/src/postgres/src/include/lib/simplehash.h
Line | Count | Source |
1 | | /* |
2 | | * simplehash.h |
3 | | * |
4 | | * When included this file generates a "templated" (by way of macros) |
5 | | * open-addressing hash table implementation specialized to user-defined |
6 | | * types. |
7 | | * |
8 | | * It's probably not worthwhile to generate such a specialized implementation |
9 | | * for hash tables that aren't performance or space sensitive. |
10 | | * |
11 | | * Compared to dynahash, simplehash has the following benefits: |
12 | | * |
13 | | * - Due to the "templated" code generation has known structure sizes and no |
14 | | * indirect function calls (which show up substantially in dynahash |
15 | | * profiles). These features considerably increase speed for small |
16 | | * entries. |
17 | | * - Open addressing has better CPU cache behavior than dynahash's chained |
18 | | * hashtables. |
19 | | * - The generated interface is type-safe and easier to use than dynahash, |
20 | | * though at the cost of more complex setup. |
21 | | * - Allocates memory in a MemoryContext or another allocator with a |
22 | | * malloc/free style interface (which isn't easily usable in a shared |
23 | | * memory context) |
24 | | * - Does not require the overhead of a separate memory context. |
25 | | * |
26 | | * Usage notes: |
27 | | * |
28 | | * To generate a hash-table and associated functions for a use case several |
29 | | * macros have to be #define'ed before this file is included. Including |
30 | | * the file #undef's all those, so a new hash table can be generated |
31 | | * afterwards. |
32 | | * The relevant parameters are: |
33 | | * - SH_PREFIX - prefix for all symbol names generated. A prefix of 'foo' |
34 | | * will result in hash table type 'foo_hash' and functions like |
35 | | * 'foo_insert'/'foo_lookup' and so forth. |
36 | | * - SH_ELEMENT_TYPE - type of the contained elements |
37 | | * - SH_KEY_TYPE - type of the hashtable's key |
38 | | * - SH_DECLARE - if defined function prototypes and type declarations are |
39 | | * generated |
40 | | * - SH_DEFINE - if defined function definitions are generated |
41 | | * - SH_SCOPE - in which scope (e.g. extern, static inline) do function |
42 | | * declarations reside |
43 | | * - SH_RAW_ALLOCATOR - if defined, memory contexts are not used; instead, |
44 | | * use this to allocate bytes. The allocator must zero the returned space. |
45 | | * - SH_USE_NONDEFAULT_ALLOCATOR - if defined no element allocator functions |
46 | | * are defined, so you can supply your own |
47 | | * The following parameters are only relevant when SH_DEFINE is defined: |
48 | | * - SH_KEY - name of the element in SH_ELEMENT_TYPE containing the hash key |
49 | | * - SH_EQUAL(table, a, b) - compare two table keys |
50 | | * - SH_HASH_KEY(table, key) - generate hash for the key |
51 | | * - SH_STORE_HASH - if defined the hash is stored in the elements |
52 | | * - SH_GET_HASH(tb, a) - return the field to store the hash in |
53 | | * |
54 | | * The element type is required to contain a "status" member that can store |
55 | | * the range of values defined in the SH_STATUS enum. |
56 | | * |
57 | | * While SH_STORE_HASH (and subsequently SH_GET_HASH) are optional, because |
58 | | * the hash table implementation needs to compare hashes to move elements |
59 | | * (particularly when growing the hash), it's preferable, if possible, to |
60 | | * store the element's hash in the element's data type. If the hash is so |
61 | | * stored, the hash table will also compare hashes before calling SH_EQUAL |
62 | | * when comparing two keys. |
63 | | * |
64 | | * For convenience the hash table create functions accept a void pointer |
65 | | * that will be stored in the hash table type's member private_data. This |
66 | | * allows callbacks to reference caller provided data. |
67 | | * |
68 | | * For examples of usage look at tidbitmap.c (file local definition) and |
69 | | * execnodes.h/execGrouping.c (exposed declaration, file local |
70 | | * implementation). |
71 | | * |
72 | | * Hash table design: |
73 | | * |
74 | | * The hash table design chosen is a variant of linear open-addressing. The |
75 | | * reason for doing so is that linear addressing is CPU cache & pipeline |
76 | | * friendly. The biggest disadvantage of simple linear addressing schemes |
77 | | * are highly variable lookup times due to clustering, and deletions |
78 | | * leaving a lot of tombstones around. To address these issues a variant |
79 | | * of "robin hood" hashing is employed. Robin hood hashing optimizes |
80 | | * chaining lengths by moving elements close to their optimal bucket |
81 | | * ("rich" elements), out of the way if a to-be-inserted element is further |
82 | | * away from its optimal position (i.e. it's "poor"). While that can make |
83 | | * insertions slower, the average lookup performance is a lot better, and |
84 | | * higher fill factors can be used in a still performant manner. To avoid |
85 | | * tombstones - which normally solve the issue that a deleted node's |
86 | | * presence is relevant to determine whether a lookup needs to continue |
87 | | * looking or is done - buckets following a deleted element are shifted |
88 | | * backwards, unless they're empty or already at their optimal position. |
89 | | * |
90 | | * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group |
91 | | * Portions Copyright (c) 1994, Regents of the University of California |
92 | | * |
93 | | * src/include/lib/simplehash.h |
94 | | */ |
95 | | |
96 | | #include "port/pg_bitutils.h" |
97 | | |
98 | | /* helpers */ |
99 | | #define SH_MAKE_PREFIX(a) CppConcat(a,_) |
100 | 0 | #define SH_MAKE_NAME(name) SH_MAKE_NAME_(SH_MAKE_PREFIX(SH_PREFIX),name) |
101 | 0 | #define SH_MAKE_NAME_(a,b) CppConcat(a,b) |
102 | | |
103 | | /* name macros for: */ |
104 | | |
105 | | /* type declarations */ |
106 | 0 | #define SH_TYPE SH_MAKE_NAME(hash) |
107 | | #define SH_STATUS SH_MAKE_NAME(status) |
108 | 0 | #define SH_STATUS_EMPTY SH_MAKE_NAME(SH_EMPTY) |
109 | 0 | #define SH_STATUS_IN_USE SH_MAKE_NAME(SH_IN_USE) |
110 | | #define SH_ITERATOR SH_MAKE_NAME(iterator) |
111 | | |
112 | | /* function declarations */ |
113 | | #define SH_CREATE SH_MAKE_NAME(create) |
114 | | #define SH_DESTROY SH_MAKE_NAME(destroy) |
115 | | #define SH_RESET SH_MAKE_NAME(reset) |
116 | | #define SH_INSERT SH_MAKE_NAME(insert) |
117 | | #define SH_INSERT_HASH SH_MAKE_NAME(insert_hash) |
118 | | #define SH_DELETE_ITEM SH_MAKE_NAME(delete_item) |
119 | | #define SH_DELETE SH_MAKE_NAME(delete) |
120 | | #define SH_LOOKUP SH_MAKE_NAME(lookup) |
121 | | #define SH_LOOKUP_HASH SH_MAKE_NAME(lookup_hash) |
122 | 0 | #define SH_GROW SH_MAKE_NAME(grow) |
123 | | #define SH_START_ITERATE SH_MAKE_NAME(start_iterate) |
124 | | #define SH_START_ITERATE_AT SH_MAKE_NAME(start_iterate_at) |
125 | | #define SH_ITERATE SH_MAKE_NAME(iterate) |
126 | 0 | #define SH_ALLOCATE SH_MAKE_NAME(allocate) |
127 | 0 | #define SH_FREE SH_MAKE_NAME(free) |
128 | | #define SH_STAT SH_MAKE_NAME(stat) |
129 | | |
130 | | /* internal helper functions (no externally visible prototypes) */ |
131 | 0 | #define SH_COMPUTE_SIZE SH_MAKE_NAME(compute_size) |
132 | 0 | #define SH_UPDATE_PARAMETERS SH_MAKE_NAME(update_parameters) |
133 | 0 | #define SH_NEXT SH_MAKE_NAME(next) |
134 | 0 | #define SH_PREV SH_MAKE_NAME(prev) |
135 | 0 | #define SH_DISTANCE_FROM_OPTIMAL SH_MAKE_NAME(distance) |
136 | 0 | #define SH_INITIAL_BUCKET SH_MAKE_NAME(initial_bucket) |
137 | 0 | #define SH_ENTRY_HASH SH_MAKE_NAME(entry_hash) |
138 | 0 | #define SH_INSERT_HASH_INTERNAL SH_MAKE_NAME(insert_hash_internal) |
139 | 0 | #define SH_LOOKUP_HASH_INTERNAL SH_MAKE_NAME(lookup_hash_internal) |
140 | | |
