ |
1413 | 0 | pqsignal(SIGHUP, SignalHandlerForConfigReload); |
1414 | | |
1415 | | /* |
1416 | | * SIGINT is used to signal canceling the current table's vacuum; SIGTERM |
1417 | | * means abort and exit cleanly, and SIGQUIT means abandon ship. |
1418 | | */ |
1419 | 0 | pqsignal(SIGINT, StatementCancelHandler); |
1420 | 0 | pqsignal(SIGTERM, die); |
1421 | | /* SIGQUIT handler was already set up by InitPostmasterChild */ |
1422 | |
|
1423 | 0 | InitializeTimeouts(); /* establishes SIGALRM handler */ |
1424 | |
|
1425 | 0 | pqsignal(SIGPIPE, SIG_IGN); |
1426 | 0 | pqsignal(SIGUSR1, procsignal_sigusr1_handler); |
1427 | 0 | pqsignal(SIGUSR2, SIG_IGN); |
1428 | 0 | pqsignal(SIGFPE, FloatExceptionHandler); |
1429 | 0 | pqsignal(SIGCHLD, SIG_DFL); |
1430 | | |
1431 | | /* |
1432 | | * Create a per-backend PGPROC struct in shared memory. We must do this |
1433 | | * before we can use LWLocks or access any shared memory. |
1434 | | */ |
1435 | 0 | InitProcess(); |
1436 | | |
1437 | | /* Early initialization */ |
1438 | 0 | BaseInit(); |
1439 | | |
1440 | | /* |
1441 | | * If an exception is encountered, processing resumes here. |
1442 | | * |
1443 | | * Unlike most auxiliary processes, we don't attempt to continue |
1444 | | * processing after an error; we just clean up and exit. The autovac |
1445 | | * launcher is responsible for spawning another worker later. |
1446 | | * |
1447 | | * Note that we use sigsetjmp(..., 1), so that the prevailing signal mask |
1448 | | * (to wit, BlockSig) will be restored when longjmp'ing to here. Thus, |
1449 | | * signals other than SIGQUIT will be blocked until we exit. It might |
1450 | | * seem that this policy makes the HOLD_INTERRUPTS() call redundant, but |
1451 | | * it is not since InterruptPending might be set already. |
1452 | | */ |
1453 | 0 | if (sigsetjmp(local_sigjmp_buf, 1) != 0) |
1454 | 0 | { |
1455 | | /* since not using PG_TRY, must reset error stack by hand */ |
1456 | 0 | error_context_stack = NULL; |
1457 | | |
1458 | | /* Prevents interrupts while cleaning up */ |
1459 | 0 | HOLD_INTERRUPTS(); |
1460 | | |
1461 | | /* Report the error to the server log */ |
1462 | 0 | EmitErrorReport(); |
1463 | | |
1464 | | /* |
1465 | | * We can now go away. Note that because we called InitProcess, a |
1466 | | * callback was registered to do ProcKill, which will clean up |
1467 | | * necessary state. |
1468 | | */ |
1469 | 0 | proc_exit(0); |
1470 | 0 | } |
1471 | | |
1472 | | /* We can now handle ereport(ERROR) */ |
1473 | 0 | PG_exception_stack = &local_sigjmp_buf; |
1474 | |
|
1475 | 0 | sigprocmask(SIG_SETMASK, &UnBlockSig, NULL); |
1476 | | |
1477 | | /* |
1478 | | * Set always-secure search path, so malicious users can't redirect user |
1479 | | * code (e.g. pg_index.indexprs). (That code runs in a |
1480 | | * SECURITY_RESTRICTED_OPERATION sandbox, so malicious users could not |
1481 | | * take control of the entire autovacuum worker in any case.) |
1482 | | */ |
1483 | 0 | SetConfigOption("search_path", "", PGC_SUSET, PGC_S_OVERRIDE); |
1484 | | |
1485 | | /* |
1486 | | * Force zero_damaged_pages OFF in the autovac process, even if it is set |
1487 | | * in postgresql.conf. We don't really want such a dangerous option being |
1488 | | * applied non-interactively. |
1489 | | */ |
1490 | 0 | SetConfigOption("zero_damaged_pages", "false", PGC_SUSET, PGC_S_OVERRIDE); |
1491 | | |
1492 | | /* |
1493 | | * Force settable timeouts off to avoid letting these settings prevent |
1494 | | * regular maintenance from being executed. |
1495 | | */ |
1496 | 0 | SetConfigOption("statement_timeout", "0", PGC_SUSET, PGC_S_OVERRIDE); |
1497 | 0 | SetConfigOption("transaction_timeout", "0", PGC_SUSET, PGC_S_OVERRIDE); |
1498 | 0 | SetConfigOption("lock_timeout", "0", PGC_SUSET, PGC_S_OVERRIDE); |
1499 | 0 | SetConfigOption("idle_in_transaction_session_timeout", "0", |
1500 | 0 | PGC_SUSET, PGC_S_OVERRIDE); |
1501 | | |
1502 | | /* |
1503 | | * Force default_transaction_isolation to READ COMMITTED. We don't want |
1504 | | * to pay the overhead of serializable mode, nor add any risk of causing |
1505 | | * deadlocks or delaying other transactions. |
1506 | | */ |
1507 | 0 | SetConfigOption("default_transaction_isolation", "read committed", |
1508 | 0 | PGC_SUSET, PGC_S_OVERRIDE); |
1509 | | |
1510 | | /* |
1511 | | * Force synchronous replication off to allow regular maintenance even if |
1512 | | * we are waiting for standbys to connect. This is important to ensure we |
1513 | | * aren't blocked from performing anti-wraparound tasks. |
1514 | | */ |
1515 | 0 | if (synchronous_commit > SYNCHRONOUS_COMMIT_LOCAL_FLUSH) |
1516 | 0 | SetConfigOption("synchronous_commit", "local", |
1517 | 0 | PGC_SUSET, PGC_S_OVERRIDE); |
1518 | | |
1519 | | /* |
1520 | | * Even when system is configured to use a different fetch consistency, |
1521 | | * for autovac we always want fresh stats. |
1522 | | */ |
1523 | 0 | SetConfigOption("stats_fetch_consistency", "none", PGC_SUSET, PGC_S_OVERRIDE); |
1524 | | |
1525 | | /* |
1526 | | * Get the info about the database we're going to work on. |
1527 | | */ |
1528 | 0 | LWLockAcquire(AutovacuumLock, LW_EXCLUSIVE); |
1529 | | |
1530 | | /* |
1531 | | * beware of startingWorker being INVALID; this should normally not |
1532 | | * happen, but if a worker fails after forking and before this, the |
1533 | | * launcher might have decided to remove it from the queue and start |
1534 | | * again. |
1535 | | */ |
1536 | 0 | if (AutoVacuumShmem->av_startingWorker != NULL) |
1537 | 0 | { |
1538 | 0 | MyWorkerInfo = AutoVacuumShmem->av_startingWorker; |
1539 | 0 | dbid = MyWorkerInfo->wi_dboid; |
1540 | 0 | MyWorkerInfo->wi_proc = MyProc; |
1541 | | |
1542 | | /* insert into the running list */ |
1543 | 0 | dlist_push_head(&AutoVacuumShmem->av_runningWorkers, |
1544 | 0 | &MyWorkerInfo->wi_links); |
1545 | | |
1546 | | /* |
1547 | | * remove from the "starting" pointer, so that the launcher can start |
1548 | | * a new worker if required |
1549 | | */ |
1550 | 0 | AutoVacuumShmem->av_startingWorker = NULL; |
1551 | 0 | LWLockRelease(AutovacuumLock); |
1552 | |
|
1553 | 0 | on_shmem_exit(FreeWorkerInfo, 0); |
1554 | | |
1555 | | /* wake up the launcher */ |
1556 | 0 | if (AutoVacuumShmem->av_launcherpid != 0) |
1557 | 0 | kill(AutoVacuumShmem->av_launcherpid, SIGUSR2); |
1558 | 0 | } |
1559 | 0 | else |
1560 | 0 | { |
1561 | | /* no worker entry for me, go away */ |
1562 | 0 | elog(WARNING, "autovacuum worker started without a worker entry"); |
1563 | 0 | dbid = InvalidOid; |
1564 | 0 | LWLockRelease(AutovacuumLock); |
1565 | 0 | } |
1566 | | |
1567 | 0 | if (OidIsValid(dbid)) |
1568 | 0 | { |
1569 | 0 | char dbname[NAMEDATALEN]; |
1570 | | |
1571 | | /* |
1572 | | * Report autovac startup to the cumulative stats system. We |
1573 | | * deliberately do this before InitPostgres, so that the |
1574 | | * last_autovac_time will get updated even if the connection attempt |
1575 | | * fails. This is to prevent autovac from getting "stuck" repeatedly |
1576 | | * selecting an unopenable database, rather than making any progress |
1577 | | * on stuff it can connect to. |
1578 | | */ |
1579 | 0 | pgstat_report_autovac(dbid); |
1580 | | |
1581 | | /* |
1582 | | * Connect to the selected database, specifying no particular user, |
1583 | | * and ignoring datallowconn. Collect the database's name for |
1584 | | * display. |
1585 | | * |
1586 | | * Note: if we have selected a just-deleted database (due to using |
1587 | | * stale stats info), we'll fail and exit here. |
1588 | | */ |
1589 | 0 | InitPostgres(NULL, dbid, NULL, InvalidOid, |
1590 | 0 | INIT_PG_OVERRIDE_ALLOW_CONNS, |
1591 | 0 | dbname); |
1592 | 0 | SetProcessingMode(NormalProcessing); |
1593 | 0 | set_ps_display(dbname); |
1594 | 0 | ereport(DEBUG1, |
1595 | 0 | (errmsg_internal("autovacuum: processing database \"%s\"", dbname))); |
1596 | | |
1597 | 0 | if (PostAuthDelay) |
1598 | 0 | pg_usleep(PostAuthDelay * 1000000L); |
1599 | | |
1600 | | /* And do an appropriate amount of work */ |
1601 | 0 | recentXid = ReadNextTransactionId(); |
1602 | 0 | recentMulti = ReadNextMultiXactId(); |
1603 | 0 | do_autovacuum(); |
1604 | 0 | } |
1605 | | |
1606 | | /* |
1607 | | * The launcher will be notified of my death in ProcKill, *if* we managed |
1608 | | * to get a worker slot at all |
1609 | | */ |
1610 | | |
1611 | | /* All done, go away */ |
1612 | 0 | proc_exit(0); |
1613 | 0 | } |
1614 | | |
1615 | | /* |
1616 | | * Return a WorkerInfo to the free list |
1617 | | */ |
1618 | | static void |
1619 | | FreeWorkerInfo(int code, Datum arg) |
1620 | 0 | { |
1621 | 0 | if (MyWorkerInfo != NULL) |
1622 | 0 | { |
1623 | 0 | LWLockAcquire(AutovacuumLock, LW_EXCLUSIVE); |
1624 | | |
1625 | | /* |
1626 | | * Wake the launcher up so that he can launch a new worker immediately |
1627 | | * if required. We only save the launcher's PID in local memory here; |
1628 | | * the actual signal will be sent when the PGPROC is recycled. Note |
1629 | | * that we always do this, so that the launcher can rebalance the cost |
1630 | | * limit setting of the remaining workers. |
1631 | | * |
1632 | | * We somewhat ignore the risk that the launcher changes its PID |
1633 | | * between us reading it and the actual kill; we expect ProcKill to be |
1634 | | * called shortly after us, and we assume that PIDs are not reused too |
1635 | | * quickly after a process exits. |
1636 | | */ |
1637 | 0 | AutovacuumLauncherPid = AutoVacuumShmem->av_launcherpid; |
1638 | |
|
1639 | 0 | dlist_delete(&MyWorkerInfo->wi_links); |
1640 | 0 | MyWorkerInfo->wi_dboid = InvalidOid; |
1641 | 0 | MyWorkerInfo->wi_tableoid = InvalidOid; |
1642 | 0 | MyWorkerInfo->wi_sharedrel = false; |
1643 | 0 | MyWorkerInfo->wi_proc = NULL; |
1644 | 0 | MyWorkerInfo->wi_launchtime = 0; |
1645 | 0 | pg_atomic_clear_flag(&MyWorkerInfo->wi_dobalance); |
1646 | 0 | dclist_push_head(&AutoVacuumShmem->av_freeWorkers, |
1647 | 0 | &MyWorkerInfo->wi_links); |
1648 | | /* not mine anymore */ |
1649 | 0 | MyWorkerInfo = NULL; |
1650 | | |
1651 | | /* |
1652 | | * now that we're inactive, cause a rebalancing of the surviving |
1653 | | * workers |
1654 | | */ |
1655 | 0 | AutoVacuumShmem->av_signal[AutoVacRebalance] = true; |
1656 | 0 | LWLockRelease(AutovacuumLock); |
1657 | 0 | } |
1658 | 0 | } |
1659 | | |
1660 | | /* |
1661 | | * Update vacuum cost-based delay-related parameters for autovacuum workers and |
