IteratingLinearOptimizer.java
/*
* Copyright (c) 2021, RTE (http://www.rte-france.com)
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*/
package com.powsybl.openrao.searchtreerao.linearoptimisation.algorithms;
import com.powsybl.openrao.data.crac.api.rangeaction.PstRangeAction;
import com.powsybl.openrao.data.raoresult.api.ComputationStatus;
import com.powsybl.openrao.raoapi.parameters.extensions.SearchTreeRaoRangeActionsOptimizationParameters.PstModel;
import com.powsybl.openrao.searchtreerao.commons.SensitivityComputer;
import com.powsybl.openrao.searchtreerao.commons.objectivefunction.ObjectiveFunction;
import com.powsybl.openrao.searchtreerao.commons.optimizationperimeters.GlobalOptimizationPerimeter;
import com.powsybl.openrao.searchtreerao.commons.optimizationperimeters.OptimizationPerimeter;
import com.powsybl.openrao.searchtreerao.linearoptimisation.algorithms.linearproblem.LinearProblem;
import com.powsybl.openrao.searchtreerao.linearoptimisation.inputs.IteratingLinearOptimizerInput;
import com.powsybl.openrao.searchtreerao.linearoptimisation.parameters.IteratingLinearOptimizerParameters;
import com.powsybl.openrao.searchtreerao.result.api.*;
import com.powsybl.openrao.searchtreerao.result.impl.IteratingLinearOptimizationResultImpl;
import com.powsybl.openrao.searchtreerao.result.impl.LinearProblemResult;
import com.powsybl.openrao.searchtreerao.result.impl.RangeActionActivationResultImpl;
import com.powsybl.openrao.searchtreerao.result.impl.RemedialActionActivationResultImpl;
import com.powsybl.openrao.sensitivityanalysis.AppliedRemedialActions;
import com.powsybl.iidm.network.Network;
import org.apache.commons.lang3.tuple.Pair;
import java.util.Locale;
import static com.powsybl.openrao.commons.logs.OpenRaoLoggerProvider.*;
import static com.powsybl.openrao.raoapi.parameters.extensions.SearchTreeRaoRangeActionsOptimizationParameters.getPstModel;
/**
* @author Joris Mancini {@literal <joris.mancini at rte-france.com>}
*/
public final class IteratingLinearOptimizer {
private IteratingLinearOptimizer() {
}
public static LinearOptimizationResult optimize(IteratingLinearOptimizerInput input, IteratingLinearOptimizerParameters parameters) {
IteratingLinearOptimizationResultImpl bestResult = createResult(
input.preOptimizationFlowResult(),
input.preOptimizationSensitivityResult(),
input.raActivationFromParentLeaf(),
input.appliedNetworkActionsInPrimaryState(),
0,
input.objectiveFunction());
IteratingLinearOptimizationResultImpl previousResult = bestResult;
SensitivityComputer sensitivityComputer = null;
LinearProblem linearProblem = LinearProblem.create()
.buildFromInputsAndParameters(input, parameters);
linearProblem.fill(input.preOptimizationFlowResult(), input.preOptimizationSensitivityResult());
for (int iteration = 1; iteration <= parameters.getMaxNumberOfIterations(); iteration++) {
LinearProblemStatus solveStatus = solveLinearProblem(linearProblem, iteration);
bestResult.setNbOfIteration(iteration);
if (solveStatus == LinearProblemStatus.FEASIBLE) {
TECHNICAL_LOGS.warn("The solver was interrupted. A feasible solution has been produced.");
} else if (solveStatus != LinearProblemStatus.OPTIMAL) {
BUSINESS_LOGS.error("Linear optimization failed at iteration {}", iteration);
if (iteration == 1) {
bestResult.setStatus(solveStatus);
BUSINESS_LOGS.info("Linear problem failed with the following status : {}, initial situation is kept.", solveStatus);
return bestResult;
}
bestResult.setStatus(LinearProblemStatus.FEASIBLE);
return bestResult;
}
RangeActionActivationResult linearProblemResult = new LinearProblemResult(linearProblem, input.prePerimeterSetpoints(), input.optimizationPerimeter());
RangeActionActivationResult currentRangeActionActivationResult = roundResult(linearProblemResult, bestResult, input, parameters);
currentRangeActionActivationResult = resolveIfApproximatedPstTaps(bestResult, linearProblem, iteration, currentRangeActionActivationResult, input, parameters);
