Coverage Report

Created: 2025-09-27 06:52

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/postgres/src/backend/storage/ipc/procarray.c
Line
Count
Source
1
/*-------------------------------------------------------------------------
2
 *
3
 * procarray.c
4
 *    POSTGRES process array code.
5
 *
6
 *
7
 * This module maintains arrays of PGPROC substructures, as well as associated
8
 * arrays in ProcGlobal, for all active backends.  Although there are several
9
 * uses for this, the principal one is as a means of determining the set of
10
 * currently running transactions.
11
 *
12
 * Because of various subtle race conditions it is critical that a backend
13
 * hold the correct locks while setting or clearing its xid (in
14
 * ProcGlobal->xids[]/MyProc->xid).  See notes in
15
 * src/backend/access/transam/README.
16
 *
17
 * The process arrays now also include structures representing prepared
18
 * transactions.  The xid and subxids fields of these are valid, as are the
19
 * myProcLocks lists.  They can be distinguished from regular backend PGPROCs
20
 * at need by checking for pid == 0.
21
 *
22
 * During hot standby, we also keep a list of XIDs representing transactions
23
 * that are known to be running on the primary (or more precisely, were running
24
 * as of the current point in the WAL stream).  This list is kept in the
25
 * KnownAssignedXids array, and is updated by watching the sequence of
26
 * arriving XIDs.  This is necessary because if we leave those XIDs out of
27
 * snapshots taken for standby queries, then they will appear to be already
28
 * complete, leading to MVCC failures.  Note that in hot standby, the PGPROC
29
 * array represents standby processes, which by definition are not running
30
 * transactions that have XIDs.
31
 *
32
 * It is perhaps possible for a backend on the primary to terminate without
33
 * writing an abort record for its transaction.  While that shouldn't really
34
 * happen, it would tie up KnownAssignedXids indefinitely, so we protect
35
 * ourselves by pruning the array when a valid list of running XIDs arrives.
36
 *
37
 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
38
 * Portions Copyright (c) 1994, Regents of the University of California
39
 *
40
 *
41
 * IDENTIFICATION
42
 *    src/backend/storage/ipc/procarray.c
43
 *
44
 *-------------------------------------------------------------------------
45
 */
46
#include "postgres.h"
47
48
#include <signal.h>
49
50
#include "access/subtrans.h"
51
#include "access/transam.h"
52
#include "access/twophase.h"
53
#include "access/xact.h"
54
#include "access/xlogutils.h"
55
#include "catalog/catalog.h"
56
#include "catalog/pg_authid.h"
57
#include "miscadmin.h"
58
#include "pgstat.h"
59
#include "port/pg_lfind.h"
60
#include "storage/proc.h"
61
#include "storage/procarray.h"
62
#include "utils/acl.h"
63
#include "utils/builtins.h"
64
#include "utils/lsyscache.h"
65
#include "utils/rel.h"
66
#include "utils/snapmgr.h"
67
68
0
#define UINT32_ACCESS_ONCE(var)    ((uint32)(*((volatile uint32 *)&(var))))
69
70
/* Our shared memory area */
71
typedef struct ProcArrayStruct
72
{
73
  int     numProcs;   /* number of valid procs entries */
74
  int     maxProcs;   /* allocated size of procs array */
75
76
  /*
77
   * Known assigned XIDs handling
78
   */
79
  int     maxKnownAssignedXids; /* allocated size of array */
80
  int     numKnownAssignedXids; /* current # of valid entries */
81
  int     tailKnownAssignedXids;  /* index of oldest valid element */
82
  int     headKnownAssignedXids;  /* index of newest element, + 1 */
83
84
  /*
85
   * Highest subxid that has been removed from KnownAssignedXids array to
86
   * prevent overflow; or InvalidTransactionId if none.  We track this for
87
   * similar reasons to tracking overflowing cached subxids in PGPROC
88
   * entries.  Must hold exclusive ProcArrayLock to change this, and shared
89
   * lock to read it.
90
   */
91
  TransactionId lastOverflowedXid;
92
93
  /* oldest xmin of any replication slot */
94
  TransactionId replication_slot_xmin;
95
  /* oldest catalog xmin of any replication slot */
96
  TransactionId replication_slot_catalog_xmin;
97
98
  /* indexes into allProcs[], has PROCARRAY_MAXPROCS entries */
99
  int     pgprocnos[FLEXIBLE_ARRAY_MEMBER];
100
} ProcArrayStruct;
101
102
/*
103
 * State for the GlobalVisTest* family of functions. Those functions can
104
 * e.g. be used to decide if a deleted row can be removed without violating
105
 * MVCC semantics: If the deleted row's xmax is not considered to be running
106
 * by anyone, the row can be removed.
107
 *
108
 * To avoid slowing down GetSnapshotData(), we don't calculate a precise
109
 * cutoff XID while building a snapshot (looking at the frequently changing
110
 * xmins scales badly). Instead we compute two boundaries while building the
111
 * snapshot:
112
 *
113
 * 1) definitely_needed, indicating that rows deleted by XIDs >=
114
 *    definitely_needed are definitely still visible.
115
 *
116
 * 2) maybe_needed, indicating that rows deleted by XIDs < maybe_needed can
117
 *    definitely be removed
118
 *
119
 * When testing an XID that falls in between the two (i.e. XID >= maybe_needed
120
 * && XID < definitely_needed), the boundaries can be recomputed (using
121
 * ComputeXidHorizons()) to get a more accurate answer. This is cheaper than
122
 * maintaining an accurate value all the time.
123
 *
124
 * As it is not cheap to compute accurate boundaries, we limit the number of
125
 * times that happens in short succession. See GlobalVisTestShouldUpdate().
126
 *
127
 *
128
 * There are three backend lifetime instances of this struct, optimized for
129
 * different types of relations. As e.g. a normal user defined table in one
130
 * database is inaccessible to backends connected to another database, a test
131
 * specific to a relation can be more aggressive than a test for a shared
132
 * relation.  Currently we track four different states:
133
 *
134
 * 1) GlobalVisSharedRels, which only considers an XID's
135
 *    effects visible-to-everyone if neither snapshots in any database, nor a
136
 *    replication slot's xmin, nor a replication slot's catalog_xmin might
137
 *    still consider XID as running.
138
 *
139
 * 2) GlobalVisCatalogRels, which only considers an XID's
140
 *    effects visible-to-everyone if neither snapshots in the current
141
 *    database, nor a replication slot's xmin, nor a replication slot's
142
 *    catalog_xmin might still consider XID as running.
143
 *
144
 *    I.e. the difference to GlobalVisSharedRels is that
145
 *    snapshot in other databases are ignored.
146
 *
147
 * 3) GlobalVisDataRels, which only considers an XID's
148
 *    effects visible-to-everyone if neither snapshots in the current
149
 *    database, nor a replication slot's xmin consider XID as running.
150
 *
151
 *    I.e. the difference to GlobalVisCatalogRels is that
152
 *    replication slot's catalog_xmin is not taken into account.
153
 *
154
 * 4) GlobalVisTempRels, which only considers the current session, as temp
155
 *    tables are not visible to other sessions.
156
 *
157
 * GlobalVisTestFor(relation) returns the appropriate state
158
 * for the relation.
159
 *
160
 * The boundaries are FullTransactionIds instead of TransactionIds to avoid
161
 * wraparound dangers. There e.g. would otherwise exist no procarray state to
162
 * prevent maybe_needed to become old enough after the GetSnapshotData()
163
 * call.
164
 *
165
 * The typedef is in the header.
166
 */
167
struct GlobalVisState
168
{
169
  /* XIDs >= are considered running by some backend */
170
  FullTransactionId definitely_needed;
171
172
  /* XIDs < are not considered to be running by any backend */
173
  FullTransactionId maybe_needed;
174
};
175
176
/*
177
 * Result of ComputeXidHorizons().
178
 */
179
typedef struct ComputeXidHorizonsResult
180
{
181
  /*
182
   * The value of TransamVariables->latestCompletedXid when
183
   * ComputeXidHorizons() held ProcArrayLock.
184
   */
185
  FullTransactionId latest_completed;
186
187
  /*
188
   * The same for procArray->replication_slot_xmin and
189
   * procArray->replication_slot_catalog_xmin.
190
   */
191
  TransactionId slot_xmin;
192
  TransactionId slot_catalog_xmin;
193
194
  /*
195
   * Oldest xid that any backend might still consider running. This needs to
196
   * include processes running VACUUM, in contrast to the normal visibility
197
   * cutoffs, as vacuum needs to be able to perform pg_subtrans lookups when
198
   * determining visibility, but doesn't care about rows above its xmin to
199
   * be removed.
200
   *
201
   * This likely should only be needed to determine whether pg_subtrans can
202
   * be truncated. It currently includes the effects of replication slots,
203
   * for historical reasons. But that could likely be changed.
204
   */
205
  TransactionId oldest_considered_running;
206
207
  /*
208
   * Oldest xid for which deleted tuples need to be retained in shared
209
   * tables.
210
   *
211
   * This includes the effects of replication slots. If that's not desired,
212
   * look at shared_oldest_nonremovable_raw;
213
   */
214
  TransactionId shared_oldest_nonremovable;
215
216
  /*
217
   * Oldest xid that may be necessary to retain in shared tables. This is
218
   * the same as shared_oldest_nonremovable, except that is not affected by
219
   * replication slot's catalog_xmin.
220
   *
221
   * This is mainly useful to be able to send the catalog_xmin to upstream
222
   * streaming replication servers via hot_standby_feedback, so they can
223
   * apply the limit only when accessing catalog tables.
224
   */
225
  TransactionId shared_oldest_nonremovable_raw;
226
227
  /*
228
   * Oldest xid for which deleted tuples need to be retained in non-shared
229
   * catalog tables.
230
   */
231
  TransactionId catalog_oldest_nonremovable;
232
233
  /*
234
   * Oldest xid for which deleted tuples need to be retained in normal user
235
   * defined tables.
236
   */
237
  TransactionId data_oldest_nonremovable;
238
239
  /*
240
   * Oldest xid for which deleted tuples need to be retained in this
241
   * session's temporary tables.
242
   */
243
  TransactionId temp_oldest_nonremovable;
244
} ComputeXidHorizonsResult;
245
246
/*
247
 * Return value for GlobalVisHorizonKindForRel().
248
 */
249
typedef enum GlobalVisHorizonKind
250
{
251
  VISHORIZON_SHARED,
252
  VISHORIZON_CATALOG,
253
  VISHORIZON_DATA,
254
  VISHORIZON_TEMP,
255
} GlobalVisHorizonKind;
256
257
/*
258
 * Reason codes for KnownAssignedXidsCompress().
259
 */
260
typedef enum KAXCompressReason
261
{
262
  KAX_NO_SPACE,       /* need to free up space at array end */
263
  KAX_PRUNE,          /* we just pruned old entries */
264
  KAX_TRANSACTION_END,    /* we just committed/removed some XIDs */
265
  KAX_STARTUP_PROCESS_IDLE, /* startup process is about to sleep */
266
} KAXCompressReason;
267
268
269
static ProcArrayStruct *procArray;
270
271
static PGPROC *allProcs;
272
273
/*
274
 * Cache to reduce overhead of repeated calls to TransactionIdIsInProgress()
275
 */
276
static TransactionId cachedXidIsNotInProgress = InvalidTransactionId;
277
278
/*
279
 * Bookkeeping for tracking emulated transactions in recovery
280
 */
281
static TransactionId *KnownAssignedXids;
282
static bool *KnownAssignedXidsValid;
283
static TransactionId latestObservedXid = InvalidTransactionId;
284
285
/*
286
 * If we're in STANDBY_SNAPSHOT_PENDING state, standbySnapshotPendingXmin is
287
 * the highest xid that might still be running that we don't have in
288
 * KnownAssignedXids.
289
 */
290
static TransactionId standbySnapshotPendingXmin;
291
292
/*
293
 * State for visibility checks on different types of relations. See struct
294
 * GlobalVisState for details. As shared, catalog, normal and temporary
295
 * relations can have different horizons, one such state exists for each.
296
 */
297
static GlobalVisState GlobalVisSharedRels;
298
static GlobalVisState GlobalVisCatalogRels;
299
static GlobalVisState GlobalVisDataRels;
300
static GlobalVisState GlobalVisTempRels;
301
302
/*
303
 * This backend's RecentXmin at the last time the accurate xmin horizon was
304
 * recomputed, or InvalidTransactionId if it has not. Used to limit how many
305
 * times accurate horizons are recomputed. See GlobalVisTestShouldUpdate().
306
 */
307
static TransactionId ComputeXidHorizonsResultLastXmin;
308
309
#ifdef XIDCACHE_DEBUG
310
311
/* counters for XidCache measurement */
312
static long xc_by_recent_xmin = 0;
313
static long xc_by_known_xact = 0;
314
static long xc_by_my_xact = 0;
315
static long xc_by_latest_xid = 0;
316
static long xc_by_main_xid = 0;
317
static long xc_by_child_xid = 0;
318
static long xc_by_known_assigned = 0;
319
static long xc_no_overflow = 0;
320
static long xc_slow_answer = 0;
321
322
#define xc_by_recent_xmin_inc()   (xc_by_recent_xmin++)
323
#define xc_by_known_xact_inc()    (xc_by_known_xact++)
324
#define xc_by_my_xact_inc()     (xc_by_my_xact++)
325
#define xc_by_latest_xid_inc()    (xc_by_latest_xid++)
326
#define xc_by_main_xid_inc()    (xc_by_main_xid++)
327
#define xc_by_child_xid_inc()   (xc_by_child_xid++)
328
#define xc_by_known_assigned_inc()  (xc_by_known_assigned++)
329
#define xc_no_overflow_inc()    (xc_no_overflow++)
330
#define xc_slow_answer_inc()    (xc_slow_answer++)
331
332
static void DisplayXidCache(void);
333
#else             /* !XIDCACHE_DEBUG */
334
335
0
#define xc_by_recent_xmin_inc()   ((void) 0)
336
0
#define xc_by_known_xact_inc()    ((void) 0)
337
0
#define xc_by_my_xact_inc()     ((void) 0)
338
0
#define xc_by_latest_xid_inc()    ((void) 0)
339
0
#define xc_by_main_xid_inc()    ((void) 0)
340
0
#define xc_by_child_xid_inc()   ((void) 0)
341
0
#define xc_by_known_assigned_inc()  ((void) 0)
342
0
#define xc_no_overflow_inc()    ((void) 0)
343
0
#define xc_slow_answer_inc()    ((void) 0)
344
#endif              /* XIDCACHE_DEBUG */
345
346
/* Primitives for KnownAssignedXids array handling for standby */
347
static void KnownAssignedXidsCompress(KAXCompressReason reason, bool haveLock);
348
static void KnownAssignedXidsAdd(TransactionId from_xid, TransactionId to_xid,
349
                 bool exclusive_lock);
350
static bool KnownAssignedXidsSearch(TransactionId xid, bool remove);
351
static bool KnownAssignedXidExists(TransactionId xid);
352
static void KnownAssignedXidsRemove(TransactionId xid);
353
static void KnownAssignedXidsRemoveTree(TransactionId xid, int nsubxids,
354
                    TransactionId *subxids);
355
static void KnownAssignedXidsRemovePreceding(TransactionId removeXid);
356
static int  KnownAssignedXidsGet(TransactionId *xarray, TransactionId xmax);
357
static int  KnownAssignedXidsGetAndSetXmin(TransactionId *xarray,
358
                       TransactionId *xmin,
359
                       TransactionId xmax);
360
static TransactionId KnownAssignedXidsGetOldestXmin(void);
361
static void KnownAssignedXidsDisplay(int trace_level);
362
static void KnownAssignedXidsReset(void);
363
static inline void ProcArrayEndTransactionInternal(PGPROC *proc, TransactionId latestXid);
364
static void ProcArrayGroupClearXid(PGPROC *proc, TransactionId latestXid);
365
static void MaintainLatestCompletedXid(TransactionId latestXid);
366
static void MaintainLatestCompletedXidRecovery(TransactionId latestXid);
367
368
static inline FullTransactionId FullXidRelativeTo(FullTransactionId rel,
369
                          TransactionId xid);
370
static void GlobalVisUpdateApply(ComputeXidHorizonsResult *horizons);
371
372
/*
373
 * Report shared-memory space needed by ProcArrayShmemInit
374
 */
375
Size
376
ProcArrayShmemSize(void)
377
0
{
378
0
  Size    size;
379
380
  /* Size of the ProcArray structure itself */
381
0
#define PROCARRAY_MAXPROCS  (MaxBackends + max_prepared_xacts)
382
383
0
  size = offsetof(ProcArrayStruct, pgprocnos);
384
0
  size = add_size(size, mul_size(sizeof(int), PROCARRAY_MAXPROCS));
385
386
  /*
387
   * During Hot Standby processing we have a data structure called
388
   * KnownAssignedXids, created in shared memory. Local data structures are
389
   * also created in various backends during GetSnapshotData(),
390
   * TransactionIdIsInProgress() and GetRunningTransactionData(). All of the
391
   * main structures created in those functions must be identically sized,
392
   * since we may at times copy the whole of the data structures around. We
393
   * refer to this size as TOTAL_MAX_CACHED_SUBXIDS.
394
   *
395
   * Ideally we'd only create this structure if we were actually doing hot
396
   * standby in the current run, but we don't know that yet at the time
397
   * shared memory is being set up.
398
   */
399
0
#define TOTAL_MAX_CACHED_SUBXIDS \
400
0
  ((PGPROC_MAX_CACHED_SUBXIDS + 1) * PROCARRAY_MAXPROCS)
401
402
0
  if (EnableHotStandby)
403
0
  {
404
0
    size = add_size(size,
405
0
            mul_size(sizeof(TransactionId),
406
0
                 TOTAL_MAX_CACHED_SUBXIDS));
407
0
    size = add_size(size,
408
0
            mul_size(sizeof(bool), TOTAL_MAX_CACHED_SUBXIDS));
409
0
  }
410
411
0
  return size;
412
0
}
413
414
/*
415
 * Initialize the shared PGPROC array during postmaster startup.
416
 */
417
void
418
ProcArrayShmemInit(void)
419
0
{
420
0
  bool    found;
421
422
  /* Create or attach to the ProcArray shared structure */
423
0
  procArray = (ProcArrayStruct *)
424
0
    ShmemInitStruct("Proc Array",
425
0
            add_size(offsetof(ProcArrayStruct, pgprocnos),
426
0
                 mul_size(sizeof(int),
427
0
                      PROCARRAY_MAXPROCS)),
428
0
            &found);
429
430
0
  if (!found)
431
0
  {
432
    /*
433
     * We're the first - initialize.
434
     */
435
0
    procArray->numProcs = 0;
436
0
    procArray->maxProcs = PROCARRAY_MAXPROCS;
437
0
    procArray->maxKnownAssignedXids = TOTAL_MAX_CACHED_SUBXIDS;
438
0
    procArray->numKnownAssignedXids = 0;
439
0
    procArray->tailKnownAssignedXids = 0;
440
0
    procArray->headKnownAssignedXids = 0;
441
0
    procArray->lastOverflowedXid = InvalidTransactionId;
442
0
    procArray->replication_slot_xmin = InvalidTransactionId;
443
0
    procArray->replication_slot_catalog_xmin = InvalidTransactionId;
444
0
    TransamVariables->xactCompletionCount = 1;
445
0
  }
446
447
0
  allProcs = ProcGlobal->allProcs;
448
449
  /* Create or attach to the KnownAssignedXids arrays too, if needed */
450
0
  if (EnableHotStandby)
451
0
  {
452
0
    KnownAssignedXids = (TransactionId *)
453
0
      ShmemInitStruct("KnownAssignedXids",
454
0
              mul_size(sizeof(TransactionId),
455
0
                   TOTAL_MAX_CACHED_SUBXIDS),
456
0
              &found);
457
0
    KnownAssignedXidsValid = (bool *)
458
0
      ShmemInitStruct("KnownAssignedXidsValid",
459
0
              mul_size(sizeof(bool), TOTAL_MAX_CACHED_SUBXIDS),
460
0
              &found);
461
0
  }
462
0
}
463
464
/*
465
 * Add the specified PGPROC to the shared array.
466
 */
467
void
468
ProcArrayAdd(PGPROC *proc)
469
0
{
470
0
  int     pgprocno = GetNumberFromPGProc(proc);
471
0
  ProcArrayStruct *arrayP = procArray;
472
0
  int     index;
473
0
  int     movecount;
474
475
  /* See ProcGlobal comment explaining why both locks are held */
476
0
  LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
477
0
  LWLockAcquire(XidGenLock, LW_EXCLUSIVE);
478
479
0
  if (arrayP->numProcs >= arrayP->maxProcs)
480
0
  {
481
    /*
482
     * Oops, no room.  (This really shouldn't happen, since there is a
483
     * fixed supply of PGPROC structs too, and so we should have failed
484
     * earlier.)
485
     */
486
0
    ereport(FATAL,
487
0
        (errcode(ERRCODE_TOO_MANY_CONNECTIONS),
488
0
         errmsg("sorry, too many clients already")));
489
0
  }
490
491
  /*
492
   * Keep the procs array sorted by (PGPROC *) so that we can utilize
493
   * locality of references much better. This is useful while traversing the
494
   * ProcArray because there is an increased likelihood of finding the next
495
   * PGPROC structure in the cache.
496
   *
497
   * Since the occurrence of adding/removing a proc is much lower than the
498
   * access to the ProcArray itself, the overhead should be marginal
499
   */
500
0
  for (index = 0; index < arrayP->numProcs; index++)
501
0
  {
502
0
    int     this_procno = arrayP->pgprocnos[index];
503
504
0
    Assert(this_procno >= 0 && this_procno < (arrayP->maxProcs + NUM_AUXILIARY_PROCS));
505
0
    Assert(allProcs[this_procno].pgxactoff == index);
506
507
    /* If we have found our right position in the array, break */
508
0
    if (this_procno > pgprocno)
509
0
      break;
510
0
  }
511
512
0
  movecount = arrayP->numProcs - index;
513
0
  memmove(&arrayP->pgprocnos[index + 1],
514
0
      &arrayP->pgprocnos[index],
515
0
      movecount * sizeof(*arrayP->pgprocnos));
516
0
  memmove(&ProcGlobal->xids[index + 1],
517
0
      &ProcGlobal->xids[index],
518
0
      movecount * sizeof(*ProcGlobal->xids));
519
0
  memmove(&ProcGlobal->subxidStates[index + 1],
520
0
      &ProcGlobal->subxidStates[index],
521
0
      movecount * sizeof(*ProcGlobal->subxidStates));
522
0
  memmove(&ProcGlobal->statusFlags[index + 1],
523
0
      &ProcGlobal->statusFlags[index],
524
0
      movecount * sizeof(*ProcGlobal->statusFlags));
525
526
0
  arrayP->pgprocnos[index] = GetNumberFromPGProc(proc);
527
0
  proc->pgxactoff = index;
528
0
  ProcGlobal->xids[index] = proc->xid;
529
0
  ProcGlobal->subxidStates[index] = proc->subxidStatus;
530
0
  ProcGlobal->statusFlags[index] = proc->statusFlags;
531
532
0
  arrayP->numProcs++;
533
534
  /* adjust pgxactoff for all following PGPROCs */
535
0
  index++;
536
0
  for (; index < arrayP->numProcs; index++)
537
0
  {
538
0
    int     procno = arrayP->pgprocnos[index];
539
540
0
    Assert(procno >= 0 && procno < (arrayP->maxProcs + NUM_AUXILIARY_PROCS));
541
0
    Assert(allProcs[procno].pgxactoff == index - 1);
542
543
0
    allProcs[procno].pgxactoff = index;
544
0
  }
545
546
  /*
547
   * Release in reversed acquisition order, to reduce frequency of having to
548
   * wait for XidGenLock while holding ProcArrayLock.
549
   */
550
0
  LWLockRelease(XidGenLock);
551
0
  LWLockRelease(ProcArrayLock);
552
0
}
553
554
/*
555
 * Remove the specified PGPROC from the shared array.
556
 *
557
 * When latestXid is a valid XID, we are removing a live 2PC gxact from the
558
 * array, and thus causing it to appear as "not running" anymore.  In this
559
 * case we must advance latestCompletedXid.  (This is essentially the same
560
 * as ProcArrayEndTransaction followed by removal of the PGPROC, but we take
561
 * the ProcArrayLock only once, and don't damage the content of the PGPROC;
562
 * twophase.c depends on the latter.)
563
 */
564
void
565
ProcArrayRemove(PGPROC *proc, TransactionId latestXid)
566
0
{
567
0
  ProcArrayStruct *arrayP = procArray;
568
0
  int     myoff;
569
0
  int     movecount;
570
571
#ifdef XIDCACHE_DEBUG
572
  /* dump stats at backend shutdown, but not prepared-xact end */
573
  if (proc->pid != 0)
574
    DisplayXidCache();
575
#endif
576
577
  /* See ProcGlobal comment explaining why both locks are held */
578
0
  LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
579
0
  LWLockAcquire(XidGenLock, LW_EXCLUSIVE);
580
581
0
  myoff = proc->pgxactoff;
582
583
0
  Assert(myoff >= 0 && myoff < arrayP->numProcs);
584
0
  Assert(ProcGlobal->allProcs[arrayP->pgprocnos[myoff]].pgxactoff == myoff);
585
586
0
  if (TransactionIdIsValid(latestXid))
587
0
  {
588
0
    Assert(TransactionIdIsValid(ProcGlobal->xids[myoff]));
589
590
    /* Advance global latestCompletedXid while holding the lock */
591
0
    MaintainLatestCompletedXid(latestXid);
592
593
    /* Same with xactCompletionCount  */
594
0
    TransamVariables->xactCompletionCount++;
595
596
0
    ProcGlobal->xids[myoff] = InvalidTransactionId;
597
0
    ProcGlobal->subxidStates[myoff].overflowed = false;
598
0
    ProcGlobal->subxidStates[myoff].count = 0;
599
0
  }
600
0
  else
601
0
  {
602
    /* Shouldn't be trying to remove a live transaction here */
603
0
    Assert(!TransactionIdIsValid(ProcGlobal->xids[myoff]));
604
0
  }
605
606
0
  Assert(!TransactionIdIsValid(ProcGlobal->xids[myoff]));
607
0
  Assert(ProcGlobal->subxidStates[myoff].count == 0);
608
0
  Assert(ProcGlobal->subxidStates[myoff].overflowed == false);
609
610
0
  ProcGlobal->statusFlags[myoff] = 0;
611
612
  /* Keep the PGPROC array sorted. See notes above */
613
0
  movecount = arrayP->numProcs - myoff - 1;
614
0
  memmove(&arrayP->pgprocnos[myoff],
615
0
      &arrayP->pgprocnos[myoff + 1],
616
0
      movecount * sizeof(*arrayP->pgprocnos));
617
0
  memmove(&ProcGlobal->xids[myoff],
618
0
      &ProcGlobal->xids[myoff + 1],
619
0
      movecount * sizeof(*ProcGlobal->xids));
620
0
  memmove(&ProcGlobal->subxidStates[myoff],
621
0
      &ProcGlobal->subxidStates[myoff + 1],
622
0
      movecount * sizeof(*ProcGlobal->subxidStates));
623
0
  memmove(&ProcGlobal->statusFlags[myoff],
624
0
      &ProcGlobal->statusFlags[myoff + 1],
625
0
      movecount * sizeof(*ProcGlobal->statusFlags));
626
627
0
  arrayP->pgprocnos[arrayP->numProcs - 1] = -1; /* for debugging */
628
0
  arrayP->numProcs--;
629
630
  /*
631
   * Adjust pgxactoff of following procs for removed PGPROC (note that
632
   * numProcs already has been decremented).
