Coverage Report

Created: 2025-09-27 06:52

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/postgres/src/backend/postmaster/autovacuum.c
Line
Count
Source
1
/*-------------------------------------------------------------------------
2
 *
3
 * autovacuum.c
4
 *
5
 * PostgreSQL Integrated Autovacuum Daemon
6
 *
7
 * The autovacuum system is structured in two different kinds of processes: the
8
 * autovacuum launcher and the autovacuum worker.  The launcher is an
9
 * always-running process, started by the postmaster when the autovacuum GUC
10
 * parameter is set.  The launcher schedules autovacuum workers to be started
11
 * when appropriate.  The workers are the processes which execute the actual
12
 * vacuuming; they connect to a database as determined in the launcher, and
13
 * once connected they examine the catalogs to select the tables to vacuum.
14
 *
15
 * The autovacuum launcher cannot start the worker processes by itself,
16
 * because doing so would cause robustness issues (namely, failure to shut
17
 * them down on exceptional conditions, and also, since the launcher is
18
 * connected to shared memory and is thus subject to corruption there, it is
19
 * not as robust as the postmaster).  So it leaves that task to the postmaster.
20
 *
21
 * There is an autovacuum shared memory area, where the launcher stores
22
 * information about the database it wants vacuumed.  When it wants a new
23
 * worker to start, it sets a flag in shared memory and sends a signal to the
24
 * postmaster.  Then postmaster knows nothing more than it must start a worker;
25
 * so it forks a new child, which turns into a worker.  This new process
26
 * connects to shared memory, and there it can inspect the information that the
27
 * launcher has set up.
28
 *
29
 * If the fork() call fails in the postmaster, it sets a flag in the shared
30
 * memory area, and sends a signal to the launcher.  The launcher, upon
31
 * noticing the flag, can try starting the worker again by resending the
32
 * signal.  Note that the failure can only be transient (fork failure due to
33
 * high load, memory pressure, too many processes, etc); more permanent
34
 * problems, like failure to connect to a database, are detected later in the
35
 * worker and dealt with just by having the worker exit normally.  The launcher
36
 * will launch a new worker again later, per schedule.
37
 *
38
 * When the worker is done vacuuming it sends SIGUSR2 to the launcher.  The
39
 * launcher then wakes up and is able to launch another worker, if the schedule
40
 * is so tight that a new worker is needed immediately.  At this time the
41
 * launcher can also balance the settings for the various remaining workers'
42
 * cost-based vacuum delay feature.
43
 *
44
 * Note that there can be more than one worker in a database concurrently.
45
 * They will store the table they are currently vacuuming in shared memory, so
46
 * that other workers avoid being blocked waiting for the vacuum lock for that
47
 * table.  They will also fetch the last time the table was vacuumed from
48
 * pgstats just before vacuuming each table, to avoid vacuuming a table that
49
 * was just finished being vacuumed by another worker and thus is no longer
50
 * noted in shared memory.  However, there is a small window (due to not yet
51
 * holding the relation lock) during which a worker may choose a table that was
52
 * already vacuumed; this is a bug in the current design.
53
 *
54
 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
55
 * Portions Copyright (c) 1994, Regents of the University of California
56
 *
57
 *
58
 * IDENTIFICATION
59
 *    src/backend/postmaster/autovacuum.c
60
 *
61
 *-------------------------------------------------------------------------
62
 */
63
#include "postgres.h"
64
65
#include <signal.h>
66
#include <sys/time.h>
67
#include <unistd.h>
68
69
#include "access/heapam.h"
70
#include "access/htup_details.h"
71
#include "access/multixact.h"
72
#include "access/reloptions.h"
73
#include "access/tableam.h"
74
#include "access/transam.h"
75
#include "access/xact.h"
76
#include "catalog/dependency.h"
77
#include "catalog/namespace.h"
78
#include "catalog/pg_database.h"
79
#include "catalog/pg_namespace.h"
80
#include "commands/vacuum.h"
81
#include "common/int.h"
82
#include "lib/ilist.h"
83
#include "libpq/pqsignal.h"
84
#include "miscadmin.h"
85
#include "nodes/makefuncs.h"
86
#include "pgstat.h"
87
#include "postmaster/autovacuum.h"
88
#include "postmaster/interrupt.h"
89
#include "postmaster/postmaster.h"
90
#include "storage/aio_subsys.h"
91
#include "storage/bufmgr.h"
92
#include "storage/ipc.h"
93
#include "storage/latch.h"
94
#include "storage/lmgr.h"
95
#include "storage/pmsignal.h"
96
#include "storage/proc.h"
97
#include "storage/procsignal.h"
98
#include "storage/smgr.h"
99
#include "tcop/tcopprot.h"
100
#include "utils/fmgroids.h"
101
#include "utils/fmgrprotos.h"
102
#include "utils/guc_hooks.h"
103
#include "utils/injection_point.h"
104
#include "utils/lsyscache.h"
105
#include "utils/memutils.h"
106
#include "utils/ps_status.h"
107
#include "utils/rel.h"
108
#include "utils/snapmgr.h"
109
#include "utils/syscache.h"
110
#include "utils/timeout.h"
111
#include "utils/timestamp.h"
112
113
114
/*
115
 * GUC parameters
116
 */
117
bool    autovacuum_start_daemon = false;
118
int     autovacuum_worker_slots;
119
int     autovacuum_max_workers;
120
int     autovacuum_work_mem = -1;
121
int     autovacuum_naptime;
122
int     autovacuum_vac_thresh;
123
int     autovacuum_vac_max_thresh;
124
double    autovacuum_vac_scale;
125
int     autovacuum_vac_ins_thresh;
126
double    autovacuum_vac_ins_scale;
127
int     autovacuum_anl_thresh;
128
double    autovacuum_anl_scale;
129
int     autovacuum_freeze_max_age;
130
int     autovacuum_multixact_freeze_max_age;
131
132
double    autovacuum_vac_cost_delay;
133
int     autovacuum_vac_cost_limit;
134
135
int     Log_autovacuum_min_duration = 600000;
136
137
/* the minimum allowed time between two awakenings of the launcher */
138
0
#define MIN_AUTOVAC_SLEEPTIME 100.0 /* milliseconds */
139
0
#define MAX_AUTOVAC_SLEEPTIME 300  /* seconds */
140
141
/*
142
 * Variables to save the cost-related storage parameters for the current
143
 * relation being vacuumed by this autovacuum worker. Using these, we can
144
 * ensure we don't overwrite the values of vacuum_cost_delay and
145
 * vacuum_cost_limit after reloading the configuration file. They are
146
 * initialized to "invalid" values to indicate that no cost-related storage
147
 * parameters were specified and will be set in do_autovacuum() after checking
148
 * the storage parameters in table_recheck_autovac().
149
 */
150
static double av_storage_param_cost_delay = -1;
151
static int  av_storage_param_cost_limit = -1;
152
153
/* Flags set by signal handlers */
154
static volatile sig_atomic_t got_SIGUSR2 = false;
155
156
/* Comparison points for determining whether freeze_max_age is exceeded */
157
static TransactionId recentXid;
158
static MultiXactId recentMulti;
159
160
/* Default freeze ages to use for autovacuum (varies by database) */
161
static int  default_freeze_min_age;
162
static int  default_freeze_table_age;
163
static int  default_multixact_freeze_min_age;
164
static int  default_multixact_freeze_table_age;
165
166
/* Memory context for long-lived data */
167
static MemoryContext AutovacMemCxt;
168
169
/* struct to keep track of databases in launcher */
170
typedef struct avl_dbase
171
{
172
  Oid     adl_datid;    /* hash key -- must be first */
173
  TimestampTz adl_next_worker;
174
  int     adl_score;
175
  dlist_node  adl_node;
176
} avl_dbase;
177
178
/* struct to keep track of databases in worker */
179
typedef struct avw_dbase
180
{
181
  Oid     adw_datid;
182
  char     *adw_name;
183
  TransactionId adw_frozenxid;
184
  MultiXactId adw_minmulti;
185
  PgStat_StatDBEntry *adw_entry;
186
} avw_dbase;
187
188
/* struct to keep track of tables to vacuum and/or analyze, in 1st pass */
189
typedef struct av_relation
190
{
191
  Oid     ar_toastrelid;  /* hash key - must be first */
192
  Oid     ar_relid;
193
  bool    ar_hasrelopts;
194
  AutoVacOpts ar_reloptions;  /* copy of AutoVacOpts from the main table's
195
                 * reloptions, or NULL if none */
196
} av_relation;
197
198
/* struct to keep track of tables to vacuum and/or analyze, after rechecking */
199
typedef struct autovac_table
200
{
201
  Oid     at_relid;
202
  VacuumParams at_params;
203
  double    at_storage_param_vac_cost_delay;
204
  int     at_storage_param_vac_cost_limit;
205
  bool    at_dobalance;
206
  bool    at_sharedrel;
207
  char     *at_relname;
208
  char     *at_nspname;
209
  char     *at_datname;
210
} autovac_table;
211
212
/*-------------
213
 * This struct holds information about a single worker's whereabouts.  We keep
214
 * an array of these in shared memory, sized according to
215
 * autovacuum_worker_slots.
216
 *
217
 * wi_links   entry into free list or running list
218
 * wi_dboid   OID of the database this worker is supposed to work on
219
 * wi_tableoid  OID of the table currently being vacuumed, if any
220
 * wi_sharedrel flag indicating whether table is marked relisshared
221
 * wi_proc    pointer to PGPROC of the running worker, NULL if not started
222
 * wi_launchtime Time at which this worker was launched
223
 * wi_dobalance Whether this worker should be included in balance calculations
224
 *
225
 * All fields are protected by AutovacuumLock, except for wi_tableoid and
226
 * wi_sharedrel which are protected by AutovacuumScheduleLock (note these
227
 * two fields are read-only for everyone except that worker itself).
228
 *-------------
229
 */
230
typedef struct WorkerInfoData
231
{
232
  dlist_node  wi_links;
233
  Oid     wi_dboid;
234
  Oid     wi_tableoid;
235
  PGPROC     *wi_proc;
236
  TimestampTz wi_launchtime;
237
  pg_atomic_flag wi_dobalance;
238
  bool    wi_sharedrel;
239
} WorkerInfoData;
240
241
typedef struct WorkerInfoData *WorkerInfo;
242
243
/*
244
 * Possible signals received by the launcher from remote processes.  These are
245
 * stored atomically in shared memory so that other processes can set them
246
 * without locking.
247
 */
248
typedef enum
249
{
250
  AutoVacForkFailed,      /* failed trying to start a worker */
251
  AutoVacRebalance,     /* rebalance the cost limits */
252
}     AutoVacuumSignal;
253
254
#define AutoVacNumSignals (AutoVacRebalance + 1)
255
256
/*
257
 * Autovacuum workitem array, stored in AutoVacuumShmem->av_workItems.  This
258
 * list is mostly protected by AutovacuumLock, except that if an item is
259
 * marked 'active' other processes must not modify the work-identifying
260
 * members.
261
 */
262
typedef struct AutoVacuumWorkItem
263
{
264
  AutoVacuumWorkItemType avw_type;
265
  bool    avw_used;   /* below data is valid */
266
  bool    avw_active;   /* being processed */
267
  Oid     avw_database;
268
  Oid     avw_relation;
269
  BlockNumber avw_blockNumber;
270
} AutoVacuumWorkItem;
271
272
0
#define NUM_WORKITEMS 256
273
274
/*-------------
275
 * The main autovacuum shmem struct.  On shared memory we store this main
276
 * struct and the array of WorkerInfo structs.  This struct keeps:
277
 *
278
 * av_signal    set by other processes to indicate various conditions
279
 * av_launcherpid the PID of the autovacuum launcher
280
 * av_freeWorkers the WorkerInfo freelist
281
 * av_runningWorkers the WorkerInfo non-free queue
282
 * av_startingWorker pointer to WorkerInfo currently being started (cleared by
283
 *          the worker itself as soon as it's up and running)
284
 * av_workItems   work item array
285
 * av_nworkersForBalance the number of autovacuum workers to use when
286
 *          calculating the per worker cost limit
287
 *
288
 * This struct is protected by AutovacuumLock, except for av_signal and parts
289
 * of the worker list (see above).
290
 *-------------
291
 */
292
typedef struct
293
{
294
  sig_atomic_t av_signal[AutoVacNumSignals];
295
  pid_t   av_launcherpid;
296
  dclist_head av_freeWorkers;
297
  dlist_head  av_runningWorkers;
298
  WorkerInfo  av_startingWorker;
299
  AutoVacuumWorkItem av_workItems[NUM_WORKITEMS];
300
  pg_atomic_uint32 av_nworkersForBalance;
301
} AutoVacuumShmemStruct;
302
303
static AutoVacuumShmemStruct *AutoVacuumShmem;
304
305
/*
306
 * the database list (of avl_dbase elements) in the launcher, and the context
307
 * that contains it
308
 */
309
static dlist_head DatabaseList = DLIST_STATIC_INIT(DatabaseList);
310
static MemoryContext DatabaseListCxt = NULL;
311
312
/*
313
 * Dummy pointer to persuade Valgrind that we've not leaked the array of
314
 * avl_dbase structs.  Make it global to ensure the compiler doesn't
315
 * optimize it away.
316
 */
317
#ifdef USE_VALGRIND
318
extern avl_dbase *avl_dbase_array;
319
avl_dbase  *avl_dbase_array;
320
#endif
321
322
/* Pointer to my own WorkerInfo, valid on each worker */
323
static WorkerInfo MyWorkerInfo = NULL;
324
325
/* PID of launcher, valid only in worker while shutting down */
326
int     AutovacuumLauncherPid = 0;
327
328
static Oid  do_start_worker(void);
329
static void ProcessAutoVacLauncherInterrupts(void);
330
pg_noreturn static void AutoVacLauncherShutdown(void);
331
static void launcher_determine_sleep(bool canlaunch, bool recursing,
332
                   struct timeval *nap);
333
static void launch_worker(TimestampTz now);
334
static List *get_database_list(void);
335
static void rebuild_database_list(Oid newdb);
336
static int  db_comparator(const void *a, const void *b);
337
static void autovac_recalculate_workers_for_balance(void);
338
339
static void do_autovacuum(void);
340
static void FreeWorkerInfo(int code, Datum arg);
341
342
static autovac_table *table_recheck_autovac(Oid relid, HTAB *table_toast_map,
343
                      TupleDesc pg_class_desc,
344
                      int effective_multixact_freeze_max_age);
345
static void recheck_relation_needs_vacanalyze(Oid relid, AutoVacOpts *avopts,
346
                        Form_pg_class classForm,
347
                        int effective_multixact_freeze_max_age,
348
                        bool *dovacuum, bool *doanalyze, bool *wraparound);
349
static void relation_needs_vacanalyze(Oid relid, AutoVacOpts *relopts,
350
                    Form_pg_class classForm,
351
                    PgStat_StatTabEntry *tabentry,
352
                    int effective_multixact_freeze_max_age,
353
                    bool *dovacuum, bool *doanalyze, bool *wraparound);
354
355
static void autovacuum_do_vac_analyze(autovac_table *tab,
356
                    BufferAccessStrategy bstrategy);
357
static AutoVacOpts *extract_autovac_opts(HeapTuple tup,
358
                     TupleDesc pg_class_desc);
359
static void perform_work_item(AutoVacuumWorkItem *workitem);
360
static void autovac_report_activity(autovac_table *tab);
361
static void autovac_report_workitem(AutoVacuumWorkItem *workitem,
362
                  const char *nspname, const char *relname);
363
static void avl_sigusr2_handler(SIGNAL_ARGS);
364
static bool av_worker_available(void);
365
static void check_av_worker_gucs(void);
366
367
368
369
/********************************************************************
370
 *            AUTOVACUUM LAUNCHER CODE
371
 ********************************************************************/
372
373
/*
374
 * Main entry point for the autovacuum launcher process.
375
 */
376
void
377
AutoVacLauncherMain(const void *startup_data, size_t startup_data_len)
378
0
{
379
0
  sigjmp_buf  local_sigjmp_buf;
380
381
0
  Assert(startup_data_len == 0);
382
383
  /* Release postmaster's working memory context */
384
0
  if (PostmasterContext)
385
0
  {
386
0
    MemoryContextDelete(PostmasterContext);
387
0
    PostmasterContext = NULL;
388
0
  }
389
390
0
  MyBackendType = B_AUTOVAC_LAUNCHER;
391
0
  init_ps_display(NULL);
392
393
0
  ereport(DEBUG1,
394
0
      (errmsg_internal("autovacuum launcher started")));
395
396
0
  if (PostAuthDelay)
397
0
    pg_usleep(PostAuthDelay * 1000000L);
398
399
0
  Assert(GetProcessingMode() == InitProcessing);
400
401
  /*
402
   * Set up signal handlers.  We operate on databases much like a regular
403
   * backend, so we use the same signal handling.  See equivalent code in
404
   * tcop/postgres.c.
405
   */
406
0
  pqsignal(SIGHUP, SignalHandlerForConfigReload);
407
0
  pqsignal(SIGINT, StatementCancelHandler);
408
0
  pqsignal(SIGTERM, SignalHandlerForShutdownRequest);
409
  /* SIGQUIT handler was already set up by InitPostmasterChild */
410
411
0
  InitializeTimeouts();   /* establishes SIGALRM handler */
412
413
0
  pqsignal(SIGPIPE, SIG_IGN);
414
0
  pqsignal(SIGUSR1, procsignal_sigusr1_handler);
415
0
  pqsignal(SIGUSR2, avl_sigusr2_handler);
416
0
  pqsignal(SIGFPE, FloatExceptionHandler);
417
0
  pqsignal(SIGCHLD, SIG_DFL);
418
419
  /*
420
   * Create a per-backend PGPROC struct in shared memory.  We must do this
421
   * before we can use LWLocks or access any shared memory.
422
   */
423
0
  InitProcess();
424
425
  /* Early initialization */
426
0
  BaseInit();
427
428
0
  InitPostgres(NULL, InvalidOid, NULL, InvalidOid, 0, NULL);
429
430
0
  SetProcessingMode(NormalProcessing);
431
432
  /*
433
   * Create a memory context that we will do all our work in.  We do this so
434
   * that we can reset the context during error recovery and thereby avoid
435
   * possible memory leaks.
436
   */
437
0
  AutovacMemCxt = AllocSetContextCreate(TopMemoryContext,
438
0
                      "Autovacuum Launcher",
439
0
                      ALLOCSET_DEFAULT_SIZES);
440
0
  MemoryContextSwitchTo(AutovacMemCxt);
441
442
  /*
443
   * If an exception is encountered, processing resumes here.
