Coverage Report

Created: 2025-06-13 06:27

/src/pdns/pdns/dnsdistdist/iputils.hh
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * This file is part of PowerDNS or dnsdist.
3
 * Copyright -- PowerDNS.COM B.V. and its contributors
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of version 2 of the GNU General Public License as
7
 * published by the Free Software Foundation.
8
 *
9
 * In addition, for the avoidance of any doubt, permission is granted to
10
 * link this program with OpenSSL and to (re)distribute the binaries
11
 * produced as the result of such linking.
12
 *
13
 * This program is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
 * GNU General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU General Public License
19
 * along with this program; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
21
 */
22
#pragma once
23
#include <string>
24
#include <sys/socket.h>
25
#include <netinet/in.h>
26
#include <arpa/inet.h>
27
#include <iostream>
28
#include <cstdio>
29
#include <functional>
30
#include "pdnsexception.hh"
31
#include "misc.hh"
32
#include <netdb.h>
33
#include <sstream>
34
#include <sys/un.h>
35
36
#include "namespaces.hh"
37
38
#ifdef __APPLE__
39
#include <libkern/OSByteOrder.h>
40
41
#define htobe16(x) OSSwapHostToBigInt16(x)
42
#define htole16(x) OSSwapHostToLittleInt16(x)
43
#define be16toh(x) OSSwapBigToHostInt16(x)
44
#define le16toh(x) OSSwapLittleToHostInt16(x)
45
46
#define htobe32(x) OSSwapHostToBigInt32(x)
47
#define htole32(x) OSSwapHostToLittleInt32(x)
48
#define be32toh(x) OSSwapBigToHostInt32(x)
49
#define le32toh(x) OSSwapLittleToHostInt32(x)
50
51
#define htobe64(x) OSSwapHostToBigInt64(x)
52
#define htole64(x) OSSwapHostToLittleInt64(x)
53
#define be64toh(x) OSSwapBigToHostInt64(x)
54
#define le64toh(x) OSSwapLittleToHostInt64(x)
55
#endif
56
57
#ifdef __sun
58
59
#define htobe16(x) BE_16(x)
60
#define htole16(x) LE_16(x)
61
#define be16toh(x) BE_IN16(&(x))
62
#define le16toh(x) LE_IN16(&(x))
63
64
#define htobe32(x) BE_32(x)
65
#define htole32(x) LE_32(x)
66
#define be32toh(x) BE_IN32(&(x))
67
#define le32toh(x) LE_IN32(&(x))
68
69
#define htobe64(x) BE_64(x)
70
#define htole64(x) LE_64(x)
71
#define be64toh(x) BE_IN64(&(x))
72
#define le64toh(x) LE_IN64(&(x))
73
74
#endif
75
76
#ifdef __FreeBSD__
77
#include <sys/endian.h>
78
#endif
79
80
#if defined(__NetBSD__) && defined(IP_PKTINFO) && !defined(IP_SENDSRCADDR)
81
// The IP_PKTINFO option in NetBSD was incompatible with Linux until a
82
// change that also introduced IP_SENDSRCADDR for FreeBSD compatibility.
83
#undef IP_PKTINFO
84
#endif
85
86
union ComboAddress
87
{
88
  sockaddr_in sin4{};
89
  sockaddr_in6 sin6;
90
91
  bool operator==(const ComboAddress& rhs) const
92
0
  {
93
0
    if (std::tie(sin4.sin_family, sin4.sin_port) != std::tie(rhs.sin4.sin_family, rhs.sin4.sin_port)) {
94
0
      return false;
95
0
    }
96
0
    if (sin4.sin_family == AF_INET) {
97
0
      return sin4.sin_addr.s_addr == rhs.sin4.sin_addr.s_addr;
98
0
    }
99
0
    return memcmp(&sin6.sin6_addr.s6_addr, &rhs.sin6.sin6_addr.s6_addr, sizeof(sin6.sin6_addr.s6_addr)) == 0;
100
0
  }
101
102
  bool operator!=(const ComboAddress& rhs) const
103
0
  {
104
0
    return (!operator==(rhs));
105
0
  }
106
107
  bool operator<(const ComboAddress& rhs) const
108
0
  {
109
0
    if (sin4.sin_family == 0) {
110
0
      return false;
111
0
    }
112
0
    if (std::tie(sin4.sin_family, sin4.sin_port) < std::tie(rhs.sin4.sin_family, rhs.sin4.sin_port)) {
113
0
      return true;
114
0
    }
115
0
    if (std::tie(sin4.sin_family, sin4.sin_port) > std::tie(rhs.sin4.sin_family, rhs.sin4.sin_port)) {
116
0
      return false;
117
0
    }
118
0
    if (sin4.sin_family == AF_INET) {
119
0
      return sin4.sin_addr.s_addr < rhs.sin4.sin_addr.s_addr;
120
0
    }
121
0
    return memcmp(&sin6.sin6_addr.s6_addr, &rhs.sin6.sin6_addr.s6_addr, sizeof(sin6.sin6_addr.s6_addr)) < 0;
122
0
  }
123
124
  bool operator>(const ComboAddress& rhs) const
125
0
  {
126
0
    return rhs.operator<(*this);
127
0
  }
128
129
  struct addressPortOnlyHash
130
  {
131
    uint32_t operator()(const ComboAddress& address) const
132
0
    {
133
0
      // NOLINTBEGIN(cppcoreguidelines-pro-type-reinterpret-cast)
134
0
      if (address.sin4.sin_family == AF_INET) {
135
0
        const auto* start = reinterpret_cast<const unsigned char*>(&address.sin4.sin_addr.s_addr);
136
0
        auto tmp = burtle(start, 4, 0);
137
0
        return burtle(reinterpret_cast<const uint8_t*>(&address.sin4.sin_port), 2, tmp);
138
0
      }
139
0
      const auto* start = reinterpret_cast<const unsigned char*>(&address.sin6.sin6_addr.s6_addr);
140
0
      auto tmp = burtle(start, 16, 0);
141
0
      return burtle(reinterpret_cast<const unsigned char*>(&address.sin6.sin6_port), 2, tmp);
142
0
      // NOLINTEND(cppcoreguidelines-pro-type-reinterpret-cast)
143
0
    }
144
  };
145
146
  struct addressOnlyHash
147
  {
148
    uint32_t operator()(const ComboAddress& address) const
149
0
    {
150
0
      const unsigned char* start = nullptr;
151
0
      uint32_t len = 0;
152
0
      // NOLINTBEGIN(cppcoreguidelines-pro-type-reinterpret-cast)
153
0
      if (address.sin4.sin_family == AF_INET) {
154
0
        start = reinterpret_cast<const unsigned char*>(&address.sin4.sin_addr.s_addr);
155
0
        len = 4;
156
0
      }
157
0
      else {
158
0
        start = reinterpret_cast<const unsigned char*>(&address.sin6.sin6_addr.s6_addr);
159
0
        len = 16;
160
0
      }
161
0
      // NOLINTEND(cppcoreguidelines-pro-type-reinterpret-cast)
162
0
      return burtle(start, len, 0);
163
0
    }
164
  };
165
166
  struct addressOnlyLessThan
167
  {
168
    bool operator()(const ComboAddress& lhs, const ComboAddress& rhs) const
169
0
    {
170
0
      if (lhs.sin4.sin_family < rhs.sin4.sin_family) {
171
0
        return true;
172
0
      }
173
0
      if (lhs.sin4.sin_family > rhs.sin4.sin_family) {
174
0
        return false;
175
0
      }
176
0
      if (lhs.sin4.sin_family == AF_INET) {
177
0
        return lhs.sin4.sin_addr.s_addr < rhs.sin4.sin_addr.s_addr;
178
0
      }
179
0
      return memcmp(&lhs.sin6.sin6_addr.s6_addr, &rhs.sin6.sin6_addr.s6_addr, sizeof(lhs.sin6.sin6_addr.s6_addr)) < 0;
180
0
    }
181
  };
182
183
  struct addressOnlyEqual
184
  {
185
    bool operator()(const ComboAddress& lhs, const ComboAddress& rhs) const
186
0
    {
187
0
      if (lhs.sin4.sin_family != rhs.sin4.sin_family) {
188
0
        return false;
189
0
      }
190
0
      if (lhs.sin4.sin_family == AF_INET) {
191
0
        return lhs.sin4.sin_addr.s_addr == rhs.sin4.sin_addr.s_addr;
192
0
      }
193
0
      return memcmp(&lhs.sin6.sin6_addr.s6_addr, &rhs.sin6.sin6_addr.s6_addr, sizeof(lhs.sin6.sin6_addr.s6_addr)) == 0;
194
0
    }
195
  };
196
197
  [[nodiscard]] socklen_t getSocklen() const
198
0
  {
199
0
    if (sin4.sin_family == AF_INET) {
200
0
      return sizeof(sin4);
201
0
    }
202
0
    return sizeof(sin6);
203
0
  }
204
205
  ComboAddress()
206
436
  {
207
436
    sin4.sin_family = AF_INET;
208
436
    sin4.sin_addr.s_addr = 0;
209
436
    sin4.sin_port = 0;
210
436
    sin6.sin6_scope_id = 0;
211
436
    sin6.sin6_flowinfo = 0;
212
436
  }
213
214
  ComboAddress(const struct sockaddr* socketAddress, socklen_t salen)
215
0
  {
216
0
    setSockaddr(socketAddress, salen);
217
0
  };
218
219
  ComboAddress(const struct sockaddr_in6* socketAddress)
220
0
  {
221
0
    // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
222
0
    setSockaddr(reinterpret_cast<const struct sockaddr*>(socketAddress), sizeof(struct sockaddr_in6));
223
0
  };
224
225
  ComboAddress(const struct sockaddr_in* socketAddress)
226
0
  {
227
0
    // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
228
0
    setSockaddr(reinterpret_cast<const struct sockaddr*>(socketAddress), sizeof(struct sockaddr_in));
229
0
  };
230
231
  void setSockaddr(const struct sockaddr* socketAddress, socklen_t salen)
232
0
  {
233
0
    if (salen > sizeof(struct sockaddr_in6)) {
234
0
      throw PDNSException("ComboAddress can't handle other than sockaddr_in or sockaddr_in6");
235
0
    }
236
0
    memcpy(this, socketAddress, salen);
237
0
  }
238
239
  // 'port' sets a default value in case 'str' does not set a port
240
  explicit ComboAddress(const string& str, uint16_t port = 0)
241
2
  {
242
2
    memset(&sin6, 0, sizeof(sin6));
243
2
    sin4.sin_family = AF_INET;
244
2
    sin4.sin_port = 0;
245
2
    if (makeIPv4sockaddr(str, &sin4) != 0) {
246
0
      sin6.sin6_family = AF_INET6;
247
0
      if (makeIPv6sockaddr(str, &sin6) < 0) {
248
0
        throw PDNSException("Unable to convert presentation address '" + str + "'");
249
0
      }
250
0
    }
251
2
    if (sin4.sin_port == 0) { // 'str' overrides port!