141 | | /* generate forward declarations necessary to use the hash table */ |
142 | | #ifdef SH_DECLARE |
143 | | |
144 | | /* type definitions */ |
145 | | typedef struct SH_TYPE |
146 | | { |
147 | | /* |
148 | | * Size of data / bucket array, 64 bits to handle UINT32_MAX sized hash |
149 | | * tables. Note that the maximum number of elements is lower |
150 | | * (SH_MAX_FILLFACTOR) |
151 | | */ |
152 | | uint64 size; |
153 | | |
154 | | /* how many elements have valid contents */ |
155 | | uint32 members; |
156 | | |
157 | | /* mask for bucket and size calculations, based on size */ |
158 | | uint32 sizemask; |
159 | | |
160 | | /* boundary after which to grow hashtable */ |
161 | | uint32 grow_threshold; |
162 | | |
163 | | /* hash buckets */ |
164 | | SH_ELEMENT_TYPE *data; |
165 | | |
166 | | #ifndef SH_RAW_ALLOCATOR |
167 | | /* memory context to use for allocations */ |
168 | | MemoryContext ctx; |
169 | | #endif |
170 | | |
171 | | /* user defined data, useful for callbacks */ |
172 | | void *private_data; |
173 | | } SH_TYPE; |
174 | | |
175 | | typedef enum SH_STATUS |
176 | | { |
177 | | SH_STATUS_EMPTY = 0x00, |
178 | | SH_STATUS_IN_USE = 0x01 |
179 | | } SH_STATUS; |
180 | | |
181 | | typedef struct SH_ITERATOR |
182 | | { |
183 | | uint32 cur; /* current element */ |
184 | | uint32 end; |
185 | | bool done; /* iterator exhausted? */ |
186 | | } SH_ITERATOR; |
187 | | |
188 | | /* externally visible function prototypes */ |
189 | | #ifdef SH_RAW_ALLOCATOR |
190 | | /* <prefix>_hash <prefix>_create(uint32 nelements, void *private_data) */ |
191 | | SH_SCOPE SH_TYPE *SH_CREATE(uint32 nelements, void *private_data); |
192 | | #else |
193 | | /* |
194 | | * <prefix>_hash <prefix>_create(MemoryContext ctx, uint32 nelements, |
195 | | * void *private_data) |
196 | | */ |
197 | | SH_SCOPE SH_TYPE *SH_CREATE(MemoryContext ctx, uint32 nelements, |
198 | | void *private_data); |
199 | | #endif |
200 | | |
201 | | /* void <prefix>_destroy(<prefix>_hash *tb) */ |
202 | | SH_SCOPE void SH_DESTROY(SH_TYPE * tb); |
203 | | |
204 | | /* void <prefix>_reset(<prefix>_hash *tb) */ |
205 | | SH_SCOPE void SH_RESET(SH_TYPE * tb); |
206 | | |
207 | | /* void <prefix>_grow(<prefix>_hash *tb, uint64 newsize) */ |
208 | | SH_SCOPE void SH_GROW(SH_TYPE * tb, uint64 newsize); |
209 | | |
210 | | /* <element> *<prefix>_insert(<prefix>_hash *tb, <key> key, bool *found) */ |
211 | | SH_SCOPE SH_ELEMENT_TYPE *SH_INSERT(SH_TYPE * tb, SH_KEY_TYPE key, bool *found); |
212 | | |
213 | | /* |
214 | | * <element> *<prefix>_insert_hash(<prefix>_hash *tb, <key> key, uint32 hash, |
215 | | * bool *found) |
216 | | */ |
217 | | SH_SCOPE SH_ELEMENT_TYPE *SH_INSERT_HASH(SH_TYPE * tb, SH_KEY_TYPE key, |
218 | | uint32 hash, bool *found); |
219 | | |
220 | | /* <element> *<prefix>_lookup(<prefix>_hash *tb, <key> key) */ |
221 | | SH_SCOPE SH_ELEMENT_TYPE *SH_LOOKUP(SH_TYPE * tb, SH_KEY_TYPE key); |
222 | | |
223 | | /* <element> *<prefix>_lookup_hash(<prefix>_hash *tb, <key> key, uint32 hash) */ |
224 | | SH_SCOPE SH_ELEMENT_TYPE *SH_LOOKUP_HASH(SH_TYPE * tb, SH_KEY_TYPE key, |
225 | | uint32 hash); |
226 | | |
227 | | /* void <prefix>_delete_item(<prefix>_hash *tb, <element> *entry) */ |
228 | | SH_SCOPE void SH_DELETE_ITEM(SH_TYPE * tb, SH_ELEMENT_TYPE * entry); |
229 | | |
230 | | /* bool <prefix>_delete(<prefix>_hash *tb, <key> key) */ |
231 | | SH_SCOPE bool SH_DELETE(SH_TYPE * tb, SH_KEY_TYPE key); |
232 | | |
233 | | /* void <prefix>_start_iterate(<prefix>_hash *tb, <prefix>_iterator *iter) */ |
234 | | SH_SCOPE void SH_START_ITERATE(SH_TYPE * tb, SH_ITERATOR * iter); |
235 | | |
236 | | /* |
237 | | * void <prefix>_start_iterate_at(<prefix>_hash *tb, <prefix>_iterator *iter, |
238 | | * uint32 at) |
239 | | */ |
240 | | SH_SCOPE void SH_START_ITERATE_AT(SH_TYPE * tb, SH_ITERATOR * iter, uint32 at); |
241 | | |
242 | | /* <element> *<prefix>_iterate(<prefix>_hash *tb, <prefix>_iterator *iter) */ |
243 | | SH_SCOPE SH_ELEMENT_TYPE *SH_ITERATE(SH_TYPE * tb, SH_ITERATOR * iter); |
244 | | |
245 | | /* void <prefix>_stat(<prefix>_hash *tb */ |
246 | | SH_SCOPE void SH_STAT(SH_TYPE * tb); |
247 | | |
248 | | #endif /* SH_DECLARE */ |
249 | | |
250 | | |
251 | | /* generate implementation of the hash table */ |
252 | | #ifdef SH_DEFINE |
253 | | |
254 | | #ifndef SH_RAW_ALLOCATOR |
255 | | #include "utils/memutils.h" |
256 | | #endif |
257 | | |
258 | | /* max data array size,we allow up to PG_UINT32_MAX buckets, including 0 */ |
259 | 0 | #define SH_MAX_SIZE (((uint64) PG_UINT32_MAX) + 1) |
260 | | |
261 | | /* normal fillfactor, unless already close to maximum */ |
262 | | #ifndef SH_FILLFACTOR |
263 | 0 | #define SH_FILLFACTOR (0.9) |
264 | | #endif |
265 | | /* increase fillfactor if we otherwise would error out */ |
266 | 0 | #define SH_MAX_FILLFACTOR (0.98) |
267 | | /* grow if actual and optimal location bigger than */ |
268 | | #ifndef SH_GROW_MAX_DIB |
269 | | #define SH_GROW_MAX_DIB 25 |
270 | | #endif |
271 | | /* grow if more than elements to move when inserting */ |
272 | | #ifndef SH_GROW_MAX_MOVE |
273 | | #define SH_GROW_MAX_MOVE 150 |
274 | | #endif |
275 | | #ifndef SH_GROW_MIN_FILLFACTOR |
276 | | /* but do not grow due to SH_GROW_MAX_* if below */ |
277 | 0 | #define SH_GROW_MIN_FILLFACTOR 0.1 |
278 | | #endif |
279 | | |
280 | | #ifdef SH_STORE_HASH |
281 | 0 | #define SH_COMPARE_KEYS(tb, ahash, akey, b) (ahash == SH_GET_HASH(tb, b) && SH_EQUAL(tb, b->SH_KEY, akey)) |
282 | | #else |
283 | 0 | #define SH_COMPARE_KEYS(tb, ahash, akey, b) (SH_EQUAL(tb, b->SH_KEY, akey)) |
284 | | #endif |
285 | | |
286 | | /* |
287 | | * Wrap the following definitions in include guards, to avoid multiple |
288 | | * definition errors if this header is included more than once. The rest of |
289 | | * the file deliberately has no include guards, because it can be included |
290 | | * with different parameters to define functions and types with non-colliding |
291 | | * names. |
292 | | */ |
293 | | #ifndef SIMPLEHASH_H |
294 | | #define SIMPLEHASH_H |
295 | | |
296 | | #ifdef FRONTEND |
297 | | #define sh_error(...) pg_fatal(__VA_ARGS__) |
298 | | #define sh_log(...) pg_log_info(__VA_ARGS__) |
299 | | #else |
300 | 0 | #define sh_error(...) elog(ERROR, __VA_ARGS__) |
301 | | #define sh_log(...) elog(LOG, __VA_ARGS__) |
302 | | #endif |
303 | | |
304 | | #endif |
305 | | |
306 | | /* |
307 | | * Compute allocation size for hashtable. Result can be passed to |
308 | | * SH_UPDATE_PARAMETERS. |
309 | | */ |
310 | | static inline uint64 |
311 | | SH_COMPUTE_SIZE(uint64 newsize) |
312 | 0 | { |
313 | 0 | uint64 size; |
314 | | |
315 | | /* supporting zero sized hashes would complicate matters */ |
316 | 0 | size = Max(newsize, 2); |
317 | | |
318 | | /* round up size to the next power of 2, that's how bucketing works */ |
319 | 0 | size = pg_nextpower2_64(size); |
320 | 0 | Assert(size <= SH_MAX_SIZE); |
321 | | |
322 | | /* |
323 | | * Verify that allocation of ->data is possible on this platform, without |
324 | | * overflowing Size. |
325 | | */ |
326 | 0 | if (unlikely((((uint64) sizeof(SH_ELEMENT_TYPE)) * size) >= SIZE_MAX / 2)) |
327 | 0 | sh_error("hash table too large"); |
328 | | |
329 | 0 | return size; |
330 | 0 | } Unexecuted instantiation: namespace.c:nsphash_compute_size Unexecuted instantiation: execExprInterp.c:saophash_compute_size Unexecuted instantiation: execGrouping.c:tuplehash_compute_size Unexecuted instantiation: nodeMemoize.c:memoize_compute_size Unexecuted instantiation: tidbitmap.c:pagetable_compute_size Unexecuted instantiation: equivclass.c:derives_compute_size Unexecuted instantiation: basebackup_incremental.c:backup_file_compute_size Unexecuted instantiation: pgstat.c:pgstat_snapshot_compute_size Unexecuted instantiation: pgstat_shmem.c:pgstat_entry_ref_hash_compute_size Unexecuted instantiation: pg_locale.c:collation_cache_compute_size Unexecuted instantiation: blkreftable.c:blockreftable_compute_size |