444
   *
445
   * This code is a stripped down version of PostgresMain error recovery.
446
   *
447
   * Note that we use sigsetjmp(..., 1), so that the prevailing signal mask
448
   * (to wit, BlockSig) will be restored when longjmp'ing to here.  Thus,
449
   * signals other than SIGQUIT will be blocked until we complete error
450
   * recovery.  It might seem that this policy makes the HOLD_INTERRUPTS()
451
   * call redundant, but it is not since InterruptPending might be set
452
   * already.
453
   */
454
0
  if (sigsetjmp(local_sigjmp_buf, 1) != 0)
455
0
  {
456
    /* since not using PG_TRY, must reset error stack by hand */
457
0
    error_context_stack = NULL;
458
459
    /* Prevents interrupts while cleaning up */
460
0
    HOLD_INTERRUPTS();
461
462
    /* Forget any pending QueryCancel or timeout request */
463
0
    disable_all_timeouts(false);
464
0
    QueryCancelPending = false; /* second to avoid race condition */
465
466
    /* Report the error to the server log */
467
0
    EmitErrorReport();
468
469
    /* Abort the current transaction in order to recover */
470
0
    AbortCurrentTransaction();
471
472
    /*
473
     * Release any other resources, for the case where we were not in a
474
     * transaction.
475
     */
476
0
    LWLockReleaseAll();
477
0
    pgstat_report_wait_end();
478
0
    pgaio_error_cleanup();
479
0
    UnlockBuffers();
480
    /* this is probably dead code, but let's be safe: */
481
0
    if (AuxProcessResourceOwner)
482
0
      ReleaseAuxProcessResources(false);
483
0
    AtEOXact_Buffers(false);
484
0
    AtEOXact_SMgr();
485
0
    AtEOXact_Files(false);
486
0
    AtEOXact_HashTables(false);
487
488
    /*
489
     * Now return to normal top-level context and clear ErrorContext for
490
     * next time.
491
     */
492
0
    MemoryContextSwitchTo(AutovacMemCxt);
493
0
    FlushErrorState();
494
495
    /* Flush any leaked data in the top-level context */
496
0
    MemoryContextReset(AutovacMemCxt);
497
498
    /* don't leave dangling pointers to freed memory */
499
0
    DatabaseListCxt = NULL;
500
0
    dlist_init(&DatabaseList);
501
502
    /* Now we can allow interrupts again */
503
0
    RESUME_INTERRUPTS();
504
505
    /* if in shutdown mode, no need for anything further; just go away */
506
0
    if (ShutdownRequestPending)
507
0
      AutoVacLauncherShutdown();
508
509
    /*
510
     * Sleep at least 1 second after any error.  We don't want to be
511
     * filling the error logs as fast as we can.
512
     */
513
0
    pg_usleep(1000000L);
514
0
  }
515
516
  /* We can now handle ereport(ERROR) */
517
0
  PG_exception_stack = &local_sigjmp_buf;
518
519
  /* must unblock signals before calling rebuild_database_list */
520
0
  sigprocmask(SIG_SETMASK, &UnBlockSig, NULL);
521
522
  /*
523
   * Set always-secure search path.  Launcher doesn't connect to a database,
524
   * so this has no effect.
525
   */
526
0
  SetConfigOption("search_path", "", PGC_SUSET, PGC_S_OVERRIDE);
527
528
  /*
529
   * Force zero_damaged_pages OFF in the autovac process, even if it is set
530
   * in postgresql.conf.  We don't really want such a dangerous option being
531
   * applied non-interactively.
532
   */
533
0
  SetConfigOption("zero_damaged_pages", "false", PGC_SUSET, PGC_S_OVERRIDE);
534
535
  /*
536
   * Force settable timeouts off to avoid letting these settings prevent
537
   * regular maintenance from being executed.
538
   */
539
0
  SetConfigOption("statement_timeout", "0", PGC_SUSET, PGC_S_OVERRIDE);
540
0
  SetConfigOption("transaction_timeout", "0", PGC_SUSET, PGC_S_OVERRIDE);
541
0
  SetConfigOption("lock_timeout", "0", PGC_SUSET, PGC_S_OVERRIDE);
542
0
  SetConfigOption("idle_in_transaction_session_timeout", "0",
543
0
          PGC_SUSET, PGC_S_OVERRIDE);
544
545
  /*
546
   * Force default_transaction_isolation to READ COMMITTED.  We don't want
547
   * to pay the overhead of serializable mode, nor add any risk of causing
548
   * deadlocks or delaying other transactions.
549
   */
550
0
  SetConfigOption("default_transaction_isolation", "read committed",
551
0
          PGC_SUSET, PGC_S_OVERRIDE);
552
553
  /*
554
   * Even when system is configured to use a different fetch consistency,
555
   * for autovac we always want fresh stats.
556
   */
557
0
  SetConfigOption("stats_fetch_consistency", "none", PGC_SUSET, PGC_S_OVERRIDE);
558
559
  /*
560
   * In emergency mode, just start a worker (unless shutdown was requested)
561
   * and go away.
562
   */
563
0
  if (!AutoVacuumingActive())
564
0
  {
565
0
    if (!ShutdownRequestPending)
566
0
      do_start_worker();
567
0
    proc_exit(0);     /* done */
568
0
  }
569
570
0
  AutoVacuumShmem->av_launcherpid = MyProcPid;
571
572
  /*
573
   * Create the initial database list.  The invariant we want this list to
574
   * keep is that it's ordered by decreasing next_worker.  As soon as an
575
   * entry is updated to a higher time, it will be moved to the front (which
576
   * is correct because the only operation is to add autovacuum_naptime to
577
   * the entry, and time always increases).
578
   */
579
0
  rebuild_database_list(InvalidOid);
580
581
  /* loop until shutdown request */
582
0
  while (!ShutdownRequestPending)
583
0
  {
584
0
    struct timeval nap;
585
0
    TimestampTz current_time = 0;
586
0
    bool    can_launch;
587
588
    /*
589
     * This loop is a bit different from the normal use of WaitLatch,
590
     * because we'd like to sleep before the first launch of a child
591
     * process.  So it's WaitLatch, then ResetLatch, then check for
592
     * wakening conditions.
593
     */
594
595
0
    launcher_determine_sleep(av_worker_available(), false, &nap);
596
597
    /*
598
     * Wait until naptime expires or we get some type of signal (all the
599
     * signal handlers will wake us by calling SetLatch).
600
     */
601
0
    (void) WaitLatch(MyLatch,
602
0
             WL_LATCH_SET | WL_TIMEOUT | WL_EXIT_ON_PM_DEATH,
603
0
             (nap.tv_sec * 1000L) + (nap.tv_usec / 1000L),
604
0
             WAIT_EVENT_AUTOVACUUM_MAIN);
605
606
0
    ResetLatch(MyLatch);
607
608
0
    ProcessAutoVacLauncherInterrupts();
609
610
    /*
611
     * a worker finished, or postmaster signaled failure to start a worker
612
     */
613
0
    if (got_SIGUSR2)
614
0
    {
615
0
      got_SIGUSR2 = false;
616
617
      /* rebalance cost limits, if needed */
618
0
      if (AutoVacuumShmem->av_signal[AutoVacRebalance])
619
0
      {
620
0
        LWLockAcquire(AutovacuumLock, LW_EXCLUSIVE);
621
0
        AutoVacuumShmem->av_signal[AutoVacRebalance] = false;
622
0
        autovac_recalculate_workers_for_balance();
623
0
        LWLockRelease(AutovacuumLock);
624
0
      }
625
626
0
      if (AutoVacuumShmem->av_signal[AutoVacForkFailed])
627
0
      {
628
        /*
629
         * If the postmaster failed to start a new worker, we sleep
630
         * for a little while and resend the signal.  The new worker's
631
         * state is still in memory, so this is sufficient.  After
632
         * that, we restart the main loop.
633
         *
634
         * XXX should we put a limit to the number of times we retry?
635
         * I don't think it makes much sense, because a future start
636
         * of a worker will continue to fail in the same way.
637
         */
638
0
        AutoVacuumShmem->av_signal[AutoVacForkFailed] = false;
639
0
        pg_usleep(1000000L);  /* 1s */
640
0
        SendPostmasterSignal(PMSIGNAL_START_AUTOVAC_WORKER);
641
0
        continue;
642
0
      }
643
0
    }
644
645
    /*
646
     * There are some conditions that we need to check before trying to
647
     * start a worker.  First, we need to make sure that there is a worker
648
     * slot available.  Second, we need to make sure that no other worker
649
     * failed while starting up.
650
     */
651
652
0
    current_time = GetCurrentTimestamp();
653
0
    LWLockAcquire(AutovacuumLock, LW_SHARED);
654
655
0
    can_launch = av_worker_available();
656
657
0
    if (AutoVacuumShmem->av_startingWorker != NULL)
658
0
    {
659
0
      int     waittime;
660
0
      WorkerInfo  worker = AutoVacuumShmem->av_startingWorker;
661
662
      /*
663
       * We can't launch another worker when another one is still
664
       * starting up (or failed while doing so), so just sleep for a bit
665
       * more; that worker will wake us up again as soon as it's ready.
666
       * We will only wait autovacuum_naptime seconds (up to a maximum
667
       * of 60 seconds) for this to happen however.  Note that failure
668
       * to connect to a particular database is not a problem here,
669
       * because the worker removes itself from the startingWorker
670
       * pointer before trying to connect.  Problems detected by the
671
       * postmaster (like fork() failure) are also reported and handled
672
       * differently.  The only problems that may cause this code to
673
       * fire are errors in the earlier sections of AutoVacWorkerMain,
674
       * before the worker removes the WorkerInfo from the
675
       * startingWorker pointer.
676
       */
677
0
      waittime = Min(autovacuum_naptime, 60) * 1000;
678
0
      if (TimestampDifferenceExceeds(worker->wi_launchtime, current_time,
679
0
                       waittime))
680
0
      {
681
0
        LWLockRelease(AutovacuumLock);
682
0
        LWLockAcquire(AutovacuumLock, LW_EXCLUSIVE);
683
684
        /*
685
         * No other process can put a worker in starting mode, so if
686
         * startingWorker is still INVALID after exchanging our lock,
687
         * we assume it's the same one we saw above (so we don't
688
         * recheck the launch time).
689
         */
690
0
        if (AutoVacuumShmem->av_startingWorker != NULL)
691
0
        {
692
0
          worker = AutoVacuumShmem->av_startingWorker;
693
0
          worker->wi_dboid = InvalidOid;
694
0
          worker->wi_tableoid = InvalidOid;
695
0
          worker->wi_sharedrel = false;
696
0
          worker->wi_proc = NULL;
697
0
          worker->wi_launchtime = 0;
698
0
          dclist_push_head(&AutoVacuumShmem->av_freeWorkers,
699
0
                   &worker->wi_links);
700
0
          AutoVacuumShmem->av_startingWorker = NULL;
701
0
          ereport(WARNING,
702
0
              errmsg("autovacuum worker took too long to start; canceled"));
703
0
        }
704
0
      }
705
0
      else
706
0
        can_launch = false;
707
0
    }
708
0
    LWLockRelease(AutovacuumLock);  /* either shared or exclusive */
709
710
    /* if we can't do anything, just go back to sleep */
711
0
    if (!can_launch)
712
0
      continue;
713
714
    /* We're OK to start a new worker */
715
716
0
    if (dlist_is_empty(&DatabaseList))
717
0
    {
718
      /*
719
       * Special case when the list is empty: start a worker right away.
720
       * This covers the initial case, when no database is in pgstats
721
       * (thus the list is empty).  Note that the constraints in
722
       * launcher_determine_sleep keep us from starting workers too
723
       * quickly (at most once every autovacuum_naptime when the list is
724
       * empty).
725
       */
726
0
      launch_worker(current_time);
727
0
    }
728
0
    else
729
0
    {
730
      /*
731
       * because rebuild_database_list constructs a list with most
732
       * distant adl_next_worker first, we obtain our database from the
733
       * tail of the list.
734
       */
735
0
      avl_dbase  *avdb;
736
737
0
      avdb = dlist_tail_element(avl_dbase, adl_node, &DatabaseList);
738
739
      /*
740
       * launch a worker if next_worker is right now or it is in the
741
       * past
742
       */
743
0
      if (TimestampDifferenceExceeds(avdb->adl_next_worker,
744
0
                       current_time, 0))
745
0
        launch_worker(current_time);
746
0
    }
747
0
  }
748
749
0
  AutoVacLauncherShutdown();
750
0
}
751
752
/*
753
 * Process any new interrupts.
754
 */
755
static void
756
ProcessAutoVacLauncherInterrupts(void)
757
0
{
758
  /* the normal shutdown case */
759
0
  if (ShutdownRequestPending)
760
0
    AutoVacLauncherShutdown();
761
762
0
  if (ConfigReloadPending)
763
0
  {
764
0
    int     autovacuum_max_workers_prev = autovacuum_max_workers;
765
766
0
    ConfigReloadPending = false;
767
0
    ProcessConfigFile(PGC_SIGHUP);
768
769
    /* shutdown requested in config file? */
770
0
    if (!AutoVacuumingActive())
771
0
      AutoVacLauncherShutdown();
772
773
    /*
774
     * If autovacuum_max_workers changed, emit a WARNING if
775
     * autovacuum_worker_slots < autovacuum_max_workers.  If it didn't
776
     * change, skip this to avoid too many repeated log messages.
777
     */
778
0
    if (autovacuum_max_workers_prev != autovacuum_max_workers)
779
0
      check_av_worker_gucs();
780
781
    /* rebuild the list in case the naptime changed */
782
0
    rebuild_database_list(InvalidOid);
783
0
  }
784
785
  /* Process barrier events */
786
0
  if (ProcSignalBarrierPending)
787
0
    ProcessProcSignalBarrier();
788
789
  /* Perform logging of memory contexts of this process */
790
0
  if (LogMemoryContextPending)
791
0
    ProcessLogMemoryContextInterrupt();
792
793
  /* Process sinval catchup interrupts that happened while sleeping */
794
0
  ProcessCatchupInterrupt();
795
0
}
796
797
/*
798
 * Perform a normal exit from the autovac launcher.
799
 */
800
static void
801
AutoVacLauncherShutdown(void)
802
{
803
  ereport(DEBUG1,
804
      (errmsg_internal("autovacuum launcher shutting down")));
805
  AutoVacuumShmem->av_launcherpid = 0;
806
807
  proc_exit(0);       /* done */
808
}
809
810
/*
811
 * Determine the time to sleep, based on the database list.
812
 *
813
 * The "canlaunch" parameter indicates whether we can start a worker right now,
814
 * for example due to the workers being all busy.  If this is false, we will
815
 * cause a long sleep, which will be interrupted when a worker exits.
816
 */
817
static void
818
launcher_determine_sleep(bool canlaunch, bool recursing, struct timeval *nap)
819
0
{
820
  /*
821
   * We sleep until the next scheduled vacuum.  We trust that when the
822
   * database list was built, care was taken so that no entries have times
823
   * in the past; if the first entry has too close a next_worker value, or a
824
   * time in the past, we will sleep a small nominal time.
825
   */
826
0
  if (!canlaunch)
827
0
  {
828
0
    nap->tv_sec = autovacuum_naptime;
829
0
    nap->tv_usec = 0;
830
0
  }
831
0
  else if (!dlist_is_empty(&DatabaseList))
832
0
  {
833
0
    TimestampTz current_time = GetCurrentTimestamp();
834
0
    TimestampTz next_wakeup;
835
0
    avl_dbase  *avdb;
836
0
    long    secs;
837
0
    int     usecs;
838
839
0
    avdb = dlist_tail_element(avl_dbase, adl_node, &DatabaseList);
840
841
0
    next_wakeup = avdb->adl_next_worker;
842
0
    TimestampDifference(current_time, next_wakeup, &secs, &usecs);
843
844
0
    nap->tv_sec = secs;
845
0
    nap->tv_usec = usecs;
846
0
  }
847
0
  else
848
0
  {
849
    /* list is empty, sleep for whole autovacuum_naptime seconds  */
850
0
    nap->tv_sec = autovacuum_naptime;
851
0
    nap->tv_usec = 0;
852
0
  }
853
854
  /*
855
   * If the result is exactly zero, it means a database had an entry with
856
   * time in the past.  Rebuild the list so that the databases are evenly
857
   * distributed again, and recalculate the time to sleep.  This can happen
858
   * if there are more tables needing vacuum than workers, and they all take
859
   * longer to vacuum than autovacuum_naptime.
860
   *
861
   * We only recurse once.  rebuild_database_list should always return times
862
   * in the future, but it seems best not to trust too much on that.
863
   */
864
0
  if (nap->tv_sec == 0 && nap->tv_usec == 0 && !recursing)
865
0
  {
866
0
    rebuild_database_list(InvalidOid);
867
0
    launcher_determine_sleep(canlaunch, true, nap);
868
0
    return;
869
0
  }
870
871
  /* The smallest time we'll allow the launcher to sleep. */
872
0
  if (nap->tv_sec <= 0 && nap->tv_usec <= MIN_AUTOVAC_SLEEPTIME * 1000)
873
0
  {
874
0
    nap->tv_sec = 0;
875
0
    nap->tv_usec = MIN_AUTOVAC_SLEEPTIME * 1000;
876
0
  }
877
878
  /*
879
   * If the sleep time is too large, clamp it to an arbitrary maximum (plus
880
   * any fractional seconds, for simplicity).  This avoids an essentially
881
   * infinite sleep in strange cases like the system clock going backwards a
882
   * few years.
883
   */
884
0
  if (nap->tv_sec > MAX_AUTOVAC_SLEEPTIME)
885
0
    nap->tv_sec = MAX_AUTOVAC_SLEEPTIME;
886
0
}
887
888
/*
889
 * Build an updated DatabaseList.  It must only contain databases that appear
890
 * in pgstats, and must be sorted by next_worker from highest to lowest,
891
 * distributed regularly across the next autovacuum_naptime interval.
892
 *
893
 * Receives the Oid of the database that made this list be generated (we call
894
 * this the "new" database, because when the database was already present on
895
 * the list, we expect that this function is not called at all).  The
896
 * preexisting list, if any, will be used to preserve the order of the
897
 * databases in the autovacuum_naptime period.  The new database is put at the
898
 * end of the interval.  The actual values are not saved, which should not be
899
 * much of a problem.