if (!hasAnyRangeActionChanged(currentRangeActionActivationResult, previousResult, input.optimizationPerimeter())) {
// If the solution has not changed, no need to run a new sensitivity computation and iteration can stop
TECHNICAL_LOGS.info("Iteration {}: same results as previous iterations, optimal solution found", iteration);
return bestResult;
}
sensitivityComputer = runSensitivityAnalysis(sensitivityComputer, iteration, currentRangeActionActivationResult, input, parameters);
if (sensitivityComputer.getSensitivityResult().getSensitivityStatus() == ComputationStatus.FAILURE) {
bestResult.setStatus(LinearProblemStatus.SENSITIVITY_COMPUTATION_FAILED);
return bestResult;
}
IteratingLinearOptimizationResultImpl currentResult = createResult(
sensitivityComputer.getBranchResult(input.network()),
sensitivityComputer.getSensitivityResult(),
currentRangeActionActivationResult,
input.appliedNetworkActionsInPrimaryState(),
iteration,
input.objectiveFunction()
);
previousResult = currentResult;
Pair<IteratingLinearOptimizationResultImpl, Boolean> mipShouldStop = updateBestResultAndCheckStopCondition(parameters.getRaRangeShrinking(), linearProblem, input, iteration, currentResult, bestResult);
if (Boolean.TRUE.equals(mipShouldStop.getRight())) {
return bestResult;
} else {
bestResult = mipShouldStop.getLeft();
}
}
bestResult.setStatus(LinearProblemStatus.MAX_ITERATION_REACHED);
return bestResult;
}
private static SensitivityComputer runSensitivityAnalysis(SensitivityComputer sensitivityComputer, int iteration, RangeActionActivationResult currentRangeActionActivationResult, IteratingLinearOptimizerInput input, IteratingLinearOptimizerParameters parameters) {
SensitivityComputer tmpSensitivityComputer = sensitivityComputer;
if (input.optimizationPerimeter() instanceof GlobalOptimizationPerimeter) {
AppliedRemedialActions appliedRemedialActionsInSecondaryStates = applyRangeActions(currentRangeActionActivationResult, input);
tmpSensitivityComputer = createSensitivityComputer(appliedRemedialActionsInSecondaryStates, input, parameters);
} else {
applyRangeActions(currentRangeActionActivationResult, input);
if (tmpSensitivityComputer == null) { // first iteration, do not need to be updated afterwards
tmpSensitivityComputer = createSensitivityComputer(input.preOptimizationAppliedRemedialActions(), input, parameters);
}
}
runSensitivityAnalysis(tmpSensitivityComputer, input.network(), iteration);
return tmpSensitivityComputer;
}
private static RangeActionActivationResult resolveIfApproximatedPstTaps(IteratingLinearOptimizationResultImpl bestResult, LinearProblem linearProblem, int iteration, RangeActionActivationResult currentRangeActionActivationResult, IteratingLinearOptimizerInput input, IteratingLinearOptimizerParameters parameters) {
LinearProblemStatus solveStatus;
RangeActionActivationResult rangeActionActivationResult = currentRangeActionActivationResult;
if (getPstModel(parameters.getRangeActionParametersExtension()).equals(PstModel.APPROXIMATED_INTEGERS)) {
// if the PST approximation is APPROXIMATED_INTEGERS, we re-solve the optimization problem
// but first, we update it, with an adjustment of the PSTs angleToTap conversion factors, to
// be more accurate in the neighboring of the previous solution
// (idea: if too long, we could relax the first MIP, but no so straightforward to do with or-tools)
linearProblem.updateBetweenMipIteration(rangeActionActivationResult);
solveStatus = solveLinearProblem(linearProblem, iteration);
if (solveStatus == LinearProblemStatus.OPTIMAL || solveStatus == LinearProblemStatus.FEASIBLE) {
RangeActionActivationResult updatedLinearProblemResult = new LinearProblemResult(linearProblem, input.prePerimeterSetpoints(), input.optimizationPerimeter());
rangeActionActivationResult = roundResult(updatedLinearProblemResult, bestResult, input, parameters);
}
}
return rangeActionActivationResult;
}
private static LinearProblemStatus solveLinearProblem(LinearProblem linearProblem, int iteration) {