331 | | |
332 | | /* |
333 | | * Update sizing parameters for hashtable. Called when creating and growing |
334 | | * the hashtable. |
335 | | */ |
336 | | static inline void |
337 | | SH_UPDATE_PARAMETERS(SH_TYPE * tb, uint64 newsize) |
338 | 0 | { |
339 | 0 | uint64 size = SH_COMPUTE_SIZE(newsize); |
340 | | |
341 | | /* now set size */ |
342 | 0 | tb->size = size; |
343 | 0 | tb->sizemask = (uint32) (size - 1); |
344 | | |
345 | | /* |
346 | | * Compute the next threshold at which we need to grow the hash table |
347 | | * again. |
348 | | */ |
349 | 0 | if (tb->size == SH_MAX_SIZE) |
350 | 0 | tb->grow_threshold = ((double) tb->size) * SH_MAX_FILLFACTOR; |
351 | 0 | else |
352 | 0 | tb->grow_threshold = ((double) tb->size) * SH_FILLFACTOR; |
353 | 0 | } Unexecuted instantiation: namespace.c:nsphash_update_parameters Unexecuted instantiation: execExprInterp.c:saophash_update_parameters Unexecuted instantiation: execGrouping.c:tuplehash_update_parameters Unexecuted instantiation: nodeMemoize.c:memoize_update_parameters Unexecuted instantiation: tidbitmap.c:pagetable_update_parameters Unexecuted instantiation: equivclass.c:derives_update_parameters Unexecuted instantiation: basebackup_incremental.c:backup_file_update_parameters Unexecuted instantiation: pgstat.c:pgstat_snapshot_update_parameters Unexecuted instantiation: pgstat_shmem.c:pgstat_entry_ref_hash_update_parameters Unexecuted instantiation: pg_locale.c:collation_cache_update_parameters Unexecuted instantiation: blkreftable.c:blockreftable_update_parameters |
354 | | |
355 | | /* return the optimal bucket for the hash */ |
356 | | static inline uint32 |
357 | | SH_INITIAL_BUCKET(SH_TYPE * tb, uint32 hash) |
358 | 0 | { |
359 | 0 | return hash & tb->sizemask; |
360 | 0 | } Unexecuted instantiation: namespace.c:nsphash_initial_bucket Unexecuted instantiation: execExprInterp.c:saophash_initial_bucket Unexecuted instantiation: execGrouping.c:tuplehash_initial_bucket Unexecuted instantiation: nodeMemoize.c:memoize_initial_bucket Unexecuted instantiation: tidbitmap.c:pagetable_initial_bucket Unexecuted instantiation: equivclass.c:derives_initial_bucket Unexecuted instantiation: basebackup_incremental.c:backup_file_initial_bucket Unexecuted instantiation: pgstat.c:pgstat_snapshot_initial_bucket Unexecuted instantiation: pgstat_shmem.c:pgstat_entry_ref_hash_initial_bucket Unexecuted instantiation: pg_locale.c:collation_cache_initial_bucket Unexecuted instantiation: blkreftable.c:blockreftable_initial_bucket |
361 | | |
362 | | /* return next bucket after the current, handling wraparound */ |
363 | | static inline uint32 |
364 | | SH_NEXT(SH_TYPE * tb, uint32 curelem, uint32 startelem) |
365 | 0 | { |
366 | 0 | curelem = (curelem + 1) & tb->sizemask; |
367 | |
|
368 | 0 | Assert(curelem != startelem); |
369 | |
|
370 | 0 | return curelem; |
371 | 0 | } Unexecuted instantiation: namespace.c:nsphash_next Unexecuted instantiation: execExprInterp.c:saophash_next Unexecuted instantiation: execGrouping.c:tuplehash_next Unexecuted instantiation: nodeMemoize.c:memoize_next Unexecuted instantiation: tidbitmap.c:pagetable_next Unexecuted instantiation: equivclass.c:derives_next Unexecuted instantiation: basebackup_incremental.c:backup_file_next Unexecuted instantiation: pgstat.c:pgstat_snapshot_next Unexecuted instantiation: pgstat_shmem.c:pgstat_entry_ref_hash_next Unexecuted instantiation: pg_locale.c:collation_cache_next Unexecuted instantiation: blkreftable.c:blockreftable_next |
372 | | |
373 | | /* return bucket before the current, handling wraparound */ |
374 | | static inline uint32 |
375 | | SH_PREV(SH_TYPE * tb, uint32 curelem, uint32 startelem) |
376 | 0 | { |
377 | 0 | curelem = (curelem - 1) & tb->sizemask; |
378 | |
|
379 | 0 | Assert(curelem != startelem); |
380 | |
|
381 | 0 | return curelem; |
382 | 0 | } Unexecuted instantiation: namespace.c:nsphash_prev Unexecuted instantiation: execExprInterp.c:saophash_prev Unexecuted instantiation: execGrouping.c:tuplehash_prev Unexecuted instantiation: nodeMemoize.c:memoize_prev Unexecuted instantiation: tidbitmap.c:pagetable_prev Unexecuted instantiation: equivclass.c:derives_prev Unexecuted instantiation: basebackup_incremental.c:backup_file_prev Unexecuted instantiation: pgstat.c:pgstat_snapshot_prev Unexecuted instantiation: pgstat_shmem.c:pgstat_entry_ref_hash_prev Unexecuted instantiation: pg_locale.c:collation_cache_prev Unexecuted instantiation: blkreftable.c:blockreftable_prev |
383 | | |
384 | | /* return distance between bucket and its optimal position */ |
385 | | static inline uint32 |
386 | | SH_DISTANCE_FROM_OPTIMAL(SH_TYPE * tb, uint32 optimal, uint32 bucket) |
387 | 0 | { |
388 | 0 | if (optimal <= bucket) |
389 | 0 | return bucket - optimal; |
390 | 0 | else |
391 | 0 | return (tb->size + bucket) - optimal; |
392 | 0 | } Unexecuted instantiation: namespace.c:nsphash_distance Unexecuted instantiation: execExprInterp.c:saophash_distance Unexecuted instantiation: execGrouping.c:tuplehash_distance Unexecuted instantiation: nodeMemoize.c:memoize_distance Unexecuted instantiation: tidbitmap.c:pagetable_distance Unexecuted instantiation: equivclass.c:derives_distance Unexecuted instantiation: basebackup_incremental.c:backup_file_distance Unexecuted instantiation: pgstat.c:pgstat_snapshot_distance Unexecuted instantiation: pgstat_shmem.c:pgstat_entry_ref_hash_distance Unexecuted instantiation: pg_locale.c:collation_cache_distance Unexecuted instantiation: blkreftable.c:blockreftable_distance |
393 | | |
394 | | static inline uint32 |
395 | | SH_ENTRY_HASH(SH_TYPE * tb, SH_ELEMENT_TYPE * entry) |
396 | 0 | { |
397 | | #ifdef SH_STORE_HASH |
398 | 0 | return SH_GET_HASH(tb, entry); |
399 | | #else |
400 | 0 | return SH_HASH_KEY(tb, entry->SH_KEY); |
401 | | #endif |
402 | 0 | } Unexecuted instantiation: namespace.c:nsphash_entry_hash Unexecuted instantiation: execExprInterp.c:saophash_entry_hash Unexecuted instantiation: execGrouping.c:tuplehash_entry_hash Unexecuted instantiation: nodeMemoize.c:memoize_entry_hash Unexecuted instantiation: tidbitmap.c:pagetable_entry_hash Unexecuted instantiation: equivclass.c:derives_entry_hash Unexecuted instantiation: basebackup_incremental.c:backup_file_entry_hash Unexecuted instantiation: pgstat.c:pgstat_snapshot_entry_hash Unexecuted instantiation: pgstat_shmem.c:pgstat_entry_ref_hash_entry_hash Unexecuted instantiation: pg_locale.c:collation_cache_entry_hash Unexecuted instantiation: blkreftable.c:blockreftable_entry_hash |
403 | | |
404 | | /* default memory allocator function */ |
405 | | static inline void *SH_ALLOCATE(SH_TYPE * type, Size size); |
406 | | static inline void SH_FREE(SH_TYPE * type, void *pointer); |
407 | | |
408 | | #ifndef SH_USE_NONDEFAULT_ALLOCATOR |
409 | | |
410 | | /* default memory allocator function */ |
411 | | static inline void * |
412 | | SH_ALLOCATE(SH_TYPE * type, Size size) |
413 | 0 | { |
414 | | #ifdef SH_RAW_ALLOCATOR |
415 | | return SH_RAW_ALLOCATOR(size); |
416 | | #else |
417 | 0 | return MemoryContextAllocExtended(type->ctx, size, |
418 | 0 | MCXT_ALLOC_HUGE | MCXT_ALLOC_ZERO); |
419 | 0 | #endif |
420 | 0 | } Unexecuted instantiation: namespace.c:nsphash_allocate Unexecuted instantiation: execExprInterp.c:saophash_allocate Unexecuted instantiation: execGrouping.c:tuplehash_allocate Unexecuted instantiation: nodeMemoize.c:memoize_allocate Unexecuted instantiation: equivclass.c:derives_allocate Unexecuted instantiation: basebackup_incremental.c:backup_file_allocate Unexecuted instantiation: pgstat.c:pgstat_snapshot_allocate Unexecuted instantiation: pgstat_shmem.c:pgstat_entry_ref_hash_allocate Unexecuted instantiation: pg_locale.c:collation_cache_allocate Unexecuted instantiation: blkreftable.c:blockreftable_allocate |