900
 */
901
static void
902
rebuild_database_list(Oid newdb)
903
0
{
904
0
  List     *dblist;
905
0
  ListCell   *cell;
906
0
  MemoryContext newcxt;
907
0
  MemoryContext oldcxt;
908
0
  MemoryContext tmpcxt;
909
0
  HASHCTL   hctl;
910
0
  int     score;
911
0
  int     nelems;
912
0
  HTAB     *dbhash;
913
0
  dlist_iter  iter;
914
915
0
  newcxt = AllocSetContextCreate(AutovacMemCxt,
916
0
                   "Autovacuum database list",
917
0
                   ALLOCSET_DEFAULT_SIZES);
918
0
  tmpcxt = AllocSetContextCreate(newcxt,
919
0
                   "Autovacuum database list (tmp)",
920
0
                   ALLOCSET_DEFAULT_SIZES);
921
0
  oldcxt = MemoryContextSwitchTo(tmpcxt);
922
923
  /*
924
   * Implementing this is not as simple as it sounds, because we need to put
925
   * the new database at the end of the list; next the databases that were
926
   * already on the list, and finally (at the tail of the list) all the
927
   * other databases that are not on the existing list.
928
   *
929
   * To do this, we build an empty hash table of scored databases.  We will
930
   * start with the lowest score (zero) for the new database, then
931
   * increasing scores for the databases in the existing list, in order, and
932
   * lastly increasing scores for all databases gotten via
933
   * get_database_list() that are not already on the hash.
934
   *
935
   * Then we will put all the hash elements into an array, sort the array by
936
   * score, and finally put the array elements into the new doubly linked
937
   * list.
938
   */
939
0
  hctl.keysize = sizeof(Oid);
940
0
  hctl.entrysize = sizeof(avl_dbase);
941
0
  hctl.hcxt = tmpcxt;
942
0
  dbhash = hash_create("autovacuum db hash", 20, &hctl, /* magic number here
943
                               * FIXME */
944
0
             HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
945
946
  /* start by inserting the new database */
947
0
  score = 0;
948
0
  if (OidIsValid(newdb))
949
0
  {
950
0
    avl_dbase  *db;
951
0
    PgStat_StatDBEntry *entry;
952
953
    /* only consider this database if it has a pgstat entry */
954
0
    entry = pgstat_fetch_stat_dbentry(newdb);
955
0
    if (entry != NULL)
956
0
    {
957
      /* we assume it isn't found because the hash was just created */
958
0
      db = hash_search(dbhash, &newdb, HASH_ENTER, NULL);
959
960
      /* hash_search already filled in the key */
961
0
      db->adl_score = score++;
962
      /* next_worker is filled in later */
963
0
    }
964
0
  }
965
966
  /* Now insert the databases from the existing list */
967
0
  dlist_foreach(iter, &DatabaseList)
968
0
  {
969
0
    avl_dbase  *avdb = dlist_container(avl_dbase, adl_node, iter.cur);
970
0
    avl_dbase  *db;
971
0
    bool    found;
972
0
    PgStat_StatDBEntry *entry;
973
974
    /*
975
     * skip databases with no stat entries -- in particular, this gets rid
976
     * of dropped databases
977
     */
978
0
    entry = pgstat_fetch_stat_dbentry(avdb->adl_datid);
979
0
    if (entry == NULL)
980
0
      continue;
981
982
0
    db = hash_search(dbhash, &(avdb->adl_datid), HASH_ENTER, &found);
983
984
0
    if (!found)
985
0
    {
986
      /* hash_search already filled in the key */
987
0
      db->adl_score = score++;
988
      /* next_worker is filled in later */
989
0
    }
990
0
  }
991
992
  /* finally, insert all qualifying databases not previously inserted */
993
0
  dblist = get_database_list();
994
0
  foreach(cell, dblist)
995
0
  {
996
0
    avw_dbase  *avdb = lfirst(cell);
997
0
    avl_dbase  *db;
998
0
    bool    found;
999
0
    PgStat_StatDBEntry *entry;
1000
1001
    /* only consider databases with a pgstat entry */
1002
0
    entry = pgstat_fetch_stat_dbentry(avdb->adw_datid);
1003
0
    if (entry == NULL)
1004
0
      continue;
1005
1006
0
    db = hash_search(dbhash, &(avdb->adw_datid), HASH_ENTER, &found);
1007
    /* only update the score if the database was not already on the hash */
1008
0
    if (!found)
1009
0
    {
1010
      /* hash_search already filled in the key */
1011
0
      db->adl_score = score++;
1012
      /* next_worker is filled in later */
1013
0
    }
1014
0
  }
1015
0
  nelems = score;
1016
1017
  /* from here on, the allocated memory belongs to the new list */
1018
0
  MemoryContextSwitchTo(newcxt);
1019
0
  dlist_init(&DatabaseList);
1020
1021
0
  if (nelems > 0)
1022
0
  {
1023
0
    TimestampTz current_time;
1024
0
    int     millis_increment;
1025
0
    avl_dbase  *dbary;
1026
0
    avl_dbase  *db;
1027
0
    HASH_SEQ_STATUS seq;
1028
0
    int     i;
1029
1030
    /* put all the hash elements into an array */
1031
0
    dbary = palloc(nelems * sizeof(avl_dbase));
1032
    /* keep Valgrind quiet */
1033
#ifdef USE_VALGRIND
1034
    avl_dbase_array = dbary;
1035
#endif
1036
1037
0
    i = 0;
1038
0
    hash_seq_init(&seq, dbhash);
1039
0
    while ((db = hash_seq_search(&seq)) != NULL)
1040
0
      memcpy(&(dbary[i++]), db, sizeof(avl_dbase));
1041
1042
    /* sort the array */
1043
0
    qsort(dbary, nelems, sizeof(avl_dbase), db_comparator);
1044
1045
    /*
1046
     * Determine the time interval between databases in the schedule. If
1047
     * we see that the configured naptime would take us to sleep times
1048
     * lower than our min sleep time (which launcher_determine_sleep is
1049
     * coded not to allow), silently use a larger naptime (but don't touch
1050
     * the GUC variable).
1051
     */
1052
0
    millis_increment = 1000.0 * autovacuum_naptime / nelems;
1053
0
    if (millis_increment <= MIN_AUTOVAC_SLEEPTIME)
1054
0
      millis_increment = MIN_AUTOVAC_SLEEPTIME * 1.1;
1055
1056
0
    current_time = GetCurrentTimestamp();
1057
1058
    /*
1059
     * move the elements from the array into the dlist, setting the
1060
     * next_worker while walking the array
1061
     */
1062
0
    for (i = 0; i < nelems; i++)
1063
0
    {
1064
0
      db = &(dbary[i]);
1065
1066
0
      current_time = TimestampTzPlusMilliseconds(current_time,
1067
0
                             millis_increment);
1068
0
      db->adl_next_worker = current_time;
1069
1070
      /* later elements should go closer to the head of the list */
1071
0
      dlist_push_head(&DatabaseList, &db->adl_node);
1072
0
    }
1073
0
  }
1074
1075
  /* all done, clean up memory */
1076
0
  if (DatabaseListCxt != NULL)
1077
0
    MemoryContextDelete(DatabaseListCxt);
1078
0
  MemoryContextDelete(tmpcxt);
1079
0
  DatabaseListCxt = newcxt;
1080
0
  MemoryContextSwitchTo(oldcxt);
1081
0
}
1082
1083
/* qsort comparator for avl_dbase, using adl_score */
1084
static int
1085
db_comparator(const void *a, const void *b)
1086
0
{
1087
0
  return pg_cmp_s32(((const avl_dbase *) a)->adl_score,
1088
0
            ((const avl_dbase *) b)->adl_score);
1089
0
}
1090
1091
/*
1092
 * do_start_worker
1093
 *
1094
 * Bare-bones procedure for starting an autovacuum worker from the launcher.
1095
 * It determines what database to work on, sets up shared memory stuff and
1096
 * signals postmaster to start the worker.  It fails gracefully if invoked when
1097
 * autovacuum_workers are already active.
1098
 *
1099
 * Return value is the OID of the database that the worker is going to process,
1100
 * or InvalidOid if no worker was actually started.
1101
 */
1102
static Oid
1103
do_start_worker(void)
1104
0
{
1105
0
  List     *dblist;
1106
0
  ListCell   *cell;
1107
0
  TransactionId xidForceLimit;
1108
0
  MultiXactId multiForceLimit;
1109
0
  bool    for_xid_wrap;
1110
0
  bool    for_multi_wrap;
1111
0
  avw_dbase  *avdb;
1112
0
  TimestampTz current_time;
1113
0
  bool    skipit = false;
1114
0
  Oid     retval = InvalidOid;
1115
0
  MemoryContext tmpcxt,
1116
0
        oldcxt;
1117
1118
  /* return quickly when there are no free workers */
1119
0
  LWLockAcquire(AutovacuumLock, LW_SHARED);
1120
0
  if (!av_worker_available())
1121
0
  {
1122
0
    LWLockRelease(AutovacuumLock);
1123
0
    return InvalidOid;
1124
0
  }
1125
0
  LWLockRelease(AutovacuumLock);
1126
1127
  /*
1128
   * Create and switch to a temporary context to avoid leaking the memory
1129
   * allocated for the database list.
1130
   */
1131
0
  tmpcxt = AllocSetContextCreate(CurrentMemoryContext,
1132
0
                   "Autovacuum start worker (tmp)",
1133
0
                   ALLOCSET_DEFAULT_SIZES);
1134
0
  oldcxt = MemoryContextSwitchTo(tmpcxt);
1135
1136
  /* Get a list of databases */
1137
0
  dblist = get_database_list();
1138
1139
  /*
1140
   * Determine the oldest datfrozenxid/relfrozenxid that we will allow to
1141
   * pass without forcing a vacuum.  (This limit can be tightened for
1142
   * particular tables, but not loosened.)
1143
   */
1144
0
  recentXid = ReadNextTransactionId();
1145
0
  xidForceLimit = recentXid - autovacuum_freeze_max_age;
1146
  /* ensure it's a "normal" XID, else TransactionIdPrecedes misbehaves */
1147
  /* this can cause the limit to go backwards by 3, but that's OK */
1148
0
  if (xidForceLimit < FirstNormalTransactionId)
1149
0
    xidForceLimit -= FirstNormalTransactionId;
1150
1151
  /* Also determine the oldest datminmxid we will consider. */
1152
0
  recentMulti = ReadNextMultiXactId();
1153
0
  multiForceLimit = recentMulti - MultiXactMemberFreezeThreshold();
1154
0
  if (multiForceLimit < FirstMultiXactId)
1155
0
    multiForceLimit -= FirstMultiXactId;
1156
1157
  /*
1158
   * Choose a database to connect to.  We pick the database that was least
1159
   * recently auto-vacuumed, or one that needs vacuuming to prevent Xid
1160
   * wraparound-related data loss.  If any db at risk of Xid wraparound is
1161
   * found, we pick the one with oldest datfrozenxid, independently of
1162
   * autovacuum times; similarly we pick the one with the oldest datminmxid
1163
   * if any is in MultiXactId wraparound.  Note that those in Xid wraparound
1164
   * danger are given more priority than those in multi wraparound danger.
1165
   *
1166
   * Note that a database with no stats entry is not considered, except for
1167
   * Xid wraparound purposes.  The theory is that if no one has ever
1168
   * connected to it since the stats were last initialized, it doesn't need
1169
   * vacuuming.
1170
   *
1171
   * XXX This could be improved if we had more info about whether it needs
1172
   * vacuuming before connecting to it.  Perhaps look through the pgstats
1173
   * data for the database's tables?  One idea is to keep track of the
1174
   * number of new and dead tuples per database in pgstats.  However it
1175
   * isn't clear how to construct a metric that measures that and not cause
1176
   * starvation for less busy databases.
1177
   */
1178
0
  avdb = NULL;
1179
0
  for_xid_wrap = false;
1180
0
  for_multi_wrap = false;
1181
0
  current_time = GetCurrentTimestamp();
1182
0
  foreach(cell, dblist)
1183
0
  {
1184
0
    avw_dbase  *tmp = lfirst(cell);
1185
0
    dlist_iter  iter;
1186
1187
    /* Check to see if this one is at risk of wraparound */
1188
0
    if (TransactionIdPrecedes(tmp->adw_frozenxid, xidForceLimit))
1189
0
    {
1190
0
      if (avdb == NULL ||
1191
0
        TransactionIdPrecedes(tmp->adw_frozenxid,
1192
0
                    avdb->adw_frozenxid))
1193
0
        avdb = tmp;
1194
0
      for_xid_wrap = true;
1195
0
      continue;
1196
0
    }
1197
0
    else if (for_xid_wrap)
1198
0
      continue;     /* ignore not-at-risk DBs */
1199
0
    else if (MultiXactIdPrecedes(tmp->adw_minmulti, multiForceLimit))
1200
0
    {
1201
0
      if (avdb == NULL ||
1202
0
        MultiXactIdPrecedes(tmp->adw_minmulti, avdb->adw_minmulti))
1203
0
        avdb = tmp;
1204
0
      for_multi_wrap = true;
1205
0
      continue;
1206
0
    }
1207
0
    else if (for_multi_wrap)
1208
0
      continue;     /* ignore not-at-risk DBs */
1209
1210
    /* Find pgstat entry if any */
1211
0
    tmp->adw_entry = pgstat_fetch_stat_dbentry(tmp->adw_datid);
1212
1213
    /*
1214
     * Skip a database with no pgstat entry; it means it hasn't seen any
1215
     * activity.
1216
     */
1217
0
    if (!tmp->adw_entry)
1218
0
      continue;
1219
1220
    /*
1221
     * Also, skip a database that appears on the database list as having
1222
     * been processed recently (less than autovacuum_naptime seconds ago).
1223
     * We do this so that we don't select a database which we just
1224
     * selected, but that pgstat hasn't gotten around to updating the last
1225
     * autovacuum time yet.
1226
     */
1227
0
    skipit = false;
1228
1229
0
    dlist_reverse_foreach(iter, &DatabaseList)
1230
0
    {
1231
0
      avl_dbase  *dbp = dlist_container(avl_dbase, adl_node, iter.cur);
1232
1233
0
      if (dbp->adl_datid == tmp->adw_datid)
1234
0
      {
1235
        /*
1236
         * Skip this database if its next_worker value falls between
1237
         * the current time and the current time plus naptime.
1238
         */
1239
0
        if (!TimestampDifferenceExceeds(dbp->adl_next_worker,
1240
0
                        current_time, 0) &&
1241
0
          !TimestampDifferenceExceeds(current_time,
1242
0
                        dbp->adl_next_worker,
1243
0
                        autovacuum_naptime * 1000))
1244
0
          skipit = true;
1245
1246
0
        break;
1247
0
      }
1248
0
    }
1249
0
    if (skipit)
1250
0
      continue;
1251
1252
    /*
1253
     * Remember the db with oldest autovac time.  (If we are here, both
1254
     * tmp->entry and db->entry must be non-null.)
1255
     */
1256
0
    if (avdb == NULL ||
1257
0
      tmp->adw_entry->last_autovac_time < avdb->adw_entry->last_autovac_time)
1258
0
      avdb = tmp;
1259
0
  }
1260
1261
  /* Found a database -- process it */
1262
0
  if (avdb != NULL)
1263
0
  {
1264
0
    WorkerInfo  worker;
1265
0
    dlist_node *wptr;
1266
1267
0
    LWLockAcquire(AutovacuumLock, LW_EXCLUSIVE);
1268
1269
    /*
1270
     * Get a worker entry from the freelist.  We checked above, so there
1271
     * really should be a free slot.
1272
     */
1273
0
    wptr = dclist_pop_head_node(&AutoVacuumShmem->av_freeWorkers);
1274
1275
0
    worker = dlist_container(WorkerInfoData, wi_links, wptr);
1276
0
    worker->wi_dboid = avdb->adw_datid;
1277
0
    worker->wi_proc = NULL;
1278
0
    worker->wi_launchtime = GetCurrentTimestamp();
1279
1280
0
    AutoVacuumShmem->av_startingWorker = worker;
1281
1282
0
    LWLockRelease(AutovacuumLock);
1283
1284
0
    SendPostmasterSignal(PMSIGNAL_START_AUTOVAC_WORKER);
1285
1286
0
    retval = avdb->adw_datid;
1287
0
  }
1288
0
  else if (skipit)
1289
0
  {
1290
    /*
1291
     * If we skipped all databases on the list, rebuild it, because it
1292
     * probably contains a dropped database.
1293
     */
1294
0
    rebuild_database_list(InvalidOid);
1295
0
  }
1296
1297
0
  MemoryContextSwitchTo(oldcxt);
1298
0
  MemoryContextDelete(tmpcxt);
1299
1300
0
  return retval;
1301
0
}
1302
1303
/*
1304
 * launch_worker
1305
 *
1306
 * Wrapper for starting a worker from the launcher.  Besides actually starting
1307
 * it, update the database list to reflect the next time that another one will
1308
 * need to be started on the selected database.  The actual database choice is
1309
 * left to do_start_worker.
1310
 *
1311
 * This routine is also expected to insert an entry into the database list if
1312
 * the selected database was previously absent from the list.
1313
 */
1314
static void
1315
launch_worker(TimestampTz now)
1316
0
{
1317
0
  Oid     dbid;
1318
0
  dlist_iter  iter;
1319
1320
0
  dbid = do_start_worker();
1321
0
  if (OidIsValid(dbid))
1322
0
  {
1323
0
    bool    found = false;
1324
1325
    /*
1326
     * Walk the database list and update the corresponding entry.  If the
1327
     * database is not on the list, we'll recreate the list.
1328
     */
1329
0
    dlist_foreach(iter, &DatabaseList)
1330
0
    {
1331
0
      avl_dbase  *avdb = dlist_container(avl_dbase, adl_node, iter.cur);
1332
1333
0
      if (avdb->adl_datid == dbid)
1334
0
      {
1335
0
        found = true;
1336
1337
        /*
1338
         * add autovacuum_naptime seconds to the current time, and use
1339
         * that as the new "next_worker" field for this database.
1340
         */
1341
0
        avdb->adl_next_worker =
1342
0
          TimestampTzPlusMilliseconds(now, autovacuum_naptime * 1000);
1343
1344
0
        dlist_move_head(&DatabaseList, iter.cur);
1345
0
        break;
1346
0
      }
1347
0
    }
1348
1349
    /*
1350
     * If the database was not present in the database list, we rebuild
1351
     * the list.  It's possible that the database does not get into the
1352
     * list anyway, for example if it's a database that doesn't have a
1353
     * pgstat entry, but this is not a problem because we don't want to
1354
     * schedule workers regularly into those in any case.
