/src/pdns/pdns/dnsdistdist/iputils.hh
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * This file is part of PowerDNS or dnsdist. |
3 | | * Copyright -- PowerDNS.COM B.V. and its contributors |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of version 2 of the GNU General Public License as |
7 | | * published by the Free Software Foundation. |
8 | | * |
9 | | * In addition, for the avoidance of any doubt, permission is granted to |
10 | | * link this program with OpenSSL and to (re)distribute the binaries |
11 | | * produced as the result of such linking. |
12 | | * |
13 | | * This program is distributed in the hope that it will be useful, |
14 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
15 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
16 | | * GNU General Public License for more details. |
17 | | * |
18 | | * You should have received a copy of the GNU General Public License |
19 | | * along with this program; if not, write to the Free Software |
20 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
21 | | */ |
22 | | #pragma once |
23 | | #include <string> |
24 | | #include <sys/socket.h> |
25 | | #include <netinet/in.h> |
26 | | #include <arpa/inet.h> |
27 | | #include <iostream> |
28 | | #include <stdio.h> |
29 | | #include <functional> |
30 | | #include <bitset> |
31 | | #include "pdnsexception.hh" |
32 | | #include "misc.hh" |
33 | | #include <netdb.h> |
34 | | #include <sstream> |
35 | | |
36 | | #include "namespaces.hh" |
37 | | |
38 | | #ifdef __APPLE__ |
39 | | #include <libkern/OSByteOrder.h> |
40 | | |
41 | | #define htobe16(x) OSSwapHostToBigInt16(x) |
42 | | #define htole16(x) OSSwapHostToLittleInt16(x) |
43 | | #define be16toh(x) OSSwapBigToHostInt16(x) |
44 | | #define le16toh(x) OSSwapLittleToHostInt16(x) |
45 | | |
46 | | #define htobe32(x) OSSwapHostToBigInt32(x) |
47 | | #define htole32(x) OSSwapHostToLittleInt32(x) |
48 | | #define be32toh(x) OSSwapBigToHostInt32(x) |
49 | | #define le32toh(x) OSSwapLittleToHostInt32(x) |
50 | | |
51 | | #define htobe64(x) OSSwapHostToBigInt64(x) |
52 | | #define htole64(x) OSSwapHostToLittleInt64(x) |
53 | | #define be64toh(x) OSSwapBigToHostInt64(x) |
54 | | #define le64toh(x) OSSwapLittleToHostInt64(x) |
55 | | #endif |
56 | | |
57 | | #ifdef __sun |
58 | | |
59 | | #define htobe16(x) BE_16(x) |
60 | | #define htole16(x) LE_16(x) |
61 | | #define be16toh(x) BE_IN16(&(x)) |
62 | | #define le16toh(x) LE_IN16(&(x)) |
63 | | |
64 | | #define htobe32(x) BE_32(x) |
65 | | #define htole32(x) LE_32(x) |
66 | | #define be32toh(x) BE_IN32(&(x)) |
67 | | #define le32toh(x) LE_IN32(&(x)) |
68 | | |
69 | | #define htobe64(x) BE_64(x) |
70 | | #define htole64(x) LE_64(x) |
71 | | #define be64toh(x) BE_IN64(&(x)) |
72 | | #define le64toh(x) LE_IN64(&(x)) |
73 | | |
74 | | #endif |
75 | | |
76 | | #ifdef __FreeBSD__ |
77 | | #include <sys/endian.h> |
78 | | #endif |
79 | | |
80 | | #if defined(__NetBSD__) && defined(IP_PKTINFO) && !defined(IP_SENDSRCADDR) |
81 | | // The IP_PKTINFO option in NetBSD was incompatible with Linux until a |
82 | | // change that also introduced IP_SENDSRCADDR for FreeBSD compatibility. |
83 | | #undef IP_PKTINFO |
84 | | #endif |
85 | | |
86 | | union ComboAddress { |
87 | | struct sockaddr_in sin4; |
88 | | struct sockaddr_in6 sin6; |
89 | | |
90 | | bool operator==(const ComboAddress& rhs) const |
91 | 0 | { |
92 | 0 | if(std::tie(sin4.sin_family, sin4.sin_port) != std::tie(rhs.sin4.sin_family, rhs.sin4.sin_port)) |
93 | 0 | return false; |
94 | 0 | if(sin4.sin_family == AF_INET) |
95 | 0 | return sin4.sin_addr.s_addr == rhs.sin4.sin_addr.s_addr; |
96 | 0 | else |
97 | 0 | return memcmp(&sin6.sin6_addr.s6_addr, &rhs.sin6.sin6_addr.s6_addr, sizeof(sin6.sin6_addr.s6_addr))==0; |
98 | 0 | } |
99 | | |
100 | | bool operator!=(const ComboAddress& rhs) const |
101 | 0 | { |
102 | 0 | return(!operator==(rhs)); |
103 | 0 | } |
104 | | |
105 | | bool operator<(const ComboAddress& rhs) const |
106 | 0 | { |
107 | 0 | if(sin4.sin_family == 0) { |
108 | 0 | return false; |
109 | 0 | } |
110 | 0 | if(std::tie(sin4.sin_family, sin4.sin_port) < std::tie(rhs.sin4.sin_family, rhs.sin4.sin_port)) |
111 | 0 | return true; |
112 | 0 | if(std::tie(sin4.sin_family, sin4.sin_port) > std::tie(rhs.sin4.sin_family, rhs.sin4.sin_port)) |
113 | 0 | return false; |
114 | | |
115 | 0 | if(sin4.sin_family == AF_INET) |
116 | 0 | return sin4.sin_addr.s_addr < rhs.sin4.sin_addr.s_addr; |
117 | 0 | else |
118 | 0 | return memcmp(&sin6.sin6_addr.s6_addr, &rhs.sin6.sin6_addr.s6_addr, sizeof(sin6.sin6_addr.s6_addr)) < 0; |
119 | 0 | } |
120 | | |
121 | | bool operator>(const ComboAddress& rhs) const |
122 | 0 | { |
123 | 0 | return rhs.operator<(*this); |
124 | 0 | } |
125 | | |
126 | | struct addressOnlyHash |
127 | | { |
128 | | uint32_t operator()(const ComboAddress& ca) const |
129 | 0 | { |
130 | 0 | const unsigned char* start = nullptr; |
131 | 0 | uint32_t len = 0; |
132 | 0 | if (ca.sin4.sin_family == AF_INET) { |
133 | 0 | start = reinterpret_cast<const unsigned char*>(&ca.sin4.sin_addr.s_addr); |
134 | 0 | len = 4; |
135 | 0 | } |
136 | 0 | else { |
137 | 0 | start = reinterpret_cast<const unsigned char*>(&ca.sin6.sin6_addr.s6_addr); |
138 | 0 | len = 16; |
139 | 0 | } |
140 | 0 | return burtle(start, len, 0); |
141 | 0 | } |
142 | | }; |
143 | | |
144 | | struct addressOnlyLessThan |
145 | | { |
146 | | bool operator()(const ComboAddress& a, const ComboAddress& b) const |
147 | 0 | { |
148 | 0 | if(a.sin4.sin_family < b.sin4.sin_family) |
149 | 0 | return true; |
150 | 0 | if(a.sin4.sin_family > b.sin4.sin_family) |
151 | 0 | return false; |
152 | 0 | if(a.sin4.sin_family == AF_INET) |
153 | 0 | return a.sin4.sin_addr.s_addr < b.sin4.sin_addr.s_addr; |
154 | 0 | else |
155 | 0 | return memcmp(&a.sin6.sin6_addr.s6_addr, &b.sin6.sin6_addr.s6_addr, sizeof(a.sin6.sin6_addr.s6_addr)) < 0; |
156 | 0 | } |
157 | | }; |
158 | | |
159 | | struct addressOnlyEqual |
160 | | { |
161 | | bool operator()(const ComboAddress& a, const ComboAddress& b) const |
162 | 0 | { |
163 | 0 | if(a.sin4.sin_family != b.sin4.sin_family) |
164 | 0 | return false; |
165 | 0 | if(a.sin4.sin_family == AF_INET) |
166 | 0 | return a.sin4.sin_addr.s_addr == b.sin4.sin_addr.s_addr; |
167 | 0 | else |
168 | 0 | return !memcmp(&a.sin6.sin6_addr.s6_addr, &b.sin6.sin6_addr.s6_addr, sizeof(a.sin6.sin6_addr.s6_addr)); |
169 | 0 | } |
170 | | }; |
171 | | |
172 | | |
173 | | socklen_t getSocklen() const |
174 | 0 | { |
175 | 0 | if(sin4.sin_family == AF_INET) |
176 | 0 | return sizeof(sin4); |
177 | 0 | else |
178 | 0 | return sizeof(sin6); |
179 | 0 | } |
180 | | |
181 | | ComboAddress() |
182 | 636 | { |
183 | 636 | sin4.sin_family=AF_INET; |
184 | 636 | sin4.sin_addr.s_addr=0; |
185 | 636 | sin4.sin_port=0; |
186 | 636 | sin6.sin6_scope_id = 0; |
187 | 636 | sin6.sin6_flowinfo = 0; |
188 | 636 | } |
189 | | |
190 | 0 | ComboAddress(const struct sockaddr *sa, socklen_t salen) { |
191 | 0 | setSockaddr(sa, salen); |
192 | 0 | }; |
193 | | |
194 | 0 | ComboAddress(const struct sockaddr_in6 *sa) { |
195 | 0 | setSockaddr((const struct sockaddr*)sa, sizeof(struct sockaddr_in6)); |
196 | 0 | }; |
197 | | |
198 | 0 | ComboAddress(const struct sockaddr_in *sa) { |
199 | 0 | setSockaddr((const struct sockaddr*)sa, sizeof(struct sockaddr_in)); |
200 | 0 | }; |
201 | | |
202 | 0 | void setSockaddr(const struct sockaddr *sa, socklen_t salen) { |
203 | 0 | if (salen > sizeof(struct sockaddr_in6)) throw PDNSException("ComboAddress can't handle other than sockaddr_in or sockaddr_in6"); |
204 | 0 | memcpy(this, sa, salen); |
205 | 0 | } |
206 | | |