1662 | | * backends executing VACUUM or ANALYZE using the value of relevant GUCs and |
1663 | | * global state. This must be called during setup for vacuum and after every |
1664 | | * config reload to ensure up-to-date values. |
1665 | | */ |
1666 | | void |
1667 | | VacuumUpdateCosts(void) |
1668 | | { |
1669 | | if (MyWorkerInfo) |
1670 | | { |
1671 | | if (av_storage_param_cost_delay >= 0) |
1672 | | vacuum_cost_delay = av_storage_param_cost_delay; |
1673 | | else if (autovacuum_vac_cost_delay >= 0) |
1674 | | vacuum_cost_delay = autovacuum_vac_cost_delay; |
1675 | | else |
1676 | | /* fall back to VacuumCostDelay */ |
1677 | | vacuum_cost_delay = VacuumCostDelay; |
1678 | | |
1679 | | AutoVacuumUpdateCostLimit(); |
1680 | | } |
1681 | | else |
1682 | | { |
1683 | | /* Must be explicit VACUUM or ANALYZE */ |
1684 | | vacuum_cost_delay = VacuumCostDelay; |
1685 | | vacuum_cost_limit = VacuumCostLimit; |
1686 | | } |
1687 | | |
1688 | | /* |
1689 | | * If configuration changes are allowed to impact VacuumCostActive, make |
1690 | | * sure it is updated. |
1691 | | */ |
1692 | | if (VacuumFailsafeActive) |
1693 | | Assert(!VacuumCostActive); |
1694 | | else if (vacuum_cost_delay > 0) |
1695 | | VacuumCostActive = true; |
1696 | | else |
1697 | | { |
1698 | | VacuumCostActive = false; |
1699 | | VacuumCostBalance = 0; |
1700 | | } |
1701 | | |
1702 | | /* |
1703 | | * Since the cost logging requires a lock, avoid rendering the log message |
1704 | | * in case we are using a message level where the log wouldn't be emitted. |
1705 | | */ |
1706 | | if (MyWorkerInfo && message_level_is_interesting(DEBUG2)) |
1707 | | { |
1708 | | Oid dboid, |
1709 | | tableoid; |
1710 | | |
1711 | | Assert(!LWLockHeldByMe(AutovacuumLock)); |
1712 | | |
1713 | | LWLockAcquire(AutovacuumLock, LW_SHARED); |
1714 | | dboid = MyWorkerInfo->wi_dboid; |
1715 | | tableoid = MyWorkerInfo->wi_tableoid; |
1716 | | LWLockRelease(AutovacuumLock); |
1717 | | |
1718 | | elog(DEBUG2, |
1719 | | "Autovacuum VacuumUpdateCosts(db=%u, rel=%u, dobalance=%s, cost_limit=%d, cost_delay=%g active=%s failsafe=%s)", |
1720 | | dboid, tableoid, pg_atomic_unlocked_test_flag(&MyWorkerInfo->wi_dobalance) ? "no" : "yes", |
1721 | | vacuum_cost_limit, vacuum_cost_delay, |
1722 | | vacuum_cost_delay > 0 ? "yes" : "no", |
1723 | | VacuumFailsafeActive ? "yes" : "no"); |
1724 | | } |
1725 | | } |
1726 | | |
1727 | | /* |
1728 | | * Update vacuum_cost_limit with the correct value for an autovacuum worker, |
1729 | | * given the value of other relevant cost limit parameters and the number of |
1730 | | * workers across which the limit must be balanced. Autovacuum workers must |
1731 | | * call this regularly in case av_nworkersForBalance has been updated by |
1732 | | * another worker or by the autovacuum launcher. They must also call it after a |
1733 | | * config reload. |
1734 | | */ |
1735 | | void |
1736 | | AutoVacuumUpdateCostLimit(void) |
1737 | 0 | { |
1738 | 0 | if (!MyWorkerInfo) |
1739 | 0 | return; |
1740 | | |
1741 | | /* |
1742 | | * note: in cost_limit, zero also means use value from elsewhere, because |
1743 | | * zero is not a valid value. |
1744 | | */ |
1745 | | |
1746 | 0 | if (av_storage_param_cost_limit > 0) |
1747 | 0 | vacuum_cost_limit = av_storage_param_cost_limit; |
1748 | 0 | else |
1749 | 0 | { |
1750 | 0 | int nworkers_for_balance; |
1751 | |
|
1752 | 0 | if (autovacuum_vac_cost_limit > 0) |
1753 | 0 | vacuum_cost_limit = autovacuum_vac_cost_limit; |
1754 | 0 | else |
1755 | 0 | vacuum_cost_limit = VacuumCostLimit; |
1756 | | |
1757 | | /* Only balance limit if no cost-related storage parameters specified */ |
1758 | 0 | if (pg_atomic_unlocked_test_flag(&MyWorkerInfo->wi_dobalance)) |
1759 | 0 | return; |
1760 | | |
1761 | 0 | Assert(vacuum_cost_limit > 0); |
1762 | |
|
1763 | 0 | nworkers_for_balance = pg_atomic_read_u32(&AutoVacuumShmem->av_nworkersForBalance); |
1764 | | |
1765 | | /* There is at least 1 autovac worker (this worker) */ |
1766 | 0 | if (nworkers_for_balance <= 0) |
1767 | 0 | elog(ERROR, "nworkers_for_balance must be > 0"); |
1768 | | |
1769 | 0 | vacuum_cost_limit = Max(vacuum_cost_limit / nworkers_for_balance, 1); |
1770 | 0 | } |
1771 | 0 | } |
1772 | | |
1773 | | /* |
1774 | | * autovac_recalculate_workers_for_balance |
1775 | | * Recalculate the number of workers to consider, given cost-related |
1776 | | * storage parameters and the current number of active workers. |
1777 | | * |
1778 | | * Caller must hold the AutovacuumLock in at least shared mode to access |
1779 | | * worker->wi_proc. |
1780 | | */ |
1781 | | static void |
1782 | | autovac_recalculate_workers_for_balance(void) |
1783 | 0 | { |
1784 | 0 | dlist_iter iter; |
1785 | 0 | int orig_nworkers_for_balance; |
1786 | 0 | int nworkers_for_balance = 0; |
1787 | |
|
1788 | 0 | Assert(LWLockHeldByMe(AutovacuumLock)); |
1789 | |
|
1790 | 0 | orig_nworkers_for_balance = |
1791 | 0 | pg_atomic_read_u32(&AutoVacuumShmem->av_nworkersForBalance); |
1792 | |
|
1793 | 0 | dlist_foreach(iter, &AutoVacuumShmem->av_runningWorkers) |
1794 | 0 | { |
1795 | 0 | WorkerInfo worker = dlist_container(WorkerInfoData, wi_links, iter.cur); |
1796 | |
|
1797 | 0 | if (worker->wi_proc == NULL || |
1798 | 0 | pg_atomic_unlocked_test_flag(&worker->wi_dobalance)) |
1799 | 0 | continue; |
1800 | | |
1801 | 0 | nworkers_for_balance++; |
1802 | 0 | } |
1803 | |
|
1804 | 0 | if (nworkers_for_balance != orig_nworkers_for_balance) |
1805 | 0 | pg_atomic_write_u32(&AutoVacuumShmem->av_nworkersForBalance, |
1806 | 0 | nworkers_for_balance); |
1807 | 0 | } |
1808 | | |
1809 | | /* |
1810 | | * get_database_list |
1811 | | * Return a list of all databases found in pg_database. |
1812 | | * |
1813 | | * The list and associated data is allocated in the caller's memory context, |
1814 | | * which is in charge of ensuring that it's properly cleaned up afterwards. |
1815 | | * |
1816 | | * Note: this is the only function in which the autovacuum launcher uses a |
1817 | | * transaction. Although we aren't attached to any particular database and |
1818 | | * therefore can't access most catalogs, we do have enough infrastructure |
1819 | | * to do a seqscan on pg_database. |
1820 | | */ |
1821 | | static List * |
1822 | | get_database_list(void) |
1823 | | { |
1824 | | List *dblist = NIL; |
1825 | | Relation rel; |
1826 | | TableScanDesc scan; |
1827 | | HeapTuple tup; |
1828 | | MemoryContext resultcxt; |
1829 | | |
1830 | | /* This is the context that we will allocate our output data in */ |
1831 | | resultcxt = CurrentMemoryContext; |
1832 | | |
1833 | | /* |
1834 | | * Start a transaction so we can access pg_database. |
1835 | | */ |
1836 | | StartTransactionCommand(); |
1837 | | |
1838 | | rel = table_open(DatabaseRelationId, AccessShareLock); |
1839 | | scan = table_beginscan_catalog(rel, 0, NULL); |
1840 | | |
1841 | | while (HeapTupleIsValid(tup = heap_getnext(scan, ForwardScanDirection))) |
1842 | | { |
1843 | | Form_pg_database pgdatabase = (Form_pg_database) GETSTRUCT(tup); |
1844 | | avw_dbase *avdb; |
1845 | | MemoryContext oldcxt; |
1846 | | |
1847 | | /* |
1848 | | * If database has partially been dropped, we can't, nor need to, |
1849 | | * vacuum it. |
1850 | | */ |
1851 | | if (database_is_invalid_form(pgdatabase)) |
1852 | | { |
1853 | | elog(DEBUG2, |
1854 | | "autovacuum: skipping invalid database \"%s\"", |
1855 | | NameStr(pgdatabase->datname)); |
1856 | | continue; |
1857 | | } |
1858 | | |
1859 | | /* |
1860 | | * Allocate our results in the caller's context, not the |
1861 | | * transaction's. We do this inside the loop, and restore the original |
1862 | | * context at the end, so that leaky things like heap_getnext() are |
1863 | | * not called in a potentially long-lived context. |
1864 | | */ |
1865 | | oldcxt = MemoryContextSwitchTo(resultcxt); |
1866 | | |
1867 | | avdb = (avw_dbase *) palloc(sizeof(avw_dbase)); |
1868 | | |
1869 | | avdb->adw_datid = pgdatabase->oid; |
1870 | | avdb->adw_name = pstrdup(NameStr(pgdatabase->datname)); |
1871 | | avdb->adw_frozenxid = pgdatabase->datfrozenxid; |
1872 | | avdb->adw_minmulti = pgdatabase->datminmxid; |
1873 | | /* this gets set later: */ |
1874 | | avdb->adw_entry = NULL; |
1875 | | |
1876 | | dblist = lappend(dblist, avdb); |
1877 | | MemoryContextSwitchTo(oldcxt); |
1878 | | } |
1879 | | |
1880 | | table_endscan(scan); |
1881 | | table_close(rel, AccessShareLock); |
1882 | | |
1883 | | CommitTransactionCommand(); |
1884 | | |
1885 | | /* Be sure to restore caller's memory context */ |
1886 | | MemoryContextSwitchTo(resultcxt); |
1887 | | |
1888 | | return dblist; |
1889 | | } |
1890 | | |
1891 | | /* |
1892 | | * Process a database table-by-table |
1893 | | * |
1894 | | * Note that CHECK_FOR_INTERRUPTS is supposed to be used in certain spots in |
1895 | | * order not to ignore shutdown commands for too long. |
1896 | | */ |
1897 | | static void |
1898 | | do_autovacuum(void) |
1899 | 0 | { |
1900 | 0 | Relation classRel; |
1901 | 0 | HeapTuple tuple; |
1902 | 0 | TableScanDesc relScan; |
1903 | 0 | Form_pg_database dbForm; |
1904 | 0 | List *table_oids = NIL; |
1905 | 0 | List *orphan_oids = NIL; |
1906 | 0 | HASHCTL ctl; |
1907 | 0 | HTAB *table_toast_map; |
1908 | 0 | ListCell *volatile cell; |
1909 | 0 | BufferAccessStrategy bstrategy; |
1910 | 0 | ScanKeyData key; |
1911 | 0 | TupleDesc pg_class_desc; |
1912 | 0 | int effective_multixact_freeze_max_age; |
1913 | 0 | bool did_vacuum = false; |
1914 | 0 | bool found_concurrent_worker = false; |
1915 | 0 | int i; |
1916 | | |
1917 | | /* |
1918 | | * StartTransactionCommand and CommitTransactionCommand will automatically |
1919 | | * switch to other contexts. We need this one to keep the list of |
1920 | | * relations to vacuum/analyze across transactions. |
1921 | | */ |
1922 | 0 | AutovacMemCxt = AllocSetContextCreate(TopMemoryContext, |
1923 | 0 | "Autovacuum worker", |
1924 | 0 | ALLOCSET_DEFAULT_SIZES); |
1925 | 0 | MemoryContextSwitchTo(AutovacMemCxt); |
1926 | | |
1927 | | /* Start a transaction so our commands have one to play into. */ |
1928 | 0 | StartTransactionCommand(); |
1929 | | |
1930 | | /* |
1931 | | * This injection point is put in a transaction block to work with a wait |
1932 | | * that uses a condition variable. |
1933 | | */ |
1934 | 0 | INJECTION_POINT("autovacuum-worker-start", NULL); |
1935 | | |
1936 | | /* |
1937 | | * Compute the multixact age for which freezing is urgent. This is |