421 | | |
422 | | /* default memory free function */ |
423 | | static inline void |
424 | | SH_FREE(SH_TYPE * type, void *pointer) |
425 | 0 | { |
426 | 0 | pfree(pointer); |
427 | 0 | } Unexecuted instantiation: namespace.c:nsphash_free Unexecuted instantiation: execExprInterp.c:saophash_free Unexecuted instantiation: execGrouping.c:tuplehash_free Unexecuted instantiation: nodeMemoize.c:memoize_free Unexecuted instantiation: equivclass.c:derives_free Unexecuted instantiation: basebackup_incremental.c:backup_file_free Unexecuted instantiation: pgstat.c:pgstat_snapshot_free Unexecuted instantiation: pgstat_shmem.c:pgstat_entry_ref_hash_free Unexecuted instantiation: pg_locale.c:collation_cache_free Unexecuted instantiation: blkreftable.c:blockreftable_free |
428 | | |
429 | | #endif |
430 | | |
431 | | /* |
432 | | * Create a hash table with enough space for `nelements` distinct members. |
433 | | * Memory for the hash table is allocated from the passed-in context. If |
434 | | * desired, the array of elements can be allocated using a passed-in allocator; |
435 | | * this could be useful in order to place the array of elements in a shared |
436 | | * memory, or in a context that will outlive the rest of the hash table. |
437 | | * Memory other than for the array of elements will still be allocated from |
438 | | * the passed-in context. |
439 | | */ |
440 | | #ifdef SH_RAW_ALLOCATOR |
441 | | SH_SCOPE SH_TYPE * |
442 | | SH_CREATE(uint32 nelements, void *private_data) |
443 | | #else |
444 | | SH_SCOPE SH_TYPE * |
445 | | SH_CREATE(MemoryContext ctx, uint32 nelements, void *private_data) |
446 | | #endif |
447 | 0 | { |
448 | 0 | SH_TYPE *tb; |
449 | 0 | uint64 size; |
450 | |
|
451 | | #ifdef SH_RAW_ALLOCATOR |
452 | | tb = (SH_TYPE *) SH_RAW_ALLOCATOR(sizeof(SH_TYPE)); |
453 | | #else |
454 | 0 | tb = (SH_TYPE *) MemoryContextAllocZero(ctx, sizeof(SH_TYPE)); |
455 | 0 | tb->ctx = ctx; |
456 | 0 | #endif |
457 | 0 | tb->private_data = private_data; |
458 | | |
459 | | /* increase nelements by fillfactor, want to store nelements elements */ |
460 | 0 | size = Min((double) SH_MAX_SIZE, ((double) nelements) / SH_FILLFACTOR); |
461 | |
|
462 | 0 | size = SH_COMPUTE_SIZE(size); |
463 | |
|
464 | 0 | tb->data = (SH_ELEMENT_TYPE *) SH_ALLOCATE(tb, sizeof(SH_ELEMENT_TYPE) * size); |
465 | |
|
466 | 0 | SH_UPDATE_PARAMETERS(tb, size); |
467 | 0 | return tb; |
468 | 0 | } Unexecuted instantiation: namespace.c:nsphash_create Unexecuted instantiation: execExprInterp.c:saophash_create Unexecuted instantiation: tuplehash_create Unexecuted instantiation: nodeMemoize.c:memoize_create Unexecuted instantiation: tidbitmap.c:pagetable_create Unexecuted instantiation: equivclass.c:derives_create Unexecuted instantiation: basebackup_incremental.c:backup_file_create Unexecuted instantiation: pgstat.c:pgstat_snapshot_create Unexecuted instantiation: pgstat_shmem.c:pgstat_entry_ref_hash_create Unexecuted instantiation: pg_locale.c:collation_cache_create Unexecuted instantiation: blkreftable.c:blockreftable_create |
469 | | |
470 | | /* destroy a previously created hash table */ |
471 | | SH_SCOPE void |
472 | | SH_DESTROY(SH_TYPE * tb) |
473 | 0 | { |
474 | 0 | SH_FREE(tb, tb->data); |
475 | 0 | pfree(tb); |
476 | 0 | } Unexecuted instantiation: namespace.c:nsphash_destroy Unexecuted instantiation: execExprInterp.c:saophash_destroy Unexecuted instantiation: tuplehash_destroy Unexecuted instantiation: nodeMemoize.c:memoize_destroy Unexecuted instantiation: tidbitmap.c:pagetable_destroy Unexecuted instantiation: equivclass.c:derives_destroy Unexecuted instantiation: basebackup_incremental.c:backup_file_destroy Unexecuted instantiation: pgstat.c:pgstat_snapshot_destroy Unexecuted instantiation: pgstat_shmem.c:pgstat_entry_ref_hash_destroy Unexecuted instantiation: pg_locale.c:collation_cache_destroy Unexecuted instantiation: blkreftable.c:blockreftable_destroy |
477 | | |
478 | | /* reset the contents of a previously created hash table */ |
479 | | SH_SCOPE void |
480 | | SH_RESET(SH_TYPE * tb) |
481 | 0 | { |
482 | 0 | memset(tb->data, 0, sizeof(SH_ELEMENT_TYPE) * tb->size); |
483 | 0 | tb->members = 0; |
484 | 0 | } Unexecuted instantiation: namespace.c:nsphash_reset Unexecuted instantiation: execExprInterp.c:saophash_reset Unexecuted instantiation: tuplehash_reset Unexecuted instantiation: nodeMemoize.c:memoize_reset Unexecuted instantiation: tidbitmap.c:pagetable_reset Unexecuted instantiation: equivclass.c:derives_reset Unexecuted instantiation: basebackup_incremental.c:backup_file_reset Unexecuted instantiation: pgstat.c:pgstat_snapshot_reset Unexecuted instantiation: pgstat_shmem.c:pgstat_entry_ref_hash_reset Unexecuted instantiation: pg_locale.c:collation_cache_reset Unexecuted instantiation: blkreftable.c:blockreftable_reset |
485 | | |
486 | | /* |
487 | | * Grow a hash table to at least `newsize` buckets. |
488 | | * |
489 | | * Usually this will automatically be called by insertions/deletions, when |
490 | | * necessary. But resizing to the exact input size can be advantageous |
491 | | * performance-wise, when known at some point. |
492 | | */ |
493 | | SH_SCOPE void |
494 | | SH_GROW(SH_TYPE * tb, uint64 newsize) |
495 | 0 | { |
496 | 0 | uint64 oldsize = tb->size; |
497 | 0 | SH_ELEMENT_TYPE *olddata = tb->data; |
498 | 0 | SH_ELEMENT_TYPE *newdata; |
499 | 0 | uint32 i; |
500 | 0 | uint32 startelem = 0; |
501 | 0 | uint32 copyelem; |
502 | |
|
503 | 0 | Assert(oldsize == pg_nextpower2_64(oldsize)); |
504 | 0 | Assert(oldsize != SH_MAX_SIZE); |
505 | 0 | Assert(oldsize < newsize); |
506 | |
|
507 | 0 | newsize = SH_COMPUTE_SIZE(newsize); |
508 | |
|
509 | 0 | tb->data = (SH_ELEMENT_TYPE *) SH_ALLOCATE(tb, sizeof(SH_ELEMENT_TYPE) * newsize); |
510 | | |
511 | | /* |
512 | | * Update parameters for new table after allocation succeeds to avoid |
513 | | * inconsistent state on OOM. |
514 | | */ |
515 | 0 | SH_UPDATE_PARAMETERS(tb, newsize); |
516 | |
|
517 | 0 | newdata = tb->data; |
518 | | |
519 | | /* |
520 | | * Copy entries from the old data to newdata. We theoretically could use |
521 | | * SH_INSERT here, to avoid code duplication, but that's more general than |
522 | | * we need. We neither want tb->members increased, nor do we need to do |
523 | | * deal with deleted elements, nor do we need to compare keys. So a |
524 | | * special-cased implementation is lot faster. As resizing can be time |
525 | | * consuming and frequent, that's worthwhile to optimize. |
526 | | * |
527 | | * To be able to simply move entries over, we have to start not at the |
528 | | * first bucket (i.e olddata[0]), but find the first bucket that's either |
529 | | * empty, or is occupied by an entry at its optimal position. Such a |
530 | | * bucket has to exist in any table with a load factor under 1, as not all |
531 | | * buckets are occupied, i.e. there always has to be an empty bucket. By |
532 | | * starting at such a bucket we can move the entries to the larger table, |
533 | | * without having to deal with conflicts. |
534 | | */ |
535 | | |
536 | | /* search for the first element in the hash that's not wrapped around */ |
537 | 0 | for (i = 0; i < oldsize; i++) |
538 | 0 | { |
539 | 0 | SH_ELEMENT_TYPE *oldentry = &olddata[i]; |
540 | 0 | uint32 hash; |
541 | 0 | uint32 optimal; |
542 | |
|
543 | 0 | if (oldentry->status != SH_STATUS_IN_USE) |
544 | 0 | { |
545 | 0 | startelem = i; |
546 | 0 | break; |
547 | 0 | } |
548 | | |
549 | 0 | hash = SH_ENTRY_HASH(tb, oldentry); |
550 | 0 | optimal = SH_INITIAL_BUCKET(tb, hash); |
551 | |
|
552 | 0 | if (optimal == i) |