207 | | // 'port' sets a default value in case 'str' does not set a port |
208 | | explicit ComboAddress(const string& str, uint16_t port=0) |
209 | 0 | { |
210 | 0 | memset(&sin6, 0, sizeof(sin6)); |
211 | 0 | sin4.sin_family = AF_INET; |
212 | 0 | sin4.sin_port = 0; |
213 | 0 | if(makeIPv4sockaddr(str, &sin4)) { |
214 | 0 | sin6.sin6_family = AF_INET6; |
215 | 0 | if(makeIPv6sockaddr(str, &sin6) < 0) |
216 | 0 | throw PDNSException("Unable to convert presentation address '"+ str +"'"); |
217 | |
|
218 | 0 | } |
219 | 0 | if(!sin4.sin_port) // 'str' overrides port! |
220 | 0 | sin4.sin_port=htons(port); |
221 | 0 | } |
222 | | |
223 | | bool isIPv6() const |
224 | 0 | { |
225 | 0 | return sin4.sin_family == AF_INET6; |
226 | 0 | } |
227 | | bool isIPv4() const |
228 | 150 | { |
229 | 150 | return sin4.sin_family == AF_INET; |
230 | 150 | } |
231 | | |
232 | | bool isMappedIPv4() const |
233 | 0 | { |
234 | 0 | if(sin4.sin_family!=AF_INET6) |
235 | 0 | return false; |
236 | 0 |
|
237 | 0 | int n=0; |
238 | 0 | const unsigned char* ptr = reinterpret_cast<const unsigned char*>(&sin6.sin6_addr.s6_addr); |
239 | 0 | for(n=0; n < 10; ++n) |
240 | 0 | if(ptr[n]) |
241 | 0 | return false; |
242 | 0 |
|
243 | 0 | for(; n < 12; ++n) |
244 | 0 | if(ptr[n]!=0xff) |
245 | 0 | return false; |
246 | 0 |
|
247 | 0 | return true; |
248 | 0 | } |
249 | | |
250 | | ComboAddress mapToIPv4() const |
251 | 0 | { |
252 | 0 | if(!isMappedIPv4()) |
253 | 0 | throw PDNSException("ComboAddress can't map non-mapped IPv6 address back to IPv4"); |
254 | 0 | ComboAddress ret; |
255 | 0 | ret.sin4.sin_family=AF_INET; |
256 | 0 | ret.sin4.sin_port=sin4.sin_port; |
257 | 0 |
|
258 | 0 | const unsigned char* ptr = reinterpret_cast<const unsigned char*>(&sin6.sin6_addr.s6_addr); |
259 | 0 | ptr+=(sizeof(sin6.sin6_addr.s6_addr) - sizeof(ret.sin4.sin_addr.s_addr)); |
260 | 0 | memcpy(&ret.sin4.sin_addr.s_addr, ptr, sizeof(ret.sin4.sin_addr.s_addr)); |
261 | 0 | return ret; |
262 | 0 | } |
263 | | |
264 | | string toString() const |
265 | 0 | { |
266 | 0 | char host[1024]; |
267 | 0 | int retval = 0; |
268 | 0 | if(sin4.sin_family && !(retval = getnameinfo(reinterpret_cast<const struct sockaddr*>(this), getSocklen(), host, sizeof(host),0, 0, NI_NUMERICHOST))) |
269 | 0 | return string(host); |
270 | 0 | else |
271 | 0 | return "invalid "+string(gai_strerror(retval)); |
272 | 0 | } |
273 | | |
274 | | //! Ignores any interface specifiers possibly available in the sockaddr data. |
275 | | string toStringNoInterface() const |
276 | 0 | { |
277 | 0 | char host[1024]; |
278 | 0 | if(sin4.sin_family == AF_INET && (nullptr != inet_ntop(sin4.sin_family, &sin4.sin_addr, host, sizeof(host)))) |
279 | 0 | return string(host); |
280 | 0 | else if(sin4.sin_family == AF_INET6 && (nullptr != inet_ntop(sin4.sin_family, &sin6.sin6_addr, host, sizeof(host)))) |
281 | 0 | return string(host); |
282 | 0 | else |
283 | 0 | return "invalid "+stringerror(); |
284 | 0 | } |
285 | | |
286 | | [[nodiscard]] string toStringReversed() const |
287 | 0 | { |
288 | 0 | if (isIPv4()) { |
289 | 0 | const auto ip = ntohl(sin4.sin_addr.s_addr); |
290 | 0 | auto a = (ip >> 0) & 0xFF; |
291 | 0 | auto b = (ip >> 8) & 0xFF; |
292 | 0 | auto c = (ip >> 16) & 0xFF; |
293 | 0 | auto d = (ip >> 24) & 0xFF; |
294 | 0 | return std::to_string(a) + "." + std::to_string(b) + "." + std::to_string(c) + "." + std::to_string(d); |
295 | 0 | } |
296 | 0 | else { |
297 | 0 | const auto* addr = &sin6.sin6_addr; |
298 | 0 | std::stringstream res{}; |
299 | 0 | res << std::hex; |
300 | 0 | for (int i = 15; i >= 0; i--) { |
301 | 0 | auto byte = addr->s6_addr[i]; |
302 | 0 | res << ((byte >> 0) & 0xF) << "."; |
303 | 0 | res << ((byte >> 4) & 0xF); |
304 | 0 | if (i != 0) { |
305 | 0 | res << "."; |
306 | 0 | } |
307 | 0 | } |
308 | 0 | return res.str(); |
309 | 0 | } |
310 | 0 | } |
311 | | |
312 | | string toStringWithPort() const |
313 | 0 | { |
314 | 0 | if(sin4.sin_family==AF_INET) |
315 | 0 | return toString() + ":" + std::to_string(ntohs(sin4.sin_port)); |
316 | 0 | else |
317 | 0 | return "["+toString() + "]:" + std::to_string(ntohs(sin4.sin_port)); |
318 | 0 | } |
319 | | |
320 | | string toStringWithPortExcept(int port) const |
321 | 0 | { |
322 | 0 | if(ntohs(sin4.sin_port) == port) |
323 | 0 | return toString(); |
324 | 0 | if(sin4.sin_family==AF_INET) |
325 | 0 | return toString() + ":" + std::to_string(ntohs(sin4.sin_port)); |
326 | 0 | else |
327 | 0 | return "["+toString() + "]:" + std::to_string(ntohs(sin4.sin_port)); |
328 | 0 | } |
329 | | |
330 | | string toLogString() const |
331 | 0 | { |
332 | 0 | return toStringWithPortExcept(53); |
333 | 0 | } |
334 | | |
335 | | string toByteString() const |
336 | 0 | { |
337 | 0 | if (isIPv4()) { |
338 | 0 | return string(reinterpret_cast<const char*>(&sin4.sin_addr.s_addr), sizeof(sin4.sin_addr.s_addr)); |
339 | 0 | } |
340 | 0 | return string(reinterpret_cast<const char*>(&sin6.sin6_addr.s6_addr), sizeof(sin6.sin6_addr.s6_addr)); |
341 | 0 | } |
342 | | |
343 | | void truncate(unsigned int bits) noexcept; |
344 | | |
345 | | uint16_t getPort() const |
346 | 0 | { |
347 | 0 | return ntohs(sin4.sin_port); |
348 | 0 | } |
349 | | |
350 | | void setPort(uint16_t port) |
351 | 0 | { |
352 | 0 | sin4.sin_port = htons(port); |
353 | 0 | } |
354 | | |
355 | | void reset() |
356 | 75 | { |
357 | 75 | memset(&sin4, 0, sizeof(sin4)); |
358 | 75 | memset(&sin6, 0, sizeof(sin6)); |
359 | 75 | } |
360 | | |
361 | | //! Get the total number of address bits (either 32 or 128 depending on IP version) |
362 | | uint8_t getBits() const |
363 | 0 | { |
364 | 0 | if (isIPv4()) |
365 | 0 | return 32; |
366 | 0 | if (isIPv6()) |
367 | 0 | return 128; |
368 | 0 | return 0; |
369 | 0 | } |
370 | | /** Get the value of the bit at the provided bit index. When the index >= 0, |
371 | | the index is relative to the LSB starting at index zero. When the index < 0, |
372 | | the index is relative to the MSB starting at index -1 and counting down. |
373 | | */ |
374 | | bool getBit(int index) const |
375 | 0 | { |
376 | 0 | if(isIPv4()) { |
377 | 0 | if (index >= 32) |
378 | 0 | return false; |
379 | 0 | if (index < 0) { |
380 | 0 | if (index < -32) |
381 | 0 | return false; |
382 | 0 | index = 32 + index; |
383 | 0 | } |
384 | | |
385 | 0 | uint32_t ls_addr = ntohl(sin4.sin_addr.s_addr); |
386 | |
|
387 | 0 | return ((ls_addr & (1U<<index)) != 0x00000000); |
388 | 0 | } |
389 | 0 | if(isIPv6()) { |
390 | 0 | if (index >= 128) |
391 | 0 | return false; |
392 | 0 | if (index < 0) { |
393 | 0 | if (index < -128) |
394 | 0 | return false; |
395 | 0 | index = 128 + index; |
396 | 0 | } |
397 | | |
398 | 0 | const uint8_t* ls_addr = reinterpret_cast<const uint8_t*>(sin6.sin6_addr.s6_addr); |
399 | 0 | uint8_t byte_idx = index / 8; |
400 | 0 | uint8_t bit_idx = index % 8; |
401 | |
|
402 | 0 | return ((ls_addr[15-byte_idx] & (1U << bit_idx)) != 0x00); |
403 | 0 | } |
404 | 0 | return false; |
405 | 0 | } |
406 | | |
407 | | /*! Returns a comma-separated string of IP addresses |
408 | | * |
409 | | * \param c An stl container with ComboAddresses |
410 | | * \param withPort Also print the port (default true) |
411 | | * \param portExcept Print the port, except when this is the port (default 53) |
412 | | */ |
413 | | template < template < class ... > class Container, class ... Args > |
414 | | static string caContainerToString(const Container<ComboAddress, Args...>& c, const bool withPort = true, const uint16_t portExcept = 53) { |
415 | | vector<string> strs; |
416 | | for (const auto& ca : c) { |
417 | | if (withPort) { |