252
0
      sin4.sin_port = htons(port);
253
0
    }
254
2
  }
255
256
  [[nodiscard]] bool isIPv6() const
257
0
  {
258
0
    return sin4.sin_family == AF_INET6;
259
0
  }
260
  [[nodiscard]] bool isIPv4() const
261
60
  {
262
60
    return sin4.sin_family == AF_INET;
263
60
  }
264
265
  [[nodiscard]] bool isMappedIPv4() const
266
0
  {
267
0
    if (sin4.sin_family != AF_INET6) {
268
0
      return false;
269
0
    }
270
0
271
0
    int iter = 0;
272
0
    // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
273
0
    const auto* ptr = reinterpret_cast<const unsigned char*>(&sin6.sin6_addr.s6_addr);
274
0
    for (iter = 0; iter < 10; ++iter) {
275
0
      if (ptr[iter] != 0) { // NOLINT(cppcoreguidelines-pro-bounds-pointer-arithmetic)
276
0
        return false;
277
0
      }
278
0
    }
279
0
    for (; iter < 12; ++iter) {
280
0
      if (ptr[iter] != 0xff) { // NOLINT(cppcoreguidelines-pro-bounds-pointer-arithmetic)
281
0
        return false;
282
0
      }
283
0
    }
284
0
    return true;
285
0
  }
286
287
  [[nodiscard]] bool isUnspecified() const
288
0
  {
289
0
    const ComboAddress unspecifiedV4("0.0.0.0:0");
290
0
    const ComboAddress unspecifiedV6("[::]:0");
291
0
    return *this == unspecifiedV4 || *this == unspecifiedV6;
292
0
  }
293
294
  [[nodiscard]] ComboAddress mapToIPv4() const
295
0
  {
296
0
    if (!isMappedIPv4()) {
297
0
      throw PDNSException("ComboAddress can't map non-mapped IPv6 address back to IPv4");
298
0
    }
299
0
    ComboAddress ret;
300
0
    ret.sin4.sin_family = AF_INET;
301
0
    ret.sin4.sin_port = sin4.sin_port;
302
0
303
0
    // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
304
0
    const auto* ptr = reinterpret_cast<const unsigned char*>(&sin6.sin6_addr.s6_addr);
305
0
    ptr += (sizeof(sin6.sin6_addr.s6_addr) - sizeof(ret.sin4.sin_addr.s_addr)); // NOLINT(cppcoreguidelines-pro-bounds-pointer-arithmetic)
306
0
    memcpy(&ret.sin4.sin_addr.s_addr, ptr, sizeof(ret.sin4.sin_addr.s_addr));
307
0
    return ret;
308
0
  }
309
310
  [[nodiscard]] string toString() const
311
0
  {
312
0
    std::array<char, 1024> host{};
313
0
    if (sin4.sin_family != 0) {
314
      // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
315
0
      int retval = getnameinfo(reinterpret_cast<const struct sockaddr*>(this), getSocklen(), host.data(), host.size(), nullptr, 0, NI_NUMERICHOST);
316
0
      if (retval == 0) {
317
0
        return host.data();
318
0
      }
319
0
      return "invalid " + string(gai_strerror(retval));
320
0
    }
321
0
    return "invalid";
322
0
  }
323
324
  //! Ignores any interface specifiers possibly available in the sockaddr data.
325
  [[nodiscard]] string toStringNoInterface() const
326
0
  {
327
0
    std::array<char, 1024> host{};
328
0
    if (sin4.sin_family == AF_INET) {
329
0
      const auto* ret = inet_ntop(sin4.sin_family, &sin4.sin_addr, host.data(), host.size());
330
0
      if (ret != nullptr) {
331
0
        return host.data();
332
0
      }
333
0
    }
334
0
    else if (sin4.sin_family == AF_INET6) {
335
0
      const auto* ret = inet_ntop(sin4.sin_family, &sin6.sin6_addr, host.data(), host.size());
336
0
      if (ret != nullptr) {
337
0
        return host.data();
338
0
      }
339
0
    }
340
0
    else {
341
0
      return "invalid";
342
0
    }
343
0
    return "invalid " + stringerror();
344
0
  }
345
346
  [[nodiscard]] string toStringReversed() const
347
0
  {
348
0
    if (isIPv4()) {
349
0
      const auto address = ntohl(sin4.sin_addr.s_addr);
350
0
      auto aaa = (address >> 0) & 0xFF;
351
0
      auto bbb = (address >> 8) & 0xFF;
352
0
      auto ccc = (address >> 16) & 0xFF;
353
0
      auto ddd = (address >> 24) & 0xFF;
354
0
      return std::to_string(aaa) + "." + std::to_string(bbb) + "." + std::to_string(ccc) + "." + std::to_string(ddd);
355
0
    }
356
0
    const auto* addr = &sin6.sin6_addr;
357
0
    std::stringstream res{};
358
0
    res << std::hex;
359
0
    for (int i = 15; i >= 0; i--) {
360
0
      auto byte = addr->s6_addr[i]; // NOLINT(cppcoreguidelines-pro-bounds-constant-array-index)
361
0
      res << ((byte >> 0) & 0xF) << ".";
362
0
      res << ((byte >> 4) & 0xF);
363
0
      if (i != 0) {
364
0
        res << ".";
365
0
      }
366
0
    }
367
0
    return res.str();
368
0
  }
369
370
  [[nodiscard]] string toStringWithPort() const
371
0
  {
372
0
    if (sin4.sin_family == AF_INET) {
373
0
      return toString() + ":" + std::to_string(ntohs(sin4.sin_port));
374
0
    }
375
0
    return "[" + toString() + "]:" + std::to_string(ntohs(sin4.sin_port));
376
0
  }
377
378
  [[nodiscard]] string toStringWithPortExcept(int port) const
379
0
  {
380
0
    if (ntohs(sin4.sin_port) == port) {
381
0
      return toString();
382
0
    }
383
0
    if (sin4.sin_family == AF_INET) {
384
0
      return toString() + ":" + std::to_string(ntohs(sin4.sin_port));
385
0
    }
386
0
    return "[" + toString() + "]:" + std::to_string(ntohs(sin4.sin_port));
387
0
  }
388
389
  [[nodiscard]] string toLogString() const
390
0
  {
391
0
    return toStringWithPortExcept(53);
392
0
  }
393
394
  [[nodiscard]] string toStructuredLogString() const
395
0
  {
396
0
    return toStringWithPort();
397
0
  }
398
399
  [[nodiscard]] string toByteString() const
400
0
  {
401
0
    // NOLINTBEGIN(cppcoreguidelines-pro-type-reinterpret-cast)
402
0
    if (isIPv4()) {
403
0
      return {reinterpret_cast<const char*>(&sin4.sin_addr.s_addr), sizeof(sin4.sin_addr.s_addr)};
404
0
    }
405
0
    return {reinterpret_cast<const char*>(&sin6.sin6_addr.s6_addr), sizeof(sin6.sin6_addr.s6_addr)};
406
0
    // NOLINTEND(cppcoreguidelines-pro-type-reinterpret-cast)
407
0
  }
408
409
  void truncate(unsigned int bits) noexcept;
410
411
  [[nodiscard]] uint16_t getNetworkOrderPort() const noexcept
412
0
  {
413
0
    return sin4.sin_port;
414
0
  }
415
  [[nodiscard]] uint16_t getPort() const noexcept
416
0
  {
417
0
    return ntohs(getNetworkOrderPort());
418
0
  }
419
  void setPort(uint16_t port)
420
0
  {
421
0
    sin4.sin_port = htons(port);
422
0
  }
423
424
  void reset()
425
60
  {
426
60
    memset(&sin6, 0, sizeof(sin6));
427
60
  }
428
429
  //! Get the total number of address bits (either 32 or 128 depending on IP version)
430
  [[nodiscard]] uint8_t getBits() const
431
0
  {
432
0
    if (isIPv4()) {
433
0
      return 32;
434
0
    }
435
0
    if (isIPv6()) {
436
0
      return 128;
437
0
    }
438
0
    return 0;
439
0
  }
440
  /** Get the value of the bit at the provided bit index. When the index >= 0,
441
      the index is relative to the LSB starting at index zero. When the index < 0,
442
      the index is relative to the MSB starting at index -1 and counting down.