553 | 0 | { |
554 | 0 | startelem = i; |
555 | 0 | break; |
556 | 0 | } |
557 | 0 | } |
558 | | |
559 | | /* and copy all elements in the old table */ |
560 | 0 | copyelem = startelem; |
561 | 0 | for (i = 0; i < oldsize; i++) |
562 | 0 | { |
563 | 0 | SH_ELEMENT_TYPE *oldentry = &olddata[copyelem]; |
564 | |
|
565 | 0 | if (oldentry->status == SH_STATUS_IN_USE) |
566 | 0 | { |
567 | 0 | uint32 hash; |
568 | 0 | uint32 startelem2; |
569 | 0 | uint32 curelem; |
570 | 0 | SH_ELEMENT_TYPE *newentry; |
571 | |
|
572 | 0 | hash = SH_ENTRY_HASH(tb, oldentry); |
573 | 0 | startelem2 = SH_INITIAL_BUCKET(tb, hash); |
574 | 0 | curelem = startelem2; |
575 | | |
576 | | /* find empty element to put data into */ |
577 | 0 | while (true) |
578 | 0 | { |
579 | 0 | newentry = &newdata[curelem]; |
580 | |
|
581 | 0 | if (newentry->status == SH_STATUS_EMPTY) |
582 | 0 | { |
583 | 0 | break; |
584 | 0 | } |
585 | | |
586 | 0 | curelem = SH_NEXT(tb, curelem, startelem2); |
587 | 0 | } |
588 | | |
589 | | /* copy entry to new slot */ |
590 | 0 | memcpy(newentry, oldentry, sizeof(SH_ELEMENT_TYPE)); |
591 | 0 | } |
592 | | |
593 | | /* can't use SH_NEXT here, would use new size */ |
594 | 0 | copyelem++; |
595 | 0 | if (copyelem >= oldsize) |
596 | 0 | { |
597 | 0 | copyelem = 0; |
598 | 0 | } |
599 | 0 | } |
600 | |
|
601 | 0 | SH_FREE(tb, olddata); |
602 | 0 | } Unexecuted instantiation: namespace.c:nsphash_grow Unexecuted instantiation: execExprInterp.c:saophash_grow Unexecuted instantiation: tuplehash_grow Unexecuted instantiation: nodeMemoize.c:memoize_grow Unexecuted instantiation: tidbitmap.c:pagetable_grow Unexecuted instantiation: equivclass.c:derives_grow Unexecuted instantiation: basebackup_incremental.c:backup_file_grow Unexecuted instantiation: pgstat.c:pgstat_snapshot_grow Unexecuted instantiation: pgstat_shmem.c:pgstat_entry_ref_hash_grow Unexecuted instantiation: pg_locale.c:collation_cache_grow Unexecuted instantiation: blkreftable.c:blockreftable_grow |
603 | | |
604 | | /* |
605 | | * This is a separate static inline function, so it can be reliably be inlined |
606 | | * into its wrapper functions even if SH_SCOPE is extern. |
607 | | */ |
608 | | static inline SH_ELEMENT_TYPE * |
609 | | SH_INSERT_HASH_INTERNAL(SH_TYPE * tb, SH_KEY_TYPE key, uint32 hash, bool *found) |
610 | 0 | { |
611 | 0 | uint32 startelem; |
612 | 0 | uint32 curelem; |
613 | 0 | SH_ELEMENT_TYPE *data; |
614 | 0 | uint32 insertdist; |
615 | |
|
616 | 0 | restart: |
617 | 0 | insertdist = 0; |
618 | | |
619 | | /* |
620 | | * We do the grow check even if the key is actually present, to avoid |
621 | | * doing the check inside the loop. This also lets us avoid having to |
622 | | * re-find our position in the hashtable after resizing. |
623 | | * |
624 | | * Note that this also reached when resizing the table due to |
625 | | * SH_GROW_MAX_DIB / SH_GROW_MAX_MOVE. |
626 | | */ |
627 | 0 | if (unlikely(tb->members >= tb->grow_threshold)) |
628 | 0 | { |
629 | 0 | if (unlikely(tb->size == SH_MAX_SIZE)) |
630 | 0 | sh_error("hash table size exceeded"); |
631 | | |
632 | | /* |
633 | | * When optimizing, it can be very useful to print these out. |
634 | | */ |
635 | | /* SH_STAT(tb); */ |
636 | 0 | SH_GROW(tb, tb->size * 2); |
637 | | /* SH_STAT(tb); */ |
638 | 0 | } |
639 | | |
640 | | /* perform insert, start bucket search at optimal location */ |
641 | 0 | data = tb->data; |
642 | 0 | startelem = SH_INITIAL_BUCKET(tb, hash); |
643 | 0 | curelem = startelem; |
644 | 0 | while (true) |
645 | 0 | { |
646 | 0 | uint32 curdist; |
647 | 0 | uint32 curhash; |
648 | 0 | uint32 curoptimal; |
649 | 0 | SH_ELEMENT_TYPE *entry = &data[curelem]; |
650 | | |
651 | | /* any empty bucket can directly be used */ |
652 | 0 | if (entry->status == SH_STATUS_EMPTY) |
653 | 0 | { |
654 | 0 | tb->members++; |
655 | 0 | entry->SH_KEY = key; |
656 | | #ifdef SH_STORE_HASH |
657 | 0 | SH_GET_HASH(tb, entry) = hash; |
658 | | #endif |
659 | 0 | entry->status = SH_STATUS_IN_USE; |
660 | 0 | *found = false; |
661 | 0 | return entry; |
662 | 0 | } |
663 | | |
664 | | /* |
665 | | * If the bucket is not empty, we either found a match (in which case |
666 | | * we're done), or we have to decide whether to skip over or move the |
667 | | * colliding entry. When the colliding element's distance to its |
668 | | * optimal position is smaller than the to-be-inserted entry's, we |
669 | | * shift the colliding entry (and its followers) forward by one. |
670 | | */ |
671 | | |
672 | 0 | if (SH_COMPARE_KEYS(tb, hash, key, entry)) |
673 | 0 | { |
674 | 0 | Assert(entry->status == SH_STATUS_IN_USE); |
675 | 0 | *found = true; |
676 | 0 | return entry; |
677 | 0 | } |
678 | | |
679 | 0 | curhash = SH_ENTRY_HASH(tb, entry); |
680 | 0 | curoptimal = SH_INITIAL_BUCKET(tb, curhash); |
681 | 0 | curdist = SH_DISTANCE_FROM_OPTIMAL(tb, curoptimal, curelem); |
682 | |
|
683 | 0 | if (insertdist > curdist) |
684 | 0 | { |
685 | 0 | SH_ELEMENT_TYPE *lastentry = entry; |
686 | 0 | uint32 emptyelem = curelem; |
687 | 0 | uint32 moveelem; |
688 | 0 | int32 emptydist = 0; |
689 | | |
690 | | /* find next empty bucket */ |
691 | 0 | while (true) |
692 | 0 | { |
693 | 0 | SH_ELEMENT_TYPE *emptyentry; |
694 | |
|
695 | 0 | emptyelem = SH_NEXT(tb, emptyelem, startelem); |
696 | 0 | emptyentry = &data[emptyelem]; |
697 | |
|
698 | 0 | if (emptyentry->status == SH_STATUS_EMPTY) |
699 | 0 | { |
700 | 0 | lastentry = emptyentry; |
701 | 0 | break; |
702 | 0 | } |
703 | | |
704 | | /* |
705 | | * To avoid negative consequences from overly imbalanced |
706 | | * hashtables, grow the hashtable if collisions would require |
707 | | * us to move a lot of entries. The most likely cause of such |
708 | | * imbalance is filling a (currently) small table, from a |
709 | | * currently big one, in hash-table order. Don't grow if the |
710 | | * hashtable would be too empty, to prevent quick space |
711 | | * explosion for some weird edge cases. |
712 | | */ |
713 | 0 | if (unlikely(++emptydist > SH_GROW_MAX_MOVE) && |
714 | 0 | ((double) tb->members / tb->size) >= SH_GROW_MIN_FILLFACTOR) |
715 | 0 | { |
716 | 0 | tb->grow_threshold = 0; |
717 | 0 | goto restart; |
718 | 0 | } |
719 | 0 | } |
720 | | |
721 | | /* shift forward, starting at last occupied element */ |
722 | | |
723 | | /* |
724 | | * TODO: This could be optimized to be one memcpy in many cases, |
725 | | * excepting wrapping around at the end of ->data. Hasn't shown up |
726 | | * in profiles so far though. |
727 | | */ |
728 | 0 | moveelem = emptyelem; |
729 | 0 | while (moveelem != curelem) |
730 | 0 | { |
731 | 0 | SH_ELEMENT_TYPE *moveentry; |
732 | |
|
733 | 0 | moveelem = SH_PREV(tb, moveelem, startelem); |
734 | 0 | moveentry = &data[moveelem]; |
735 | |
|
736 | 0 | memcpy(lastentry, moveentry, sizeof(SH_ELEMENT_TYPE)); |
737 | 0 | lastentry = moveentry; |
738 | 0 | } |
739 | | |
740 | | /* and fill the now empty spot */ |
741 | 0 | tb->members++; |
742 | |
|
743 | 0 | entry->SH_KEY = key; |
744 | | #ifdef SH_STORE_HASH |
745 | 0 | SH_GET_HASH(tb, entry) = hash; |
746 | | #endif |
747 | 0 | entry->status = SH_STATUS_IN_USE; |
748 | 0 | *found = false; |
749 | 0 | return entry; |
750 | 0 | } |
751 | | |
752 | 0 | curelem = SH_NEXT(tb, curelem, startelem); |
753 | 0 | insertdist++; |
754 | | |
755 | | /* |
756 | | * To avoid negative consequences from overly imbalanced hashtables, |
757 | | * grow the hashtable if collisions lead to large runs. The most |
758 | | * likely cause of such imbalance is filling a (currently) small |
759 | | * table, from a currently big one, in hash-table order. Don't grow |
760 | | * if the hashtable would be too empty, to prevent quick space |
761 | | * explosion for some weird edge cases. |
762 | | */ |