418 | | strs.push_back(ca.toStringWithPortExcept(portExcept)); |
419 | | continue; |
420 | | } |
421 | | strs.push_back(ca.toString()); |
422 | | } |
423 | | return boost::join(strs, ","); |
424 | | }; |
425 | | }; |
426 | | |
427 | | /** This exception is thrown by the Netmask class and by extension by the NetmaskGroup class */ |
428 | | class NetmaskException: public PDNSException |
429 | | { |
430 | | public: |
431 | 0 | NetmaskException(const string &a) : PDNSException(a) {} |
432 | | }; |
433 | | |
434 | | inline ComboAddress makeComboAddress(const string& str) |
435 | 0 | { |
436 | 0 | ComboAddress address; |
437 | 0 | address.sin4.sin_family=AF_INET; |
438 | 0 | if(inet_pton(AF_INET, str.c_str(), &address.sin4.sin_addr) <= 0) { |
439 | 0 | address.sin4.sin_family=AF_INET6; |
440 | 0 | if(makeIPv6sockaddr(str, &address.sin6) < 0) |
441 | 0 | throw NetmaskException("Unable to convert '"+str+"' to a netmask"); |
442 | 0 | } |
443 | 0 | return address; |
444 | 0 | } |
445 | | |
446 | | inline ComboAddress makeComboAddressFromRaw(uint8_t version, const char* raw, size_t len) |
447 | 0 | { |
448 | 0 | ComboAddress address; |
449 | |
|
450 | 0 | if (version == 4) { |
451 | 0 | address.sin4.sin_family = AF_INET; |
452 | 0 | if (len != sizeof(address.sin4.sin_addr)) throw NetmaskException("invalid raw address length"); |
453 | 0 | memcpy(&address.sin4.sin_addr, raw, sizeof(address.sin4.sin_addr)); |
454 | 0 | } |
455 | 0 | else if (version == 6) { |
456 | 0 | address.sin6.sin6_family = AF_INET6; |
457 | 0 | if (len != sizeof(address.sin6.sin6_addr)) throw NetmaskException("invalid raw address length"); |
458 | 0 | memcpy(&address.sin6.sin6_addr, raw, sizeof(address.sin6.sin6_addr)); |
459 | 0 | } |
460 | 0 | else throw NetmaskException("invalid address family"); |
461 | | |
462 | 0 | return address; |
463 | 0 | } |
464 | | |
465 | | inline ComboAddress makeComboAddressFromRaw(uint8_t version, const string &str) |
466 | 0 | { |
467 | 0 | return makeComboAddressFromRaw(version, str.c_str(), str.size()); |
468 | 0 | } |
469 | | |
470 | | /** This class represents a netmask and can be queried to see if a certain |
471 | | IP address is matched by this mask */ |
472 | | class Netmask |
473 | | { |
474 | | public: |
475 | | Netmask() |
476 | 432 | { |
477 | 432 | d_network.sin4.sin_family = 0; // disable this doing anything useful |
478 | 432 | d_network.sin4.sin_port = 0; // this guarantees d_network compares identical |
479 | 432 | d_mask = 0; |
480 | 432 | d_bits = 0; |
481 | 432 | } |
482 | | |
483 | | Netmask(const ComboAddress& network, uint8_t bits=0xff): d_network(network) |
484 | 150 | { |
485 | 150 | d_network.sin4.sin_port = 0; |
486 | 150 | setBits(network.isIPv4() ? std::min(bits, static_cast<uint8_t>(32)) : std::min(bits, static_cast<uint8_t>(128))); |
487 | 150 | } |
488 | | |
489 | | Netmask(const sockaddr_in* network, uint8_t bits = 0xff): d_network(network) |
490 | 0 | { |
491 | 0 | d_network.sin4.sin_port = 0; |
492 | 0 | setBits(std::min(bits, static_cast<uint8_t>(32))); |
493 | 0 | } |
494 | | Netmask(const sockaddr_in6* network, uint8_t bits = 0xff): d_network(network) |
495 | 0 | { |
496 | 0 | d_network.sin4.sin_port = 0; |
497 | 0 | setBits(std::min(bits, static_cast<uint8_t>(128))); |
498 | 0 | } |
499 | | void setBits(uint8_t value) |
500 | 150 | { |
501 | 150 | d_bits = value; |
502 | | |
503 | 150 | if (d_bits < 32) { |
504 | 83 | d_mask = ~(0xFFFFFFFF >> d_bits); |
505 | 83 | } |
506 | 67 | else { |
507 | | // note that d_mask is unused for IPv6 |
508 | 67 | d_mask = 0xFFFFFFFF; |
509 | 67 | } |
510 | | |
511 | 150 | if (isIPv4()) { |
512 | 54 | d_network.sin4.sin_addr.s_addr = htonl(ntohl(d_network.sin4.sin_addr.s_addr) & d_mask); |
513 | 54 | } |
514 | 96 | else if (isIPv6()) { |
515 | 96 | uint8_t bytes = d_bits/8; |
516 | 96 | uint8_t *us = (uint8_t*) &d_network.sin6.sin6_addr.s6_addr; |
517 | 96 | uint8_t bits = d_bits % 8; |
518 | 96 | uint8_t mask = (uint8_t) ~(0xFF>>bits); |
519 | | |
520 | 96 | if (bytes < sizeof(d_network.sin6.sin6_addr.s6_addr)) { |
521 | 86 | us[bytes] &= mask; |
522 | 86 | } |
523 | | |
524 | 848 | for(size_t idx = bytes + 1; idx < sizeof(d_network.sin6.sin6_addr.s6_addr); ++idx) { |
525 | 752 | us[idx] = 0; |
526 | 752 | } |
527 | 96 | } |
528 | 150 | } |
529 | | |
530 | | //! Constructor supplies the mask, which cannot be changed |
531 | | Netmask(const string &mask) |
532 | 0 | { |
533 | 0 | pair<string,string> split = splitField(mask,'/'); |
534 | 0 | d_network = makeComboAddress(split.first); |
535 | |
|
536 | 0 | if (!split.second.empty()) { |
537 | 0 | setBits(pdns::checked_stoi<uint8_t>(split.second)); |
538 | 0 | } |
539 | 0 | else if (d_network.sin4.sin_family == AF_INET) { |
540 | 0 | setBits(32); |
541 | 0 | } |
542 | 0 | else { |
543 | 0 | setBits(128); |
544 | 0 | } |
545 | 0 | } |
546 | | |
547 | | bool match(const ComboAddress& ip) const |
548 | 0 | { |
549 | 0 | return match(&ip); |
550 | 0 | } |
551 | | |
552 | | //! If this IP address in socket address matches |
553 | | bool match(const ComboAddress *ip) const |
554 | 0 | { |
555 | 0 | if(d_network.sin4.sin_family != ip->sin4.sin_family) { |
556 | 0 | return false; |
557 | 0 | } |
558 | 0 | if(d_network.sin4.sin_family == AF_INET) { |
559 | 0 | return match4(htonl((unsigned int)ip->sin4.sin_addr.s_addr)); |
560 | 0 | } |
561 | 0 | if(d_network.sin6.sin6_family == AF_INET6) { |
562 | 0 | uint8_t bytes=d_bits/8, n; |
563 | 0 | const uint8_t *us=(const uint8_t*) &d_network.sin6.sin6_addr.s6_addr; |
564 | 0 | const uint8_t *them=(const uint8_t*) &ip->sin6.sin6_addr.s6_addr; |
565 | 0 |
|
566 | 0 | for(n=0; n < bytes; ++n) { |
567 | 0 | if(us[n]!=them[n]) { |
568 | 0 | return false; |
569 | 0 | } |
570 | 0 | } |
571 | 0 | // still here, now match remaining bits |
572 | 0 | uint8_t bits= d_bits % 8; |
573 | 0 | uint8_t mask= (uint8_t) ~(0xFF>>bits); |
574 | 0 |
|
575 | 0 | return((us[n]) == (them[n] & mask)); |
576 | 0 | } |
577 | 0 | return false; |
578 | 0 | } |
579 | | |
580 | | //! If this ASCII IP address matches |
581 | | bool match(const string &ip) const |
582 | 0 | { |
583 | 0 | ComboAddress address=makeComboAddress(ip); |
584 | 0 | return match(&address); |
585 | 0 | } |
586 | | |
587 | | //! If this IP address in native format matches |
588 | | bool match4(uint32_t ip) const |
589 | 0 | { |
590 | 0 | return (ip & d_mask) == (ntohl(d_network.sin4.sin_addr.s_addr)); |
591 | 0 | } |
592 | | |
593 | | string toString() const |
594 | 0 | { |
595 | 0 | return d_network.toStringNoInterface()+"/"+std::to_string((unsigned int)d_bits); |
596 | 0 | } |
597 | | |
598 | | string toStringNoMask() const |
599 | 0 | { |
600 | 0 | return d_network.toStringNoInterface(); |
601 | 0 | } |
602 | | |
603 | | const ComboAddress& getNetwork() const |
604 | 0 | { |
605 | 0 | return d_network; |
606 | 0 | } |
607 | | |
608 | | const ComboAddress& getMaskedNetwork() const |
609 | 0 | { |
610 | 0 | return getNetwork(); |
611 | 0 | } |
612 | | |
613 | | uint8_t getBits() const |
614 | 0 | { |
615 | 0 | return d_bits; |
616 | 0 | } |
617 | | |
618 | | bool isIPv6() const |
619 | 96 | { |
620 | 96 | return d_network.sin6.sin6_family == AF_INET6; |
621 | 96 | } |
622 | | |
623 | | bool isIPv4() const |
624 | 150 | { |
625 | 150 | return d_network.sin4.sin_family == AF_INET; |
626 | 150 | } |
627 | | |
628 | | bool operator<(const Netmask& rhs) const |
629 | 0 | { |
630 | 0 | if (empty() && !rhs.empty()) |
631 | 0 | return false; |
632 | 0 |
|
633 | 0 | if (!empty() && rhs.empty()) |
634 | 0 | return true; |
635 | 0 |
|
636 | 0 | if (d_bits > rhs.d_bits) |
637 | 0 | return true; |