443
   */
444
  [[nodiscard]] bool getBit(int index) const
445
0
  {
446
0
    if (isIPv4()) {
447
0
      if (index >= 32) {
448
0
        return false;
449
0
      }
450
0
      if (index < 0) {
451
0
        if (index < -32) {
452
0
          return false;
453
0
        }
454
0
        index = 32 + index;
455
0
      }
456
457
0
      uint32_t ls_addr = ntohl(sin4.sin_addr.s_addr);
458
459
0
      return ((ls_addr & (1U << index)) != 0x00000000);
460
0
    }
461
0
    if (isIPv6()) {
462
0
      if (index >= 128) {
463
0
        return false;
464
0
      }
465
0
      if (index < 0) {
466
0
        if (index < -128) {
467
0
          return false;
468
0
        }
469
0
        index = 128 + index;
470
0
      }
471
472
0
      const auto* ls_addr = reinterpret_cast<const uint8_t*>(sin6.sin6_addr.s6_addr); // NOLINT(cppcoreguidelines-pro-type-reinterpret-cast)
473
0
      uint8_t byte_idx = index / 8;
474
0
      uint8_t bit_idx = index % 8;
475
476
0
      return ((ls_addr[15 - byte_idx] & (1U << bit_idx)) != 0x00); // NOLINT(cppcoreguidelines-pro-bounds-pointer-arithmetic)
477
0
    }
478
0
    return false;
479
0
  }
480
481
  /*! Returns a comma-separated string of IP addresses
482
   *
483
   * \param c  An stl container with ComboAddresses
484
   * \param withPort  Also print the port (default true)
485
   * \param portExcept  Print the port, except when this is the port (default 53)
486
   */
487
  template <template <class...> class Container, class... Args>
488
  static string caContainerToString(const Container<ComboAddress, Args...>& container, const bool withPort = true, const uint16_t portExcept = 53)
489
  {
490
    vector<string> strs;
491
    for (const auto& address : container) {
492
      if (withPort) {
493
        strs.push_back(address.toStringWithPortExcept(portExcept));
494
        continue;
495
      }
496
      strs.push_back(address.toString());
497
    }
498
    return boost::join(strs, ",");
499
  };
500
};
501
502
union SockaddrWrapper
503
{
504
  sockaddr_in sin4{};
505
  sockaddr_in6 sin6;
506
  sockaddr_un sinun;
507
508
  [[nodiscard]] socklen_t getSocklen() const
509
0
  {
510
0
    if (sin4.sin_family == AF_INET) {
511
0
      return sizeof(sin4);
512
0
    }
513
0
    if (sin6.sin6_family == AF_INET6) {
514
0
      return sizeof(sin6);
515
0
    }
516
0
    if (sinun.sun_family == AF_UNIX) {
517
0
      return sizeof(sinun);
518
0
    }
519
0
    return 0;
520
0
  }
521
522
  SockaddrWrapper()
523
0
  {
524
0
    sin4.sin_family = AF_INET;
525
0
    sin4.sin_addr.s_addr = 0;
526
0
    sin4.sin_port = 0;
527
0
  }
528
529
  SockaddrWrapper(const struct sockaddr* socketAddress, socklen_t salen)
530
0
  {
531
0
    setSockaddr(socketAddress, salen);
532
0
  };
533
534
  SockaddrWrapper(const struct sockaddr_in6* socketAddress)
535
0
  {
536
0
    // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
537
0
    setSockaddr(reinterpret_cast<const struct sockaddr*>(socketAddress), sizeof(struct sockaddr_in6));
538
0
  };
539
540
  SockaddrWrapper(const struct sockaddr_in* socketAddress)
541
0
  {
542
0
    // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
543
0
    setSockaddr(reinterpret_cast<const struct sockaddr*>(socketAddress), sizeof(struct sockaddr_in));
544
0
  };
545
546
  SockaddrWrapper(const struct sockaddr_un* socketAddress)
547
0
  {
548
0
    // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
549
0
    setSockaddr(reinterpret_cast<const struct sockaddr*>(socketAddress), sizeof(struct sockaddr_un));
550
0
  };
551
552
  void setSockaddr(const struct sockaddr* socketAddress, socklen_t salen)
553
0
  {
554
0
    if (salen > sizeof(struct sockaddr_un)) {
555
0
      throw PDNSException("ComboAddress can't handle other than sockaddr_in, sockaddr_in6 or sockaddr_un");
556
0
    }
557
0
    memcpy(this, socketAddress, salen);
558
0
  }
559
560
  explicit SockaddrWrapper(const string& str, uint16_t port = 0)
561
0
  {
562
0
    memset(&sinun, 0, sizeof(sinun));
563
0
    sin4.sin_family = AF_INET;
564
0
    sin4.sin_port = 0;
565
0
    if (str == "\"\"" || str == "''") {
566
0
      throw PDNSException("Stray quotation marks in address.");
567
0
    }
568
0
    if (makeIPv4sockaddr(str, &sin4) != 0) {
569
0
      sin6.sin6_family = AF_INET6;
570
0
      if (makeIPv6sockaddr(str, &sin6) < 0) {
571
0
        sinun.sun_family = AF_UNIX;
572
0
        // only attempt Unix socket address if address candidate does not contain a port
573
0
        if (str.find(':') != string::npos || makeUNsockaddr(str, &sinun) < 0) {
574
0
          throw PDNSException("Unable to convert presentation address '" + str + "'");
575
0
        }
576
0
      }
577
0
    }
578
0
    if (sinun.sun_family != AF_UNIX && sin4.sin_port == 0) { // 'str' overrides port!
579
0
      sin4.sin_port = htons(port);
580
0
    }
581
0
  }
582
583
  [[nodiscard]] bool isIPv6() const
584
0
  {
585
0
    return sin4.sin_family == AF_INET6;
586
0
  }
587
  [[nodiscard]] bool isIPv4() const
588
0
  {
589
0
    return sin4.sin_family == AF_INET;
590
0
  }
591
  [[nodiscard]] bool isUnixSocket() const
592
0
  {
593
0
    return sin4.sin_family == AF_UNIX;
594
0
  }
595
596
  [[nodiscard]] string toString() const
597
0
  {
598
0
    if (sinun.sun_family == AF_UNIX) {
599
0
      return sinun.sun_path;
600
0
    }
601
0
    std::array<char, 1024> host{};
602
0
    if (sin4.sin_family != 0) {
603
0
      // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
604
0
      int retval = getnameinfo(reinterpret_cast<const struct sockaddr*>(this), getSocklen(), host.data(), host.size(), nullptr, 0, NI_NUMERICHOST);
605
0
      if (retval == 0) {
606
0
        return host.data();
607
0
      }
608
0
      return "invalid " + string(gai_strerror(retval));
609
0
    }
610
0
    return "invalid";
611
0
  }
612
613
  [[nodiscard]] string toStringWithPort() const
614
0
  {
615
0
    if (sinun.sun_family == AF_UNIX) {
616
0
      return toString();
617
0
    }
618
0
    if (sin4.sin_family == AF_INET) {
619
0
      return toString() + ":" + std::to_string(ntohs(sin4.sin_port));
620
0
    }
621
0
    return "[" + toString() + "]:" + std::to_string(ntohs(sin4.sin_port));
622
0
  }
623
624
  void reset()
625
0
  {
626
0
    memset(&sinun, 0, sizeof(sinun));
627
0
  }
628
};
629
630
/** This exception is thrown by the Netmask class and by extension by the NetmaskGroup class */
631
class NetmaskException : public PDNSException
632
{
633
public:
634
  NetmaskException(const string& arg) :
635
0
    PDNSException(arg) {}
636
};
637
638
inline ComboAddress makeComboAddress(const string& str)
639
0
{
640
0
  ComboAddress address;
641
0
  address.sin4.sin_family = AF_INET;
642
0
  if (inet_pton(AF_INET, str.c_str(), &address.sin4.sin_addr) <= 0) {
643
0
    address.sin4.sin_family = AF_INET6;
644
0
    if (makeIPv6sockaddr(str, &address.sin6) < 0) {
645
0
      throw NetmaskException("Unable to convert '" + str + "' to a netmask");
646
0
    }
647
0
  }
648
0
  return address;
649
0
}
650
651
inline ComboAddress makeComboAddressFromRaw(uint8_t version, const char* raw, size_t len)
652
0
{
653
0
  ComboAddress address;
654
655
0
  if (version == 4) {
656
0
    address.sin4.sin_family = AF_INET;
657
0
    if (len != sizeof(address.sin4.sin_addr)) {
658
0
      throw NetmaskException("invalid raw address length");
659
0
    }
660
0
    memcpy(&address.sin4.sin_addr, raw, sizeof(address.sin4.sin_addr));
661
0
  }
662
0
  else if (version == 6) {
663
0
    address.sin6.sin6_family = AF_INET6;
664
0
    if (len != sizeof(address.sin6.sin6_addr)) {
665
0
      throw NetmaskException("invalid raw address length");
666
0
    }
667
0
    memcpy(&address.sin6.sin6_addr, raw, sizeof(address.sin6.sin6_addr));
668
0
  }
669
0
  else {
670
0
    throw NetmaskException("invalid address family");
671
0
  }
672
673
0
  return address;
674
0
}
675
676
inline ComboAddress makeComboAddressFromRaw(uint8_t version, const string& str)
677
0
{
678
0
  return makeComboAddressFromRaw(version, str.c_str(), str.size());
679
0
}
680
681
/** This class represents a netmask and can be queried to see if a certain
682
    IP address is matched by this mask */
683
class Netmask
684
{
685
public:
686
  Netmask()
687
230
  {
688
230
    d_network.sin4.sin_family = 0; // disable this doing anything useful
689
230
    d_network.sin4.sin_port = 0; // this guarantees d_network compares identical
690
230
  }
691
692
  Netmask(const ComboAddress& network, uint8_t bits = 0xff) :
693
60
    d_network(network)
694
60
  {
695
60
    d_network.sin4.sin_port = 0;
696
60
    setBits(bits);
697
60
  }
698
699
  Netmask(const sockaddr_in* network, uint8_t bits = 0xff) :
700
    d_network(network)
701
0
  {
702
0
    d_network.sin4.sin_port = 0;
703
0
    setBits(bits);
704
0
  }
705
  Netmask(const sockaddr_in6* network, uint8_t bits = 0xff) :
706
    d_network(network)
707
0
  {
708
0
    d_network.sin4.sin_port = 0;
709
0
    setBits(bits);
710
0
  }
711
  void setBits(uint8_t value)
712
60
  {
713
60