1355
     */
1356
0
    if (!found)
1357
0
      rebuild_database_list(dbid);
1358
0
  }
1359
0
}
1360
1361
/*
1362
 * Called from postmaster to signal a failure to fork a process to become
1363
 * worker.  The postmaster should kill(SIGUSR2) the launcher shortly
1364
 * after calling this function.
1365
 */
1366
void
1367
AutoVacWorkerFailed(void)
1368
0
{
1369
0
  AutoVacuumShmem->av_signal[AutoVacForkFailed] = true;
1370
0
}
1371
1372
/* SIGUSR2: a worker is up and running, or just finished, or failed to fork */
1373
static void
1374
avl_sigusr2_handler(SIGNAL_ARGS)
1375
0
{
1376
0
  got_SIGUSR2 = true;
1377
0
  SetLatch(MyLatch);
1378
0
}
1379
1380
1381
/********************************************************************
1382
 *            AUTOVACUUM WORKER CODE
1383
 ********************************************************************/
1384
1385
/*
1386
 * Main entry point for autovacuum worker processes.
1387
 */
1388
void
1389
AutoVacWorkerMain(const void *startup_data, size_t startup_data_len)
1390
0
{
1391
0
  sigjmp_buf  local_sigjmp_buf;
1392
0
  Oid     dbid;
1393
1394
0
  Assert(startup_data_len == 0);
1395
1396
  /* Release postmaster's working memory context */
1397
0
  if (PostmasterContext)
1398
0
  {
1399
0
    MemoryContextDelete(PostmasterContext);
1400
0
    PostmasterContext = NULL;
1401
0
  }
1402
1403
0
  MyBackendType = B_AUTOVAC_WORKER;
1404
0
  init_ps_display(NULL);
1405
1406
0
  Assert(GetProcessingMode() == InitProcessing);
1407
1408
  /*
1409
   * Set up signal handlers.  We operate on databases much like a regular
1410
   * backend, so we use the same signal handling.  See equivalent code in
1411
   * tcop/postgres.c.
1412
   */
1413
0
  pqsignal(SIGHUP, SignalHandlerForConfigReload);
1414
1415
  /*
1416
   * SIGINT is used to signal canceling the current table's vacuum; SIGTERM
1417
   * means abort and exit cleanly, and SIGQUIT means abandon ship.
1418
   */
1419
0
  pqsignal(SIGINT, StatementCancelHandler);
1420
0
  pqsignal(SIGTERM, die);
1421
  /* SIGQUIT handler was already set up by InitPostmasterChild */
1422
1423
0
  InitializeTimeouts();   /* establishes SIGALRM handler */
1424
1425
0
  pqsignal(SIGPIPE, SIG_IGN);
1426
0
  pqsignal(SIGUSR1, procsignal_sigusr1_handler);
1427
0
  pqsignal(SIGUSR2, SIG_IGN);
1428
0
  pqsignal(SIGFPE, FloatExceptionHandler);
1429
0
  pqsignal(SIGCHLD, SIG_DFL);
1430
1431
  /*
1432
   * Create a per-backend PGPROC struct in shared memory.  We must do this
1433
   * before we can use LWLocks or access any shared memory.
1434
   */
1435
0
  InitProcess();
1436
1437
  /* Early initialization */
1438
0
  BaseInit();
1439
1440
  /*
1441
   * If an exception is encountered, processing resumes here.
1442
   *
1443
   * Unlike most auxiliary processes, we don't attempt to continue
1444
   * processing after an error; we just clean up and exit.  The autovac
1445
   * launcher is responsible for spawning another worker later.
1446
   *
1447
   * Note that we use sigsetjmp(..., 1), so that the prevailing signal mask
1448
   * (to wit, BlockSig) will be restored when longjmp'ing to here.  Thus,
1449
   * signals other than SIGQUIT will be blocked until we exit.  It might
1450
   * seem that this policy makes the HOLD_INTERRUPTS() call redundant, but
1451
   * it is not since InterruptPending might be set already.
1452
   */
1453
0
  if (sigsetjmp(local_sigjmp_buf, 1) != 0)
1454
0
  {
1455
    /* since not using PG_TRY, must reset error stack by hand */
1456
0
    error_context_stack = NULL;
1457
1458
    /* Prevents interrupts while cleaning up */
1459
0
    HOLD_INTERRUPTS();
1460
1461
    /* Report the error to the server log */
1462
0
    EmitErrorReport();
1463
1464
    /*
1465
     * We can now go away.  Note that because we called InitProcess, a
1466
     * callback was registered to do ProcKill, which will clean up
1467
     * necessary state.
1468
     */
1469
0
    proc_exit(0);
1470
0
  }
1471
1472
  /* We can now handle ereport(ERROR) */
1473
0
  PG_exception_stack = &local_sigjmp_buf;
1474
1475
0
  sigprocmask(SIG_SETMASK, &UnBlockSig, NULL);
1476
1477
  /*
1478
   * Set always-secure search path, so malicious users can't redirect user
1479
   * code (e.g. pg_index.indexprs).  (That code runs in a
1480
   * SECURITY_RESTRICTED_OPERATION sandbox, so malicious users could not
1481
   * take control of the entire autovacuum worker in any case.)
1482
   */
1483
0
  SetConfigOption("search_path", "", PGC_SUSET, PGC_S_OVERRIDE);
1484
1485
  /*
1486
   * Force zero_damaged_pages OFF in the autovac process, even if it is set
1487
   * in postgresql.conf.  We don't really want such a dangerous option being
1488
   * applied non-interactively.
1489
   */
1490
0
  SetConfigOption("zero_damaged_pages", "false", PGC_SUSET, PGC_S_OVERRIDE);
1491
1492
  /*
1493
   * Force settable timeouts off to avoid letting these settings prevent
1494
   * regular maintenance from being executed.
1495
   */
1496
0
  SetConfigOption("statement_timeout", "0", PGC_SUSET, PGC_S_OVERRIDE);
1497
0
  SetConfigOption("transaction_timeout", "0", PGC_SUSET, PGC_S_OVERRIDE);
1498
0
  SetConfigOption("lock_timeout", "0", PGC_SUSET, PGC_S_OVERRIDE);
1499
0
  SetConfigOption("idle_in_transaction_session_timeout", "0",
1500
0
          PGC_SUSET, PGC_S_OVERRIDE);
1501
1502
  /*
1503
   * Force default_transaction_isolation to READ COMMITTED.  We don't want
1504
   * to pay the overhead of serializable mode, nor add any risk of causing
1505
   * deadlocks or delaying other transactions.
1506
   */
1507
0
  SetConfigOption("default_transaction_isolation", "read committed",
1508
0
          PGC_SUSET, PGC_S_OVERRIDE);
1509
1510
  /*
1511
   * Force synchronous replication off to allow regular maintenance even if
1512
   * we are waiting for standbys to connect. This is important to ensure we
1513
   * aren't blocked from performing anti-wraparound tasks.
1514
   */
1515
0
  if (synchronous_commit > SYNCHRONOUS_COMMIT_LOCAL_FLUSH)
1516
0
    SetConfigOption("synchronous_commit", "local",
1517
0
            PGC_SUSET, PGC_S_OVERRIDE);
1518
1519
  /*
1520
   * Even when system is configured to use a different fetch consistency,
1521
   * for autovac we always want fresh stats.
1522
   */
1523
0
  SetConfigOption("stats_fetch_consistency", "none", PGC_SUSET, PGC_S_OVERRIDE);
1524
1525
  /*
1526
   * Get the info about the database we're going to work on.
1527
   */
1528
0
  LWLockAcquire(AutovacuumLock, LW_EXCLUSIVE);
1529
1530
  /*
1531
   * beware of startingWorker being INVALID; this should normally not
1532
   * happen, but if a worker fails after forking and before this, the
1533
   * launcher might have decided to remove it from the queue and start
1534
   * again.
1535
   */
1536
0
  if (AutoVacuumShmem->av_startingWorker != NULL)
1537
0
  {
1538
0
    MyWorkerInfo = AutoVacuumShmem->av_startingWorker;
1539
0
    dbid = MyWorkerInfo->wi_dboid;
1540
0
    MyWorkerInfo->wi_proc = MyProc;
1541
1542
    /* insert into the running list */
1543
0
    dlist_push_head(&AutoVacuumShmem->av_runningWorkers,
1544
0
            &MyWorkerInfo->wi_links);
1545
1546
    /*
1547
     * remove from the "starting" pointer, so that the launcher can start
1548
     * a new worker if required
1549
     */
1550
0
    AutoVacuumShmem->av_startingWorker = NULL;
1551
0
    LWLockRelease(AutovacuumLock);
1552
1553
0
    on_shmem_exit(FreeWorkerInfo, 0);
1554
1555
    /* wake up the launcher */
1556
0
    if (AutoVacuumShmem->av_launcherpid != 0)
1557
0
      kill(AutoVacuumShmem->av_launcherpid, SIGUSR2);
1558
0
  }
1559
0
  else
1560
0
  {
1561
    /* no worker entry for me, go away */
1562
0
    elog(WARNING, "autovacuum worker started without a worker entry");
1563
0
    dbid = InvalidOid;
1564
0
    LWLockRelease(AutovacuumLock);
1565
0
  }
1566
1567
0
  if (OidIsValid(dbid))
1568
0
  {
1569
0
    char    dbname[NAMEDATALEN];
1570
1571
    /*
1572
     * Report autovac startup to the cumulative stats system.  We
1573
     * deliberately do this before InitPostgres, so that the
1574
     * last_autovac_time will get updated even if the connection attempt
1575
     * fails.  This is to prevent autovac from getting "stuck" repeatedly
1576
     * selecting an unopenable database, rather than making any progress
1577
     * on stuff it can connect to.
1578
     */
1579
0
    pgstat_report_autovac(dbid);
1580
1581
    /*
1582
     * Connect to the selected database, specifying no particular user,
1583
     * and ignoring datallowconn.  Collect the database's name for
1584
     * display.
1585
     *
1586
     * Note: if we have selected a just-deleted database (due to using
1587
     * stale stats info), we'll fail and exit here.
1588
     */
1589
0
    InitPostgres(NULL, dbid, NULL, InvalidOid,
1590
0
           INIT_PG_OVERRIDE_ALLOW_CONNS,
1591
0
           dbname);
1592
0
    SetProcessingMode(NormalProcessing);
1593
0
    set_ps_display(dbname);
1594
0
    ereport(DEBUG1,
1595
0
        (errmsg_internal("autovacuum: processing database \"%s\"", dbname)));
1596
1597
0
    if (PostAuthDelay)
1598
0
      pg_usleep(PostAuthDelay * 1000000L);
1599
1600
    /* And do an appropriate amount of work */
1601
0
    recentXid = ReadNextTransactionId();
1602
0
    recentMulti = ReadNextMultiXactId();
1603
0
    do_autovacuum();
1604
0
  }
1605
1606
  /*
1607
   * The launcher will be notified of my death in ProcKill, *if* we managed
1608
   * to get a worker slot at all
1609
   */
1610
1611
  /* All done, go away */
1612
0
  proc_exit(0);
1613
0
}
1614
1615
/*
1616
 * Return a WorkerInfo to the free list
1617
 */
1618
static void
1619
FreeWorkerInfo(int code, Datum arg)
1620
0
{
1621
0
  if (MyWorkerInfo != NULL)
1622
0
  {
1623
0
    LWLockAcquire(AutovacuumLock, LW_EXCLUSIVE);
1624
1625
    /*
1626
     * Wake the launcher up so that he can launch a new worker immediately
1627
     * if required.  We only save the launcher's PID in local memory here;
1628
     * the actual signal will be sent when the PGPROC is recycled.  Note
1629
     * that we always do this, so that the launcher can rebalance the cost
1630
     * limit setting of the remaining workers.
1631
     *
1632
     * We somewhat ignore the risk that the launcher changes its PID
1633
     * between us reading it and the actual kill; we expect ProcKill to be
1634
     * called shortly after us, and we assume that PIDs are not reused too
1635
     * quickly after a process exits.
1636
     */
1637
0
    AutovacuumLauncherPid = AutoVacuumShmem->av_launcherpid;
1638
1639
0
    dlist_delete(&MyWorkerInfo->wi_links);
1640
0
    MyWorkerInfo->wi_dboid = InvalidOid;
1641
0
    MyWorkerInfo->wi_tableoid = InvalidOid;
1642
0
    MyWorkerInfo->wi_sharedrel = false;
1643
0
    MyWorkerInfo->wi_proc = NULL;
1644
0
    MyWorkerInfo->wi_launchtime = 0;
1645
0
    pg_atomic_clear_flag(&MyWorkerInfo->wi_dobalance);
1646
0
    dclist_push_head(&AutoVacuumShmem->av_freeWorkers,
1647
0
             &MyWorkerInfo->wi_links);
1648
    /* not mine anymore */
1649
0
    MyWorkerInfo = NULL;
1650
1651
    /*
1652
     * now that we're inactive, cause a rebalancing of the surviving
1653
     * workers
1654
     */
1655
0
    AutoVacuumShmem->av_signal[AutoVacRebalance] = true;
1656
0
    LWLockRelease(AutovacuumLock);
1657
0
  }
1658
0
}
1659
1660
/*
1661
 * Update vacuum cost-based delay-related parameters for autovacuum workers and
1662
 * backends executing VACUUM or ANALYZE using the value of relevant GUCs and
1663
 * global state. This must be called during setup for vacuum and after every
1664
 * config reload to ensure up-to-date values.
1665
 */
1666
void
1667
VacuumUpdateCosts(void)
1668
{
1669
  if (MyWorkerInfo)
1670
  {
1671
    if (av_storage_param_cost_delay >= 0)
1672
      vacuum_cost_delay = av_storage_param_cost_delay;
1673
    else if (autovacuum_vac_cost_delay >= 0)
1674
      vacuum_cost_delay = autovacuum_vac_cost_delay;
1675
    else
1676
      /* fall back to VacuumCostDelay */
1677
      vacuum_cost_delay = VacuumCostDelay;
1678
1679
    AutoVacuumUpdateCostLimit();
1680
  }
1681
  else
1682
  {
1683
    /* Must be explicit VACUUM or ANALYZE */
1684
    vacuum_cost_delay = VacuumCostDelay;
1685
    vacuum_cost_limit = VacuumCostLimit;
1686
  }
1687
1688
  /*
1689
   * If configuration changes are allowed to impact VacuumCostActive, make
1690
   * sure it is updated.
1691
   */
1692
  if (VacuumFailsafeActive)
1693
    Assert(!VacuumCostActive);
1694
  else if (vacuum_cost_delay > 0)
1695
    VacuumCostActive = true;
1696
  else
1697
  {
1698
    VacuumCostActive = false;
1699
    VacuumCostBalance = 0;
1700
  }
1701
1702
  /*
1703
   * Since the cost logging requires a lock, avoid rendering the log message
1704
   * in case we are using a message level where the log wouldn't be emitted.
1705
   */
1706
  if (MyWorkerInfo && message_level_is_interesting(DEBUG2))
1707
  {
1708
    Oid     dboid,
1709
          tableoid;
1710
1711
    Assert(!LWLockHeldByMe(AutovacuumLock));
1712
1713
    LWLockAcquire(AutovacuumLock, LW_SHARED);
1714
    dboid = MyWorkerInfo->wi_dboid;
1715
    tableoid = MyWorkerInfo->wi_tableoid;
1716
    LWLockRelease(AutovacuumLock);
1717
1718
    elog(DEBUG2,
1719
       "Autovacuum VacuumUpdateCosts(db=%u, rel=%u, dobalance=%s, cost_limit=%d, cost_delay=%g active=%s failsafe=%s)",
1720
       dboid, tableoid, pg_atomic_unlocked_test_flag(&MyWorkerInfo->wi_dobalance) ? "no" : "yes",
1721
       vacuum_cost_limit, vacuum_cost_delay,
1722
       vacuum_cost_delay > 0 ? "yes" : "no",
1723
       VacuumFailsafeActive ? "yes" : "no");
1724
  }
1725
}
1726
1727
/*
1728
 * Update vacuum_cost_limit with the correct value for an autovacuum worker,
1729
 * given the value of other relevant cost limit parameters and the number of
1730
 * workers across which the limit must be balanced. Autovacuum workers must
1731
 * call this regularly in case av_nworkersForBalance has been updated by
1732
 * another worker or by the autovacuum launcher. They must also call it after a
1733
 * config reload.
1734
 */
1735
void
1736
AutoVacuumUpdateCostLimit(void)
1737
0
{
1738
0
  if (!MyWorkerInfo)
1739
0
    return;
1740
1741
  /*
1742
   * note: in cost_limit, zero also means use value from elsewhere, because
1743
   * zero is not a valid value.
1744
   */
1745
1746
0
  if (av_storage_param_cost_limit > 0)
1747
0
    vacuum_cost_limit = av_storage_param_cost_limit;
1748
0
  else
1749
0
  {
1750
0
    int     nworkers_for_balance;
1751
1752
0
    if (autovacuum_vac_cost_limit > 0)
1753
0
      vacuum_cost_limit = autovacuum_vac_cost_limit;
1754
0
    else
1755
0
      vacuum_cost_limit = VacuumCostLimit;
1756
1757
    /* Only balance limit if no cost-related storage parameters specified */
1758
0
    if (pg_atomic_unlocked_test_flag(&MyWorkerInfo->wi_dobalance))
1759
0
      return;
1760
1761
0
    Assert(vacuum_cost_limit > 0);
1762
1763
0
    nworkers_for_balance = pg_atomic_read_u32(&AutoVacuumShmem->av_nworkersForBalance);
1764
1765
    /* There is at least 1 autovac worker (this worker) */
1766
0
    if (nworkers_for_balance <= 0)
1767
0
      elog(ERROR, "nworkers_for_balance must be > 0");
1768
1769
0
    vacuum_cost_limit = Max(vacuum_cost_limit / nworkers_for_balance, 1);
1770
0
  }
1771
0
}
1772
1773
/*
1774
 * autovac_recalculate_workers_for_balance
1775
 *    Recalculate the number of workers to consider, given cost-related
1776
 *    storage parameters and the current number of active workers.
1777
 *
1778
 * Caller must hold the AutovacuumLock in at least shared mode to access
1779
 * worker->wi_proc.