638 | 0 | if (d_bits < rhs.d_bits) |
639 | 0 | return false; |
640 | 0 |
|
641 | 0 | return d_network < rhs.d_network; |
642 | 0 | } |
643 | | |
644 | | bool operator>(const Netmask& rhs) const |
645 | 0 | { |
646 | 0 | return rhs.operator<(*this); |
647 | 0 | } |
648 | | |
649 | | bool operator==(const Netmask& rhs) const |
650 | 0 | { |
651 | 0 | return std::tie(d_network, d_bits) == std::tie(rhs.d_network, rhs.d_bits); |
652 | 0 | } |
653 | | |
654 | | bool empty() const |
655 | 0 | { |
656 | 0 | return d_network.sin4.sin_family==0; |
657 | 0 | } |
658 | | |
659 | | //! Get normalized version of the netmask. This means that all address bits below the network bits are zero. |
660 | 0 | Netmask getNormalized() const { |
661 | 0 | return Netmask(getMaskedNetwork(), d_bits); |
662 | 0 | } |
663 | | //! Get Netmask for super network of this one (i.e. with fewer network bits) |
664 | 0 | Netmask getSuper(uint8_t bits) const { |
665 | 0 | return Netmask(d_network, std::min(d_bits, bits)); |
666 | 0 | } |
667 | | |
668 | | //! Get the total number of address bits for this netmask (either 32 or 128 depending on IP version) |
669 | | uint8_t getFullBits() const |
670 | 0 | { |
671 | 0 | return d_network.getBits(); |
672 | 0 | } |
673 | | |
674 | | /** Get the value of the bit at the provided bit index. When the index >= 0, |
675 | | the index is relative to the LSB starting at index zero. When the index < 0, |
676 | | the index is relative to the MSB starting at index -1 and counting down. |
677 | | When the index points outside the network bits, it always yields zero. |
678 | | */ |
679 | | bool getBit(int bit) const |
680 | 0 | { |
681 | 0 | if (bit < -d_bits) |
682 | 0 | return false; |
683 | 0 | if (bit >= 0) { |
684 | 0 | if(isIPv4()) { |
685 | 0 | if (bit >= 32 || bit < (32 - d_bits)) |
686 | 0 | return false; |
687 | 0 | } |
688 | 0 | if(isIPv6()) { |
689 | 0 | if (bit >= 128 || bit < (128 - d_bits)) |
690 | 0 | return false; |
691 | 0 | } |
692 | 0 | } |
693 | 0 | return d_network.getBit(bit); |
694 | 0 | } |
695 | | |
696 | | struct Hash { |
697 | | size_t operator()(const Netmask& nm) const |
698 | 0 | { |
699 | 0 | return burtle(&nm.d_bits, 1, ComboAddress::addressOnlyHash()(nm.d_network)); |
700 | 0 | } |
701 | | }; |
702 | | |
703 | | private: |
704 | | ComboAddress d_network; |
705 | | uint32_t d_mask; |
706 | | uint8_t d_bits; |
707 | | }; |
708 | | |
709 | | namespace std { |
710 | | template<> |
711 | | struct hash<Netmask> { |
712 | 0 | auto operator()(const Netmask& nm) const { |
713 | 0 | return Netmask::Hash{}(nm); |
714 | 0 | } |
715 | | }; |
716 | | } |
717 | | |
718 | | /** Binary tree map implementation with <Netmask,T> pair. |
719 | | * |
720 | | * This is an binary tree implementation for storing attributes for IPv4 and IPv6 prefixes. |
721 | | * The most simple use case is simple NetmaskTree<bool> used by NetmaskGroup, which only |
722 | | * wants to know if given IP address is matched in the prefixes stored. |
723 | | * |
724 | | * This element is useful for anything that needs to *STORE* prefixes, and *MATCH* IP addresses |
725 | | * to a *LIST* of *PREFIXES*. Not the other way round. |
726 | | * |
727 | | * You can store IPv4 and IPv6 addresses to same tree, separate payload storage is kept per AFI. |
728 | | * Network prefixes (Netmasks) are always recorded in normalized fashion, meaning that only |
729 | | * the network bits are set. This is what is returned in the insert() and lookup() return |
730 | | * values. |
731 | | * |
732 | | * Use swap if you need to move the tree to another NetmaskTree instance, it is WAY faster |
733 | | * than using copy ctor or assignment operator, since it moves the nodes and tree root to |
734 | | * new home instead of actually recreating the tree. |
735 | | * |
736 | | * Please see NetmaskGroup for example of simple use case. Other usecases can be found |
737 | | * from GeoIPBackend and Sortlist, and from dnsdist. |
738 | | */ |
739 | | template <typename T, class K = Netmask> |
740 | | class NetmaskTree { |
741 | | public: |
742 | | class Iterator; |
743 | | |
744 | | typedef K key_type; |
745 | | typedef T value_type; |
746 | | typedef std::pair<const key_type,value_type> node_type; |
747 | | typedef size_t size_type; |
748 | | typedef class Iterator iterator; |
749 | | |
750 | | private: |
751 | | /** Single node in tree, internal use only. |
752 | | */ |
753 | | class TreeNode : boost::noncopyable { |
754 | | public: |
755 | | explicit TreeNode() noexcept : |
756 | 0 | parent(nullptr), node(), assigned(false), d_bits(0) { |
757 | 0 | } |
758 | | explicit TreeNode(const key_type& key) : |
759 | | parent(nullptr), node({key.getNormalized(), value_type()}), |
760 | 0 | assigned(false), d_bits(key.getFullBits()) { |
761 | 0 | } |
762 | | |
763 | | //<! Makes a left leaf node with specified key. |
764 | 0 | TreeNode* make_left(const key_type& key) { |
765 | 0 | d_bits = node.first.getBits(); |
766 | 0 | left = make_unique<TreeNode>(key); |
767 | 0 | left->parent = this; |
768 | 0 | return left.get(); |
769 | 0 | } |
770 | | |
771 | | //<! Makes a right leaf node with specified key. |
772 | 0 | TreeNode* make_right(const key_type& key) { |
773 | 0 | d_bits = node.first.getBits(); |
774 | 0 | right = make_unique<TreeNode>(key); |
775 | 0 | right->parent = this; |
776 | 0 | return right.get(); |
777 | 0 | } |
778 | | |
779 | | //<! Splits branch at indicated bit position by inserting key |
780 | 0 | TreeNode* split(const key_type& key, int bits) { |
781 | 0 | if (parent == nullptr) { |
782 | | // not to be called on the root node |
783 | 0 | throw std::logic_error( |
784 | 0 | "NetmaskTree::TreeNode::split(): must not be called on root node"); |
785 | 0 | } |
786 | | |
787 | | // determine reference from parent |
788 | 0 | unique_ptr<TreeNode>& parent_ref = |
789 | 0 | (parent->left.get() == this ? parent->left : parent->right); |
790 | 0 | if (parent_ref.get() != this) { |
791 | 0 | throw std::logic_error( |
792 | 0 | "NetmaskTree::TreeNode::split(): parent node reference is invalid"); |
793 | 0 | } |
794 | | |
795 | | // create new tree node for the new key |
796 | 0 | TreeNode* new_node = new TreeNode(key); |
797 | 0 | new_node->d_bits = bits; |
798 | | |
799 | | // attach the new node under our former parent |
800 | 0 | unique_ptr<TreeNode> new_child(new_node); |
801 | 0 | std::swap(parent_ref, new_child); // hereafter new_child points to "this" |
802 | 0 | new_node->parent = parent; |
803 | | |
804 | | // attach "this" node below the new node |
805 | | // (left or right depending on bit) |
806 | 0 | new_child->parent = new_node; |
807 | 0 | if (new_child->node.first.getBit(-1-bits)) { |
808 | 0 | std::swap(new_node->right, new_child); |
809 | 0 | } else { |
810 | 0 | std::swap(new_node->left, new_child); |
811 | 0 | } |
812 | |
|
813 | 0 | return new_node; |
814 | 0 | } |
815 | | |
816 | | //<! Forks branch for new key at indicated bit position |
817 | 0 | TreeNode* fork(const key_type& key, int bits) { |
818 | 0 | if (parent == nullptr) { |
819 | | // not to be called on the root node |
820 | 0 | throw std::logic_error( |
821 | 0 | "NetmaskTree::TreeNode::fork(): must not be called on root node"); |
822 | 0 | } |
823 | | |
824 | | // determine reference from parent |
825 | 0 | unique_ptr<TreeNode>& parent_ref = |
826 | 0 | (parent->left.get() == this ? parent->left : parent->right); |
827 | 0 | if (parent_ref.get() != this) { |
828 | 0 | throw std::logic_error( |
829 | 0 | "NetmaskTree::TreeNode::fork(): parent node reference is invalid"); |
830 | 0 | } |
831 | | |
832 | | // create new tree node for the branch point |