633
   */
634
0
  for (int index = myoff; index < arrayP->numProcs; index++)
635
0
  {
636
0
    int     procno = arrayP->pgprocnos[index];
637
638
0
    Assert(procno >= 0 && procno < (arrayP->maxProcs + NUM_AUXILIARY_PROCS));
639
0
    Assert(allProcs[procno].pgxactoff - 1 == index);
640
641
0
    allProcs[procno].pgxactoff = index;
642
0
  }
643
644
  /*
645
   * Release in reversed acquisition order, to reduce frequency of having to
646
   * wait for XidGenLock while holding ProcArrayLock.
647
   */
648
0
  LWLockRelease(XidGenLock);
649
0
  LWLockRelease(ProcArrayLock);
650
0
}
651
652
653
/*
654
 * ProcArrayEndTransaction -- mark a transaction as no longer running
655
 *
656
 * This is used interchangeably for commit and abort cases.  The transaction
657
 * commit/abort must already be reported to WAL and pg_xact.
658
 *
659
 * proc is currently always MyProc, but we pass it explicitly for flexibility.
660
 * latestXid is the latest Xid among the transaction's main XID and
661
 * subtransactions, or InvalidTransactionId if it has no XID.  (We must ask
662
 * the caller to pass latestXid, instead of computing it from the PGPROC's
663
 * contents, because the subxid information in the PGPROC might be
664
 * incomplete.)
665
 */
666
void
667
ProcArrayEndTransaction(PGPROC *proc, TransactionId latestXid)
668
0
{
669
0
  if (TransactionIdIsValid(latestXid))
670
0
  {
671
    /*
672
     * We must lock ProcArrayLock while clearing our advertised XID, so
673
     * that we do not exit the set of "running" transactions while someone
674
     * else is taking a snapshot.  See discussion in
675
     * src/backend/access/transam/README.
676
     */
677
0
    Assert(TransactionIdIsValid(proc->xid));
678
679
    /*
680
     * If we can immediately acquire ProcArrayLock, we clear our own XID
681
     * and release the lock.  If not, use group XID clearing to improve
682
     * efficiency.
683
     */
684
0
    if (LWLockConditionalAcquire(ProcArrayLock, LW_EXCLUSIVE))
685
0
    {
686
0
      ProcArrayEndTransactionInternal(proc, latestXid);
687
0
      LWLockRelease(ProcArrayLock);
688
0
    }
689
0
    else
690
0
      ProcArrayGroupClearXid(proc, latestXid);
691
0
  }
692
0
  else
693
0
  {
694
    /*
695
     * If we have no XID, we don't need to lock, since we won't affect
696
     * anyone else's calculation of a snapshot.  We might change their
697
     * estimate of global xmin, but that's OK.
698
     */
699
0
    Assert(!TransactionIdIsValid(proc->xid));
700
0
    Assert(proc->subxidStatus.count == 0);
701
0
    Assert(!proc->subxidStatus.overflowed);
702
703
0
    proc->vxid.lxid = InvalidLocalTransactionId;
704
0
    proc->xmin = InvalidTransactionId;
705
706
    /* be sure this is cleared in abort */
707
0
    proc->delayChkptFlags = 0;
708
709
0
    proc->recoveryConflictPending = false;
710
711
    /* must be cleared with xid/xmin: */
712
    /* avoid unnecessarily dirtying shared cachelines */
713
0
    if (proc->statusFlags & PROC_VACUUM_STATE_MASK)
714
0
    {
715
0
      Assert(!LWLockHeldByMe(ProcArrayLock));
716
0
      LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
717
0
      Assert(proc->statusFlags == ProcGlobal->statusFlags[proc->pgxactoff]);
718
0
      proc->statusFlags &= ~PROC_VACUUM_STATE_MASK;
719
0
      ProcGlobal->statusFlags[proc->pgxactoff] = proc->statusFlags;
720
0
      LWLockRelease(ProcArrayLock);
721
0
    }
722
0
  }
723
0
}
724
725
/*
726
 * Mark a write transaction as no longer running.
727
 *
728
 * We don't do any locking here; caller must handle that.
729
 */
730
static inline void
731
ProcArrayEndTransactionInternal(PGPROC *proc, TransactionId latestXid)
732
0
{
733
0
  int     pgxactoff = proc->pgxactoff;
734
735
  /*
736
   * Note: we need exclusive lock here because we're going to change other
737
   * processes' PGPROC entries.
738
   */
739
0
  Assert(LWLockHeldByMeInMode(ProcArrayLock, LW_EXCLUSIVE));
740
0
  Assert(TransactionIdIsValid(ProcGlobal->xids[pgxactoff]));
741
0
  Assert(ProcGlobal->xids[pgxactoff] == proc->xid);
742
743
0
  ProcGlobal->xids[pgxactoff] = InvalidTransactionId;
744
0
  proc->xid = InvalidTransactionId;
745
0
  proc->vxid.lxid = InvalidLocalTransactionId;
746
0
  proc->xmin = InvalidTransactionId;
747
748
  /* be sure this is cleared in abort */
749
0
  proc->delayChkptFlags = 0;
750
751
0
  proc->recoveryConflictPending = false;
752
753
  /* must be cleared with xid/xmin: */
754
  /* avoid unnecessarily dirtying shared cachelines */
755
0
  if (proc->statusFlags & PROC_VACUUM_STATE_MASK)
756
0
  {
757
0
    proc->statusFlags &= ~PROC_VACUUM_STATE_MASK;
758
0
    ProcGlobal->statusFlags[proc->pgxactoff] = proc->statusFlags;
759
0
  }
760
761
  /* Clear the subtransaction-XID cache too while holding the lock */
762
0
  Assert(ProcGlobal->subxidStates[pgxactoff].count == proc->subxidStatus.count &&
763
0
       ProcGlobal->subxidStates[pgxactoff].overflowed == proc->subxidStatus.overflowed);
764
0
  if (proc->subxidStatus.count > 0 || proc->subxidStatus.overflowed)
765
0
  {
766
0
    ProcGlobal->subxidStates[pgxactoff].count = 0;
767
0
    ProcGlobal->subxidStates[pgxactoff].overflowed = false;
768
0
    proc->subxidStatus.count = 0;
769
0
    proc->subxidStatus.overflowed = false;
770
0
  }
771
772
  /* Also advance global latestCompletedXid while holding the lock */
773
0
  MaintainLatestCompletedXid(latestXid);
774
775
  /* Same with xactCompletionCount  */
776
0
  TransamVariables->xactCompletionCount++;
777
0
}
778
779
/*
780
 * ProcArrayGroupClearXid -- group XID clearing
781
 *
782
 * When we cannot immediately acquire ProcArrayLock in exclusive mode at
783
 * commit time, add ourselves to a list of processes that need their XIDs
784
 * cleared.  The first process to add itself to the list will acquire
785
 * ProcArrayLock in exclusive mode and perform ProcArrayEndTransactionInternal
786
 * on behalf of all group members.  This avoids a great deal of contention
787
 * around ProcArrayLock when many processes are trying to commit at once,
788
 * since the lock need not be repeatedly handed off from one committing
789
 * process to the next.
790
 */
791
static void
792
ProcArrayGroupClearXid(PGPROC *proc, TransactionId latestXid)
793
0
{
794
0
  int     pgprocno = GetNumberFromPGProc(proc);
795
0
  PROC_HDR   *procglobal = ProcGlobal;
796
0
  uint32    nextidx;
797
0
  uint32    wakeidx;
798
799
  /* We should definitely have an XID to clear. */
800
0
  Assert(TransactionIdIsValid(proc->xid));
801
802
  /* Add ourselves to the list of processes needing a group XID clear. */
803
0
  proc->procArrayGroupMember = true;
804
0
  proc->procArrayGroupMemberXid = latestXid;
805
0
  nextidx = pg_atomic_read_u32(&procglobal->procArrayGroupFirst);
806
0
  while (true)
807
0
  {
808
0
    pg_atomic_write_u32(&proc->procArrayGroupNext, nextidx);
809
810
0
    if (pg_atomic_compare_exchange_u32(&procglobal->procArrayGroupFirst,
811
0
                       &nextidx,
812
0
                       (uint32) pgprocno))
813
0
      break;
814
0
  }
815
816
  /*
817
   * If the list was not empty, the leader will clear our XID.  It is
818
   * impossible to have followers without a leader because the first process
819
   * that has added itself to the list will always have nextidx as
820
   * INVALID_PROC_NUMBER.
821
   */
822
0
  if (nextidx != INVALID_PROC_NUMBER)
823
0
  {
824
0
    int     extraWaits = 0;
825
826
    /* Sleep until the leader clears our XID. */
827
0
    pgstat_report_wait_start(WAIT_EVENT_PROCARRAY_GROUP_UPDATE);
828
0
    for (;;)
829
0
    {
830
      /* acts as a read barrier */
831
0
      PGSemaphoreLock(proc->sem);
832
0
      if (!proc->procArrayGroupMember)
833
0
        break;
834
0
      extraWaits++;
835
0
    }
836
0
    pgstat_report_wait_end();
837
838
0
    Assert(pg_atomic_read_u32(&proc->procArrayGroupNext) == INVALID_PROC_NUMBER);
839
840
    /* Fix semaphore count for any absorbed wakeups */
841
0
    while (extraWaits-- > 0)
842
0
      PGSemaphoreUnlock(proc->sem);
843
0
    return;
844
0
  }
845
846
  /* We are the leader.  Acquire the lock on behalf of everyone. */
847
0
  LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
848
849
  /*
850
   * Now that we've got the lock, clear the list of processes waiting for
851
   * group XID clearing, saving a pointer to the head of the list.  Trying
852
   * to pop elements one at a time could lead to an ABA problem.
853
   */
854
0
  nextidx = pg_atomic_exchange_u32(&procglobal->procArrayGroupFirst,
855
0
                   INVALID_PROC_NUMBER);
856
857
  /* Remember head of list so we can perform wakeups after dropping lock. */
858
0
  wakeidx = nextidx;
859
860
  /* Walk the list and clear all XIDs. */
861
0
  while (nextidx != INVALID_PROC_NUMBER)
862
0
  {
863
0
    PGPROC     *nextproc = &allProcs[nextidx];
864
865
0
    ProcArrayEndTransactionInternal(nextproc, nextproc->procArrayGroupMemberXid);
866
867
    /* Move to next proc in list. */
868
0
    nextidx = pg_atomic_read_u32(&nextproc->procArrayGroupNext);
869
0
  }
870
871
  /* We're done with the lock now. */
872
0
  LWLockRelease(ProcArrayLock);
873
874
  /*
875
   * Now that we've released the lock, go back and wake everybody up.  We
876
   * don't do this under the lock so as to keep lock hold times to a
877
   * minimum.  The system calls we need to perform to wake other processes
878
   * up are probably much slower than the simple memory writes we did while
879
   * holding the lock.
880
   */
881
0
  while (wakeidx != INVALID_PROC_NUMBER)
882
0
  {
883
0
    PGPROC     *nextproc = &allProcs[wakeidx];
884
885
0
    wakeidx = pg_atomic_read_u32(&nextproc->procArrayGroupNext);
886
0
    pg_atomic_write_u32(&nextproc->procArrayGroupNext, INVALID_PROC_NUMBER);
887
888
    /* ensure all previous writes are visible before follower continues. */
889
0
    pg_write_barrier();
890
891
0
    nextproc->procArrayGroupMember = false;
892
893
0
    if (nextproc != MyProc)
894
0
      PGSemaphoreUnlock(nextproc->sem);
895
0
  }
896
0
}
897
898
/*
899
 * ProcArrayClearTransaction -- clear the transaction fields
900
 *
901
 * This is used after successfully preparing a 2-phase transaction.  We are
902
 * not actually reporting the transaction's XID as no longer running --- it
903
 * will still appear as running because the 2PC's gxact is in the ProcArray
904
 * too.  We just have to clear out our own PGPROC.
905
 */
906
void
907
ProcArrayClearTransaction(PGPROC *proc)
908
0
{
909
0
  int     pgxactoff;
910
911
  /*
912
   * Currently we need to lock ProcArrayLock exclusively here, as we
913
   * increment xactCompletionCount below. We also need it at least in shared
914
   * mode for pgproc->pgxactoff to stay the same below.
915
   *
916
   * We could however, as this action does not actually change anyone's view
917
   * of the set of running XIDs (our entry is duplicate with the gxact that
918
   * has already been inserted into the ProcArray), lower the lock level to
919
   * shared if we were to make xactCompletionCount an atomic variable. But
920
   * that doesn't seem worth it currently, as a 2PC commit is heavyweight
921
   * enough for this not to be the bottleneck.  If it ever becomes a
922
   * bottleneck it may also be worth considering to combine this with the
923
   * subsequent ProcArrayRemove()
924
   */
925
0
  LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
926
927
0
  pgxactoff = proc->pgxactoff;
928
929
0
  ProcGlobal->xids[pgxactoff] = InvalidTransactionId;
930
0
  proc->xid = InvalidTransactionId;
931
932
0
  proc->vxid.lxid = InvalidLocalTransactionId;
933
0
  proc->xmin = InvalidTransactionId;
934
0
  proc->recoveryConflictPending = false;
935
936
0
  Assert(!(proc->statusFlags & PROC_VACUUM_STATE_MASK));
937
0
  Assert(!proc->delayChkptFlags);
938
939
  /*
940
   * Need to increment completion count even though transaction hasn't
941
   * really committed yet. The reason for that is that GetSnapshotData()
942
   * omits the xid of the current transaction, thus without the increment we
943
   * otherwise could end up reusing the snapshot later. Which would be bad,
944
   * because it might not count the prepared transaction as running.
945
   */
946
0
  TransamVariables->xactCompletionCount++;
947
948
  /* Clear the subtransaction-XID cache too */
949
0
  Assert(ProcGlobal->subxidStates[pgxactoff].count == proc->subxidStatus.count &&
950
0
       ProcGlobal->subxidStates[pgxactoff].overflowed == proc->subxidStatus.overflowed);
951
0
  if (proc->subxidStatus.count > 0 || proc->subxidStatus.overflowed)
952
0
  {
953
0
    ProcGlobal->subxidStates[pgxactoff].count = 0;
954
0
    ProcGlobal->subxidStates[pgxactoff].overflowed = false;
955
0
    proc->subxidStatus.count = 0;
956
0
    proc->subxidStatus.overflowed = false;
957
0
  }
958
959
0
  LWLockRelease(ProcArrayLock);
960
0
}
961
962
/*
963
 * Update TransamVariables->latestCompletedXid to point to latestXid if
964
 * currently older.
965
 */
966
static void
967
MaintainLatestCompletedXid(TransactionId latestXid)
968
0
{
969
0
  FullTransactionId cur_latest = TransamVariables->latestCompletedXid;
970
971
0
  Assert(FullTransactionIdIsValid(cur_latest));
972
0
  Assert(!RecoveryInProgress());
973
0
  Assert(LWLockHeldByMe(ProcArrayLock));
974
975
0
  if (TransactionIdPrecedes(XidFromFullTransactionId(cur_latest), latestXid))
976
0
  {
977
0
    TransamVariables->latestCompletedXid =
978
0
      FullXidRelativeTo(cur_latest, latestXid);
979
0
  }
980
981
0
  Assert(IsBootstrapProcessingMode() ||
982
0
       FullTransactionIdIsNormal(TransamVariables->latestCompletedXid));
983
0
}
984
985
/*
986
 * Same as MaintainLatestCompletedXid, except for use during WAL replay.
987
 */
988
static void
989
MaintainLatestCompletedXidRecovery(TransactionId latestXid)
990
0
{
991
0
  FullTransactionId cur_latest = TransamVariables->latestCompletedXid;
992
0
  FullTransactionId rel;
993
994
0
  Assert(AmStartupProcess() || !IsUnderPostmaster);
995
0
  Assert(LWLockHeldByMe(ProcArrayLock));
996
997
  /*
998
   * Need a FullTransactionId to compare latestXid with. Can't rely on
999
   * latestCompletedXid to be initialized in recovery. But in recovery it's
1000
   * safe to access nextXid without a lock for the startup process.
1001
   */
1002
0
  rel = TransamVariables->nextXid;
1003
0
  Assert(FullTransactionIdIsValid(TransamVariables->nextXid));
1004
1005
0
  if (!FullTransactionIdIsValid(cur_latest) ||
1006
0
    TransactionIdPrecedes(XidFromFullTransactionId(cur_latest), latestXid))
1007
0
  {
1008
0
    TransamVariables->latestCompletedXid =
1009
0
      FullXidRelativeTo(rel, latestXid);
1010
0
  }
1011
1012
0
  Assert(FullTransactionIdIsNormal(TransamVariables->latestCompletedXid));
1013
0
}
1014
1015
/*
1016
 * ProcArrayInitRecovery -- initialize recovery xid mgmt environment
1017
 *
1018
 * Remember up to where the startup process initialized the CLOG and subtrans
1019
 * so we can ensure it's initialized gaplessly up to the point where necessary
1020
 * while in recovery.
1021
 */
1022
void
1023
ProcArrayInitRecovery(TransactionId initializedUptoXID)
1024
0
{
1025
0
  Assert(standbyState == STANDBY_INITIALIZED);
1026
0
  Assert(TransactionIdIsNormal(initializedUptoXID));
1027
1028
  /*
1029
   * we set latestObservedXid to the xid SUBTRANS has been initialized up
1030
   * to, so we can extend it from that point onwards in
1031
   * RecordKnownAssignedTransactionIds, and when we get consistent in
1032
   * ProcArrayApplyRecoveryInfo().
1033
   */
1034
0
  latestObservedXid = initializedUptoXID;
1035
0
  TransactionIdRetreat(latestObservedXid);
1036
0
}
1037
1038
/*
1039
 * ProcArrayApplyRecoveryInfo -- apply recovery info about xids
1040
 *
1041
 * Takes us through 3 states: Initialized, Pending and Ready.
1042
 * Normal case is to go all the way to Ready straight away, though there
1043
 * are atypical cases where we need to take it in steps.
1044
 *
1045
 * Use the data about running transactions on the primary to create the initial
1046
 * state of KnownAssignedXids. We also use these records to regularly prune
1047
 * KnownAssignedXids because we know it is possible that some transactions
1048
 * with FATAL errors fail to write abort records, which could cause eventual
1049
 * overflow.
1050
 *
1051
 * See comments for LogStandbySnapshot().
1052
 */
1053
void
1054
ProcArrayApplyRecoveryInfo(RunningTransactions running)
1055
{
1056
  TransactionId *xids;
1057
  TransactionId advanceNextXid;
1058
  int     nxids;
1059
  int     i;
1060
1061
  Assert(standbyState >= STANDBY_INITIALIZED);
1062
  Assert(TransactionIdIsValid(running->nextXid));
1063
  Assert(TransactionIdIsValid(running->oldestRunningXid));
1064
  Assert(TransactionIdIsNormal(running->latestCompletedXid));
1065
1066
  /*
1067
   * Remove stale transactions, if any.
1068
   */
1069
  ExpireOldKnownAssignedTransactionIds(running->oldestRunningXid);
1070
1071
  /*
1072
   * Adjust TransamVariables->nextXid before StandbyReleaseOldLocks(),
1073
   * because we will need it up to date for accessing two-phase transactions
1074
   * in StandbyReleaseOldLocks().
1075
   */
1076
  advanceNextXid = running->nextXid;
1077
  TransactionIdRetreat(advanceNextXid);
1078
  AdvanceNextFullTransactionIdPastXid(advanceNextXid);
1079
  Assert(FullTransactionIdIsValid(TransamVariables->nextXid));
1080
1081
  /*
1082
   * Remove stale locks, if any.
1083
   */
1084
  StandbyReleaseOldLocks(running->oldestRunningXid);
1085
1086
  /*
1087
   * If our snapshot is already valid, nothing else to do...
1088
   */
1089
  if (standbyState == STANDBY_SNAPSHOT_READY)
1090
    return;
1091
1092
  /*
1093
   * If our initial RunningTransactionsData had an overflowed snapshot then
1094
   * we knew we were missing some subxids from our snapshot. If we continue
1095
   * to see overflowed snapshots then we might never be able to start up, so
1096
   * we make another test to see if our snapshot is now valid. We know that
1097
   * the missing subxids are equal to or earlier than nextXid. After we
1098
   * initialise we continue to apply changes during recovery, so once the
1099
   * oldestRunningXid is later than the nextXid from the initial snapshot we
1100
   * know that we no longer have missing information and can mark the
1101
   * snapshot as valid.
1102
   */
1103
  if (standbyState == STANDBY_SNAPSHOT_PENDING)
1104
  {
1105
    /*
1106
     * If the snapshot isn't overflowed or if its empty we can reset our
1107
     * pending state and use this snapshot instead.
1108
     */
1109
    if (running->subxid_status != SUBXIDS_MISSING || running->xcnt == 0)
1110
    {
1111
      /*
1112
       * If we have already collected known assigned xids, we need to
1113
       * throw them away before we apply the recovery snapshot.
1114
       */
1115
      KnownAssignedXidsReset();
1116
      standbyState = STANDBY_INITIALIZED;
1117
    }
1118
    else
1119
    {
1120
      if (TransactionIdPrecedes(standbySnapshotPendingXmin,
1121
                    running->oldestRunningXid))
1122
      {
1123
        standbyState = STANDBY_SNAPSHOT_READY;
1124
        elog(DEBUG1,
1125
           "recovery snapshots are now enabled");
1126
      }
1127
      else
1128
        elog(DEBUG1,
1129
           "recovery snapshot waiting for non-overflowed snapshot or "
1130
           "until oldest active xid on standby is at least %u (now %u)",
1131
           standbySnapshotPendingXmin,
1132
           running->oldestRunningXid);
1133
      return;
1134
    }
1135
  }
1136
1137
  Assert(standbyState == STANDBY_INITIALIZED);
1138
1139
  /*
1140
   * NB: this can be reached at least twice, so make sure new code can deal
1141
   * with that.
1142
   */
1143
1144
  /*
1145
   * Nobody else is running yet, but take locks anyhow
1146
   */
1147
  LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
1148
1149
  /*
1150
   * KnownAssignedXids is sorted so we cannot just add the xids, we have to
1151
   * sort them first.
1152
   *
1153
   * Some of the new xids are top-level xids and some are subtransactions.
1154
   * We don't call SubTransSetParent because it doesn't matter yet. If we
1155
   * aren't overflowed then all xids will fit in snapshot and so we don't
1156
   * need subtrans. If we later overflow, an xid assignment record will add
1157
   * xids to subtrans. If RunningTransactionsData is overflowed then we
1158
   * don't have enough information to correctly update subtrans anyway.
1159
   */
1160
1161
  /*
1162
   * Allocate a temporary array to avoid modifying the array passed as
1163
   * argument.
1164
   */
1165
  xids = palloc(sizeof(TransactionId) * (running->xcnt + running->subxcnt));
1166
1167
  /*
1168
   * Add to the temp array any xids which have not already completed.
1169
   */
1170
  nxids = 0;
1171
  for (i = 0; i < running->xcnt + running->subxcnt; i++)
1172
  {
1173
    TransactionId xid = running->xids[i];
1174
1175
    /*
1176
     * The running-xacts snapshot can contain xids that were still visible
1177
     * in the procarray when the snapshot was taken, but were already
1178
     * WAL-logged as completed. They're not running anymore, so ignore
1179
     * them.
1180
     */
1181
    if (TransactionIdDidCommit(xid) || TransactionIdDidAbort(xid))
1182
      continue;
1183
1184
    xids[nxids++] = xid;
1185
  }
1186
1187
  if (nxids > 0)
1188
  {
1189
    if (procArray->numKnownAssignedXids != 0)
1190
    {
1191
      LWLockRelease(ProcArrayLock);
1192
      elog(ERROR, "KnownAssignedXids is not empty");
1193
    }
1194
1195
    /*
1196
     * Sort the array so that we can add them safely into
1197
     * KnownAssignedXids.
1198
     *
1199
     * We have to sort them logically, because in KnownAssignedXidsAdd we
1200
     * call TransactionIdFollowsOrEquals and so on. But we know these XIDs
1201
     * come from RUNNING_XACTS, which means there are only normal XIDs
1202
     * from the same epoch, so this is safe.
1203
     */
1204
    qsort(xids, nxids, sizeof(TransactionId), xidLogicalComparator);
1205
1206
    /*
1207
     * Add the sorted snapshot into KnownAssignedXids.  The running-xacts
1208
     * snapshot may include duplicated xids because of prepared
1209
     * transactions, so ignore them.
1210
     */
1211
    for (i = 0; i < nxids; i++)
1212
    {
1213
      if (i > 0 && TransactionIdEquals(xids[i - 1], xids[i]))
1214
      {
1215
        elog(DEBUG1,
1216
           "found duplicated transaction %u for KnownAssignedXids insertion",
1217
           xids[i]);
1218
        continue;
1219
      }
1220
      KnownAssignedXidsAdd(xids[i], xids[i], true);
1221
    }
1222
1223
    KnownAssignedXidsDisplay(DEBUG3);
1224
  }
1225
1226
  pfree(xids);
1227
1228
  /*
1229
   * latestObservedXid is at least set to the point where SUBTRANS was
1230
   * started up to (cf. ProcArrayInitRecovery()) or to the biggest xid
1231
   * RecordKnownAssignedTransactionIds() was called for.  Initialize
1232
   * subtrans from thereon, up to nextXid - 1.
1233
   *
1234
   * We need to duplicate parts of RecordKnownAssignedTransactionId() here,
1235
   * because we've just added xids to the known assigned xids machinery that
1236
   * haven't gone through RecordKnownAssignedTransactionId().
1237
   */
1238
  Assert(TransactionIdIsNormal(latestObservedXid));
1239
  TransactionIdAdvance(latestObservedXid);
1240
  while (TransactionIdPrecedes(latestObservedXid, running->nextXid))
1241
  {
1242
    ExtendSUBTRANS(latestObservedXid);
1243
    TransactionIdAdvance(latestObservedXid);
1244
  }
1245
  TransactionIdRetreat(latestObservedXid);  /* = running->nextXid - 1 */
1246
1247
  /* ----------
1248
   * Now we've got the running xids we need to set the global values that
1249
   * are used to track snapshots as they evolve further.
1250
   *
1251
   * - latestCompletedXid which will be the xmax for snapshots
1252
   * - lastOverflowedXid which shows whether snapshots overflow
1253
   * - nextXid
1254
   *
1255
   * If the snapshot overflowed, then we still initialise with what we know,
1256
   * but the recovery snapshot isn't fully valid yet because we know there
1257
   * are some subxids missing. We don't know the specific subxids that are
1258
   * missing, so conservatively assume the last one is latestObservedXid.
1259
   * ----------
1260
   */
1261
  if (running->subxid_status == SUBXIDS_MISSING)
1262
  {
1263
    standbyState = STANDBY_SNAPSHOT_PENDING;
1264
1265
    standbySnapshotPendingXmin = latestObservedXid;
1266
    procArray->lastOverflowedXid = latestObservedXid;
1267
  }
1268
  else
1269
  {
1270
    standbyState = STANDBY_SNAPSHOT_READY;
1271
1272
    standbySnapshotPendingXmin = InvalidTransactionId;
1273
1274
    /*
1275
     * If the 'xids' array didn't include all subtransactions, we have to
1276
     * mark any snapshots taken as overflowed.
1277
     */
1278
    if (running->subxid_status == SUBXIDS_IN_SUBTRANS)
1279
      procArray->lastOverflowedXid = latestObservedXid;
1280
    else
1281
    {
1282
      Assert(running->subxid_status == SUBXIDS_IN_ARRAY);
1283
      procArray->lastOverflowedXid = InvalidTransactionId;
1284
    }
1285
  }
1286
1287
  /*
1288
   * If a transaction wrote a commit record in the gap between taking and
1289
   * logging the snapshot then latestCompletedXid may already be higher than
1290
   * the value from the snapshot, so check before we use the incoming value.