1780
 */
1781
static void
1782
autovac_recalculate_workers_for_balance(void)
1783
0
{
1784
0
  dlist_iter  iter;
1785
0
  int     orig_nworkers_for_balance;
1786
0
  int     nworkers_for_balance = 0;
1787
1788
0
  Assert(LWLockHeldByMe(AutovacuumLock));
1789
1790
0
  orig_nworkers_for_balance =
1791
0
    pg_atomic_read_u32(&AutoVacuumShmem->av_nworkersForBalance);
1792
1793
0
  dlist_foreach(iter, &AutoVacuumShmem->av_runningWorkers)
1794
0
  {
1795
0
    WorkerInfo  worker = dlist_container(WorkerInfoData, wi_links, iter.cur);
1796
1797
0
    if (worker->wi_proc == NULL ||
1798
0
      pg_atomic_unlocked_test_flag(&worker->wi_dobalance))
1799
0
      continue;
1800
1801
0
    nworkers_for_balance++;
1802
0
  }
1803
1804
0
  if (nworkers_for_balance != orig_nworkers_for_balance)
1805
0
    pg_atomic_write_u32(&AutoVacuumShmem->av_nworkersForBalance,
1806
0
              nworkers_for_balance);
1807
0
}
1808
1809
/*
1810
 * get_database_list
1811
 *    Return a list of all databases found in pg_database.
1812
 *
1813
 * The list and associated data is allocated in the caller's memory context,
1814
 * which is in charge of ensuring that it's properly cleaned up afterwards.
1815
 *
1816
 * Note: this is the only function in which the autovacuum launcher uses a
1817
 * transaction.  Although we aren't attached to any particular database and
1818
 * therefore can't access most catalogs, we do have enough infrastructure
1819
 * to do a seqscan on pg_database.
1820
 */
1821
static List *
1822
get_database_list(void)
1823
{
1824
  List     *dblist = NIL;
1825
  Relation  rel;
1826
  TableScanDesc scan;
1827
  HeapTuple tup;
1828
  MemoryContext resultcxt;
1829
1830
  /* This is the context that we will allocate our output data in */
1831
  resultcxt = CurrentMemoryContext;
1832
1833
  /*
1834
   * Start a transaction so we can access pg_database.
1835
   */
1836
  StartTransactionCommand();
1837
1838
  rel = table_open(DatabaseRelationId, AccessShareLock);
1839
  scan = table_beginscan_catalog(rel, 0, NULL);
1840
1841
  while (HeapTupleIsValid(tup = heap_getnext(scan, ForwardScanDirection)))
1842
  {
1843
    Form_pg_database pgdatabase = (Form_pg_database) GETSTRUCT(tup);
1844
    avw_dbase  *avdb;
1845
    MemoryContext oldcxt;
1846
1847
    /*
1848
     * If database has partially been dropped, we can't, nor need to,
1849
     * vacuum it.
1850
     */
1851
    if (database_is_invalid_form(pgdatabase))
1852
    {
1853
      elog(DEBUG2,
1854
         "autovacuum: skipping invalid database \"%s\"",
1855
         NameStr(pgdatabase->datname));
1856
      continue;
1857
    }
1858
1859
    /*
1860
     * Allocate our results in the caller's context, not the
1861
     * transaction's. We do this inside the loop, and restore the original
1862
     * context at the end, so that leaky things like heap_getnext() are
1863
     * not called in a potentially long-lived context.
1864
     */
1865
    oldcxt = MemoryContextSwitchTo(resultcxt);
1866
1867
    avdb = (avw_dbase *) palloc(sizeof(avw_dbase));
1868
1869
    avdb->adw_datid = pgdatabase->oid;
1870
    avdb->adw_name = pstrdup(NameStr(pgdatabase->datname));
1871
    avdb->adw_frozenxid = pgdatabase->datfrozenxid;
1872
    avdb->adw_minmulti = pgdatabase->datminmxid;
1873
    /* this gets set later: */
1874
    avdb->adw_entry = NULL;
1875
1876
    dblist = lappend(dblist, avdb);
1877
    MemoryContextSwitchTo(oldcxt);
1878
  }
1879
1880
  table_endscan(scan);
1881
  table_close(rel, AccessShareLock);
1882
1883
  CommitTransactionCommand();
1884
1885
  /* Be sure to restore caller's memory context */
1886
  MemoryContextSwitchTo(resultcxt);
1887
1888
  return dblist;
1889
}
1890
1891
/*
1892
 * Process a database table-by-table
1893
 *
1894
 * Note that CHECK_FOR_INTERRUPTS is supposed to be used in certain spots in
1895
 * order not to ignore shutdown commands for too long.
1896
 */
1897
static void
1898
do_autovacuum(void)
1899
0
{
1900
0
  Relation  classRel;
1901
0
  HeapTuple tuple;
1902
0
  TableScanDesc relScan;
1903
0
  Form_pg_database dbForm;
1904
0
  List     *table_oids = NIL;
1905
0
  List     *orphan_oids = NIL;
1906
0
  HASHCTL   ctl;
1907
0
  HTAB     *table_toast_map;
1908
0
  ListCell   *volatile cell;
1909
0
  BufferAccessStrategy bstrategy;
1910
0
  ScanKeyData key;
1911
0
  TupleDesc pg_class_desc;
1912
0
  int     effective_multixact_freeze_max_age;
1913
0
  bool    did_vacuum = false;
1914
0
  bool    found_concurrent_worker = false;
1915
0
  int     i;
1916
1917
  /*
1918
   * StartTransactionCommand and CommitTransactionCommand will automatically
1919
   * switch to other contexts.  We need this one to keep the list of
1920
   * relations to vacuum/analyze across transactions.
1921
   */
1922
0
  AutovacMemCxt = AllocSetContextCreate(TopMemoryContext,
1923
0
                      "Autovacuum worker",
1924
0
                      ALLOCSET_DEFAULT_SIZES);
1925
0
  MemoryContextSwitchTo(AutovacMemCxt);
1926
1927
  /* Start a transaction so our commands have one to play into. */
1928
0
  StartTransactionCommand();
1929
1930
  /*
1931
   * This injection point is put in a transaction block to work with a wait
1932
   * that uses a condition variable.
1933
   */
1934
0
  INJECTION_POINT("autovacuum-worker-start", NULL);
1935
1936
  /*
1937
   * Compute the multixact age for which freezing is urgent.  This is
1938
   * normally autovacuum_multixact_freeze_max_age, but may be less if we are
1939
   * short of multixact member space.
1940
   */
1941
0
  effective_multixact_freeze_max_age = MultiXactMemberFreezeThreshold();
1942
1943
  /*
1944
   * Find the pg_database entry and select the default freeze ages. We use
1945
   * zero in template and nonconnectable databases, else the system-wide
1946
   * default.
1947
   */
1948
0
  tuple = SearchSysCache1(DATABASEOID, ObjectIdGetDatum(MyDatabaseId));
1949
0
  if (!HeapTupleIsValid(tuple))
1950
0
    elog(ERROR, "cache lookup failed for database %u", MyDatabaseId);
1951
0
  dbForm = (Form_pg_database) GETSTRUCT(tuple);
1952
1953
0
  if (dbForm->datistemplate || !dbForm->datallowconn)
1954
0
  {
1955
0
    default_freeze_min_age = 0;
1956
0
    default_freeze_table_age = 0;
1957
0
    default_multixact_freeze_min_age = 0;
1958
0
    default_multixact_freeze_table_age = 0;
1959
0
  }
1960
0
  else
1961
0
  {
1962
0
    default_freeze_min_age = vacuum_freeze_min_age;
1963
0
    default_freeze_table_age = vacuum_freeze_table_age;
1964
0
    default_multixact_freeze_min_age = vacuum_multixact_freeze_min_age;
1965
0
    default_multixact_freeze_table_age = vacuum_multixact_freeze_table_age;
1966
0
  }
1967
1968
0
  ReleaseSysCache(tuple);
1969
1970
  /* StartTransactionCommand changed elsewhere */
1971
0
  MemoryContextSwitchTo(AutovacMemCxt);
1972
1973
0
  classRel = table_open(RelationRelationId, AccessShareLock);
1974
1975
  /* create a copy so we can use it after closing pg_class */
1976
0
  pg_class_desc = CreateTupleDescCopy(RelationGetDescr(classRel));
1977
1978
  /* create hash table for toast <-> main relid mapping */
1979
0
  ctl.keysize = sizeof(Oid);
1980
0
  ctl.entrysize = sizeof(av_relation);
1981
1982
0
  table_toast_map = hash_create("TOAST to main relid map",
1983
0
                  100,
1984
0
                  &ctl,
1985
0
                  HASH_ELEM | HASH_BLOBS);
1986
1987
  /*
1988
   * Scan pg_class to determine which tables to vacuum.
1989
   *
1990
   * We do this in two passes: on the first one we collect the list of plain
1991
   * relations and materialized views, and on the second one we collect
1992
   * TOAST tables. The reason for doing the second pass is that during it we
1993
   * want to use the main relation's pg_class.reloptions entry if the TOAST
1994
   * table does not have any, and we cannot obtain it unless we know
1995
   * beforehand what's the main table OID.
1996
   *
1997
   * We need to check TOAST tables separately because in cases with short,
1998
   * wide tables there might be proportionally much more activity in the
1999
   * TOAST table than in its parent.
2000
   */
2001
0
  relScan = table_beginscan_catalog(classRel, 0, NULL);
2002
2003
  /*
2004
   * On the first pass, we collect main tables to vacuum, and also the main
2005
   * table relid to TOAST relid mapping.
2006
   */
2007
0
  while ((tuple = heap_getnext(relScan, ForwardScanDirection)) != NULL)
2008
0
  {
2009
0
    Form_pg_class classForm = (Form_pg_class) GETSTRUCT(tuple);
2010
0
    PgStat_StatTabEntry *tabentry;
2011
0
    AutoVacOpts *relopts;
2012
0
    Oid     relid;
2013
0
    bool    dovacuum;
2014
0
    bool    doanalyze;
2015
0
    bool    wraparound;
2016
2017
0
    if (classForm->relkind != RELKIND_RELATION &&
2018
0
      classForm->relkind != RELKIND_MATVIEW)
2019
0
      continue;
2020
2021
0
    relid = classForm->oid;
2022
2023
    /*
2024
     * Check if it is a temp table (presumably, of some other backend's).
2025
     * We cannot safely process other backends' temp tables.
2026
     */
2027
0
    if (classForm->relpersistence == RELPERSISTENCE_TEMP)
2028
0
    {
2029
      /*
2030
       * We just ignore it if the owning backend is still active and
2031
       * using the temporary schema.  Also, for safety, ignore it if the
2032
       * namespace doesn't exist or isn't a temp namespace after all.
2033
       */
2034
0
      if (checkTempNamespaceStatus(classForm->relnamespace) == TEMP_NAMESPACE_IDLE)
2035
0
      {
2036
        /*
2037
         * The table seems to be orphaned -- although it might be that
2038
         * the owning backend has already deleted it and exited; our
2039
         * pg_class scan snapshot is not necessarily up-to-date
2040
         * anymore, so we could be looking at a committed-dead entry.
2041
         * Remember it so we can try to delete it later.
2042
         */
2043
0
        orphan_oids = lappend_oid(orphan_oids, relid);
2044
0
      }
2045
0
      continue;
2046
0
    }
2047
2048
    /* Fetch reloptions and the pgstat entry for this table */
2049
0
    relopts = extract_autovac_opts(tuple, pg_class_desc);
2050
0
    tabentry = pgstat_fetch_stat_tabentry_ext(classForm->relisshared,
2051
0
                          relid);
2052
2053
    /* Check if it needs vacuum or analyze */
2054
0
    relation_needs_vacanalyze(relid, relopts, classForm, tabentry,
2055
0
                  effective_multixact_freeze_max_age,
2056
0
                  &dovacuum, &doanalyze, &wraparound);
2057
2058
    /* Relations that need work are added to table_oids */
2059
0
    if (dovacuum || doanalyze)
2060
0
      table_oids = lappend_oid(table_oids, relid);
2061
2062
    /*
2063
     * Remember TOAST associations for the second pass.  Note: we must do
2064
     * this whether or not the table is going to be vacuumed, because we
2065
     * don't automatically vacuum toast tables along the parent table.
2066
     */
2067
0
    if (OidIsValid(classForm->reltoastrelid))
2068
0
    {
2069
0
      av_relation *hentry;
2070
0
      bool    found;
2071
2072
0
      hentry = hash_search(table_toast_map,
2073
0
                 &classForm->reltoastrelid,
2074
0
                 HASH_ENTER, &found);
2075
2076
0
      if (!found)
2077
0
      {
2078
        /* hash_search already filled in the key */
2079
0
        hentry->ar_relid = relid;
2080
0
        hentry->ar_hasrelopts = false;
2081
0
        if (relopts != NULL)
2082
0
        {
2083
0
          hentry->ar_hasrelopts = true;
2084
0
          memcpy(&hentry->ar_reloptions, relopts,
2085
0
               sizeof(AutoVacOpts));
2086
0
        }
2087
0
      }
2088
0
    }
2089
2090
    /* Release stuff to avoid per-relation leakage */
2091
0
    if (relopts)
2092
0
      pfree(relopts);
2093
0
    if (tabentry)
2094
0
      pfree(tabentry);
2095
0
  }
2096
2097
0
  table_endscan(relScan);
2098
2099
  /* second pass: check TOAST tables */
2100
0
  ScanKeyInit(&key,
2101
0
        Anum_pg_class_relkind,
2102
0
        BTEqualStrategyNumber, F_CHAREQ,
2103
0
        CharGetDatum(RELKIND_TOASTVALUE));
2104
2105
0
  relScan = table_beginscan_catalog(classRel, 1, &key);
2106
0
  while ((tuple = heap_getnext(relScan, ForwardScanDirection)) != NULL)
2107
0
  {
2108
0
    Form_pg_class classForm = (Form_pg_class) GETSTRUCT(tuple);
2109
0
    PgStat_StatTabEntry *tabentry;
2110
0
    Oid     relid;
2111
0
    AutoVacOpts *relopts;
2112
0
    bool    free_relopts = false;
2113
0
    bool    dovacuum;
2114
0
    bool    doanalyze;
2115
0
    bool    wraparound;
2116
2117
    /*
2118
     * We cannot safely process other backends' temp tables, so skip 'em.
2119
     */
2120
0
    if (classForm->relpersistence == RELPERSISTENCE_TEMP)
2121
0
      continue;
2122
2123
0
    relid = classForm->oid;
2124
2125
    /*
2126
     * fetch reloptions -- if this toast table does not have them, try the
2127
     * main rel
2128
     */
2129
0
    relopts = extract_autovac_opts(tuple, pg_class_desc);
2130
0
    if (relopts)
2131
0
      free_relopts = true;
2132
0
    else
2133
0
    {
2134
0
      av_relation *hentry;
2135
0
      bool    found;
2136
2137
0
      hentry = hash_search(table_toast_map, &relid, HASH_FIND, &found);
2138
0
      if (found && hentry->ar_hasrelopts)
2139
0
        relopts = &hentry->ar_reloptions;
2140
0
    }
2141
2142
    /* Fetch the pgstat entry for this table */
2143
0
    tabentry = pgstat_fetch_stat_tabentry_ext(classForm->relisshared,
2144
0
                          relid);
2145
2146
0
    relation_needs_vacanalyze(relid, relopts, classForm, tabentry,
2147
0
                  effective_multixact_freeze_max_age,
2148
0
                  &dovacuum, &doanalyze, &wraparound);
2149
2150
    /* ignore analyze for toast tables */
2151
0
    if (dovacuum)
2152
0
      table_oids = lappend_oid(table_oids, relid);
2153
2154
    /* Release stuff to avoid leakage */
2155
0
    if (free_relopts)
2156
0
      pfree(relopts);
2157
0
    if (tabentry)
2158
0
      pfree(tabentry);
2159
0
  }
2160
2161
0
  table_endscan(relScan);
2162
0
  table_close(classRel, AccessShareLock);
2163
2164
  /*
2165
   * Recheck orphan temporary tables, and if they still seem orphaned, drop
2166
   * them.  We'll eat a transaction per dropped table, which might seem
2167
   * excessive, but we should only need to do anything as a result of a
2168
   * previous backend crash, so this should not happen often enough to
2169
   * justify "optimizing".  Using separate transactions ensures that we
2170
   * don't bloat the lock table if there are many temp tables to be dropped,
2171
   * and it ensures that we don't lose work if a deletion attempt fails.
2172
   */
2173
0
  foreach(cell, orphan_oids)
2174
0
  {
2175
0
    Oid     relid = lfirst_oid(cell);
2176
0
    Form_pg_class classForm;
2177
0
    ObjectAddress object;
2178
2179
    /*
2180
     * Check for user-requested abort.
2181
     */
2182
0
    CHECK_FOR_INTERRUPTS();
2183
2184
    /*
2185
     * Try to lock the table.  If we can't get the lock immediately,
2186
     * somebody else is using (or dropping) the table, so it's not our
2187
     * concern anymore.  Having the lock prevents race conditions below.
2188
     */
2189
0
    if (!ConditionalLockRelationOid(relid, AccessExclusiveLock))
2190
0
      continue;
2191
2192
    /*
2193
     * Re-fetch the pg_class tuple and re-check whether it still seems to
2194
     * be an orphaned temp table.  If it's not there or no longer the same
2195
     * relation, ignore it.
2196
     */
2197
0
    tuple = SearchSysCacheCopy1(RELOID, ObjectIdGetDatum(relid));
2198
0
    if (!HeapTupleIsValid(tuple))
2199
0
    {
2200
      /* be sure to drop useless lock so we don't bloat lock table */
2201
0
      UnlockRelationOid(relid, AccessExclusiveLock);
2202
0
      continue;
2203
0
    }
2204
0
    classForm = (Form_pg_class) GETSTRUCT(tuple);
2205
2206
    /*
2207
     * Make all the same tests made in the loop above.  In event of OID
2208
     * counter wraparound, the pg_class entry we have now might be
2209
     * completely unrelated to the one we saw before.
