ApproximateMostFrequent.java
/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.facebook.presto.operator.aggregation.approxmostfrequent;
import com.facebook.presto.common.block.Block;
import com.facebook.presto.common.block.BlockBuilder;
import com.facebook.presto.common.type.Type;
import com.facebook.presto.operator.aggregation.approxmostfrequent.stream.StreamSummary;
import com.facebook.presto.spi.function.AggregationFunction;
import com.facebook.presto.spi.function.AggregationState;
import com.facebook.presto.spi.function.BlockIndex;
import com.facebook.presto.spi.function.BlockPosition;
import com.facebook.presto.spi.function.CombineFunction;
import com.facebook.presto.spi.function.Description;
import com.facebook.presto.spi.function.InputFunction;
import com.facebook.presto.spi.function.OutputFunction;
import com.facebook.presto.spi.function.SqlType;
import com.facebook.presto.spi.function.TypeParameter;
import static com.facebook.presto.common.type.StandardTypes.BIGINT;
import static com.facebook.presto.spi.StandardErrorCode.INVALID_FUNCTION_ARGUMENT;
import static com.facebook.presto.util.Failures.checkCondition;
import static java.lang.Math.toIntExact;
/**
* <p>
* Aggregation function that computes the top-K frequent elements approximately. Approximate estimation of the function enables us to pick up the frequent
* values with less memory. Larger input "capacity" improves the accuracy of underlying algorithm with sacrificing the memory capacity.
* </p>
*
* <p>
* The algorithm is based loosely on:
* <a href="https://dl.acm.org/doi/10.1007/978-3-540-30570-5_27">Efficient Computation of Frequent and Top-*k* Elements in Data Streams</a>
* by Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi
* </p>
*/
@AggregationFunction(value = "approx_most_frequent")
@Description("Computes the top frequent elements approximately")
public final class ApproximateMostFrequent
{
private ApproximateMostFrequent()
{}
@InputFunction
@TypeParameter("T")
public static void input(
@TypeParameter("T") Type type,
@AggregationState ApproximateMostFrequentState state,
@SqlType(BIGINT) long buckets,
@BlockPosition @SqlType("T") Block valueBlock,
@BlockIndex int valueIndex,
@SqlType(BIGINT) long capacity)
{
StreamSummary streamSummary = state.getStateSummary();
if (streamSummary == null) {
checkCondition(buckets > 1, INVALID_FUNCTION_ARGUMENT, "approx_most_frequent bucket count must be greater than one, input bucket count: %s", buckets);
streamSummary = new StreamSummary(type, toIntExact(buckets), toIntExact(capacity));
state.setStateSummary(streamSummary);
}
streamSummary.add(valueBlock, valueIndex, 1L);
}
@CombineFunction
public static void combine(
@AggregationState ApproximateMostFrequentState state,
@AggregationState ApproximateMostFrequentState otherState)
{
StreamSummary streamSummary = state.getStateSummary();
if (streamSummary == null) {
state.setStateSummary(otherState.getStateSummary());
}
else {
streamSummary.merge(otherState.getStateSummary());
}
}
@OutputFunction("map(T,bigint)")
public static void output(@AggregationState ApproximateMostFrequentState state, BlockBuilder out)
{
if (state.getStateSummary() == null) {
out.appendNull();
}
else {
state.getStateSummary().topK(out);
}
}
}