1291
   * It also might not yet be set at all.
1292
   */
1293
  MaintainLatestCompletedXidRecovery(running->latestCompletedXid);
1294
1295
  /*
1296
   * NB: No need to increment TransamVariables->xactCompletionCount here,
1297
   * nobody can see it yet.
1298
   */
1299
1300
  LWLockRelease(ProcArrayLock);
1301
1302
  KnownAssignedXidsDisplay(DEBUG3);
1303
  if (standbyState == STANDBY_SNAPSHOT_READY)
1304
    elog(DEBUG1, "recovery snapshots are now enabled");
1305
  else
1306
    elog(DEBUG1,
1307
       "recovery snapshot waiting for non-overflowed snapshot or "
1308
       "until oldest active xid on standby is at least %u (now %u)",
1309
       standbySnapshotPendingXmin,
1310
       running->oldestRunningXid);
1311
}
1312
1313
/*
1314
 * ProcArrayApplyXidAssignment
1315
 *    Process an XLOG_XACT_ASSIGNMENT WAL record
1316
 */
1317
void
1318
ProcArrayApplyXidAssignment(TransactionId topxid,
1319
              int nsubxids, TransactionId *subxids)
1320
0
{
1321
0
  TransactionId max_xid;
1322
0
  int     i;
1323
1324
0
  Assert(standbyState >= STANDBY_INITIALIZED);
1325
1326
0
  max_xid = TransactionIdLatest(topxid, nsubxids, subxids);
1327
1328
  /*
1329
   * Mark all the subtransactions as observed.
1330
   *
1331
   * NOTE: This will fail if the subxid contains too many previously
1332
   * unobserved xids to fit into known-assigned-xids. That shouldn't happen
1333
   * as the code stands, because xid-assignment records should never contain
1334
   * more than PGPROC_MAX_CACHED_SUBXIDS entries.
1335
   */
1336
0
  RecordKnownAssignedTransactionIds(max_xid);
1337
1338
  /*
1339
   * Notice that we update pg_subtrans with the top-level xid, rather than
1340
   * the parent xid. This is a difference between normal processing and
1341
   * recovery, yet is still correct in all cases. The reason is that
1342
   * subtransaction commit is not marked in clog until commit processing, so
1343
   * all aborted subtransactions have already been clearly marked in clog.
1344
   * As a result we are able to refer directly to the top-level
1345
   * transaction's state rather than skipping through all the intermediate
1346
   * states in the subtransaction tree. This should be the first time we
1347
   * have attempted to SubTransSetParent().
1348
   */
1349
0
  for (i = 0; i < nsubxids; i++)
1350
0
    SubTransSetParent(subxids[i], topxid);
1351
1352
  /* KnownAssignedXids isn't maintained yet, so we're done for now */
1353
0
  if (standbyState == STANDBY_INITIALIZED)
1354
0
    return;
1355
1356
  /*
1357
   * Uses same locking as transaction commit
1358
   */
1359
0
  LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
1360
1361
  /*
1362
   * Remove subxids from known-assigned-xacts.
1363
   */
1364
0
  KnownAssignedXidsRemoveTree(InvalidTransactionId, nsubxids, subxids);
1365
1366
  /*
1367
   * Advance lastOverflowedXid to be at least the last of these subxids.
1368
   */
1369
0
  if (TransactionIdPrecedes(procArray->lastOverflowedXid, max_xid))
1370
0
    procArray->lastOverflowedXid = max_xid;
1371
1372
0
  LWLockRelease(ProcArrayLock);
1373
0
}
1374
1375
/*
1376
 * TransactionIdIsInProgress -- is given transaction running in some backend
1377
 *
1378
 * Aside from some shortcuts such as checking RecentXmin and our own Xid,
1379
 * there are four possibilities for finding a running transaction:
1380
 *
1381
 * 1. The given Xid is a main transaction Id.  We will find this out cheaply
1382
 * by looking at ProcGlobal->xids.
1383
 *
1384
 * 2. The given Xid is one of the cached subxact Xids in the PGPROC array.
1385
 * We can find this out cheaply too.
1386
 *
1387
 * 3. In Hot Standby mode, we must search the KnownAssignedXids list to see
1388
 * if the Xid is running on the primary.
1389
 *
1390
 * 4. Search the SubTrans tree to find the Xid's topmost parent, and then see
1391
 * if that is running according to ProcGlobal->xids[] or KnownAssignedXids.
1392
 * This is the slowest way, but sadly it has to be done always if the others
1393
 * failed, unless we see that the cached subxact sets are complete (none have
1394
 * overflowed).
1395
 *
1396
 * ProcArrayLock has to be held while we do 1, 2, 3.  If we save the top Xids
1397
 * while doing 1 and 3, we can release the ProcArrayLock while we do 4.
1398
 * This buys back some concurrency (and we can't retrieve the main Xids from
1399
 * ProcGlobal->xids[] again anyway; see GetNewTransactionId).
1400
 */
1401
bool
1402
TransactionIdIsInProgress(TransactionId xid)
1403
0
{
1404
0
  static TransactionId *xids = NULL;
1405
0
  static TransactionId *other_xids;
1406
0
  XidCacheStatus *other_subxidstates;
1407
0
  int     nxids = 0;
1408
0
  ProcArrayStruct *arrayP = procArray;
1409
0
  TransactionId topxid;
1410
0
  TransactionId latestCompletedXid;
1411
0
  int     mypgxactoff;
1412
0
  int     numProcs;
1413
0
  int     j;
1414
1415
  /*
1416
   * Don't bother checking a transaction older than RecentXmin; it could not
1417
   * possibly still be running.  (Note: in particular, this guarantees that
1418
   * we reject InvalidTransactionId, FrozenTransactionId, etc as not
1419
   * running.)
1420
   */
1421
0
  if (TransactionIdPrecedes(xid, RecentXmin))
1422
0
  {
1423
0
    xc_by_recent_xmin_inc();
1424
0
    return false;
1425
0
  }
1426
1427
  /*
1428
   * We may have just checked the status of this transaction, so if it is
1429
   * already known to be completed, we can fall out without any access to
1430
   * shared memory.
1431
   */
1432
0
  if (TransactionIdEquals(cachedXidIsNotInProgress, xid))
1433
0
  {
1434
0
    xc_by_known_xact_inc();
1435
0
    return false;
1436
0
  }
1437
1438
  /*
1439
   * Also, we can handle our own transaction (and subtransactions) without
1440
   * any access to shared memory.
1441
   */
1442
0
  if (TransactionIdIsCurrentTransactionId(xid))
1443
0
  {
1444
0
    xc_by_my_xact_inc();
1445
0
    return true;
1446
0
  }
1447
1448
  /*
1449
   * If first time through, get workspace to remember main XIDs in. We
1450
   * malloc it permanently to avoid repeated palloc/pfree overhead.
1451
   */
1452
0
  if (xids == NULL)
1453
0
  {
1454
    /*
1455
     * In hot standby mode, reserve enough space to hold all xids in the
1456
     * known-assigned list. If we later finish recovery, we no longer need
1457
     * the bigger array, but we don't bother to shrink it.
1458
     */
1459
0
    int     maxxids = RecoveryInProgress() ? TOTAL_MAX_CACHED_SUBXIDS : arrayP->maxProcs;
1460
1461
0
    xids = (TransactionId *) malloc(maxxids * sizeof(TransactionId));
1462
0
    if (xids == NULL)
1463
0
      ereport(ERROR,
1464
0
          (errcode(ERRCODE_OUT_OF_MEMORY),
1465
0
           errmsg("out of memory")));
1466
0
  }
1467
1468
0
  other_xids = ProcGlobal->xids;
1469
0
  other_subxidstates = ProcGlobal->subxidStates;
1470
1471
0
  LWLockAcquire(ProcArrayLock, LW_SHARED);
1472
1473
  /*
1474
   * Now that we have the lock, we can check latestCompletedXid; if the
1475
   * target Xid is after that, it's surely still running.
1476
   */
1477
0
  latestCompletedXid =
1478
0
    XidFromFullTransactionId(TransamVariables->latestCompletedXid);
1479
0
  if (TransactionIdPrecedes(latestCompletedXid, xid))
1480
0
  {
1481
0
    LWLockRelease(ProcArrayLock);
1482
0
    xc_by_latest_xid_inc();
1483
0
    return true;
1484
0
  }
1485
1486
  /* No shortcuts, gotta grovel through the array */
1487
0
  mypgxactoff = MyProc->pgxactoff;
1488
0
  numProcs = arrayP->numProcs;
1489
0
  for (int pgxactoff = 0; pgxactoff < numProcs; pgxactoff++)
1490
0
  {
1491
0
    int     pgprocno;
1492
0
    PGPROC     *proc;
1493
0
    TransactionId pxid;
1494
0
    int     pxids;
1495
1496
    /* Ignore ourselves --- dealt with it above */
1497
0
    if (pgxactoff == mypgxactoff)
1498
0
      continue;
1499
1500
    /* Fetch xid just once - see GetNewTransactionId */
1501
0
    pxid = UINT32_ACCESS_ONCE(other_xids[pgxactoff]);
1502
1503
0
    if (!TransactionIdIsValid(pxid))
1504
0
      continue;
1505
1506
    /*
1507
     * Step 1: check the main Xid
1508
     */
1509
0
    if (TransactionIdEquals(pxid, xid))
1510
0
    {
1511
0
      LWLockRelease(ProcArrayLock);
1512
0
      xc_by_main_xid_inc();
1513
0
      return true;
1514
0
    }
1515
1516
    /*
1517
     * We can ignore main Xids that are younger than the target Xid, since
1518
     * the target could not possibly be their child.
1519
     */
1520
0
    if (TransactionIdPrecedes(xid, pxid))
1521
0
      continue;
1522
1523
    /*
1524
     * Step 2: check the cached child-Xids arrays
1525
     */
1526
0
    pxids = other_subxidstates[pgxactoff].count;
1527
0
    pg_read_barrier();   /* pairs with barrier in GetNewTransactionId() */
1528
0
    pgprocno = arrayP->pgprocnos[pgxactoff];
1529
0
    proc = &allProcs[pgprocno];
1530
0
    for (j = pxids - 1; j >= 0; j--)
1531
0
    {
1532
      /* Fetch xid just once - see GetNewTransactionId */
1533
0
      TransactionId cxid = UINT32_ACCESS_ONCE(proc->subxids.xids[j]);
1534
1535
0
      if (TransactionIdEquals(cxid, xid))
1536
0
      {
1537
0
        LWLockRelease(ProcArrayLock);
1538
0
        xc_by_child_xid_inc();
1539
0
        return true;
1540
0
      }
1541
0
    }
1542
1543
    /*
1544
     * Save the main Xid for step 4.  We only need to remember main Xids
1545
     * that have uncached children.  (Note: there is no race condition
1546
     * here because the overflowed flag cannot be cleared, only set, while
1547
     * we hold ProcArrayLock.  So we can't miss an Xid that we need to
1548
     * worry about.)
1549
     */
1550
0
    if (other_subxidstates[pgxactoff].overflowed)
1551
0
      xids[nxids++] = pxid;
1552
0
  }
1553
1554
  /*
1555
   * Step 3: in hot standby mode, check the known-assigned-xids list.  XIDs
1556
   * in the list must be treated as running.
1557
   */
1558
0
  if (RecoveryInProgress())
1559
0
  {
1560
    /* none of the PGPROC entries should have XIDs in hot standby mode */
1561
0
    Assert(nxids == 0);
1562
1563
0
    if (KnownAssignedXidExists(xid))
1564
0
    {
1565
0
      LWLockRelease(ProcArrayLock);
1566
0
      xc_by_known_assigned_inc();
1567
0
      return true;
1568
0
    }
1569
1570
    /*
1571
     * If the KnownAssignedXids overflowed, we have to check pg_subtrans
1572
     * too.  Fetch all xids from KnownAssignedXids that are lower than
1573
     * xid, since if xid is a subtransaction its parent will always have a
1574
     * lower value.  Note we will collect both main and subXIDs here, but
1575
     * there's no help for it.
1576
     */
1577
0
    if (TransactionIdPrecedesOrEquals(xid, procArray->lastOverflowedXid))
1578
0
      nxids = KnownAssignedXidsGet(xids, xid);
1579
0
  }
1580
1581
0
  LWLockRelease(ProcArrayLock);
1582
1583
  /*
1584
   * If none of the relevant caches overflowed, we know the Xid is not
1585
   * running without even looking at pg_subtrans.
1586
   */
1587
0
  if (nxids == 0)
1588
0
  {
1589
0
    xc_no_overflow_inc();
1590
0
    cachedXidIsNotInProgress = xid;
1591
0
    return false;
1592
0
  }
1593
1594
  /*
1595
   * Step 4: have to check pg_subtrans.
1596
   *
1597
   * At this point, we know it's either a subtransaction of one of the Xids
1598
   * in xids[], or it's not running.  If it's an already-failed
1599
   * subtransaction, we want to say "not running" even though its parent may
1600
   * still be running.  So first, check pg_xact to see if it's been aborted.
1601
   */
1602
0
  xc_slow_answer_inc();
1603
1604
0
  if (TransactionIdDidAbort(xid))
1605
0
  {
1606
0
    cachedXidIsNotInProgress = xid;
1607
0
    return false;
1608
0
  }
1609
1610
  /*
1611
   * It isn't aborted, so check whether the transaction tree it belongs to
1612
   * is still running (or, more precisely, whether it was running when we
1613
   * held ProcArrayLock).
1614
   */
1615
0
  topxid = SubTransGetTopmostTransaction(xid);
1616
0
  Assert(TransactionIdIsValid(topxid));
1617
0
  if (!TransactionIdEquals(topxid, xid) &&
1618
0
    pg_lfind32(topxid, xids, nxids))
1619
0
    return true;
1620
1621
0
  cachedXidIsNotInProgress = xid;
1622
0
  return false;
1623
0
}
1624
1625
1626
/*
1627
 * Determine XID horizons.
1628
 *
1629
 * This is used by wrapper functions like GetOldestNonRemovableTransactionId()
1630
 * (for VACUUM), GetReplicationHorizons() (for hot_standby_feedback), etc as
1631
 * well as "internally" by GlobalVisUpdate() (see comment above struct
1632
 * GlobalVisState).
1633
 *
1634
 * See the definition of ComputeXidHorizonsResult for the various computed
1635
 * horizons.
1636
 *
1637
 * For VACUUM separate horizons (used to decide which deleted tuples must
1638
 * be preserved), for shared and non-shared tables are computed.  For shared
1639
 * relations backends in all databases must be considered, but for non-shared
1640
 * relations that's not required, since only backends in my own database could
1641
 * ever see the tuples in them. Also, we can ignore concurrently running lazy
1642
 * VACUUMs because (a) they must be working on other tables, and (b) they
1643
 * don't need to do snapshot-based lookups.
1644
 *
1645
 * This also computes a horizon used to truncate pg_subtrans. For that
1646
 * backends in all databases have to be considered, and concurrently running
1647
 * lazy VACUUMs cannot be ignored, as they still may perform pg_subtrans
1648
 * accesses.
1649
 *
1650
 * Note: we include all currently running xids in the set of considered xids.
1651
 * This ensures that if a just-started xact has not yet set its snapshot,
1652
 * when it does set the snapshot it cannot set xmin less than what we compute.
1653
 * See notes in src/backend/access/transam/README.
1654
 *
1655
 * Note: despite the above, it's possible for the calculated values to move
1656
 * backwards on repeated calls. The calculated values are conservative, so
1657
 * that anything older is definitely not considered as running by anyone
1658
 * anymore, but the exact values calculated depend on a number of things. For
1659
 * example, if there are no transactions running in the current database, the
1660
 * horizon for normal tables will be latestCompletedXid. If a transaction
1661
 * begins after that, its xmin will include in-progress transactions in other
1662
 * databases that started earlier, so another call will return a lower value.
1663
 * Nonetheless it is safe to vacuum a table in the current database with the
1664
 * first result.  There are also replication-related effects: a walsender
1665
 * process can set its xmin based on transactions that are no longer running
1666
 * on the primary but are still being replayed on the standby, thus possibly
1667
 * making the values go backwards.  In this case there is a possibility that
1668
 * we lose data that the standby would like to have, but unless the standby
1669
 * uses a replication slot to make its xmin persistent there is little we can
1670
 * do about that --- data is only protected if the walsender runs continuously
1671
 * while queries are executed on the standby.  (The Hot Standby code deals
1672
 * with such cases by failing standby queries that needed to access
1673
 * already-removed data, so there's no integrity bug.)
1674
 *
1675
 * Note: the approximate horizons (see definition of GlobalVisState) are
1676
 * updated by the computations done here. That's currently required for
1677
 * correctness and a small optimization. Without doing so it's possible that
1678
 * heap vacuum's call to heap_page_prune_and_freeze() uses a more conservative
1679
 * horizon than later when deciding which tuples can be removed - which the
1680
 * code doesn't expect (breaking HOT).
1681
 */
1682
static void
1683
ComputeXidHorizons(ComputeXidHorizonsResult *h)
1684
0
{
1685
0
  ProcArrayStruct *arrayP = procArray;
1686
0
  TransactionId kaxmin;
1687
0
  bool    in_recovery = RecoveryInProgress();
1688
0
  TransactionId *other_xids = ProcGlobal->xids;
1689
1690
  /* inferred after ProcArrayLock is released */
1691
0
  h->catalog_oldest_nonremovable = InvalidTransactionId;
1692
1693
0
  LWLockAcquire(ProcArrayLock, LW_SHARED);
1694
1695
0
  h->latest_completed = TransamVariables->latestCompletedXid;
1696
1697
  /*
1698
   * We initialize the MIN() calculation with latestCompletedXid + 1. This
1699
   * is a lower bound for the XIDs that might appear in the ProcArray later,
1700
   * and so protects us against overestimating the result due to future
1701
   * additions.
1702
   */
1703
0
  {
1704
0
    TransactionId initial;
1705
1706
0
    initial = XidFromFullTransactionId(h->latest_completed);
1707
0
    Assert(TransactionIdIsValid(initial));
1708
0
    TransactionIdAdvance(initial);
1709
1710
0
    h->oldest_considered_running = initial;
1711
0
    h->shared_oldest_nonremovable = initial;
1712
0
    h->data_oldest_nonremovable = initial;
1713
1714
    /*
1715
     * Only modifications made by this backend affect the horizon for
1716
     * temporary relations. Instead of a check in each iteration of the
1717
     * loop over all PGPROCs it is cheaper to just initialize to the
1718
     * current top-level xid any.
1719
     *
1720
     * Without an assigned xid we could use a horizon as aggressive as
1721
     * GetNewTransactionId(), but we can get away with the much cheaper
1722
     * latestCompletedXid + 1: If this backend has no xid there, by
1723
     * definition, can't be any newer changes in the temp table than
1724
     * latestCompletedXid.
1725
     */
1726
0
    if (TransactionIdIsValid(MyProc->xid))
1727
0
      h->temp_oldest_nonremovable = MyProc->xid;
1728
0
    else
1729
0
      h->temp_oldest_nonremovable = initial;
1730
0
  }
1731
1732
  /*
1733
   * Fetch slot horizons while ProcArrayLock is held - the
1734
   * LWLockAcquire/LWLockRelease are a barrier, ensuring this happens inside
1735
   * the lock.
1736
   */
1737
0
  h->slot_xmin = procArray->replication_slot_xmin;
1738
0
  h->slot_catalog_xmin = procArray->replication_slot_catalog_xmin;
1739
1740
0
  for (int index = 0; index < arrayP->numProcs; index++)
1741
0
  {
1742
0
    int     pgprocno = arrayP->pgprocnos[index];
1743
0
    PGPROC     *proc = &allProcs[pgprocno];
1744
0
    int8    statusFlags = ProcGlobal->statusFlags[index];
1745
0
    TransactionId xid;
1746
0
    TransactionId xmin;
1747
1748
    /* Fetch xid just once - see GetNewTransactionId */
1749
0
    xid = UINT32_ACCESS_ONCE(other_xids[index]);
1750
0
    xmin = UINT32_ACCESS_ONCE(proc->xmin);
1751
1752
    /*
1753
     * Consider both the transaction's Xmin, and its Xid.
1754
     *
1755
     * We must check both because a transaction might have an Xmin but not
1756
     * (yet) an Xid; conversely, if it has an Xid, that could determine
1757
     * some not-yet-set Xmin.
1758
     */
1759
0
    xmin = TransactionIdOlder(xmin, xid);
1760
1761
    /* if neither is set, this proc doesn't influence the horizon */
1762
0
    if (!TransactionIdIsValid(xmin))
1763
0
      continue;
1764
1765
    /*
1766
     * Don't ignore any procs when determining which transactions might be
1767
     * considered running.  While slots should ensure logical decoding
1768
     * backends are protected even without this check, it can't hurt to
1769
     * include them here as well..
1770
     */
1771
0
    h->oldest_considered_running =
1772
0
      TransactionIdOlder(h->oldest_considered_running, xmin);
1773
1774
    /*
1775
     * Skip over backends either vacuuming (which is ok with rows being
1776
     * removed, as long as pg_subtrans is not truncated) or doing logical
1777
     * decoding (which manages xmin separately, check below).
1778
     */
1779
0
    if (statusFlags & (PROC_IN_VACUUM | PROC_IN_LOGICAL_DECODING))
1780
0
      continue;
1781
1782
    /* shared tables need to take backends in all databases into account */
1783
0
    h->shared_oldest_nonremovable =
1784
0
      TransactionIdOlder(h->shared_oldest_nonremovable, xmin);
1785
1786
    /*
1787
     * Normally sessions in other databases are ignored for anything but
1788
     * the shared horizon.
1789
     *
1790
     * However, include them when MyDatabaseId is not (yet) set.  A
1791
     * backend in the process of starting up must not compute a "too
1792
     * aggressive" horizon, otherwise we could end up using it to prune
1793
     * still-needed data away.  If the current backend never connects to a
1794
     * database this is harmless, because data_oldest_nonremovable will
1795
     * never be utilized.
1796
     *
1797
     * Also, sessions marked with PROC_AFFECTS_ALL_HORIZONS should always
1798
     * be included.  (This flag is used for hot standby feedback, which
1799
     * can't be tied to a specific database.)
1800
     *
1801
     * Also, while in recovery we cannot compute an accurate per-database
1802
     * horizon, as all xids are managed via the KnownAssignedXids
1803
     * machinery.
1804
     */
1805
0
    if (proc->databaseId == MyDatabaseId ||
1806
0
      MyDatabaseId == InvalidOid ||
1807
0
      (statusFlags & PROC_AFFECTS_ALL_HORIZONS) ||
1808
0
      in_recovery)
1809
0
    {
1810
0
      h->data_oldest_nonremovable =
1811
0
        TransactionIdOlder(h->data_oldest_nonremovable, xmin);
1812
0
    }
1813
0
  }
1814
1815
  /*
1816
   * If in recovery fetch oldest xid in KnownAssignedXids, will be applied
1817
   * after lock is released.
1818
   */
1819
0
  if (in_recovery)
1820
0
    kaxmin = KnownAssignedXidsGetOldestXmin();
1821
1822
  /*
1823
   * No other information from shared state is needed, release the lock
1824
   * immediately. The rest of the computations can be done without a lock.
1825
   */
1826
0
  LWLockRelease(ProcArrayLock);
1827
1828
0
  if (in_recovery)
1829
0
  {
1830
0
    h->oldest_considered_running =
1831
0
      TransactionIdOlder(h->oldest_considered_running, kaxmin);
1832
0
    h->shared_oldest_nonremovable =
1833
0
      TransactionIdOlder(h->shared_oldest_nonremovable, kaxmin);
1834
0
    h->data_oldest_nonremovable =
1835
0
      TransactionIdOlder(h->data_oldest_nonremovable, kaxmin);
1836
    /* temp relations cannot be accessed in recovery */
1837
0
  }
1838
1839
0
  Assert(TransactionIdPrecedesOrEquals(h->oldest_considered_running,
1840
0
                     h->shared_oldest_nonremovable));
1841
0
  Assert(TransactionIdPrecedesOrEquals(h->shared_oldest_nonremovable,
1842
0
                     h->data_oldest_nonremovable));
1843
1844
  /*
1845
   * Check whether there are replication slots requiring an older xmin.
1846
   */
1847
0
  h->shared_oldest_nonremovable =
1848
0
    TransactionIdOlder(h->shared_oldest_nonremovable, h->slot_xmin);
1849
0
  h->data_oldest_nonremovable =
1850
0
    TransactionIdOlder(h->data_oldest_nonremovable, h->slot_xmin);
1851
1852
  /*
1853
   * The only difference between catalog / data horizons is that the slot's
1854
   * catalog xmin is applied to the catalog one (so catalogs can be accessed
1855
   * for logical decoding). Initialize with data horizon, and then back up
1856
   * further if necessary. Have to back up the shared horizon as well, since
1857
   * that also can contain catalogs.
1858
   */
1859
0
  h->shared_oldest_nonremovable_raw = h->shared_oldest_nonremovable;
1860
0
  h->shared_oldest_nonremovable =
1861
0
    TransactionIdOlder(h->shared_oldest_nonremovable,
1862
0
               h->slot_catalog_xmin);
1863
0
  h->catalog_oldest_nonremovable = h->data_oldest_nonremovable;
1864
0
  h->catalog_oldest_nonremovable =
1865
0
    TransactionIdOlder(h->catalog_oldest_nonremovable,
1866
0
               h->slot_catalog_xmin);
1867
1868
  /*
1869
   * It's possible that slots backed up the horizons further than
1870
   * oldest_considered_running. Fix.
1871
   */
1872
0
  h->oldest_considered_running =
1873
0
    TransactionIdOlder(h->oldest_considered_running,
1874
0
               h->shared_oldest_nonremovable);
1875
0
  h->oldest_considered_running =
1876
0
    TransactionIdOlder(h->oldest_considered_running,
1877
0
               h->catalog_oldest_nonremovable);
1878
0
  h->oldest_considered_running =
1879
0
    TransactionIdOlder(h->oldest_considered_running,
1880
0
               h->data_oldest_nonremovable);
1881
1882
  /*
1883
   * shared horizons have to be at least as old as the oldest visible in
1884
   * current db
1885
   */
1886
0
  Assert(TransactionIdPrecedesOrEquals(h->shared_oldest_nonremovable,
1887
0
                     h->data_oldest_nonremovable));
1888
0
  Assert(TransactionIdPrecedesOrEquals(h->shared_oldest_nonremovable,
1889
0
                     h->catalog_oldest_nonremovable));
1890
1891
  /*
1892
   * Horizons need to ensure that pg_subtrans access is still possible for
1893
   * the relevant backends.
1894
   */
1895
0
  Assert(TransactionIdPrecedesOrEquals(h->oldest_considered_running,
1896
0
                     h->shared_oldest_nonremovable));
1897
0
  Assert(TransactionIdPrecedesOrEquals(h->oldest_considered_running,
1898
0
                     h->catalog_oldest_nonremovable));
1899
0
  Assert(TransactionIdPrecedesOrEquals(h->oldest_considered_running,
1900
0
                     h->data_oldest_nonremovable));
1901
0
  Assert(TransactionIdPrecedesOrEquals(h->oldest_considered_running,
1902
0
                     h->temp_oldest_nonremovable));
1903
0
  Assert(!TransactionIdIsValid(h->slot_xmin) ||
1904
0
       TransactionIdPrecedesOrEquals(h->oldest_considered_running,
1905
0
                     h->slot_xmin));
1906
0
  Assert(!TransactionIdIsValid(h->slot_catalog_xmin) ||
1907
0
       TransactionIdPrecedesOrEquals(h->oldest_considered_running,
1908
0
                     h->slot_catalog_xmin));
1909
1910
  /* update approximate horizons with the computed horizons */
1911
0
  GlobalVisUpdateApply(h);
1912
0
}
1913
1914
/*
1915
 * Determine what kind of visibility horizon needs to be used for a
1916
 * relation. If rel is NULL, the most conservative horizon is used.