2210
     */
2211
0
    if (!((classForm->relkind == RELKIND_RELATION ||
2212
0
         classForm->relkind == RELKIND_MATVIEW) &&
2213
0
        classForm->relpersistence == RELPERSISTENCE_TEMP))
2214
0
    {
2215
0
      UnlockRelationOid(relid, AccessExclusiveLock);
2216
0
      continue;
2217
0
    }
2218
2219
0
    if (checkTempNamespaceStatus(classForm->relnamespace) != TEMP_NAMESPACE_IDLE)
2220
0
    {
2221
0
      UnlockRelationOid(relid, AccessExclusiveLock);
2222
0
      continue;
2223
0
    }
2224
2225
    /*
2226
     * Try to lock the temp namespace, too.  Even though we have lock on
2227
     * the table itself, there's a risk of deadlock against an incoming
2228
     * backend trying to clean out the temp namespace, in case this table
2229
     * has dependencies (such as sequences) that the backend's
2230
     * performDeletion call might visit in a different order.  If we can
2231
     * get AccessShareLock on the namespace, that's sufficient to ensure
2232
     * we're not running concurrently with RemoveTempRelations.  If we
2233
     * can't, back off and let RemoveTempRelations do its thing.
2234
     */
2235
0
    if (!ConditionalLockDatabaseObject(NamespaceRelationId,
2236
0
                       classForm->relnamespace, 0,
2237
0
                       AccessShareLock))
2238
0
    {
2239
0
      UnlockRelationOid(relid, AccessExclusiveLock);
2240
0
      continue;
2241
0
    }
2242
2243
    /* OK, let's delete it */
2244
0
    ereport(LOG,
2245
0
        (errmsg("autovacuum: dropping orphan temp table \"%s.%s.%s\"",
2246
0
            get_database_name(MyDatabaseId),
2247
0
            get_namespace_name(classForm->relnamespace),
2248
0
            NameStr(classForm->relname))));
2249
2250
    /*
2251
     * Deletion might involve TOAST table access, so ensure we have a
2252
     * valid snapshot.
2253
     */
2254
0
    PushActiveSnapshot(GetTransactionSnapshot());
2255
2256
0
    object.classId = RelationRelationId;
2257
0
    object.objectId = relid;
2258
0
    object.objectSubId = 0;
2259
0
    performDeletion(&object, DROP_CASCADE,
2260
0
            PERFORM_DELETION_INTERNAL |
2261
0
            PERFORM_DELETION_QUIETLY |
2262
0
            PERFORM_DELETION_SKIP_EXTENSIONS);
2263
2264
    /*
2265
     * To commit the deletion, end current transaction and start a new
2266
     * one.  Note this also releases the locks we took.
2267
     */
2268
0
    PopActiveSnapshot();
2269
0
    CommitTransactionCommand();
2270
0
    StartTransactionCommand();
2271
2272
    /* StartTransactionCommand changed current memory context */
2273
0
    MemoryContextSwitchTo(AutovacMemCxt);
2274
0
  }
2275
2276
  /*
2277
   * Optionally, create a buffer access strategy object for VACUUM to use.
2278
   * We use the same BufferAccessStrategy object for all tables VACUUMed by
2279
   * this worker to prevent autovacuum from blowing out shared buffers.
2280
   *
2281
   * VacuumBufferUsageLimit being set to 0 results in
2282
   * GetAccessStrategyWithSize returning NULL, effectively meaning we can
2283
   * use up to all of shared buffers.
2284
   *
2285
   * If we later enter failsafe mode on any of the tables being vacuumed, we
2286
   * will cease use of the BufferAccessStrategy only for that table.
2287
   *
2288
   * XXX should we consider adding code to adjust the size of this if
2289
   * VacuumBufferUsageLimit changes?
2290
   */
2291
0
  bstrategy = GetAccessStrategyWithSize(BAS_VACUUM, VacuumBufferUsageLimit);
2292
2293
  /*
2294
   * create a memory context to act as fake PortalContext, so that the
2295
   * contexts created in the vacuum code are cleaned up for each table.
2296
   */
2297
0
  PortalContext = AllocSetContextCreate(AutovacMemCxt,
2298
0
                      "Autovacuum Portal",
2299
0
                      ALLOCSET_DEFAULT_SIZES);
2300
2301
  /*
2302
   * Perform operations on collected tables.
2303
   */
2304
0
  foreach(cell, table_oids)
2305
0
  {
2306
0
    Oid     relid = lfirst_oid(cell);
2307
0
    HeapTuple classTup;
2308
0
    autovac_table *tab;
2309
0
    bool    isshared;
2310
0
    bool    skipit;
2311
0
    dlist_iter  iter;
2312
2313
0
    CHECK_FOR_INTERRUPTS();
2314
2315
    /*
2316
     * Check for config changes before processing each collected table.
2317
     */
2318
0
    if (ConfigReloadPending)
2319
0
    {
2320
0
      ConfigReloadPending = false;
2321
0
      ProcessConfigFile(PGC_SIGHUP);
2322
2323
      /*
2324
       * You might be tempted to bail out if we see autovacuum is now
2325
       * disabled.  Must resist that temptation -- this might be a
2326
       * for-wraparound emergency worker, in which case that would be
2327
       * entirely inappropriate.
2328
       */
2329
0
    }
2330
2331
    /*
2332
     * Find out whether the table is shared or not.  (It's slightly
2333
     * annoying to fetch the syscache entry just for this, but in typical
2334
     * cases it adds little cost because table_recheck_autovac would
2335
     * refetch the entry anyway.  We could buy that back by copying the
2336
     * tuple here and passing it to table_recheck_autovac, but that
2337
     * increases the odds of that function working with stale data.)
2338
     */
2339
0
    classTup = SearchSysCache1(RELOID, ObjectIdGetDatum(relid));
2340
0
    if (!HeapTupleIsValid(classTup))
2341
0
      continue;     /* somebody deleted the rel, forget it */
2342
0
    isshared = ((Form_pg_class) GETSTRUCT(classTup))->relisshared;
2343
0
    ReleaseSysCache(classTup);
2344
2345
    /*
2346
     * Hold schedule lock from here until we've claimed the table.  We
2347
     * also need the AutovacuumLock to walk the worker array, but that one
2348
     * can just be a shared lock.
2349
     */
2350
0
    LWLockAcquire(AutovacuumScheduleLock, LW_EXCLUSIVE);
2351
0
    LWLockAcquire(AutovacuumLock, LW_SHARED);
2352
2353
    /*
2354
     * Check whether the table is being vacuumed concurrently by another
2355
     * worker.
2356
     */
2357
0
    skipit = false;
2358
0
    dlist_foreach(iter, &AutoVacuumShmem->av_runningWorkers)
2359
0
    {
2360
0
      WorkerInfo  worker = dlist_container(WorkerInfoData, wi_links, iter.cur);
2361
2362
      /* ignore myself */
2363
0
      if (worker == MyWorkerInfo)
2364
0
        continue;
2365
2366
      /* ignore workers in other databases (unless table is shared) */
2367
0
      if (!worker->wi_sharedrel && worker->wi_dboid != MyDatabaseId)
2368
0
        continue;
2369
2370
0
      if (worker->wi_tableoid == relid)
2371
0
      {
2372
0
        skipit = true;
2373
0
        found_concurrent_worker = true;
2374
0
        break;
2375
0
      }
2376
0
    }
2377
0
    LWLockRelease(AutovacuumLock);
2378
0
    if (skipit)
2379
0
    {
2380
0
      LWLockRelease(AutovacuumScheduleLock);
2381
0
      continue;
2382
0
    }
2383
2384
    /*
2385
     * Store the table's OID in shared memory before releasing the
2386
     * schedule lock, so that other workers don't try to vacuum it
2387
     * concurrently.  (We claim it here so as not to hold
2388
     * AutovacuumScheduleLock while rechecking the stats.)
2389
     */
2390
0
    MyWorkerInfo->wi_tableoid = relid;
2391
0
    MyWorkerInfo->wi_sharedrel = isshared;
2392
0
    LWLockRelease(AutovacuumScheduleLock);
2393
2394
    /*
2395
     * Check whether pgstat data still says we need to vacuum this table.
2396
     * It could have changed if something else processed the table while
2397
     * we weren't looking. This doesn't entirely close the race condition,
2398
     * but it is very small.
2399
     */
2400
0
    MemoryContextSwitchTo(AutovacMemCxt);
2401
0
    tab = table_recheck_autovac(relid, table_toast_map, pg_class_desc,
2402
0
                  effective_multixact_freeze_max_age);
2403
0
    if (tab == NULL)
2404
0
    {
2405
      /* someone else vacuumed the table, or it went away */
2406
0
      LWLockAcquire(AutovacuumScheduleLock, LW_EXCLUSIVE);
2407
0
      MyWorkerInfo->wi_tableoid = InvalidOid;
2408
0
      MyWorkerInfo->wi_sharedrel = false;
2409
0
      LWLockRelease(AutovacuumScheduleLock);
2410
0
      continue;
2411
0
    }
2412
2413
    /*
2414
     * Save the cost-related storage parameter values in global variables
2415
     * for reference when updating vacuum_cost_delay and vacuum_cost_limit
2416
     * during vacuuming this table.
2417
     */
2418
0
    av_storage_param_cost_delay = tab->at_storage_param_vac_cost_delay;
2419
0
    av_storage_param_cost_limit = tab->at_storage_param_vac_cost_limit;
2420
2421
    /*
2422
     * We only expect this worker to ever set the flag, so don't bother
2423
     * checking the return value. We shouldn't have to retry.
2424
     */
2425
0
    if (tab->at_dobalance)
2426
0
      pg_atomic_test_set_flag(&MyWorkerInfo->wi_dobalance);
2427
0
    else
2428
0
      pg_atomic_clear_flag(&MyWorkerInfo->wi_dobalance);
2429
2430
0
    LWLockAcquire(AutovacuumLock, LW_SHARED);
2431
0
    autovac_recalculate_workers_for_balance();
2432
0
    LWLockRelease(AutovacuumLock);
2433
2434
    /*
2435
     * We wait until this point to update cost delay and cost limit
2436
     * values, even though we reloaded the configuration file above, so
2437
     * that we can take into account the cost-related storage parameters.
2438
     */
2439
0
    VacuumUpdateCosts();
2440
2441
2442
    /* clean up memory before each iteration */
2443
0
    MemoryContextReset(PortalContext);
2444
2445
    /*
2446
     * Save the relation name for a possible error message, to avoid a
2447
     * catalog lookup in case of an error.  If any of these return NULL,
2448
     * then the relation has been dropped since last we checked; skip it.
2449
     * Note: they must live in a long-lived memory context because we call
2450
     * vacuum and analyze in different transactions.
2451
     */
2452
2453
0
    tab->at_relname = get_rel_name(tab->at_relid);
2454
0
    tab->at_nspname = get_namespace_name(get_rel_namespace(tab->at_relid));
2455
0
    tab->at_datname = get_database_name(MyDatabaseId);
2456
0
    if (!tab->at_relname || !tab->at_nspname || !tab->at_datname)
2457
0
      goto deleted;
2458
2459
    /*
2460
     * We will abort vacuuming the current table if something errors out,
2461
     * and continue with the next one in schedule; in particular, this
2462
     * happens if we are interrupted with SIGINT.
2463
     */
2464
0
    PG_TRY();
2465
0
    {
2466
      /* Use PortalContext for any per-table allocations */
2467
0
      MemoryContextSwitchTo(PortalContext);
2468
2469
      /* have at it */
2470
0
      autovacuum_do_vac_analyze(tab, bstrategy);
2471
2472
      /*
2473
       * Clear a possible query-cancel signal, to avoid a late reaction
2474
       * to an automatically-sent signal because of vacuuming the
2475
       * current table (we're done with it, so it would make no sense to
2476
       * cancel at this point.)
2477
       */
2478
0
      QueryCancelPending = false;
2479
0
    }
2480
0
    PG_CATCH();
2481
0
    {
2482
      /*
2483
       * Abort the transaction, start a new one, and proceed with the
2484
       * next table in our list.
2485
       */
2486
0
      HOLD_INTERRUPTS();
2487
0
      if (tab->at_params.options & VACOPT_VACUUM)
2488
0
        errcontext("automatic vacuum of table \"%s.%s.%s\"",
2489
0
               tab->at_datname, tab->at_nspname, tab->at_relname);
2490
0
      else
2491
0
        errcontext("automatic analyze of table \"%s.%s.%s\"",
2492
0
               tab->at_datname, tab->at_nspname, tab->at_relname);
2493
0
      EmitErrorReport();
2494
2495
      /* this resets ProcGlobal->statusFlags[i] too */
2496
0
      AbortOutOfAnyTransaction();
2497
0
      FlushErrorState();
2498
0
      MemoryContextReset(PortalContext);
2499
2500
      /* restart our transaction for the following operations */
2501
0
      StartTransactionCommand();
2502
0
      RESUME_INTERRUPTS();
2503
0
    }
2504
0
    PG_END_TRY();
2505
2506
    /* Make sure we're back in AutovacMemCxt */
2507
0
    MemoryContextSwitchTo(AutovacMemCxt);
2508
2509
0
    did_vacuum = true;
2510
2511
    /* ProcGlobal->statusFlags[i] are reset at the next end of xact */
2512
2513
    /* be tidy */
2514
0
deleted:
2515
0
    if (tab->at_datname != NULL)
2516
0
      pfree(tab->at_datname);
2517
0
    if (tab->at_nspname != NULL)
2518
0
      pfree(tab->at_nspname);
2519
0
    if (tab->at_relname != NULL)
2520
0
      pfree(tab->at_relname);
2521
0
    pfree(tab);
2522
2523
    /*
2524
     * Remove my info from shared memory.  We set wi_dobalance on the
2525
     * assumption that we are more likely than not to vacuum a table with
2526
     * no cost-related storage parameters next, so we want to claim our
2527
     * share of I/O as soon as possible to avoid thrashing the global
2528
     * balance.
2529
     */
2530
0
    LWLockAcquire(AutovacuumScheduleLock, LW_EXCLUSIVE);
2531
0
    MyWorkerInfo->wi_tableoid = InvalidOid;
2532
0
    MyWorkerInfo->wi_sharedrel = false;
2533
0
    LWLockRelease(AutovacuumScheduleLock);
2534
0
    pg_atomic_test_set_flag(&MyWorkerInfo->wi_dobalance);
2535
0
  }
2536
2537
0
  list_free(table_oids);
2538
2539
  /*
2540
   * Perform additional work items, as requested by backends.
2541
   */
2542
0
  LWLockAcquire(AutovacuumLock, LW_EXCLUSIVE);
2543
0
  for (i = 0; i < NUM_WORKITEMS; i++)
2544
0
  {
2545
0
    AutoVacuumWorkItem *workitem = &AutoVacuumShmem->av_workItems[i];
2546
2547
0
    if (!workitem->avw_used)
2548
0
      continue;
2549
0
    if (workitem->avw_active)
2550
0
      continue;
2551
0
    if (workitem->avw_database != MyDatabaseId)
2552
0
      continue;
2553
2554
    /* claim this one, and release lock while performing it */
2555
0
    workitem->avw_active = true;
2556
0
    LWLockRelease(AutovacuumLock);
2557
2558
0
    perform_work_item(workitem);
2559
2560
    /*
2561
     * Check for config changes before acquiring lock for further jobs.
2562
     */
2563
0
    CHECK_FOR_INTERRUPTS();
2564
0
    if (ConfigReloadPending)
2565
0
    {
2566
0
      ConfigReloadPending = false;
2567
0
      ProcessConfigFile(PGC_SIGHUP);
2568
0
      VacuumUpdateCosts();
2569
0
    }
2570
2571
0
    LWLockAcquire(AutovacuumLock, LW_EXCLUSIVE);
2572
2573
    /* and mark it done */
2574
0
    workitem->avw_active = false;
2575
0
    workitem->avw_used = false;
2576
0
  }
2577
0
  LWLockRelease(AutovacuumLock);
2578
2579
  /*
2580
   * We leak table_toast_map here (among other things), but since we're
2581
   * going away soon, it's not a problem normally.  But when using Valgrind,
2582
   * release some stuff to reduce complaints about leaked storage.
2583
   */
2584
#ifdef USE_VALGRIND
2585
  hash_destroy(table_toast_map);
2586
  FreeTupleDesc(pg_class_desc);
2587
  if (bstrategy)
2588
    pfree(bstrategy);
2589
#endif
2590
2591
  /* Run the rest in xact context, mainly to avoid Valgrind leak warnings */
2592
0
  MemoryContextSwitchTo(TopTransactionContext);
2593
2594
  /*
2595
   * Update pg_database.datfrozenxid, and truncate pg_xact if possible. We
2596
   * only need to do this once, not after each table.
2597
   *
2598
   * Even if we didn't vacuum anything, it may still be important to do
2599
   * this, because one indirect effect of vac_update_datfrozenxid() is to
2600
   * update TransamVariables->xidVacLimit.  That might need to be done even
2601
   * if we haven't vacuumed anything, because relations with older
2602
   * relfrozenxid values or other databases with older datfrozenxid values
2603
   * might have been dropped, allowing xidVacLimit to advance.
2604
   *
2605
   * However, it's also important not to do this blindly in all cases,
2606
   * because when autovacuum=off this will restart the autovacuum launcher.
2607
   * If we're not careful, an infinite loop can result, where workers find
2608
   * no work to do and restart the launcher, which starts another worker in
2609
   * the same database that finds no work to do.  To prevent that, we skip
2610
   * this if (1) we found no work to do and (2) we skipped at least one
2611
   * table due to concurrent autovacuum activity.  In that case, the other
2612
   * worker has already done it, or will do so when it finishes.
2613
   */
2614
0
  if (did_vacuum || !found_concurrent_worker)
2615
0
    vac_update_datfrozenxid();
2616
2617
  /* Finally close out the last transaction. */
2618
0
  CommitTransactionCommand();
2619
0
}
2620
2621
/*
2622
 * Execute a previously registered work item.
2623
 */
2624
static void
2625
perform_work_item(AutoVacuumWorkItem *workitem)
2626
0
{
2627
0
  char     *cur_datname = NULL;
2628
0
  char     *cur_nspname = NULL;
2629
0
  char     *cur_relname = NULL;
2630
2631
  /*
2632
   * Note we do not store table info in MyWorkerInfo, since this is not
2633
   * vacuuming proper.
2634
   */
2635
2636
  /*
2637
   * Save the relation name for a possible error message, to avoid a catalog
2638
   * lookup in case of an error.  If any of these return NULL, then the
2639
   * relation has been dropped since last we checked; skip it.