763 | 0 | if (unlikely(insertdist > SH_GROW_MAX_DIB) && |
764 | 0 | ((double) tb->members / tb->size) >= SH_GROW_MIN_FILLFACTOR) |
765 | 0 | { |
766 | 0 | tb->grow_threshold = 0; |
767 | 0 | goto restart; |
768 | 0 | } |
769 | 0 | } |
770 | 0 | } Unexecuted instantiation: namespace.c:nsphash_insert_hash_internal Unexecuted instantiation: execExprInterp.c:saophash_insert_hash_internal Unexecuted instantiation: execGrouping.c:tuplehash_insert_hash_internal Unexecuted instantiation: nodeMemoize.c:memoize_insert_hash_internal Unexecuted instantiation: tidbitmap.c:pagetable_insert_hash_internal Unexecuted instantiation: equivclass.c:derives_insert_hash_internal Unexecuted instantiation: basebackup_incremental.c:backup_file_insert_hash_internal Unexecuted instantiation: pgstat.c:pgstat_snapshot_insert_hash_internal Unexecuted instantiation: pgstat_shmem.c:pgstat_entry_ref_hash_insert_hash_internal Unexecuted instantiation: pg_locale.c:collation_cache_insert_hash_internal Unexecuted instantiation: blkreftable.c:blockreftable_insert_hash_internal |
771 | | |
772 | | /* |
773 | | * Insert the key into the hash-table, set *found to true if the key already |
774 | | * exists, false otherwise. Returns the hash-table entry in either case. |
775 | | */ |
776 | | SH_SCOPE SH_ELEMENT_TYPE * |
777 | | SH_INSERT(SH_TYPE * tb, SH_KEY_TYPE key, bool *found) |
778 | 0 | { |
779 | 0 | uint32 hash = SH_HASH_KEY(tb, key); |
780 | |
|
781 | 0 | return SH_INSERT_HASH_INTERNAL(tb, key, hash, found); |
782 | 0 | } Unexecuted instantiation: namespace.c:nsphash_insert Unexecuted instantiation: execExprInterp.c:saophash_insert Unexecuted instantiation: tuplehash_insert Unexecuted instantiation: nodeMemoize.c:memoize_insert Unexecuted instantiation: tidbitmap.c:pagetable_insert Unexecuted instantiation: equivclass.c:derives_insert Unexecuted instantiation: basebackup_incremental.c:backup_file_insert Unexecuted instantiation: pgstat.c:pgstat_snapshot_insert Unexecuted instantiation: pgstat_shmem.c:pgstat_entry_ref_hash_insert Unexecuted instantiation: pg_locale.c:collation_cache_insert Unexecuted instantiation: blkreftable.c:blockreftable_insert |
783 | | |
784 | | /* |
785 | | * Insert the key into the hash-table using an already-calculated hash. Set |
786 | | * *found to true if the key already exists, false otherwise. Returns the |
787 | | * hash-table entry in either case. |
788 | | */ |
789 | | SH_SCOPE SH_ELEMENT_TYPE * |
790 | | SH_INSERT_HASH(SH_TYPE * tb, SH_KEY_TYPE key, uint32 hash, bool *found) |
791 | 0 | { |
792 | 0 | return SH_INSERT_HASH_INTERNAL(tb, key, hash, found); |
793 | 0 | } Unexecuted instantiation: namespace.c:nsphash_insert_hash Unexecuted instantiation: execExprInterp.c:saophash_insert_hash Unexecuted instantiation: tuplehash_insert_hash Unexecuted instantiation: nodeMemoize.c:memoize_insert_hash Unexecuted instantiation: tidbitmap.c:pagetable_insert_hash Unexecuted instantiation: equivclass.c:derives_insert_hash Unexecuted instantiation: basebackup_incremental.c:backup_file_insert_hash Unexecuted instantiation: pgstat.c:pgstat_snapshot_insert_hash Unexecuted instantiation: pgstat_shmem.c:pgstat_entry_ref_hash_insert_hash Unexecuted instantiation: pg_locale.c:collation_cache_insert_hash Unexecuted instantiation: blkreftable.c:blockreftable_insert_hash |
794 | | |
795 | | /* |
796 | | * This is a separate static inline function, so it can be reliably be inlined |
797 | | * into its wrapper functions even if SH_SCOPE is extern. |
798 | | */ |
799 | | static inline SH_ELEMENT_TYPE * |
800 | | SH_LOOKUP_HASH_INTERNAL(SH_TYPE * tb, SH_KEY_TYPE key, uint32 hash) |
801 | 0 | { |
802 | 0 | const uint32 startelem = SH_INITIAL_BUCKET(tb, hash); |
803 | 0 | uint32 curelem = startelem; |
804 | |
|
805 | 0 | while (true) |
806 | 0 | { |
807 | 0 | SH_ELEMENT_TYPE *entry = &tb->data[curelem]; |
808 | |
|
809 | 0 | if (entry->status == SH_STATUS_EMPTY) |
810 | 0 | { |
811 | 0 | return NULL; |
812 | 0 | } |
813 | | |
814 | 0 | Assert(entry->status == SH_STATUS_IN_USE); |
815 | |
|
816 | 0 | if (SH_COMPARE_KEYS(tb, hash, key, entry)) |
817 | 0 | return entry; |
818 | | |
819 | | /* |
820 | | * TODO: we could stop search based on distance. If the current |
821 | | * buckets's distance-from-optimal is smaller than what we've skipped |
822 | | * already, the entry doesn't exist. Probably only do so if |
823 | | * SH_STORE_HASH is defined, to avoid re-computing hashes? |
824 | | */ |
825 | | |
826 | 0 | curelem = SH_NEXT(tb, curelem, startelem); |
827 | 0 | } |
828 | 0 | } Unexecuted instantiation: namespace.c:nsphash_lookup_hash_internal Unexecuted instantiation: execExprInterp.c:saophash_lookup_hash_internal Unexecuted instantiation: execGrouping.c:tuplehash_lookup_hash_internal Unexecuted instantiation: nodeMemoize.c:memoize_lookup_hash_internal Unexecuted instantiation: tidbitmap.c:pagetable_lookup_hash_internal Unexecuted instantiation: equivclass.c:derives_lookup_hash_internal Unexecuted instantiation: basebackup_incremental.c:backup_file_lookup_hash_internal Unexecuted instantiation: pgstat.c:pgstat_snapshot_lookup_hash_internal Unexecuted instantiation: pgstat_shmem.c:pgstat_entry_ref_hash_lookup_hash_internal Unexecuted instantiation: pg_locale.c:collation_cache_lookup_hash_internal Unexecuted instantiation: blkreftable.c:blockreftable_lookup_hash_internal |
829 | | |
830 | | /* |
831 | | * Lookup entry in hash table. Returns NULL if key not present. |
832 | | */ |
833 | | SH_SCOPE SH_ELEMENT_TYPE * |
834 | | SH_LOOKUP(SH_TYPE * tb, SH_KEY_TYPE key) |
835 | 0 | { |
836 | 0 | uint32 hash = SH_HASH_KEY(tb, key); |
837 | |
|
838 | 0 | return SH_LOOKUP_HASH_INTERNAL(tb, key, hash); |
839 | 0 | } Unexecuted instantiation: namespace.c:nsphash_lookup Unexecuted instantiation: execExprInterp.c:saophash_lookup Unexecuted instantiation: tuplehash_lookup Unexecuted instantiation: nodeMemoize.c:memoize_lookup Unexecuted instantiation: tidbitmap.c:pagetable_lookup Unexecuted instantiation: equivclass.c:derives_lookup Unexecuted instantiation: basebackup_incremental.c:backup_file_lookup Unexecuted instantiation: pgstat.c:pgstat_snapshot_lookup Unexecuted instantiation: pgstat_shmem.c:pgstat_entry_ref_hash_lookup Unexecuted instantiation: pg_locale.c:collation_cache_lookup Unexecuted instantiation: blkreftable.c:blockreftable_lookup |
840 | | |
841 | | /* |
842 | | * Lookup entry in hash table using an already-calculated hash. |
843 | | * |
844 | | * Returns NULL if key not present. |
845 | | */ |
846 | | SH_SCOPE SH_ELEMENT_TYPE * |
847 | | SH_LOOKUP_HASH(SH_TYPE * tb, SH_KEY_TYPE key, uint32 hash) |
848 | 0 | { |
849 | 0 | return SH_LOOKUP_HASH_INTERNAL(tb, key, hash); |
850 | 0 | } Unexecuted instantiation: namespace.c:nsphash_lookup_hash Unexecuted instantiation: execExprInterp.c:saophash_lookup_hash Unexecuted instantiation: tuplehash_lookup_hash Unexecuted instantiation: nodeMemoize.c:memoize_lookup_hash Unexecuted instantiation: tidbitmap.c:pagetable_lookup_hash Unexecuted instantiation: equivclass.c:derives_lookup_hash Unexecuted instantiation: basebackup_incremental.c:backup_file_lookup_hash Unexecuted instantiation: pgstat.c:pgstat_snapshot_lookup_hash Unexecuted instantiation: pgstat_shmem.c:pgstat_entry_ref_hash_lookup_hash Unexecuted instantiation: pg_locale.c:collation_cache_lookup_hash Unexecuted instantiation: blkreftable.c:blockreftable_lookup_hash |
851 | | |
852 | | /* |
853 | | * Delete entry from hash table by key. Returns whether to-be-deleted key was |
854 | | * present. |
855 | | */ |
856 | | SH_SCOPE bool |
857 | | SH_DELETE(SH_TYPE * tb, SH_KEY_TYPE key) |
858 | 0 | { |
859 | 0 | uint32 hash = SH_HASH_KEY(tb, key); |
860 | 0 | uint32 startelem = SH_INITIAL_BUCKET(tb, hash); |
861 | 0 | uint32 curelem = startelem; |