1917
 */
1918
static inline GlobalVisHorizonKind
1919
GlobalVisHorizonKindForRel(Relation rel)
1920
0
{
1921
  /*
1922
   * Other relkinds currently don't contain xids, nor always the necessary
1923
   * logical decoding markers.
1924
   */
1925
0
  Assert(!rel ||
1926
0
       rel->rd_rel->relkind == RELKIND_RELATION ||
1927
0
       rel->rd_rel->relkind == RELKIND_MATVIEW ||
1928
0
       rel->rd_rel->relkind == RELKIND_TOASTVALUE);
1929
1930
0
  if (rel == NULL || rel->rd_rel->relisshared || RecoveryInProgress())
1931
0
    return VISHORIZON_SHARED;
1932
0
  else if (IsCatalogRelation(rel) ||
1933
0
       RelationIsAccessibleInLogicalDecoding(rel))
1934
0
    return VISHORIZON_CATALOG;
1935
0
  else if (!RELATION_IS_LOCAL(rel))
1936
0
    return VISHORIZON_DATA;
1937
0
  else
1938
0
    return VISHORIZON_TEMP;
1939
0
}
1940
1941
/*
1942
 * Return the oldest XID for which deleted tuples must be preserved in the
1943
 * passed table.
1944
 *
1945
 * If rel is not NULL the horizon may be considerably more recent than
1946
 * otherwise (i.e. fewer tuples will be removable). In the NULL case a horizon
1947
 * that is correct (but not optimal) for all relations will be returned.
1948
 *
1949
 * This is used by VACUUM to decide which deleted tuples must be preserved in
1950
 * the passed in table.
1951
 */
1952
TransactionId
1953
GetOldestNonRemovableTransactionId(Relation rel)
1954
0
{
1955
0
  ComputeXidHorizonsResult horizons;
1956
1957
0
  ComputeXidHorizons(&horizons);
1958
1959
0
  switch (GlobalVisHorizonKindForRel(rel))
1960
0
  {
1961
0
    case VISHORIZON_SHARED:
1962
0
      return horizons.shared_oldest_nonremovable;
1963
0
    case VISHORIZON_CATALOG:
1964
0
      return horizons.catalog_oldest_nonremovable;
1965
0
    case VISHORIZON_DATA:
1966
0
      return horizons.data_oldest_nonremovable;
1967
0
    case VISHORIZON_TEMP:
1968
0
      return horizons.temp_oldest_nonremovable;
1969
0
  }
1970
1971
  /* just to prevent compiler warnings */
1972
0
  return InvalidTransactionId;
1973
0
}
1974
1975
/*
1976
 * Return the oldest transaction id any currently running backend might still
1977
 * consider running. This should not be used for visibility / pruning
1978
 * determinations (see GetOldestNonRemovableTransactionId()), but for
1979
 * decisions like up to where pg_subtrans can be truncated.
1980
 */
1981
TransactionId
1982
GetOldestTransactionIdConsideredRunning(void)
1983
0
{
1984
0
  ComputeXidHorizonsResult horizons;
1985
1986
0
  ComputeXidHorizons(&horizons);
1987
1988
0
  return horizons.oldest_considered_running;
1989
0
}
1990
1991
/*
1992
 * Return the visibility horizons for a hot standby feedback message.
1993
 */
1994
void
1995
GetReplicationHorizons(TransactionId *xmin, TransactionId *catalog_xmin)
1996
0
{
1997
0
  ComputeXidHorizonsResult horizons;
1998
1999
0
  ComputeXidHorizons(&horizons);
2000
2001
  /*
2002
   * Don't want to use shared_oldest_nonremovable here, as that contains the
2003
   * effect of replication slot's catalog_xmin. We want to send a separate
2004
   * feedback for the catalog horizon, so the primary can remove data table
2005
   * contents more aggressively.
2006
   */
2007
0
  *xmin = horizons.shared_oldest_nonremovable_raw;
2008
0
  *catalog_xmin = horizons.slot_catalog_xmin;
2009
0
}
2010
2011
/*
2012
 * GetMaxSnapshotXidCount -- get max size for snapshot XID array
2013
 *
2014
 * We have to export this for use by snapmgr.c.
2015
 */
2016
int
2017
GetMaxSnapshotXidCount(void)
2018
0
{
2019
0
  return procArray->maxProcs;
2020
0
}
2021
2022
/*
2023
 * GetMaxSnapshotSubxidCount -- get max size for snapshot sub-XID array
2024
 *
2025
 * We have to export this for use by snapmgr.c.
2026
 */
2027
int
2028
GetMaxSnapshotSubxidCount(void)
2029
0
{
2030
0
  return TOTAL_MAX_CACHED_SUBXIDS;
2031
0
}
2032
2033
/*
2034
 * Helper function for GetSnapshotData() that checks if the bulk of the
2035
 * visibility information in the snapshot is still valid. If so, it updates
2036
 * the fields that need to change and returns true. Otherwise it returns
2037
 * false.
2038
 *
2039
 * This very likely can be evolved to not need ProcArrayLock held (at very
2040
 * least in the case we already hold a snapshot), but that's for another day.
2041
 */
2042
static bool
2043
GetSnapshotDataReuse(Snapshot snapshot)
2044
0
{
2045
0
  uint64    curXactCompletionCount;
2046
2047
0
  Assert(LWLockHeldByMe(ProcArrayLock));
2048
2049
0
  if (unlikely(snapshot->snapXactCompletionCount == 0))
2050
0
    return false;
2051
2052
0
  curXactCompletionCount = TransamVariables->xactCompletionCount;
2053
0
  if (curXactCompletionCount != snapshot->snapXactCompletionCount)
2054
0
    return false;
2055
2056
  /*
2057
   * If the current xactCompletionCount is still the same as it was at the
2058
   * time the snapshot was built, we can be sure that rebuilding the
2059
   * contents of the snapshot the hard way would result in the same snapshot
2060
   * contents:
2061
   *
2062
   * As explained in transam/README, the set of xids considered running by
2063
   * GetSnapshotData() cannot change while ProcArrayLock is held. Snapshot
2064
   * contents only depend on transactions with xids and xactCompletionCount
2065
   * is incremented whenever a transaction with an xid finishes (while
2066
   * holding ProcArrayLock exclusively). Thus the xactCompletionCount check
2067
   * ensures we would detect if the snapshot would have changed.
2068
   *
2069
   * As the snapshot contents are the same as it was before, it is safe to
2070
   * re-enter the snapshot's xmin into the PGPROC array. None of the rows
2071
   * visible under the snapshot could already have been removed (that'd
2072
   * require the set of running transactions to change) and it fulfills the
2073
   * requirement that concurrent GetSnapshotData() calls yield the same
2074
   * xmin.
2075
   */
2076
0
  if (!TransactionIdIsValid(MyProc->xmin))
2077
0
    MyProc->xmin = TransactionXmin = snapshot->xmin;
2078
2079
0
  RecentXmin = snapshot->xmin;
2080
0
  Assert(TransactionIdPrecedesOrEquals(TransactionXmin, RecentXmin));
2081
2082
0
  snapshot->curcid = GetCurrentCommandId(false);
2083
0
  snapshot->active_count = 0;
2084
0
  snapshot->regd_count = 0;
2085
0
  snapshot->copied = false;
2086
2087
0
  return true;
2088
0
}
2089
2090
/*
2091
 * GetSnapshotData -- returns information about running transactions.
2092
 *
2093
 * The returned snapshot includes xmin (lowest still-running xact ID),
2094
 * xmax (highest completed xact ID + 1), and a list of running xact IDs
2095
 * in the range xmin <= xid < xmax.  It is used as follows:
2096
 *    All xact IDs < xmin are considered finished.
2097
 *    All xact IDs >= xmax are considered still running.
2098
 *    For an xact ID xmin <= xid < xmax, consult list to see whether
2099
 *    it is considered running or not.
2100
 * This ensures that the set of transactions seen as "running" by the
2101
 * current xact will not change after it takes the snapshot.
2102
 *
2103
 * All running top-level XIDs are included in the snapshot, except for lazy
2104
 * VACUUM processes.  We also try to include running subtransaction XIDs,
2105
 * but since PGPROC has only a limited cache area for subxact XIDs, full
2106
 * information may not be available.  If we find any overflowed subxid arrays,
2107
 * we have to mark the snapshot's subxid data as overflowed, and extra work
2108
 * *may* need to be done to determine what's running (see XidInMVCCSnapshot()).
2109
 *
2110
 * We also update the following backend-global variables:
2111
 *    TransactionXmin: the oldest xmin of any snapshot in use in the
2112
 *      current transaction (this is the same as MyProc->xmin).
2113
 *    RecentXmin: the xmin computed for the most recent snapshot.  XIDs
2114
 *      older than this are known not running any more.
2115
 *
2116
 * And try to advance the bounds of GlobalVis{Shared,Catalog,Data,Temp}Rels
2117
 * for the benefit of the GlobalVisTest* family of functions.
2118
 *
2119
 * Note: this function should probably not be called with an argument that's
2120
 * not statically allocated (see xip allocation below).
2121
 */
2122
Snapshot
2123
GetSnapshotData(Snapshot snapshot)
2124
0
{
2125
0
  ProcArrayStruct *arrayP = procArray;
2126
0
  TransactionId *other_xids = ProcGlobal->xids;
2127
0
  TransactionId xmin;
2128
0
  TransactionId xmax;
2129
0
  int     count = 0;
2130
0
  int     subcount = 0;
2131
0
  bool    suboverflowed = false;
2132
0
  FullTransactionId latest_completed;
2133
0
  TransactionId oldestxid;
2134
0
  int     mypgxactoff;
2135
0
  TransactionId myxid;
2136
0
  uint64    curXactCompletionCount;
2137
2138
0
  TransactionId replication_slot_xmin = InvalidTransactionId;
2139
0
  TransactionId replication_slot_catalog_xmin = InvalidTransactionId;
2140
2141
0
  Assert(snapshot != NULL);
2142
2143
  /*
2144
   * Allocating space for maxProcs xids is usually overkill; numProcs would
2145
   * be sufficient.  But it seems better to do the malloc while not holding
2146
   * the lock, so we can't look at numProcs.  Likewise, we allocate much
2147
   * more subxip storage than is probably needed.
2148
   *
2149
   * This does open a possibility for avoiding repeated malloc/free: since
2150
   * maxProcs does not change at runtime, we can simply reuse the previous
2151
   * xip arrays if any.  (This relies on the fact that all callers pass
2152
   * static SnapshotData structs.)
2153
   */
2154
0
  if (snapshot->xip == NULL)
2155
0
  {
2156
    /*
2157
     * First call for this snapshot. Snapshot is same size whether or not
2158
     * we are in recovery, see later comments.
2159
     */
2160
0
    snapshot->xip = (TransactionId *)
2161
0
      malloc(GetMaxSnapshotXidCount() * sizeof(TransactionId));
2162
0
    if (snapshot->xip == NULL)
2163
0
      ereport(ERROR,
2164
0
          (errcode(ERRCODE_OUT_OF_MEMORY),
2165
0
           errmsg("out of memory")));
2166
0
    Assert(snapshot->subxip == NULL);
2167
0
    snapshot->subxip = (TransactionId *)
2168
0
      malloc(GetMaxSnapshotSubxidCount() * sizeof(TransactionId));
2169
0
    if (snapshot->subxip == NULL)
2170
0
      ereport(ERROR,
2171
0
          (errcode(ERRCODE_OUT_OF_MEMORY),
2172
0
           errmsg("out of memory")));
2173
0
  }
2174
2175
  /*
2176
   * It is sufficient to get shared lock on ProcArrayLock, even if we are
2177
   * going to set MyProc->xmin.
2178
   */
2179
0
  LWLockAcquire(ProcArrayLock, LW_SHARED);
2180
2181
0
  if (GetSnapshotDataReuse(snapshot))
2182
0
  {
2183
0
    LWLockRelease(ProcArrayLock);
2184
0
    return snapshot;
2185
0
  }
2186
2187
0
  latest_completed = TransamVariables->latestCompletedXid;
2188
0
  mypgxactoff = MyProc->pgxactoff;
2189
0
  myxid = other_xids[mypgxactoff];
2190
0
  Assert(myxid == MyProc->xid);
2191
2192
0
  oldestxid = TransamVariables->oldestXid;
2193
0
  curXactCompletionCount = TransamVariables->xactCompletionCount;
2194
2195
  /* xmax is always latestCompletedXid + 1 */
2196
0
  xmax = XidFromFullTransactionId(latest_completed);
2197
0
  TransactionIdAdvance(xmax);
2198
0
  Assert(TransactionIdIsNormal(xmax));
2199
2200
  /* initialize xmin calculation with xmax */
2201
0
  xmin = xmax;
2202
2203
  /* take own xid into account, saves a check inside the loop */
2204
0
  if (TransactionIdIsNormal(myxid) && NormalTransactionIdPrecedes(myxid, xmin))
2205
0
    xmin = myxid;
2206
2207
0
  snapshot->takenDuringRecovery = RecoveryInProgress();
2208
2209
0
  if (!snapshot->takenDuringRecovery)
2210
0
  {
2211
0
    int     numProcs = arrayP->numProcs;
2212
0
    TransactionId *xip = snapshot->xip;
2213
0
    int      *pgprocnos = arrayP->pgprocnos;
2214
0
    XidCacheStatus *subxidStates = ProcGlobal->subxidStates;
2215
0
    uint8    *allStatusFlags = ProcGlobal->statusFlags;
2216
2217
    /*
2218
     * First collect set of pgxactoff/xids that need to be included in the
2219
     * snapshot.
2220
     */
2221
0
    for (int pgxactoff = 0; pgxactoff < numProcs; pgxactoff++)
2222
0
    {
2223
      /* Fetch xid just once - see GetNewTransactionId */
2224
0
      TransactionId xid = UINT32_ACCESS_ONCE(other_xids[pgxactoff]);
2225
0
      uint8   statusFlags;
2226
2227
0
      Assert(allProcs[arrayP->pgprocnos[pgxactoff]].pgxactoff == pgxactoff);
2228
2229
      /*
2230
       * If the transaction has no XID assigned, we can skip it; it
2231
       * won't have sub-XIDs either.
2232
       */
2233
0
      if (likely(xid == InvalidTransactionId))
2234
0
        continue;
2235
2236
      /*
2237
       * We don't include our own XIDs (if any) in the snapshot. It
2238
       * needs to be included in the xmin computation, but we did so
2239
       * outside the loop.
2240
       */
2241
0
      if (pgxactoff == mypgxactoff)
2242
0
        continue;
2243
2244
      /*
2245
       * The only way we are able to get here with a non-normal xid is
2246
       * during bootstrap - with this backend using
2247
       * BootstrapTransactionId. But the above test should filter that
2248
       * out.
2249
       */
2250
0
      Assert(TransactionIdIsNormal(xid));
2251
2252
      /*
2253
       * If the XID is >= xmax, we can skip it; such transactions will
2254
       * be treated as running anyway (and any sub-XIDs will also be >=
2255
       * xmax).
2256
       */
2257
0
      if (!NormalTransactionIdPrecedes(xid, xmax))
2258
0
        continue;
2259
2260
      /*
2261
       * Skip over backends doing logical decoding which manages xmin
2262
       * separately (check below) and ones running LAZY VACUUM.
2263
       */
2264
0
      statusFlags = allStatusFlags[pgxactoff];
2265
0
      if (statusFlags & (PROC_IN_LOGICAL_DECODING | PROC_IN_VACUUM))
2266
0
        continue;
2267
2268
0
      if (NormalTransactionIdPrecedes(xid, xmin))
2269
0
        xmin = xid;
2270
2271
      /* Add XID to snapshot. */
2272
0
      xip[count++] = xid;
2273
2274
      /*
2275
       * Save subtransaction XIDs if possible (if we've already
2276
       * overflowed, there's no point).  Note that the subxact XIDs must
2277
       * be later than their parent, so no need to check them against
2278
       * xmin.  We could filter against xmax, but it seems better not to
2279
       * do that much work while holding the ProcArrayLock.
2280
       *
2281
       * The other backend can add more subxids concurrently, but cannot
2282
       * remove any.  Hence it's important to fetch nxids just once.
2283
       * Should be safe to use memcpy, though.  (We needn't worry about
2284
       * missing any xids added concurrently, because they must postdate
2285
       * xmax.)
2286
       *
2287
       * Again, our own XIDs are not included in the snapshot.
2288
       */
2289
0
      if (!suboverflowed)
2290
0
      {
2291
2292
0
        if (subxidStates[pgxactoff].overflowed)
2293
0
          suboverflowed = true;
2294
0
        else
2295
0
        {
2296
0
          int     nsubxids = subxidStates[pgxactoff].count;
2297
2298
0
          if (nsubxids > 0)
2299
0
          {
2300
0
            int     pgprocno = pgprocnos[pgxactoff];
2301
0
            PGPROC     *proc = &allProcs[pgprocno];
2302
2303
0
            pg_read_barrier(); /* pairs with GetNewTransactionId */
2304
2305
0
            memcpy(snapshot->subxip + subcount,
2306
0
                 proc->subxids.xids,
2307
0
                 nsubxids * sizeof(TransactionId));
2308
0
            subcount += nsubxids;
2309
0
          }
2310
0
        }
2311
0
      }
2312
0
    }
2313
0
  }
2314
0
  else
2315
0
  {
2316
    /*
2317
     * We're in hot standby, so get XIDs from KnownAssignedXids.
2318
     *
2319
     * We store all xids directly into subxip[]. Here's why:
2320
     *
2321
     * In recovery we don't know which xids are top-level and which are
2322
     * subxacts, a design choice that greatly simplifies xid processing.
2323
     *
2324
     * It seems like we would want to try to put xids into xip[] only, but
2325
     * that is fairly small. We would either need to make that bigger or
2326
     * to increase the rate at which we WAL-log xid assignment; neither is
2327
     * an appealing choice.
2328
     *
2329
     * We could try to store xids into xip[] first and then into subxip[]
2330
     * if there are too many xids. That only works if the snapshot doesn't
2331
     * overflow because we do not search subxip[] in that case. A simpler
2332
     * way is to just store all xids in the subxip array because this is
2333
     * by far the bigger array. We just leave the xip array empty.
2334
     *
2335
     * Either way we need to change the way XidInMVCCSnapshot() works
2336
     * depending upon when the snapshot was taken, or change normal
2337
     * snapshot processing so it matches.
2338
     *
2339
     * Note: It is possible for recovery to end before we finish taking
2340
     * the snapshot, and for newly assigned transaction ids to be added to
2341
     * the ProcArray.  xmax cannot change while we hold ProcArrayLock, so
2342
     * those newly added transaction ids would be filtered away, so we
2343
     * need not be concerned about them.
2344
     */
2345
0
    subcount = KnownAssignedXidsGetAndSetXmin(snapshot->subxip, &xmin,
2346
0
                          xmax);
2347
2348
0
    if (TransactionIdPrecedesOrEquals(xmin, procArray->lastOverflowedXid))
2349
0
      suboverflowed = true;
2350
0
  }
2351
2352
2353
  /*
2354
   * Fetch into local variable while ProcArrayLock is held - the
2355
   * LWLockRelease below is a barrier, ensuring this happens inside the
2356
   * lock.
2357
   */
2358
0
  replication_slot_xmin = procArray->replication_slot_xmin;
2359
0
  replication_slot_catalog_xmin = procArray->replication_slot_catalog_xmin;
2360
2361
0
  if (!TransactionIdIsValid(MyProc->xmin))
2362
0
    MyProc->xmin = TransactionXmin = xmin;
2363
2364
0
  LWLockRelease(ProcArrayLock);
2365
2366
  /* maintain state for GlobalVis* */
2367
0
  {
2368
0
    TransactionId def_vis_xid;
2369
0
    TransactionId def_vis_xid_data;
2370
0
    FullTransactionId def_vis_fxid;
2371
0
    FullTransactionId def_vis_fxid_data;
2372
0
    FullTransactionId oldestfxid;
2373
2374
    /*
2375
     * Converting oldestXid is only safe when xid horizon cannot advance,
2376
     * i.e. holding locks. While we don't hold the lock anymore, all the
2377
     * necessary data has been gathered with lock held.
2378
     */
2379
0
    oldestfxid = FullXidRelativeTo(latest_completed, oldestxid);
2380
2381
    /* Check whether there's a replication slot requiring an older xmin. */
2382
0
    def_vis_xid_data =
2383
0
      TransactionIdOlder(xmin, replication_slot_xmin);
2384
2385
    /*
2386
     * Rows in non-shared, non-catalog tables possibly could be vacuumed
2387
     * if older than this xid.
2388
     */
2389
0
    def_vis_xid = def_vis_xid_data;
2390
2391
    /*
2392
     * Check whether there's a replication slot requiring an older catalog
2393
     * xmin.
2394
     */
2395
0
    def_vis_xid =
2396
0
      TransactionIdOlder(replication_slot_catalog_xmin, def_vis_xid);
2397
2398
0
    def_vis_fxid = FullXidRelativeTo(latest_completed, def_vis_xid);
2399
0
    def_vis_fxid_data = FullXidRelativeTo(latest_completed, def_vis_xid_data);
2400
2401
    /*
2402
     * Check if we can increase upper bound. As a previous
2403
     * GlobalVisUpdate() might have computed more aggressive values, don't
2404
     * overwrite them if so.
2405
     */
2406
0
    GlobalVisSharedRels.definitely_needed =
2407
0
      FullTransactionIdNewer(def_vis_fxid,
2408
0
                   GlobalVisSharedRels.definitely_needed);
2409
0
    GlobalVisCatalogRels.definitely_needed =
2410
0
      FullTransactionIdNewer(def_vis_fxid,
2411
0
                   GlobalVisCatalogRels.definitely_needed);
2412
0
    GlobalVisDataRels.definitely_needed =
2413
0
      FullTransactionIdNewer(def_vis_fxid_data,
2414
0
                   GlobalVisDataRels.definitely_needed);
2415
    /* See temp_oldest_nonremovable computation in ComputeXidHorizons() */
2416
0
    if (TransactionIdIsNormal(myxid))
2417
0
      GlobalVisTempRels.definitely_needed =
2418
0
        FullXidRelativeTo(latest_completed, myxid);
2419
0
    else
2420
0
    {
2421
0
      GlobalVisTempRels.definitely_needed = latest_completed;
2422
0
      FullTransactionIdAdvance(&GlobalVisTempRels.definitely_needed);
2423
0
    }
2424
2425
    /*
2426
     * Check if we know that we can initialize or increase the lower
2427
     * bound. Currently the only cheap way to do so is to use
2428
     * TransamVariables->oldestXid as input.
2429
     *
2430
     * We should definitely be able to do better. We could e.g. put a
2431
     * global lower bound value into TransamVariables.
2432
     */
2433
0
    GlobalVisSharedRels.maybe_needed =
2434
0
      FullTransactionIdNewer(GlobalVisSharedRels.maybe_needed,
2435
0
                   oldestfxid);
2436
0
    GlobalVisCatalogRels.maybe_needed =
2437
0
      FullTransactionIdNewer(GlobalVisCatalogRels.maybe_needed,
2438
0
                   oldestfxid);
2439
0
    GlobalVisDataRels.maybe_needed =
2440
0
      FullTransactionIdNewer(GlobalVisDataRels.maybe_needed,
2441
0
                   oldestfxid);
2442
    /* accurate value known */
2443
0
    GlobalVisTempRels.maybe_needed = GlobalVisTempRels.definitely_needed;
2444
0
  }
2445
2446
0
  RecentXmin = xmin;
2447
0
  Assert(TransactionIdPrecedesOrEquals(TransactionXmin, RecentXmin));
2448
2449
0
  snapshot->xmin = xmin;
2450
0
  snapshot->xmax = xmax;
2451
0
  snapshot->xcnt = count;
2452
0
  snapshot->subxcnt = subcount;
2453
0
  snapshot->suboverflowed = suboverflowed;
2454
0
  snapshot->snapXactCompletionCount = curXactCompletionCount;
2455
2456
0
  snapshot->curcid = GetCurrentCommandId(false);
2457
2458
  /*
2459
   * This is a new snapshot, so set both refcounts are zero, and mark it as
2460
   * not copied in persistent memory.
2461
   */
2462
0
  snapshot->active_count = 0;
2463
0
  snapshot->regd_count = 0;
2464
0
  snapshot->copied = false;
2465
2466
0
  return snapshot;
2467
0
}
2468
2469
/*
2470
 * ProcArrayInstallImportedXmin -- install imported xmin into MyProc->xmin
2471
 *
2472
 * This is called when installing a snapshot imported from another
2473
 * transaction.  To ensure that OldestXmin doesn't go backwards, we must
2474
 * check that the source transaction is still running, and we'd better do
2475
 * that atomically with installing the new xmin.
2476
 *
2477
 * Returns true if successful, false if source xact is no longer running.
2478
 */
2479
bool
2480
ProcArrayInstallImportedXmin(TransactionId xmin,
2481
               VirtualTransactionId *sourcevxid)
2482
0
{
2483
0
  bool    result = false;
2484
0
  ProcArrayStruct *arrayP = procArray;
2485
0
  int     index;
2486
2487
0
  Assert(TransactionIdIsNormal(xmin));
2488
0
  if (!sourcevxid)
2489
0
    return false;
2490
2491
  /* Get lock so source xact can't end while we're doing this */
2492
0
  LWLockAcquire(ProcArrayLock, LW_SHARED);
2493
2494
  /*
2495
   * Find the PGPROC entry of the source transaction. (This could use
2496
   * GetPGProcByNumber(), unless it's a prepared xact.  But this isn't
2497
   * performance critical.)
2498
   */
2499
0
  for (index = 0; index < arrayP->numProcs; index++)
2500
0
  {
2501
0
    int     pgprocno = arrayP->pgprocnos[index];
2502
0
    PGPROC     *proc = &allProcs[pgprocno];
2503
0
    int     statusFlags = ProcGlobal->statusFlags[index];
2504
0
    TransactionId xid;
2505
2506
    /* Ignore procs running LAZY VACUUM */
2507
0
    if (statusFlags & PROC_IN_VACUUM)
2508
0
      continue;
2509
2510
    /* We are only interested in the specific virtual transaction. */
2511
0
    if (proc->vxid.procNumber != sourcevxid->procNumber)
2512
0
      continue;
2513
0
    if (proc->vxid.lxid != sourcevxid->localTransactionId)
2514
0
      continue;
2515
2516
    /*
2517
     * We check the transaction's database ID for paranoia's sake: if it's
2518
     * in another DB then its xmin does not cover us.  Caller should have
2519
     * detected this already, so we just treat any funny cases as
2520
     * "transaction not found".
2521
     */
2522
0
    if (proc->databaseId != MyDatabaseId)
2523
0
      continue;
2524
2525
    /*
2526
     * Likewise, let's just make real sure its xmin does cover us.
2527
     */
2528
0
    xid = UINT32_ACCESS_ONCE(proc->xmin);
2529
0
    if (!TransactionIdIsNormal(xid) ||
2530
0
      !TransactionIdPrecedesOrEquals(xid, xmin))
2531
0
      continue;
2532
2533
    /*
2534
     * We're good.  Install the new xmin.  As in GetSnapshotData, set
2535
     * TransactionXmin too.  (Note that because snapmgr.c called
2536
     * GetSnapshotData first, we'll be overwriting a valid xmin here, so
2537
     * we don't check that.)