2640
   */
2641
0
  Assert(CurrentMemoryContext == AutovacMemCxt);
2642
2643
0
  cur_relname = get_rel_name(workitem->avw_relation);
2644
0
  cur_nspname = get_namespace_name(get_rel_namespace(workitem->avw_relation));
2645
0
  cur_datname = get_database_name(MyDatabaseId);
2646
0
  if (!cur_relname || !cur_nspname || !cur_datname)
2647
0
    goto deleted2;
2648
2649
0
  autovac_report_workitem(workitem, cur_nspname, cur_relname);
2650
2651
  /* clean up memory before each work item */
2652
0
  MemoryContextReset(PortalContext);
2653
2654
  /*
2655
   * We will abort the current work item if something errors out, and
2656
   * continue with the next one; in particular, this happens if we are
2657
   * interrupted with SIGINT.  Note that this means that the work item list
2658
   * can be lossy.
2659
   */
2660
0
  PG_TRY();
2661
0
  {
2662
    /* Use PortalContext for any per-work-item allocations */
2663
0
    MemoryContextSwitchTo(PortalContext);
2664
2665
    /*
2666
     * Have at it.  Functions called here are responsible for any required
2667
     * user switch and sandbox.
2668
     */
2669
0
    switch (workitem->avw_type)
2670
0
    {
2671
0
      case AVW_BRINSummarizeRange:
2672
0
        DirectFunctionCall2(brin_summarize_range,
2673
0
                  ObjectIdGetDatum(workitem->avw_relation),
2674
0
                  Int64GetDatum((int64) workitem->avw_blockNumber));
2675
0
        break;
2676
0
      default:
2677
0
        elog(WARNING, "unrecognized work item found: type %d",
2678
0
           workitem->avw_type);
2679
0
        break;
2680
0
    }
2681
2682
    /*
2683
     * Clear a possible query-cancel signal, to avoid a late reaction to
2684
     * an automatically-sent signal because of vacuuming the current table
2685
     * (we're done with it, so it would make no sense to cancel at this
2686
     * point.)
2687
     */
2688
0
    QueryCancelPending = false;
2689
0
  }
2690
0
  PG_CATCH();
2691
0
  {
2692
    /*
2693
     * Abort the transaction, start a new one, and proceed with the next
2694
     * table in our list.
2695
     */
2696
0
    HOLD_INTERRUPTS();
2697
0
    errcontext("processing work entry for relation \"%s.%s.%s\"",
2698
0
           cur_datname, cur_nspname, cur_relname);
2699
0
    EmitErrorReport();
2700
2701
    /* this resets ProcGlobal->statusFlags[i] too */
2702
0
    AbortOutOfAnyTransaction();
2703
0
    FlushErrorState();
2704
0
    MemoryContextReset(PortalContext);
2705
2706
    /* restart our transaction for the following operations */
2707
0
    StartTransactionCommand();
2708
0
    RESUME_INTERRUPTS();
2709
0
  }
2710
0
  PG_END_TRY();
2711
2712
  /* Make sure we're back in AutovacMemCxt */
2713
0
  MemoryContextSwitchTo(AutovacMemCxt);
2714
2715
  /* We intentionally do not set did_vacuum here */
2716
2717
  /* be tidy */
2718
0
deleted2:
2719
0
  if (cur_datname)
2720
0
    pfree(cur_datname);
2721
0
  if (cur_nspname)
2722
0
    pfree(cur_nspname);
2723
0
  if (cur_relname)
2724
0
    pfree(cur_relname);
2725
0
}
2726
2727
/*
2728
 * extract_autovac_opts
2729
 *
2730
 * Given a relation's pg_class tuple, return a palloc'd copy of the
2731
 * AutoVacOpts portion of reloptions, if set; otherwise, return NULL.
2732
 *
2733
 * Note: callers do not have a relation lock on the table at this point,
2734
 * so the table could have been dropped, and its catalog rows gone, after
2735
 * we acquired the pg_class row.  If pg_class had a TOAST table, this would
2736
 * be a risk; fortunately, it doesn't.
2737
 */
2738
static AutoVacOpts *
2739
extract_autovac_opts(HeapTuple tup, TupleDesc pg_class_desc)
2740
0
{
2741
0
  bytea    *relopts;
2742
0
  AutoVacOpts *av;
2743
2744
0
  Assert(((Form_pg_class) GETSTRUCT(tup))->relkind == RELKIND_RELATION ||
2745
0
       ((Form_pg_class) GETSTRUCT(tup))->relkind == RELKIND_MATVIEW ||
2746
0
       ((Form_pg_class) GETSTRUCT(tup))->relkind == RELKIND_TOASTVALUE);
2747
2748
0
  relopts = extractRelOptions(tup, pg_class_desc, NULL);
2749
0
  if (relopts == NULL)
2750
0
    return NULL;
2751
2752
0
  av = palloc(sizeof(AutoVacOpts));
2753
0
  memcpy(av, &(((StdRdOptions *) relopts)->autovacuum), sizeof(AutoVacOpts));
2754
0
  pfree(relopts);
2755
2756
0
  return av;
2757
0
}
2758
2759
2760
/*
2761
 * table_recheck_autovac
2762
 *
2763
 * Recheck whether a table still needs vacuum or analyze.  Return value is a
2764
 * valid autovac_table pointer if it does, NULL otherwise.
2765
 *
2766
 * Note that the returned autovac_table does not have the name fields set.
2767
 */
2768
static autovac_table *
2769
table_recheck_autovac(Oid relid, HTAB *table_toast_map,
2770
            TupleDesc pg_class_desc,
2771
            int effective_multixact_freeze_max_age)
2772
0
{
2773
0
  Form_pg_class classForm;
2774
0
  HeapTuple classTup;
2775
0
  bool    dovacuum;
2776
0
  bool    doanalyze;
2777
0
  autovac_table *tab = NULL;
2778
0
  bool    wraparound;
2779
0
  AutoVacOpts *avopts;
2780
0
  bool    free_avopts = false;
2781
2782
  /* fetch the relation's relcache entry */
2783
0
  classTup = SearchSysCacheCopy1(RELOID, ObjectIdGetDatum(relid));
2784
0
  if (!HeapTupleIsValid(classTup))
2785
0
    return NULL;
2786
0
  classForm = (Form_pg_class) GETSTRUCT(classTup);
2787
2788
  /*
2789
   * Get the applicable reloptions.  If it is a TOAST table, try to get the
2790
   * main table reloptions if the toast table itself doesn't have.
2791
   */
2792
0
  avopts = extract_autovac_opts(classTup, pg_class_desc);
2793
0
  if (avopts)
2794
0
    free_avopts = true;
2795
0
  else if (classForm->relkind == RELKIND_TOASTVALUE &&
2796
0
       table_toast_map != NULL)
2797
0
  {
2798
0
    av_relation *hentry;
2799
0
    bool    found;
2800
2801
0
    hentry = hash_search(table_toast_map, &relid, HASH_FIND, &found);
2802
0
    if (found && hentry->ar_hasrelopts)
2803
0
      avopts = &hentry->ar_reloptions;
2804
0
  }
2805
2806
0
  recheck_relation_needs_vacanalyze(relid, avopts, classForm,
2807
0
                    effective_multixact_freeze_max_age,
2808
0
                    &dovacuum, &doanalyze, &wraparound);
2809
2810
  /* OK, it needs something done */
2811
0
  if (doanalyze || dovacuum)
2812
0
  {
2813
0
    int     freeze_min_age;
2814
0
    int     freeze_table_age;
2815
0
    int     multixact_freeze_min_age;
2816
0
    int     multixact_freeze_table_age;
2817
0
    int     log_min_duration;
2818
2819
    /*
2820
     * Calculate the vacuum cost parameters and the freeze ages.  If there
2821
     * are options set in pg_class.reloptions, use them; in the case of a
2822
     * toast table, try the main table too.  Otherwise use the GUC
2823
     * defaults, autovacuum's own first and plain vacuum second.
2824
     */
2825
2826
    /* -1 in autovac setting means use log_autovacuum_min_duration */
2827
0
    log_min_duration = (avopts && avopts->log_min_duration >= 0)
2828
0
      ? avopts->log_min_duration
2829
0
      : Log_autovacuum_min_duration;
2830
2831
    /* these do not have autovacuum-specific settings */
2832
0
    freeze_min_age = (avopts && avopts->freeze_min_age >= 0)
2833
0
      ? avopts->freeze_min_age
2834
0
      : default_freeze_min_age;
2835
2836
0
    freeze_table_age = (avopts && avopts->freeze_table_age >= 0)
2837
0
      ? avopts->freeze_table_age
2838
0
      : default_freeze_table_age;
2839
2840
0
    multixact_freeze_min_age = (avopts &&
2841
0
                  avopts->multixact_freeze_min_age >= 0)
2842
0
      ? avopts->multixact_freeze_min_age
2843
0
      : default_multixact_freeze_min_age;
2844
2845
0
    multixact_freeze_table_age = (avopts &&
2846
0
                    avopts->multixact_freeze_table_age >= 0)
2847
0
      ? avopts->multixact_freeze_table_age
2848
0
      : default_multixact_freeze_table_age;
2849
2850
0
    tab = palloc(sizeof(autovac_table));
2851
0
    tab->at_relid = relid;
2852
0
    tab->at_sharedrel = classForm->relisshared;
2853
2854
    /*
2855
     * Select VACUUM options.  Note we don't say VACOPT_PROCESS_TOAST, so
2856
     * that vacuum() skips toast relations.  Also note we tell vacuum() to
2857
     * skip vac_update_datfrozenxid(); we'll do that separately.
2858
     */
2859
0
    tab->at_params.options =
2860
0
      (dovacuum ? (VACOPT_VACUUM |
2861
0
             VACOPT_PROCESS_MAIN |
2862
0
             VACOPT_SKIP_DATABASE_STATS) : 0) |
2863
0
      (doanalyze ? VACOPT_ANALYZE : 0) |
2864
0
      (!wraparound ? VACOPT_SKIP_LOCKED : 0);
2865
2866
    /*
2867
     * index_cleanup and truncate are unspecified at first in autovacuum.
2868
     * They will be filled in with usable values using their reloptions
2869
     * (or reloption defaults) later.
2870
     */
2871
0
    tab->at_params.index_cleanup = VACOPTVALUE_UNSPECIFIED;
2872
0
    tab->at_params.truncate = VACOPTVALUE_UNSPECIFIED;
2873
    /* As of now, we don't support parallel vacuum for autovacuum */
2874
0
    tab->at_params.nworkers = -1;
2875
0
    tab->at_params.freeze_min_age = freeze_min_age;
2876
0
    tab->at_params.freeze_table_age = freeze_table_age;
2877
0
    tab->at_params.multixact_freeze_min_age = multixact_freeze_min_age;
2878
0
    tab->at_params.multixact_freeze_table_age = multixact_freeze_table_age;
2879
0
    tab->at_params.is_wraparound = wraparound;
2880
0
    tab->at_params.log_min_duration = log_min_duration;
2881
0
    tab->at_params.toast_parent = InvalidOid;
2882
2883
    /*
2884
     * Later, in vacuum_rel(), we check reloptions for any
2885
     * vacuum_max_eager_freeze_failure_rate override.
2886
     */
2887
0
    tab->at_params.max_eager_freeze_failure_rate = vacuum_max_eager_freeze_failure_rate;
2888
0
    tab->at_storage_param_vac_cost_limit = avopts ?
2889
0
      avopts->vacuum_cost_limit : 0;
2890
0
    tab->at_storage_param_vac_cost_delay = avopts ?
2891
0
      avopts->vacuum_cost_delay : -1;
2892
0
    tab->at_relname = NULL;
2893
0
    tab->at_nspname = NULL;
2894
0
    tab->at_datname = NULL;
2895
2896
    /*
2897
     * If any of the cost delay parameters has been set individually for
2898
     * this table, disable the balancing algorithm.
2899
     */
2900
0
    tab->at_dobalance =
2901
0
      !(avopts && (avopts->vacuum_cost_limit > 0 ||
2902
0
             avopts->vacuum_cost_delay >= 0));
2903
0
  }
2904
2905
0
  if (free_avopts)
2906
0
    pfree(avopts);
2907
0
  heap_freetuple(classTup);
2908
0
  return tab;
2909
0
}
2910
2911
/*
2912
 * recheck_relation_needs_vacanalyze
2913
 *
2914
 * Subroutine for table_recheck_autovac.
2915
 *
2916
 * Fetch the pgstat of a relation and recheck whether a relation
2917
 * needs to be vacuumed or analyzed.
2918
 */
2919
static void
2920
recheck_relation_needs_vacanalyze(Oid relid,
2921
                  AutoVacOpts *avopts,
2922
                  Form_pg_class classForm,
2923
                  int effective_multixact_freeze_max_age,
2924
                  bool *dovacuum,
2925
                  bool *doanalyze,
2926
                  bool *wraparound)
2927
0
{
2928
0
  PgStat_StatTabEntry *tabentry;
2929
2930
  /* fetch the pgstat table entry */
2931
0
  tabentry = pgstat_fetch_stat_tabentry_ext(classForm->relisshared,
2932
0
                        relid);
2933
2934
0
  relation_needs_vacanalyze(relid, avopts, classForm, tabentry,
2935
0
                effective_multixact_freeze_max_age,
2936
0
                dovacuum, doanalyze, wraparound);
2937
2938
  /* Release tabentry to avoid leakage */
2939
0
  if (tabentry)
2940
0
    pfree(tabentry);
2941
2942
  /* ignore ANALYZE for toast tables */
2943
0
  if (classForm->relkind == RELKIND_TOASTVALUE)
2944
0
    *doanalyze = false;
2945
0
}
2946
2947
/*
2948
 * relation_needs_vacanalyze
2949
 *
2950
 * Check whether a relation needs to be vacuumed or analyzed; return each into
2951
 * "dovacuum" and "doanalyze", respectively.  Also return whether the vacuum is
2952
 * being forced because of Xid or multixact wraparound.
2953
 *
2954
 * relopts is a pointer to the AutoVacOpts options (either for itself in the
2955
 * case of a plain table, or for either itself or its parent table in the case
2956
 * of a TOAST table), NULL if none; tabentry is the pgstats entry, which can be
2957
 * NULL.
2958
 *
2959
 * A table needs to be vacuumed if the number of dead tuples exceeds a
2960
 * threshold.  This threshold is calculated as
2961
 *
2962
 * threshold = vac_base_thresh + vac_scale_factor * reltuples
2963
 * if (threshold > vac_max_thresh)
2964
 *     threshold = vac_max_thresh;
2965
 *
2966
 * For analyze, the analysis done is that the number of tuples inserted,
2967
 * deleted and updated since the last analyze exceeds a threshold calculated
2968
 * in the same fashion as above.  Note that the cumulative stats system stores
2969
 * the number of tuples (both live and dead) that there were as of the last
2970
 * analyze.  This is asymmetric to the VACUUM case.
2971
 *
2972
 * We also force vacuum if the table's relfrozenxid is more than freeze_max_age
2973
 * transactions back, and if its relminmxid is more than
2974
 * multixact_freeze_max_age multixacts back.
2975
 *
2976
 * A table whose autovacuum_enabled option is false is
2977
 * automatically skipped (unless we have to vacuum it due to freeze_max_age).
2978
 * Thus autovacuum can be disabled for specific tables. Also, when the cumulative
2979
 * stats system does not have data about a table, it will be skipped.
2980
 *
2981
 * A table whose vac_base_thresh value is < 0 takes the base value from the
2982
 * autovacuum_vacuum_threshold GUC variable.  Similarly, a vac_scale_factor
2983
 * value < 0 is substituted with the value of
2984
 * autovacuum_vacuum_scale_factor GUC variable.  Ditto for analyze.
2985
 */
2986
static void
2987
relation_needs_vacanalyze(Oid relid,
2988
              AutoVacOpts *relopts,
2989
              Form_pg_class classForm,
2990
              PgStat_StatTabEntry *tabentry,
2991
              int effective_multixact_freeze_max_age,
2992
 /* output params below */
2993
              bool *dovacuum,
2994
              bool *doanalyze,
2995
              bool *wraparound)
2996
0
{
2997
0
  bool    force_vacuum;
2998
0
  bool    av_enabled;
2999
3000
  /* constants from reloptions or GUC variables */
3001
0
  int     vac_base_thresh,
3002
0
        vac_max_thresh,
3003
0
        vac_ins_base_thresh,
3004
0
        anl_base_thresh;
3005
0
  float4    vac_scale_factor,
3006
0
        vac_ins_scale_factor,
3007
0
        anl_scale_factor;
3008
3009
  /* thresholds calculated from above constants */
3010
0
  float4    vacthresh,
3011
0
        vacinsthresh,
3012
0
        anlthresh;
3013
3014
  /* number of vacuum (resp. analyze) tuples at this time */
3015
0
  float4    vactuples,
3016
0
        instuples,
3017
0
        anltuples;
3018
3019
  /* freeze parameters */
3020
0
  int     freeze_max_age;
3021
0
  int     multixact_freeze_max_age;
3022
0
  TransactionId xidForceLimit;
3023
0
  TransactionId relfrozenxid;
3024
0
  MultiXactId multiForceLimit;
3025
3026
0
  Assert(classForm != NULL);
3027
0
  Assert(OidIsValid(relid));
3028
3029
  /*
3030
   * Determine vacuum/analyze equation parameters.  We have two possible
3031
   * sources: the passed reloptions (which could be a main table or a toast
3032
   * table), or the autovacuum GUC variables.