1938 | | * normally autovacuum_multixact_freeze_max_age, but may be less if we are |
1939 | | * short of multixact member space. |
1940 | | */ |
1941 | 0 | effective_multixact_freeze_max_age = MultiXactMemberFreezeThreshold(); |
1942 | | |
1943 | | /* |
1944 | | * Find the pg_database entry and select the default freeze ages. We use |
1945 | | * zero in template and nonconnectable databases, else the system-wide |
1946 | | * default. |
1947 | | */ |
1948 | 0 | tuple = SearchSysCache1(DATABASEOID, ObjectIdGetDatum(MyDatabaseId)); |
1949 | 0 | if (!HeapTupleIsValid(tuple)) |
1950 | 0 | elog(ERROR, "cache lookup failed for database %u", MyDatabaseId); |
1951 | 0 | dbForm = (Form_pg_database) GETSTRUCT(tuple); |
1952 | |
|
1953 | 0 | if (dbForm->datistemplate || !dbForm->datallowconn) |
1954 | 0 | { |
1955 | 0 | default_freeze_min_age = 0; |
1956 | 0 | default_freeze_table_age = 0; |
1957 | 0 | default_multixact_freeze_min_age = 0; |
1958 | 0 | default_multixact_freeze_table_age = 0; |
1959 | 0 | } |
1960 | 0 | else |
1961 | 0 | { |
1962 | 0 | default_freeze_min_age = vacuum_freeze_min_age; |
1963 | 0 | default_freeze_table_age = vacuum_freeze_table_age; |
1964 | 0 | default_multixact_freeze_min_age = vacuum_multixact_freeze_min_age; |
1965 | 0 | default_multixact_freeze_table_age = vacuum_multixact_freeze_table_age; |
1966 | 0 | } |
1967 | |
|
1968 | 0 | ReleaseSysCache(tuple); |
1969 | | |
1970 | | /* StartTransactionCommand changed elsewhere */ |
1971 | 0 | MemoryContextSwitchTo(AutovacMemCxt); |
1972 | |
|
1973 | 0 | classRel = table_open(RelationRelationId, AccessShareLock); |
1974 | | |
1975 | | /* create a copy so we can use it after closing pg_class */ |
1976 | 0 | pg_class_desc = CreateTupleDescCopy(RelationGetDescr(classRel)); |
1977 | | |
1978 | | /* create hash table for toast <-> main relid mapping */ |
1979 | 0 | ctl.keysize = sizeof(Oid); |
1980 | 0 | ctl.entrysize = sizeof(av_relation); |
1981 | |
|
1982 | 0 | table_toast_map = hash_create("TOAST to main relid map", |
1983 | 0 | 100, |
1984 | 0 | &ctl, |
1985 | 0 | HASH_ELEM | HASH_BLOBS); |
1986 | | |
1987 | | /* |
1988 | | * Scan pg_class to determine which tables to vacuum. |
1989 | | * |
1990 | | * We do this in two passes: on the first one we collect the list of plain |
1991 | | * relations and materialized views, and on the second one we collect |
1992 | | * TOAST tables. The reason for doing the second pass is that during it we |
1993 | | * want to use the main relation's pg_class.reloptions entry if the TOAST |
1994 | | * table does not have any, and we cannot obtain it unless we know |
1995 | | * beforehand what's the main table OID. |
1996 | | * |
1997 | | * We need to check TOAST tables separately because in cases with short, |
1998 | | * wide tables there might be proportionally much more activity in the |
1999 | | * TOAST table than in its parent. |
2000 | | */ |
2001 | 0 | relScan = table_beginscan_catalog(classRel, 0, NULL); |
2002 | | |
2003 | | /* |
2004 | | * On the first pass, we collect main tables to vacuum, and also the main |
2005 | | * table relid to TOAST relid mapping. |
2006 | | */ |
2007 | 0 | while ((tuple = heap_getnext(relScan, ForwardScanDirection)) != NULL) |
2008 | 0 | { |
2009 | 0 | Form_pg_class classForm = (Form_pg_class) GETSTRUCT(tuple); |
2010 | 0 | PgStat_StatTabEntry *tabentry; |
2011 | 0 | AutoVacOpts *relopts; |
2012 | 0 | Oid relid; |
2013 | 0 | bool dovacuum; |
2014 | 0 | bool doanalyze; |
2015 | 0 | bool wraparound; |
2016 | |
|
2017 | 0 | if (classForm->relkind != RELKIND_RELATION && |
2018 | 0 | classForm->relkind != RELKIND_MATVIEW) |
2019 | 0 | continue; |
2020 | | |
2021 | 0 | relid = classForm->oid; |
2022 | | |
2023 | | /* |
2024 | | * Check if it is a temp table (presumably, of some other backend's). |
2025 | | * We cannot safely process other backends' temp tables. |
2026 | | */ |
2027 | 0 | if (classForm->relpersistence == RELPERSISTENCE_TEMP) |
2028 | 0 | { |
2029 | | /* |
2030 | | * We just ignore it if the owning backend is still active and |
2031 | | * using the temporary schema. Also, for safety, ignore it if the |
2032 | | * namespace doesn't exist or isn't a temp namespace after all. |
2033 | | */ |
2034 | 0 | if (checkTempNamespaceStatus(classForm->relnamespace) == TEMP_NAMESPACE_IDLE) |
2035 | 0 | { |
2036 | | /* |
2037 | | * The table seems to be orphaned -- although it might be that |
2038 | | * the owning backend has already deleted it and exited; our |
2039 | | * pg_class scan snapshot is not necessarily up-to-date |
2040 | | * anymore, so we could be looking at a committed-dead entry. |
2041 | | * Remember it so we can try to delete it later. |
2042 | | */ |
2043 | 0 | orphan_oids = lappend_oid(orphan_oids, relid); |
2044 | 0 | } |
2045 | 0 | continue; |
2046 | 0 | } |
2047 | | |
2048 | | /* Fetch reloptions and the pgstat entry for this table */ |
2049 | 0 | relopts = extract_autovac_opts(tuple, pg_class_desc); |
2050 | 0 | tabentry = pgstat_fetch_stat_tabentry_ext(classForm->relisshared, |
2051 | 0 | relid); |
2052 | | |
2053 | | /* Check if it needs vacuum or analyze */ |
2054 | 0 | relation_needs_vacanalyze(relid, relopts, classForm, tabentry, |
2055 | 0 | effective_multixact_freeze_max_age, |
2056 | 0 | &dovacuum, &doanalyze, &wraparound); |
2057 | | |
2058 | | /* Relations that need work are added to table_oids */ |
2059 | 0 | if (dovacuum || doanalyze) |
2060 | 0 | table_oids = lappend_oid(table_oids, relid); |
2061 | | |
2062 | | /* |
2063 | | * Remember TOAST associations for the second pass. Note: we must do |
2064 | | * this whether or not the table is going to be vacuumed, because we |
2065 | | * don't automatically vacuum toast tables along the parent table. |
2066 | | */ |
2067 | 0 | if (OidIsValid(classForm->reltoastrelid)) |
2068 | 0 | { |
2069 | 0 | av_relation *hentry; |
2070 | 0 | bool found; |
2071 | |
|
2072 | 0 | hentry = hash_search(table_toast_map, |
2073 | 0 | &classForm->reltoastrelid, |
2074 | 0 | HASH_ENTER, &found); |
2075 | |
|
2076 | 0 | if (!found) |
2077 | 0 | { |
2078 | | /* hash_search already filled in the key */ |
2079 | 0 | hentry->ar_relid = relid; |
2080 | 0 | hentry->ar_hasrelopts = false; |
2081 | 0 | if (relopts != NULL) |
2082 | 0 | { |
2083 | 0 | hentry->ar_hasrelopts = true; |
2084 | 0 | memcpy(&hentry->ar_reloptions, relopts, |
2085 | 0 | sizeof(AutoVacOpts)); |
2086 | 0 | } |
2087 | 0 | } |
2088 | 0 | } |
2089 | | |
2090 | | /* Release stuff to avoid per-relation leakage */ |
2091 | 0 | if (relopts) |
2092 | 0 | pfree(relopts); |
2093 | 0 | if (tabentry) |
2094 | 0 | pfree(tabentry); |
2095 | 0 | } |
2096 | |
|
2097 | 0 | table_endscan(relScan); |
2098 | | |
2099 | | /* second pass: check TOAST tables */ |
2100 | 0 | ScanKeyInit(&key, |
2101 | 0 | Anum_pg_class_relkind, |
2102 | 0 | BTEqualStrategyNumber, F_CHAREQ, |
2103 | 0 | CharGetDatum(RELKIND_TOASTVALUE)); |
2104 | |
|
2105 | 0 | relScan = table_beginscan_catalog(classRel, 1, &key); |
2106 | 0 | while ((tuple = heap_getnext(relScan, ForwardScanDirection)) != NULL) |
2107 | 0 | { |
2108 | 0 | Form_pg_class classForm = (Form_pg_class) GETSTRUCT(tuple); |
2109 | 0 | PgStat_StatTabEntry *tabentry; |
2110 | 0 | Oid relid; |
2111 | 0 | AutoVacOpts *relopts; |
2112 | 0 | bool free_relopts = false; |
2113 | 0 | bool dovacuum; |
2114 | 0 | bool doanalyze; |
2115 | 0 | bool wraparound; |
2116 | | |
2117 | | /* |
2118 | | * We cannot safely process other backends' temp tables, so skip 'em. |
2119 | | */ |
2120 | 0 | if (classForm->relpersistence == RELPERSISTENCE_TEMP) |
2121 | 0 | continue; |
2122 | | |
2123 | 0 | relid = classForm->oid; |
2124 | | |
2125 | | /* |
2126 | | * fetch reloptions -- if this toast table does not have them, try the |
2127 | | * main rel |
2128 | | */ |
2129 | 0 | relopts = extract_autovac_opts(tuple, pg_class_desc); |
2130 | 0 | if (relopts) |
2131 | 0 | free_relopts = true; |
2132 | 0 | else |
2133 | 0 | { |
2134 | 0 | av_relation *hentry; |
2135 | 0 | bool found; |
2136 | |
|
2137 | 0 | hentry = hash_search(table_toast_map, &relid, HASH_FIND, &found); |
2138 | 0 | if (found && hentry->ar_hasrelopts) |
2139 | 0 | relopts = &hentry->ar_reloptions; |
2140 | 0 | } |
2141 | | |
2142 | | /* Fetch the pgstat entry for this table */ |
2143 | 0 | tabentry = pgstat_fetch_stat_tabentry_ext(classForm->relisshared, |
2144 | 0 | relid); |
2145 | |
|
2146 | 0 | relation_needs_vacanalyze(relid, relopts, classForm, tabentry, |
2147 | 0 | effective_multixact_freeze_max_age, |
2148 | 0 | &dovacuum, &doanalyze, &wraparound); |
2149 | | |
2150 | | /* ignore analyze for toast tables */ |
2151 | 0 | if (dovacuum) |
2152 | 0 | table_oids = lappend_oid(table_oids, relid); |
2153 | | |
2154 | | /* Release stuff to avoid leakage */ |
2155 | 0 | if (free_relopts) |
2156 | 0 | pfree(relopts); |
2157 | 0 | if (tabentry) |
2158 | 0 | pfree(tabentry); |
2159 | 0 | } |
2160 | |
|
2161 | 0 | table_endscan(relScan); |
2162 | 0 | table_close(classRel, AccessShareLock); |
2163 | | |
2164 | | /* |
2165 | | * Recheck orphan temporary tables, and if they still seem orphaned, drop |
2166 | | * them. We'll eat a transaction per dropped table, which might seem |
2167 | | * excessive, but we should only need to do anything as a result of a |
2168 | | * previous backend crash, so this should not happen often enough to |
2169 | | * justify "optimizing". Using separate transactions ensures that we |
2170 | | * don't bloat the lock table if there are many temp tables to be dropped, |
2171 | | * and it ensures that we don't lose work if a deletion attempt fails. |
2172 | | */ |
2173 | 0 | foreach(cell, orphan_oids) |
2174 | 0 | { |
2175 | 0 | Oid relid = lfirst_oid(cell); |
2176 | 0 | Form_pg_class classForm; |
2177 | 0 | ObjectAddress object; |
2178 | | |
2179 | | /* |
2180 | | * Check for user-requested abort. |
2181 | | */ |
2182 | 0 | CHECK_FOR_INTERRUPTS(); |
2183 | | |
2184 | | /* |
2185 | | * Try to lock the table. If we can't get the lock immediately, |
2186 | | * somebody else is using (or dropping) the table, so it's not our |
2187 | | * concern anymore. Having the lock prevents race conditions below. |
2188 | | */ |
2189 | 0 | if (!ConditionalLockRelationOid(relid, AccessExclusiveLock)) |
2190 | 0 | continue; |
2191 | | |
2192 | | /* |
2193 | | * Re-fetch the pg_class tuple and re-check whether it still seems to |
2194 | | * be an orphaned temp table. If it's not there or no longer the same |
2195 | | * relation, ignore it. |
2196 | | */ |