862 | |
|
863 | 0 | while (true) |
864 | 0 | { |
865 | 0 | SH_ELEMENT_TYPE *entry = &tb->data[curelem]; |
866 | |
|
867 | 0 | if (entry->status == SH_STATUS_EMPTY) |
868 | 0 | return false; |
869 | | |
870 | 0 | if (entry->status == SH_STATUS_IN_USE && |
871 | 0 | SH_COMPARE_KEYS(tb, hash, key, entry)) |
872 | 0 | { |
873 | 0 | SH_ELEMENT_TYPE *lastentry = entry; |
874 | |
|
875 | 0 | tb->members--; |
876 | | |
877 | | /* |
878 | | * Backward shift following elements till either an empty element |
879 | | * or an element at its optimal position is encountered. |
880 | | * |
881 | | * While that sounds expensive, the average chain length is short, |
882 | | * and deletions would otherwise require tombstones. |
883 | | */ |
884 | 0 | while (true) |
885 | 0 | { |
886 | 0 | SH_ELEMENT_TYPE *curentry; |
887 | 0 | uint32 curhash; |
888 | 0 | uint32 curoptimal; |
889 | |
|
890 | 0 | curelem = SH_NEXT(tb, curelem, startelem); |
891 | 0 | curentry = &tb->data[curelem]; |
892 | |
|
893 | 0 | if (curentry->status != SH_STATUS_IN_USE) |
894 | 0 | { |
895 | 0 | lastentry->status = SH_STATUS_EMPTY; |
896 | 0 | break; |
897 | 0 | } |
898 | | |
899 | 0 | curhash = SH_ENTRY_HASH(tb, curentry); |
900 | 0 | curoptimal = SH_INITIAL_BUCKET(tb, curhash); |
901 | | |
902 | | /* current is at optimal position, done */ |
903 | 0 | if (curoptimal == curelem) |
904 | 0 | { |
905 | 0 | lastentry->status = SH_STATUS_EMPTY; |
906 | 0 | break; |
907 | 0 | } |
908 | | |
909 | | /* shift */ |
910 | 0 | memcpy(lastentry, curentry, sizeof(SH_ELEMENT_TYPE)); |
911 | |
|
912 | 0 | lastentry = curentry; |
913 | 0 | } |
914 | |
|
915 | 0 | return true; |
916 | 0 | } |
917 | | |
918 | | /* TODO: return false; if distance too big */ |
919 | | |
920 | 0 | curelem = SH_NEXT(tb, curelem, startelem); |
921 | 0 | } |
922 | 0 | } Unexecuted instantiation: namespace.c:nsphash_delete Unexecuted instantiation: execExprInterp.c:saophash_delete Unexecuted instantiation: tuplehash_delete Unexecuted instantiation: nodeMemoize.c:memoize_delete Unexecuted instantiation: tidbitmap.c:pagetable_delete Unexecuted instantiation: equivclass.c:derives_delete Unexecuted instantiation: basebackup_incremental.c:backup_file_delete Unexecuted instantiation: pgstat.c:pgstat_snapshot_delete Unexecuted instantiation: pgstat_shmem.c:pgstat_entry_ref_hash_delete Unexecuted instantiation: pg_locale.c:collation_cache_delete Unexecuted instantiation: blkreftable.c:blockreftable_delete |
923 | | |
924 | | /* |
925 | | * Delete entry from hash table by entry pointer |
926 | | */ |
927 | | SH_SCOPE void |
928 | | SH_DELETE_ITEM(SH_TYPE * tb, SH_ELEMENT_TYPE * entry) |
929 | 0 | { |
930 | 0 | SH_ELEMENT_TYPE *lastentry = entry; |
931 | 0 | uint32 hash = SH_ENTRY_HASH(tb, entry); |
932 | 0 | uint32 startelem = SH_INITIAL_BUCKET(tb, hash); |
933 | 0 | uint32 curelem; |
934 | | |
935 | | /* Calculate the index of 'entry' */ |
936 | 0 | curelem = entry - &tb->data[0]; |
937 | |
|
938 | 0 | tb->members--; |
939 | | |
940 | | /* |
941 | | * Backward shift following elements till either an empty element or an |
942 | | * element at its optimal position is encountered. |
943 | | * |
944 | | * While that sounds expensive, the average chain length is short, and |
945 | | * deletions would otherwise require tombstones. |
946 | | */ |
947 | 0 | while (true) |
948 | 0 | { |
949 | 0 | SH_ELEMENT_TYPE *curentry; |
950 | 0 | uint32 curhash; |
951 | 0 | uint32 curoptimal; |
952 | |
|
953 | 0 | curelem = SH_NEXT(tb, curelem, startelem); |
954 | 0 | curentry = &tb->data[curelem]; |
955 | |
|
956 | 0 | if (curentry->status != SH_STATUS_IN_USE) |
957 | 0 | { |
958 | 0 | lastentry->status = SH_STATUS_EMPTY; |
959 | 0 | break; |
960 | 0 | } |
961 | | |
962 | 0 | curhash = SH_ENTRY_HASH(tb, curentry); |
963 | 0 | curoptimal = SH_INITIAL_BUCKET(tb, curhash); |
964 | | |
965 | | /* current is at optimal position, done */ |
966 | 0 | if (curoptimal == curelem) |
967 | 0 | { |
968 | 0 | lastentry->status = SH_STATUS_EMPTY; |
969 | 0 | break; |
970 | 0 | } |
971 | | |
972 | | /* shift */ |
973 | 0 | memcpy(lastentry, curentry, sizeof(SH_ELEMENT_TYPE)); |
974 | |
|
975 | 0 | lastentry = curentry; |
976 | 0 | } |
977 | 0 | } Unexecuted instantiation: namespace.c:nsphash_delete_item Unexecuted instantiation: execExprInterp.c:saophash_delete_item Unexecuted instantiation: tuplehash_delete_item Unexecuted instantiation: nodeMemoize.c:memoize_delete_item Unexecuted instantiation: tidbitmap.c:pagetable_delete_item Unexecuted instantiation: equivclass.c:derives_delete_item Unexecuted instantiation: basebackup_incremental.c:backup_file_delete_item Unexecuted instantiation: pgstat.c:pgstat_snapshot_delete_item Unexecuted instantiation: pgstat_shmem.c:pgstat_entry_ref_hash_delete_item Unexecuted instantiation: pg_locale.c:collation_cache_delete_item Unexecuted instantiation: blkreftable.c:blockreftable_delete_item |
978 | | |
979 | | /* |
980 | | * Initialize iterator. |
981 | | */ |
982 | | SH_SCOPE void |
983 | | SH_START_ITERATE(SH_TYPE * tb, SH_ITERATOR * iter) |
984 | 0 | { |
985 | 0 | uint64 startelem = PG_UINT64_MAX; |
986 | | |
987 | | /* |
988 | | * Search for the first empty element. As deletions during iterations are |
989 | | * supported, we want to start/end at an element that cannot be affected |
990 | | * by elements being shifted. |
991 | | */ |
992 | 0 | for (uint32 i = 0; i < tb->size; i++) |
993 | 0 | { |
994 | 0 | SH_ELEMENT_TYPE *entry = &tb->data[i]; |
995 | |
|
996 | 0 | if (entry->status != SH_STATUS_IN_USE) |
997 | 0 | { |
998 | 0 | startelem = i; |
999 | 0 | break; |
1000 | 0 | } |
1001 | 0 | } |
1002 | | |
1003 | | /* we should have found an empty element */ |
1004 | 0 | Assert(startelem < SH_MAX_SIZE); |
1005 | | |
1006 | | /* |
1007 | | * Iterate backwards, that allows the current element to be deleted, even |
1008 | | * if there are backward shifts |
1009 | | */ |
1010 | 0 | iter->cur = startelem; |
1011 | 0 | iter->end = iter->cur; |
1012 | 0 | iter->done = false; |
1013 | 0 | } Unexecuted instantiation: namespace.c:nsphash_start_iterate Unexecuted instantiation: execExprInterp.c:saophash_start_iterate Unexecuted instantiation: tuplehash_start_iterate Unexecuted instantiation: nodeMemoize.c:memoize_start_iterate Unexecuted instantiation: tidbitmap.c:pagetable_start_iterate Unexecuted instantiation: equivclass.c:derives_start_iterate Unexecuted instantiation: basebackup_incremental.c:backup_file_start_iterate Unexecuted instantiation: pgstat.c:pgstat_snapshot_start_iterate Unexecuted instantiation: pgstat_shmem.c:pgstat_entry_ref_hash_start_iterate Unexecuted instantiation: pg_locale.c:collation_cache_start_iterate Unexecuted instantiation: blkreftable.c:blockreftable_start_iterate |
1014 | | |
1015 | | /* |
1016 | | * Initialize iterator to a specific bucket. That's really only useful for |
1017 | | * cases where callers are partially iterating over the hashspace, and that |
1018 | | * iteration deletes and inserts elements based on visited entries. Doing that |
1019 | | * repeatedly could lead to an unbalanced keyspace when always starting at the |
1020 | | * same position. |
1021 | | */ |
1022 | | SH_SCOPE void |
1023 | | SH_START_ITERATE_AT(SH_TYPE * tb, SH_ITERATOR * iter, uint32 at) |
1024 | 0 | { |
1025 | | /* |
1026 | | * Iterate backwards, that allows the current element to be deleted, even |
1027 | | * if there are backward shifts. |
1028 | | */ |
1029 | 0 | iter->cur = at & tb->sizemask; /* ensure at is within a valid range */ |
1030 | 0 | iter->end = iter->cur; |
1031 | 0 | iter->done = false; |