2538
     */
2539
0
    MyProc->xmin = TransactionXmin = xmin;
2540
2541
0
    result = true;
2542
0
    break;
2543
0
  }
2544
2545
0
  LWLockRelease(ProcArrayLock);
2546
2547
0
  return result;
2548
0
}
2549
2550
/*
2551
 * ProcArrayInstallRestoredXmin -- install restored xmin into MyProc->xmin
2552
 *
2553
 * This is like ProcArrayInstallImportedXmin, but we have a pointer to the
2554
 * PGPROC of the transaction from which we imported the snapshot, rather than
2555
 * an XID.
2556
 *
2557
 * Note that this function also copies statusFlags from the source `proc` in
2558
 * order to avoid the case where MyProc's xmin needs to be skipped for
2559
 * computing xid horizon.
2560
 *
2561
 * Returns true if successful, false if source xact is no longer running.
2562
 */
2563
bool
2564
ProcArrayInstallRestoredXmin(TransactionId xmin, PGPROC *proc)
2565
0
{
2566
0
  bool    result = false;
2567
0
  TransactionId xid;
2568
2569
0
  Assert(TransactionIdIsNormal(xmin));
2570
0
  Assert(proc != NULL);
2571
2572
  /*
2573
   * Get an exclusive lock so that we can copy statusFlags from source proc.
2574
   */
2575
0
  LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
2576
2577
  /*
2578
   * Be certain that the referenced PGPROC has an advertised xmin which is
2579
   * no later than the one we're installing, so that the system-wide xmin
2580
   * can't go backwards.  Also, make sure it's running in the same database,
2581
   * so that the per-database xmin cannot go backwards.
2582
   */
2583
0
  xid = UINT32_ACCESS_ONCE(proc->xmin);
2584
0
  if (proc->databaseId == MyDatabaseId &&
2585
0
    TransactionIdIsNormal(xid) &&
2586
0
    TransactionIdPrecedesOrEquals(xid, xmin))
2587
0
  {
2588
    /*
2589
     * Install xmin and propagate the statusFlags that affect how the
2590
     * value is interpreted by vacuum.
2591
     */
2592
0
    MyProc->xmin = TransactionXmin = xmin;
2593
0
    MyProc->statusFlags = (MyProc->statusFlags & ~PROC_XMIN_FLAGS) |
2594
0
      (proc->statusFlags & PROC_XMIN_FLAGS);
2595
0
    ProcGlobal->statusFlags[MyProc->pgxactoff] = MyProc->statusFlags;
2596
2597
0
    result = true;
2598
0
  }
2599
2600
0
  LWLockRelease(ProcArrayLock);
2601
2602
0
  return result;
2603
0
}
2604
2605
/*
2606
 * GetRunningTransactionData -- returns information about running transactions.
2607
 *
2608
 * Similar to GetSnapshotData but returns more information. We include
2609
 * all PGPROCs with an assigned TransactionId, even VACUUM processes and
2610
 * prepared transactions.
2611
 *
2612
 * We acquire XidGenLock and ProcArrayLock, but the caller is responsible for
2613
 * releasing them. Acquiring XidGenLock ensures that no new XIDs enter the proc
2614
 * array until the caller has WAL-logged this snapshot, and releases the
2615
 * lock. Acquiring ProcArrayLock ensures that no transactions commit until the
2616
 * lock is released.
2617
 *
2618
 * The returned data structure is statically allocated; caller should not
2619
 * modify it, and must not assume it is valid past the next call.
2620
 *
2621
 * This is never executed during recovery so there is no need to look at
2622
 * KnownAssignedXids.
2623
 *
2624
 * Dummy PGPROCs from prepared transaction are included, meaning that this
2625
 * may return entries with duplicated TransactionId values coming from
2626
 * transaction finishing to prepare.  Nothing is done about duplicated
2627
 * entries here to not hold on ProcArrayLock more than necessary.
2628
 *
2629
 * We don't worry about updating other counters, we want to keep this as
2630
 * simple as possible and leave GetSnapshotData() as the primary code for
2631
 * that bookkeeping.
2632
 *
2633
 * Note that if any transaction has overflowed its cached subtransactions
2634
 * then there is no real need include any subtransactions.
2635
 */
2636
RunningTransactions
2637
GetRunningTransactionData(void)
2638
0
{
2639
  /* result workspace */
2640
0
  static RunningTransactionsData CurrentRunningXactsData;
2641
2642
0
  ProcArrayStruct *arrayP = procArray;
2643
0
  TransactionId *other_xids = ProcGlobal->xids;
2644
0
  RunningTransactions CurrentRunningXacts = &CurrentRunningXactsData;
2645
0
  TransactionId latestCompletedXid;
2646
0
  TransactionId oldestRunningXid;
2647
0
  TransactionId oldestDatabaseRunningXid;
2648
0
  TransactionId *xids;
2649
0
  int     index;
2650
0
  int     count;
2651
0
  int     subcount;
2652
0
  bool    suboverflowed;
2653
2654
0
  Assert(!RecoveryInProgress());
2655
2656
  /*
2657
   * Allocating space for maxProcs xids is usually overkill; numProcs would
2658
   * be sufficient.  But it seems better to do the malloc while not holding
2659
   * the lock, so we can't look at numProcs.  Likewise, we allocate much
2660
   * more subxip storage than is probably needed.
2661
   *
2662
   * Should only be allocated in bgwriter, since only ever executed during
2663
   * checkpoints.
2664
   */
2665
0
  if (CurrentRunningXacts->xids == NULL)
2666
0
  {
2667
    /*
2668
     * First call
2669
     */
2670
0
    CurrentRunningXacts->xids = (TransactionId *)
2671
0
      malloc(TOTAL_MAX_CACHED_SUBXIDS * sizeof(TransactionId));
2672
0
    if (CurrentRunningXacts->xids == NULL)
2673
0
      ereport(ERROR,
2674
0
          (errcode(ERRCODE_OUT_OF_MEMORY),
2675
0
           errmsg("out of memory")));
2676
0
  }
2677
2678
0
  xids = CurrentRunningXacts->xids;
2679
2680
0
  count = subcount = 0;
2681
0
  suboverflowed = false;
2682
2683
  /*
2684
   * Ensure that no xids enter or leave the procarray while we obtain
2685
   * snapshot.
2686
   */
2687
0
  LWLockAcquire(ProcArrayLock, LW_SHARED);
2688
0
  LWLockAcquire(XidGenLock, LW_SHARED);
2689
2690
0
  latestCompletedXid =
2691
0
    XidFromFullTransactionId(TransamVariables->latestCompletedXid);
2692
0
  oldestDatabaseRunningXid = oldestRunningXid =
2693
0
    XidFromFullTransactionId(TransamVariables->nextXid);
2694
2695
  /*
2696
   * Spin over procArray collecting all xids
2697
   */
2698
0
  for (index = 0; index < arrayP->numProcs; index++)
2699
0
  {
2700
0
    TransactionId xid;
2701
2702
    /* Fetch xid just once - see GetNewTransactionId */
2703
0
    xid = UINT32_ACCESS_ONCE(other_xids[index]);
2704
2705
    /*
2706
     * We don't need to store transactions that don't have a TransactionId
2707
     * yet because they will not show as running on a standby server.
2708
     */
2709
0
    if (!TransactionIdIsValid(xid))
2710
0
      continue;
2711
2712
    /*
2713
     * Be careful not to exclude any xids before calculating the values of
2714
     * oldestRunningXid and suboverflowed, since these are used to clean
2715
     * up transaction information held on standbys.
2716
     */
2717
0
    if (TransactionIdPrecedes(xid, oldestRunningXid))
2718
0
      oldestRunningXid = xid;
2719
2720
    /*
2721
     * Also, update the oldest running xid within the current database. As
2722
     * fetching pgprocno and PGPROC could cause cache misses, we do cheap
2723
     * TransactionId comparison first.
2724
     */
2725
0
    if (TransactionIdPrecedes(xid, oldestDatabaseRunningXid))
2726
0
    {
2727
0
      int     pgprocno = arrayP->pgprocnos[index];
2728
0
      PGPROC     *proc = &allProcs[pgprocno];
2729
2730
0
      if (proc->databaseId == MyDatabaseId)
2731
0
        oldestDatabaseRunningXid = xid;
2732
0
    }
2733
2734
0
    if (ProcGlobal->subxidStates[index].overflowed)
2735
0
      suboverflowed = true;
2736
2737
    /*
2738
     * If we wished to exclude xids this would be the right place for it.
2739
     * Procs with the PROC_IN_VACUUM flag set don't usually assign xids,
2740
     * but they do during truncation at the end when they get the lock and
2741
     * truncate, so it is not much of a problem to include them if they
2742
     * are seen and it is cleaner to include them.
2743
     */
2744
2745
0
    xids[count++] = xid;
2746
0
  }
2747
2748
  /*
2749
   * Spin over procArray collecting all subxids, but only if there hasn't
2750
   * been a suboverflow.
2751
   */
2752
0
  if (!suboverflowed)
2753
0
  {
2754
0
    XidCacheStatus *other_subxidstates = ProcGlobal->subxidStates;
2755
2756
0
    for (index = 0; index < arrayP->numProcs; index++)
2757
0
    {
2758
0
      int     pgprocno = arrayP->pgprocnos[index];
2759
0
      PGPROC     *proc = &allProcs[pgprocno];
2760
0
      int     nsubxids;
2761
2762
      /*
2763
       * Save subtransaction XIDs. Other backends can't add or remove
2764
       * entries while we're holding XidGenLock.
2765
       */
2766
0
      nsubxids = other_subxidstates[index].count;
2767
0
      if (nsubxids > 0)
2768
0
      {
2769
        /* barrier not really required, as XidGenLock is held, but ... */
2770
0
        pg_read_barrier(); /* pairs with GetNewTransactionId */
2771
2772
0
        memcpy(&xids[count], proc->subxids.xids,
2773
0
             nsubxids * sizeof(TransactionId));
2774
0
        count += nsubxids;
2775
0
        subcount += nsubxids;
2776
2777
        /*
2778
         * Top-level XID of a transaction is always less than any of
2779
         * its subxids, so we don't need to check if any of the
2780
         * subxids are smaller than oldestRunningXid
2781
         */
2782
0
      }
2783
0
    }
2784
0
  }
2785
2786
  /*
2787
   * It's important *not* to include the limits set by slots here because
2788
   * snapbuild.c uses oldestRunningXid to manage its xmin horizon. If those
2789
   * were to be included here the initial value could never increase because
2790
   * of a circular dependency where slots only increase their limits when
2791
   * running xacts increases oldestRunningXid and running xacts only
2792
   * increases if slots do.
2793
   */
2794
2795
0
  CurrentRunningXacts->xcnt = count - subcount;
2796
0
  CurrentRunningXacts->subxcnt = subcount;
2797
0
  CurrentRunningXacts->subxid_status = suboverflowed ? SUBXIDS_IN_SUBTRANS : SUBXIDS_IN_ARRAY;
2798
0
  CurrentRunningXacts->nextXid = XidFromFullTransactionId(TransamVariables->nextXid);
2799
0
  CurrentRunningXacts->oldestRunningXid = oldestRunningXid;
2800
0
  CurrentRunningXacts->oldestDatabaseRunningXid = oldestDatabaseRunningXid;
2801
0
  CurrentRunningXacts->latestCompletedXid = latestCompletedXid;
2802
2803
0
  Assert(TransactionIdIsValid(CurrentRunningXacts->nextXid));
2804
0
  Assert(TransactionIdIsValid(CurrentRunningXacts->oldestRunningXid));
2805
0
  Assert(TransactionIdIsNormal(CurrentRunningXacts->latestCompletedXid));
2806
2807
  /* We don't release the locks here, the caller is responsible for that */
2808
2809
0
  return CurrentRunningXacts;
2810
0
}
2811
2812
/*
2813
 * GetOldestActiveTransactionId()
2814
 *
2815
 * Similar to GetSnapshotData but returns just oldestActiveXid. We include
2816
 * all PGPROCs with an assigned TransactionId, even VACUUM processes.
2817
 *
2818
 * If allDbs is true, we look at all databases, though there is no need to
2819
 * include WALSender since this has no effect on hot standby conflicts. If
2820
 * allDbs is false, skip processes attached to other databases.
2821
 *
2822
 * This is never executed during recovery so there is no need to look at
2823
 * KnownAssignedXids.
2824
 *
2825
 * We don't worry about updating other counters, we want to keep this as
2826
 * simple as possible and leave GetSnapshotData() as the primary code for
2827
 * that bookkeeping.
2828
 *
2829
 * inCommitOnly indicates getting the oldestActiveXid among the transactions
2830
 * in the commit critical section.
2831
 */
2832
TransactionId
2833
GetOldestActiveTransactionId(bool inCommitOnly, bool allDbs)
2834
0
{
2835
0
  ProcArrayStruct *arrayP = procArray;
2836
0
  TransactionId *other_xids = ProcGlobal->xids;
2837
0
  TransactionId oldestRunningXid;
2838
0
  int     index;
2839
2840
0
  Assert(!RecoveryInProgress());
2841
2842
  /*
2843
   * Read nextXid, as the upper bound of what's still active.
2844
   *
2845
   * Reading a TransactionId is atomic, but we must grab the lock to make
2846
   * sure that all XIDs < nextXid are already present in the proc array (or
2847
   * have already completed), when we spin over it.
2848
   */
2849
0
  LWLockAcquire(XidGenLock, LW_SHARED);
2850
0
  oldestRunningXid = XidFromFullTransactionId(TransamVariables->nextXid);
2851
0
  LWLockRelease(XidGenLock);
2852
2853
  /*
2854
   * Spin over procArray collecting all xids and subxids.
2855
   */
2856
0
  LWLockAcquire(ProcArrayLock, LW_SHARED);
2857
0
  for (index = 0; index < arrayP->numProcs; index++)
2858
0
  {
2859
0
    TransactionId xid;
2860
0
    int     pgprocno = arrayP->pgprocnos[index];
2861
0
    PGPROC     *proc = &allProcs[pgprocno];
2862
2863
    /* Fetch xid just once - see GetNewTransactionId */
2864
0
    xid = UINT32_ACCESS_ONCE(other_xids[index]);
2865
2866
0
    if (!TransactionIdIsNormal(xid))
2867
0
      continue;
2868
2869
0
    if (inCommitOnly &&
2870
0
      (proc->delayChkptFlags & DELAY_CHKPT_IN_COMMIT) == 0)
2871
0
      continue;
2872
2873
0
    if (!allDbs && proc->databaseId != MyDatabaseId)
2874
0
      continue;
2875
2876
0
    if (TransactionIdPrecedes(xid, oldestRunningXid))
2877
0
      oldestRunningXid = xid;
2878
2879
    /*
2880
     * Top-level XID of a transaction is always less than any of its
2881
     * subxids, so we don't need to check if any of the subxids are
2882
     * smaller than oldestRunningXid
2883
     */
2884
0
  }
2885
0
  LWLockRelease(ProcArrayLock);
2886
2887
0
  return oldestRunningXid;
2888
0
}
2889
2890
/*
2891
 * GetOldestSafeDecodingTransactionId -- lowest xid not affected by vacuum
2892
 *
2893
 * Returns the oldest xid that we can guarantee not to have been affected by
2894
 * vacuum, i.e. no rows >= that xid have been vacuumed away unless the
2895
 * transaction aborted. Note that the value can (and most of the time will) be
2896
 * much more conservative than what really has been affected by vacuum, but we
2897
 * currently don't have better data available.
2898
 *
2899
 * This is useful to initialize the cutoff xid after which a new changeset
2900
 * extraction replication slot can start decoding changes.
2901
 *
2902
 * Must be called with ProcArrayLock held either shared or exclusively,
2903
 * although most callers will want to use exclusive mode since it is expected
2904
 * that the caller will immediately use the xid to peg the xmin horizon.
2905
 */
2906
TransactionId
2907
GetOldestSafeDecodingTransactionId(bool catalogOnly)
2908
0
{
2909
0
  ProcArrayStruct *arrayP = procArray;
2910
0
  TransactionId oldestSafeXid;
2911
0
  int     index;
2912
0
  bool    recovery_in_progress = RecoveryInProgress();
2913
2914
0
  Assert(LWLockHeldByMe(ProcArrayLock));
2915
2916
  /*
2917
   * Acquire XidGenLock, so no transactions can acquire an xid while we're
2918
   * running. If no transaction with xid were running concurrently a new xid
2919
   * could influence the RecentXmin et al.
2920
   *
2921
   * We initialize the computation to nextXid since that's guaranteed to be
2922
   * a safe, albeit pessimal, value.
2923
   */
2924
0
  LWLockAcquire(XidGenLock, LW_SHARED);
2925
0
  oldestSafeXid = XidFromFullTransactionId(TransamVariables->nextXid);
2926
2927
  /*
2928
   * If there's already a slot pegging the xmin horizon, we can start with
2929
   * that value, it's guaranteed to be safe since it's computed by this
2930
   * routine initially and has been enforced since.  We can always use the
2931
   * slot's general xmin horizon, but the catalog horizon is only usable
2932
   * when only catalog data is going to be looked at.
2933
   */
2934
0
  if (TransactionIdIsValid(procArray->replication_slot_xmin) &&
2935
0
    TransactionIdPrecedes(procArray->replication_slot_xmin,
2936
0
                oldestSafeXid))
2937
0
    oldestSafeXid = procArray->replication_slot_xmin;
2938
2939
0
  if (catalogOnly &&
2940
0
    TransactionIdIsValid(procArray->replication_slot_catalog_xmin) &&
2941
0
    TransactionIdPrecedes(procArray->replication_slot_catalog_xmin,
2942
0
                oldestSafeXid))
2943
0
    oldestSafeXid = procArray->replication_slot_catalog_xmin;
2944
2945
  /*
2946
   * If we're not in recovery, we walk over the procarray and collect the
2947
   * lowest xid. Since we're called with ProcArrayLock held and have
2948
   * acquired XidGenLock, no entries can vanish concurrently, since
2949
   * ProcGlobal->xids[i] is only set with XidGenLock held and only cleared
2950
   * with ProcArrayLock held.
2951
   *
2952
   * In recovery we can't lower the safe value besides what we've computed
2953
   * above, so we'll have to wait a bit longer there. We unfortunately can
2954
   * *not* use KnownAssignedXidsGetOldestXmin() since the KnownAssignedXids
2955
   * machinery can miss values and return an older value than is safe.
2956
   */
2957
0
  if (!recovery_in_progress)
2958
0
  {
2959
0
    TransactionId *other_xids = ProcGlobal->xids;
2960
2961
    /*
2962
     * Spin over procArray collecting min(ProcGlobal->xids[i])
2963
     */
2964
0
    for (index = 0; index < arrayP->numProcs; index++)
2965
0
    {
2966
0
      TransactionId xid;
2967
2968
      /* Fetch xid just once - see GetNewTransactionId */
2969
0
      xid = UINT32_ACCESS_ONCE(other_xids[index]);
2970
2971
0
      if (!TransactionIdIsNormal(xid))
2972
0
        continue;
2973
2974
0
      if (TransactionIdPrecedes(xid, oldestSafeXid))
2975
0
        oldestSafeXid = xid;
2976
0
    }
2977
0
  }
2978
2979
0
  LWLockRelease(XidGenLock);
2980
2981
0
  return oldestSafeXid;
2982
0
}
2983
2984
/*
2985
 * GetVirtualXIDsDelayingChkpt -- Get the VXIDs of transactions that are
2986
 * delaying checkpoint because they have critical actions in progress.
2987
 *
2988
 * Constructs an array of VXIDs of transactions that are currently in commit
2989
 * critical sections, as shown by having specified delayChkptFlags bits set
2990
 * in their PGPROC.
2991
 *
2992
 * Returns a palloc'd array that should be freed by the caller.
2993
 * *nvxids is the number of valid entries.
2994
 *
2995
 * Note that because backends set or clear delayChkptFlags without holding any
2996
 * lock, the result is somewhat indeterminate, but we don't really care.  Even
2997
 * in a multiprocessor with delayed writes to shared memory, it should be
2998
 * certain that setting of delayChkptFlags will propagate to shared memory
2999
 * when the backend takes a lock, so we cannot fail to see a virtual xact as
3000
 * delayChkptFlags if it's already inserted its commit record.  Whether it
3001
 * takes a little while for clearing of delayChkptFlags to propagate is
3002
 * unimportant for correctness.
3003
 */
3004
VirtualTransactionId *
3005
GetVirtualXIDsDelayingChkpt(int *nvxids, int type)
3006
0
{
3007
0
  VirtualTransactionId *vxids;
3008
0
  ProcArrayStruct *arrayP = procArray;
3009
0
  int     count = 0;
3010
0
  int     index;
3011
3012
0
  Assert(type != 0);
3013
3014
  /* allocate what's certainly enough result space */
3015
0
  vxids = (VirtualTransactionId *)
3016
0
    palloc(sizeof(VirtualTransactionId) * arrayP->maxProcs);
3017
3018
0
  LWLockAcquire(ProcArrayLock, LW_SHARED);
3019
3020
0
  for (index = 0; index < arrayP->numProcs; index++)
3021
0
  {
3022
0
    int     pgprocno = arrayP->pgprocnos[index];
3023
0
    PGPROC     *proc = &allProcs[pgprocno];
3024
3025
0
    if ((proc->delayChkptFlags & type) != 0)
3026
0
    {
3027
0
      VirtualTransactionId vxid;
3028
3029
0
      GET_VXID_FROM_PGPROC(vxid, *proc);
3030
0
      if (VirtualTransactionIdIsValid(vxid))
3031
0
        vxids[count++] = vxid;
3032
0
    }
3033
0
  }
3034
3035
0
  LWLockRelease(ProcArrayLock);
3036
3037
0
  *nvxids = count;
3038
0
  return vxids;
3039
0
}
3040
3041
/*
3042
 * HaveVirtualXIDsDelayingChkpt -- Are any of the specified VXIDs delaying?
3043
 *
3044
 * This is used with the results of GetVirtualXIDsDelayingChkpt to see if any
3045
 * of the specified VXIDs are still in critical sections of code.
3046
 *
3047
 * Note: this is O(N^2) in the number of vxacts that are/were delaying, but
3048
 * those numbers should be small enough for it not to be a problem.
3049
 */
3050
bool
3051
HaveVirtualXIDsDelayingChkpt(VirtualTransactionId *vxids, int nvxids, int type)
3052
0
{
3053
0
  bool    result = false;
3054
0
  ProcArrayStruct *arrayP = procArray;
3055
0
  int     index;
3056
3057
0
  Assert(type != 0);
3058
3059
0
  LWLockAcquire(ProcArrayLock, LW_SHARED);
3060
3061
0
  for (index = 0; index < arrayP->numProcs; index++)
3062
0
  {
3063
0
    int     pgprocno = arrayP->pgprocnos[index];
3064
0
    PGPROC     *proc = &allProcs[pgprocno];
3065
0
    VirtualTransactionId vxid;
3066
3067
0
    GET_VXID_FROM_PGPROC(vxid, *proc);
3068
3069
0
    if ((proc->delayChkptFlags & type) != 0 &&
3070
0
      VirtualTransactionIdIsValid(vxid))
3071
0
    {
3072
0
      int     i;
3073
3074
0
      for (i = 0; i < nvxids; i++)
3075
0
      {
3076
0
        if (VirtualTransactionIdEquals(vxid, vxids[i]))
3077
0
        {
3078
0
          result = true;
3079
0
          break;
3080
0
        }
3081
0
      }
3082
0
      if (result)
3083
0
        break;
3084
0
    }
3085
0
  }
3086
3087
0
  LWLockRelease(ProcArrayLock);
3088
3089
0
  return result;
3090
0
}
3091
3092
/*
3093
 * ProcNumberGetProc -- get a backend's PGPROC given its proc number
3094
 *
3095
 * The result may be out of date arbitrarily quickly, so the caller
3096
 * must be careful about how this information is used.  NULL is
3097
 * returned if the backend is not active.
3098
 */
3099
PGPROC *
3100
ProcNumberGetProc(ProcNumber procNumber)
3101
0
{
3102
0
  PGPROC     *result;
3103
3104
0
  if (procNumber < 0 || procNumber >= ProcGlobal->allProcCount)
3105
0
    return NULL;
3106
0
  result = GetPGProcByNumber(procNumber);
3107
3108
0
  if (result->pid == 0)
3109
0
    return NULL;
3110
3111
0
  return result;
3112
0
}
3113
3114
/*
3115
 * ProcNumberGetTransactionIds -- get a backend's transaction status
3116
 *
3117
 * Get the xid, xmin, nsubxid and overflow status of the backend.  The
3118
 * result may be out of date arbitrarily quickly, so the caller must be
3119
 * careful about how this information is used.
3120
 */
3121
void
3122
ProcNumberGetTransactionIds(ProcNumber procNumber, TransactionId *xid,
3123
              TransactionId *xmin, int *nsubxid, bool *overflowed)
3124
0
{
3125
0
  PGPROC     *proc;
3126
3127
0
  *xid = InvalidTransactionId;
3128
0
  *xmin = InvalidTransactionId;
3129
0
  *nsubxid = 0;
3130
0
  *overflowed = false;
3131
3132
0
  if (procNumber < 0 || procNumber >= ProcGlobal->allProcCount)
3133
0
    return;
3134
0
  proc = GetPGProcByNumber(procNumber);
3135
3136
  /* Need to lock out additions/removals of backends */
3137
0
  LWLockAcquire(ProcArrayLock, LW_SHARED);
3138
3139
0
  if (proc->pid != 0)
3140
0
  {
3141
0
    *xid = proc->xid;
3142
0
    *xmin = proc->xmin;
3143
0
    *nsubxid = proc->subxidStatus.count;
3144
0
    *overflowed = proc->subxidStatus.overflowed;
3145
0
  }
3146
3147
0
  LWLockRelease(ProcArrayLock);
3148
0
}
3149
3150
/*
3151
 * BackendPidGetProc -- get a backend's PGPROC given its PID
3152
 *
3153
 * Returns NULL if not found.  Note that it is up to the caller to be
3154
 * sure that the question remains meaningful for long enough for the
3155
 * answer to be used ...
3156
 */
3157
PGPROC *
3158
BackendPidGetProc(int pid)
3159
0
{
3160
0
  PGPROC     *result;
3161
3162
0
  if (pid == 0)       /* never match dummy PGPROCs */
3163
0
    return NULL;
3164
3165
0
  LWLockAcquire(ProcArrayLock, LW_SHARED);
3166
3167
0
  result = BackendPidGetProcWithLock(pid);
3168
3169
0
  LWLockRelease(ProcArrayLock);
3170
3171
0
  return result;
3172
0
}
3173
3174
/*
3175
 * BackendPidGetProcWithLock -- get a backend's PGPROC given its PID
3176
 *
3177
 * Same as above, except caller must be holding ProcArrayLock.  The found
3178
 * entry, if any, can be assumed to be valid as long as the lock remains held.
3179
 */
3180
PGPROC *
3181
BackendPidGetProcWithLock(int pid)
3182
0
{
3183
0
  PGPROC     *result = NULL;
3184
0
  ProcArrayStruct *arrayP = procArray;
3185
0
  int     index;
3186
3187
0
  if (pid == 0)       /* never match dummy PGPROCs */
3188
0
    return NULL;
3189
3190
0
  for (index = 0; index < arrayP->numProcs; index++)
3191
0
  {
3192
0
    PGPROC     *proc = &allProcs[arrayP->pgprocnos[index]];
3193
3194
0
    if (proc->pid == pid)
3195
0
    {
3196
0
      result = proc;
3197
0
      break;
3198
0
    }
3199
0
  }
3200
3201
0
  return result;
3202
0
}
3203
3204
/*
3205
 * BackendXidGetPid -- get a backend's pid given its XID
3206
 *
3207
 * Returns 0 if not found or it's a prepared transaction.  Note that
3208
 * it is up to the caller to be sure that the question remains
3209
 * meaningful for long enough for the answer to be used ...