3033
   */
3034
3035
  /* -1 in autovac setting means use plain vacuum_scale_factor */
3036
0
  vac_scale_factor = (relopts && relopts->vacuum_scale_factor >= 0)
3037
0
    ? relopts->vacuum_scale_factor
3038
0
    : autovacuum_vac_scale;
3039
3040
0
  vac_base_thresh = (relopts && relopts->vacuum_threshold >= 0)
3041
0
    ? relopts->vacuum_threshold
3042
0
    : autovacuum_vac_thresh;
3043
3044
  /* -1 is used to disable max threshold */
3045
0
  vac_max_thresh = (relopts && relopts->vacuum_max_threshold >= -1)
3046
0
    ? relopts->vacuum_max_threshold
3047
0
    : autovacuum_vac_max_thresh;
3048
3049
0
  vac_ins_scale_factor = (relopts && relopts->vacuum_ins_scale_factor >= 0)
3050
0
    ? relopts->vacuum_ins_scale_factor
3051
0
    : autovacuum_vac_ins_scale;
3052
3053
  /* -1 is used to disable insert vacuums */
3054
0
  vac_ins_base_thresh = (relopts && relopts->vacuum_ins_threshold >= -1)
3055
0
    ? relopts->vacuum_ins_threshold
3056
0
    : autovacuum_vac_ins_thresh;
3057
3058
0
  anl_scale_factor = (relopts && relopts->analyze_scale_factor >= 0)
3059
0
    ? relopts->analyze_scale_factor
3060
0
    : autovacuum_anl_scale;
3061
3062
0
  anl_base_thresh = (relopts && relopts->analyze_threshold >= 0)
3063
0
    ? relopts->analyze_threshold
3064
0
    : autovacuum_anl_thresh;
3065
3066
0
  freeze_max_age = (relopts && relopts->freeze_max_age >= 0)
3067
0
    ? Min(relopts->freeze_max_age, autovacuum_freeze_max_age)
3068
0
    : autovacuum_freeze_max_age;
3069
3070
0
  multixact_freeze_max_age = (relopts && relopts->multixact_freeze_max_age >= 0)
3071
0
    ? Min(relopts->multixact_freeze_max_age, effective_multixact_freeze_max_age)
3072
0
    : effective_multixact_freeze_max_age;
3073
3074
0
  av_enabled = (relopts ? relopts->enabled : true);
3075
3076
  /* Force vacuum if table is at risk of wraparound */
3077
0
  xidForceLimit = recentXid - freeze_max_age;
3078
0
  if (xidForceLimit < FirstNormalTransactionId)
3079
0
    xidForceLimit -= FirstNormalTransactionId;
3080
0
  relfrozenxid = classForm->relfrozenxid;
3081
0
  force_vacuum = (TransactionIdIsNormal(relfrozenxid) &&
3082
0
          TransactionIdPrecedes(relfrozenxid, xidForceLimit));
3083
0
  if (!force_vacuum)
3084
0
  {
3085
0
    MultiXactId relminmxid = classForm->relminmxid;
3086
3087
0
    multiForceLimit = recentMulti - multixact_freeze_max_age;
3088
0
    if (multiForceLimit < FirstMultiXactId)
3089
0
      multiForceLimit -= FirstMultiXactId;
3090
0
    force_vacuum = MultiXactIdIsValid(relminmxid) &&
3091
0
      MultiXactIdPrecedes(relminmxid, multiForceLimit);
3092
0
  }
3093
0
  *wraparound = force_vacuum;
3094
3095
  /* User disabled it in pg_class.reloptions?  (But ignore if at risk) */
3096
0
  if (!av_enabled && !force_vacuum)
3097
0
  {
3098
0
    *doanalyze = false;
3099
0
    *dovacuum = false;
3100
0
    return;
3101
0
  }
3102
3103
  /*
3104
   * If we found stats for the table, and autovacuum is currently enabled,
3105
   * make a threshold-based decision whether to vacuum and/or analyze.  If
3106
   * autovacuum is currently disabled, we must be here for anti-wraparound
3107
   * vacuuming only, so don't vacuum (or analyze) anything that's not being
3108
   * forced.
3109
   */
3110
0
  if (tabentry && AutoVacuumingActive())
3111
0
  {
3112
0
    float4    pcnt_unfrozen = 1;
3113
0
    float4    reltuples = classForm->reltuples;
3114
0
    int32   relpages = classForm->relpages;
3115
0
    int32   relallfrozen = classForm->relallfrozen;
3116
3117
0
    vactuples = tabentry->dead_tuples;
3118
0
    instuples = tabentry->ins_since_vacuum;
3119
0
    anltuples = tabentry->mod_since_analyze;
3120
3121
    /* If the table hasn't yet been vacuumed, take reltuples as zero */
3122
0
    if (reltuples < 0)
3123
0
      reltuples = 0;
3124
3125
    /*
3126
     * If we have data for relallfrozen, calculate the unfrozen percentage
3127
     * of the table to modify insert scale factor. This helps us decide
3128
     * whether or not to vacuum an insert-heavy table based on the number
3129
     * of inserts to the more "active" part of the table.
3130
     */
3131
0
    if (relpages > 0 && relallfrozen > 0)
3132
0
    {
3133
      /*
3134
       * It could be the stats were updated manually and relallfrozen >
3135
       * relpages. Clamp relallfrozen to relpages to avoid nonsensical
3136
       * calculations.
3137
       */
3138
0
      relallfrozen = Min(relallfrozen, relpages);
3139
0
      pcnt_unfrozen = 1 - ((float4) relallfrozen / relpages);
3140
0
    }
3141
3142
0
    vacthresh = (float4) vac_base_thresh + vac_scale_factor * reltuples;
3143
0
    if (vac_max_thresh >= 0 && vacthresh > (float4) vac_max_thresh)
3144
0
      vacthresh = (float4) vac_max_thresh;
3145
3146
0
    vacinsthresh = (float4) vac_ins_base_thresh +
3147
0
      vac_ins_scale_factor * reltuples * pcnt_unfrozen;
3148
0
    anlthresh = (float4) anl_base_thresh + anl_scale_factor * reltuples;
3149
3150
    /*
3151
     * Note that we don't need to take special consideration for stat
3152
     * reset, because if that happens, the last vacuum and analyze counts
3153
     * will be reset too.
3154
     */
3155
0
    if (vac_ins_base_thresh >= 0)
3156
0
      elog(DEBUG3, "%s: vac: %.0f (threshold %.0f), ins: %.0f (threshold %.0f), anl: %.0f (threshold %.0f)",
3157
0
         NameStr(classForm->relname),
3158
0
         vactuples, vacthresh, instuples, vacinsthresh, anltuples, anlthresh);
3159
0
    else
3160
0
      elog(DEBUG3, "%s: vac: %.0f (threshold %.0f), ins: (disabled), anl: %.0f (threshold %.0f)",
3161
0
         NameStr(classForm->relname),
3162
0
         vactuples, vacthresh, anltuples, anlthresh);
3163
3164
    /* Determine if this table needs vacuum or analyze. */
3165
0
    *dovacuum = force_vacuum || (vactuples > vacthresh) ||
3166
0
      (vac_ins_base_thresh >= 0 && instuples > vacinsthresh);
3167
0
    *doanalyze = (anltuples > anlthresh);
3168
0
  }
3169
0
  else
3170
0
  {
3171
    /*
3172
     * Skip a table not found in stat hash, unless we have to force vacuum
3173
     * for anti-wrap purposes.  If it's not acted upon, there's no need to
3174
     * vacuum it.
3175
     */
3176
0
    *dovacuum = force_vacuum;
3177
0
    *doanalyze = false;
3178
0
  }
3179
3180
  /* ANALYZE refuses to work with pg_statistic */
3181
0
  if (relid == StatisticRelationId)
3182
0
    *doanalyze = false;
3183
0
}
3184
3185
/*
3186
 * autovacuum_do_vac_analyze
3187
 *    Vacuum and/or analyze the specified table
3188
 *
3189
 * We expect the caller to have switched into a memory context that won't
3190
 * disappear at transaction commit.
3191
 */
3192
static void
3193
autovacuum_do_vac_analyze(autovac_table *tab, BufferAccessStrategy bstrategy)
3194
0
{
3195
0
  RangeVar   *rangevar;
3196
0
  VacuumRelation *rel;
3197
0
  List     *rel_list;
3198
0
  MemoryContext vac_context;
3199
0
  MemoryContext old_context;
3200
3201
  /* Let pgstat know what we're doing */
3202
0
  autovac_report_activity(tab);
3203
3204
  /* Create a context that vacuum() can use as cross-transaction storage */
3205
0
  vac_context = AllocSetContextCreate(CurrentMemoryContext,
3206
0
                    "Vacuum",
3207
0
                    ALLOCSET_DEFAULT_SIZES);
3208
3209
  /* Set up one VacuumRelation target, identified by OID, for vacuum() */
3210
0
  old_context = MemoryContextSwitchTo(vac_context);
3211
0
  rangevar = makeRangeVar(tab->at_nspname, tab->at_relname, -1);
3212
0
  rel = makeVacuumRelation(rangevar, tab->at_relid, NIL);
3213
0
  rel_list = list_make1(rel);
3214
0
  MemoryContextSwitchTo(old_context);
3215
3216
0
  vacuum(rel_list, tab->at_params, bstrategy, vac_context, true);
3217
3218
0
  MemoryContextDelete(vac_context);
3219
0
}
3220
3221
/*
3222
 * autovac_report_activity
3223
 *    Report to pgstat what autovacuum is doing
3224
 *
3225
 * We send a SQL string corresponding to what the user would see if the
3226
 * equivalent command was to be issued manually.
3227
 *
3228
 * Note we assume that we are going to report the next command as soon as we're
3229
 * done with the current one, and exit right after the last one, so we don't
3230
 * bother to report "<IDLE>" or some such.
3231
 */
3232
static void
3233
autovac_report_activity(autovac_table *tab)
3234
0
{
3235
0
#define MAX_AUTOVAC_ACTIV_LEN (NAMEDATALEN * 2 + 56)
3236
0
  char    activity[MAX_AUTOVAC_ACTIV_LEN];
3237
0
  int     len;
3238
3239
  /* Report the command and possible options */
3240
0
  if (tab->at_params.options & VACOPT_VACUUM)
3241
0
    snprintf(activity, MAX_AUTOVAC_ACTIV_LEN,
3242
0
         "autovacuum: VACUUM%s",
3243
0
         tab->at_params.options & VACOPT_ANALYZE ? " ANALYZE" : "");
3244
0
  else
3245
0
    snprintf(activity, MAX_AUTOVAC_ACTIV_LEN,
3246
0
         "autovacuum: ANALYZE");
3247
3248
  /*
3249
   * Report the qualified name of the relation.
3250
   */
3251
0
  len = strlen(activity);
3252
3253
0
  snprintf(activity + len, MAX_AUTOVAC_ACTIV_LEN - len,
3254
0
       " %s.%s%s", tab->at_nspname, tab->at_relname,
3255
0
       tab->at_params.is_wraparound ? " (to prevent wraparound)" : "");
3256
3257
  /* Set statement_timestamp() to current time for pg_stat_activity */
3258
0
  SetCurrentStatementStartTimestamp();
3259
3260
0
  pgstat_report_activity(STATE_RUNNING, activity);
3261
0
}
3262
3263
/*
3264
 * autovac_report_workitem
3265
 *    Report to pgstat that autovacuum is processing a work item
3266
 */
3267
static void
3268
autovac_report_workitem(AutoVacuumWorkItem *workitem,
3269
            const char *nspname, const char *relname)
3270
0
{
3271
0
  char    activity[MAX_AUTOVAC_ACTIV_LEN + 12 + 2];
3272
0
  char    blk[12 + 2];
3273
0
  int     len;
3274
3275
0
  switch (workitem->avw_type)
3276
0
  {
3277
0
    case AVW_BRINSummarizeRange:
3278
0
      snprintf(activity, MAX_AUTOVAC_ACTIV_LEN,
3279
0
           "autovacuum: BRIN summarize");
3280
0
      break;
3281
0
  }
3282
3283
  /*
3284
   * Report the qualified name of the relation, and the block number if any
3285
   */
3286
0
  len = strlen(activity);
3287
3288
0
  if (BlockNumberIsValid(workitem->avw_blockNumber))
3289
0
    snprintf(blk, sizeof(blk), " %u", workitem->avw_blockNumber);
3290
0
  else
3291
0
    blk[0] = '\0';
3292
3293
0
  snprintf(activity + len, MAX_AUTOVAC_ACTIV_LEN - len,
3294
0
       " %s.%s%s", nspname, relname, blk);
3295
3296
  /* Set statement_timestamp() to current time for pg_stat_activity */
3297
0
  SetCurrentStatementStartTimestamp();
3298
3299
0
  pgstat_report_activity(STATE_RUNNING, activity);
3300
0
}
3301
3302
/*
3303
 * AutoVacuumingActive
3304
 *    Check GUC vars and report whether the autovacuum process should be
3305
 *    running.
3306
 */
3307
bool
3308
AutoVacuumingActive(void)
3309
0
{
3310
0
  if (!autovacuum_start_daemon || !pgstat_track_counts)
3311
0
    return false;
3312
0
  return true;
3313
0
}
3314
3315
/*
3316
 * Request one work item to the next autovacuum run processing our database.
3317
 * Return false if the request can't be recorded.
3318
 */
3319
bool
3320
AutoVacuumRequestWork(AutoVacuumWorkItemType type, Oid relationId,
3321
            BlockNumber blkno)
3322
0
{
3323
0
  int     i;
3324
0
  bool    result = false;
3325
3326
0
  LWLockAcquire(AutovacuumLock, LW_EXCLUSIVE);
3327
3328
  /*
3329
   * Locate an unused work item and fill it with the given data.
3330
   */
3331
0
  for (i = 0; i < NUM_WORKITEMS; i++)
3332
0
  {
3333
0
    AutoVacuumWorkItem *workitem = &AutoVacuumShmem->av_workItems[i];
3334
3335
0
    if (workitem->avw_used)
3336
0
      continue;
3337
3338
0
    workitem->avw_used = true;
3339
0
    workitem->avw_active = false;
3340
0
    workitem->avw_type = type;
3341
0
    workitem->avw_database = MyDatabaseId;
3342
0
    workitem->avw_relation = relationId;
3343
0
    workitem->avw_blockNumber = blkno;
3344
0
    result = true;
3345
3346
    /* done */
3347
0
    break;
3348
0
  }
3349
3350
0
  LWLockRelease(AutovacuumLock);
3351
3352
0
  return result;
3353
0
}
3354
3355
/*
3356
 * autovac_init
3357
 *    This is called at postmaster initialization.
3358
 *
3359
 * All we do here is annoy the user if he got it wrong.
3360
 */
3361
void
3362
autovac_init(void)
3363
{
3364
  if (!autovacuum_start_daemon)
3365
    return;
3366
  else if (!pgstat_track_counts)
3367
    ereport(WARNING,
3368
        (errmsg("autovacuum not started because of misconfiguration"),
3369
         errhint("Enable the \"track_counts\" option.")));
3370
  else
3371
    check_av_worker_gucs();
3372
}
3373
3374
/*
3375
 * AutoVacuumShmemSize
3376
 *    Compute space needed for autovacuum-related shared memory
3377
 */
3378
Size
3379
AutoVacuumShmemSize(void)
3380
0
{
3381
0
  Size    size;
3382
3383
  /*
3384
   * Need the fixed struct and the array of WorkerInfoData.
3385
   */
3386
0
  size = sizeof(AutoVacuumShmemStruct);
3387
0
  size = MAXALIGN(size);
3388
0
  size = add_size(size, mul_size(autovacuum_worker_slots,
3389
0
                   sizeof(WorkerInfoData)));
3390
0
  return size;
3391
0
}
3392
3393
/*
3394
 * AutoVacuumShmemInit
3395
 *    Allocate and initialize autovacuum-related shared memory
3396
 */
3397
void
3398
AutoVacuumShmemInit(void)
3399
0
{
3400
0
  bool    found;
3401
3402
0
  AutoVacuumShmem = (AutoVacuumShmemStruct *)
3403
0
    ShmemInitStruct("AutoVacuum Data",
3404
0
            AutoVacuumShmemSize(),
3405
0
            &found);
3406
3407
0
  if (!IsUnderPostmaster)
3408
0
  {
3409
0
    WorkerInfo  worker;
3410
0
    int     i;
3411
3412
0
    Assert(!found);
3413
3414
0
    AutoVacuumShmem->av_launcherpid = 0;
3415
0
    dclist_init(&AutoVacuumShmem->av_freeWorkers);
3416
0
    dlist_init(&AutoVacuumShmem->av_runningWorkers);
3417
0
    AutoVacuumShmem->av_startingWorker = NULL;
3418
0
    memset(AutoVacuumShmem->av_workItems, 0,
3419
0
         sizeof(AutoVacuumWorkItem) * NUM_WORKITEMS);
3420
3421
0
    worker = (WorkerInfo) ((char *) AutoVacuumShmem +
3422
0
                 MAXALIGN(sizeof(AutoVacuumShmemStruct)));
3423
3424
    /* initialize the WorkerInfo free list */
3425
0
    for (i = 0; i < autovacuum_worker_slots; i++)
3426
0
    {
3427
0
      dclist_push_head(&AutoVacuumShmem->av_freeWorkers,
3428
0
               &worker[i].wi_links);
3429
0
      pg_atomic_init_flag(&worker[i].wi_dobalance);
3430
0
    }
3431
3432
0
    pg_atomic_init_u32(&AutoVacuumShmem->av_nworkersForBalance, 0);
3433
3434
0
  }
3435
0
  else
3436
0
    Assert(found);
3437
0
}
3438
3439
/*
3440
 * GUC check_hook for autovacuum_work_mem
3441
 */
3442
bool
3443
check_autovacuum_work_mem(int *newval, void **extra, GucSource source)
3444
2
{
3445
  /*
3446
   * -1 indicates fallback.
3447
   *
3448
   * If we haven't yet changed the boot_val default of -1, just let it be.
3449
   * Autovacuum will look to maintenance_work_mem instead.
3450
   */
3451
2
  if (*newval == -1)
3452
2
    return true;
3453
3454
  /*
3455
   * We clamp manually-set values to at least 64kB.  Since
3456
   * maintenance_work_mem is always set to at least this value, do the same
3457
   * here.
3458
   */
3459
0
  if (*newval < 64)
3460
0
    *newval = 64;
3461
3462
0
  return true;
3463
2
}
3464
3465
/*
3466
 * Returns whether there is a free autovacuum worker slot available.
3467
 */
3468
static bool
3469
av_worker_available(void)
3470
0
{
3471
0
  int     free_slots;
3472
0
  int     reserved_slots;
3473
3474
0
  free_slots = dclist_count(&AutoVacuumShmem->av_freeWorkers);
3475
3476
0
  reserved_slots = autovacuum_worker_slots - autovacuum_max_workers;
3477
0
  reserved_slots = Max(0, reserved_slots);
3478
3479
0
  return free_slots > reserved_slots;
3480
0
}
3481
3482
/*
3483
 * Emits a WARNING if autovacuum_worker_slots < autovacuum_max_workers.
3484
 */
3485
static void
3486
check_av_worker_gucs(void)
3487
{
3488
  if (autovacuum_worker_slots < autovacuum_max_workers)
3489
    ereport(WARNING,
3490
        (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
3491
         errmsg("\"autovacuum_max_workers\" (%d) should be less than or equal to \"autovacuum_worker_slots\" (%d)",
3492
            autovacuum_max_workers, autovacuum_worker_slots),
3493
         errdetail("The server will only start up to \"autovacuum_worker_slots\" (%d) autovacuum workers at a given time.",
3494
               autovacuum_worker_slots)));
3495
}