833 | 0 | TreeNode* branch_node = new TreeNode(node.first.getSuper(bits)); |
834 | 0 | branch_node->d_bits = bits; |
835 | | |
836 | | // the current node will now be a child of the new branch node |
837 | | // (hereafter new_child1 points to "this") |
838 | 0 | unique_ptr<TreeNode> new_child1 = std::move(parent_ref); |
839 | | // attach the branch node under our former parent |
840 | 0 | parent_ref = std::unique_ptr<TreeNode>(branch_node); |
841 | 0 | branch_node->parent = parent; |
842 | | |
843 | | // create second new leaf node for the new key |
844 | 0 | unique_ptr<TreeNode> new_child2 = make_unique<TreeNode>(key); |
845 | 0 | TreeNode* new_node = new_child2.get(); |
846 | | |
847 | | // attach the new child nodes below the branch node |
848 | | // (left or right depending on bit) |
849 | 0 | new_child1->parent = branch_node; |
850 | 0 | new_child2->parent = branch_node; |
851 | 0 | if (new_child1->node.first.getBit(-1-bits)) { |
852 | 0 | branch_node->right = std::move(new_child1); |
853 | 0 | branch_node->left = std::move(new_child2); |
854 | 0 | } else { |
855 | 0 | branch_node->right = std::move(new_child2); |
856 | 0 | branch_node->left = std::move(new_child1); |
857 | 0 | } |
858 | | // now we have attached the new unique pointers to the tree: |
859 | | // - branch_node is below its parent |
860 | | // - new_child1 (ourselves) is below branch_node |
861 | | // - new_child2, the new leaf node, is below branch_node as well |
862 | |
|
863 | 0 | return new_node; |
864 | 0 | } |
865 | | |
866 | | //<! Traverse left branch depth-first |
867 | | TreeNode *traverse_l() |
868 | 0 | { |
869 | 0 | TreeNode *tnode = this; |
870 | |
|
871 | 0 | while (tnode->left) |
872 | 0 | tnode = tnode->left.get(); |
873 | 0 | return tnode; |
874 | 0 | } |
875 | | |
876 | | //<! Traverse tree depth-first and in-order (L-N-R) |
877 | | TreeNode *traverse_lnr() |
878 | 0 | { |
879 | 0 | TreeNode *tnode = this; |
880 | | |
881 | | // precondition: descended left as deep as possible |
882 | 0 | if (tnode->right) { |
883 | | // descend right |
884 | 0 | tnode = tnode->right.get(); |
885 | | // descend left as deep as possible and return next node |
886 | 0 | return tnode->traverse_l(); |
887 | 0 | } |
888 | | |
889 | | // ascend to parent |
890 | 0 | while (tnode->parent != nullptr) { |
891 | 0 | TreeNode *prev_child = tnode; |
892 | 0 | tnode = tnode->parent; |
893 | | |
894 | | // return this node, but only when we come from the left child branch |
895 | 0 | if (tnode->left && tnode->left.get() == prev_child) |
896 | 0 | return tnode; |
897 | 0 | } |
898 | 0 | return nullptr; |
899 | 0 | } |
900 | | |
901 | | //<! Traverse only assigned nodes |
902 | | TreeNode *traverse_lnr_assigned() |
903 | 0 | { |
904 | 0 | TreeNode *tnode = traverse_lnr(); |
905 | |
|
906 | 0 | while (tnode != nullptr && !tnode->assigned) |
907 | 0 | tnode = tnode->traverse_lnr(); |
908 | 0 | return tnode; |
909 | 0 | } |
910 | | |
911 | | unique_ptr<TreeNode> left; |
912 | | unique_ptr<TreeNode> right; |
913 | | TreeNode* parent; |
914 | | |
915 | | node_type node; |
916 | | bool assigned; //<! Whether this node is assigned-to by the application |
917 | | |
918 | | int d_bits; //<! How many bits have been used so far |
919 | | }; |
920 | | |
921 | | void cleanup_tree(TreeNode* node) |
922 | 0 | { |
923 | | // only cleanup this node if it has no children and node not assigned |
924 | 0 | if (!(node->left || node->right || node->assigned)) { |
925 | | // get parent node ptr |
926 | 0 | TreeNode* pparent = node->parent; |
927 | | // delete this node |
928 | 0 | if (pparent) { |
929 | 0 | if (pparent->left.get() == node) |
930 | 0 | pparent->left.reset(); |
931 | 0 | else |
932 | 0 | pparent->right.reset(); |
933 | | // now recurse up to the parent |
934 | 0 | cleanup_tree(pparent); |
935 | 0 | } |
936 | 0 | } |
937 | 0 | } |
938 | | |
939 | | void copyTree(const NetmaskTree& rhs) |
940 | 0 | { |
941 | 0 | try { |
942 | 0 | TreeNode *node = rhs.d_root.get(); |
943 | 0 | if (node != nullptr) |
944 | 0 | node = node->traverse_l(); |
945 | 0 | while (node != nullptr) { |
946 | 0 | if (node->assigned) |
947 | 0 | insert(node->node.first).second = node->node.second; |
948 | 0 | node = node->traverse_lnr(); |
949 | 0 | } |
950 | 0 | } |
951 | 0 | catch (const NetmaskException&) { |
952 | 0 | abort(); |
953 | 0 | } |
954 | 0 | catch (const std::logic_error&) { |
955 | 0 | abort(); |
956 | 0 | } |
957 | 0 | } |
958 | | |
959 | | public: |
960 | | class Iterator { |
961 | | public: |
962 | | typedef node_type value_type; |
963 | | typedef node_type& reference; |
964 | | typedef node_type* pointer; |
965 | | typedef std::forward_iterator_tag iterator_category; |
966 | | typedef size_type difference_type; |
967 | | |
968 | | private: |
969 | | friend class NetmaskTree; |
970 | | |
971 | | const NetmaskTree* d_tree; |
972 | | TreeNode* d_node; |
973 | | |
974 | 0 | Iterator(const NetmaskTree* tree, TreeNode* node): d_tree(tree), d_node(node) { |
975 | 0 | } |
976 | | |
977 | | public: |
978 | 0 | Iterator(): d_tree(nullptr), d_node(nullptr) {} |
979 | | |
980 | | Iterator& operator++() // prefix |
981 | 0 | { |
982 | 0 | if (d_node == nullptr) { |
983 | 0 | throw std::logic_error( |
984 | 0 | "NetmaskTree::Iterator::operator++: iterator is invalid"); |
985 | 0 | } |
986 | 0 | d_node = d_node->traverse_lnr_assigned(); |
987 | 0 | return *this; |
988 | 0 | } |
989 | | Iterator operator++(int) // postfix |
990 | 0 | { |
991 | 0 | Iterator tmp(*this); |
992 | 0 | operator++(); |
993 | 0 | return tmp; |
994 | 0 | } |
995 | | |
996 | | reference operator*() |
997 | 0 | { |
998 | 0 | if (d_node == nullptr) { |
999 | 0 | throw std::logic_error( |
1000 | 0 | "NetmaskTree::Iterator::operator*: iterator is invalid"); |
1001 | 0 | } |
1002 | 0 | return d_node->node; |
1003 | 0 | } |
1004 | | |
1005 | | pointer operator->() |
1006 | 0 | { |
1007 | 0 | if (d_node == nullptr) { |
1008 | 0 | throw std::logic_error( |
1009 | 0 | "NetmaskTree::Iterator::operator->: iterator is invalid"); |
1010 | 0 | } |
1011 | 0 | return &d_node->node; |
1012 | 0 | } |
1013 | | |
1014 | | bool operator==(const Iterator& rhs) |
1015 | 0 | { |
1016 | 0 | return (d_tree == rhs.d_tree && d_node == rhs.d_node); |
1017 | 0 | } |
1018 | | bool operator!=(const Iterator& rhs) |
1019 | 0 | { |
1020 | 0 | return !(*this == rhs); |
1021 | 0 | } |
1022 | | }; |
1023 | | |
1024 | | public: |
1025 | 0 | NetmaskTree() noexcept: d_root(new TreeNode()), d_left(nullptr), d_size(0) { |
1026 | 0 | } |
1027 | | |
1028 | 0 | NetmaskTree(const NetmaskTree& rhs): d_root(new TreeNode()), d_left(nullptr), d_size(0) { |
1029 | 0 | copyTree(rhs); |
1030 | 0 | } |
1031 | | |
1032 | 0 | NetmaskTree& operator=(const NetmaskTree& rhs) { |
1033 | 0 | clear(); |
1034 | 0 | copyTree(rhs); |
1035 | 0 | return *this; |
1036 | 0 | } |
1037 | | |
1038 | 0 | const iterator begin() const { |
1039 | 0 | return Iterator(this, d_left); |
1040 | 0 | } |
1041 | 0 | const iterator end() const { |
1042 | 0 | return Iterator(this, nullptr); |
1043 | 0 | } |
1044 | 0 | iterator begin() { |
1045 | 0 | return Iterator(this, d_left); |
1046 | 0 | } |
1047 | 0 | iterator end() { |
1048 | 0 | return Iterator(this, nullptr); |
1049 | 0 | } |
1050 | | |
1051 | 0 | node_type& insert(const string &mask) { |
1052 | 0 | return insert(key_type(mask)); |
1053 | 0 | } |
1054 | | |
1055 | | //<! Creates new value-pair in tree and returns it. |
1056 | 0 | node_type& insert(const key_type& key) { |
1057 | 0 | TreeNode* node; |
1058 | 0 | bool is_left = true; |
1059 | | |
1060 | | // we turn left on IPv4 and right on IPv6 |