3210
 *
3211
 * Only main transaction Ids are considered.  This function is mainly
3212
 * useful for determining what backend owns a lock.
3213
 *
3214
 * Beware that not every xact has an XID assigned.  However, as long as you
3215
 * only call this using an XID found on disk, you're safe.
3216
 */
3217
int
3218
BackendXidGetPid(TransactionId xid)
3219
0
{
3220
0
  int     result = 0;
3221
0
  ProcArrayStruct *arrayP = procArray;
3222
0
  TransactionId *other_xids = ProcGlobal->xids;
3223
0
  int     index;
3224
3225
0
  if (xid == InvalidTransactionId) /* never match invalid xid */
3226
0
    return 0;
3227
3228
0
  LWLockAcquire(ProcArrayLock, LW_SHARED);
3229
3230
0
  for (index = 0; index < arrayP->numProcs; index++)
3231
0
  {
3232
0
    if (other_xids[index] == xid)
3233
0
    {
3234
0
      int     pgprocno = arrayP->pgprocnos[index];
3235
0
      PGPROC     *proc = &allProcs[pgprocno];
3236
3237
0
      result = proc->pid;
3238
0
      break;
3239
0
    }
3240
0
  }
3241
3242
0
  LWLockRelease(ProcArrayLock);
3243
3244
0
  return result;
3245
0
}
3246
3247
/*
3248
 * IsBackendPid -- is a given pid a running backend
3249
 *
3250
 * This is not called by the backend, but is called by external modules.
3251
 */
3252
bool
3253
IsBackendPid(int pid)
3254
0
{
3255
0
  return (BackendPidGetProc(pid) != NULL);
3256
0
}
3257
3258
3259
/*
3260
 * GetCurrentVirtualXIDs -- returns an array of currently active VXIDs.
3261
 *
3262
 * The array is palloc'd. The number of valid entries is returned into *nvxids.
3263
 *
3264
 * The arguments allow filtering the set of VXIDs returned.  Our own process
3265
 * is always skipped.  In addition:
3266
 *  If limitXmin is not InvalidTransactionId, skip processes with
3267
 *    xmin > limitXmin.
3268
 *  If excludeXmin0 is true, skip processes with xmin = 0.
3269
 *  If allDbs is false, skip processes attached to other databases.
3270
 *  If excludeVacuum isn't zero, skip processes for which
3271
 *    (statusFlags & excludeVacuum) is not zero.
3272
 *
3273
 * Note: the purpose of the limitXmin and excludeXmin0 parameters is to
3274
 * allow skipping backends whose oldest live snapshot is no older than
3275
 * some snapshot we have.  Since we examine the procarray with only shared
3276
 * lock, there are race conditions: a backend could set its xmin just after
3277
 * we look.  Indeed, on multiprocessors with weak memory ordering, the
3278
 * other backend could have set its xmin *before* we look.  We know however
3279
 * that such a backend must have held shared ProcArrayLock overlapping our
3280
 * own hold of ProcArrayLock, else we would see its xmin update.  Therefore,
3281
 * any snapshot the other backend is taking concurrently with our scan cannot
3282
 * consider any transactions as still running that we think are committed
3283
 * (since backends must hold ProcArrayLock exclusive to commit).
3284
 */
3285
VirtualTransactionId *
3286
GetCurrentVirtualXIDs(TransactionId limitXmin, bool excludeXmin0,
3287
            bool allDbs, int excludeVacuum,
3288
            int *nvxids)
3289
0
{
3290
0
  VirtualTransactionId *vxids;
3291
0
  ProcArrayStruct *arrayP = procArray;
3292
0
  int     count = 0;
3293
0
  int     index;
3294
3295
  /* allocate what's certainly enough result space */
3296
0
  vxids = (VirtualTransactionId *)
3297
0
    palloc(sizeof(VirtualTransactionId) * arrayP->maxProcs);
3298
3299
0
  LWLockAcquire(ProcArrayLock, LW_SHARED);
3300
3301
0
  for (index = 0; index < arrayP->numProcs; index++)
3302
0
  {
3303
0
    int     pgprocno = arrayP->pgprocnos[index];
3304
0
    PGPROC     *proc = &allProcs[pgprocno];
3305
0
    uint8   statusFlags = ProcGlobal->statusFlags[index];
3306
3307
0
    if (proc == MyProc)
3308
0
      continue;
3309
3310
0
    if (excludeVacuum & statusFlags)
3311
0
      continue;
3312
3313
0
    if (allDbs || proc->databaseId == MyDatabaseId)
3314
0
    {
3315
      /* Fetch xmin just once - might change on us */
3316
0
      TransactionId pxmin = UINT32_ACCESS_ONCE(proc->xmin);
3317
3318
0
      if (excludeXmin0 && !TransactionIdIsValid(pxmin))
3319
0
        continue;
3320
3321
      /*
3322
       * InvalidTransactionId precedes all other XIDs, so a proc that
3323
       * hasn't set xmin yet will not be rejected by this test.
3324
       */
3325
0
      if (!TransactionIdIsValid(limitXmin) ||
3326
0
        TransactionIdPrecedesOrEquals(pxmin, limitXmin))
3327
0
      {
3328
0
        VirtualTransactionId vxid;
3329
3330
0
        GET_VXID_FROM_PGPROC(vxid, *proc);
3331
0
        if (VirtualTransactionIdIsValid(vxid))
3332
0
          vxids[count++] = vxid;
3333
0
      }
3334
0
    }
3335
0
  }
3336
3337
0
  LWLockRelease(ProcArrayLock);
3338
3339
0
  *nvxids = count;
3340
0
  return vxids;
3341
0
}
3342
3343
/*
3344
 * GetConflictingVirtualXIDs -- returns an array of currently active VXIDs.
3345
 *
3346
 * Usage is limited to conflict resolution during recovery on standby servers.
3347
 * limitXmin is supplied as either a cutoff with snapshotConflictHorizon
3348
 * semantics, or InvalidTransactionId in cases where caller cannot accurately
3349
 * determine a safe snapshotConflictHorizon value.
3350
 *
3351
 * If limitXmin is InvalidTransactionId then we want to kill everybody,
3352
 * so we're not worried if they have a snapshot or not, nor does it really
3353
 * matter what type of lock we hold.  Caller must avoid calling here with
3354
 * snapshotConflictHorizon style cutoffs that were set to InvalidTransactionId
3355
 * during original execution, since that actually indicates that there is
3356
 * definitely no need for a recovery conflict (the snapshotConflictHorizon
3357
 * convention for InvalidTransactionId values is the opposite of our own!).
3358
 *
3359
 * All callers that are checking xmins always now supply a valid and useful
3360
 * value for limitXmin. The limitXmin is always lower than the lowest
3361
 * numbered KnownAssignedXid that is not already a FATAL error. This is
3362
 * because we only care about cleanup records that are cleaning up tuple
3363
 * versions from committed transactions. In that case they will only occur
3364
 * at the point where the record is less than the lowest running xid. That
3365
 * allows us to say that if any backend takes a snapshot concurrently with
3366
 * us then the conflict assessment made here would never include the snapshot
3367
 * that is being derived. So we take LW_SHARED on the ProcArray and allow
3368
 * concurrent snapshots when limitXmin is valid. We might think about adding
3369
 *   Assert(limitXmin < lowest(KnownAssignedXids))
3370
 * but that would not be true in the case of FATAL errors lagging in array,
3371
 * but we already know those are bogus anyway, so we skip that test.
3372
 *
3373
 * If dbOid is valid we skip backends attached to other databases.
3374
 *
3375
 * Be careful to *not* pfree the result from this function. We reuse
3376
 * this array sufficiently often that we use malloc for the result.
3377
 */
3378
VirtualTransactionId *
3379
GetConflictingVirtualXIDs(TransactionId limitXmin, Oid dbOid)
3380
0
{
3381
0
  static VirtualTransactionId *vxids;
3382
0
  ProcArrayStruct *arrayP = procArray;
3383
0
  int     count = 0;
3384
0
  int     index;
3385
3386
  /*
3387
   * If first time through, get workspace to remember main XIDs in. We
3388
   * malloc it permanently to avoid repeated palloc/pfree overhead. Allow
3389
   * result space, remembering room for a terminator.
3390
   */
3391
0
  if (vxids == NULL)
3392
0
  {
3393
0
    vxids = (VirtualTransactionId *)
3394
0
      malloc(sizeof(VirtualTransactionId) * (arrayP->maxProcs + 1));
3395
0
    if (vxids == NULL)
3396
0
      ereport(ERROR,
3397
0
          (errcode(ERRCODE_OUT_OF_MEMORY),
3398
0
           errmsg("out of memory")));
3399
0
  }
3400
3401
0
  LWLockAcquire(ProcArrayLock, LW_SHARED);
3402
3403
0
  for (index = 0; index < arrayP->numProcs; index++)
3404
0
  {
3405
0
    int     pgprocno = arrayP->pgprocnos[index];
3406
0
    PGPROC     *proc = &allProcs[pgprocno];
3407
3408
    /* Exclude prepared transactions */
3409
0
    if (proc->pid == 0)
3410
0
      continue;
3411
3412
0
    if (!OidIsValid(dbOid) ||
3413
0
      proc->databaseId == dbOid)
3414
0
    {
3415
      /* Fetch xmin just once - can't change on us, but good coding */
3416
0
      TransactionId pxmin = UINT32_ACCESS_ONCE(proc->xmin);
3417
3418
      /*
3419
       * We ignore an invalid pxmin because this means that backend has
3420
       * no snapshot currently. We hold a Share lock to avoid contention
3421
       * with users taking snapshots.  That is not a problem because the
3422
       * current xmin is always at least one higher than the latest
3423
       * removed xid, so any new snapshot would never conflict with the
3424
       * test here.
3425
       */
3426
0
      if (!TransactionIdIsValid(limitXmin) ||
3427
0
        (TransactionIdIsValid(pxmin) && !TransactionIdFollows(pxmin, limitXmin)))
3428
0
      {
3429
0
        VirtualTransactionId vxid;
3430
3431
0
        GET_VXID_FROM_PGPROC(vxid, *proc);
3432
0
        if (VirtualTransactionIdIsValid(vxid))
3433
0
          vxids[count++] = vxid;
3434
0
      }
3435
0
    }
3436
0
  }
3437
3438
0
  LWLockRelease(ProcArrayLock);
3439
3440
  /* add the terminator */
3441
0
  vxids[count].procNumber = INVALID_PROC_NUMBER;
3442
0
  vxids[count].localTransactionId = InvalidLocalTransactionId;
3443
3444
0
  return vxids;
3445
0
}
3446
3447
/*
3448
 * CancelVirtualTransaction - used in recovery conflict processing
3449
 *
3450
 * Returns pid of the process signaled, or 0 if not found.
3451
 */
3452
pid_t
3453
CancelVirtualTransaction(VirtualTransactionId vxid, ProcSignalReason sigmode)
3454
0
{
3455
0
  return SignalVirtualTransaction(vxid, sigmode, true);
3456
0
}
3457
3458
pid_t
3459
SignalVirtualTransaction(VirtualTransactionId vxid, ProcSignalReason sigmode,
3460
             bool conflictPending)
3461
0
{
3462
0
  ProcArrayStruct *arrayP = procArray;
3463
0
  int     index;
3464
0
  pid_t   pid = 0;
3465
3466
0
  LWLockAcquire(ProcArrayLock, LW_SHARED);
3467
3468
0
  for (index = 0; index < arrayP->numProcs; index++)
3469
0
  {
3470
0
    int     pgprocno = arrayP->pgprocnos[index];
3471
0
    PGPROC     *proc = &allProcs[pgprocno];
3472
0
    VirtualTransactionId procvxid;
3473
3474
0
    GET_VXID_FROM_PGPROC(procvxid, *proc);
3475
3476
0
    if (procvxid.procNumber == vxid.procNumber &&
3477
0
      procvxid.localTransactionId == vxid.localTransactionId)
3478
0
    {
3479
0
      proc->recoveryConflictPending = conflictPending;
3480
0
      pid = proc->pid;
3481
0
      if (pid != 0)
3482
0
      {
3483
        /*
3484
         * Kill the pid if it's still here. If not, that's what we
3485
         * wanted so ignore any errors.
3486
         */
3487
0
        (void) SendProcSignal(pid, sigmode, vxid.procNumber);
3488
0
      }
3489
0
      break;
3490
0
    }
3491
0
  }
3492
3493
0
  LWLockRelease(ProcArrayLock);
3494
3495
0
  return pid;
3496
0
}
3497
3498
/*
3499
 * MinimumActiveBackends --- count backends (other than myself) that are
3500
 *    in active transactions.  Return true if the count exceeds the
3501
 *    minimum threshold passed.  This is used as a heuristic to decide if
3502
 *    a pre-XLOG-flush delay is worthwhile during commit.
3503
 *
3504
 * Do not count backends that are blocked waiting for locks, since they are
3505
 * not going to get to run until someone else commits.
3506
 */
3507
bool
3508
MinimumActiveBackends(int min)
3509
0
{
3510
0
  ProcArrayStruct *arrayP = procArray;
3511
0
  int     count = 0;
3512
0
  int     index;
3513
3514
  /* Quick short-circuit if no minimum is specified */
3515
0
  if (min == 0)
3516
0
    return true;
3517
3518
  /*
3519
   * Note: for speed, we don't acquire ProcArrayLock.  This is a little bit
3520
   * bogus, but since we are only testing fields for zero or nonzero, it
3521
   * should be OK.  The result is only used for heuristic purposes anyway...
3522
   */
3523
0
  for (index = 0; index < arrayP->numProcs; index++)
3524
0
  {
3525
0
    int     pgprocno = arrayP->pgprocnos[index];
3526
0
    PGPROC     *proc = &allProcs[pgprocno];
3527
3528
    /*
3529
     * Since we're not holding a lock, need to be prepared to deal with
3530
     * garbage, as someone could have incremented numProcs but not yet
3531
     * filled the structure.
3532
     *
3533
     * If someone just decremented numProcs, 'proc' could also point to a
3534
     * PGPROC entry that's no longer in the array. It still points to a
3535
     * PGPROC struct, though, because freed PGPROC entries just go to the
3536
     * free list and are recycled. Its contents are nonsense in that case,
3537
     * but that's acceptable for this function.
3538
     */
3539
0
    if (pgprocno == -1)
3540
0
      continue;     /* do not count deleted entries */
3541
0
    if (proc == MyProc)
3542
0
      continue;     /* do not count myself */
3543
0
    if (proc->xid == InvalidTransactionId)
3544
0
      continue;     /* do not count if no XID assigned */
3545
0
    if (proc->pid == 0)
3546
0
      continue;     /* do not count prepared xacts */
3547
0
    if (proc->waitLock != NULL)
3548
0
      continue;     /* do not count if blocked on a lock */
3549
0
    count++;
3550
0
    if (count >= min)
3551
0
      break;
3552
0
  }
3553
3554
0
  return count >= min;
3555
0
}
3556
3557
/*
3558
 * CountDBBackends --- count backends that are using specified database
3559
 */
3560
int
3561
CountDBBackends(Oid databaseid)
3562
0
{
3563
0
  ProcArrayStruct *arrayP = procArray;
3564
0
  int     count = 0;
3565
0
  int     index;
3566
3567
0
  LWLockAcquire(ProcArrayLock, LW_SHARED);
3568
3569
0
  for (index = 0; index < arrayP->numProcs; index++)
3570
0
  {
3571
0
    int     pgprocno = arrayP->pgprocnos[index];
3572
0
    PGPROC     *proc = &allProcs[pgprocno];
3573
3574
0
    if (proc->pid == 0)
3575
0
      continue;     /* do not count prepared xacts */
3576
0
    if (!OidIsValid(databaseid) ||
3577
0
      proc->databaseId == databaseid)
3578
0
      count++;
3579
0
  }
3580
3581
0
  LWLockRelease(ProcArrayLock);
3582
3583
0
  return count;
3584
0
}
3585
3586
/*
3587
 * CountDBConnections --- counts database backends (only regular backends)
3588
 */
3589
int
3590
CountDBConnections(Oid databaseid)
3591
0
{
3592
0
  ProcArrayStruct *arrayP = procArray;
3593
0
  int     count = 0;
3594
0
  int     index;
3595
3596
0
  LWLockAcquire(ProcArrayLock, LW_SHARED);
3597
3598
0
  for (index = 0; index < arrayP->numProcs; index++)
3599
0
  {
3600
0
    int     pgprocno = arrayP->pgprocnos[index];
3601
0
    PGPROC     *proc = &allProcs[pgprocno];
3602
3603
0
    if (proc->pid == 0)
3604
0
      continue;     /* do not count prepared xacts */
3605
0
    if (!proc->isRegularBackend)
3606
0
      continue;     /* count only regular backend processes */
3607
0
    if (!OidIsValid(databaseid) ||
3608
0
      proc->databaseId == databaseid)
3609
0
      count++;
3610
0
  }
3611
3612
0
  LWLockRelease(ProcArrayLock);
3613
3614
0
  return count;
3615
0
}
3616
3617
/*
3618
 * CancelDBBackends --- cancel backends that are using specified database
3619
 */
3620
void
3621
CancelDBBackends(Oid databaseid, ProcSignalReason sigmode, bool conflictPending)
3622
0
{
3623
0
  ProcArrayStruct *arrayP = procArray;
3624
0
  int     index;
3625
3626
  /* tell all backends to die */
3627
0
  LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
3628
3629
0
  for (index = 0; index < arrayP->numProcs; index++)
3630
0
  {
3631
0
    int     pgprocno = arrayP->pgprocnos[index];
3632
0
    PGPROC     *proc = &allProcs[pgprocno];
3633
3634
0
    if (databaseid == InvalidOid || proc->databaseId == databaseid)
3635
0
    {
3636
0
      VirtualTransactionId procvxid;
3637
0
      pid_t   pid;
3638
3639
0
      GET_VXID_FROM_PGPROC(procvxid, *proc);
3640
3641
0
      proc->recoveryConflictPending = conflictPending;
3642
0
      pid = proc->pid;
3643
0
      if (pid != 0)
3644
0
      {
3645
        /*
3646
         * Kill the pid if it's still here. If not, that's what we
3647
         * wanted so ignore any errors.
3648
         */
3649
0
        (void) SendProcSignal(pid, sigmode, procvxid.procNumber);
3650
0
      }
3651
0
    }
3652
0
  }
3653
3654
0
  LWLockRelease(ProcArrayLock);
3655
0
}
3656
3657
/*
3658
 * CountUserBackends --- count backends that are used by specified user
3659
 * (only regular backends, not any type of background worker)
3660
 */
3661
int
3662
CountUserBackends(Oid roleid)
3663
0
{
3664
0
  ProcArrayStruct *arrayP = procArray;
3665
0
  int     count = 0;
3666
0
  int     index;
3667
3668
0
  LWLockAcquire(ProcArrayLock, LW_SHARED);
3669
3670
0
  for (index = 0; index < arrayP->numProcs; index++)
3671
0
  {
3672
0
    int     pgprocno = arrayP->pgprocnos[index];
3673
0
    PGPROC     *proc = &allProcs[pgprocno];
3674
3675
0
    if (proc->pid == 0)
3676
0
      continue;     /* do not count prepared xacts */
3677
0
    if (!proc->isRegularBackend)
3678
0
      continue;     /* count only regular backend processes */
3679
0
    if (proc->roleId == roleid)
3680
0
      count++;
3681
0
  }
3682
3683
0
  LWLockRelease(ProcArrayLock);
3684
3685
0
  return count;
3686
0
}
3687
3688
/*
3689
 * CountOtherDBBackends -- check for other backends running in the given DB
3690
 *
3691
 * If there are other backends in the DB, we will wait a maximum of 5 seconds
3692
 * for them to exit.  Autovacuum backends are encouraged to exit early by
3693
 * sending them SIGTERM, but normal user backends are just waited for.
3694
 *
3695
 * The current backend is always ignored; it is caller's responsibility to
3696
 * check whether the current backend uses the given DB, if it's important.
3697
 *
3698
 * Returns true if there are (still) other backends in the DB, false if not.
3699
 * Also, *nbackends and *nprepared are set to the number of other backends
3700
 * and prepared transactions in the DB, respectively.
3701
 *
3702
 * This function is used to interlock DROP DATABASE and related commands
3703
 * against there being any active backends in the target DB --- dropping the
3704
 * DB while active backends remain would be a Bad Thing.  Note that we cannot
3705
 * detect here the possibility of a newly-started backend that is trying to
3706
 * connect to the doomed database, so additional interlocking is needed during
3707
 * backend startup.  The caller should normally hold an exclusive lock on the
3708
 * target DB before calling this, which is one reason we mustn't wait
3709
 * indefinitely.
3710
 */
3711
bool
3712
CountOtherDBBackends(Oid databaseId, int *nbackends, int *nprepared)
3713
0
{
3714
0
  ProcArrayStruct *arrayP = procArray;
3715
3716
0
#define MAXAUTOVACPIDS  10    /* max autovacs to SIGTERM per iteration */
3717
0
  int     autovac_pids[MAXAUTOVACPIDS];
3718
0
  int     tries;
3719
3720
  /* 50 tries with 100ms sleep between tries makes 5 sec total wait */
3721
0
  for (tries = 0; tries < 50; tries++)
3722
0
  {
3723
0
    int     nautovacs = 0;
3724
0
    bool    found = false;
3725
0
    int     index;
3726
3727
0
    CHECK_FOR_INTERRUPTS();
3728
3729
0
    *nbackends = *nprepared = 0;
3730
3731
0
    LWLockAcquire(ProcArrayLock, LW_SHARED);
3732
3733
0
    for (index = 0; index < arrayP->numProcs; index++)
3734
0
    {
3735
0
      int     pgprocno = arrayP->pgprocnos[index];
3736
0
      PGPROC     *proc = &allProcs[pgprocno];
3737
0
      uint8   statusFlags = ProcGlobal->statusFlags[index];
3738
3739
0
      if (proc->databaseId != databaseId)
3740
0
        continue;
3741
0
      if (proc == MyProc)
3742
0
        continue;
3743
3744
0
      found = true;
3745
3746
0
      if (proc->pid == 0)
3747
0
        (*nprepared)++;
3748
0
      else
3749
0
      {
3750
0
        (*nbackends)++;
3751
0
        if ((statusFlags & PROC_IS_AUTOVACUUM) &&
3752
0
          nautovacs < MAXAUTOVACPIDS)
3753
0
          autovac_pids[nautovacs++] = proc->pid;
3754
0
      }
3755
0
    }
3756
3757
0
    LWLockRelease(ProcArrayLock);
3758
3759
0
    if (!found)
3760
0
      return false;   /* no conflicting backends, so done */
3761
3762
    /*
3763
     * Send SIGTERM to any conflicting autovacuums before sleeping. We
3764
     * postpone this step until after the loop because we don't want to
3765
     * hold ProcArrayLock while issuing kill(). We have no idea what might
3766
     * block kill() inside the kernel...
3767
     */
3768
0
    for (index = 0; index < nautovacs; index++)
3769
0
      (void) kill(autovac_pids[index], SIGTERM); /* ignore any error */
3770
3771
    /* sleep, then try again */
3772
0
    pg_usleep(100 * 1000L); /* 100ms */
3773
0
  }
3774
3775
0
  return true;       /* timed out, still conflicts */
3776
0
}
3777
3778
/*
3779
 * Terminate existing connections to the specified database. This routine
3780
 * is used by the DROP DATABASE command when user has asked to forcefully
3781
 * drop the database.
3782
 *
3783
 * The current backend is always ignored; it is caller's responsibility to
3784
 * check whether the current backend uses the given DB, if it's important.
3785
 *
3786
 * If the target database has a prepared transaction or permissions checks
3787
 * fail for a connection, this fails without terminating anything.
3788
 */
3789
void
3790
TerminateOtherDBBackends(Oid databaseId)
3791
0
{
3792
0
  ProcArrayStruct *arrayP = procArray;
3793
0
  List     *pids = NIL;
3794
0
  int     nprepared = 0;
3795
0
  int     i;
3796
3797
0
  LWLockAcquire(ProcArrayLock, LW_SHARED);
3798
3799
0
  for (i = 0; i < procArray->numProcs; i++)
3800
0
  {
3801
0
    int     pgprocno = arrayP->pgprocnos[i];
3802
0
    PGPROC     *proc = &allProcs[pgprocno];
3803
3804
0
    if (proc->databaseId != databaseId)
3805
0
      continue;
3806
0
    if (proc == MyProc)
3807
0
      continue;
3808
3809
0
    if (proc->pid != 0)
3810
0
      pids = lappend_int(pids, proc->pid);
3811
0
    else
3812
0
      nprepared++;
3813
0
  }
3814
3815
0
  LWLockRelease(ProcArrayLock);
3816
3817
0
  if (nprepared > 0)
3818
0
    ereport(ERROR,
3819
0
        (errcode(ERRCODE_OBJECT_IN_USE),
3820
0
         errmsg("database \"%s\" is being used by prepared transactions",
3821
0
            get_database_name(databaseId)),
3822
0
         errdetail_plural("There is %d prepared transaction using the database.",
3823
0
                  "There are %d prepared transactions using the database.",
3824
0
                  nprepared,
3825
0
                  nprepared)));
3826
3827
0
  if (pids)
3828
0
  {
3829
0
    ListCell   *lc;
3830
3831
    /*
3832
     * Permissions checks relax the pg_terminate_backend checks in two
3833
     * ways, both by omitting the !OidIsValid(proc->roleId) check:
3834
     *
3835
     * - Accept terminating autovacuum workers, since DROP DATABASE
3836
     * without FORCE terminates them.
3837
     *
3838
     * - Accept terminating bgworkers.  For bgworker authors, it's
3839
     * convenient to be able to recommend FORCE if a worker is blocking
3840
     * DROP DATABASE unexpectedly.
3841
     *
3842
     * Unlike pg_terminate_backend, we don't raise some warnings - like
3843
     * "PID %d is not a PostgreSQL server process", because for us already
3844
     * finished session is not a problem.
3845
     */
3846
0
    foreach(lc, pids)
3847
0
    {
3848
0
      int     pid = lfirst_int(lc);
3849
0
      PGPROC     *proc = BackendPidGetProc(pid);
3850
3851
0
      if (proc != NULL)
3852
0
      {
3853
0
        if (superuser_arg(proc->roleId) && !superuser())
3854
0
          ereport(ERROR,
3855
0
              (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
3856
0
               errmsg("permission denied to terminate process"),
3857
0
               errdetail("Only roles with the %s attribute may terminate processes of roles with the %s attribute.",
3858
0
                     "SUPERUSER", "SUPERUSER")));
3859
3860
0
        if (!has_privs_of_role(GetUserId(), proc->roleId) &&
3861
0
          !has_privs_of_role(GetUserId(), ROLE_PG_SIGNAL_BACKEND))
3862
0
          ereport(ERROR,
3863
0
              (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
3864
0
               errmsg("permission denied to terminate process"),
3865
0
               errdetail("Only roles with privileges of the role whose process is being terminated or with privileges of the \"%s\" role may terminate this process.",
3866
0
                     "pg_signal_backend")));
3867
0
      }
3868
0
    }
3869
3870
    /*
3871
     * There's a race condition here: once we release the ProcArrayLock,
3872
     * it's possible for the session to exit before we issue kill.  That
3873
     * race condition possibility seems too unlikely to worry about.  See
3874
     * pg_signal_backend.