2197 | 0 | tuple = SearchSysCacheCopy1(RELOID, ObjectIdGetDatum(relid)); |
2198 | 0 | if (!HeapTupleIsValid(tuple)) |
2199 | 0 | { |
2200 | | /* be sure to drop useless lock so we don't bloat lock table */ |
2201 | 0 | UnlockRelationOid(relid, AccessExclusiveLock); |
2202 | 0 | continue; |
2203 | 0 | } |
2204 | 0 | classForm = (Form_pg_class) GETSTRUCT(tuple); |
2205 | | |
2206 | | /* |
2207 | | * Make all the same tests made in the loop above. In event of OID |
2208 | | * counter wraparound, the pg_class entry we have now might be |
2209 | | * completely unrelated to the one we saw before. |
2210 | | */ |
2211 | 0 | if (!((classForm->relkind == RELKIND_RELATION || |
2212 | 0 | classForm->relkind == RELKIND_MATVIEW) && |
2213 | 0 | classForm->relpersistence == RELPERSISTENCE_TEMP)) |
2214 | 0 | { |
2215 | 0 | UnlockRelationOid(relid, AccessExclusiveLock); |
2216 | 0 | continue; |
2217 | 0 | } |
2218 | | |
2219 | 0 | if (checkTempNamespaceStatus(classForm->relnamespace) != TEMP_NAMESPACE_IDLE) |
2220 | 0 | { |
2221 | 0 | UnlockRelationOid(relid, AccessExclusiveLock); |
2222 | 0 | continue; |
2223 | 0 | } |
2224 | | |
2225 | | /* |
2226 | | * Try to lock the temp namespace, too. Even though we have lock on |
2227 | | * the table itself, there's a risk of deadlock against an incoming |
2228 | | * backend trying to clean out the temp namespace, in case this table |
2229 | | * has dependencies (such as sequences) that the backend's |
2230 | | * performDeletion call might visit in a different order. If we can |
2231 | | * get AccessShareLock on the namespace, that's sufficient to ensure |
2232 | | * we're not running concurrently with RemoveTempRelations. If we |
2233 | | * can't, back off and let RemoveTempRelations do its thing. |
2234 | | */ |
2235 | 0 | if (!ConditionalLockDatabaseObject(NamespaceRelationId, |
2236 | 0 | classForm->relnamespace, 0, |
2237 | 0 | AccessShareLock)) |
2238 | 0 | { |
2239 | 0 | UnlockRelationOid(relid, AccessExclusiveLock); |
2240 | 0 | continue; |
2241 | 0 | } |
2242 | | |
2243 | | /* OK, let's delete it */ |
2244 | 0 | ereport(LOG, |
2245 | 0 | (errmsg("autovacuum: dropping orphan temp table \"%s.%s.%s\"", |
2246 | 0 | get_database_name(MyDatabaseId), |
2247 | 0 | get_namespace_name(classForm->relnamespace), |
2248 | 0 | NameStr(classForm->relname)))); |
2249 | | |
2250 | | /* |
2251 | | * Deletion might involve TOAST table access, so ensure we have a |
2252 | | * valid snapshot. |
2253 | | */ |
2254 | 0 | PushActiveSnapshot(GetTransactionSnapshot()); |
2255 | |
|
2256 | 0 | object.classId = RelationRelationId; |
2257 | 0 | object.objectId = relid; |
2258 | 0 | object.objectSubId = 0; |
2259 | 0 | performDeletion(&object, DROP_CASCADE, |
2260 | 0 | PERFORM_DELETION_INTERNAL | |
2261 | 0 | PERFORM_DELETION_QUIETLY | |
2262 | 0 | PERFORM_DELETION_SKIP_EXTENSIONS); |
2263 | | |
2264 | | /* |
2265 | | * To commit the deletion, end current transaction and start a new |
2266 | | * one. Note this also releases the locks we took. |
2267 | | */ |
2268 | 0 | PopActiveSnapshot(); |
2269 | 0 | CommitTransactionCommand(); |
2270 | 0 | StartTransactionCommand(); |
2271 | | |
2272 | | /* StartTransactionCommand changed current memory context */ |
2273 | 0 | MemoryContextSwitchTo(AutovacMemCxt); |
2274 | 0 | } |
2275 | | |
2276 | | /* |
2277 | | * Optionally, create a buffer access strategy object for VACUUM to use. |
2278 | | * We use the same BufferAccessStrategy object for all tables VACUUMed by |
2279 | | * this worker to prevent autovacuum from blowing out shared buffers. |
2280 | | * |
2281 | | * VacuumBufferUsageLimit being set to 0 results in |
2282 | | * GetAccessStrategyWithSize returning NULL, effectively meaning we can |
2283 | | * use up to all of shared buffers. |
2284 | | * |
2285 | | * If we later enter failsafe mode on any of the tables being vacuumed, we |
2286 | | * will cease use of the BufferAccessStrategy only for that table. |
2287 | | * |
2288 | | * XXX should we consider adding code to adjust the size of this if |
2289 | | * VacuumBufferUsageLimit changes? |
2290 | | */ |
2291 | 0 | bstrategy = GetAccessStrategyWithSize(BAS_VACUUM, VacuumBufferUsageLimit); |
2292 | | |
2293 | | /* |
2294 | | * create a memory context to act as fake PortalContext, so that the |
2295 | | * contexts created in the vacuum code are cleaned up for each table. |
2296 | | */ |
2297 | 0 | PortalContext = AllocSetContextCreate(AutovacMemCxt, |
2298 | 0 | "Autovacuum Portal", |
2299 | 0 | ALLOCSET_DEFAULT_SIZES); |
2300 | | |
2301 | | /* |
2302 | | * Perform operations on collected tables. |
2303 | | */ |
2304 | 0 | foreach(cell, table_oids) |
2305 | 0 | { |
2306 | 0 | Oid relid = lfirst_oid(cell); |
2307 | 0 | HeapTuple classTup; |
2308 | 0 | autovac_table *tab; |
2309 | 0 | bool isshared; |
2310 | 0 | bool skipit; |
2311 | 0 | dlist_iter iter; |
2312 | |
|
2313 | 0 | CHECK_FOR_INTERRUPTS(); |
2314 | | |
2315 | | /* |
2316 | | * Check for config changes before processing each collected table. |
2317 | | */ |
2318 | 0 | if (ConfigReloadPending) |
2319 | 0 | { |
2320 | 0 | ConfigReloadPending = false; |
2321 | 0 | ProcessConfigFile(PGC_SIGHUP); |
2322 | | |
2323 | | /* |
2324 | | * You might be tempted to bail out if we see autovacuum is now |
2325 | | * disabled. Must resist that temptation -- this might be a |
2326 | | * for-wraparound emergency worker, in which case that would be |
2327 | | * entirely inappropriate. |
2328 | | */ |
2329 | 0 | } |
2330 | | |
2331 | | /* |
2332 | | * Find out whether the table is shared or not. (It's slightly |
2333 | | * annoying to fetch the syscache entry just for this, but in typical |
2334 | | * cases it adds little cost because table_recheck_autovac would |
2335 | | * refetch the entry anyway. We could buy that back by copying the |
2336 | | * tuple here and passing it to table_recheck_autovac, but that |
2337 | | * increases the odds of that function working with stale data.) |
2338 | | */ |
2339 | 0 | classTup = SearchSysCache1(RELOID, ObjectIdGetDatum(relid)); |
2340 | 0 | if (!HeapTupleIsValid(classTup)) |
2341 | 0 | continue; /* somebody deleted the rel, forget it */ |
2342 | 0 | isshared = ((Form_pg_class) GETSTRUCT(classTup))->relisshared; |
2343 | 0 | ReleaseSysCache(classTup); |
2344 | | |
2345 | | /* |
2346 | | * Hold schedule lock from here until we've claimed the table. We |
2347 | | * also need the AutovacuumLock to walk the worker array, but that one |
2348 | | * can just be a shared lock. |
2349 | | */ |
2350 | 0 | LWLockAcquire(AutovacuumScheduleLock, LW_EXCLUSIVE); |
2351 | 0 | LWLockAcquire(AutovacuumLock, LW_SHARED); |
2352 | | |
2353 | | /* |
2354 | | * Check whether the table is being vacuumed concurrently by another |
2355 | | * worker. |
2356 | | */ |
2357 | 0 | skipit = false; |
2358 | 0 | dlist_foreach(iter, &AutoVacuumShmem->av_runningWorkers) |
2359 | 0 | { |
2360 | 0 | WorkerInfo worker = dlist_container(WorkerInfoData, wi_links, iter.cur); |
2361 | | |
2362 | | /* ignore myself */ |
2363 | 0 | if (worker == MyWorkerInfo) |
2364 | 0 | continue; |
2365 | | |
2366 | | /* ignore workers in other databases (unless table is shared) */ |
2367 | 0 | if (!worker->wi_sharedrel && worker->wi_dboid != MyDatabaseId) |
2368 | 0 | continue; |
2369 | | |
2370 | 0 | if (worker->wi_tableoid == relid) |
2371 | 0 | { |
2372 | 0 | skipit = true; |
2373 | 0 | found_concurrent_worker = true; |
2374 | 0 | break; |
2375 | 0 | } |
2376 | 0 | } |
2377 | 0 | LWLockRelease(AutovacuumLock); |
2378 | 0 | if (skipit) |
2379 | 0 | { |
2380 | 0 | LWLockRelease(AutovacuumScheduleLock); |
2381 | 0 | continue; |
2382 | 0 | } |
2383 | | |
2384 | | /* |
2385 | | * Store the table's OID in shared memory before releasing the |
2386 | | * schedule lock, so that other workers don't try to vacuum it |
2387 | | * concurrently. (We claim it here so as not to hold |
2388 | | * AutovacuumScheduleLock while rechecking the stats.) |
2389 | | */ |
2390 | 0 | MyWorkerInfo->wi_tableoid = relid; |
2391 | 0 | MyWorkerInfo->wi_sharedrel = isshared; |
2392 | 0 | LWLockRelease(AutovacuumScheduleLock); |
2393 | | |
2394 | | /* |
2395 | | * Check whether pgstat data still says we need to vacuum this table. |
2396 | | * It could have changed if something else processed the table while |
2397 | | * we weren't looking. This doesn't entirely close the race condition, |
2398 | | * but it is very small. |
2399 | | */ |
2400 | 0 | MemoryContextSwitchTo(AutovacMemCxt); |
2401 | 0 | tab = table_recheck_autovac(relid, table_toast_map, pg_class_desc, |
2402 | 0 | effective_multixact_freeze_max_age); |
2403 | 0 | if (tab == NULL) |
2404 | 0 | { |
2405 | | /* someone else vacuumed the table, or it went away */ |
2406 | 0 | LWLockAcquire(AutovacuumScheduleLock, LW_EXCLUSIVE); |
2407 | 0 | MyWorkerInfo->wi_tableoid = InvalidOid; |
2408 | 0 | MyWorkerInfo->wi_sharedrel = false; |
2409 | 0 | LWLockRelease(AutovacuumScheduleLock); |
2410 | 0 | continue; |
2411 | 0 | } |
2412 | | |
2413 | | /* |
2414 | | * Save the cost-related storage parameter values in global variables |
2415 | | * for reference when updating vacuum_cost_delay and vacuum_cost_limit |
2416 | | * during vacuuming this table. |
2417 | | */ |
2418 | 0 | av_storage_param_cost_delay = tab->at_storage_param_vac_cost_delay; |
2419 | 0 | av_storage_param_cost_limit = tab->at_storage_param_vac_cost_limit; |
2420 | | |
2421 | | /* |
2422 | | * We only expect this worker to ever set the flag, so don't bother |
2423 | | * checking the return value. We shouldn't have to retry. |
2424 | | */ |
2425 | 0 | if (tab->at_dobalance) |
2426 | 0 | pg_atomic_test_set_flag(&MyWorkerInfo->wi_dobalance); |
2427 | 0 | else |
2428 | 0 | pg_atomic_clear_flag(&MyWorkerInfo->wi_dobalance); |
2429 | |
|
2430 | 0 | LWLockAcquire(AutovacuumLock, LW_SHARED); |
2431 | 0 | autovac_recalculate_workers_for_balance(); |
2432 | 0 | LWLockRelease(AutovacuumLock); |
2433 | | |
2434 | | /* |
2435 | | * We wait until this point to update cost delay and cost limit |
2436 | | * values, even though we reloaded the configuration file above, so |
2437 | | * that we can take into account the cost-related storage parameters. |
2438 | | */ |
2439 | 0 | VacuumUpdateCosts(); |
2440 | | |
2441 | | |
2442 | | /* clean up memory before each iteration */ |
2443 | 0 | MemoryContextReset(PortalContext); |
2444 | | |
2445 | | /* |
2446 | | * Save the relation name for a possible error message, to avoid a |
2447 | | * catalog lookup in case of an error. If any of these return NULL, |