1032 | 0 | } Unexecuted instantiation: namespace.c:nsphash_start_iterate_at Unexecuted instantiation: execExprInterp.c:saophash_start_iterate_at Unexecuted instantiation: tuplehash_start_iterate_at Unexecuted instantiation: nodeMemoize.c:memoize_start_iterate_at Unexecuted instantiation: tidbitmap.c:pagetable_start_iterate_at Unexecuted instantiation: equivclass.c:derives_start_iterate_at Unexecuted instantiation: basebackup_incremental.c:backup_file_start_iterate_at Unexecuted instantiation: pgstat.c:pgstat_snapshot_start_iterate_at Unexecuted instantiation: pgstat_shmem.c:pgstat_entry_ref_hash_start_iterate_at Unexecuted instantiation: pg_locale.c:collation_cache_start_iterate_at Unexecuted instantiation: blkreftable.c:blockreftable_start_iterate_at |
1033 | | |
1034 | | /* |
1035 | | * Iterate over all entries in the hash-table. Return the next occupied entry, |
1036 | | * or NULL if done. |
1037 | | * |
1038 | | * During iteration the current entry in the hash table may be deleted, |
1039 | | * without leading to elements being skipped or returned twice. Additionally |
1040 | | * the rest of the table may be modified (i.e. there can be insertions or |
1041 | | * deletions), but if so, there's neither a guarantee that all nodes are |
1042 | | * visited at least once, nor a guarantee that a node is visited at most once. |
1043 | | */ |
1044 | | SH_SCOPE SH_ELEMENT_TYPE * |
1045 | | SH_ITERATE(SH_TYPE * tb, SH_ITERATOR * iter) |
1046 | 0 | { |
1047 | 0 | while (!iter->done) |
1048 | 0 | { |
1049 | 0 | SH_ELEMENT_TYPE *elem; |
1050 | |
|
1051 | 0 | elem = &tb->data[iter->cur]; |
1052 | | |
1053 | | /* next element in backward direction */ |
1054 | 0 | iter->cur = (iter->cur - 1) & tb->sizemask; |
1055 | |
|
1056 | 0 | if ((iter->cur & tb->sizemask) == (iter->end & tb->sizemask)) |
1057 | 0 | iter->done = true; |
1058 | 0 | if (elem->status == SH_STATUS_IN_USE) |
1059 | 0 | { |
1060 | 0 | return elem; |
1061 | 0 | } |
1062 | 0 | } |
1063 | | |
1064 | 0 | return NULL; |
1065 | 0 | } Unexecuted instantiation: namespace.c:nsphash_iterate Unexecuted instantiation: execExprInterp.c:saophash_iterate Unexecuted instantiation: tuplehash_iterate Unexecuted instantiation: nodeMemoize.c:memoize_iterate Unexecuted instantiation: tidbitmap.c:pagetable_iterate Unexecuted instantiation: equivclass.c:derives_iterate Unexecuted instantiation: basebackup_incremental.c:backup_file_iterate Unexecuted instantiation: pgstat.c:pgstat_snapshot_iterate Unexecuted instantiation: pgstat_shmem.c:pgstat_entry_ref_hash_iterate Unexecuted instantiation: pg_locale.c:collation_cache_iterate Unexecuted instantiation: blkreftable.c:blockreftable_iterate |
1066 | | |
1067 | | /* |
1068 | | * Report some statistics about the state of the hashtable. For |
1069 | | * debugging/profiling purposes only. |
1070 | | */ |
1071 | | SH_SCOPE void |
1072 | | SH_STAT(SH_TYPE * tb) |
1073 | 0 | { |
1074 | 0 | uint32 max_chain_length = 0; |
1075 | 0 | uint32 total_chain_length = 0; |
1076 | 0 | double avg_chain_length; |
1077 | 0 | double fillfactor; |
1078 | 0 | uint32 i; |
1079 | 0 |
|
1080 | 0 | uint32 *collisions = (uint32 *) palloc0(tb->size * sizeof(uint32)); |
1081 | 0 | uint32 total_collisions = 0; |
1082 | 0 | uint32 max_collisions = 0; |
1083 | 0 | double avg_collisions; |
1084 | 0 |
|
1085 | 0 | for (i = 0; i < tb->size; i++) |
1086 | 0 | { |
1087 | 0 | uint32 hash; |
1088 | 0 | uint32 optimal; |
1089 | 0 | uint32 dist; |
1090 | 0 | SH_ELEMENT_TYPE *elem; |
1091 | 0 |
|
1092 | 0 | elem = &tb->data[i]; |
1093 | 0 |
|
1094 | 0 | if (elem->status != SH_STATUS_IN_USE) |
1095 | 0 | continue; |
1096 | 0 |
|
1097 | 0 | hash = SH_ENTRY_HASH(tb, elem); |
1098 | 0 | optimal = SH_INITIAL_BUCKET(tb, hash); |
1099 | 0 | dist = SH_DISTANCE_FROM_OPTIMAL(tb, optimal, i); |
1100 | 0 |
|
1101 | 0 | if (dist > max_chain_length) |
1102 | 0 | max_chain_length = dist; |
1103 | 0 | total_chain_length += dist; |
1104 | 0 |
|
1105 | 0 | collisions[optimal]++; |
1106 | 0 | } |
1107 | 0 |
|
1108 | 0 | for (i = 0; i < tb->size; i++) |
1109 | 0 | { |
1110 | 0 | uint32 curcoll = collisions[i]; |
1111 | 0 |
|
1112 | 0 | if (curcoll == 0) |
1113 | 0 | continue; |
1114 | 0 |
|
1115 | 0 | /* single contained element is not a collision */ |
1116 | 0 | curcoll--; |
1117 | 0 | total_collisions += curcoll; |
1118 | 0 | if (curcoll > max_collisions) |
1119 | 0 | max_collisions = curcoll; |
1120 | 0 | } |
1121 | 0 |
|
1122 | 0 | /* large enough to be worth freeing, even if just used for debugging */ |
1123 | 0 | pfree(collisions); |
1124 | 0 |
|
1125 | 0 | if (tb->members > 0) |
1126 | 0 | { |
1127 | 0 | fillfactor = tb->members / ((double) tb->size); |
1128 | 0 | avg_chain_length = ((double) total_chain_length) / tb->members; |
1129 | 0 | avg_collisions = ((double) total_collisions) / tb->members; |
1130 | 0 | } |
1131 | 0 | else |
1132 | 0 | { |
1133 | 0 | fillfactor = 0; |
1134 | 0 | avg_chain_length = 0; |
1135 | 0 | avg_collisions = 0; |
1136 | 0 | } |
1137 | 0 |
|
1138 | 0 | sh_log("size: " UINT64_FORMAT ", members: %u, filled: %f, total chain: %u, max chain: %u, avg chain: %f, total_collisions: %u, max_collisions: %u, avg_collisions: %f", |
1139 | 0 | tb->size, tb->members, fillfactor, total_chain_length, max_chain_length, avg_chain_length, |
1140 | 0 | total_collisions, max_collisions, avg_collisions); |
1141 | 0 | } Unexecuted instantiation: namespace.c:nsphash_stat Unexecuted instantiation: execExprInterp.c:saophash_stat Unexecuted instantiation: nodeMemoize.c:memoize_stat Unexecuted instantiation: tidbitmap.c:pagetable_stat Unexecuted instantiation: equivclass.c:derives_stat Unexecuted instantiation: basebackup_incremental.c:backup_file_stat Unexecuted instantiation: pgstat.c:pgstat_snapshot_stat Unexecuted instantiation: pgstat_shmem.c:pgstat_entry_ref_hash_stat Unexecuted instantiation: pg_locale.c:collation_cache_stat Unexecuted instantiation: blkreftable.c:blockreftable_stat |
1142 | | |
1143 | | #endif /* SH_DEFINE */ |
1144 | | |
1145 | | |
1146 | | /* undefine external parameters, so next hash table can be defined */ |
1147 | | #undef SH_PREFIX |
1148 | | #undef SH_KEY_TYPE |
1149 | | #undef SH_KEY |
1150 | | #undef SH_ELEMENT_TYPE |
1151 | | #undef SH_HASH_KEY |
1152 | | #undef SH_SCOPE |
1153 | | #undef SH_DECLARE |
1154 | | #undef SH_DEFINE |
1155 | | #undef SH_GET_HASH |
1156 | | #undef SH_STORE_HASH |
1157 | | #undef SH_USE_NONDEFAULT_ALLOCATOR |
1158 | | #undef SH_EQUAL |
1159 | | |
1160 | | /* undefine locally declared macros */ |
1161 | | #undef SH_MAKE_PREFIX |
1162 | | #undef SH_MAKE_NAME |
1163 | | #undef SH_MAKE_NAME_ |
1164 | | #undef SH_FILLFACTOR |
1165 | | #undef SH_MAX_FILLFACTOR |
1166 | | #undef SH_GROW_MAX_DIB |
1167 | | #undef SH_GROW_MAX_MOVE |
1168 | | #undef SH_GROW_MIN_FILLFACTOR |
1169 | | #undef SH_MAX_SIZE |
1170 | | |
1171 | | /* types */ |
1172 | | #undef SH_TYPE |
1173 | | #undef SH_STATUS |
1174 | | #undef SH_STATUS_EMPTY |
1175 | | #undef SH_STATUS_IN_USE |
1176 | | #undef SH_ITERATOR |
1177 | | |
1178 | | /* external function names */ |
1179 | | #undef SH_CREATE |
1180 | | #undef SH_DESTROY |
1181 | | #undef SH_RESET |
1182 | | #undef SH_INSERT |
1183 | | #undef SH_INSERT_HASH |
1184 | | #undef SH_DELETE_ITEM |
1185 | | #undef SH_DELETE |
1186 | | #undef SH_LOOKUP |
1187 | | #undef SH_LOOKUP_HASH |
1188 | | #undef SH_GROW |
1189 | | #undef SH_START_ITERATE |
1190 | | #undef SH_START_ITERATE_AT |
1191 | | #undef SH_ITERATE |
1192 | | #undef SH_ALLOCATE |
1193 | | #undef SH_FREE |
1194 | | #undef SH_STAT |
1195 | | |
1196 | | /* internal function names */ |
1197 | | #undef SH_COMPUTE_SIZE |
1198 | | #undef SH_UPDATE_PARAMETERS |
1199 | | #undef SH_COMPARE_KEYS |
1200 | | #undef SH_INITIAL_BUCKET |
1201 | | #undef SH_NEXT |
1202 | | #undef SH_PREV |
1203 | | #undef SH_DISTANCE_FROM_OPTIMAL |
1204 | | #undef SH_ENTRY_HASH |
1205 | | #undef SH_INSERT_HASH_INTERNAL |
1206 | | #undef SH_LOOKUP_HASH_INTERNAL |