TECHNICAL_LOGS.debug("Iteration {}: linear optimization [start]", iteration);
LinearProblemStatus status = linearProblem.solve();
TECHNICAL_LOGS.debug("Iteration {}: linear optimization [end]", iteration);
return status;
}
private static boolean hasAnyRangeActionChanged(RangeActionActivationResult newRangeActionActivationResult, RangeActionActivationResult oldRangeActionActivationResult, OptimizationPerimeter optimizationContext) {
return optimizationContext.getRangeActionsPerState().entrySet().stream()
.anyMatch(e -> e.getValue().stream()
.anyMatch(ra -> Math.abs(newRangeActionActivationResult.getOptimizedSetpoint(ra, e.getKey()) - oldRangeActionActivationResult.getOptimizedSetpoint(ra, e.getKey())) >= 1e-6));
}
public static AppliedRemedialActions applyRangeActions(RangeActionActivationResult rangeActionActivationResult, IteratingLinearOptimizerInput input) {
OptimizationPerimeter optimizationContext = input.optimizationPerimeter();
// apply RangeAction from first optimization state
optimizationContext.getRangeActionsPerState().get(optimizationContext.getMainOptimizationState())
.forEach(ra -> ra.apply(input.network(), rangeActionActivationResult.getOptimizedSetpoint(ra, optimizationContext.getMainOptimizationState())));
// add RangeAction activated in the following states
if (optimizationContext instanceof GlobalOptimizationPerimeter) {
AppliedRemedialActions appliedRemedialActions = input.preOptimizationAppliedRemedialActions().copyNetworkActionsAndAutomaticRangeActions();
optimizationContext.getRangeActionsPerState().entrySet().stream()
.filter(e -> !e.getKey().equals(optimizationContext.getMainOptimizationState())) // remove preventive state
.forEach(e -> e.getValue().forEach(ra -> appliedRemedialActions.addAppliedRangeAction(e.getKey(), ra, rangeActionActivationResult.getOptimizedSetpoint(ra, e.getKey()))));
return appliedRemedialActions;
} else {
return null;
}
}
private static SensitivityComputer createSensitivityComputer(AppliedRemedialActions appliedRemedialActions, IteratingLinearOptimizerInput input, IteratingLinearOptimizerParameters parameters) {
SensitivityComputer.SensitivityComputerBuilder builder = SensitivityComputer.create()
.withCnecs(input.optimizationPerimeter().getFlowCnecs())
.withRangeActions(input.optimizationPerimeter().getRangeActions())
.withAppliedRemedialActions(appliedRemedialActions)
.withToolProvider(input.toolProvider())
.withOutageInstant(input.outageInstant());
if (parameters.isRaoWithLoopFlowLimitation() && parameters.getLoopFlowParametersExtension().getPtdfApproximation().shouldUpdatePtdfWithPstChange()) {
builder.withCommercialFlowsResults(input.toolProvider().getLoopFlowComputation(), input.optimizationPerimeter().getLoopFlowCnecs());
} else if (parameters.isRaoWithLoopFlowLimitation()) {
builder.withCommercialFlowsResults(input.preOptimizationFlowResult());
}
if (parameters.getObjectiveFunction().relativePositiveMargins()) {
if (parameters.getMaxMinRelativeMarginParameters().getPtdfApproximation().shouldUpdatePtdfWithPstChange()) {
builder.withPtdfsResults(input.toolProvider().getAbsolutePtdfSumsComputation(), input.optimizationPerimeter().getFlowCnecs());
} else {
builder.withPtdfsResults(input.preOptimizationFlowResult());
}
}
return builder.build();
}
private static void runSensitivityAnalysis(SensitivityComputer sensitivityComputer, Network network, int iteration) {
sensitivityComputer.compute(network);
if (sensitivityComputer.getSensitivityResult().getSensitivityStatus() == ComputationStatus.FAILURE) {
BUSINESS_WARNS.warn("Systematic sensitivity computation failed at iteration {}", iteration);
}
}
private static IteratingLinearOptimizationResultImpl createResult(FlowResult flowResult,
SensitivityResult sensitivityResult,
RangeActionActivationResult rangeActionActivation,
NetworkActionsResult networkActionsResult,
int nbOfIterations,
ObjectiveFunction objectiveFunction) {
return new IteratingLinearOptimizationResultImpl(LinearProblemStatus.OPTIMAL, nbOfIterations, rangeActionActivation, flowResult,