2448 | | * then the relation has been dropped since last we checked; skip it. |
2449 | | * Note: they must live in a long-lived memory context because we call |
2450 | | * vacuum and analyze in different transactions. |
2451 | | */ |
2452 | |
|
2453 | 0 | tab->at_relname = get_rel_name(tab->at_relid); |
2454 | 0 | tab->at_nspname = get_namespace_name(get_rel_namespace(tab->at_relid)); |
2455 | 0 | tab->at_datname = get_database_name(MyDatabaseId); |
2456 | 0 | if (!tab->at_relname || !tab->at_nspname || !tab->at_datname) |
2457 | 0 | goto deleted; |
2458 | | |
2459 | | /* |
2460 | | * We will abort vacuuming the current table if something errors out, |
2461 | | * and continue with the next one in schedule; in particular, this |
2462 | | * happens if we are interrupted with SIGINT. |
2463 | | */ |
2464 | 0 | PG_TRY(); |
2465 | 0 | { |
2466 | | /* Use PortalContext for any per-table allocations */ |
2467 | 0 | MemoryContextSwitchTo(PortalContext); |
2468 | | |
2469 | | /* have at it */ |
2470 | 0 | autovacuum_do_vac_analyze(tab, bstrategy); |
2471 | | |
2472 | | /* |
2473 | | * Clear a possible query-cancel signal, to avoid a late reaction |
2474 | | * to an automatically-sent signal because of vacuuming the |
2475 | | * current table (we're done with it, so it would make no sense to |
2476 | | * cancel at this point.) |
2477 | | */ |
2478 | 0 | QueryCancelPending = false; |
2479 | 0 | } |
2480 | 0 | PG_CATCH(); |
2481 | 0 | { |
2482 | | /* |
2483 | | * Abort the transaction, start a new one, and proceed with the |
2484 | | * next table in our list. |
2485 | | */ |
2486 | 0 | HOLD_INTERRUPTS(); |
2487 | 0 | if (tab->at_params.options & VACOPT_VACUUM) |
2488 | 0 | errcontext("automatic vacuum of table \"%s.%s.%s\"", |
2489 | 0 | tab->at_datname, tab->at_nspname, tab->at_relname); |
2490 | 0 | else |
2491 | 0 | errcontext("automatic analyze of table \"%s.%s.%s\"", |
2492 | 0 | tab->at_datname, tab->at_nspname, tab->at_relname); |
2493 | 0 | EmitErrorReport(); |
2494 | | |
2495 | | /* this resets ProcGlobal->statusFlags[i] too */ |
2496 | 0 | AbortOutOfAnyTransaction(); |
2497 | 0 | FlushErrorState(); |
2498 | 0 | MemoryContextReset(PortalContext); |
2499 | | |
2500 | | /* restart our transaction for the following operations */ |
2501 | 0 | StartTransactionCommand(); |
2502 | 0 | RESUME_INTERRUPTS(); |
2503 | 0 | } |
2504 | 0 | PG_END_TRY(); |
2505 | | |
2506 | | /* Make sure we're back in AutovacMemCxt */ |
2507 | 0 | MemoryContextSwitchTo(AutovacMemCxt); |
2508 | |
|
2509 | 0 | did_vacuum = true; |
2510 | | |
2511 | | /* ProcGlobal->statusFlags[i] are reset at the next end of xact */ |
2512 | | |
2513 | | /* be tidy */ |
2514 | 0 | deleted: |
2515 | 0 | if (tab->at_datname != NULL) |
2516 | 0 | pfree(tab->at_datname); |
2517 | 0 | if (tab->at_nspname != NULL) |
2518 | 0 | pfree(tab->at_nspname); |
2519 | 0 | if (tab->at_relname != NULL) |
2520 | 0 | pfree(tab->at_relname); |
2521 | 0 | pfree(tab); |
2522 | | |
2523 | | /* |
2524 | | * Remove my info from shared memory. We set wi_dobalance on the |
2525 | | * assumption that we are more likely than not to vacuum a table with |
2526 | | * no cost-related storage parameters next, so we want to claim our |
2527 | | * share of I/O as soon as possible to avoid thrashing the global |
2528 | | * balance. |
2529 | | */ |
2530 | 0 | LWLockAcquire(AutovacuumScheduleLock, LW_EXCLUSIVE); |
2531 | 0 | MyWorkerInfo->wi_tableoid = InvalidOid; |
2532 | 0 | MyWorkerInfo->wi_sharedrel = false; |
2533 | 0 | LWLockRelease(AutovacuumScheduleLock); |
2534 | 0 | pg_atomic_test_set_flag(&MyWorkerInfo->wi_dobalance); |
2535 | 0 | } |
2536 | | |
2537 | 0 | list_free(table_oids); |
2538 | | |
2539 | | /* |
2540 | | * Perform additional work items, as requested by backends. |
2541 | | */ |
2542 | 0 | LWLockAcquire(AutovacuumLock, LW_EXCLUSIVE); |
2543 | 0 | for (i = 0; i < NUM_WORKITEMS; i++) |
2544 | 0 | { |
2545 | 0 | AutoVacuumWorkItem *workitem = &AutoVacuumShmem->av_workItems[i]; |
2546 | |
|
2547 | 0 | if (!workitem->avw_used) |
2548 | 0 | continue; |
2549 | 0 | if (workitem->avw_active) |
2550 | 0 | continue; |
2551 | 0 | if (workitem->avw_database != MyDatabaseId) |
2552 | 0 | continue; |
2553 | | |
2554 | | /* claim this one, and release lock while performing it */ |
2555 | 0 | workitem->avw_active = true; |
2556 | 0 | LWLockRelease(AutovacuumLock); |
2557 | |
|
2558 | 0 | perform_work_item(workitem); |
2559 | | |
2560 | | /* |
2561 | | * Check for config changes before acquiring lock for further jobs. |
2562 | | */ |
2563 | 0 | CHECK_FOR_INTERRUPTS(); |
2564 | 0 | if (ConfigReloadPending) |
2565 | 0 | { |
2566 | 0 | ConfigReloadPending = false; |
2567 | 0 | ProcessConfigFile(PGC_SIGHUP); |
2568 | 0 | VacuumUpdateCosts(); |
2569 | 0 | } |
2570 | |
|
2571 | 0 | LWLockAcquire(AutovacuumLock, LW_EXCLUSIVE); |
2572 | | |
2573 | | /* and mark it done */ |
2574 | 0 | workitem->avw_active = false; |
2575 | 0 | workitem->avw_used = false; |
2576 | 0 | } |
2577 | 0 | LWLockRelease(AutovacuumLock); |
2578 | | |
2579 | | /* |
2580 | | * We leak table_toast_map here (among other things), but since we're |
2581 | | * going away soon, it's not a problem normally. But when using Valgrind, |
2582 | | * release some stuff to reduce complaints about leaked storage. |
2583 | | */ |
2584 | | #ifdef USE_VALGRIND |
2585 | | hash_destroy(table_toast_map); |
2586 | | FreeTupleDesc(pg_class_desc); |
2587 | | if (bstrategy) |
2588 | | pfree(bstrategy); |
2589 | | #endif |
2590 | | |
2591 | | /* Run the rest in xact context, mainly to avoid Valgrind leak warnings */ |
2592 | 0 | MemoryContextSwitchTo(TopTransactionContext); |
2593 | | |
2594 | | /* |
2595 | | * Update pg_database.datfrozenxid, and truncate pg_xact if possible. We |
2596 | | * only need to do this once, not after each table. |
2597 | | * |
2598 | | * Even if we didn't vacuum anything, it may still be important to do |
2599 | | * this, because one indirect effect of vac_update_datfrozenxid() is to |
2600 | | * update TransamVariables->xidVacLimit. That might need to be done even |
2601 | | * if we haven't vacuumed anything, because relations with older |
2602 | | * relfrozenxid values or other databases with older datfrozenxid values |
2603 | | * might have been dropped, allowing xidVacLimit to advance. |
2604 | | * |
2605 | | * However, it's also important not to do this blindly in all cases, |
2606 | | * because when autovacuum=off this will restart the autovacuum launcher. |
2607 | | * If we're not careful, an infinite loop can result, where workers find |
2608 | | * no work to do and restart the launcher, which starts another worker in |
2609 | | * the same database that finds no work to do. To prevent that, we skip |
2610 | | * this if (1) we found no work to do and (2) we skipped at least one |
2611 | | * table due to concurrent autovacuum activity. In that case, the other |
2612 | | * worker has already done it, or will do so when it finishes. |
2613 | | */ |
2614 | 0 | if (did_vacuum || !found_concurrent_worker) |
2615 | 0 | vac_update_datfrozenxid(); |
2616 | | |
2617 | | /* Finally close out the last transaction. */ |
2618 | 0 | CommitTransactionCommand(); |
2619 | 0 | } |
2620 | | |
2621 | | /* |
2622 | | * Execute a previously registered work item. |
2623 | | */ |
2624 | | static void |
2625 | | perform_work_item(AutoVacuumWorkItem *workitem) |
2626 | 0 | { |
2627 | 0 | char *cur_datname = NULL; |
2628 | 0 | char *cur_nspname = NULL; |
2629 | 0 | char *cur_relname = NULL; |
2630 | | |
2631 | | /* |
2632 | | * Note we do not store table info in MyWorkerInfo, since this is not |
2633 | | * vacuuming proper. |
2634 | | */ |
2635 | | |
2636 | | /* |
2637 | | * Save the relation name for a possible error message, to avoid a catalog |
2638 | | * lookup in case of an error. If any of these return NULL, then the |
2639 | | * relation has been dropped since last we checked; skip it. |
2640 | | */ |
2641 | 0 | Assert(CurrentMemoryContext == AutovacMemCxt); |
2642 | |
|
2643 | 0 | cur_relname = get_rel_name(workitem->avw_relation); |
2644 | 0 | cur_nspname = get_namespace_name(get_rel_namespace(workitem->avw_relation)); |
2645 | 0 | cur_datname = get_database_name(MyDatabaseId); |
2646 | 0 | if (!cur_relname || !cur_nspname || !cur_datname) |
2647 | 0 | goto deleted2; |
2648 | | |
2649 | 0 | autovac_report_workitem(workitem, cur_nspname, cur_relname); |
2650 | | |
2651 | | /* clean up memory before each work item */ |
2652 | 0 | MemoryContextReset(PortalContext); |
2653 | | |
2654 | | /* |
2655 | | * We will abort the current work item if something errors out, and |
2656 | | * continue with the next one; in particular, this happens if we are |
2657 | | * interrupted with SIGINT. Note that this means that the work item list |
2658 | | * can be lossy. |
2659 | | */ |
2660 | 0 | PG_TRY(); |
2661 | 0 | { |
2662 | | /* Use PortalContext for any per-work-item allocations */ |
2663 | 0 | MemoryContextSwitchTo(PortalContext); |
2664 | | |
2665 | | /* |
2666 | | * Have at it. Functions called here are responsible for any required |
2667 | | * user switch and sandbox. |
2668 | | */ |
2669 | 0 | switch (workitem->avw_type) |
2670 | 0 | { |
2671 | 0 | case AVW_BRINSummarizeRange: |
2672 | 0 | DirectFunctionCall2(brin_summarize_range, |
2673 | 0 | ObjectIdGetDatum(workitem->avw_relation), |
2674 | 0 | Int64GetDatum((int64) workitem->avw_blockNumber)); |
2675 | 0 | break; |
2676 | 0 | default: |
2677 | 0 | elog(WARNING, "unrecognized work item found: type %d", |
2678 | 0 | workitem->avw_type); |
2679 | 0 | break; |
2680 | 0 | } |
2681 | | |
2682 | | /* |
2683 | | * Clear a possible query-cancel signal, to avoid a late reaction to |
2684 | | * an automatically-sent signal because of vacuuming the current table |
2685 | | * (we're done with it, so it would make no sense to cancel at this |
2686 | | * point.) |
2687 | | */ |
2688 | 0 | QueryCancelPending = false; |
2689 | 0 | } |
2690 | 0 | PG_CATCH(); |
2691 | 0 | { |
2692 | | /* |
2693 | | * Abort the transaction, start a new one, and proceed with the next |
2694 | | * table in our list. |
2695 | | */ |
2696 | 0 | HOLD_INTERRUPTS(); |
2697 | 0 | errcontext("processing work entry for relation \"%s.%s.%s\"", |
2698 | 0 | cur_datname, cur_nspname, cur_relname); |
2699 | 0 | EmitErrorReport(); |
2700 | | |
2701 | | /* this resets ProcGlobal->statusFlags[i] too */ |
2702 | 0 | AbortOutOfAnyTransaction(); |
2703 | 0 | FlushErrorState(); |