3875
     */
3876
0
    foreach(lc, pids)
3877
0
    {
3878
0
      int     pid = lfirst_int(lc);
3879
0
      PGPROC     *proc = BackendPidGetProc(pid);
3880
3881
0
      if (proc != NULL)
3882
0
      {
3883
        /*
3884
         * If we have setsid(), signal the backend's whole process
3885
         * group
3886
         */
3887
0
#ifdef HAVE_SETSID
3888
0
        (void) kill(-pid, SIGTERM);
3889
#else
3890
        (void) kill(pid, SIGTERM);
3891
#endif
3892
0
      }
3893
0
    }
3894
0
  }
3895
0
}
3896
3897
/*
3898
 * ProcArraySetReplicationSlotXmin
3899
 *
3900
 * Install limits to future computations of the xmin horizon to prevent vacuum
3901
 * and HOT pruning from removing affected rows still needed by clients with
3902
 * replication slots.
3903
 */
3904
void
3905
ProcArraySetReplicationSlotXmin(TransactionId xmin, TransactionId catalog_xmin,
3906
                bool already_locked)
3907
{
3908
  Assert(!already_locked || LWLockHeldByMe(ProcArrayLock));
3909
3910
  if (!already_locked)
3911
    LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
3912
3913
  procArray->replication_slot_xmin = xmin;
3914
  procArray->replication_slot_catalog_xmin = catalog_xmin;
3915
3916
  if (!already_locked)
3917
    LWLockRelease(ProcArrayLock);
3918
3919
  elog(DEBUG1, "xmin required by slots: data %u, catalog %u",
3920
     xmin, catalog_xmin);
3921
}
3922
3923
/*
3924
 * ProcArrayGetReplicationSlotXmin
3925
 *
3926
 * Return the current slot xmin limits. That's useful to be able to remove
3927
 * data that's older than those limits.
3928
 */
3929
void
3930
ProcArrayGetReplicationSlotXmin(TransactionId *xmin,
3931
                TransactionId *catalog_xmin)
3932
0
{
3933
0
  LWLockAcquire(ProcArrayLock, LW_SHARED);
3934
3935
0
  if (xmin != NULL)
3936
0
    *xmin = procArray->replication_slot_xmin;
3937
3938
0
  if (catalog_xmin != NULL)
3939
0
    *catalog_xmin = procArray->replication_slot_catalog_xmin;
3940
3941
0
  LWLockRelease(ProcArrayLock);
3942
0
}
3943
3944
/*
3945
 * XidCacheRemoveRunningXids
3946
 *
3947
 * Remove a bunch of TransactionIds from the list of known-running
3948
 * subtransactions for my backend.  Both the specified xid and those in
3949
 * the xids[] array (of length nxids) are removed from the subxids cache.
3950
 * latestXid must be the latest XID among the group.
3951
 */
3952
void
3953
XidCacheRemoveRunningXids(TransactionId xid,
3954
              int nxids, const TransactionId *xids,
3955
              TransactionId latestXid)
3956
{
3957
  int     i,
3958
        j;
3959
  XidCacheStatus *mysubxidstat;
3960
3961
  Assert(TransactionIdIsValid(xid));
3962
3963
  /*
3964
   * We must hold ProcArrayLock exclusively in order to remove transactions
3965
   * from the PGPROC array.  (See src/backend/access/transam/README.)  It's
3966
   * possible this could be relaxed since we know this routine is only used
3967
   * to abort subtransactions, but pending closer analysis we'd best be
3968
   * conservative.
3969
   *
3970
   * Note that we do not have to be careful about memory ordering of our own
3971
   * reads wrt. GetNewTransactionId() here - only this process can modify
3972
   * relevant fields of MyProc/ProcGlobal->xids[].  But we do have to be
3973
   * careful about our own writes being well ordered.
3974
   */
3975
  LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
3976
3977
  mysubxidstat = &ProcGlobal->subxidStates[MyProc->pgxactoff];
3978
3979
  /*
3980
   * Under normal circumstances xid and xids[] will be in increasing order,
3981
   * as will be the entries in subxids.  Scan backwards to avoid O(N^2)
3982
   * behavior when removing a lot of xids.
3983
   */
3984
  for (i = nxids - 1; i >= 0; i--)
3985
  {
3986
    TransactionId anxid = xids[i];
3987
3988
    for (j = MyProc->subxidStatus.count - 1; j >= 0; j--)
3989
    {
3990
      if (TransactionIdEquals(MyProc->subxids.xids[j], anxid))
3991
      {
3992
        MyProc->subxids.xids[j] = MyProc->subxids.xids[MyProc->subxidStatus.count - 1];
3993
        pg_write_barrier();
3994
        mysubxidstat->count--;
3995
        MyProc->subxidStatus.count--;
3996
        break;
3997
      }
3998
    }
3999
4000
    /*
4001
     * Ordinarily we should have found it, unless the cache has
4002
     * overflowed. However it's also possible for this routine to be
4003
     * invoked multiple times for the same subtransaction, in case of an
4004
     * error during AbortSubTransaction.  So instead of Assert, emit a
4005
     * debug warning.
4006
     */
4007
    if (j < 0 && !MyProc->subxidStatus.overflowed)
4008
      elog(WARNING, "did not find subXID %u in MyProc", anxid);
4009
  }
4010
4011
  for (j = MyProc->subxidStatus.count - 1; j >= 0; j--)
4012
  {
4013
    if (TransactionIdEquals(MyProc->subxids.xids[j], xid))
4014
    {
4015
      MyProc->subxids.xids[j] = MyProc->subxids.xids[MyProc->subxidStatus.count - 1];
4016
      pg_write_barrier();
4017
      mysubxidstat->count--;
4018
      MyProc->subxidStatus.count--;
4019
      break;
4020
    }
4021
  }
4022
  /* Ordinarily we should have found it, unless the cache has overflowed */
4023
  if (j < 0 && !MyProc->subxidStatus.overflowed)
4024
    elog(WARNING, "did not find subXID %u in MyProc", xid);
4025
4026
  /* Also advance global latestCompletedXid while holding the lock */
4027
  MaintainLatestCompletedXid(latestXid);
4028
4029
  /* ... and xactCompletionCount */
4030
  TransamVariables->xactCompletionCount++;
4031
4032
  LWLockRelease(ProcArrayLock);
4033
}
4034
4035
#ifdef XIDCACHE_DEBUG
4036
4037
/*
4038
 * Print stats about effectiveness of XID cache
4039
 */
4040
static void
4041
DisplayXidCache(void)
4042
{
4043
  fprintf(stderr,
4044
      "XidCache: xmin: %ld, known: %ld, myxact: %ld, latest: %ld, mainxid: %ld, childxid: %ld, knownassigned: %ld, nooflo: %ld, slow: %ld\n",
4045
      xc_by_recent_xmin,
4046
      xc_by_known_xact,
4047
      xc_by_my_xact,
4048
      xc_by_latest_xid,
4049
      xc_by_main_xid,
4050
      xc_by_child_xid,
4051
      xc_by_known_assigned,
4052
      xc_no_overflow,
4053
      xc_slow_answer);
4054
}
4055
#endif              /* XIDCACHE_DEBUG */
4056
4057
/*
4058
 * If rel != NULL, return test state appropriate for relation, otherwise
4059
 * return state usable for all relations.  The latter may consider XIDs as
4060
 * not-yet-visible-to-everyone that a state for a specific relation would
4061
 * already consider visible-to-everyone.
4062
 *
4063
 * This needs to be called while a snapshot is active or registered, otherwise
4064
 * there are wraparound and other dangers.
4065
 *
4066
 * See comment for GlobalVisState for details.
4067
 */
4068
GlobalVisState *
4069
GlobalVisTestFor(Relation rel)
4070
0
{
4071
0
  GlobalVisState *state = NULL;
4072
4073
  /* XXX: we should assert that a snapshot is pushed or registered */
4074
0
  Assert(RecentXmin);
4075
4076
0
  switch (GlobalVisHorizonKindForRel(rel))
4077
0
  {
4078
0
    case VISHORIZON_SHARED:
4079
0
      state = &GlobalVisSharedRels;
4080
0
      break;
4081
0
    case VISHORIZON_CATALOG:
4082
0
      state = &GlobalVisCatalogRels;
4083
0
      break;
4084
0
    case VISHORIZON_DATA:
4085
0
      state = &GlobalVisDataRels;
4086
0
      break;
4087
0
    case VISHORIZON_TEMP:
4088
0
      state = &GlobalVisTempRels;
4089
0
      break;
4090
0
  }
4091
4092
0
  Assert(FullTransactionIdIsValid(state->definitely_needed) &&
4093
0
       FullTransactionIdIsValid(state->maybe_needed));
4094
4095
0
  return state;
4096
0
}
4097
4098
/*
4099
 * Return true if it's worth updating the accurate maybe_needed boundary.
4100
 *
4101
 * As it is somewhat expensive to determine xmin horizons, we don't want to
4102
 * repeatedly do so when there is a low likelihood of it being beneficial.
4103
 *
4104
 * The current heuristic is that we update only if RecentXmin has changed
4105
 * since the last update. If the oldest currently running transaction has not
4106
 * finished, it is unlikely that recomputing the horizon would be useful.
4107
 */
4108
static bool
4109
GlobalVisTestShouldUpdate(GlobalVisState *state)
4110
0
{
4111
  /* hasn't been updated yet */
4112
0
  if (!TransactionIdIsValid(ComputeXidHorizonsResultLastXmin))
4113
0
    return true;
4114
4115
  /*
4116
   * If the maybe_needed/definitely_needed boundaries are the same, it's
4117
   * unlikely to be beneficial to refresh boundaries.
4118
   */
4119
0
  if (FullTransactionIdFollowsOrEquals(state->maybe_needed,
4120
0
                     state->definitely_needed))
4121
0
    return false;
4122
4123
  /* does the last snapshot built have a different xmin? */
4124
0
  return RecentXmin != ComputeXidHorizonsResultLastXmin;
4125
0
}
4126
4127
static void
4128
GlobalVisUpdateApply(ComputeXidHorizonsResult *horizons)
4129
0
{
4130
0
  GlobalVisSharedRels.maybe_needed =
4131
0
    FullXidRelativeTo(horizons->latest_completed,
4132
0
              horizons->shared_oldest_nonremovable);
4133
0
  GlobalVisCatalogRels.maybe_needed =
4134
0
    FullXidRelativeTo(horizons->latest_completed,
4135
0
              horizons->catalog_oldest_nonremovable);
4136
0
  GlobalVisDataRels.maybe_needed =
4137
0
    FullXidRelativeTo(horizons->latest_completed,
4138
0
              horizons->data_oldest_nonremovable);
4139
0
  GlobalVisTempRels.maybe_needed =
4140
0
    FullXidRelativeTo(horizons->latest_completed,
4141
0
              horizons->temp_oldest_nonremovable);
4142
4143
  /*
4144
   * In longer running transactions it's possible that transactions we
4145
   * previously needed to treat as running aren't around anymore. So update
4146
   * definitely_needed to not be earlier than maybe_needed.
4147
   */
4148
0
  GlobalVisSharedRels.definitely_needed =
4149
0
    FullTransactionIdNewer(GlobalVisSharedRels.maybe_needed,
4150
0
                 GlobalVisSharedRels.definitely_needed);
4151
0
  GlobalVisCatalogRels.definitely_needed =
4152
0
    FullTransactionIdNewer(GlobalVisCatalogRels.maybe_needed,
4153
0
                 GlobalVisCatalogRels.definitely_needed);
4154
0
  GlobalVisDataRels.definitely_needed =
4155
0
    FullTransactionIdNewer(GlobalVisDataRels.maybe_needed,
4156
0
                 GlobalVisDataRels.definitely_needed);
4157
0
  GlobalVisTempRels.definitely_needed = GlobalVisTempRels.maybe_needed;
4158
4159
0
  ComputeXidHorizonsResultLastXmin = RecentXmin;
4160
0
}
4161
4162
/*
4163
 * Update boundaries in GlobalVis{Shared,Catalog, Data}Rels
4164
 * using ComputeXidHorizons().
4165
 */
4166
static void
4167
GlobalVisUpdate(void)
4168
0
{
4169
0
  ComputeXidHorizonsResult horizons;
4170
4171
  /* updates the horizons as a side-effect */
4172
0
  ComputeXidHorizons(&horizons);
4173
0
}
4174
4175
/*
4176
 * Return true if no snapshot still considers fxid to be running.
4177
 *
4178
 * The state passed needs to have been initialized for the relation fxid is
4179
 * from (NULL is also OK), otherwise the result may not be correct.
4180
 *
4181
 * See comment for GlobalVisState for details.
4182
 */
4183
bool
4184
GlobalVisTestIsRemovableFullXid(GlobalVisState *state,
4185
                FullTransactionId fxid)
4186
0
{
4187
  /*
4188
   * If fxid is older than maybe_needed bound, it definitely is visible to
4189
   * everyone.
4190
   */
4191
0
  if (FullTransactionIdPrecedes(fxid, state->maybe_needed))
4192
0
    return true;
4193
4194
  /*
4195
   * If fxid is >= definitely_needed bound, it is very likely to still be
4196
   * considered running.
4197
   */
4198
0
  if (FullTransactionIdFollowsOrEquals(fxid, state->definitely_needed))
4199
0
    return false;
4200
4201
  /*
4202
   * fxid is between maybe_needed and definitely_needed, i.e. there might or
4203
   * might not exist a snapshot considering fxid running. If it makes sense,
4204
   * update boundaries and recheck.
4205
   */
4206
0
  if (GlobalVisTestShouldUpdate(state))
4207
0
  {
4208
0
    GlobalVisUpdate();
4209
4210
0
    Assert(FullTransactionIdPrecedes(fxid, state->definitely_needed));
4211
4212
0
    return FullTransactionIdPrecedes(fxid, state->maybe_needed);
4213
0
  }
4214
0
  else
4215
0
    return false;
4216
0
}
4217
4218
/*
4219
 * Wrapper around GlobalVisTestIsRemovableFullXid() for 32bit xids.
4220
 *
4221
 * It is crucial that this only gets called for xids from a source that
4222
 * protects against xid wraparounds (e.g. from a table and thus protected by
4223
 * relfrozenxid).
4224
 */
4225
bool
4226
GlobalVisTestIsRemovableXid(GlobalVisState *state, TransactionId xid)
4227
0
{
4228
0
  FullTransactionId fxid;
4229
4230
  /*
4231
   * Convert 32 bit argument to FullTransactionId. We can do so safely
4232
   * because we know the xid has to, at the very least, be between
4233
   * [oldestXid, nextXid), i.e. within 2 billion of xid. To avoid taking a
4234
   * lock to determine either, we can just compare with
4235
   * state->definitely_needed, which was based on those value at the time
4236
   * the current snapshot was built.
4237
   */
4238
0
  fxid = FullXidRelativeTo(state->definitely_needed, xid);
4239
4240
0
  return GlobalVisTestIsRemovableFullXid(state, fxid);
4241
0
}
4242
4243
/*
4244
 * Convenience wrapper around GlobalVisTestFor() and
4245
 * GlobalVisTestIsRemovableFullXid(), see their comments.
4246
 */
4247
bool
4248
GlobalVisCheckRemovableFullXid(Relation rel, FullTransactionId fxid)
4249
0
{
4250
0
  GlobalVisState *state;
4251
4252
0
  state = GlobalVisTestFor(rel);
4253
4254
0
  return GlobalVisTestIsRemovableFullXid(state, fxid);
4255
0
}
4256
4257
/*
4258
 * Convenience wrapper around GlobalVisTestFor() and
4259
 * GlobalVisTestIsRemovableXid(), see their comments.
4260
 */
4261
bool
4262
GlobalVisCheckRemovableXid(Relation rel, TransactionId xid)
4263
0
{
4264
0
  GlobalVisState *state;
4265
4266
0
  state = GlobalVisTestFor(rel);
4267
4268
0
  return GlobalVisTestIsRemovableXid(state, xid);
4269
0
}
4270
4271
/*
4272
 * Convert a 32 bit transaction id into 64 bit transaction id, by assuming it
4273
 * is within MaxTransactionId / 2 of XidFromFullTransactionId(rel).
4274
 *
4275
 * Be very careful about when to use this function. It can only safely be used
4276
 * when there is a guarantee that xid is within MaxTransactionId / 2 xids of
4277
 * rel. That e.g. can be guaranteed if the caller assures a snapshot is
4278
 * held by the backend and xid is from a table (where vacuum/freezing ensures
4279
 * the xid has to be within that range), or if xid is from the procarray and
4280
 * prevents xid wraparound that way.
4281
 */
4282
static inline FullTransactionId
4283
FullXidRelativeTo(FullTransactionId rel, TransactionId xid)
4284
0
{
4285
0
  TransactionId rel_xid = XidFromFullTransactionId(rel);
4286
4287
0
  Assert(TransactionIdIsValid(xid));
4288
0
  Assert(TransactionIdIsValid(rel_xid));
4289
4290
  /* not guaranteed to find issues, but likely to catch mistakes */
4291
0
  AssertTransactionIdInAllowableRange(xid);
4292
4293
0
  return FullTransactionIdFromU64(U64FromFullTransactionId(rel)
4294
0
                  + (int32) (xid - rel_xid));
4295
0
}
4296
4297
4298
/* ----------------------------------------------
4299
 *    KnownAssignedTransactionIds sub-module
4300
 * ----------------------------------------------
4301
 */
4302
4303
/*
4304
 * In Hot Standby mode, we maintain a list of transactions that are (or were)
4305
 * running on the primary at the current point in WAL.  These XIDs must be
4306
 * treated as running by standby transactions, even though they are not in
4307
 * the standby server's PGPROC array.
4308
 *
4309
 * We record all XIDs that we know have been assigned.  That includes all the
4310
 * XIDs seen in WAL records, plus all unobserved XIDs that we can deduce have
4311
 * been assigned.  We can deduce the existence of unobserved XIDs because we
4312
 * know XIDs are assigned in sequence, with no gaps.  The KnownAssignedXids
4313
 * list expands as new XIDs are observed or inferred, and contracts when
4314
 * transaction completion records arrive.
4315
 *
4316
 * During hot standby we do not fret too much about the distinction between
4317
 * top-level XIDs and subtransaction XIDs. We store both together in the
4318
 * KnownAssignedXids list.  In backends, this is copied into snapshots in
4319
 * GetSnapshotData(), taking advantage of the fact that XidInMVCCSnapshot()
4320
 * doesn't care about the distinction either.  Subtransaction XIDs are
4321
 * effectively treated as top-level XIDs and in the typical case pg_subtrans
4322
 * links are *not* maintained (which does not affect visibility).
4323
 *
4324
 * We have room in KnownAssignedXids and in snapshots to hold maxProcs *
4325
 * (1 + PGPROC_MAX_CACHED_SUBXIDS) XIDs, so every primary transaction must
4326
 * report its subtransaction XIDs in a WAL XLOG_XACT_ASSIGNMENT record at
4327
 * least every PGPROC_MAX_CACHED_SUBXIDS.  When we receive one of these
4328
 * records, we mark the subXIDs as children of the top XID in pg_subtrans,
4329
 * and then remove them from KnownAssignedXids.  This prevents overflow of
4330
 * KnownAssignedXids and snapshots, at the cost that status checks for these
4331
 * subXIDs will take a slower path through TransactionIdIsInProgress().
4332
 * This means that KnownAssignedXids is not necessarily complete for subXIDs,
4333
 * though it should be complete for top-level XIDs; this is the same situation
4334
 * that holds with respect to the PGPROC entries in normal running.
4335
 *
4336
 * When we throw away subXIDs from KnownAssignedXids, we need to keep track of
4337
 * that, similarly to tracking overflow of a PGPROC's subxids array.  We do
4338
 * that by remembering the lastOverflowedXid, ie the last thrown-away subXID.
4339
 * As long as that is within the range of interesting XIDs, we have to assume
4340
 * that subXIDs are missing from snapshots.  (Note that subXID overflow occurs
4341
 * on primary when 65th subXID arrives, whereas on standby it occurs when 64th
4342
 * subXID arrives - that is not an error.)
4343
 *
4344
 * Should a backend on primary somehow disappear before it can write an abort
4345
 * record, then we just leave those XIDs in KnownAssignedXids. They actually
4346
 * aborted but we think they were running; the distinction is irrelevant
4347
 * because either way any changes done by the transaction are not visible to
4348
 * backends in the standby.  We prune KnownAssignedXids when
4349
 * XLOG_RUNNING_XACTS arrives, to forestall possible overflow of the
4350
 * array due to such dead XIDs.
4351
 */
4352
4353
/*
4354
 * RecordKnownAssignedTransactionIds
4355
 *    Record the given XID in KnownAssignedXids, as well as any preceding
4356
 *    unobserved XIDs.
4357
 *
4358
 * RecordKnownAssignedTransactionIds() should be run for *every* WAL record
4359
 * associated with a transaction. Must be called for each record after we
4360
 * have executed StartupCLOG() et al, since we must ExtendCLOG() etc..
4361
 *
4362
 * Called during recovery in analogy with and in place of GetNewTransactionId()
4363
 */
4364
void
4365
RecordKnownAssignedTransactionIds(TransactionId xid)
4366
0
{
4367
0
  Assert(standbyState >= STANDBY_INITIALIZED);
4368
0
  Assert(TransactionIdIsValid(xid));
4369
0
  Assert(TransactionIdIsValid(latestObservedXid));
4370
4371
0
  elog(DEBUG4, "record known xact %u latestObservedXid %u",
4372
0
     xid, latestObservedXid);
4373
4374
  /*
4375
   * When a newly observed xid arrives, it is frequently the case that it is
4376
   * *not* the next xid in sequence. When this occurs, we must treat the
4377
   * intervening xids as running also.
4378
   */
4379
0
  if (TransactionIdFollows(xid, latestObservedXid))
4380
0
  {
4381
0
    TransactionId next_expected_xid;
4382
4383
    /*
4384
     * Extend subtrans like we do in GetNewTransactionId() during normal
4385
     * operation using individual extend steps. Note that we do not need
4386
     * to extend clog since its extensions are WAL logged.
4387
     *
4388
     * This part has to be done regardless of standbyState since we
4389
     * immediately start assigning subtransactions to their toplevel
4390
     * transactions.
4391
     */
4392
0
    next_expected_xid = latestObservedXid;
4393
0
    while (TransactionIdPrecedes(next_expected_xid, xid))
4394
0
    {
4395
0
      TransactionIdAdvance(next_expected_xid);
4396
0
      ExtendSUBTRANS(next_expected_xid);
4397
0
    }
4398
0
    Assert(next_expected_xid == xid);
4399
4400
    /*
4401
     * If the KnownAssignedXids machinery isn't up yet, there's nothing
4402
     * more to do since we don't track assigned xids yet.
4403
     */
4404
0
    if (standbyState <= STANDBY_INITIALIZED)
4405
0
    {
4406
0
      latestObservedXid = xid;
4407
0
      return;
4408
0
    }
4409
4410
    /*
4411
     * Add (latestObservedXid, xid] onto the KnownAssignedXids array.
4412
     */
4413
0
    next_expected_xid = latestObservedXid;
4414
0
    TransactionIdAdvance(next_expected_xid);
4415
0
    KnownAssignedXidsAdd(next_expected_xid, xid, false);
4416
4417
    /*
4418
     * Now we can advance latestObservedXid
4419
     */
4420
0
    latestObservedXid = xid;
4421
4422
    /* TransamVariables->nextXid must be beyond any observed xid */
4423
0
    AdvanceNextFullTransactionIdPastXid(latestObservedXid);
4424
0
  }
4425
0
}
4426
4427
/*
4428
 * ExpireTreeKnownAssignedTransactionIds
4429
 *    Remove the given XIDs from KnownAssignedXids.
4430
 *
4431
 * Called during recovery in analogy with and in place of ProcArrayEndTransaction()
4432
 */
4433
void
4434
ExpireTreeKnownAssignedTransactionIds(TransactionId xid, int nsubxids,
4435
                    TransactionId *subxids, TransactionId max_xid)
4436
0
{
4437
0
  Assert(standbyState >= STANDBY_INITIALIZED);
4438
4439
  /*
4440
   * Uses same locking as transaction commit
4441
   */
4442
0
  LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
4443
4444
0
  KnownAssignedXidsRemoveTree(xid, nsubxids, subxids);
4445
4446
  /* As in ProcArrayEndTransaction, advance latestCompletedXid */
4447
0
  MaintainLatestCompletedXidRecovery(max_xid);
4448
4449
  /* ... and xactCompletionCount */
4450
0
  TransamVariables->xactCompletionCount++;
4451
4452
0
  LWLockRelease(ProcArrayLock);
4453
0
}
4454
4455
/*
4456
 * ExpireAllKnownAssignedTransactionIds
4457
 *    Remove all entries in KnownAssignedXids and reset lastOverflowedXid.
4458
 */
4459
void
4460
ExpireAllKnownAssignedTransactionIds(void)
4461
0
{
4462
0
  FullTransactionId latestXid;
4463
4464
0
  LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
4465
0
  KnownAssignedXidsRemovePreceding(InvalidTransactionId);
4466
4467
  /* Reset latestCompletedXid to nextXid - 1 */
4468
0
  Assert(FullTransactionIdIsValid(TransamVariables->nextXid));
4469
0
  latestXid = TransamVariables->nextXid;
4470
0
  FullTransactionIdRetreat(&latestXid);
4471
0
  TransamVariables->latestCompletedXid = latestXid;
4472
4473
  /*
4474
   * Any transactions that were in-progress were effectively aborted, so
4475
   * advance xactCompletionCount.
4476
   */
4477
0
  TransamVariables->xactCompletionCount++;
4478
4479
  /*
4480
   * Reset lastOverflowedXid.  Currently, lastOverflowedXid has no use after
4481
   * the call of this function.  But do this for unification with what
4482
   * ExpireOldKnownAssignedTransactionIds() do.
4483
   */
4484
0
  procArray->lastOverflowedXid = InvalidTransactionId;
4485
0
  LWLockRelease(ProcArrayLock);
4486
0
}
4487
4488
/*
4489
 * ExpireOldKnownAssignedTransactionIds
4490
 *    Remove KnownAssignedXids entries preceding the given XID and
4491
 *    potentially reset lastOverflowedXid.
4492
 */
4493
void
4494
ExpireOldKnownAssignedTransactionIds(TransactionId xid)
4495
0
{
4496
0
  TransactionId latestXid;
4497
4498
0
  LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
4499
4500
  /* As in ProcArrayEndTransaction, advance latestCompletedXid */
4501
0
  latestXid = xid;
4502
0
  TransactionIdRetreat(latestXid);
4503
0
  MaintainLatestCompletedXidRecovery(latestXid);
4504
4505
  /* ... and xactCompletionCount */
4506
0
  TransamVariables->xactCompletionCount++;
4507
4508
  /*
4509
   * Reset lastOverflowedXid if we know all transactions that have been
4510
   * possibly running are being gone.  Not doing so could cause an incorrect
4511
   * lastOverflowedXid value, which makes extra snapshots be marked as
4512
   * suboverflowed.
4513
   */
4514
0
  if (TransactionIdPrecedes(procArray->lastOverflowedXid, xid))
4515
0
    procArray->lastOverflowedXid = InvalidTransactionId;
4516
0
  KnownAssignedXidsRemovePreceding(xid);
4517
0
  LWLockRelease(ProcArrayLock);
4518
0
}
4519
4520
/*
4521
 * KnownAssignedTransactionIdsIdleMaintenance
4522
 *    Opportunistically do maintenance work when the startup process
4523
 *    is about to go idle.