    d_bits = d_network.isIPv4() ? std::min(value, static_cast<uint8_t>(32U)) : std::min(value, static_cast<uint8_t>(128U));
714
715
60
    if (d_bits < 32) {
716
42
      d_mask = ~(0xFFFFFFFF >> d_bits);
717
42
    }
718
18
    else {
719
      // note that d_mask is unused for IPv6
720
18
      d_mask = 0xFFFFFFFF;
721
18
    }
722
723
60
    if (isIPv4()) {
724
24
      d_network.sin4.sin_addr.s_addr = htonl(ntohl(d_network.sin4.sin_addr.s_addr) & d_mask);
725
24
    }
726
36
    else if (isIPv6()) {
727
36
      uint8_t bytes = d_bits / 8;
728
36
      auto* address = reinterpret_cast<uint8_t*>(&d_network.sin6.sin6_addr.s6_addr); // NOLINT(cppcoreguidelines-pro-type-reinterpret-cast)
729
36
      uint8_t bits = d_bits % 8;
730
36
      auto mask = static_cast<uint8_t>(~(0xFF >> bits));
731
732
36
      if (bytes < sizeof(d_network.sin6.sin6_addr.s6_addr)) {
733
35
        address[bytes] &= mask; // NOLINT(cppcoreguidelines-pro-bounds-pointer-arithmetic)
734
35
      }
735
736
373
      for (size_t idx = bytes + 1; idx < sizeof(d_network.sin6.sin6_addr.s6_addr); ++idx) {
737
337
        address[idx] = 0; // NOLINT(cppcoreguidelines-pro-bounds-pointer-arithmetic)
738
337
      }
739
36
    }
740
60
  }
741
742
  enum stringType
743
  {
744
    humanString,
745
    byteString,
746
  };
747
  //! Constructor supplies the mask, which cannot be changed
748
  Netmask(const string& mask, stringType type = humanString)
749
0
  {
750
0
    if (type == byteString) {
751
0
      uint8_t afi = mask.at(0);
752
0
      size_t len = afi == 4 ? 4 : 16;
753
0
      uint8_t bits = mask.at(len + 1);
754
755
0
      d_network = makeComboAddressFromRaw(afi, mask.substr(1, len));
756
757
0
      setBits(bits);
758
0
    }
759
0
    else {
760
0
      pair<string, string> split = splitField(mask, '/');
761
0
      d_network = makeComboAddress(split.first);
762
763
0
      if (!split.second.empty()) {
764
0
        setBits(pdns::checked_stoi<uint8_t>(split.second));
765
0
      }
766
0
      else if (d_network.sin4.sin_family == AF_INET) {
767
0
        setBits(32);
768
0
      }
769
0
      else {
770
0
        setBits(128);
771
0
      }
772
0
    }
773
0
  }
774
775
  [[nodiscard]] bool match(const ComboAddress& address) const
776
0
  {
777
0
    return match(&address);
778
0
  }
779
780
  //! If this IP address in socket address matches
781
  bool match(const ComboAddress* address) const
782
0
  {
783
0
    if (d_network.sin4.sin_family != address->sin4.sin_family) {
784
0
      return false;
785
0
    }
786
0
    if (d_network.sin4.sin_family == AF_INET) {
787
0
      return match4(htonl((unsigned int)address->sin4.sin_addr.s_addr));
788
0
    }
789
0
    if (d_network.sin6.sin6_family == AF_INET6) {
790
0
      uint8_t bytes = d_bits / 8;
791
0
      uint8_t index = 0;
792
0
      // NOLINTBEGIN(cppcoreguidelines-pro-type-reinterpret-cast)
793
0
      const auto* lhs = reinterpret_cast<const uint8_t*>(&d_network.sin6.sin6_addr.s6_addr);
794
0
      const auto* rhs = reinterpret_cast<const uint8_t*>(&address->sin6.sin6_addr.s6_addr);
795
0
      // NOLINTEND(cppcoreguidelines-pro-type-reinterpret-cast)
796
0
797
0
      // NOLINTBEGIN(cppcoreguidelines-pro-bounds-pointer-arithmetic)
798
0
      for (index = 0; index < bytes; ++index) {
799
0
        if (lhs[index] != rhs[index]) {
800
0
          return false;
801
0
        }
802
0
      }
803
0
      // still here, now match remaining bits
804
0
      uint8_t bits = d_bits % 8;
805
0
      auto mask = static_cast<uint8_t>(~(0xFF >> bits));
806
0
807
0
      return ((lhs[index]) == (rhs[index] & mask));
808
0
      // NOLINTEND(cppcoreguidelines-pro-bounds-pointer-arithmetic)
809
0
    }
810
0
    return false;
811
0
  }
812
813
  //! If this ASCII IP address matches
814
  [[nodiscard]] bool match(const string& arg) const
815
0
  {
816
0
    ComboAddress address = makeComboAddress(arg);
817
0
    return match(&address);
818
0
  }
819
820
  //! If this IP address in native format matches
821
  [[nodiscard]] bool match4(uint32_t arg) const
822
0
  {
823
0
    return (arg & d_mask) == (ntohl(d_network.sin4.sin_addr.s_addr));
824
0
  }
825
826
  [[nodiscard]] string toString() const
827
0
  {
828
0
    return d_network.toStringNoInterface() + "/" + std::to_string((unsigned int)d_bits);
829
0
  }
830
831
  [[nodiscard]] string toStringNoMask() const
832
0
  {
833
0
    return d_network.toStringNoInterface();
834
0
  }
835
836
  [[nodiscard]] string toByteString() const
837
0
  {
838
0
    ostringstream tmp;
839
0
840
0
    tmp << (d_network.isIPv4() ? "\x04" : "\x06")
841
0
        << d_network.toByteString()
842
0
        << getBits();
843
0
844
0
    return tmp.str();
845
0
  }
846
847
  [[nodiscard]] const ComboAddress& getNetwork() const
848
0
  {
849
0
    return d_network;
850
0
  }
851
852
  [[nodiscard]] const ComboAddress& getMaskedNetwork() const
853
0
  {
854
0
    return getNetwork();
855
0
  }
856
857
  [[nodiscard]] uint8_t getBits() const
858
0
  {
859
0
    return d_bits;
860
0
  }
861
862
  [[nodiscard]] bool isIPv6() const
863
36
  {
864
36
    return d_network.sin6.sin6_family == AF_INET6;
865
36
  }
866
867
  [[nodiscard]] bool isIPv4() const
868
60
  {
869
60
    return d_network.sin4.sin_family == AF_INET;
870
60
  }
871
872
  bool operator<(const Netmask& rhs) const
873
0
  {
874
0
    if (empty() && !rhs.empty()) {
875
0
      return false;
876
0
    }
877
0
    if (!empty() && rhs.empty()) {
878
0
      return true;
879
0
    }
880
0
    if (d_bits > rhs.d_bits) {
881
0
      return true;
882
0
    }
883
0
    if (d_bits < rhs.d_bits) {
884
0
      return false;
885
0
    }
886
0
887
0
    return d_network < rhs.d_network;
888
0
  }
889
890
  bool operator>(const Netmask& rhs) const
891
0
  {
892
0
    return rhs.operator<(*this);
893
0
  }
894
895
  bool operator==(const Netmask& rhs) const
896
0
  {
897
0
    return std::tie(d_network, d_bits) == std::tie(rhs.d_network, rhs.d_bits);
898
0
  }
899
  bool operator!=(const Netmask& rhs) const
900
0
  {
901
0
    return !operator==(rhs);
902
0
  }
903
904
  [[nodiscard]] bool empty() const
905
0
  {
906
0
    return d_network.sin4.sin_family == 0;
907
0
  }
908
909
  //! Get normalized version of the netmask. This means that all address bits below the network bits are zero.
910
  [[nodiscard]] Netmask getNormalized() const
911
0
  {
912
0
    return {getMaskedNetwork(), d_bits};
913
0
  }
914
  //! Get Netmask for super network of this one (i.e. with fewer network bits)
915
  [[nodiscard]] Netmask getSuper(uint8_t bits) const
916
0
  {
917
0
    return {d_network, std::min(d_bits, bits)};
918
0
  }
919
920
  //! Get the total number of address bits for this netmask (either 32 or 128 depending on IP version)
921
  [[nodiscard]] uint8_t getFullBits() const
922
0
  {
923
0
    return d_network.getBits();
924
0
  }
925
926
  /** Get the value of the bit at the provided bit index. When the index >= 0,
927
      the index is relative to the LSB starting at index zero. When the index < 0,
928
      the index is relative to the MSB starting at index -1 and counting down.
929
      When the index points outside the network bits, it always yields zero.
930
   */
931
  [[nodiscard]] bool getBit(int bit) const
932
0
  {
933
0
    if (bit < -d_bits) {
934
0
      return false;
935
0
    }
936
0
    if (bit >= 0) {
937
0
      if (isIPv4()) {
938
0
        if (bit >= 32 || bit < (32 - d_bits)) {
939
0
          return false;
940
0
        }
941
0
      }
942
0
      if (isIPv6()) {
943
0
        if (bit >= 128 || bit < (128 - d_bits)) {
944
0
          return false;
945
0
        }
946
0
      }
947
0
    }
948
0
    return d_network.getBit(bit);
949
0
  }
950
951
  struct Hash
952
  {
953
    size_t operator()(const Netmask& netmask) const
954
0
    {
955
0
      return burtle(&netmask.d_bits, 1, ComboAddress::addressOnlyHash()(netmask.d_network));
956
0
    }
957
  };
958
959
private:
960
  ComboAddress d_network;
961
  uint32_t d_mask{0};
962
  uint8_t d_bits{0};
963
};
964
965
namespace std
966
{
967
template <>
968
struct hash<Netmask>
969
{
970
  auto operator()(const Netmask& netmask) const
971
0
  {
972
0
    return Netmask::Hash{}(netmask);
973
0
  }
974
};
975
}
976
977
/** Binary tree map implementation with <Netmask,T> pair.
978
 *
979
 * This is an binary tree implementation for storing attributes for IPv4 and IPv6 prefixes.
980
 * The most simple use case is simple NetmaskTree<bool> used by NetmaskGroup, which only
981
 * wants to know if given IP address is matched in the prefixes stored.
982
 *
983
 * This element is useful for anything that needs to *STORE* prefixes, and *MATCH* IP addresses
984
 * to a *LIST* of *PREFIXES*. Not the other way round.
985
 *
986
 * You can store IPv4 and IPv6 addresses to same tree, separate payload storage is kept per AFI.
987
 * Network prefixes (Netmasks) are always recorded in normalized fashion, meaning that only
988
 * the network bits are set. This is what is returned in the insert() and lookup() return
989
 * values.