objectiveFunction.evaluate(flowResult, new RemedialActionActivationResultImpl(rangeActionActivation, networkActionsResult)), sensitivityResult);
}
private static Pair<IteratingLinearOptimizationResultImpl, Boolean> updateBestResultAndCheckStopCondition(boolean raRangeShrinking, LinearProblem linearProblem, IteratingLinearOptimizerInput input, int iteration, IteratingLinearOptimizationResultImpl currentResult, IteratingLinearOptimizationResultImpl bestResult) {
if (currentResult.getCost() < bestResult.getCost()) {
logBetterResult(iteration, currentResult);
linearProblem.updateBetweenSensiIteration(currentResult.getBranchResult(), currentResult.getSensitivityResult(), currentResult.getRangeActionActivationResult());
return Pair.of(currentResult, false);
}
logWorseResult(iteration, bestResult, currentResult);
applyRangeActions(bestResult, input);
if (raRangeShrinking) {
linearProblem.updateBetweenSensiIteration(currentResult.getBranchResult(), currentResult.getSensitivityResult(), currentResult.getRangeActionActivationResult());
}
return Pair.of(bestResult, !raRangeShrinking);
}
private static RangeActionActivationResult roundResult(RangeActionActivationResult linearProblemResult, IteratingLinearOptimizationResultImpl previousResult, IteratingLinearOptimizerInput input, IteratingLinearOptimizerParameters parameters) {
RangeActionActivationResultImpl roundedResult = roundPsts(linearProblemResult, previousResult, input, parameters);
roundOtherRas(linearProblemResult, input.optimizationPerimeter(), roundedResult);
return roundedResult;
}
private static RangeActionActivationResultImpl roundPsts(RangeActionActivationResult linearProblemResult, IteratingLinearOptimizationResultImpl previousResult, IteratingLinearOptimizerInput input, IteratingLinearOptimizerParameters parameters) {
if (getPstModel(parameters.getRangeActionParametersExtension()).equals(PstModel.CONTINUOUS)) {
return BestTapFinder.round(
linearProblemResult,
input.network(),
input.optimizationPerimeter(),
input.prePerimeterSetpoints(),
previousResult,
parameters.getObjectiveFunctionUnit()
);
}
RangeActionActivationResultImpl roundedResult = new RangeActionActivationResultImpl(input.prePerimeterSetpoints());
input.optimizationPerimeter().getRangeActionOptimizationStates().forEach(state -> linearProblemResult.getActivatedRangeActions(state)
.stream().filter(PstRangeAction.class::isInstance).map(PstRangeAction.class::cast)
.forEach(pst -> roundedResult.putResult(pst, state, pst.convertTapToAngle(linearProblemResult.getOptimizedTap(pst, state))))
);
return roundedResult;
}
static void roundOtherRas(RangeActionActivationResult linearProblemResult,
OptimizationPerimeter optimizationContext,
RangeActionActivationResultImpl roundedResult) {
optimizationContext.getRangeActionsPerState().keySet().forEach(state -> linearProblemResult.getActivatedRangeActions(state).stream()
.filter(ra -> !(ra instanceof PstRangeAction))
.forEach(ra -> roundedResult.putResult(ra, state, Math.round(linearProblemResult.getOptimizedSetpoint(ra, state)))));
}
private static void logBetterResult(int iteration, ObjectiveFunctionResult currentObjectiveFunctionResult) {
TECHNICAL_LOGS.info(
"Iteration {}: better solution found with a cost of {} (functional: {})",
iteration,
formatDouble(currentObjectiveFunctionResult.getCost()),
formatDouble(currentObjectiveFunctionResult.getFunctionalCost()));
}
private static void logWorseResult(int iteration, ObjectiveFunctionResult bestResult, ObjectiveFunctionResult currentResult) {
TECHNICAL_LOGS.info(
"Iteration {}: linear optimization found a worse result than best iteration, with a cost increasing from {} to {} (functional: from {} to {})",
iteration,
formatDouble(bestResult.getCost()),
formatDouble(currentResult.getCost()),
formatDouble(bestResult.getFunctionalCost()),
formatDouble(currentResult.getFunctionalCost()));
}
private static String formatDouble(double value) {
return String.format(Locale.ENGLISH, "%.2f", value);
}
}