2704 | 0 | MemoryContextReset(PortalContext); |
2705 | | |
2706 | | /* restart our transaction for the following operations */ |
2707 | 0 | StartTransactionCommand(); |
2708 | 0 | RESUME_INTERRUPTS(); |
2709 | 0 | } |
2710 | 0 | PG_END_TRY(); |
2711 | | |
2712 | | /* Make sure we're back in AutovacMemCxt */ |
2713 | 0 | MemoryContextSwitchTo(AutovacMemCxt); |
2714 | | |
2715 | | /* We intentionally do not set did_vacuum here */ |
2716 | | |
2717 | | /* be tidy */ |
2718 | 0 | deleted2: |
2719 | 0 | if (cur_datname) |
2720 | 0 | pfree(cur_datname); |
2721 | 0 | if (cur_nspname) |
2722 | 0 | pfree(cur_nspname); |
2723 | 0 | if (cur_relname) |
2724 | 0 | pfree(cur_relname); |
2725 | 0 | } |
2726 | | |
2727 | | /* |
2728 | | * extract_autovac_opts |
2729 | | * |
2730 | | * Given a relation's pg_class tuple, return a palloc'd copy of the |
2731 | | * AutoVacOpts portion of reloptions, if set; otherwise, return NULL. |
2732 | | * |
2733 | | * Note: callers do not have a relation lock on the table at this point, |
2734 | | * so the table could have been dropped, and its catalog rows gone, after |
2735 | | * we acquired the pg_class row. If pg_class had a TOAST table, this would |
2736 | | * be a risk; fortunately, it doesn't. |
2737 | | */ |
2738 | | static AutoVacOpts * |
2739 | | extract_autovac_opts(HeapTuple tup, TupleDesc pg_class_desc) |
2740 | 0 | { |
2741 | 0 | bytea *relopts; |
2742 | 0 | AutoVacOpts *av; |
2743 | |
|
2744 | 0 | Assert(((Form_pg_class) GETSTRUCT(tup))->relkind == RELKIND_RELATION || |
2745 | 0 | ((Form_pg_class) GETSTRUCT(tup))->relkind == RELKIND_MATVIEW || |
2746 | 0 | ((Form_pg_class) GETSTRUCT(tup))->relkind == RELKIND_TOASTVALUE); |
2747 | |
|
2748 | 0 | relopts = extractRelOptions(tup, pg_class_desc, NULL); |
2749 | 0 | if (relopts == NULL) |
2750 | 0 | return NULL; |
2751 | | |
2752 | 0 | av = palloc(sizeof(AutoVacOpts)); |
2753 | 0 | memcpy(av, &(((StdRdOptions *) relopts)->autovacuum), sizeof(AutoVacOpts)); |
2754 | 0 | pfree(relopts); |
2755 | |
|
2756 | 0 | return av; |
2757 | 0 | } |
2758 | | |
2759 | | |
2760 | | /* |
2761 | | * table_recheck_autovac |
2762 | | * |
2763 | | * Recheck whether a table still needs vacuum or analyze. Return value is a |
2764 | | * valid autovac_table pointer if it does, NULL otherwise. |
2765 | | * |
2766 | | * Note that the returned autovac_table does not have the name fields set. |
2767 | | */ |
2768 | | static autovac_table * |
2769 | | table_recheck_autovac(Oid relid, HTAB *table_toast_map, |
2770 | | TupleDesc pg_class_desc, |
2771 | | int effective_multixact_freeze_max_age) |
2772 | 0 | { |
2773 | 0 | Form_pg_class classForm; |
2774 | 0 | HeapTuple classTup; |
2775 | 0 | bool dovacuum; |
2776 | 0 | bool doanalyze; |
2777 | 0 | autovac_table *tab = NULL; |
2778 | 0 | bool wraparound; |
2779 | 0 | AutoVacOpts *avopts; |
2780 | 0 | bool free_avopts = false; |
2781 | | |
2782 | | /* fetch the relation's relcache entry */ |
2783 | 0 | classTup = SearchSysCacheCopy1(RELOID, ObjectIdGetDatum(relid)); |
2784 | 0 | if (!HeapTupleIsValid(classTup)) |
2785 | 0 | return NULL; |
2786 | 0 | classForm = (Form_pg_class) GETSTRUCT(classTup); |
2787 | | |
2788 | | /* |
2789 | | * Get the applicable reloptions. If it is a TOAST table, try to get the |
2790 | | * main table reloptions if the toast table itself doesn't have. |
2791 | | */ |
2792 | 0 | avopts = extract_autovac_opts(classTup, pg_class_desc); |
2793 | 0 | if (avopts) |
2794 | 0 | free_avopts = true; |
2795 | 0 | else if (classForm->relkind == RELKIND_TOASTVALUE && |
2796 | 0 | table_toast_map != NULL) |
2797 | 0 | { |
2798 | 0 | av_relation *hentry; |
2799 | 0 | bool found; |
2800 | |
|
2801 | 0 | hentry = hash_search(table_toast_map, &relid, HASH_FIND, &found); |
2802 | 0 | if (found && hentry->ar_hasrelopts) |
2803 | 0 | avopts = &hentry->ar_reloptions; |
2804 | 0 | } |
2805 | |
|
2806 | 0 | recheck_relation_needs_vacanalyze(relid, avopts, classForm, |
2807 | 0 | effective_multixact_freeze_max_age, |
2808 | 0 | &dovacuum, &doanalyze, &wraparound); |
2809 | | |
2810 | | /* OK, it needs something done */ |
2811 | 0 | if (doanalyze || dovacuum) |
2812 | 0 | { |
2813 | 0 | int freeze_min_age; |
2814 | 0 | int freeze_table_age; |
2815 | 0 | int multixact_freeze_min_age; |
2816 | 0 | int multixact_freeze_table_age; |
2817 | 0 | int log_min_duration; |
2818 | | |
2819 | | /* |
2820 | | * Calculate the vacuum cost parameters and the freeze ages. If there |
2821 | | * are options set in pg_class.reloptions, use them; in the case of a |
2822 | | * toast table, try the main table too. Otherwise use the GUC |
2823 | | * defaults, autovacuum's own first and plain vacuum second. |
2824 | | */ |
2825 | | |
2826 | | /* -1 in autovac setting means use log_autovacuum_min_duration */ |
2827 | 0 | log_min_duration = (avopts && avopts->log_min_duration >= 0) |
2828 | 0 | ? avopts->log_min_duration |
2829 | 0 | : Log_autovacuum_min_duration; |
2830 | | |
2831 | | /* these do not have autovacuum-specific settings */ |
2832 | 0 | freeze_min_age = (avopts && avopts->freeze_min_age >= 0) |
2833 | 0 | ? avopts->freeze_min_age |
2834 | 0 | : default_freeze_min_age; |
2835 | |
|
2836 | 0 | freeze_table_age = (avopts && avopts->freeze_table_age >= 0) |
2837 | 0 | ? avopts->freeze_table_age |
2838 | 0 | : default_freeze_table_age; |
2839 | |
|
2840 | 0 | multixact_freeze_min_age = (avopts && |
2841 | 0 | avopts->multixact_freeze_min_age >= 0) |
2842 | 0 | ? avopts->multixact_freeze_min_age |
2843 | 0 | : default_multixact_freeze_min_age; |
2844 | |
|
2845 | 0 | multixact_freeze_table_age = (avopts && |
2846 | 0 | avopts->multixact_freeze_table_age >= 0) |
2847 | 0 | ? avopts->multixact_freeze_table_age |
2848 | 0 | : default_multixact_freeze_table_age; |
2849 | |
|
2850 | 0 | tab = palloc(sizeof(autovac_table)); |
2851 | 0 | tab->at_relid = relid; |
2852 | 0 | tab->at_sharedrel = classForm->relisshared; |
2853 | | |
2854 | | /* |
2855 | | * Select VACUUM options. Note we don't say VACOPT_PROCESS_TOAST, so |
2856 | | * that vacuum() skips toast relations. Also note we tell vacuum() to |
2857 | | * skip vac_update_datfrozenxid(); we'll do that separately. |
2858 | | */ |
2859 | 0 | tab->at_params.options = |
2860 | 0 | (dovacuum ? (VACOPT_VACUUM | |
2861 | 0 | VACOPT_PROCESS_MAIN | |
2862 | 0 | VACOPT_SKIP_DATABASE_STATS) : 0) | |
2863 | 0 | (doanalyze ? VACOPT_ANALYZE : 0) | |
2864 | 0 | (!wraparound ? VACOPT_SKIP_LOCKED : 0); |
2865 | | |
2866 | | /* |
2867 | | * index_cleanup and truncate are unspecified at first in autovacuum. |
2868 | | * They will be filled in with usable values using their reloptions |
2869 | | * (or reloption defaults) later. |
2870 | | */ |
2871 | 0 | tab->at_params.index_cleanup = VACOPTVALUE_UNSPECIFIED; |
2872 | 0 | tab->at_params.truncate = VACOPTVALUE_UNSPECIFIED; |
2873 | | /* As of now, we don't support parallel vacuum for autovacuum */ |
2874 | 0 | tab->at_params.nworkers = -1; |
2875 | 0 | tab->at_params.freeze_min_age = freeze_min_age; |
2876 | 0 | tab->at_params.freeze_table_age = freeze_table_age; |
2877 | 0 | tab->at_params.multixact_freeze_min_age = multixact_freeze_min_age; |
2878 | 0 | tab->at_params.multixact_freeze_table_age = multixact_freeze_table_age; |
2879 | 0 | tab->at_params.is_wraparound = wraparound; |
2880 | 0 | tab->at_params.log_min_duration = log_min_duration; |
2881 | 0 | tab->at_params.toast_parent = InvalidOid; |
2882 | | |
2883 | | /* |
2884 | | * Later, in vacuum_rel(), we check reloptions for any |
2885 | | * vacuum_max_eager_freeze_failure_rate override. |
2886 | | */ |
2887 | 0 | tab->at_params.max_eager_freeze_failure_rate = vacuum_max_eager_freeze_failure_rate; |
2888 | 0 | tab->at_storage_param_vac_cost_limit = avopts ? |
2889 | 0 | avopts->vacuum_cost_limit : 0; |
2890 | 0 | tab->at_storage_param_vac_cost_delay = avopts ? |
2891 | 0 | avopts->vacuum_cost_delay : -1; |
2892 | 0 | tab->at_relname = NULL; |
2893 | 0 | tab->at_nspname = NULL; |
2894 | 0 | tab->at_datname = NULL; |
2895 | | |
2896 | | /* |
2897 | | * If any of the cost delay parameters has been set individually for |
2898 | | * this table, disable the balancing algorithm. |
2899 | | */ |
2900 | 0 | tab->at_dobalance = |
2901 | 0 | !(avopts && (avopts->vacuum_cost_limit > 0 || |
2902 | 0 | avopts->vacuum_cost_delay >= 0)); |
2903 | 0 | } |
2904 | |
|
2905 | 0 | if (free_avopts) |
2906 | 0 | pfree(avopts); |
2907 | 0 | heap_freetuple(classTup); |
2908 | 0 | return tab; |
2909 | 0 | } |
2910 | | |
2911 | | /* |
2912 | | * recheck_relation_needs_vacanalyze |
2913 | | * |
2914 | | * Subroutine for table_recheck_autovac. |
2915 | | * |
2916 | | * Fetch the pgstat of a relation and recheck whether a relation |
2917 | | * needs to be vacuumed or analyzed. |
2918 | | */ |
2919 | | static void |
2920 | | recheck_relation_needs_vacanalyze(Oid relid, |
2921 | | AutoVacOpts *avopts, |
2922 | | Form_pg_class classForm, |
2923 | | int effective_multixact_freeze_max_age, |
2924 | | bool *dovacuum, |
2925 | | bool *doanalyze, |
2926 | | bool *wraparound) |
2927 | 0 | { |
2928 | 0 | PgStat_StatTabEntry *tabentry; |
2929 | | |
2930 | | /* fetch the pgstat table entry */ |
2931 | 0 | tabentry = pgstat_fetch_stat_tabentry_ext(classForm->relisshared, |
2932 | 0 | relid); |
2933 | |
|
2934 | 0 | relation_needs_vacanalyze(relid, avopts, classForm, tabentry, |
2935 | 0 | effective_multixact_freeze_max_age, |
2936 | 0 | dovacuum, doanalyze, wraparound); |
2937 | | |
2938 | | /* Release tabentry to avoid leakage */ |
2939 | 0 | if (tabentry) |
2940 | 0 | pfree(tabentry); |
2941 | | |
2942 | | /* ignore ANALYZE for toast tables */ |
2943 | 0 | if (classForm->relkind == RELKIND_TOASTVALUE) |
2944 | 0 | *doanalyze = false; |
2945 | 0 | } |
2946 | | |
2947 | | /* |
2948 | | * relation_needs_vacanalyze |
2949 | | * |
2950 | | * Check whether a relation needs to be vacuumed or analyzed; return each into |
2951 | | * "dovacuum" and "doanalyze", respectively. Also return whether the vacuum is |
2952 | | * being forced because of Xid or multixact wraparound. |
2953 | | * |
2954 | | * relopts is a pointer to the AutoVacOpts options (either for itself in the |
2955 | | * case of a plain table, or for either itself or its parent table in the case |
2956 | | * of a TOAST table), NULL if none; tabentry is the pgstats entry, which can be |
2957 | | * NULL. |
2958 | | * |
2959 | | * A table needs to be vacuumed if the number of dead tuples exceeds a |