990
 *
991
 * Use swap if you need to move the tree to another NetmaskTree instance, it is WAY faster
992
 * than using copy ctor or assignment operator, since it moves the nodes and tree root to
993
 * new home instead of actually recreating the tree.
994
 *
995
 * Please see NetmaskGroup for example of simple use case. Other usecases can be found
996
 * from GeoIPBackend and Sortlist, and from dnsdist.
997
 */
998
template <typename T, class K = Netmask>
999
class NetmaskTree
1000
{
1001
public:
1002
  class Iterator;
1003
1004
  using key_type = K;
1005
  using value_type = T;
1006
  using node_type = std::pair<const key_type, value_type>;
1007
  using size_type = size_t;
1008
  using iterator = class Iterator;
1009
1010
private:
1011
  /** Single node in tree, internal use only.
1012
   */
1013
  class TreeNode : boost::noncopyable
1014
  {
1015
  public:
1016
    explicit TreeNode() noexcept :
1017
8
      parent(nullptr), node(), assigned(false), d_bits(0)
1018
8
    {
1019
8
    }
1020
    explicit TreeNode(const key_type& key) :
1021
0
      parent(nullptr), node({key.getNormalized(), value_type()}), assigned(false), d_bits(key.getFullBits())
1022
0
    {
1023
0
    }
1024
1025
    //<! Makes a left leaf node with specified key.
1026
    TreeNode* make_left(const key_type& key)
1027
0
    {
1028
0
      d_bits = node.first.getBits();
1029
0
      left = make_unique<TreeNode>(key);
1030
0
      left->parent = this;
1031
0
      return left.get();
1032
0
    }
1033
1034
    //<! Makes a right leaf node with specified key.
1035
    TreeNode* make_right(const key_type& key)
1036
0
    {
1037
0
      d_bits = node.first.getBits();
1038
0
      right = make_unique<TreeNode>(key);
1039
0
      right->parent = this;
1040
0
      return right.get();
1041
0
    }
1042
1043
    //<! Splits branch at indicated bit position by inserting key
1044
    TreeNode* split(const key_type& key, int bits)
1045
0
    {
1046
0
      if (parent == nullptr) {
1047
        // not to be called on the root node
1048
0
        throw std::logic_error(
1049
0
          "NetmaskTree::TreeNode::split(): must not be called on root node");
1050
0
      }
1051
1052
      // determine reference from parent
1053
0
      unique_ptr<TreeNode>& parent_ref = (parent->left.get() == this ? parent->left : parent->right);
1054
0
      if (parent_ref.get() != this) {
1055
0
        throw std::logic_error(
1056
0
          "NetmaskTree::TreeNode::split(): parent node reference is invalid");
1057
0
      }
1058
1059
      // create new tree node for the new key and
1060
      // attach the new node under our former parent
1061
0
      auto new_intermediate_node = make_unique<TreeNode>(key);
1062
0
      new_intermediate_node->d_bits = bits;
1063
0
      new_intermediate_node->parent = parent;
1064
0
      auto* new_intermediate_node_raw = new_intermediate_node.get();
1065
1066
      // hereafter new_intermediate points to "this"
1067
      // ie the child of the new intermediate node
1068
0
      std::swap(parent_ref, new_intermediate_node);
1069
      // and we now assign this to current_node so
1070
      // it's clear it no longer refers to the new
1071
      // intermediate node
1072
0
      std::unique_ptr<TreeNode> current_node = std::move(new_intermediate_node);
1073
1074
      // attach "this" node below the new node
1075
      // (left or right depending on bit)
1076
      // technically the raw pointer escapes the duration of the
1077
      // unique pointer, but just below we store the unique pointer
1078
      // in the parent, so it lives as long as necessary
1079
      // coverity[escape]
1080
0
      current_node->parent = new_intermediate_node_raw;
1081
0
      if (current_node->node.first.getBit(-1 - bits)) {
1082
0
        new_intermediate_node_raw->right = std::move(current_node);
1083
0
      }
1084
0
      else {
1085
0
        new_intermediate_node_raw->left = std::move(current_node);
1086
0
      }
1087
1088
0
      return new_intermediate_node_raw;
1089
0
    }
1090
1091
    //<! Forks branch for new key at indicated bit position
1092
    TreeNode* fork(const key_type& key, int bits)
1093
0
    {
1094
0
      if (parent == nullptr) {
1095
        // not to be called on the root node
1096
0
        throw std::logic_error(
1097
0
          "NetmaskTree::TreeNode::fork(): must not be called on root node");
1098
0
      }
1099
1100
      // determine reference from parent
1101
0
      unique_ptr<TreeNode>& parent_ref = (parent->left.get() == this ? parent->left : parent->right);
1102
0
      if (parent_ref.get() != this) {
1103
0
        throw std::logic_error(
1104
0
          "NetmaskTree::TreeNode::fork(): parent node reference is invalid");
1105
0
      }
1106
1107
      // create new tree node for the branch point
1108
1109
      // the current node will now be a child of the new branch node
1110
      // (hereafter new_child1 points to "this")
1111
0
      unique_ptr<TreeNode> new_child1 = std::move(parent_ref);
1112
      // attach the branch node under our former parent
1113
0
      parent_ref = make_unique<TreeNode>(node.first.getSuper(bits));
1114
0
      auto* branch_node = parent_ref.get();
1115
0
      branch_node->d_bits = bits;
1116
0
      branch_node->parent = parent;
1117
1118
      // create second new leaf node for the new key
1119
0
      unique_ptr<TreeNode> new_child2 = make_unique<TreeNode>(key);
1120
0
      TreeNode* new_node = new_child2.get();
1121
1122
      // attach the new child nodes below the branch node
1123
      // (left or right depending on bit)
1124
0
      new_child1->parent = branch_node;
1125
0
      new_child2->parent = branch_node;
1126
0
      if (new_child1->node.first.getBit(-1 - bits)) {
1127
0
        branch_node->right = std::move(new_child1);
1128
0
        branch_node->left = std::move(new_child2);
1129
0
      }
1130
0
      else {
1131
0
        branch_node->right = std::move(new_child2);
1132
0
        branch_node->left = std::move(new_child1);
1133
0
      }
1134
      // now we have attached the new unique pointers to the tree:
1135
      // - branch_node is below its parent
1136
      // - new_child1 (ourselves) is below branch_node
1137
      // - new_child2, the new leaf node, is below branch_node as well
1138
1139
0
      return new_node;
1140
0
    }
1141
1142
    //<! Traverse left branch depth-first
1143
    TreeNode* traverse_l()
1144
0
    {
1145
0
      TreeNode* tnode = this;
1146
1147
0
      while (tnode->left) {
1148
0
        tnode = tnode->left.get();
1149
0
      }
1150
0
      return tnode;
1151
0
    }
1152
1153
    //<! Traverse tree depth-first and in-order (L-N-R)
1154
    TreeNode* traverse_lnr()
1155
0
    {
1156
0
      TreeNode* tnode = this;
1157
1158
      // precondition: descended left as deep as possible
1159
0
      if (tnode->right) {
1160
        // descend right
1161
0
        tnode = tnode->right.get();
1162
        // descend left as deep as possible and return next node
1163
0
        return tnode->traverse_l();
1164
0
      }
1165
1166
      // ascend to parent
1167
0
      while (tnode->parent != nullptr) {
1168
0
        TreeNode* prev_child = tnode;
1169
0
        tnode = tnode->parent;
1170
1171
        // return this node, but only when we come from the left child branch
1172
0
        if (tnode->left && tnode->left.get() == prev_child) {
1173
0
          return tnode;
1174
0
        }
1175
0
      }
1176
0
      return nullptr;
1177
0
    }
1178
1179
    //<! Traverse only assigned nodes
1180
    TreeNode* traverse_lnr_assigned()
1181
0
    {
1182
0
      TreeNode* tnode = traverse_lnr();
1183
1184
0
      while (tnode != nullptr && !tnode->assigned) {
1185
0
        tnode = tnode->traverse_lnr();
1186
0
      }
1187
0
      return tnode;
1188
0
    }
1189
1190
    unique_ptr<TreeNode> left;
1191
    unique_ptr<TreeNode> right;
1192
    TreeNode* parent;
1193
1194
    node_type node;
1195
    bool assigned; //<! Whether this node is assigned-to by the application
1196
1197
    int d_bits; //<! How many bits have been used so far
1198
  };
1199
1200
  void cleanup_tree(TreeNode* node)
1201
0
  {
1202
    // only cleanup this node if it has no children and node not assigned
1203
0
    if (!(node->left || node->right || node->assigned)) {
1204
      // get parent node ptr
1205
0
      TreeNode* pparent = node->parent;
1206
      // delete this node
1207
0
      if (pparent) {
1208
0
        if (pparent->left.get() == node) {
1209
0
          pparent->left.reset();
1210
0
        }
1211
0
        else {
1212
0
          pparent->right.reset();
1213
0
        }
1214
        // now recurse up to the parent
1215
0
        cleanup_tree(pparent);
1216
0
      }
1217
0
    }
1218
0
  }
1219
1220
  void copyTree(const NetmaskTree& rhs)
1221
0
  {
1222
0
    try {
1223
0
      TreeNode* node = rhs.d_root.get();
1224
0
      if (node != nullptr) {
1225
0
        node = node->traverse_l();
1226
0
      }
1227
0