1061 | 0 | if (key.isIPv4()) { |
1062 | 0 | node = d_root->left.get(); |
1063 | 0 | if (node == nullptr) { |
1064 | 0 | node = new TreeNode(key); |
1065 | 0 | node->assigned = true; |
1066 | 0 | node->parent = d_root.get(); |
1067 | |
|
1068 | 0 | d_root->left = unique_ptr<TreeNode>(node); |
1069 | 0 | d_size++; |
1070 | 0 | d_left = node; |
1071 | 0 | return node->node; |
1072 | 0 | } |
1073 | 0 | } else if (key.isIPv6()) { |
1074 | 0 | node = d_root->right.get(); |
1075 | 0 | if (node == nullptr) { |
1076 | 0 | node = new TreeNode(key); |
1077 | 0 | node->assigned = true; |
1078 | 0 | node->parent = d_root.get(); |
1079 | |
|
1080 | 0 | d_root->right = unique_ptr<TreeNode>(node); |
1081 | 0 | d_size++; |
1082 | 0 | if (!d_root->left) |
1083 | 0 | d_left = node; |
1084 | 0 | return node->node; |
1085 | 0 | } |
1086 | 0 | if (d_root->left) |
1087 | 0 | is_left = false; |
1088 | 0 | } else |
1089 | 0 | throw NetmaskException("invalid address family"); |
1090 | | |
1091 | | // we turn left on 0 and right on 1 |
1092 | 0 | int bits = 0; |
1093 | 0 | for(; bits < key.getBits(); bits++) { |
1094 | 0 | bool vall = key.getBit(-1-bits); |
1095 | |
|
1096 | 0 | if (bits >= node->d_bits) { |
1097 | | // the end of the current node is reached; continue with the next |
1098 | 0 | if (vall) { |
1099 | 0 | if (node->left || node->assigned) |
1100 | 0 | is_left = false; |
1101 | 0 | if (!node->right) { |
1102 | | // the right branch doesn't exist yet; attach our key here |
1103 | 0 | node = node->make_right(key); |
1104 | 0 | break; |
1105 | 0 | } |
1106 | 0 | node = node->right.get(); |
1107 | 0 | } else { |
1108 | 0 | if (!node->left) { |
1109 | | // the left branch doesn't exist yet; attach our key here |
1110 | 0 | node = node->make_left(key); |
1111 | 0 | break; |
1112 | 0 | } |
1113 | 0 | node = node->left.get(); |
1114 | 0 | } |
1115 | 0 | continue; |
1116 | 0 | } |
1117 | 0 | if (bits >= node->node.first.getBits()) { |
1118 | | // the matching branch ends here, yet the key netmask has more bits; add a |
1119 | | // child node below the existing branch leaf. |
1120 | 0 | if (vall) { |
1121 | 0 | if (node->assigned) |
1122 | 0 | is_left = false; |
1123 | 0 | node = node->make_right(key); |
1124 | 0 | } else { |
1125 | 0 | node = node->make_left(key); |
1126 | 0 | } |
1127 | 0 | break; |
1128 | 0 | } |
1129 | 0 | bool valr = node->node.first.getBit(-1-bits); |
1130 | 0 | if (vall != valr) { |
1131 | 0 | if (vall) |
1132 | 0 | is_left = false; |
1133 | | // the branch matches just upto this point, yet continues in a different |
1134 | | // direction; fork the branch. |
1135 | 0 | node = node->fork(key, bits); |
1136 | 0 | break; |
1137 | 0 | } |
1138 | 0 | } |
1139 | |
|
1140 | 0 | if (node->node.first.getBits() > key.getBits()) { |
1141 | | // key is a super-network of the matching node; split the branch and |
1142 | | // insert a node for the key above the matching node. |
1143 | 0 | node = node->split(key, key.getBits()); |
1144 | 0 | } |
1145 | |
|
1146 | 0 | if (node->left) |
1147 | 0 | is_left = false; |
1148 | |
|
1149 | 0 | node_type& value = node->node; |
1150 | |
|
1151 | 0 | if (!node->assigned) { |
1152 | | // only increment size if not assigned before |
1153 | 0 | d_size++; |
1154 | | // update the pointer to the left-most tree node |
1155 | 0 | if (is_left) |
1156 | 0 | d_left = node; |
1157 | 0 | node->assigned = true; |
1158 | 0 | } else { |
1159 | | // tree node exists for this value |
1160 | 0 | if (is_left && d_left != node) { |
1161 | 0 | throw std::logic_error( |
1162 | 0 | "NetmaskTree::insert(): lost track of left-most node in tree"); |
1163 | 0 | } |
1164 | 0 | } |
1165 | | |
1166 | 0 | return value; |
1167 | 0 | } |
1168 | | |
1169 | | //<! Creates or updates value |
1170 | 0 | void insert_or_assign(const key_type& mask, const value_type& value) { |
1171 | 0 | insert(mask).second = value; |
1172 | 0 | } |
1173 | | |
1174 | 0 | void insert_or_assign(const string& mask, const value_type& value) { |
1175 | 0 | insert(key_type(mask)).second = value; |
1176 | 0 | } |
1177 | | |
1178 | | //<! check if given key is present in TreeMap |
1179 | 0 | bool has_key(const key_type& key) const { |
1180 | 0 | const node_type *ptr = lookup(key); |
1181 | 0 | return ptr && ptr->first == key; |
1182 | 0 | } |
1183 | | |
1184 | | //<! Returns "best match" for key_type, which might not be value |
1185 | 0 | const node_type* lookup(const key_type& value) const { |
1186 | 0 | uint8_t max_bits = value.getBits(); |
1187 | 0 | return lookupImpl(value, max_bits); |
1188 | 0 | } |
1189 | | |
1190 | | //<! Perform best match lookup for value, using at most max_bits |
1191 | 0 | const node_type* lookup(const ComboAddress& value, int max_bits = 128) const { |
1192 | 0 | uint8_t addr_bits = value.getBits(); |
1193 | 0 | if (max_bits < 0 || max_bits > addr_bits) { |
1194 | 0 | max_bits = addr_bits; |
1195 | 0 | } |
1196 | |
|
1197 | 0 | return lookupImpl(key_type(value, max_bits), max_bits); |
1198 | 0 | } |
1199 | | |
1200 | | //<! Removes key from TreeMap. |
1201 | 0 | void erase(const key_type& key) { |
1202 | 0 | TreeNode *node = nullptr; |
1203 | |
|
1204 | 0 | if (key.isIPv4()) |
1205 | 0 | node = d_root->left.get(); |
1206 | 0 | else if (key.isIPv6()) |
1207 | 0 | node = d_root->right.get(); |
1208 | 0 | else |
1209 | 0 | throw NetmaskException("invalid address family"); |
1210 | | // no tree, no value |
1211 | 0 | if (node == nullptr) return; |
1212 | | |
1213 | 0 | int bits = 0; |
1214 | 0 | for(; node && bits < key.getBits(); bits++) { |
1215 | 0 | bool vall = key.getBit(-1-bits); |
1216 | 0 | if (bits >= node->d_bits) { |
1217 | | // the end of the current node is reached; continue with the next |
1218 | 0 | if (vall) { |
1219 | 0 | node = node->right.get(); |
1220 | 0 | } else { |
1221 | 0 | node = node->left.get(); |
1222 | 0 | } |
1223 | 0 | continue; |
1224 | 0 | } |
1225 | 0 | if (bits >= node->node.first.getBits()) { |
1226 | | // the matching branch ends here |
1227 | 0 | if (key.getBits() != node->node.first.getBits()) |
1228 | 0 | node = nullptr; |
1229 | 0 | break; |
1230 | 0 | } |
1231 | 0 | bool valr = node->node.first.getBit(-1-bits); |
1232 | 0 | if (vall != valr) { |
1233 | | // the branch matches just upto this point, yet continues in a different |
1234 | | // direction |
1235 | 0 | node = nullptr; |
1236 | 0 | break; |
1237 | 0 | } |
1238 | 0 | } |
1239 | 0 | if (node) { |
1240 | 0 | if (d_size == 0) { |
1241 | 0 | throw std::logic_error( |
1242 | 0 | "NetmaskTree::erase(): size of tree is zero before erase"); |
1243 | 0 | } |
1244 | 0 | d_size--; |
1245 | 0 | node->assigned = false; |
1246 | 0 | node->node.second = value_type(); |
1247 | |
|
1248 | 0 | if (node == d_left) |
1249 | 0 | d_left = d_left->traverse_lnr_assigned(); |
1250 | |
|
1251 | 0 | cleanup_tree(node); |
1252 | 0 | } |
1253 | 0 | } |
1254 | | |
1255 | 0 | void erase(const string& key) { |
1256 | 0 | erase(key_type(key)); |
1257 | 0 | } |
1258 | | |
1259 | | //<! checks whether the container is empty. |
1260 | 0 | bool empty() const { |
1261 | 0 | return (d_size == 0); |
1262 | 0 | } |
1263 | | |
1264 | | //<! returns the number of elements |
1265 | 0 | size_type size() const { |
1266 | 0 | return d_size; |
1267 | 0 | } |
1268 | | |
1269 | | //<! See if given ComboAddress matches any prefix |
1270 | 0 | bool match(const ComboAddress& value) const { |
1271 | 0 | return (lookup(value) != nullptr); |
1272 | 0 | } |
1273 | | |
1274 | 0 | bool match(const std::string& value) const { |
1275 | 0 | return match(ComboAddress(value)); |
1276 | 0 | } |
1277 | | |
1278 | | //<! Clean out the tree |