2960 | | * threshold. This threshold is calculated as |
2961 | | * |
2962 | | * threshold = vac_base_thresh + vac_scale_factor * reltuples |
2963 | | * if (threshold > vac_max_thresh) |
2964 | | * threshold = vac_max_thresh; |
2965 | | * |
2966 | | * For analyze, the analysis done is that the number of tuples inserted, |
2967 | | * deleted and updated since the last analyze exceeds a threshold calculated |
2968 | | * in the same fashion as above. Note that the cumulative stats system stores |
2969 | | * the number of tuples (both live and dead) that there were as of the last |
2970 | | * analyze. This is asymmetric to the VACUUM case. |
2971 | | * |
2972 | | * We also force vacuum if the table's relfrozenxid is more than freeze_max_age |
2973 | | * transactions back, and if its relminmxid is more than |
2974 | | * multixact_freeze_max_age multixacts back. |
2975 | | * |
2976 | | * A table whose autovacuum_enabled option is false is |
2977 | | * automatically skipped (unless we have to vacuum it due to freeze_max_age). |
2978 | | * Thus autovacuum can be disabled for specific tables. Also, when the cumulative |
2979 | | * stats system does not have data about a table, it will be skipped. |
2980 | | * |
2981 | | * A table whose vac_base_thresh value is < 0 takes the base value from the |
2982 | | * autovacuum_vacuum_threshold GUC variable. Similarly, a vac_scale_factor |
2983 | | * value < 0 is substituted with the value of |
2984 | | * autovacuum_vacuum_scale_factor GUC variable. Ditto for analyze. |
2985 | | */ |
2986 | | static void |
2987 | | relation_needs_vacanalyze(Oid relid, |
2988 | | AutoVacOpts *relopts, |
2989 | | Form_pg_class classForm, |
2990 | | PgStat_StatTabEntry *tabentry, |
2991 | | int effective_multixact_freeze_max_age, |
2992 | | /* output params below */ |
2993 | | bool *dovacuum, |
2994 | | bool *doanalyze, |
2995 | | bool *wraparound) |
2996 | 0 | { |
2997 | 0 | bool force_vacuum; |
2998 | 0 | bool av_enabled; |
2999 | | |
3000 | | /* constants from reloptions or GUC variables */ |
3001 | 0 | int vac_base_thresh, |
3002 | 0 | vac_max_thresh, |
3003 | 0 | vac_ins_base_thresh, |
3004 | 0 | anl_base_thresh; |
3005 | 0 | float4 vac_scale_factor, |
3006 | 0 | vac_ins_scale_factor, |
3007 | 0 | anl_scale_factor; |
3008 | | |
3009 | | /* thresholds calculated from above constants */ |
3010 | 0 | float4 vacthresh, |
3011 | 0 | vacinsthresh, |
3012 | 0 | anlthresh; |
3013 | | |
3014 | | /* number of vacuum (resp. analyze) tuples at this time */ |
3015 | 0 | float4 vactuples, |
3016 | 0 | instuples, |
3017 | 0 | anltuples; |
3018 | | |
3019 | | /* freeze parameters */ |
3020 | 0 | int freeze_max_age; |
3021 | 0 | int multixact_freeze_max_age; |
3022 | 0 | TransactionId xidForceLimit; |
3023 | 0 | TransactionId relfrozenxid; |
3024 | 0 | MultiXactId multiForceLimit; |
3025 | |
|
3026 | 0 | Assert(classForm != NULL); |
3027 | 0 | Assert(OidIsValid(relid)); |
3028 | | |
3029 | | /* |
3030 | | * Determine vacuum/analyze equation parameters. We have two possible |
3031 | | * sources: the passed reloptions (which could be a main table or a toast |
3032 | | * table), or the autovacuum GUC variables. |
3033 | | */ |
3034 | | |
3035 | | /* -1 in autovac setting means use plain vacuum_scale_factor */ |
3036 | 0 | vac_scale_factor = (relopts && relopts->vacuum_scale_factor >= 0) |
3037 | 0 | ? relopts->vacuum_scale_factor |
3038 | 0 | : autovacuum_vac_scale; |
3039 | |
|
3040 | 0 | vac_base_thresh = (relopts && relopts->vacuum_threshold >= 0) |
3041 | 0 | ? relopts->vacuum_threshold |
3042 | 0 | : autovacuum_vac_thresh; |
3043 | | |
3044 | | /* -1 is used to disable max threshold */ |
3045 | 0 | vac_max_thresh = (relopts && relopts->vacuum_max_threshold >= -1) |
3046 | 0 | ? relopts->vacuum_max_threshold |
3047 | 0 | : autovacuum_vac_max_thresh; |
3048 | |
|
3049 | 0 | vac_ins_scale_factor = (relopts && relopts->vacuum_ins_scale_factor >= 0) |
3050 | 0 | ? relopts->vacuum_ins_scale_factor |
3051 | 0 | : autovacuum_vac_ins_scale; |
3052 | | |
3053 | | /* -1 is used to disable insert vacuums */ |
3054 | 0 | vac_ins_base_thresh = (relopts && relopts->vacuum_ins_threshold >= -1) |
3055 | 0 | ? relopts->vacuum_ins_threshold |
3056 | 0 | : autovacuum_vac_ins_thresh; |
3057 | |
|
3058 | 0 | anl_scale_factor = (relopts && relopts->analyze_scale_factor >= 0) |
3059 | 0 | ? relopts->analyze_scale_factor |
3060 | 0 | : autovacuum_anl_scale; |
3061 | |
|
3062 | 0 | anl_base_thresh = (relopts && relopts->analyze_threshold >= 0) |
3063 | 0 | ? relopts->analyze_threshold |
3064 | 0 | : autovacuum_anl_thresh; |
3065 | |
|
3066 | 0 | freeze_max_age = (relopts && relopts->freeze_max_age >= 0) |
3067 | 0 | ? Min(relopts->freeze_max_age, autovacuum_freeze_max_age) |
3068 | 0 | : autovacuum_freeze_max_age; |
3069 | |
|
3070 | 0 | multixact_freeze_max_age = (relopts && relopts->multixact_freeze_max_age >= 0) |
3071 | 0 | ? Min(relopts->multixact_freeze_max_age, effective_multixact_freeze_max_age) |
3072 | 0 | : effective_multixact_freeze_max_age; |
3073 | |
|
3074 | 0 | av_enabled = (relopts ? relopts->enabled : true); |
3075 | | |
3076 | | /* Force vacuum if table is at risk of wraparound */ |
3077 | 0 | xidForceLimit = recentXid - freeze_max_age; |
3078 | 0 | if (xidForceLimit < FirstNormalTransactionId) |
3079 | 0 | xidForceLimit -= FirstNormalTransactionId; |
3080 | 0 | relfrozenxid = classForm->relfrozenxid; |
3081 | 0 | force_vacuum = (TransactionIdIsNormal(relfrozenxid) && |
3082 | 0 | TransactionIdPrecedes(relfrozenxid, xidForceLimit)); |
3083 | 0 | if (!force_vacuum) |
3084 | 0 | { |
3085 | 0 | MultiXactId relminmxid = classForm->relminmxid; |
3086 | |
|
3087 | 0 | multiForceLimit = recentMulti - multixact_freeze_max_age; |
3088 | 0 | if (multiForceLimit < FirstMultiXactId) |
3089 | 0 | multiForceLimit -= FirstMultiXactId; |
3090 | 0 | force_vacuum = MultiXactIdIsValid(relminmxid) && |
3091 | 0 | MultiXactIdPrecedes(relminmxid, multiForceLimit); |
3092 | 0 | } |
3093 | 0 | *wraparound = force_vacuum; |
3094 | | |
3095 | | /* User disabled it in pg_class.reloptions? (But ignore if at risk) */ |
3096 | 0 | if (!av_enabled && !force_vacuum) |
3097 | 0 | { |
3098 | 0 | *doanalyze = false; |
3099 | 0 | *dovacuum = false; |
3100 | 0 | return; |
3101 | 0 | } |
3102 | | |
3103 | | /* |
3104 | | * If we found stats for the table, and autovacuum is currently enabled, |
3105 | | * make a threshold-based decision whether to vacuum and/or analyze. If |
3106 | | * autovacuum is currently disabled, we must be here for anti-wraparound |
3107 | | * vacuuming only, so don't vacuum (or analyze) anything that's not being |
3108 | | * forced. |
3109 | | */ |
3110 | 0 | if (tabentry && AutoVacuumingActive()) |
3111 | 0 | { |
3112 | 0 | float4 pcnt_unfrozen = 1; |
3113 | 0 | float4 reltuples = classForm->reltuples; |
3114 | 0 | int32 relpages = classForm->relpages; |
3115 | 0 | int32 relallfrozen = classForm->relallfrozen; |
3116 | |
|
3117 | 0 | vactuples = tabentry->dead_tuples; |
3118 | 0 | instuples = tabentry->ins_since_vacuum; |
3119 | 0 | anltuples = tabentry->mod_since_analyze; |
3120 | | |
3121 | | /* If the table hasn't yet been vacuumed, take reltuples as zero */ |
3122 | 0 | if (reltuples < 0) |
3123 | 0 | reltuples = 0; |
3124 | | |
3125 | | /* |
3126 | | * If we have data for relallfrozen, calculate the unfrozen percentage |
3127 | | * of the table to modify insert scale factor. This helps us decide |
3128 | | * whether or not to vacuum an insert-heavy table based on the number |
3129 | | * of inserts to the more "active" part of the table. |
3130 | | */ |
3131 | 0 | if (relpages > 0 && relallfrozen > 0) |
3132 | 0 | { |
3133 | | /* |
3134 | | * It could be the stats were updated manually and relallfrozen > |
3135 | | * relpages. Clamp relallfrozen to relpages to avoid nonsensical |
3136 | | * calculations. |
3137 | | */ |
3138 | 0 | relallfrozen = Min(relallfrozen, relpages); |
3139 | 0 | pcnt_unfrozen = 1 - ((float4) relallfrozen / relpages); |
3140 | 0 | } |
3141 | |
|
3142 | 0 | vacthresh = (float4) vac_base_thresh + vac_scale_factor * reltuples; |
3143 | 0 | if (vac_max_thresh >= 0 && vacthresh > (float4) vac_max_thresh) |
3144 | 0 | vacthresh = (float4) vac_max_thresh; |
3145 | |
|
3146 | 0 | vacinsthresh = (float4) vac_ins_base_thresh + |
3147 | 0 | vac_ins_scale_factor * reltuples * pcnt_unfrozen; |
3148 | 0 | anlthresh = (float4) anl_base_thresh + anl_scale_factor * reltuples; |
3149 | | |
3150 | | /* |
3151 | | * Note that we don't need to take special consideration for stat |
3152 | | * reset, because if that happens, the last vacuum and analyze counts |
3153 | | * will be reset too. |
3154 | | */ |
3155 | 0 | if (vac_ins_base_thresh >= 0) |
3156 | 0 | elog(DEBUG3, "%s: vac: %.0f (threshold %.0f), ins: %.0f (threshold %.0f), anl: %.0f (threshold %.0f)", |
3157 | 0 | NameStr(classForm->relname), |
3158 | 0 | vactuples, vacthresh, instuples, vacinsthresh, anltuples, anlthresh); |
3159 | 0 | else |
3160 | 0 | elog(DEBUG3, "%s: vac: %.0f (threshold %.0f), ins: (disabled), anl: %.0f (threshold %.0f)", |
3161 | 0 | NameStr(classForm->relname), |
3162 | 0 | vactuples, vacthresh, anltuples, anlthresh); |
3163 | | |
3164 | | /* Determine if this table needs vacuum or analyze. */ |
3165 | 0 | *dovacuum = force_vacuum || (vactuples > vacthresh) || |
3166 | 0 | (vac_ins_base_thresh >= 0 && instuples > vacinsthresh); |
3167 | 0 | *doanalyze = (anltuples > anlthresh); |
3168 | 0 | } |
3169 | 0 | else |
3170 | 0 | { |
3171 | | /* |
3172 | | * Skip a table not found in stat hash, unless we have to force vacuum |
3173 | | * for anti-wrap purposes. If it's not acted upon, there's no need to |
3174 | | * vacuum it. |
3175 | | */ |
3176 | 0 | *dovacuum = force_vacuum; |
3177 | 0 | *doanalyze = false; |
3178 | 0 | } |
3179 | | |
3180 | | /* ANALYZE refuses to work with pg_statistic */ |
3181 | 0 | if (relid == StatisticRelationId) |
3182 | 0 | *doanalyze = false; |
3183 | 0 | } |
3184 | | |
3185 | | /* |
3186 | | * autovacuum_do_vac_analyze |
3187 | | * Vacuum and/or analyze the specified table |
3188 | | * |
3189 | | * We expect the caller to have switched into a memory context that won't |
3190 | | * disappear at transaction commit. |
3191 | | */ |
3192 | | static void |
3193 | | autovacuum_do_vac_analyze(autovac_table *tab, BufferAccessStrategy bstrategy) |
3194 | 0 | { |
3195 | 0 | RangeVar *rangevar; |
3196 | 0 | VacuumRelation *rel; |
3197 | 0 | List *rel_list; |
3198 | 0 | MemoryContext vac_context; |