      while (node != nullptr) {
1228
0
        if (node->assigned) {
1229
0
          insert(node->node.first).second = node->node.second;
1230
0
        }
1231
0
        node = node->traverse_lnr();
1232
0
      }
1233
0
    }
1234
0
    catch (const NetmaskException&) {
1235
0
      abort();
1236
0
    }
1237
0
    catch (const std::logic_error&) {
1238
0
      abort();
1239
0
    }
1240
0
  }
1241
1242
public:
1243
  class Iterator
1244
  {
1245
  public:
1246
    using value_type = node_type;
1247
    using reference = node_type&;
1248
    using pointer = node_type*;
1249
    using iterator_category = std::forward_iterator_tag;
1250
    using difference_type = size_type;
1251
1252
  private:
1253
    friend class NetmaskTree;
1254
1255
    const NetmaskTree* d_tree;
1256
    TreeNode* d_node;
1257
1258
    Iterator(const NetmaskTree* tree, TreeNode* node) :
1259
0
      d_tree(tree), d_node(node)
1260
0
    {
1261
0
    }
1262
1263
  public:
1264
    Iterator() :
1265
0
      d_tree(nullptr), d_node(nullptr) {}
1266
1267
    Iterator& operator++() // prefix
1268
0
    {
1269
0
      if (d_node == nullptr) {
1270
0
        throw std::logic_error(
1271
0
          "NetmaskTree::Iterator::operator++: iterator is invalid");
1272
0
      }
1273
0
      d_node = d_node->traverse_lnr_assigned();
1274
0
      return *this;
1275
0
    }
1276
    Iterator operator++(int) // postfix
1277
0
    {
1278
0
      Iterator tmp(*this);
1279
0
      operator++();
1280
0
      return tmp;
1281
0
    }
1282
1283
    reference operator*()
1284
0
    {
1285
0
      if (d_node == nullptr) {
1286
0
        throw std::logic_error(
1287
0
          "NetmaskTree::Iterator::operator*: iterator is invalid");
1288
0
      }
1289
0
      return d_node->node;
1290
0
    }
1291
1292
    pointer operator->()
1293
0
    {
1294
0
      if (d_node == nullptr) {
1295
0
        throw std::logic_error(
1296
0
          "NetmaskTree::Iterator::operator->: iterator is invalid");
1297
0
      }
1298
0
      return &d_node->node;
1299
0
    }
1300
1301
    bool operator==(const Iterator& rhs)
1302
0
    {
1303
0
      return (d_tree == rhs.d_tree && d_node == rhs.d_node);
1304
0
    }
1305
    bool operator!=(const Iterator& rhs)
1306
0
    {
1307
0
      return !(*this == rhs);
1308
0
    }
1309
  };
1310
1311
  NetmaskTree() noexcept :
1312
8
    d_root(new TreeNode()), d_left(nullptr)
1313
8
  {
1314
8
  }
1315
1316
  NetmaskTree(const NetmaskTree& rhs) :
1317
0
    d_root(new TreeNode()), d_left(nullptr)
1318
0
  {
1319
0
    copyTree(rhs);
1320
0
  }
1321
1322
0
  ~NetmaskTree() = default;
1323
1324
  NetmaskTree& operator=(const NetmaskTree& rhs)
1325
0
  {
1326
0
    if (this != &rhs) {
1327
0
      clear();
1328
0
      copyTree(rhs);
1329
0
    }
1330
0
    return *this;
1331
0
  }
1332
1333
0
  NetmaskTree(NetmaskTree&&) noexcept = default;
1334
  NetmaskTree& operator=(NetmaskTree&&) noexcept = default;
1335
1336
  [[nodiscard]] iterator begin() const
1337
0
  {
1338
0
    return Iterator(this, d_left);
1339
0
  }
1340
  [[nodiscard]] iterator end() const
1341
0
  {
1342
0
    return Iterator(this, nullptr);
1343
0
  }
1344
  iterator begin()
1345
0
  {
1346
0
    return Iterator(this, d_left);
1347
0
  }
1348
  iterator end()
1349
0
  {
1350
0
    return Iterator(this, nullptr);
1351
0
  }
1352
1353
  node_type& insert(const string& mask)
1354
0
  {
1355
0
    return insert(key_type(mask));
1356
0
  }
1357
1358
  //<! Creates new value-pair in tree and returns it.
1359
  node_type& insert(const key_type& key)
1360
0
  {
1361
0
    TreeNode* node{};
1362
0
    bool is_left = true;
1363
1364
    // we turn left on IPv4 and right on IPv6
1365
0
    if (key.isIPv4()) {
1366
0
      node = d_root->left.get();
1367
0
      if (node == nullptr) {
1368
1369
0
        d_root->left = make_unique<TreeNode>(key);
1370
0
        node = d_root->left.get();
1371
0
        node->assigned = true;
1372
0
        node->parent = d_root.get();
1373
0
        d_size++;
1374
0
        d_left = node;
1375
0
        return node->node;
1376
0
      }
1377
0
    }
1378
0
    else if (key.isIPv6()) {
1379
0
      node = d_root->right.get();
1380
0
      if (node == nullptr) {
1381
1382
0
        d_root->right = make_unique<TreeNode>(key);
1383
0
        node = d_root->right.get();
1384
0
        node->assigned = true;
1385
0
        node->parent = d_root.get();
1386
0
        d_size++;
1387
0
        if (!d_root->left) {
1388
0
          d_left = node;
1389
0
        }
1390
0
        return node->node;
1391
0
      }
1392
0
      if (d_root->left) {
1393
0
        is_left = false;
1394
0
      }
1395
0
    }
1396
0
    else {
1397
0
      throw NetmaskException("invalid address family");
1398
0
    }
1399
1400
    // we turn left on 0 and right on 1
1401
0
    int bits = 0;
1402
0
    for (; bits < key.getBits(); bits++) {
1403
0
      bool vall = key.getBit(-1 - bits);
1404
1405
0
      if (bits >= node->d_bits) {
1406
        // the end of the current node is reached; continue with the next
1407
0
        if (vall) {
1408
0
          if (node->left || node->assigned) {
1409
0
            is_left = false;
1410
0
          }
1411
0
          if (!node->right) {
1412
            // the right branch doesn't exist yet; attach our key here
1413
0
            node = node->make_right(key);
1414
0
            break;
1415
0
          }
1416
0
          node = node->right.get();
1417
0
        }
1418
0
        else {
1419
0
          if (!node->left) {
1420
            // the left branch doesn't exist yet; attach our key here
1421
0
            node = node->make_left(key);
1422
0
            break;
1423
0
          }
1424
0
          node = node->left.get();
1425
0
        }
1426
0
        continue;
1427
0
      }
1428
0
      if (bits >= node->node.first.getBits()) {
1429
        // the matching branch ends here, yet the key netmask has more bits; add a
1430
        // child node below the existing branch leaf.
1431
0
        if (vall) {
1432
0
          if (node->assigned) {
1433
0
            is_left = false;
1434
0
          }
1435
0
          node = node->make_right(key);
1436
0
        }
1437
0
        else {
1438
0
          node = node->make_left(key);
1439
0
        }
1440
0
        break;
1441
0
      }
1442
0
      bool valr = node->node.first.getBit(-1 - bits);
1443
0
      if (vall != valr) {
1444
0
        if (vall) {
1445
0
          is_left = false;
1446
0
        }
1447
        // the branch matches just upto this point, yet continues in a different
1448
        // direction; fork the branch.
1449
0
        node = node->fork(key, bits);
1450
0
        break;
1451
0
      }
1452
0
    }
1453
1454
0
    if (node->node.first.getBits() > key.getBits()) {
1455
      // key is a super-network of the matching node; split the branch and
1456
      // insert a node for the key above the matching node.
1457
0
      node = node->split(key, key.getBits());
1458
0
    }
1459
1460
0
    if (node->left) {
1461
0
      is_left = false;
1462
0
    }
1463
1464
0
    node_type& value = node->node;
1465
1466
0
    if (!node->assigned) {
1467
      // only increment size if not assigned before
1468
0
      d_size++;
1469
      // update the pointer to the left-most tree node
1470
0
      if (is_left) {
1471
0
        d_left = node;
1472
0
      }
1473
0
      node->assigned = true;
1474
0
    }
1475
0
    else {
1476
      // tree node exists for this value
1477
0
      if (is_left && d_left != node) {
1478
0
        throw std::logic_error(
1479
0
          "NetmaskTree::insert(): lost track of left-most node in tree");
1480
0
      }
1481
0
    }
1482
1483
0
    return value;
1484
0
  }
1485
1486
  //<! Creates or updates value
1487
  void insert_or_assign(const key_type& mask, const value_type& value)
1488
0
  {
1489
0
    insert(mask).second = value;
1490
0
  }
1491
1492
  void insert_or_assign(const string& mask, const value_type& value)
1493
0
  {
1494
0
    insert(key_type(mask)).second = value;
1495
0
  }
1496
1497
  //<! check if given key is present in TreeMap
1498
  [[nodiscard]] bool has_key(const key_type& key) const
1499
0
  {
1500
0
    const node_type* ptr = lookup(key);
1501
0
    return ptr && ptr->first == key;
1502
0
  }
1503
1504
  //<! Returns "best match" for key_type, which might not be value
1505
  [[nodiscard]] node_type* lookup(const key_type& value) const
1506
0
  {
1507
0
    uint8_t max_bits = value.getBits();
1508
0
    return lookupImpl(value, max_bits);
1509
0
  }
1510
1511
  //<! Perform best match lookup for value, using at most max_bits
1512
  [[nodiscard]] node_type* lookup(const ComboAddress& value, int max_bits = 128) const
1513
0
  {
1514
0
    uint8_t addr_bits = value.getBits();
1515
0
    if (max_bits < 0 || max_bits > addr_bits) {
1516
0
      max_bits = addr_bits;
1517
0
    }
1518
1519
0
    return lookupImpl(key_type(value, max_bits), max_bits);
1520
0
  }
1521
1522
  //<! Removes key from TreeMap.