1279 | 0 | void clear() { |
1280 | 0 | d_root.reset(new TreeNode()); |
1281 | 0 | d_left = nullptr; |
1282 | 0 | d_size = 0; |
1283 | 0 | } |
1284 | | |
1285 | | //<! swaps the contents with another NetmaskTree |
1286 | 0 | void swap(NetmaskTree& rhs) { |
1287 | 0 | std::swap(d_root, rhs.d_root); |
1288 | 0 | std::swap(d_left, rhs.d_left); |
1289 | 0 | std::swap(d_size, rhs.d_size); |
1290 | 0 | } |
1291 | | |
1292 | | private: |
1293 | | |
1294 | 0 | const node_type* lookupImpl(const key_type& value, uint8_t max_bits) const { |
1295 | 0 | TreeNode *node = nullptr; |
1296 | |
|
1297 | 0 | if (value.isIPv4()) |
1298 | 0 | node = d_root->left.get(); |
1299 | 0 | else if (value.isIPv6()) |
1300 | 0 | node = d_root->right.get(); |
1301 | 0 | else |
1302 | 0 | throw NetmaskException("invalid address family"); |
1303 | 0 | if (node == nullptr) return nullptr; |
1304 | | |
1305 | 0 | node_type *ret = nullptr; |
1306 | |
|
1307 | 0 | int bits = 0; |
1308 | 0 | for(; bits < max_bits; bits++) { |
1309 | 0 | bool vall = value.getBit(-1-bits); |
1310 | 0 | if (bits >= node->d_bits) { |
1311 | | // the end of the current node is reached; continue with the next |
1312 | | // (we keep track of last assigned node) |
1313 | 0 | if (node->assigned && bits == node->node.first.getBits()) |
1314 | 0 | ret = &node->node; |
1315 | 0 | if (vall) { |
1316 | 0 | if (!node->right) |
1317 | 0 | break; |
1318 | 0 | node = node->right.get(); |
1319 | 0 | } else { |
1320 | 0 | if (!node->left) |
1321 | 0 | break; |
1322 | 0 | node = node->left.get(); |
1323 | 0 | } |
1324 | 0 | continue; |
1325 | 0 | } |
1326 | 0 | if (bits >= node->node.first.getBits()) { |
1327 | | // the matching branch ends here |
1328 | 0 | break; |
1329 | 0 | } |
1330 | 0 | bool valr = node->node.first.getBit(-1-bits); |
1331 | 0 | if (vall != valr) { |
1332 | | // the branch matches just upto this point, yet continues in a different |
1333 | | // direction |
1334 | 0 | break; |
1335 | 0 | } |
1336 | 0 | } |
1337 | | // needed if we did not find one in loop |
1338 | 0 | if (node->assigned && bits == node->node.first.getBits()) |
1339 | 0 | ret = &node->node; |
1340 | | |
1341 | | // this can be nullptr. |
1342 | 0 | return ret; |
1343 | 0 | } |
1344 | | |
1345 | | unique_ptr<TreeNode> d_root; //<! Root of our tree |
1346 | | TreeNode *d_left; |
1347 | | size_type d_size; |
1348 | | }; |
1349 | | |
1350 | | /** This class represents a group of supplemental Netmask classes. An IP address matches |
1351 | | if it is matched by one or more of the Netmask objects within. |
1352 | | */ |
1353 | | class NetmaskGroup |
1354 | | { |
1355 | | public: |
1356 | 0 | NetmaskGroup() noexcept { |
1357 | 0 | } |
1358 | | |
1359 | | //! If this IP address is matched by any of the classes within |
1360 | | |
1361 | | bool match(const ComboAddress *ip) const |
1362 | 0 | { |
1363 | 0 | const auto &ret = tree.lookup(*ip); |
1364 | 0 | if(ret) return ret->second; |
1365 | 0 | return false; |
1366 | 0 | } |
1367 | | |
1368 | | bool match(const ComboAddress& ip) const |
1369 | 0 | { |
1370 | 0 | return match(&ip); |
1371 | 0 | } |
1372 | | |
1373 | | bool lookup(const ComboAddress* ip, Netmask* nmp) const |
1374 | 0 | { |
1375 | 0 | const auto &ret = tree.lookup(*ip); |
1376 | 0 | if (ret) { |
1377 | 0 | if (nmp != nullptr) |
1378 | 0 | *nmp = ret->first; |
1379 | 0 |
|
1380 | 0 | return ret->second; |
1381 | 0 | } |
1382 | 0 | return false; |
1383 | 0 | } |
1384 | | |
1385 | | bool lookup(const ComboAddress& ip, Netmask* nmp) const |
1386 | 0 | { |
1387 | 0 | return lookup(&ip, nmp); |
1388 | 0 | } |
1389 | | |
1390 | | //! Add this string to the list of possible matches |
1391 | | void addMask(const string &ip, bool positive=true) |
1392 | 0 | { |
1393 | 0 | if(!ip.empty() && ip[0] == '!') { |
1394 | 0 | addMask(Netmask(ip.substr(1)), false); |
1395 | 0 | } else { |
1396 | 0 | addMask(Netmask(ip), positive); |
1397 | 0 | } |
1398 | 0 | } |
1399 | | |
1400 | | //! Add this Netmask to the list of possible matches |
1401 | | void addMask(const Netmask& nm, bool positive=true) |
1402 | 0 | { |
1403 | 0 | tree.insert(nm).second=positive; |
1404 | 0 | } |
1405 | | |
1406 | | void addMasks(const NetmaskGroup& group, boost::optional<bool> positive) |
1407 | 0 | { |
1408 | 0 | for (const auto& entry : group.tree) { |
1409 | 0 | addMask(entry.first, positive ? *positive : entry.second); |
1410 | 0 | } |
1411 | 0 | } |
1412 | | |
1413 | | //! Delete this Netmask from the list of possible matches |
1414 | | void deleteMask(const Netmask& nm) |
1415 | 0 | { |
1416 | 0 | tree.erase(nm); |
1417 | 0 | } |
1418 | | |
1419 | | void deleteMask(const std::string& ip) |
1420 | 0 | { |
1421 | 0 | if (!ip.empty()) |
1422 | 0 | deleteMask(Netmask(ip)); |
1423 | 0 | } |
1424 | | |
1425 | | void clear() |
1426 | 0 | { |
1427 | 0 | tree.clear(); |
1428 | 0 | } |
1429 | | |
1430 | | bool empty() const |
1431 | 0 | { |
1432 | 0 | return tree.empty(); |
1433 | 0 | } |
1434 | | |
1435 | | size_t size() const |
1436 | 0 | { |
1437 | 0 | return tree.size(); |
1438 | 0 | } |
1439 | | |
1440 | | string toString() const |
1441 | 0 | { |
1442 | 0 | ostringstream str; |
1443 | 0 | for(auto iter = tree.begin(); iter != tree.end(); ++iter) { |
1444 | 0 | if(iter != tree.begin()) |
1445 | 0 | str <<", "; |
1446 | 0 | if(!(iter->second)) |
1447 | 0 | str<<"!"; |
1448 | 0 | str<<iter->first.toString(); |
1449 | 0 | } |
1450 | 0 | return str.str(); |
1451 | 0 | } |
1452 | | |
1453 | | void toStringVector(vector<string>* vec) const |
1454 | 0 | { |
1455 | 0 | for(auto iter = tree.begin(); iter != tree.end(); ++iter) { |
1456 | 0 | vec->push_back((iter->second ? "" : "!") + iter->first.toString()); |
1457 | 0 | } |
1458 | 0 | } |
1459 | | |
1460 | | void toMasks(const string &ips) |
1461 | 0 | { |
1462 | 0 | vector<string> parts; |
1463 | 0 | stringtok(parts, ips, ", \t"); |
1464 | 0 |
|
1465 | 0 | for (vector<string>::const_iterator iter = parts.begin(); iter != parts.end(); ++iter) |
1466 | 0 | addMask(*iter); |
1467 | 0 | } |
1468 | | |
1469 | | private: |
1470 | | NetmaskTree<bool> tree; |
1471 | | }; |
1472 | | |
1473 | | struct SComboAddress |
1474 | | { |
1475 | 0 | SComboAddress(const ComboAddress& orig) : ca(orig) {} |
1476 | | ComboAddress ca; |
1477 | | bool operator<(const SComboAddress& rhs) const |
1478 | 0 | { |
1479 | 0 | return ComboAddress::addressOnlyLessThan()(ca, rhs.ca); |
1480 | 0 | } |
1481 | | operator const ComboAddress&() |
1482 | 0 | { |
1483 | 0 | return ca; |
1484 | 0 | } |
1485 | | }; |
1486 | | |
1487 | | class NetworkError : public runtime_error |
1488 | | { |
1489 | | public: |
1490 | | NetworkError(const string& why="Network Error") : runtime_error(why.c_str()) |
1491 | 0 | {} |
1492 | | NetworkError(const char *why="Network Error") : runtime_error(why) |
1493 | 0 | {} |
1494 | | }; |
1495 | | |
1496 | | class AddressAndPortRange |
1497 | | { |
1498 | | public: |
1499 | | AddressAndPortRange(): d_addrMask(0), d_portMask(0) |
1500 | 0 | { |
1501 | 0 | d_addr.sin4.sin_family = 0; // disable this doing anything useful |
1502 | 0 | d_addr.sin4.sin_port = 0; // this guarantees d_network compares identical |
1503 | 0 | } |
1504 | | |
1505 | | AddressAndPortRange(ComboAddress ca, uint8_t addrMask, uint8_t portMask = 0): d_addr(std::move(ca)), d_addrMask(addrMask), d_portMask(portMask) |
1506 | 0 | { |
1507 | 0 | if (!d_addr.isIPv4()) { |
1508 | 0 | d_portMask = 0; |
1509 | 0 | } |
1510 | 0 |
|
1511 | 0 | uint16_t port = d_addr.getPort(); |
1512 | 0 | if (d_portMask < 16) { |
1513 | 0 | uint16_t mask = ~(0xFFFF >> d_portMask); |
1514 | 0 | port = port & mask; |