3199 | 0 | MemoryContext old_context; |
3200 | | |
3201 | | /* Let pgstat know what we're doing */ |
3202 | 0 | autovac_report_activity(tab); |
3203 | | |
3204 | | /* Create a context that vacuum() can use as cross-transaction storage */ |
3205 | 0 | vac_context = AllocSetContextCreate(CurrentMemoryContext, |
3206 | 0 | "Vacuum", |
3207 | 0 | ALLOCSET_DEFAULT_SIZES); |
3208 | | |
3209 | | /* Set up one VacuumRelation target, identified by OID, for vacuum() */ |
3210 | 0 | old_context = MemoryContextSwitchTo(vac_context); |
3211 | 0 | rangevar = makeRangeVar(tab->at_nspname, tab->at_relname, -1); |
3212 | 0 | rel = makeVacuumRelation(rangevar, tab->at_relid, NIL); |
3213 | 0 | rel_list = list_make1(rel); |
3214 | 0 | MemoryContextSwitchTo(old_context); |
3215 | |
|
3216 | 0 | vacuum(rel_list, tab->at_params, bstrategy, vac_context, true); |
3217 | |
|
3218 | 0 | MemoryContextDelete(vac_context); |
3219 | 0 | } |
3220 | | |
3221 | | /* |
3222 | | * autovac_report_activity |
3223 | | * Report to pgstat what autovacuum is doing |
3224 | | * |
3225 | | * We send a SQL string corresponding to what the user would see if the |
3226 | | * equivalent command was to be issued manually. |
3227 | | * |
3228 | | * Note we assume that we are going to report the next command as soon as we're |
3229 | | * done with the current one, and exit right after the last one, so we don't |
3230 | | * bother to report "<IDLE>" or some such. |
3231 | | */ |
3232 | | static void |
3233 | | autovac_report_activity(autovac_table *tab) |
3234 | 0 | { |
3235 | 0 | #define MAX_AUTOVAC_ACTIV_LEN (NAMEDATALEN * 2 + 56) |
3236 | 0 | char activity[MAX_AUTOVAC_ACTIV_LEN]; |
3237 | 0 | int len; |
3238 | | |
3239 | | /* Report the command and possible options */ |
3240 | 0 | if (tab->at_params.options & VACOPT_VACUUM) |
3241 | 0 | snprintf(activity, MAX_AUTOVAC_ACTIV_LEN, |
3242 | 0 | "autovacuum: VACUUM%s", |
3243 | 0 | tab->at_params.options & VACOPT_ANALYZE ? " ANALYZE" : ""); |
3244 | 0 | else |
3245 | 0 | snprintf(activity, MAX_AUTOVAC_ACTIV_LEN, |
3246 | 0 | "autovacuum: ANALYZE"); |
3247 | | |
3248 | | /* |
3249 | | * Report the qualified name of the relation. |
3250 | | */ |
3251 | 0 | len = strlen(activity); |
3252 | |
|
3253 | 0 | snprintf(activity + len, MAX_AUTOVAC_ACTIV_LEN - len, |
3254 | 0 | " %s.%s%s", tab->at_nspname, tab->at_relname, |
3255 | 0 | tab->at_params.is_wraparound ? " (to prevent wraparound)" : ""); |
3256 | | |
3257 | | /* Set statement_timestamp() to current time for pg_stat_activity */ |
3258 | 0 | SetCurrentStatementStartTimestamp(); |
3259 | |
|
3260 | 0 | pgstat_report_activity(STATE_RUNNING, activity); |
3261 | 0 | } |
3262 | | |
3263 | | /* |
3264 | | * autovac_report_workitem |
3265 | | * Report to pgstat that autovacuum is processing a work item |
3266 | | */ |
3267 | | static void |
3268 | | autovac_report_workitem(AutoVacuumWorkItem *workitem, |
3269 | | const char *nspname, const char *relname) |
3270 | 0 | { |
3271 | 0 | char activity[MAX_AUTOVAC_ACTIV_LEN + 12 + 2]; |
3272 | 0 | char blk[12 + 2]; |
3273 | 0 | int len; |
3274 | |
|
3275 | 0 | switch (workitem->avw_type) |
3276 | 0 | { |
3277 | 0 | case AVW_BRINSummarizeRange: |
3278 | 0 | snprintf(activity, MAX_AUTOVAC_ACTIV_LEN, |
3279 | 0 | "autovacuum: BRIN summarize"); |
3280 | 0 | break; |
3281 | 0 | } |
3282 | | |
3283 | | /* |
3284 | | * Report the qualified name of the relation, and the block number if any |
3285 | | */ |
3286 | 0 | len = strlen(activity); |
3287 | |
|
3288 | 0 | if (BlockNumberIsValid(workitem->avw_blockNumber)) |
3289 | 0 | snprintf(blk, sizeof(blk), " %u", workitem->avw_blockNumber); |
3290 | 0 | else |
3291 | 0 | blk[0] = '\0'; |
3292 | |
|
3293 | 0 | snprintf(activity + len, MAX_AUTOVAC_ACTIV_LEN - len, |
3294 | 0 | " %s.%s%s", nspname, relname, blk); |
3295 | | |
3296 | | /* Set statement_timestamp() to current time for pg_stat_activity */ |
3297 | 0 | SetCurrentStatementStartTimestamp(); |
3298 | |
|
3299 | 0 | pgstat_report_activity(STATE_RUNNING, activity); |
3300 | 0 | } |
3301 | | |
3302 | | /* |
3303 | | * AutoVacuumingActive |
3304 | | * Check GUC vars and report whether the autovacuum process should be |
3305 | | * running. |
3306 | | */ |
3307 | | bool |
3308 | | AutoVacuumingActive(void) |
3309 | 0 | { |
3310 | 0 | if (!autovacuum_start_daemon || !pgstat_track_counts) |
3311 | 0 | return false; |
3312 | 0 | return true; |
3313 | 0 | } |
3314 | | |
3315 | | /* |
3316 | | * Request one work item to the next autovacuum run processing our database. |
3317 | | * Return false if the request can't be recorded. |
3318 | | */ |
3319 | | bool |
3320 | | AutoVacuumRequestWork(AutoVacuumWorkItemType type, Oid relationId, |
3321 | | BlockNumber blkno) |
3322 | 0 | { |
3323 | 0 | int i; |
3324 | 0 | bool result = false; |
3325 | |
|
3326 | 0 | LWLockAcquire(AutovacuumLock, LW_EXCLUSIVE); |
3327 | | |
3328 | | /* |
3329 | | * Locate an unused work item and fill it with the given data. |
3330 | | */ |
3331 | 0 | for (i = 0; i < NUM_WORKITEMS; i++) |
3332 | 0 | { |
3333 | 0 | AutoVacuumWorkItem *workitem = &AutoVacuumShmem->av_workItems[i]; |
3334 | |
|
3335 | 0 | if (workitem->avw_used) |
3336 | 0 | continue; |
3337 | | |
3338 | 0 | workitem->avw_used = true; |
3339 | 0 | workitem->avw_active = false; |
3340 | 0 | workitem->avw_type = type; |
3341 | 0 | workitem->avw_database = MyDatabaseId; |
3342 | 0 | workitem->avw_relation = relationId; |
3343 | 0 | workitem->avw_blockNumber = blkno; |
3344 | 0 | result = true; |
3345 | | |
3346 | | /* done */ |
3347 | 0 | break; |
3348 | 0 | } |
3349 | |
|
3350 | 0 | LWLockRelease(AutovacuumLock); |
3351 | |
|
3352 | 0 | return result; |
3353 | 0 | } |
3354 | | |
3355 | | /* |
3356 | | * autovac_init |
3357 | | * This is called at postmaster initialization. |
3358 | | * |
3359 | | * All we do here is annoy the user if he got it wrong. |
3360 | | */ |
3361 | | void |
3362 | | autovac_init(void) |
3363 | | { |
3364 | | if (!autovacuum_start_daemon) |
3365 | | return; |
3366 | | else if (!pgstat_track_counts) |
3367 | | ereport(WARNING, |
3368 | | (errmsg("autovacuum not started because of misconfiguration"), |
3369 | | errhint("Enable the \"track_counts\" option."))); |
3370 | | else |
3371 | | check_av_worker_gucs(); |
3372 | | } |
3373 | | |
3374 | | /* |
3375 | | * AutoVacuumShmemSize |
3376 | | * Compute space needed for autovacuum-related shared memory |
3377 | | */ |
3378 | | Size |
3379 | | AutoVacuumShmemSize(void) |
3380 | 0 | { |
3381 | 0 | Size size; |
3382 | | |
3383 | | /* |
3384 | | * Need the fixed struct and the array of WorkerInfoData. |
3385 | | */ |
3386 | 0 | size = sizeof(AutoVacuumShmemStruct); |
3387 | 0 | size = MAXALIGN(size); |
3388 | 0 | size = add_size(size, mul_size(autovacuum_worker_slots, |
3389 | 0 | sizeof(WorkerInfoData))); |
3390 | 0 | return size; |
3391 | 0 | } |
3392 | | |
3393 | | /* |
3394 | | * AutoVacuumShmemInit |
3395 | | * Allocate and initialize autovacuum-related shared memory |
3396 | | */ |
3397 | | void |
3398 | | AutoVacuumShmemInit(void) |
3399 | 0 | { |
3400 | 0 | bool found; |
3401 | |
|
3402 | 0 | AutoVacuumShmem = (AutoVacuumShmemStruct *) |
3403 | 0 | ShmemInitStruct("AutoVacuum Data", |
3404 | 0 | AutoVacuumShmemSize(), |
3405 | 0 | &found); |
3406 | |
|
3407 | 0 | if (!IsUnderPostmaster) |
3408 | 0 | { |
3409 | 0 | WorkerInfo worker; |
3410 | 0 | int i; |
3411 | |
|
3412 | 0 | Assert(!found); |
3413 | |
|
3414 | 0 | AutoVacuumShmem->av_launcherpid = 0; |
3415 | 0 | dclist_init(&AutoVacuumShmem->av_freeWorkers); |
3416 | 0 | dlist_init(&AutoVacuumShmem->av_runningWorkers); |
3417 | 0 | AutoVacuumShmem->av_startingWorker = NULL; |
3418 | 0 | memset(AutoVacuumShmem->av_workItems, 0, |
3419 | 0 | sizeof(AutoVacuumWorkItem) * NUM_WORKITEMS); |
3420 | |
|
3421 | 0 | worker = (WorkerInfo) ((char *) AutoVacuumShmem + |
3422 | 0 | MAXALIGN(sizeof(AutoVacuumShmemStruct))); |
3423 | | |
3424 | | /* initialize the WorkerInfo free list */ |
3425 | 0 | for (i = 0; i < autovacuum_worker_slots; i++) |
3426 | 0 | { |
3427 | 0 | dclist_push_head(&AutoVacuumShmem->av_freeWorkers, |
3428 | 0 | &worker[i].wi_links); |
3429 | 0 | pg_atomic_init_flag(&worker[i].wi_dobalance); |
3430 | 0 | } |
3431 | |
|
3432 | 0 | pg_atomic_init_u32(&AutoVacuumShmem->av_nworkersForBalance, 0); |
3433 | |
|
3434 | 0 | } |
3435 | 0 | else |
3436 | 0 | Assert(found); |
3437 | 0 | } |
3438 | | |
3439 | | /* |
3440 | | * GUC check_hook for autovacuum_work_mem |
3441 | | */ |
3442 | | bool |
3443 | | check_autovacuum_work_mem(int *newval, void **extra, GucSource source) |
3444 | 2 | { |
3445 | | /* |
3446 | | * -1 indicates fallback. |
3447 | | * |
3448 | | * If we haven't yet changed the boot_val default of -1, just let it be. |
3449 | | * Autovacuum will look to maintenance_work_mem instead. |
3450 | | */ |
3451 | 2 | if (*newval == -1) |
3452 | 2 | return true; |
3453 | | |
3454 | | /* |
3455 | | * We clamp manually-set values to at least 64kB. Since |
3456 | | * maintenance_work_mem is always set to at least this value, do the same |
3457 | | * here. |
3458 | | */ |
3459 | 0 | if (*newval < 64) |
3460 | 0 | *newval = 64; |
3461 | |
|
3462 | 0 | return true; |
3463 | 2 | } |
3464 | | |
3465 | | /* |
3466 | | * Returns whether there is a free autovacuum worker slot available. |
3467 | | */ |
3468 | | static bool |
3469 | | av_worker_available(void) |
3470 | 0 | { |
3471 | 0 | int free_slots; |
3472 | 0 | int reserved_slots; |
3473 | |
|
3474 | 0 | free_slots = dclist_count(&AutoVacuumShmem->av_freeWorkers); |
3475 | |
|
3476 | 0 | reserved_slots = autovacuum_worker_slots - autovacuum_max_workers; |
3477 | 0 | reserved_slots = Max(0, reserved_slots); |
3478 | |
|
3479 | 0 | return free_slots > reserved_slots; |
3480 | 0 | } |
3481 | | |
3482 | | /* |
3483 | | * Emits a WARNING if autovacuum_worker_slots < autovacuum_max_workers. |
3484 | | */ |
3485 | | static void |
3486 | | check_av_worker_gucs(void) |
3487 | | { |
3488 | | if (autovacuum_worker_slots < autovacuum_max_workers) |
3489 | | ereport(WARNING, |
3490 | | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
3491 | | errmsg("\"autovacuum_max_workers\" (%d) should be less than or equal to \"autovacuum_worker_slots\" (%d)", |
3492 | | autovacuum_max_workers, autovacuum_worker_slots), |
3493 | | errdetail("The server will only start up to \"autovacuum_worker_slots\" (%d) autovacuum workers at a given time.", |
3494 | | autovacuum_worker_slots))); |
3495 | | } |