1523
  void erase(const key_type& key)
1524
0
  {
1525
0
    TreeNode* node = nullptr;
1526
1527
0
    if (key.isIPv4()) {
1528
0
      node = d_root->left.get();
1529
0
    }
1530
0
    else if (key.isIPv6()) {
1531
0
      node = d_root->right.get();
1532
0
    }
1533
0
    else {
1534
0
      throw NetmaskException("invalid address family");
1535
0
    }
1536
    // no tree, no value
1537
0
    if (node == nullptr) {
1538
0
      return;
1539
0
    }
1540
0
    int bits = 0;
1541
0
    for (; node && bits < key.getBits(); bits++) {
1542
0
      bool vall = key.getBit(-1 - bits);
1543
0
      if (bits >= node->d_bits) {
1544
        // the end of the current node is reached; continue with the next
1545
0
        if (vall) {
1546
0
          node = node->right.get();
1547
0
        }
1548
0
        else {
1549
0
          node = node->left.get();
1550
0
        }
1551
0
        continue;
1552
0
      }
1553
0
      if (bits >= node->node.first.getBits()) {
1554
        // the matching branch ends here
1555
0
        if (key.getBits() != node->node.first.getBits()) {
1556
0
          node = nullptr;
1557
0
        }
1558
0
        break;
1559
0
      }
1560
0
      bool valr = node->node.first.getBit(-1 - bits);
1561
0
      if (vall != valr) {
1562
        // the branch matches just upto this point, yet continues in a different
1563
        // direction
1564
0
        node = nullptr;
1565
0
        break;
1566
0
      }
1567
0
    }
1568
0
    if (node) {
1569
0
      if (d_size == 0) {
1570
0
        throw std::logic_error(
1571
0
          "NetmaskTree::erase(): size of tree is zero before erase");
1572
0
      }
1573
0
      d_size--;
1574
0
      node->assigned = false;
1575
0
      node->node.second = value_type();
1576
1577
0
      if (node == d_left) {
1578
0
        d_left = d_left->traverse_lnr_assigned();
1579
0
      }
1580
0
      cleanup_tree(node);
1581
0
    }
1582
0
  }
1583
1584
  void erase(const string& key)
1585
0
  {
1586
0
    erase(key_type(key));
1587
0
  }
1588
1589
  //<! checks whether the container is empty.
1590
  [[nodiscard]] bool empty() const
1591
0
  {
1592
0
    return (d_size == 0);
1593
0
  }
1594
1595
  //<! returns the number of elements
1596
  [[nodiscard]] size_type size() const
1597
0
  {
1598
0
    return d_size;
1599
0
  }
1600
1601
  //<! See if given ComboAddress matches any prefix
1602
  [[nodiscard]] bool match(const ComboAddress& value) const
1603
0
  {
1604
0
    return (lookup(value) != nullptr);
1605
0
  }
1606
1607
  [[nodiscard]] bool match(const std::string& value) const
1608
0
  {
1609
0
    return match(ComboAddress(value));
1610
0
  }
1611
1612
  //<! Clean out the tree
1613
  void clear()
1614
0
  {
1615
0
    d_root = make_unique<TreeNode>();
1616
0
    d_left = nullptr;
1617
0
    d_size = 0;
1618
0
  }
1619
1620
  //<! swaps the contents with another NetmaskTree
1621
  void swap(NetmaskTree& rhs) noexcept
1622
0
  {
1623
0
    std::swap(d_root, rhs.d_root);
1624
0
    std::swap(d_left, rhs.d_left);
1625
0
    std::swap(d_size, rhs.d_size);
1626
0
  }
1627
1628
private:
1629
  [[nodiscard]] node_type* lookupImpl(const key_type& value, uint8_t max_bits) const
1630
0
  {
1631
0
    TreeNode* node = nullptr;
1632
1633
0
    if (value.isIPv4()) {
1634
0
      node = d_root->left.get();
1635
0
    }
1636
0
    else if (value.isIPv6()) {
1637
0
      node = d_root->right.get();
1638
0
    }
1639
0
    else {
1640
0
      throw NetmaskException("invalid address family");
1641
0
    }
1642
0
    if (node == nullptr) {
1643
0
      return nullptr;
1644
0
    }
1645
1646
0
    node_type* ret = nullptr;
1647
1648
0
    int bits = 0;
1649
0
    for (; bits < max_bits; bits++) {
1650
0
      bool vall = value.getBit(-1 - bits);
1651
0
      if (bits >= node->d_bits) {
1652
        // the end of the current node is reached; continue with the next
1653
        // (we keep track of last assigned node)
1654
0
        if (node->assigned && bits == node->node.first.getBits()) {
1655
0
          ret = &node->node;
1656
0
        }
1657
0
        if (vall) {
1658
0
          if (!node->right) {
1659
0
            break;
1660
0
          }
1661
0
          node = node->right.get();
1662
0
        }
1663
0
        else {
1664
0
          if (!node->left) {
1665
0
            break;
1666
0
          }
1667
0
          node = node->left.get();
1668
0
        }
1669
0
        continue;
1670
0
      }
1671
0
      if (bits >= node->node.first.getBits()) {
1672
        // the matching branch ends here
1673
0
        break;
1674
0
      }
1675
0
      bool valr = node->node.first.getBit(-1 - bits);
1676
0
      if (vall != valr) {
1677
        // the branch matches just upto this point, yet continues in a different
1678
        // direction
1679
0
        break;
1680
0
      }
1681
0
    }
1682
    // needed if we did not find one in loop
1683
0
    if (node->assigned && bits == node->node.first.getBits()) {
1684
0
      ret = &node->node;
1685
0
    }
1686
    // this can be nullptr.
1687
0
    return ret;
1688
0
  }
1689
1690
  unique_ptr<TreeNode> d_root; //<! Root of our tree
1691
  TreeNode* d_left;
1692
  size_type d_size{0};
1693
};
1694
1695
/** This class represents a group of supplemental Netmask classes. An IP address matches
1696
    if it is matched by one or more of the Netmask objects within.
1697
*/
1698
class NetmaskGroup
1699
{
1700
public:
1701
8
  NetmaskGroup() noexcept = default;
1702
1703
  //! If this IP address is matched by any of the classes within
1704
1705
  bool match(const ComboAddress* address) const
1706
0
  {
1707
0
    const auto& ret = tree.lookup(*address);
1708
0
    if (ret != nullptr) {
1709
0
      return ret->second;
1710
0
    }
1711
0
    return false;
1712
0
  }
1713
1714
  [[nodiscard]] bool match(const ComboAddress& address) const
1715
0
  {
1716
0
    return match(&address);
1717
0
  }
1718
1719
  bool lookup(const ComboAddress* address, Netmask* nmp) const
1720
0
  {
1721
0
    const auto& ret = tree.lookup(*address);
1722
0
    if (ret != nullptr) {
1723
0
      if (nmp != nullptr) {
1724
0
        *nmp = ret->first;
1725
0
      }
1726
0
      return ret->second;
1727
0
    }
1728
0
    return false;
1729
0
  }
1730
1731
  bool lookup(const ComboAddress& address, Netmask* nmp) const
1732
0
  {
1733
0
    return lookup(&address, nmp);
1734
0
  }
1735
1736
  //! Add this string to the list of possible matches
1737
  void addMask(const string& address, bool positive = true)
1738
0
  {
1739
0
    if (!address.empty() && address[0] == '!') {
1740
0
      addMask(Netmask(address.substr(1)), false);
1741
0
    }
1742
0
    else {
1743
0
      addMask(Netmask(address), positive);
1744
0
    }
1745
0
  }
1746
1747
  //! Add this Netmask to the list of possible matches
1748
  void addMask(const Netmask& netmask, bool positive = true)
1749
0
  {
1750
0
    tree.insert(netmask).second = positive;
1751
0
  }
1752
1753
  void addMasks(const NetmaskGroup& group, boost::optional<bool> positive)
1754
0
  {
1755
0
    for (const auto& entry : group.tree) {
1756
0
      addMask(entry.first, positive ? *positive : entry.second);
1757
0
    }
1758
0
  }
1759
1760
  //! Delete this Netmask from the list of possible matches
1761
  void deleteMask(const Netmask& netmask)
1762
0
  {
1763
0
    tree.erase(netmask);
1764
0
  }
1765
1766
  void deleteMasks(const NetmaskGroup& group)
1767
0
  {
1768
0
    for (const auto& entry : group.tree) {
1769
0
      deleteMask(entry.first);
1770
0
    }
1771
0
  }
1772
1773
  void deleteMask(const std::string& address)
1774
0
  {
1775
0
    if (!address.empty()) {
1776
0
      deleteMask(Netmask(address));
1777
0
    }
1778
0
  }
1779
1780
  void clear()
1781
0
  {
1782
0
    tree.clear();
1783
0
  }
1784
1785
  [[nodiscard]] bool empty() const
1786
0
  {
1787
0
    return tree.empty();
1788
0
  }
1789
1790
  [[nodiscard]] size_t size() const
1791
0
  {
1792
0
    return tree.size();
1793
0
  }
1794
1795
  [[nodiscard]] string toString() const
1796
0
  {
1797
0
    ostringstream str;
1798
0
    for (auto iter = tree.begin(); iter != tree.end(); ++iter) {
1799
0
      if (iter != tree.begin()) {
1800
0
        str << ", ";
1801
0
      }
1802
0
      if (!(iter->second)) {
1803
0
        str << "!";
1804
0
      }
1805
0
      str << iter->first.toString();
1806
0
    }
1807
0
    return str.str();
1808
0
  }
1809
1810
  [[nodiscard]] std::vector<std::string> toStringVector() const
1811
0
  {
1812
0
    std::vector<std::string> out;
1813
0
    out.reserve(tree.size());
1814
0
    for (const auto& entry : tree) {
1815
0
      out.push_back((entry.second ? "" : "!") + entry.first.toString());
1816
0
    }
1817
0
    return out;
1818
0
  }
1819
1820
  void toMasks(const string& ips)
1821
0
  {
1822
0
    vector<string> parts;
1823
0
    stringtok(parts, ips, ", \t");
1824
0
1825
0
    for (const auto& part : parts) {
1826
0
      addMask(part);
1827
0
    }
1828
0
  }
1829
1830
private:
1831
  NetmaskTree<bool> tree;
1832
};
1833
1834
struct SComboAddress
1835
{
1836
  SComboAddress(const ComboAddress& orig) :
1837
0
    ca(orig) {}
1838
  ComboAddress ca;
1839
  bool operator<(const SComboAddress& rhs) const
1840
0
  {
1841
0
    return ComboAddress::addressOnlyLessThan()(ca, rhs.ca);
1842
0
  }
1843
  operator const ComboAddress&() const
1844
0
  {
1845
0
    return ca;
1846
0
  }
1847
};
1848
1849
class NetworkError : public runtime_error
1850
{
1851
public:
1852
  NetworkError(const string& why = "Network Error") :
1853
0
    runtime_error(why.c_str())
1854
0
  {}
1855
  NetworkError(const char* why = "Network Error") :
1856
    runtime_error(why)
1857
0
  {}
1858
};
1859
1860
class AddressAndPortRange
1861
{
1862
public:
1863
  AddressAndPortRange() :
1864
    d_addrMask(0), d_portMask(0)
1865
0
  {
1866
0
    d_addr.sin4.sin_family = 0; // disable this doing anything useful
1867
0
    d_addr.sin4.sin_port = 0; // this guarantees d_network compares identical
1868
0
  }
1869
1870
  AddressAndPortRange(ComboAddress address, uint8_t addrMask, uint8_t portMask = 0) :
1871
    d_addr(address), d_addrMask(addrMask), d_portMask(portMask)
1872
0
  {
1873
0
    if (!d_addr.isIPv4()) {
1874
0
      d_portMask = 0;
1875
0
    }
1876
0
1877
0
    uint16_t port = d_addr.getPort();
1878
0
    if (d_portMask < 16) {
1879
0
      auto mask = static_cast<uint16_t>(~(0xFFFF >> d_portMask));
1880
0
      port = port & mask;
1881
0
    }
1882
0
1883
0
    if (d_addrMask < d_addr.getBits()) {
1884
0
      if (d_portMask > 0) {
1885
0
        throw std::runtime_error("Trying to create a AddressAndPortRange with a reduced address mask (" + std::to_string(d_addrMask) + ") and a port range (" + std::to_string(d_portMask) + ")");
1886
0
      }
1887
0
      d_addr = Netmask(d_addr, d_addrMask).getMaskedNetwork();
1888
0
    }
1889
0
    d_addr.setPort(port);
1890
0
  }
1891
1892
  [[nodiscard]] uint8_t getFullBits() const
1893
0
  {
1894
0
    return d_addr.getBits() + 16;
1895
0
  }
1896
1897
  [[nodiscard]] uint8_t getBits() const
1898
0
  {
1899
0
    if (d_addrMask < d_addr.getBits()) {
1900
0
      return d_addrMask;
1901
0
    }
1902
0
1903
0
    return d_addr.getBits() + d_portMask;
1904
0
  }
1905
1906
  /** Get the value of the bit at the provided bit index. When the index >= 0,
1907
      the index is relative to the LSB starting at index zero. When the index < 0,
1908
      the index is relative to the MSB starting at index -1 and counting down.
