AbstractTestStateStrategy.java
/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.facebook.presto.operator.aggregation.differentialentropy;
import org.testng.annotations.Test;
import java.util.Random;
import java.util.function.Function;
import static org.testng.Assert.assertEquals;
abstract class AbstractTestStateStrategy
{
protected static final double MIN = 0.0;
protected static final double MAX = 10.0;
private final Function<Integer, DifferentialEntropyStateStrategy> strategySupplier;
private final boolean weighted;
protected AbstractTestStateStrategy(
Function<Integer, DifferentialEntropyStateStrategy> strategySupplier,
boolean weighted)
{
this.strategySupplier = strategySupplier;
this.weighted = weighted;
}
@Test
public void testUniformDistribution()
{
DifferentialEntropyStateStrategy strategy = strategySupplier.apply(2000);
Random random = new Random(13);
for (int i = 0; i < 9_999_999; i++) {
double value = 10 * random.nextFloat();
if (weighted) {
strategy.add(value, 1.0);
}
else {
strategy.add(value);
}
}
double expected = Math.log(10) / Math.log(2);
assertEquals(strategy.calculateEntropy(), expected, 0.1);
}
@Test
public void testNormalDistribution()
{
DifferentialEntropyStateStrategy strategy = strategySupplier.apply(200_000);
Random random = new Random(13);
double sigma = 0.5;
for (int i = 0; i < 9_999_999; i++) {
double value = 5 + sigma * random.nextGaussian();
if (weighted) {
strategy.add(value, 1.0);
}
else {
strategy.add(value);
}
}
double expected = 0.5 * Math.log(2 * Math.PI * Math.E * sigma * sigma) / Math.log(2);
assertEquals(strategy.calculateEntropy(), expected, 0.02);
}
}