4524
 */
4525
void
4526
KnownAssignedTransactionIdsIdleMaintenance(void)
4527
0
{
4528
0
  KnownAssignedXidsCompress(KAX_STARTUP_PROCESS_IDLE, false);
4529
0
}
4530
4531
4532
/*
4533
 * Private module functions to manipulate KnownAssignedXids
4534
 *
4535
 * There are 5 main uses of the KnownAssignedXids data structure:
4536
 *
4537
 *  * backends taking snapshots - all valid XIDs need to be copied out
4538
 *  * backends seeking to determine presence of a specific XID
4539
 *  * startup process adding new known-assigned XIDs
4540
 *  * startup process removing specific XIDs as transactions end
4541
 *  * startup process pruning array when special WAL records arrive
4542
 *
4543
 * This data structure is known to be a hot spot during Hot Standby, so we
4544
 * go to some lengths to make these operations as efficient and as concurrent
4545
 * as possible.
4546
 *
4547
 * The XIDs are stored in an array in sorted order --- TransactionIdPrecedes
4548
 * order, to be exact --- to allow binary search for specific XIDs.  Note:
4549
 * in general TransactionIdPrecedes would not provide a total order, but
4550
 * we know that the entries present at any instant should not extend across
4551
 * a large enough fraction of XID space to wrap around (the primary would
4552
 * shut down for fear of XID wrap long before that happens).  So it's OK to
4553
 * use TransactionIdPrecedes as a binary-search comparator.
4554
 *
4555
 * It's cheap to maintain the sortedness during insertions, since new known
4556
 * XIDs are always reported in XID order; we just append them at the right.
4557
 *
4558
 * To keep individual deletions cheap, we need to allow gaps in the array.
4559
 * This is implemented by marking array elements as valid or invalid using
4560
 * the parallel boolean array KnownAssignedXidsValid[].  A deletion is done
4561
 * by setting KnownAssignedXidsValid[i] to false, *without* clearing the
4562
 * XID entry itself.  This preserves the property that the XID entries are
4563
 * sorted, so we can do binary searches easily.  Periodically we compress
4564
 * out the unused entries; that's much cheaper than having to compress the
4565
 * array immediately on every deletion.
4566
 *
4567
 * The actually valid items in KnownAssignedXids[] and KnownAssignedXidsValid[]
4568
 * are those with indexes tail <= i < head; items outside this subscript range
4569
 * have unspecified contents.  When head reaches the end of the array, we
4570
 * force compression of unused entries rather than wrapping around, since
4571
 * allowing wraparound would greatly complicate the search logic.  We maintain
4572
 * an explicit tail pointer so that pruning of old XIDs can be done without
4573
 * immediately moving the array contents.  In most cases only a small fraction
4574
 * of the array contains valid entries at any instant.
4575
 *
4576
 * Although only the startup process can ever change the KnownAssignedXids
4577
 * data structure, we still need interlocking so that standby backends will
4578
 * not observe invalid intermediate states.  The convention is that backends
4579
 * must hold shared ProcArrayLock to examine the array.  To remove XIDs from
4580
 * the array, the startup process must hold ProcArrayLock exclusively, for
4581
 * the usual transactional reasons (compare commit/abort of a transaction
4582
 * during normal running).  Compressing unused entries out of the array
4583
 * likewise requires exclusive lock.  To add XIDs to the array, we just insert
4584
 * them into slots to the right of the head pointer and then advance the head
4585
 * pointer.  This doesn't require any lock at all, but on machines with weak
4586
 * memory ordering, we need to be careful that other processors see the array
4587
 * element changes before they see the head pointer change.  We handle this by
4588
 * using memory barriers when reading or writing the head/tail pointers (unless
4589
 * the caller holds ProcArrayLock exclusively).
4590
 *
4591
 * Algorithmic analysis:
4592
 *
4593
 * If we have a maximum of M slots, with N XIDs currently spread across
4594
 * S elements then we have N <= S <= M always.
4595
 *
4596
 *  * Adding a new XID is O(1) and needs no lock (unless compression must
4597
 *    happen)
4598
 *  * Compressing the array is O(S) and requires exclusive lock
4599
 *  * Removing an XID is O(logS) and requires exclusive lock
4600
 *  * Taking a snapshot is O(S) and requires shared lock
4601
 *  * Checking for an XID is O(logS) and requires shared lock
4602
 *
4603
 * In comparison, using a hash table for KnownAssignedXids would mean that
4604
 * taking snapshots would be O(M). If we can maintain S << M then the
4605
 * sorted array technique will deliver significantly faster snapshots.
4606
 * If we try to keep S too small then we will spend too much time compressing,
4607
 * so there is an optimal point for any workload mix. We use a heuristic to
4608
 * decide when to compress the array, though trimming also helps reduce
4609
 * frequency of compressing. The heuristic requires us to track the number of
4610
 * currently valid XIDs in the array (N).  Except in special cases, we'll
4611
 * compress when S >= 2N.  Bounding S at 2N in turn bounds the time for
4612
 * taking a snapshot to be O(N), which it would have to be anyway.
4613
 */
4614
4615
4616
/*
4617
 * Compress KnownAssignedXids by shifting valid data down to the start of the
4618
 * array, removing any gaps.
4619
 *
4620
 * A compression step is forced if "reason" is KAX_NO_SPACE, otherwise
4621
 * we do it only if a heuristic indicates it's a good time to do it.
4622
 *
4623
 * Compression requires holding ProcArrayLock in exclusive mode.
4624
 * Caller must pass haveLock = true if it already holds the lock.
4625
 */
4626
static void
4627
KnownAssignedXidsCompress(KAXCompressReason reason, bool haveLock)
4628
0
{
4629
0
  ProcArrayStruct *pArray = procArray;
4630
0
  int     head,
4631
0
        tail,
4632
0
        nelements;
4633
0
  int     compress_index;
4634
0
  int     i;
4635
4636
  /* Counters for compression heuristics */
4637
0
  static unsigned int transactionEndsCounter;
4638
0
  static TimestampTz lastCompressTs;
4639
4640
  /* Tuning constants */
4641
0
#define KAX_COMPRESS_FREQUENCY 128  /* in transactions */
4642
0
#define KAX_COMPRESS_IDLE_INTERVAL 1000 /* in ms */
4643
4644
  /*
4645
   * Since only the startup process modifies the head/tail pointers, we
4646
   * don't need a lock to read them here.
4647
   */
4648
0
  head = pArray->headKnownAssignedXids;
4649
0
  tail = pArray->tailKnownAssignedXids;
4650
0
  nelements = head - tail;
4651
4652
  /*
4653
   * If we can choose whether to compress, use a heuristic to avoid
4654
   * compressing too often or not often enough.  "Compress" here simply
4655
   * means moving the values to the beginning of the array, so it is not as
4656
   * complex or costly as typical data compression algorithms.
4657
   */
4658
0
  if (nelements == pArray->numKnownAssignedXids)
4659
0
  {
4660
    /*
4661
     * When there are no gaps between head and tail, don't bother to
4662
     * compress, except in the KAX_NO_SPACE case where we must compress to
4663
     * create some space after the head.
4664
     */
4665
0
    if (reason != KAX_NO_SPACE)
4666
0
      return;
4667
0
  }
4668
0
  else if (reason == KAX_TRANSACTION_END)
4669
0
  {
4670
    /*
4671
     * Consider compressing only once every so many commits.  Frequency
4672
     * determined by benchmarks.
4673
     */
4674
0
    if ((transactionEndsCounter++) % KAX_COMPRESS_FREQUENCY != 0)
4675
0
      return;
4676
4677
    /*
4678
     * Furthermore, compress only if the used part of the array is less
4679
     * than 50% full (see comments above).
4680
     */
4681
0
    if (nelements < 2 * pArray->numKnownAssignedXids)
4682
0
      return;
4683
0
  }
4684
0
  else if (reason == KAX_STARTUP_PROCESS_IDLE)
4685
0
  {
4686
    /*
4687
     * We're about to go idle for lack of new WAL, so we might as well
4688
     * compress.  But not too often, to avoid ProcArray lock contention
4689
     * with readers.
4690
     */
4691
0
    if (lastCompressTs != 0)
4692
0
    {
4693
0
      TimestampTz compress_after;
4694
4695
0
      compress_after = TimestampTzPlusMilliseconds(lastCompressTs,
4696
0
                             KAX_COMPRESS_IDLE_INTERVAL);
4697
0
      if (GetCurrentTimestamp() < compress_after)
4698
0
        return;
4699
0
    }
4700
0
  }
4701
4702
  /* Need to compress, so get the lock if we don't have it. */
4703
0
  if (!haveLock)
4704
0
    LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
4705
4706
  /*
4707
   * We compress the array by reading the valid values from tail to head,
4708
   * re-aligning data to 0th element.
4709
   */
4710
0
  compress_index = 0;
4711
0
  for (i = tail; i < head; i++)
4712
0
  {
4713
0
    if (KnownAssignedXidsValid[i])
4714
0
    {
4715
0
      KnownAssignedXids[compress_index] = KnownAssignedXids[i];
4716
0
      KnownAssignedXidsValid[compress_index] = true;
4717
0
      compress_index++;
4718
0
    }
4719
0
  }
4720
0
  Assert(compress_index == pArray->numKnownAssignedXids);
4721
4722
0
  pArray->tailKnownAssignedXids = 0;
4723
0
  pArray->headKnownAssignedXids = compress_index;
4724
4725
0
  if (!haveLock)
4726
0
    LWLockRelease(ProcArrayLock);
4727
4728
  /* Update timestamp for maintenance.  No need to hold lock for this. */
4729
0
  lastCompressTs = GetCurrentTimestamp();
4730
0
}
4731
4732
/*
4733
 * Add xids into KnownAssignedXids at the head of the array.
4734
 *
4735
 * xids from from_xid to to_xid, inclusive, are added to the array.
4736
 *
4737
 * If exclusive_lock is true then caller already holds ProcArrayLock in
4738
 * exclusive mode, so we need no extra locking here.  Else caller holds no
4739
 * lock, so we need to be sure we maintain sufficient interlocks against
4740
 * concurrent readers.  (Only the startup process ever calls this, so no need
4741
 * to worry about concurrent writers.)
4742
 */
4743
static void
4744
KnownAssignedXidsAdd(TransactionId from_xid, TransactionId to_xid,
4745
           bool exclusive_lock)
4746
0
{
4747
0
  ProcArrayStruct *pArray = procArray;
4748
0
  TransactionId next_xid;
4749
0
  int     head,
4750
0
        tail;
4751
0
  int     nxids;
4752
0
  int     i;
4753
4754
0
  Assert(TransactionIdPrecedesOrEquals(from_xid, to_xid));
4755
4756
  /*
4757
   * Calculate how many array slots we'll need.  Normally this is cheap; in
4758
   * the unusual case where the XIDs cross the wrap point, we do it the hard
4759
   * way.
4760
   */
4761
0
  if (to_xid >= from_xid)
4762
0
    nxids = to_xid - from_xid + 1;
4763
0
  else
4764
0
  {
4765
0
    nxids = 1;
4766
0
    next_xid = from_xid;
4767
0
    while (TransactionIdPrecedes(next_xid, to_xid))
4768
0
    {
4769
0
      nxids++;
4770
0
      TransactionIdAdvance(next_xid);
4771
0
    }
4772
0
  }
4773
4774
  /*
4775
   * Since only the startup process modifies the head/tail pointers, we
4776
   * don't need a lock to read them here.
4777
   */
4778
0
  head = pArray->headKnownAssignedXids;
4779
0
  tail = pArray->tailKnownAssignedXids;
4780
4781
0
  Assert(head >= 0 && head <= pArray->maxKnownAssignedXids);
4782
0
  Assert(tail >= 0 && tail < pArray->maxKnownAssignedXids);
4783
4784
  /*
4785
   * Verify that insertions occur in TransactionId sequence.  Note that even
4786
   * if the last existing element is marked invalid, it must still have a
4787
   * correctly sequenced XID value.
4788
   */
4789
0
  if (head > tail &&
4790
0
    TransactionIdFollowsOrEquals(KnownAssignedXids[head - 1], from_xid))
4791
0
  {
4792
0
    KnownAssignedXidsDisplay(LOG);
4793
0
    elog(ERROR, "out-of-order XID insertion in KnownAssignedXids");
4794
0
  }
4795
4796
  /*
4797
   * If our xids won't fit in the remaining space, compress out free space
4798
   */
4799
0
  if (head + nxids > pArray->maxKnownAssignedXids)
4800
0
  {
4801
0
    KnownAssignedXidsCompress(KAX_NO_SPACE, exclusive_lock);
4802
4803
0
    head = pArray->headKnownAssignedXids;
4804
    /* note: we no longer care about the tail pointer */
4805
4806
    /*
4807
     * If it still won't fit then we're out of memory
4808
     */
4809
0
    if (head + nxids > pArray->maxKnownAssignedXids)
4810
0
      elog(ERROR, "too many KnownAssignedXids");
4811
0
  }
4812
4813
  /* Now we can insert the xids into the space starting at head */
4814
0
  next_xid = from_xid;
4815
0
  for (i = 0; i < nxids; i++)
4816
0
  {
4817
0
    KnownAssignedXids[head] = next_xid;
4818
0
    KnownAssignedXidsValid[head] = true;
4819
0
    TransactionIdAdvance(next_xid);
4820
0
    head++;
4821
0
  }
4822
4823
  /* Adjust count of number of valid entries */
4824
0
  pArray->numKnownAssignedXids += nxids;
4825
4826
  /*
4827
   * Now update the head pointer.  We use a write barrier to ensure that
4828
   * other processors see the above array updates before they see the head
4829
   * pointer change.  The barrier isn't required if we're holding
4830
   * ProcArrayLock exclusively.
4831
   */
4832
0
  if (!exclusive_lock)
4833
0
    pg_write_barrier();
4834
4835
0
  pArray->headKnownAssignedXids = head;
4836
0
}
4837
4838
/*
4839
 * KnownAssignedXidsSearch
4840
 *
4841
 * Searches KnownAssignedXids for a specific xid and optionally removes it.
4842
 * Returns true if it was found, false if not.
4843
 *
4844
 * Caller must hold ProcArrayLock in shared or exclusive mode.
4845
 * Exclusive lock must be held for remove = true.
4846
 */
4847
static bool
4848
KnownAssignedXidsSearch(TransactionId xid, bool remove)
4849
0
{
4850
0
  ProcArrayStruct *pArray = procArray;
4851
0
  int     first,
4852
0
        last;
4853
0
  int     head;
4854
0
  int     tail;
4855
0
  int     result_index = -1;
4856
4857
0
  tail = pArray->tailKnownAssignedXids;
4858
0
  head = pArray->headKnownAssignedXids;
4859
4860
  /*
4861
   * Only the startup process removes entries, so we don't need the read
4862
   * barrier in that case.
4863
   */
4864
0
  if (!remove)
4865
0
    pg_read_barrier();   /* pairs with KnownAssignedXidsAdd */
4866
4867
  /*
4868
   * Standard binary search.  Note we can ignore the KnownAssignedXidsValid
4869
   * array here, since even invalid entries will contain sorted XIDs.
4870
   */
4871
0
  first = tail;
4872
0
  last = head - 1;
4873
0
  while (first <= last)
4874
0
  {
4875
0
    int     mid_index;
4876
0
    TransactionId mid_xid;
4877
4878
0
    mid_index = (first + last) / 2;
4879
0
    mid_xid = KnownAssignedXids[mid_index];
4880
4881
0
    if (xid == mid_xid)
4882
0
    {
4883
0
      result_index = mid_index;
4884
0
      break;
4885
0
    }
4886
0
    else if (TransactionIdPrecedes(xid, mid_xid))
4887
0
      last = mid_index - 1;
4888
0
    else
4889
0
      first = mid_index + 1;
4890
0
  }
4891
4892
0
  if (result_index < 0)
4893
0
    return false;     /* not in array */
4894
4895
0
  if (!KnownAssignedXidsValid[result_index])
4896
0
    return false;     /* in array, but invalid */
4897
4898
0
  if (remove)
4899
0
  {
4900
0
    KnownAssignedXidsValid[result_index] = false;
4901
4902
0
    pArray->numKnownAssignedXids--;
4903
0
    Assert(pArray->numKnownAssignedXids >= 0);
4904
4905
    /*
4906
     * If we're removing the tail element then advance tail pointer over
4907
     * any invalid elements.  This will speed future searches.
4908
     */
4909
0
    if (result_index == tail)
4910
0
    {
4911
0
      tail++;
4912
0
      while (tail < head && !KnownAssignedXidsValid[tail])
4913
0
        tail++;
4914
0
      if (tail >= head)
4915
0
      {
4916
        /* Array is empty, so we can reset both pointers */
4917
0
        pArray->headKnownAssignedXids = 0;
4918
0
        pArray->tailKnownAssignedXids = 0;
4919
0
      }
4920
0
      else
4921
0
      {
4922
0
        pArray->tailKnownAssignedXids = tail;
4923
0
      }
4924
0
    }
4925
0
  }
4926
4927
0
  return true;
4928
0
}
4929
4930
/*
4931
 * Is the specified XID present in KnownAssignedXids[]?
4932
 *
4933
 * Caller must hold ProcArrayLock in shared or exclusive mode.
4934
 */
4935
static bool
4936
KnownAssignedXidExists(TransactionId xid)
4937
0
{
4938
0
  Assert(TransactionIdIsValid(xid));
4939
4940
0
  return KnownAssignedXidsSearch(xid, false);
4941
0
}
4942
4943
/*
4944
 * Remove the specified XID from KnownAssignedXids[].
4945
 *
4946
 * Caller must hold ProcArrayLock in exclusive mode.
4947
 */
4948
static void
4949
KnownAssignedXidsRemove(TransactionId xid)
4950
{
4951
  Assert(TransactionIdIsValid(xid));
4952
4953
  elog(DEBUG4, "remove KnownAssignedXid %u", xid);
4954
4955
  /*
4956
   * Note: we cannot consider it an error to remove an XID that's not
4957
   * present.  We intentionally remove subxact IDs while processing
4958
   * XLOG_XACT_ASSIGNMENT, to avoid array overflow.  Then those XIDs will be
4959
   * removed again when the top-level xact commits or aborts.
4960
   *
4961
   * It might be possible to track such XIDs to distinguish this case from
4962
   * actual errors, but it would be complicated and probably not worth it.
4963
   * So, just ignore the search result.
4964
   */
4965
  (void) KnownAssignedXidsSearch(xid, true);
4966
}
4967
4968
/*
4969
 * KnownAssignedXidsRemoveTree
4970
 *    Remove xid (if it's not InvalidTransactionId) and all the subxids.
4971
 *
4972
 * Caller must hold ProcArrayLock in exclusive mode.
4973
 */
4974
static void
4975
KnownAssignedXidsRemoveTree(TransactionId xid, int nsubxids,
4976
              TransactionId *subxids)
4977
0
{
4978
0
  int     i;
4979
4980
0
  if (TransactionIdIsValid(xid))
4981
0
    KnownAssignedXidsRemove(xid);
4982
4983
0
  for (i = 0; i < nsubxids; i++)
4984
0
    KnownAssignedXidsRemove(subxids[i]);
4985
4986
  /* Opportunistically compress the array */
4987
0
  KnownAssignedXidsCompress(KAX_TRANSACTION_END, true);
4988
0
}
4989
4990
/*
4991
 * Prune KnownAssignedXids up to, but *not* including xid. If xid is invalid
4992
 * then clear the whole table.
4993
 *
4994
 * Caller must hold ProcArrayLock in exclusive mode.
4995
 */
4996
static void
4997
KnownAssignedXidsRemovePreceding(TransactionId removeXid)
4998
0
{
4999
0
  ProcArrayStruct *pArray = procArray;
5000
0
  int     count = 0;
5001
0
  int     head,
5002
0
        tail,
5003
0
        i;
5004
5005
0
  if (!TransactionIdIsValid(removeXid))
5006
0
  {
5007
0
    elog(DEBUG4, "removing all KnownAssignedXids");
5008
0
    pArray->numKnownAssignedXids = 0;
5009
0
    pArray->headKnownAssignedXids = pArray->tailKnownAssignedXids = 0;
5010
0
    return;
5011
0
  }
5012
5013
0
  elog(DEBUG4, "prune KnownAssignedXids to %u", removeXid);
5014
5015
  /*
5016
   * Mark entries invalid starting at the tail.  Since array is sorted, we
5017
   * can stop as soon as we reach an entry >= removeXid.
5018
   */
5019
0
  tail = pArray->tailKnownAssignedXids;
5020
0
  head = pArray->headKnownAssignedXids;
5021
5022
0
  for (i = tail; i < head; i++)
5023
0
  {
5024
0
    if (KnownAssignedXidsValid[i])
5025
0
    {
5026
0
      TransactionId knownXid = KnownAssignedXids[i];
5027
5028
0
      if (TransactionIdFollowsOrEquals(knownXid, removeXid))
5029
0
        break;
5030
5031
0
      if (!StandbyTransactionIdIsPrepared(knownXid))
5032
0
      {
5033
0
        KnownAssignedXidsValid[i] = false;
5034
0
        count++;
5035
0
      }
5036
0
    }
5037
0
  }
5038
5039
0
  pArray->numKnownAssignedXids -= count;
5040
0
  Assert(pArray->numKnownAssignedXids >= 0);
5041
5042
  /*
5043
   * Advance the tail pointer if we've marked the tail item invalid.
5044
   */
5045
0
  for (i = tail; i < head; i++)
5046
0
  {
5047
0
    if (KnownAssignedXidsValid[i])
5048
0
      break;
5049
0
  }
5050
0
  if (i >= head)
5051
0
  {
5052
    /* Array is empty, so we can reset both pointers */
5053
0
    pArray->headKnownAssignedXids = 0;
5054
0
    pArray->tailKnownAssignedXids = 0;
5055
0
  }
5056
0
  else
5057
0
  {
5058
0
    pArray->tailKnownAssignedXids = i;
5059
0
  }
5060
5061
  /* Opportunistically compress the array */
5062
0
  KnownAssignedXidsCompress(KAX_PRUNE, true);
5063
0
}
5064
5065
/*
5066
 * KnownAssignedXidsGet - Get an array of xids by scanning KnownAssignedXids.
5067
 * We filter out anything >= xmax.
5068
 *
5069
 * Returns the number of XIDs stored into xarray[].  Caller is responsible
5070
 * that array is large enough.
5071
 *
5072
 * Caller must hold ProcArrayLock in (at least) shared mode.
5073
 */
5074
static int
5075
KnownAssignedXidsGet(TransactionId *xarray, TransactionId xmax)
5076
0
{
5077
0
  TransactionId xtmp = InvalidTransactionId;
5078
5079
0
  return KnownAssignedXidsGetAndSetXmin(xarray, &xtmp, xmax);
5080
0
}
5081
5082
/*
5083
 * KnownAssignedXidsGetAndSetXmin - as KnownAssignedXidsGet, plus
5084
 * we reduce *xmin to the lowest xid value seen if not already lower.
5085
 *
5086
 * Caller must hold ProcArrayLock in (at least) shared mode.
5087
 */
5088
static int
5089
KnownAssignedXidsGetAndSetXmin(TransactionId *xarray, TransactionId *xmin,
5090
                 TransactionId xmax)
5091
0
{
5092
0
  int     count = 0;
5093
0
  int     head,
5094
0
        tail;
5095
0
  int     i;
5096
5097
  /*
5098
   * Fetch head just once, since it may change while we loop. We can stop
5099
   * once we reach the initially seen head, since we are certain that an xid
5100
   * cannot enter and then leave the array while we hold ProcArrayLock.  We
5101
   * might miss newly-added xids, but they should be >= xmax so irrelevant
5102
   * anyway.
5103
   */
5104
0
  tail = procArray->tailKnownAssignedXids;
5105
0
  head = procArray->headKnownAssignedXids;
5106
5107
0
  pg_read_barrier();     /* pairs with KnownAssignedXidsAdd */
5108
5109
0
  for (i = tail; i < head; i++)
5110
0
  {
5111
    /* Skip any gaps in the array */
5112
0
    if (KnownAssignedXidsValid[i])
5113
0
    {
5114
0
      TransactionId knownXid = KnownAssignedXids[i];
5115
5116
      /*
5117
       * Update xmin if required.  Only the first XID need be checked,
5118
       * since the array is sorted.
5119
       */
5120
0
      if (count == 0 &&
5121
0
        TransactionIdPrecedes(knownXid, *xmin))
5122
0
        *xmin = knownXid;
5123
5124
      /*
5125
       * Filter out anything >= xmax, again relying on sorted property
5126
       * of array.
5127
       */
5128
0
      if (TransactionIdIsValid(xmax) &&
5129
0
        TransactionIdFollowsOrEquals(knownXid, xmax))
5130
0
        break;
5131
5132
      /* Add knownXid into output array */
5133
0
      xarray[count++] = knownXid;
5134
0
    }
5135
0
  }
5136
5137
0
  return count;
5138
0
}
5139
5140
/*
5141
 * Get oldest XID in the KnownAssignedXids array, or InvalidTransactionId
5142
 * if nothing there.
5143
 */
5144
static TransactionId
5145
KnownAssignedXidsGetOldestXmin(void)
5146
0
{
5147
0
  int     head,
5148
0
        tail;
5149
0
  int     i;
5150
5151
  /*
5152
   * Fetch head just once, since it may change while we loop.
5153
   */
5154
0
  tail = procArray->tailKnownAssignedXids;
5155
0
  head = procArray->headKnownAssignedXids;
5156
5157
0
  pg_read_barrier();     /* pairs with KnownAssignedXidsAdd */
5158
5159
0
  for (i = tail; i < head; i++)
5160
0
  {
5161
    /* Skip any gaps in the array */
5162
0
    if (KnownAssignedXidsValid[i])
5163
0
      return KnownAssignedXids[i];
5164
0
  }
5165
5166
0
  return InvalidTransactionId;
5167
0
}
5168
5169
/*
5170
 * Display KnownAssignedXids to provide debug trail
5171
 *
5172
 * Currently this is only called within startup process, so we need no
5173
 * special locking.
5174
 *
5175
 * Note this is pretty expensive, and much of the expense will be incurred
5176
 * even if the elog message will get discarded.  It's not currently called
5177
 * in any performance-critical places, however, so no need to be tenser.
5178
 */
5179
static void
5180
KnownAssignedXidsDisplay(int trace_level)
5181
0
{
5182
0
  ProcArrayStruct *pArray = procArray;
5183
0
  StringInfoData buf;
5184
0
  int     head,
5185
0
        tail,
5186
0
        i;
5187
0
  int     nxids = 0;
5188
5189
0
  tail = pArray->tailKnownAssignedXids;
5190
0
  head = pArray->headKnownAssignedXids;
5191
5192
0
  initStringInfo(&buf);
5193
5194
0
  for (i = tail; i < head; i++)
5195
0
  {
5196
0
    if (KnownAssignedXidsValid[i])
5197
0
    {
5198
0
      nxids++;
5199
0
      appendStringInfo(&buf, "[%d]=%u ", i, KnownAssignedXids[i]);
5200
0
    }
5201
0
  }
5202
5203
0
  elog(trace_level, "%d KnownAssignedXids (num=%d tail=%d head=%d) %s",
5204
0
     nxids,
5205
0
     pArray->numKnownAssignedXids,
5206
0
     pArray->tailKnownAssignedXids,
5207
0
     pArray->headKnownAssignedXids,
5208
0
     buf.data);
5209
5210
0
  pfree(buf.data);
5211
0
}
5212
5213
/*
5214
 * KnownAssignedXidsReset
5215
 *    Resets KnownAssignedXids to be empty
5216
 */
5217
static void
5218
KnownAssignedXidsReset(void)
5219
0
{
5220
0
  ProcArrayStruct *pArray = procArray;
5221
5222
0
  LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
5223
5224
0
  pArray->numKnownAssignedXids = 0;
5225
0
  pArray->tailKnownAssignedXids = 0;
5226
0
  pArray->headKnownAssignedXids = 0;
5227
5228
0
  LWLockRelease(ProcArrayLock);
5229
0
}