1515 | 0 | } |
1516 | 0 |
|
1517 | 0 | if (d_addrMask < d_addr.getBits()) { |
1518 | 0 | if (d_portMask > 0) { |
1519 | 0 | throw std::runtime_error("Trying to create a AddressAndPortRange with a reduced address mask (" + std::to_string(d_addrMask) + ") and a port range (" + std::to_string(d_portMask) + ")"); |
1520 | 0 | } |
1521 | 0 | d_addr = Netmask(d_addr, d_addrMask).getMaskedNetwork(); |
1522 | 0 | } |
1523 | 0 | d_addr.setPort(port); |
1524 | 0 | } |
1525 | | |
1526 | | uint8_t getFullBits() const |
1527 | 0 | { |
1528 | 0 | return d_addr.getBits() + 16; |
1529 | 0 | } |
1530 | | |
1531 | | uint8_t getBits() const |
1532 | 0 | { |
1533 | 0 | if (d_addrMask < d_addr.getBits()) { |
1534 | 0 | return d_addrMask; |
1535 | 0 | } |
1536 | 0 |
|
1537 | 0 | return d_addr.getBits() + d_portMask; |
1538 | 0 | } |
1539 | | |
1540 | | /** Get the value of the bit at the provided bit index. When the index >= 0, |
1541 | | the index is relative to the LSB starting at index zero. When the index < 0, |
1542 | | the index is relative to the MSB starting at index -1 and counting down. |
1543 | | */ |
1544 | | bool getBit(int index) const |
1545 | 0 | { |
1546 | 0 | if (index >= getFullBits()) { |
1547 | 0 | return false; |
1548 | 0 | } |
1549 | 0 | if (index < 0) { |
1550 | 0 | index = getFullBits() + index; |
1551 | 0 | } |
1552 | 0 |
|
1553 | 0 | if (index < 16) { |
1554 | 0 | /* we are into the port bits */ |
1555 | 0 | uint16_t port = d_addr.getPort(); |
1556 | 0 | return ((port & (1U<<index)) != 0x0000); |
1557 | 0 | } |
1558 | 0 |
|
1559 | 0 | index -= 16; |
1560 | 0 |
|
1561 | 0 | return d_addr.getBit(index); |
1562 | 0 | } |
1563 | | |
1564 | | bool isIPv4() const |
1565 | 0 | { |
1566 | 0 | return d_addr.isIPv4(); |
1567 | 0 | } |
1568 | | |
1569 | | bool isIPv6() const |
1570 | 0 | { |
1571 | 0 | return d_addr.isIPv6(); |
1572 | 0 | } |
1573 | | |
1574 | | AddressAndPortRange getNormalized() const |
1575 | 0 | { |
1576 | 0 | return AddressAndPortRange(d_addr, d_addrMask, d_portMask); |
1577 | 0 | } |
1578 | | |
1579 | | AddressAndPortRange getSuper(uint8_t bits) const |
1580 | 0 | { |
1581 | 0 | if (bits <= d_addrMask) { |
1582 | 0 | return AddressAndPortRange(d_addr, bits, 0); |
1583 | 0 | } |
1584 | 0 | if (bits <= d_addrMask + d_portMask) { |
1585 | 0 | return AddressAndPortRange(d_addr, d_addrMask, d_portMask - (bits - d_addrMask)); |
1586 | 0 | } |
1587 | 0 |
|
1588 | 0 | return AddressAndPortRange(d_addr, d_addrMask, d_portMask); |
1589 | 0 | } |
1590 | | |
1591 | | const ComboAddress& getNetwork() const |
1592 | 0 | { |
1593 | 0 | return d_addr; |
1594 | 0 | } |
1595 | | |
1596 | | string toString() const |
1597 | 0 | { |
1598 | 0 | if (d_addrMask < d_addr.getBits() || d_portMask == 0) { |
1599 | 0 | return d_addr.toStringNoInterface() + "/" + std::to_string(d_addrMask); |
1600 | 0 | } |
1601 | 0 | return d_addr.toStringNoInterface() + ":" + std::to_string(d_addr.getPort()) + "/" + std::to_string(d_portMask); |
1602 | 0 | } |
1603 | | |
1604 | | bool empty() const |
1605 | 0 | { |
1606 | 0 | return d_addr.sin4.sin_family == 0; |
1607 | 0 | } |
1608 | | |
1609 | | bool operator==(const AddressAndPortRange& rhs) const |
1610 | 0 | { |
1611 | 0 | return std::tie(d_addr, d_addrMask, d_portMask) == std::tie(rhs.d_addr, rhs.d_addrMask, rhs.d_portMask); |
1612 | 0 | } |
1613 | | |
1614 | | bool operator<(const AddressAndPortRange& rhs) const |
1615 | 0 | { |
1616 | 0 | if (empty() && !rhs.empty()) { |
1617 | 0 | return false; |
1618 | 0 | } |
1619 | 0 |
|
1620 | 0 | if (!empty() && rhs.empty()) { |
1621 | 0 | return true; |
1622 | 0 | } |
1623 | 0 |
|
1624 | 0 | if (d_addrMask > rhs.d_addrMask) { |
1625 | 0 | return true; |
1626 | 0 | } |
1627 | 0 |
|
1628 | 0 | if (d_addrMask < rhs.d_addrMask) { |
1629 | 0 | return false; |
1630 | 0 | } |
1631 | 0 |
|
1632 | 0 | if (d_addr < rhs.d_addr) { |
1633 | 0 | return true; |
1634 | 0 | } |
1635 | 0 |
|
1636 | 0 | if (d_addr > rhs.d_addr) { |
1637 | 0 | return false; |
1638 | 0 | } |
1639 | 0 |
|
1640 | 0 | if (d_portMask > rhs.d_portMask) { |
1641 | 0 | return true; |
1642 | 0 | } |
1643 | 0 |
|
1644 | 0 | if (d_portMask < rhs.d_portMask) { |
1645 | 0 | return false; |
1646 | 0 | } |
1647 | 0 |
|
1648 | 0 | return d_addr.getPort() < rhs.d_addr.getPort(); |
1649 | 0 | } |
1650 | | |
1651 | | bool operator>(const AddressAndPortRange& rhs) const |
1652 | 0 | { |
1653 | 0 | return rhs.operator<(*this); |
1654 | 0 | } |
1655 | | |
1656 | | struct hash |
1657 | | { |
1658 | | uint32_t operator()(const AddressAndPortRange& apr) const |
1659 | 0 | { |
1660 | 0 | ComboAddress::addressOnlyHash hashOp; |
1661 | 0 | uint16_t port = apr.d_addr.getPort(); |
1662 | 0 | /* it's fine to hash the whole address and port because the non-relevant parts have |
1663 | 0 | been masked to 0 */ |
1664 | 0 | return burtle(reinterpret_cast<const unsigned char*>(&port), sizeof(port), hashOp(apr.d_addr)); |
1665 | 0 | } |
1666 | | }; |
1667 | | |
1668 | | private: |
1669 | | ComboAddress d_addr; |
1670 | | uint8_t d_addrMask; |
1671 | | /* only used for v4 addresses */ |
1672 | | uint8_t d_portMask; |
1673 | | }; |
1674 | | |
1675 | | int SSocket(int family, int type, int flags); |
1676 | | int SConnect(int sockfd, const ComboAddress& remote); |
1677 | | /* tries to connect to remote for a maximum of timeout seconds. |
1678 | | sockfd should be set to non-blocking beforehand. |
1679 | | returns 0 on success (the socket is writable), throw a |
1680 | | runtime_error otherwise */ |
1681 | | int SConnectWithTimeout(int sockfd, const ComboAddress& remote, const struct timeval& timeout); |
1682 | | int SBind(int sockfd, const ComboAddress& local); |
1683 | | int SAccept(int sockfd, ComboAddress& remote); |
1684 | | int SListen(int sockfd, int limit); |
1685 | | int SSetsockopt(int sockfd, int level, int opname, int value); |
1686 | | void setSocketIgnorePMTU(int sockfd, int family); |
1687 | | bool setReusePort(int sockfd); |
1688 | | |
1689 | | #if defined(IP_PKTINFO) |
1690 | | #define GEN_IP_PKTINFO IP_PKTINFO |
1691 | | #elif defined(IP_RECVDSTADDR) |
1692 | | #define GEN_IP_PKTINFO IP_RECVDSTADDR |
1693 | | #endif |
1694 | | |
1695 | | bool IsAnyAddress(const ComboAddress& addr); |
1696 | | bool HarvestDestinationAddress(const struct msghdr* msgh, ComboAddress* destination); |
1697 | | bool HarvestTimestamp(struct msghdr* msgh, struct timeval* tv); |
1698 | | void fillMSGHdr(struct msghdr* msgh, struct iovec* iov, cmsgbuf_aligned* cbuf, size_t cbufsize, char* data, size_t datalen, ComboAddress* addr); |
1699 | | int sendOnNBSocket(int fd, const struct msghdr *msgh); |
1700 | | size_t sendMsgWithOptions(int fd, const char* buffer, size_t len, const ComboAddress* dest, const ComboAddress* local, unsigned int localItf, int flags); |
1701 | | |
1702 | | /* requires a non-blocking, connected TCP socket */ |
1703 | | bool isTCPSocketUsable(int sock); |
1704 | | |
1705 | | extern template class NetmaskTree<bool>; |
1706 | | ComboAddress parseIPAndPort(const std::string& input, uint16_t port); |
1707 | | |
1708 | | std::set<std::string> getListOfNetworkInterfaces(); |
1709 | | std::vector<ComboAddress> getListOfAddressesOfNetworkInterface(const std::string& itf); |
1710 | | std::vector<Netmask> getListOfRangesOfNetworkInterface(const std::string& itf); |
1711 | | |
1712 | | /* These functions throw if the value was already set to a higher value, |
1713 | | or on error */ |
1714 | | void setSocketBuffer(int fd, int optname, uint32_t size); |
1715 | | void setSocketReceiveBuffer(int fd, uint32_t size); |
1716 | | void setSocketSendBuffer(int fd, uint32_t size); |