1909
  */
1910
  [[nodiscard]] bool getBit(int index) const
1911
0
  {
1912
0
    if (index >= getFullBits()) {
1913
0
      return false;
1914
0
    }
1915
0
    if (index < 0) {
1916
0
      index = getFullBits() + index;
1917
0
    }
1918
0
1919
0
    if (index < 16) {
1920
0
      /* we are into the port bits */
1921
0
      uint16_t port = d_addr.getPort();
1922
0
      return ((port & (1U << index)) != 0x0000);
1923
0
    }
1924
0
1925
0
    index -= 16;
1926
0
1927
0
    return d_addr.getBit(index);
1928
0
  }
1929
1930
  [[nodiscard]] bool isIPv4() const
1931
0
  {
1932
0
    return d_addr.isIPv4();
1933
0
  }
1934
1935
  [[nodiscard]] bool isIPv6() const
1936
0
  {
1937
0
    return d_addr.isIPv6();
1938
0
  }
1939
1940
  [[nodiscard]] AddressAndPortRange getNormalized() const
1941
0
  {
1942
0
    return {d_addr, d_addrMask, d_portMask};
1943
0
  }
1944
1945
  [[nodiscard]] AddressAndPortRange getSuper(uint8_t bits) const
1946
0
  {
1947
0
    if (bits <= d_addrMask) {
1948
0
      return {d_addr, bits, 0};
1949
0
    }
1950
0
    if (bits <= d_addrMask + d_portMask) {
1951
0
      return {d_addr, d_addrMask, static_cast<uint8_t>(d_portMask - (bits - d_addrMask))};
1952
0
    }
1953
0
1954
0
    return {d_addr, d_addrMask, d_portMask};
1955
0
  }
1956
1957
  [[nodiscard]] const ComboAddress& getNetwork() const
1958
0
  {
1959
0
    return d_addr;
1960
0
  }
1961
1962
  [[nodiscard]] string toString() const
1963
0
  {
1964
0
    if (d_addrMask < d_addr.getBits() || d_portMask == 0) {
1965
0
      return d_addr.toStringNoInterface() + "/" + std::to_string(d_addrMask);
1966
0
    }
1967
0
    return d_addr.toStringNoInterface() + ":" + std::to_string(d_addr.getPort()) + "/" + std::to_string(d_portMask);
1968
0
  }
1969
1970
  [[nodiscard]] bool empty() const
1971
0
  {
1972
0
    return d_addr.sin4.sin_family == 0;
1973
0
  }
1974
1975
  bool operator==(const AddressAndPortRange& rhs) const
1976
0
  {
1977
0
    return std::tie(d_addr, d_addrMask, d_portMask) == std::tie(rhs.d_addr, rhs.d_addrMask, rhs.d_portMask);
1978
0
  }
1979
1980
  bool operator<(const AddressAndPortRange& rhs) const
1981
0
  {
1982
0
    if (empty() && !rhs.empty()) {
1983
0
      return false;
1984
0
    }
1985
0
1986
0
    if (!empty() && rhs.empty()) {
1987
0
      return true;
1988
0
    }
1989
0
1990
0
    if (d_addrMask > rhs.d_addrMask) {
1991
0
      return true;
1992
0
    }
1993
0
1994
0
    if (d_addrMask < rhs.d_addrMask) {
1995
0
      return false;
1996
0
    }
1997
0
1998
0
    if (d_addr < rhs.d_addr) {
1999
0
      return true;
2000
0
    }
2001
0
2002
0
    if (d_addr > rhs.d_addr) {
2003
0
      return false;
2004
0
    }
2005
0
2006
0
    if (d_portMask > rhs.d_portMask) {
2007
0
      return true;
2008
0
    }
2009
0
2010
0
    if (d_portMask < rhs.d_portMask) {
2011
0
      return false;
2012
0
    }
2013
0
2014
0
    return d_addr.getPort() < rhs.d_addr.getPort();
2015
0
  }
2016
2017
  bool operator>(const AddressAndPortRange& rhs) const
2018
0
  {
2019
0
    return rhs.operator<(*this);
2020
0
  }
2021
2022
  struct hash
2023
  {
2024
    uint32_t operator()(const AddressAndPortRange& apr) const
2025
0
    {
2026
0
      ComboAddress::addressOnlyHash hashOp;
2027
0
      uint16_t port = apr.d_addr.getPort();
2028
0
      /* it's fine to hash the whole address and port because the non-relevant parts have
2029
0
         been masked to 0 */
2030
0
      return burtle(reinterpret_cast<const unsigned char*>(&port), sizeof(port), hashOp(apr.d_addr)); // NOLINT(cppcoreguidelines-pro-type-reinterpret-cast)
2031
0
    }
2032
  };
2033
2034
private:
2035
  ComboAddress d_addr;
2036
  uint8_t d_addrMask;
2037
  /* only used for v4 addresses */
2038
  uint8_t d_portMask;
2039
};
2040
2041
int SSocket(int family, int type, int flags);
2042
int SConnect(int sockfd, const ComboAddress& remote);
2043
/* tries to connect to remote for a maximum of timeout seconds.
2044
   sockfd should be set to non-blocking beforehand.
2045
   returns 0 on success (the socket is writable), throw a
2046
   runtime_error otherwise */
2047
int SConnectWithTimeout(int sockfd, const ComboAddress& remote, const struct timeval& timeout);
2048
int SBind(int sockfd, const ComboAddress& local);
2049
int SAccept(int sockfd, ComboAddress& remote);
2050
int SListen(int sockfd, int limit);
2051
int SSetsockopt(int sockfd, int level, int opname, int value);
2052
void setSocketIgnorePMTU(int sockfd, int family);
2053
void setSocketForcePMTU(int sockfd, int family);
2054
bool setReusePort(int sockfd);
2055
2056
#if defined(IP_PKTINFO)
2057
#define GEN_IP_PKTINFO IP_PKTINFO
2058
#elif defined(IP_RECVDSTADDR)
2059
#define GEN_IP_PKTINFO IP_RECVDSTADDR
2060
#endif
2061
2062
bool IsAnyAddress(const ComboAddress& addr);
2063
bool HarvestDestinationAddress(const struct msghdr* msgh, ComboAddress* destination);
2064
bool HarvestTimestamp(struct msghdr* msgh, struct timeval* timeval);
2065
void fillMSGHdr(struct msghdr* msgh, struct iovec* iov, cmsgbuf_aligned* cbuf, size_t cbufsize, char* data, size_t datalen, ComboAddress* addr);
2066
int sendOnNBSocket(int fileDesc, const struct msghdr* msgh);
2067
size_t sendMsgWithOptions(int socketDesc, const void* buffer, size_t len, const ComboAddress* dest, const ComboAddress* local, unsigned int localItf, int flags);
2068
2069
/* requires a non-blocking, connected TCP socket */
2070
bool isTCPSocketUsable(int sock);
2071
2072
extern template class NetmaskTree<bool>;
2073
ComboAddress parseIPAndPort(const std::string& input, uint16_t port);
2074
2075
std::set<std::string> getListOfNetworkInterfaces();
2076
std::vector<ComboAddress> getListOfAddressesOfNetworkInterface(const std::string& itf);
2077
std::vector<Netmask> getListOfRangesOfNetworkInterface(const std::string& itf);
2078
2079
/* These functions throw if the value was already set to a higher value,
2080
   or on error */
2081
void setSocketBuffer(int fileDesc, int optname, uint32_t size);
2082
void setSocketReceiveBuffer(int fileDesc, uint32_t size);
2083
void setSocketSendBuffer(int fileDesc, uint32_t size);
2084
uint32_t raiseSocketReceiveBufferToMax(int socket);
2085
uint32_t raiseSocketSendBufferToMax(int socket);